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Abstract

Fertility change is distinct from other forms of social and economic change because it directly
alters the size and composition of the next generation. This paper studies how the intergen-
erational transmission of fertility—the association of a mother’s fertility with her daughter’s
fertility—evolves over the fertility transition, as well as how it feeds back into the time series of
aggregate fertility rates. Microdata from 40 developing countries over the second half of the 20th

century show that intergenerational transmission strengthens during fertility decline, in large
part because socioeconomic differentials in fertility flip during the transition from Malthusian
to modern fertility regimes. As a result, intergenerational transmission raises aggregate fertility
rates as populations approach low fertility, pushing back against aggregate fertility decline.
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1 Introduction

Associations in the traits, behaviors, and outcomes of parents and children have attracted interest

across the social sciences, both for their relevance to social mobility and for their implications re-

garding the dynamics of aggregate social and economic phenomena.1 Some recent work aims to

disentangle the mechanisms underlying these associations, including the causal effect of parents’

on children’s outcomes (Currie and Moretti 2003; Black et al. 2005) and the role of pre-birth factors

like genes (Sacerdote 2007; Björklund et al. 2010). But whatever their drivers, the associations are in

themselves important determinants of processes that span generations. Indeed, much of the recent

literature on long-run economic growth and the demographic transition emphasizes intergenera-

tional linkages within families, especially as they relate to fertility, child investment, and bequests

(Galor 2011). Continuing this focus on intrafamily associations and aggregate change, this paper

studies one of the earliest intergenerational associations to draw researchers’ attention, dating as

far back as Pearson et al. (1899): that involving the fertility of mothers and daughters.

Intergenerational associations in fertility are theoretically distinct from those in other behaviors

and outcomes because fertility heterogeneity affects the composition of the population: lineages

with higher fertility in one generation comprise a larger share of the next generation. This insight

may help shed light on aggregate fertility dynamics during the demographic transition, yet it has

received surprisingly little attention in the literature. Two recent papers in biodemography (Mur-

phy and Wang 2003; Kolk et al. 2014) do investigate the issue, but only in the context of highly

stylized micro-simulation models. Though they advance our understanding of how the intergener-

ational transmission of fertility aggregates up to the population, these simulations provide neither

general theoretical results nor an immediate link to the data. Similarly, in the century since Pearson

et al.’s pioneering work, a large literature in demography has developed around the estimation of

intergenerational associations in fertility, mostly in Western populations.2 But little of this work

draws clear-cut links to aggregate change, theoretically or empirically.

In economics, while both intergenerational transmission and differential fertility have received

1Income and educational attainment have received special attention (Solon 1999; Black and Devereux 2011), but the
literature also considers a wide range of abilities, attitudes, and behaviors: intelligence (Black et al. 2009), risk preferences
(Dohmen et al. 2012), occupational choice (Hellerstein and Morrill 2011), labor supply (Couch and Dunn 1997; Altonji
and Dunn 2000), fertility (Anderton et al. 1987), and divorce (Wolfinger 1999), among others.

2Seminal contributions include Huestis and Maxwell (1932), Duncan et al. (1965), Ben-Porath (1975), Wise and Condie
(1975), Anderton et al. (1987), Kahn and Anderson (1992), and Axinn et al. (1994).
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much attention, rarely has this attention covered the intergenerational transmission of fertility. Clas-

sic theoretical studies of intergenerational transmission in other behaviors or outcomes tend to as-

sume fixed fertility, thus abstracting from how differential fertility (in the cross-section) interacts

with intergenerational transmission to shape the distribution of behaviors or outcomes in the next

generation (Becker and Tomes 1979; Goldberger 1989; Bowles and Gintis 2002).3 In recent research

seeking to model the joint evolution of economic and demographic forces (Galor and Moav 2002;

de la Croix and Doepke 2003; Moav 2005), the interplay between differential fertility and intergen-

erational transmission has received more attention, but this literature does not explicitly consider

intergenerational transmission in demographic behavior. A separate, primarily empirical literature

on how differential fertility affects the distribution of outcomes in the next generation (Lam 1986;

Preston and Campbell 1993; Mare 1997; Mare and Maralani 2006; Vogl 2014) is similarly silent on

fertility transmission. In both of these recent literatures, major questions revolve around the role of

differential fertility in the emergence of modern economic growth and the demographic transition.

Drawing on data on more than half a million mother-daughter pairs from developing countries,

this paper studies how the intergenerational transmission of fertility changes over the demographic

transition, as well as how it feeds back into the evolution of aggregate fertility rates.

Much of the analysis focuses on documenting and understanding the evolution of mother-

daughter fertility associations in developing countries over the past half-century. According to

the conventional interpretation of the literature, intergenerational associations in fertility are pos-

itive but small. However, a recent meta-analysis (Murphy 1999) shows that the predictive power

of parental fertility in explaining offspring fertility has grown in recent decades, now approach-

ing that of other commonly-studied determinants of fertility. This finding may suggest that eco-

nomic development or demographic transition strengthens the intergenerational transmission of

fertility. Indeed, in a separate analysis of developing countries, Murphy (2012) finds much lower

intergenerational correlations than one currently finds in industrialized countries, although among

the countries he studies, intergenerational transmission is if anything highest in the least developed

(as measured by the Human Development Index). This paper extends Murphy’s sample to cover a

greater number of birth cohorts, allowing for a fuller understanding of variation in intergenerational

transmission, both across countries and within them over time.
3The same is true of the classic sociological texts on the topic (McGinnis 1968; McFarland 1970; and Spilerman 1972).

2



Because the paper defines intergenerational transmission broadly incorporating any source of

persistence in relative fertility across generations its variation across space and time is likely to be

influenced by the transformation of socioeconomic differentials in fertility in developing countries

over the past half century. Building on a large literature that mainly consists of single-country stud-

ies, Vogl (2014) analyzes retrospective data from 48 developing countries, documenting how fertility

gaps between the rich or highly-educated and their worse-off counterparts have flipped. In the past,

when Malthusian population dynamics prevailed, richer or more educated parents had higher fer-

tility than their less fortunate counterparts; largely as a result, children from big families obtained

more education than those from small. Over the course of the demographic transition, these associ-

ations flipped from positive to negative, most likely due to an increase in the return to investing in

children. The history of differential fertility therefore spans two regimes, one Malthusian and one

modern. In the Malthusian regime, better-off parents bear more children, and their children obtain

more education, which in turns promotes higher fertility. In the modern regime, better-off parents

bear fewer children, and their children obtain more education, which in turns promotes lower fertility.

Thus, within either stable regime, differential fertility strengthens the intergenerational transmis-

sion of fertility. But during the transition between the regimes, the intergenerational transmission

of fertility is muted and may even turn negative. Better-off parents bear more children, and their

children obtain more education, which promotes lower fertility. The intergenerational transmission

of fertility follows a u-shape over the fertility transition.

To empirically document these patterns, I draw on the Demographic and Health Surveys (DHS),

combining sibling history data (in which respondents list their mothers’ children ever born) with

fertility history data (in which respondents list their own children ever born) to form a mother-

daughter dataset spanning 40 developing countries. A limitation of the DHS is that it interviews

women of childbearing age, most of whom have not completed childbearing. However, I show that

the association between a mother’s completed fertility and her daughter’s cumulative fertility at

age 25 strongly predicts the association between both generation’s completed fertilities. Building

on this result, I assemble a panel dataset by estimating, for each country and 5-year birth cohort

(from 1945-9 to 1980-4), the association between a mother’s completed fertility and her daughter’s

cumulative fertility at age 25.

This dataset brings to view clear evidence that the intergenerational transmission of fertility
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strengthened significantly during the transition to the modern regime, although it contains only

limited signs of the Malthusian regime. In their childbearing decisions, women born in the 1980s

were more strongly linked to the mothers than were their counterparts born in any of the previous

three decades. The strengthening is strongly linked with changes in the correlates of growing up

in a large family; country-cohort cells with more negative associations between sibship size and

education have more positive intergenerational fertility associations. Education negatively predicts

fertility for all of these cohorts, so when the sibsize-education association flipped from positive to

negative, the link between a daughter’s fertility and her mother’s fertility increased significantly.

These results, which hold for counts of both children ever born and surviving children, suggest

that intergenerational transmission may be evolving in developing countries in a way similar to its

historical evolution in currently industrialized countries.

Although these findings by themselves contribute to the literature on intergenerational associ-

ations in reproductive behavior, their potential implications for aggregate fertility rates make them

especially interesting. To shed light on these implications, I non-parametrically estimate the extent

to which average fertility differs from the counterfactual average that would arise if all mothers had

the same number of daughters, but their daughters bore children as if they were born into their

actual sibships (of heterogeneous size). This gap, which I term the composition effect, captures the

property that distinguishes fertility transmission from other intergenerational transmission: the en-

dogenous change in the next generation’s composition.4 Estimating this effect at the country-cohort

level, I find that the composition effect becomes significantly stronger as cohort fertility declines;

well into the fertility transition, heterogeneity in fertility across mothers in one generation raises the

mean fertility of their daughters by as much as 10 percent, and by 4 percent on average. To link this

finding to a more common measure of fertility, I also estimate composition effects on total fertility

rates (TFR): the expected number of children a woman would expect to bear if she experienced cur-

rent age-specific fertility rates throughout her lifetime. Here too, the composition effect becomes

significantly stronger as the TFR declines. In populations with TFRs less than 3, differential fertility

raises the TFR by as much as 6 percent, and by 3 percent on average.

These findings demonstrate a regularity in the role of heterogeneity in driving aggregate fertility

4The composition effect bears similarities to the stable population theory concept of population momentum (Keyfitz
1971). Population momentum stems from the gradual evolution of the population age structure following a change
in age-specific fertility rates. Analogously, one can view the composition effect of differential fertility as reflecting the
gradual evolution of the population shares of different lineages following a change in their relative fertility rates.

4



dynamics. In this sense, they relate to the literature on how micro-level demographic phenomena

like differential fertility and assortative mating aggregate up to the population or the economy (Kre-

mer 1993; Lam 1997; Fernandez and Rogerson 2001; de la Croix and Doepke 2003). That literature

focuses largely on aggregating skill or income across households, whereas this paper shifts attention

toward aggregating fertility behavior, yielding results that may help resolve well-known puzzles in

aggregate fertility dynamics. In particular, Bongaarts (2006, 2008) provides evidence that follow-

ing a period of sustained fertility decline, many populations “stall” at fertility levels well above

the replacement level. One explanation for such “stalls” is that intergenerational transmission and

population composition interact to slow (and even reverse) the decline of average fertility.5

The paper also expands on classic demographic research relating the average family sizes of

women and children. Preston (1976) points out that because children from larger families are over-

represented in the population, the average family size of children (i.e., sibship size) is generally

larger than the average family size of women (i.e., fertility). In a hypothesis recently confirmed by

Lam and Marteleto (2014), Preston argues that this difference shifts slowly during the demographic

transition, so that average sibship size falls more slowly than average fertility. Just as in this paper,

differential fertility reweights the population to slow the pace of aggregate demographic change.

Both lines of research highlight the value of considering how the cross-section interacts with the

aggregate time series of important behaviors and outcomes.

Finally, the results contribute to a recent economic literature that takes interest in how intergen-

erational transmission varies across space and over time. Much of this literature focuses on inter-

generational earnings mobility and its variation both across countries (Björklund and Jantti 1997;

Solon 1999; Corak 2013) and across sub-national areas within a country (Chetty et al. 2014). Interna-

tional comparisons are also available for the transmission of other outcomes, including educational

attainment (Hertz et al. 2007; Chevalier et al. (2009) and health (Bhalotra and Rawlings 2013).

This paper provides a wider-ranging analysis of the intergenerational transmission of fertility than

has previously been available across any group of countries, as well as a wider-ranging analysis of

transmission in any outcome than has previously been available across developing countries.

5Indeed, my data contain three of the six countries that Bongaarts (2003) singles out for having pronounced
“stalls” the Dominican Republic, Kenya, and Peru and all three exhibit recent upward swings in composition ef-
fects on cohort fertility. Composition effects on TFR are also significantly positive in Dominican Republic and Peru, but
not in Kenya.
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2 Intergenerational Transmission and Aggregate Fertility Dynamics

To guide the empirical work, this section provides a conceptual framework for understanding in-

tergenerational transmission in fertility. First, it describes how the dynamics of average fertility

depend on the relationship between childhood family size and fertility in adulthood. Second, it

embeds this relationship in an economic model of differential fertility, asking how it may change

over the course of the fertility transition.

2.1 Aggregating Lineages

To clarify the link between intergenerational transmission and the time series of average fertility,

first consider the dynamics of a population with one sex. The population consists of a set of lineages,

whose size may vary from generation to generation. Let Nijt ≥ 0 be the net fertility (the number of

offspring surviving to reproductive age) of member i from lineage j in generation t. To capture the

relationship between fertility in generations t− 1 and t, define the conditional expectation function

nt
(

Nij,t−1
)
≡ E

[
Nijt|Nij,t−1

]
.

Given this setup, one can express average fertility in generation t as a function of the distribution

of fertility in generation t− 1:

E
[
Nijt
]

= E

[(
Nij,t−1

E
[
Nij,t−1

]) nt
(

Nij,t−1
)]

(1)

where Nij,t−1 is the net fertility of individual ijt’s parent or, equivalently, individual ijt’s surviving

sibship size. The distribution of nt
(

Nij,t−1
)

is reweighted by the factor Nij,t−1/E
[
Nij,t−1

]
to reflect

the changing composition of the population from t− 1 to t. This reweighting is the main theoretical

feature that distinguishes the intergenerational transmission of fertility from the intergenerational

transmission of other behaviors and traits. If nt (·) is an increasing function, then the added weight

given to high fertility lineages raises average fertility. Equation (1) has the counterintuitive implica-

tion that a reduction of fertility levels in one generation can cause fertility to trend upward in future

generations, as the population adjusts to a new steady state family size distribution.

With data linking the fertility behavior of two generations, one can quantify how intergenera-

tional transmission interacts with population composition to affect the evolution of average fertility.

In particular, one can compare actual average fertility with a counterfactual average that would ob-
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tain in the absence of reweighting. As in Vogl (2014), I refer to this comparison as the composition

effect of differential fertility on average fertility in the next generation. It reflects the mechanical ef-

fect of fertility heterogeneity in generation t− 1 on the composition of the population in generation

t. For the one-sex population, the composition effect on generation t’s average fertility is:

∆t = E
[

Nij,t−1

E[Nij,t−1]
nt
(

Nij,t−1
)]
− E

[
nt
(

Nij,t−1
)]

(2)

The first term is actual average fertility as given by Equation (1), whereas the second term corre-

sponds to a counterfactual world in which members of generation t were all born into families of

the same size but bore children as they do in reality. When ∆t is positive, fertility heterogeneity in

generation t− 1 raises average fertility in generation t.

Like all model-free decomposition methods (Blinder 1973; Oaxaca 1973; DiNardo et al. 1996),

the composition effect of differential fertility does not account for parents’ endogenous responses

to changes in relative fertility or for general equilibrium effects. These excluded channels may alter

the shape of the intergenerational transmission function nt
(

Nij,t−1
)
. For example, a reduction in

the fertility of poor parents might lead them to invest more in their children’s human capital, with

eventual effects on their children’s fertility.

Both for the empirical work and for insight into the properties of the composition effect, an im-

portant case involves a linear intergenerational transmission function: nt
(

Nij,t−1
)
= αt + βtNij,t−1.

The coefficient βt is the intergenerational transmission coefficient. In this case:

∆t = βt

(
V
[
Nij,t−1

]
E
[
Nij,t−1

] ) (3)

∆t increases in βt and V
[
Nij,t−1

]
, while decreasing in E

[
Nij,t−1

]
. In other words, the composi-

tion effect of differential fertility is more positive when intergenerational transmission is stronger

or when the variance of childhood family size is larger relative to its mean. The role of the ratio

V
[
Nij,t−1

]
/E
[
Nij,t−1

]
in linking the cross-section with the aggregate is not unique to the composi-

tion effect. Exactly the same ratio appears in Preston’s (1976) formula for the difference between the

average family size of children and the average family size of women. Both there and here, it im-

plies that the aggregate implications differential fertility are larger when fertility is more dispersed

relative to its mean.
7



2.2 Intergenerational Transmission and Demographic Transition

In Equation (1), two quantities determine average fertility: (1) the reweighting factor Nij,t−1

E[Nij,t−1]
and

(2) the intergenerational transmission function nt
(

Nij,t−1
)
. What are the properties of nt

(
Nij,t−1

)
,

and how do they vary over the demographic transition? Section 2.2.1 first studies these questions in

an overlapping generations model of differential fertility, building on previous work in the Unified

Growth Theory (Galor 2011) tradition. The model generates several hypotheses regarding the evo-

lution of nt
(

Nij,t−1
)

over the demographic transition. With an eye toward taking these hypotheses

to the data, Section 2.2.2 then generalizes them to allow for other mechanisms of intergenerational

transmission.

2.2.1 Intergenerational Transmission in a Model of Differential Fertility

Parents maximize a log-linear utility function over their own consumption (Ct), the number of chil-

dren (Nt), and human capital per child (Ht+1):

U (Ct, Nt, Ht+1) = α log (Ct) + (1− α) (log (NtHt+1)) (4)

α ∈ (0, 1) indexes the weight the parents place on their own consumption relative to the com-

bined quantity and quality of children. Child quality, or human capital, is produced from education

spending Et by means of an increasing, concave, and twice-differentiable production function:

Ht+1 = h(Et) (5)

with the additional properties that h (0) > 0 and h′(0) < ∞ These additional assumptions imply

that even if fertility declines with parental human capital in the interior solution, there will be a

corner solution in which fertility rises with parental human capital..

Apart from education spending, each child costs τ ∈ (0, 1) units of time and κ > 0 goods.

Parents are endowed with human capital Ht, which is drawn from a nondegenerate distribution

and receives wage rate w. These assumptions result in the following budget constraint:

Ct + κNt + EtNt ≤ wHt (1− τNt) (6)
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Parents can spend their full income wHt on their own consumption (Ct), on the quantity costs of

children (κNt and τwHtNt), and on the quality of children (EtNt).

On can gain much insight into the model’s predictions regarding differential fertility by exam-

ining the first order condition for fertility, which sets:

Nt = (1− α)

(
Ht

κ + τHt + Et

)

If parents choose Et = 0, then Nt increases in Ht. Thus, for parents at a child investment corner

solution, fertility increases with parental human capital. If parents choose positive Et, fertility can

either increase or decrease with parental human capital, with the sign of the comparative static

depending on how rapidly Et rises with Ht. In particular, Nt decreases with Ht only when Et rises

rapidly with Et. As Jones et al. (2011) point out, the elasticity of human capital with respect to child

investment η (Et) ≡ Eth′(Et)
h(Et)

plays a key role in determining how rapidly Et rises with Ht.

Proposition 1. If η′ (·) > 0 and κ is sufficiently small, then there exists a threshold H̃ such that Nt increases

in Ht for all Ht < H̃ and decreases in Ht for all Ht > H̃.

The Theory Appendix contains all proofs. Under these assumptions for the elasticity and the

goods cost, the model thus predicts a hump-shaped relationship between fertility and parental skill.

Below H̃, parents choose a child investment corner solution, so the income effect of higher skill

dominates the substation effect, and fertility rises with skill. Under the stated assumptions, the

substation effect dominates above H̃, so fertility declines with skill. When the stated assumptions

do not hold, the declining portion of the hump-shape will disappear in most circumstances, so that

fertility everywhere increases in parental skill. Using data from 48 developing countries, Vogl (2014)

documents a hump-shaped skill-fertility profile that leads the least-skilled to exhibit lower fertility

in the early stages of development and higher fertility in the later stages of development. I refer to

the earlier regime as “Malthusian” and the later regime as “modern.”

One can gain much insight into the model’s implications for intergenerational transmission

by studying its steady states—with constant levels of fertility and human capital across genera-

tions—and the transitions between them. To explore this issue, one must first establish the possibil-

ity of multiple steady state levels of human capital, which generate the heterogeneity that is crucial

to the model.
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Proposition 2. For any τ and κ, there exist human capital production functions h(·) with η′ (·) > 0 that

generate 1, 2, and 3 steady state levels of human capital.

This result has much in common with Proposition 1 of Moav (2005), who considers a human

capital production function with slightly different properties. The model has up to three steady

states, one with zero child investment and two with positive child investment. Of these three steady

states, those with the lowest and highest levels of human capital are stable, while the intermediate

one (which exists only if the other two also exist) is unstable. For the remainder of the section, I

will focus on the two stable steady states of an environment with three steady states. A fertility

regime refers to a population in which all lineages are in stable steady states. A fertility regime is

non-degenerate if fertility is heterogeneous within it.

In the model, two forces are particularly natural for generating fertility transitions: rising wages

and rising returns to child investment. Rising wages increase the fertility of low-skill parents, while

decreasing the fertility of high-skill parents. Rising returns decrease the fertility of high-skill par-

ents, while leaving the low-skill steady state unchanged. Consider a population that experiences a

one-time, permanent increase in either of these parameters, such that two stable steady states exist

both before and after the increase.

Proposition 3. Within any non-degenerate fertility regime, β = 1. During a transition between two

Malthusian regimes, β ∈ (0, 1). During a transition between two modern regimes, β > 1. During a

transition between Malthusian and modern regimes, β < 0 for at least one generation.

The first result is a basic property of a steady state: fertility is constant within lineages. In con-

trast, the second and third results come from considering the dynamics of the population as optimal

fertility moves along the hump shape. When the population switches from a Malthusian regime to a

modern regime, relative fertility flips. Low-skill parents bear more children than high-skill parents,

despite having grown up in larger childhood families. As a result, the intergenerational transmis-

sion coefficient follows a u-shape over the fertility transition.

2.2.2 Other Mechanisms

The model provides one source of intergenerational transmission in fertility, due to linkages across

generations in the socioeconomic determinants of fertility. Although the literature on demography
10



and long-run growth (Galor 2011) suggests that this source is likely to be important during the

demographic transition, other sources are possible. Chief among them are the genetic heritability

of fecundity and cultural influences on fertility preferences and behavior, and linkages across gen-

erations in the socioeconomic determinants of fertility. To combine the model’s predictions with

these alternative sources of intergenerational transmission, one might more generally express the

intergenerational transmission of fertility as:

∂E
[
Nijt|Nij,t−1

]
∂Nij,t−1

=
∂E
[
Nijt|Nij,t−1, Hijt

]
∂Nij,t−1

+
∂E
[
Nijt|Nij,t−1, Hijt

]
∂Hij,t

×
∂E
[
Hijt|Nij,t−1

]
∂Nij,t−1

(7)

where Hijt is the human capital of individual i from lineage j in generation t. Note that if the

conditional expectation is linear, β = ∂E[Nt|Nt−1]
∂Nt−1

. This equation merely expands the overall inter-

generational transmission of fertility, ∂E[Nt|Nt−1]
∂Nt−1

, into sub-components using the chain rule. These

subcomponents include a ’pure’ intergeneration transmission term, ∂E[Nt|Nt−1,Ht]
∂Nt−1

, the relationship

between skill and fertility,
∂E[Nijt|Nij,t−1,Hijt]

∂Hij,t
, and the relationship between childhood family size and

skill,
∂E[Hijt|Nij,t−1]

∂Nij,t−1
. The model in Section 2.1.1 focused on the second and third components, which

change in a staggered fashion during the demographic transition. In both the Malthusian, both

components are positive; in the modern regime, both components are negative; in the transition,

they are of opposite sign. Thus, their product follows a u-shape, as predicted by the model.

However, the model does not capture the ’pure’ transmission component, which reflects reflect

genetic and cultural transmission.6 The behavioral genetics literature documents some genetic her-

itability in various markers of fecundity—including menstrual regularity and the ages at menarche

and menopause (van Akker et al. 1987; Treloar and Martin 1990)—which may lead to heritability in

fertility. Meanwhile, a large literature in the social sciences emphasizes the role of culture in gener-

ating intergenerational transmission of various traits and behaviors. Sociologists (e.g., Duncan et al.

1965) have long emphasized this theory for the transmission of fertility, positing that growing up in

a large family shapes preferences for a large family of one’s own. In their economic model of cultural

transmission across generations, Bisin and Verdier (2000, 2010) distinguish between “direct vertical

socialization,” in which parents consciously shape their children’s preferences and behavior, and

“oblique horizontal socialization,” in which children learn from or imitate their surroundings. Both

6Galor and Moav (2002) also posit a model with genetic or cultural transmission in the taste for child quantity or
quality, which has similar properties to the model in Section 2.1.1 and can thus be characterized by the product discussed
in the previous paragraph.
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sources of cultural transmission could lead to the intergenerational transmission of fertility. Chil-

dren may behave like their parents because of parental indoctrination or because of the preference-

shaping effects of their family and community experiences in childhood. Alternatively, families

and communities may reinforce fertility behavior across generations through social norms—as em-

phasized by Munshi and Myaux (2006)—or through social learning—as emphasized by researchers

Coale and Watkins (1986) and Spolaore and Wacziarg (2014).

If the ’pure’ transmission component ∂E[Nt|Nt−1,Ht]
∂Nt−1

is small or varies little over time, then one

would still expect β to follow the trajectory predicted by the model in the previous section. In the

Malthusian regime, higher-skill parents bear more children, so ∂E[Nt|Nt−1,Ht]
∂Ht

> 0, and women from

larger sibships obtain more education, so ∂E[Ht|Nt−1]
∂Nt−1

> 0. In the modern regime, both patterns are

flipped, so ∂E[Nt|Nt−1,Ht]
∂Ht

< 0 and ∂E[Ht|Nt−1]
∂Nt−1

< 0. In the transition between these two regimes, a

single generation experiences long and auxiliary parameters of opposite sign: ∂E[Nt|Nt−1,Ht]
∂Ht

< 0 and
∂E[Ht|Nt−1]

∂Nt−1
> 0. Thus, if the ’pure’ transmission component is small or varies little over time, then

∂E[Nt|Nt−1]
∂Nt−1

(in the linear model, β) follows a u-shape over the transition. I will argue that in the

postwar era, developing countries experienced the upward-sloping portion of this process, moving

from the transition to the modern regime.

3 Data on the Fertility Behavior of Mothers and Daughters

To link mothers’ and daughters’ fertilities, I draw on data from the Demographic and Health Sur-

veys, a collection of nationally-representative samples of women of childbearing age (generally

15-49). Two survey modules are key for the analysis. The first, the fertility history module, asks

women to list all of their own children ever born, with several details like date of birth and survival

status. The second, the sibling history module, asks women to list all of their siblings ever born

to their mothers, with similar information. Combined, these two lists allow one to retrospectively

track fertility behavior over two generations in a lineage.

Although the design of the DHS allows for comparisons across surveys and countries, question-

naires and sampling methods occasionally differ. Surveys must meet two criteria for inclusion in the

study sample.7 First, they must include information on the survival of both offspring and siblings,

7Two additional surveys, the 1989 Bolivia DHS and the 1999 Nigeria DHS, meet the sample inclusion criteria but are
omitted due to irregularities in the sibling history data.
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to allow estimation of intergenerational transmission coefficients for both ever-born and surviving

fertility. Second, they must sample all women, not only ever-married women.8 As of November

2013, 80 surveys in 40 African, Asian, Caribbean, Latin American, and Pacific countries satisfied

these criteria (see Appendix Table 1 for a list of countries and survey years). Together, these surveys

provide data on sibship size and fertility for 966,498 women aged 15-49.

Most of the analyses below group these women into cells defined by country and 5-year birth co-

hort. To maintain precision in country-cohort parameter estimates, I drop country-cohort cells with

fewer than 100 observations. Some analyses (described below) restrict further to cells with at least

250 observations. The analyses use sampling weights provided by the DHS, but because I combine

multiple surveys per country and then estimate parameters at the country-cohort level, I rescale

the survey weights to maximize efficiency. Specifically, suppose a country-cohort cell includes data

from surveys k = 1, · · · , K, each with nk observations. Then I rescale the survey weights from sur-

vey k to sum to nk
∑k nk

. This approach weights individual surveys in proportion their contribution to

the overall country-cohort sample.

4 Intergenerational Transmission of Fertility: Cohort Variations

This section analyzes the intergenerational transmission of fertility, a key determinant of the com-

position effect of differential fertility (the subject of Section 5 below). As a first step, it estimates

the parameters of the short, long, and auxiliary models by country and birth cohort, providing

summary statistics on their distributions. Using these coefficients, it then shows how changes in

cross-sectional fertility patterns affect the association of mothers’ and daughters’ fertilities.

4.1 Method

I estimate intergenerational transmission coefficients for cells defined by country and 5-year birth

cohort. In this estimation exercise, two issues of measurement arise. First, should one count all

offspring and siblings ever born, or only those who survived to the interview? If one were purely

interested in the intergenerational transmission of fertility behavior (the number of pregnancies),

then ever-born (E) fertility would be more relevant. If one were instead interested in the intergen-

8The one exception to this rule is the 1996 Nepal DHS, which surveyed only ever-married women. Because 98 percent
of Nepalese women over 30 in that year were ever-married, I include data from that survey on women over 30.
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erational transmission of fertility outcomes (the effective number of offspring), then surviving (S)

fertility would be more relevant. But for those interested in the intergenerational transmission of

the demand for children, both measures of fertility may be relevant, depending on parents’ ability to

target the number of surviving offspring subject to mortality risk. And from an evolutionary per-

spective, only surviving fertility is relevant. Aside from these substantive issues, surviving fertility

is also attractive because it is less subject to recall bias. Respondents may forget their deceased chil-

dren, but more importantly, they may forget their deceased siblings, some of whom may have died

before the respondents were born. Because both measures are of interest, I estimate intergenera-

tional transmission in ever-born and surviving fertility.

A second methodological question relates to the age of fertility measurement. The DHS inter-

views most respondents midway through their childbearing years, so the analysis will involve a

regression of the respondent’s fertility at some age a < 50 on her sibship size, or her mother’s com-

pleted fertility. The choice of a involves a tradeoff. An earlier choice allows for a larger sample and

coverage of later birth cohorts, while a later choice covers more of the reproductive lifespan. As an

antecedent to the rest of the analysis, Section 4.2 studies the choice of a.

Given the choice of a, I estimate intergenerational transmission of fertility as follows:

f ertilityja
ict = α

ja
ct + β

ja
ctsibsizej

ict + uja
ict (8)

where i indexes the individual, c indexes her country, t indexes her birth cohort, and j indexes the

type of fertility (ever-born or surviving). β
ja
ct is country-cohort ct’s intergenerational transmission

coefficient for type-j fertility at age a. As specified in Section 2, β
ja
ct captures all mechanisms linking

a mother’s fertility behavior with her daughter’s. Section 4.3 describes the distribution of β
ja
ct across

countries and birth cohorts.

Motivated by Equation (7), one can decompose β
ja
ct into its driving forces: ∂E[Nt|Nt−1,Ht]

∂Nt−1
, ∂E[Nt|Nt−1,Ht]

∂Ht

and ∂E[Ht|Nt−1]
∂Nt−1

. In a linear system, two equations summarize these three partial derivatives. The first

expresses fertility as a function of sibship size and education:

f ertilityja
ict = Aja

ct + Bja
ctsibsizej

ict + Γja
cteduict + U ja

ict (9)
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while the second expresses education as a function of sibship size:

eduict = ψ
j
ct + ϕ

j
ctsibsizej

ict + vj
ict (10)

In the language Goldberger (1991) uses to characterize omitted variables bias, Equation (8) is a

“short” regression, while Equations (9) and (10) are the corresponding “long” and “auxiliary” re-

gressions. By Equation (7), the slope parameters are related by the identity β
ja
ct = Bja

ct + ϕ
j
ctΓ

ja
ct . This

correspondence will guide Section 4.4, which seeks to explain heterogeneity in β
ja
ct.

Both for choosing a and for analyzing the relationships between Equations (9)-(10) and Equation

(8), an issue is that the parameter estimates, which will be used as regressors and regressands,

approximate the true parameters with error. As a result, OLS estimates of the linkages among β̂
ja
ct,

B̂ja
ct , Γ̂ja

ct , and ϕ̂
j
ct will be biased. In earlier work based on the same dataset (Vogl 2014), I confront

the same issue with similar cell sizes and find that Fuller’s (1987) error-correction model produces

estimates very close to those produced by OLS. To make the results as transparent as possible, I

report only the OLS estimates here. To give a sense of the extent of bias, Appendix Tables 2-3 report

the results of analyses that double the minimum cell size. Estimates from these larger cells have

lower error variances, so if estimation error substantially biases the main results, then the results in

Tables 2-3 should differ from the main results. In practice, they differ little, suggesting that errors-

in-variables bias is not a major concern.

4.2 Choosing the Age of Fertility Measurement

Ideally, one would regress a daughter’s completed fertility on her mother’s completed fertility. Un-

fortunately, the DHS interviews most respondents before they have completed their fertility, so that

such a regression would leave out much of the sample. My solution to this problem is to choose

the earliest age a such that β
ja
ct is representative of the intergenerational transmission coefficient for

completed fertility. To find this age, I study how transmission coefficients at later ages relate to

transmission coefficients at earlier ages. If those at earlier ages can serve as proxies for those at later

ages, then one can take advantage of their greater coverage of birth cohorts.

Questions surrounding the age of measurement in the second generation also arise in the es-

timation of intergenerational income elasticities (Solon and Haider 2006), so the literature on that
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topic provides some precedent on the issue. In estimating the parent-child association in income,

researchers are often forced to use data from early in the child’s career. Since age-earnings profiles

are steeper for individuals with high lifetime earnings, early measurement of the child’s income

can bias estimates of the parent-child association downward. This lifecycle bias is analogous to

the problem that arises here, except that the dependent variable is a flow (income) rather than a

stock (cumulative fertility). In their research on intergenerational income mobility in the United

States, Chetty et al. (forthcoming) address this issue by using the age at which the intergenerational

association becomes stable for the rest of the lifecycle. This approach works well for estimating

intergenerational associations in income, which appear to level off when the child reaches age 30.

If fertility gaps are concentrated early in the reproductive lifespan, then one can take a similar

approach to analyzing intergenerational associations in fertility.9 Along these lines, I choose the

earliest age a for which β
ja
ct approximates the completed fertility transmission coefficient. I draw on

the full fertility histories of women at least 45 years old to estimate intergenerational transmission

coefficients at ages 20, 25, 30, 35, 40, and 45. Taking fertility at age 45 to be “complete,” I then regress

the age-45 transmission coefficient on transmission coefficients at earlier ages:

β̂
j45
ct = θβ̂

ja
ct + δc + τt + εct (11)

for ages a = 20, 25, 30, 35, and 40. The parameter of interest is θ, the association between trans-

mission coefficients at different ages. If θ is close to 1, then one can on average interpret β̂
ja
ct in

the same way as β̂
j45
ct . The specification has country (δc) and birth cohort (τt) fixed effects, but for

completeness, I also report estimations without them. Standard errors are clustered by country.

The results, which appear in Table 1, indicate that transmission coefficients at earlier ages are

strongly informative about the intergenerational transmission coefficient for completed fertility (as

measured at age 45). None of the estimates of θ are significantly different from 1, although precision

is low at younger ages of measurement a. When a = 20, so that θ measures the relationship between

a cohort’s age-20 transmission coefficient and its age-45 transmission coefficient, the estimates of θ

are unstable across specifications. But for all a ≥ 25, θ is stable at values close to 1, both for ever-

born and for surviving fertility, both with and without country and cohort fixed effects. These

9More precisely, the approach is appropriate if women attain lower fertility be delaying the first pregnancy, rather
than by lowering the rate of childbearing following the first pregnancy.
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conclusions do not change when I double the minimum cell size (see Appendix Table 2).10

These estimations suggest that one can use age-25 transmission coefficients to track the evo-

lution of intergenerational correlations over the fertility transition. This approach covers younger

birth cohorts (which have not yet completed childbearing) while still allowing one to interpret the

coefficients (on average) as the intergenerational transmission of completed fertility. In the remain-

der of this section, I focus on age-25 transmission coefficients. Because the sample includes multiple

surveys for many countries, data on age-25 fertility are available for a larger number of women per

cohort than data on age-45 fertility. This feature of the data allows me to set a higher minimum cell

size. For all age-25 estimates, I use a minimum cell size of 250, which excludes 3.6 percent of the

country-cohort cells that include women over 25.

4.3 Intergenerational Transmission Coefficients

Figure 2 describes the distribution of β̂
j25
ct and B̂j25

ct across country-cohort cells, showing consider-

able dispersion in the parameter estimates. In separate panels for ever-born and surviving fertility,

the figure draws a kernel density estimate for each coefficient, using a bandwidth of 0.01. The

darker curves correspond to β̂
j25
ct from the “short” regression, while the lighter curves correspond

to B̂j25
ct from the “long regression.” Two patterns emerge for both ever-born and surviving fertility.

First, the central tendencies of β̂
j25
ct and B̂j25

ct are close to zero, and the supports of the distributions

include both positive and negative values. Second, the dispersion of B̂j25
ct —from the “long” regres-

sion, which controls for education—is smaller than that of β̂
j25
ct from the “short” regression. This

second finding implies that heterogeneity in the role of education explains part of the observed

heterogeneity in intergenerational transmission. Perhaps more interestingly, the distribution of B̂j25
ct

has shorter right and left tails than the distribution of β̂
j25
ct , suggesting that the association of sibship

size and education amplifies the intergenerational transmission of fertility both when it is positive

and when it is negative.

One interpretation of Figure 2 is that the intergenerational transmission of fertility is small every-

where, so that the distributions observed in Figure 2 are the result of sampling variability. However,

the distributions of the associated t-statistics, summarized in Table 2, do not fit such an interpreta-

10In Appendix Table 2, estimations with country and cohort fixed effects have more unstable results because the higher
minimum cell size reduces the number of countries with multiple cohorts.
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tion. Using a significance level of 5 percent, the ever-born transmission coefficient (β̂E25
ct ) is signif-

icantly positive in 27 percent of cells and significantly negative in 2 percent of cells; the surviving

transmission coefficient (β̂S25
ct ) is significantly positive in 15 percent of cells and significantly neg-

ative in 9 percent of cells. Notably, the distribution of β̂S25
ct contains too many positive values and

too many negative values to be explained by randomness. Further evidence against the “sampling

variability” hypothesis can be found in Appendix Figure 1, which plots two time series of coeffi-

cient estimates (one each for ever-born and surviving fertility) for each of the 40 countries in the

sample. To the extent that the coefficients change across successive cohorts within a country, that

change is relatively smooth. Many countries experienced increasing intergenerational transmission

over time, but this trend is not universal. Some countries exhibit no trend at all, some show evi-

dence of a declining trend, and some display a moderate u-shape over time. Even more notably,

some estimates of the intergenerational transmission coefficient are significantly negative, a result

consistent with the transition between the first and send regimes described in Section 2.2.

To further characterize the evolution of the intergenerational transmission coefficients, on aver-

age across countries, I estimate the regression:

β̂
j25
ct = δc + τt + εct (12)

The dependent variable is the estimated intergenerational transmission coefficient, and the indepen-

dent variables are country and cohort fixed effects. Figure 3 plots the cohort effects (τt), estimated

relative to the omitted 1945-9 cohort. Transmission coefficients for ever-born fertility trend signif-

icantly upward across cohorts, while those for surviving fertility exhibit a moderate u-shape. For

ever-born fertility, the transmission coefficients for the 1980-4 cohort are significantly more positive

(p < 0.05) than those for the 1950-4 cohort; for surviving fertility, those for the 1980-4 cohort are

significantly more positive (p < 0.01) than those for the 1965-9 cohort.

All analyses until this point have shown results for ever-born and surviving fertility separately.

How do these two sets of results relate to each other? Appendix Figure 2 explores this issue by

plotting transmission coefficients for surviving fertility (β̂S25
ct ) against those for ever-born fertility

(β̂E25
ct ). The two transmission coefficients are highly correlated (with a correlation coefficient of 0.77),

but the coefficients for surviving fertility tend to be less strongly positive than those for ever-born
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fertility. This finding suggests that, when the intergenerational transmission of fertility is positive,

it is amplified by the intergenerational transmission of child mortality.

4.4 Understanding Heterogeneity in Intergenerational Transmission

The fact that the β̂
j25
ct distribution has more mass in both tails than the B̂j25

ct distribution means that

the role or education varies across time and space. This variation could stem from two sources:

(1) heterogeneity in the association of education with fertility (Γj25
ct ) and (2) heterogeneity in the

association of sibship size with education (ϕ
j
ct). Although both the SES-fertility association and the

sibsize-education association flip from positive to negative over the fertility transition, the flips are

one generation apart. The SES-fertility association flips in one generation, inducing a flip in the

next generation’s sibsize-education association. This section finds that the second of these flips is

crucial to understanding global variation in intergenerational transmission in the second half of the

twentieth century. Education is negatively associated with fertility in most of the country-cohort

cells, but mirroring the results of Vogl (2014), the association of sibship size with education takes on

a wide range of values, both positive and negative.

Basic features of the distributions of Γ̂j25
ct , and ϕ̂

j
ct are visible in Table 2. For both ever-born

and surviving fertility, more than three-quarters of the education-fertility association estimates are

significantly negative. Meanwhile, the ever-born sibsize-education association is significantly pos-

itive in 39 percent of cells and significantly negative in 25 percent of cells. Similarly, the surviving

sibsize-education association is significantly positive in 51 percent of cells and significantly nega-

tive in 15 percent of cells. Hence, most women in the sample came of age in the modern fertility

regime, with a negative association between female education and fertility. However, some were

born in the Malthusian regime, in which richer or higher skill parents had more children, so the

estimated sibsize-education associations (ϕ̂
j
ct) flip from positive and negative, while the estimated

education-fertility associations (Γ̂j25
ct ) are generally negative.

On average, both parameters become more negative across successive birth cohorts. In addition

to plotting cohort effects in β̂
j25
ct , Figure 3 also plots cohort effects in the other parameters of the linear

system (still based on Equation (12)). Net of country fixed effects, Γ̂j25
ct and ϕ̂

j
ct become significantly

more negative in later cohorts, both for ever-born and surviving fertility. Trends in Γ̂j25
ct and ϕ̂

j
ct work

to make the intergenerational transmission coefficient more positive.
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Because the education-fertility association is generally negative, the overall intergenerational

transmission of fertility should be more positive when the sibsize-education association is more

negative. One can test this hypothesis by running a regression of the estimated intergenerational

transmission coefficient on the estimated sibsize-education association:

β̂
j25
ct = θϕ̂

j
ct + δc + τt + εct (13)

As in Equation (11), the regression specification includes both country (δc) and birth cohort (τt) fixed

effects, but I also report estimations without them for completeness. Because the education-fertility

associations are largely negative, θ too should be negative.

Estimates of Equation (13)—reported in Table 3, columns (1)-(2) and (5)-(6)—confirm this pre-

diction. Both for ever-born fertility and for surviving fertility, both with and without country and

cohort fixed effects, the sibsize-education association bears a significantly negative relationship

with the intergenerational transmission coefficient. The estimates imply that a 1-unit decrease in

the sibsize-education association leads to a 0.1-unit increase in the intergenerational transmission

coefficient. Figure 4 portrays these patterns graphically. The left-hand panels plot the intergen-

erational transmission coefficient as a function of the sibsize-education association; the right-hand

panels plot the the relationship between the residuals after removing country and cohort fixed ef-

fects. Scatterplots in all four panels show clearly declining relationships, which are confirmed in

the local linear regressions drawn in black. As indicated by the R2 terms in Table 3, variation in the

sibsize-education association explains roughly one-third of the overall variance of the intergenera-

tional transmission coefficient. Perhaps due to a smaller signal-to-noise ratio, changes in the sibsize-

education association explain a smaller share, about 15 percent, of changes in the intergenerational

transmission coefficient. Regardless, variation in the association of sibship size and education ap-

pears to play an important role in shaping the intergenerational transmission of fertility.

The prediction of a negative θ depended on the assumption of a negative education-fertility as-

sociation. Although the data are broadly consistent with this assumption, one can modify Equation

(13) to more precisely account for heterogeneity in the education-fertility association:

β̂
j25
ct = θ1 ϕ̂

j
ct + θ2Γ̂j25

ct + θ3

(
Γ̂j25

ct × ϕ̂
j
ct

)
+ δc + τt + εct (14)
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This specification adds the fertility-education association (Γ̂j25
ct ) and its interaction with the sibsize-

education association (ϕ̂
j
ct) to Equation (13). The omitted variables bias formula predicts that θ3 = 1.

Indeed, estimates of Equation (14)—reported in Table 3, columns (3)-(4) and (7)-(8)—place θ3 very

close to 1, for both types of fertility.

As Section 4.1 pointed out, estimations of Equations (13)-(14) may suffer from bias because the

regressand and regressors {β̂j25
ct , Γ̂j25

ct , ϕ̂
j
ct} are themselves estimated with error. To explore the im-

portance of this issue, Appendix Table 3 doubles the minimum cell size from 250 to 500, with little

change to the parameter estimates. These findings suggest that the initial minimum cell size is large

enough to make errors-in-variables bias unimportant.

5 Composition Effects over the Fertility Transition

What are the implications of strengthening intergenerational transmission for the evolution of pop-

ulation fertility rates? This section estimates the composition effect of differential fertility in gener-

ation t− 1 on average fertility in generation t.

5.1 Method

5.1.1 Non-Parametric Estimator of the Composition Effect on Age-25 Fertility

Equation (2) defines the composition effect ∆t as the levels difference between average fertility and

de-weighted average fertility for a one-sex population. For estimation, I modify this definition in

two ways. First, to better capture the reality of a two-sex population, I rewrite the effect as a function

of the number of female offspring Fij,t−1 instead of the number of all offspring Nij,t−1:

∆̃t = E
[

Fij,t−1

E[Fij,t−1]
ñt
(

Fij,t−1
)]
− E

[
ñt
(

Fij,t−1
)]

where ñt
(

Fij,t−1
)
≡ E

[
Nijt|Fij,t−1

]
is the expected fertility of a woman with Fij,t−1− 1 sisters. Second,

because changing fertility levels complicate comparisons of ∆̃t at different stages of the fertility

transition and at different ages, I divide ∆̃t by deweighted average fertility E
[
ñt
(

Fij,t−1
)]

:

δ̃t =
∆̃t

E
[
ñt
(

Fij,t−1
)] (15)
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δ̃t reflects the relative composition effect: the composition effect as a share of baseline fertility. Since

it is unit-less, it allows easier comparisons of composition effects at different stages of the fertility

transition and at different ages. For linear conditional expectation functions, δ̃t has the same prop-

erties as ∆̃t: increasing in the slope of ñt (·) and in the ratio of the variance to the mean of Fij,t−1.

δ̃t captures three generations: grandmothers (who were adults in t− 1), mothers (who are adults

in t), and children (who will become adults in t + 1). Fij,t−1 is the number of mothers born to a

grandmother, while ñt
(

Fij,t−1
)

is the expected number of children born to a mother with Fij,t−1 − 1

sisters. Equation (15) therefore integrates over the distribution of grandmothers. In the DHS, the

unit of observation is a mother, so one cannot directly estimate Equation (15). However, applying

the law of iterated expectations, one can rewrite δ̃t over the distribution of mothers in generation t:

δ̃t =
∑K

k=1

(
ηkt − ηkt/k

∑K
l=1 ηlt/l

)
µkt

∑K
k=1

(
ηkt/k

∑K
l=1 ηlt/l

)
µkt

(16)

where K is the maximum number of surviving females in a mother’s sibship (including herself);

ηkt is the share of mothers with k surviving females in their sibships; and µkt is the mean fertility

of mothers with k surviving females in their sibships. In theory, the terms “grandmothers” and

“mothers” refer to all female members of generations t− 1 and t, not just those who have children.

In practice, however, data only exist for actual grandmothers, as childless members of generation

t− 1 have no offspring in generation t.

Using the empirical analogues of ηkt and µkt, I estimate δ̃t non-parametrically for mean children

ever born (CEB) at age 25 among women in birth cohort t. By redefining t as a birth cohort rather

than a generation, I slightly abuse notation. As estimated in equation (16), δ̃t is a synthetic cohort

measure, corresponding to a hypothetical cohort of families whose size is distributed according to

the cross-sectional distribution of sibship size in birth cohort t. δ̃t thus lands somewhere between

a period measure and a cohort measure. The true cohort version of the composition effect would

follow the fertility behavior of all offspring born to a single cohort of parents; the “cohort” would

be the first generation.
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5.1.2 Non-Parametric Estimator of the Composition Effect on the Total Fertility Rate

While the structure of the data precludes estimation of the true cohort measure, it does permit esti-

mation of a true period measure: the composition effect of differential fertility on the total fertility

rate (TFR). The TFR is the expected number of children a woman would bear if she experienced

current age-specific fertility rates throughout her lifetime. To obtain the relative composition effect

of differential fertility on this quantity, I estimate the relative difference between actual TFR and the

TFR that would obtain if women from different sibship sizes were equally represented within their

age group:

δ̃TFR =
∑49

a=15 ∑K
k=1

(
ηka − ηka/k

∑K
l=1 ηla/l

)
fka

∑49
a=15 ∑K

k=1

(
ηka/k

∑K
l=1 ηla/l

)
fkt

(17)

where fka is the age-specific fertility rate for women in age group a and sibship size k, and ηka is

defined as in equation (16). The term ηka/k
∑K

l=1 ηla/l
re-weights each age-specific fertility rate to undo the

effects of differential fertility. In empirically implementing Equation (17), I use five-year age groups,

from 15-19 to 45-49, and an exposure period of one year before the survey. I compute one estimate

of δ̃TFR per DHS survey, so some countries have multiple estimates.

5.1.3 Decomposition of the Composition Effect in the Linear Case

Recall from Equation (3) that in the case of a linear transmission function with slope β the composi-

tion effect ∆t equals β times the ratio of the variance to the mean of sibship size. This result provides

a useful decomposition of the composition effect into a transmission component and a heterogene-

ity component. To link the composition effect estimates with the fertility transmission results of the

previous section, I report such decompositions using slopes from regressions of ever-born fertility

on surviving sibship size. Results are extremely similar if one changes the covariate to the surviv-

ing number of female siblings, which would more appropriately capture the dynamics of a two-sex

population but would have a less obvious relation to the fertility transmission results.

For age-25 fertility, the decomposition of the relative composition effect is exact. For cohort t:

δt =

(
βt

dCEBt

)(
σ2

t
µt

)

where dCEB is de-weighted mean children ever born, while σ2
t and µt are the variance and mean
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of sibship size, respectively. Thus, the relative composition effect has two components: a relative

transmission coefficient and a ratio. If transmission coefficients become positive during fertility

decline, but the ratio stays constant, then the composition effect rises.

For TFR, the decomposition becomes complicated because Equation (17) sums 35 age-specific

composition effects. One must approximate the decomposition by either assuming that the relative

coefficient or the ratio is constant across age groups. Because the paper focuses on variation in

transmission coefficients, I hold the ratio of the variance to the mean of sibship size at its mean:

δTFR =
∑49

a=15
βaσ2

a
µa

dTFR ≈
(

∑49
a=15 βa
dTFR

)(
1

35 ∑49
a=15

σ2
a

µa

)

where βa is the coefficient from a regression of an indicator for a birth in the year preceding the

survey on sibship size for respondents aged a. dTFR is the de-weighted total fertility rate, while σ2
a

and µa are the age-specific variances and means of sibship size, respectively.

5.2 Results

Panel A of Figures 4 and 5 report estimates of δ̃t and δ̃TFR, each plotted against its corresponding

deweighted average fertility measure (deweighted mean age-25 CEB and deweighted TFR, respec-

tively). The x-axis is deweighted to eliminate any reverse causality stemming from the endogenous

reshaping of the population. At high levels of fertility, relative composition effects are on average

close to zero and invariant to deweighted average fertility. However, both scatterplots reveal an

uptick in composition effects at low levels of average fertility, suggesting a link with fertility de-

cline. Composition effects become positive when children ever born at age 25 dips below 1.5, and

when the total fertility rate dips below 4. At the lowest observed levels of average fertility for both

measures, the predicted composition effect is approximately 0.04, implying that average fertility is

4 percent higher than it would have been in the absence of endogenous changes in the composition

of the population. Consistent with previous results, however, Figures 4 and 5 reveal little evidence

of a u-shaped pattern over the course of the fertility transition.

Panel B of Figures 4 and 5 shifts attention to the case of a linear fertility transmission function.

In both cases, the ratio of the variance to the mean of sibship size stays flat or even decline slightly

as average fertility falls. Meanwhile, mirroring the relative composition effect estimates in Panel

A, the relative transmission coefficients show a sharp uptick at lower levels of fertility. The rise
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of composition effects in the later stages of fertility decline thus appears to be driven largely by

increasing intergenerational transmission.

Is this uptick in the composition effect at lower levels of average fertility statistically signifi-

cant? To shed light on this question, I categorize both measures of average fertility into deciles and

then regress the composition effect on indicators for 9 of these 10 bins, with and without country

and time fixed effects. The results, appearing in Figure 6, indicate a decline in the composition ef-

fect as average fertility increases past the first decile. This conclusion applies to both δ̃t and δ̃TFR,

and the magnitudes are similar with and without fixed effects. Differences from the base category

are significant for δ̃t with and without fixed effects, but for δ̃TFR, significance levels decline in the

specification with fixed effects because most countries have just one or two survey years. In both

within-country and cross-country variation, declining average fertility is associated with a rising

composition effect.

6 Conclusion

The question of whether girls from large families tend to bear many children in adulthood has

drawn the attention of social scientists and statisticians for over a century. Nevertheless, existing

research has shed limited light on how this association evolves over the course of the fertility tran-

sition, and on what implications it has for fertility aggregates. Using data on mother-daughter pairs

from 40 developing countries, this paper tracks the evolution of the intergenerational transmission

of fertility and explores its aggregate implications, with two main results. First, the intergenera-

tional transmission of fertility grows over the transition to a modern fertility regime, as the sibsize-

education association flips from positive to negative, and the education-fertility association becomes

more negative. Second, due to this change in intergenerational transmission, the composition effect

of differential fertility on average fertility turns positive as the fertility transition progresses. The

paper’s approach provides a new demographic lens for understanding the global decline of fertility,

the subject of a burgeoning literature in economics (Schultz 1997; Galor 2011; de la Croix 2012).

From a broader economic perspective, the results are of interest not just because they clarify

aggregate fertility dynamics but also because they demonstrate a unique way in which intergen-

erational transmission aggregates up to population-level dynamics. Mother-daughter associations
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in reproductive behavior are the subject of a long-standing literature, but few contributions to this

literature have formally considered their aggregate implications.11 In this sense, this paper expands

on the literature exploring how the intergenerational transmission of economic status affects the

dynamics of the income distribution (Becker and Tomes 1979; Goldberger 1989).

While the paper breaks new ground on the changing causes and consequences of fertility trans-

mission, several questions remain open. First, although fertility differentials by female education

clearly influence the intergenerational transmission of fertility, other sources of intergenerational

persistence, such as fecundity and culture, may also play a role. A fuller model of the evolution of

intergenerational transmission would also take these factors into account, although data limitations

hinder tests of such a model. Second, although the paper provides evidence that changes in differ-

ential fertility and population composition interact to increase the composition effect of differential

fertility, future research could further draw out the connections to the pace of fertility decline, and

especially to the recent “stalls” Bongaarts (2006, 2008) has identified in many populations. Finally,

the analysis here has not considered other demographic influences on the time path of aggregate

fertility, such as assortative mating, or intergenerational influences that span more than two gen-

erations, as Mare (2011) proposes. Investigations into the consequences of these other mechanisms

promises to shed much light on the micro-level demographic phenomena influencing the pace of

aggregate change.

11Exceptions include Murphy and Wang (2003) and Kolk et al. (2014), but these authors use hypothetical models to
explore the aggregate consequences of intergenerational transmission. They do not use data to estimate composition
effects for real populations.
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Theory Appendix

Proof of Proposition 1 The first order condition for et leads to:

h (Et)

h′ (Et)
− Et

≥ κ + τwHt if Et = 0

= κ + τwHt if Et > 0

The left hand side of this equation is increasing in Et, so that in the interior solution, Et increases
with Ht. A corner solution with Et = 0 occurs when Ht ≤ H̃ = 1

τw

(
h(0)
h′(0) − κ

)
, which is strictly

positive when κ is small. For Ht ≤ H̃:

∂Nt

∂Ht

∣∣∣∣
Ht≤H̃

=
(1− α)wκ

(κ + τwHt)
2 > 0

so that fertility increases in parental skill. To find the comparative static for Ht > H̃, rewrite the first
order condition for et in terms of the elasticity η (Et):

Et =
κ + τwHt

1
η(Et)
− 1

and substitute into the first order condition for Nt:

Nt = (1− α) (1− η (Et))

(
wHt

κ + τwHt

)
Total differentiation implies:

∂Nt

∂Ht

∣∣∣∣
Ht>H̃

=

(
1− α

κ + τwHt

) [
(1− η (Et))

(
wκ

κ + τwHt

)
− wHtη

′ (Et)
∂Et

∂Ht

]

so that ∂Nt
∂Ht

∣∣∣
Ht>H̃

< 0 if and only if:

1− η (Et)− Htη
′ (Et)

∂Et
∂Ht

Htη′ (Et)
∂Et
∂Ht

<
τwHt

κ

By assumption, η′ (·) > 0, so this inequality is automatically satisfied when 1− η (Et)−Htη
′ (Et)

∂Et
∂Ht
≤

0. When 1− η (Et)− Htη
′ (Et)

∂Et
∂Ht

> 0, differentiate the first order condition for Et and substitute
for ∂ET

∂Ht
to obtain:

κ < τwHt

(
htη
′ (Et) τwη (Et)

(1− η (Et))
2 + η′ (Et) (η (Et)− 1) (κ + Et)− η′ (Et) τwHt

)

As κ goes to 0, the limit of the right hand side is strictly positive by assumption. Therefore, with
η′ (Et) > 0 and small enough κ, ∂Nt

∂Ht

∣∣∣
Ht>H̃

< 0 .`
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Proof of Proposition 2 Consider the human capital production function:

Ht+1 = h(Et) = (θ0 + θ1Et)
σ

θ0 > 0 is a human capital endowment, θ1 > 0 is the return to investment in children, and σ ∈ (0, 1)
determines the curvature of the production function. It is easy to verify that this production function
has h (0) > 0; finite first, second, and third derivatives; and η′ (Et) > 0. Parents choose Et = 0 if
Ht ≤ H̃ and Et =

σ(κ+τwHt)−θ0/θ1
1−σ if Ht > H̃, where H̃ = 1

τw

(
θ0/θ1

σ − κ
)

. This behavior generates a
dynamical system Ht+1 = ψ (Ht) such that:

ψ (Ht) ≡

θσ
0 if Ht ≤ H̃(
σθ1(κ+τwHt)−σθ0

1−σ

)σ
if Ht > H̃

The goal is to choose parameters θ0, θ1, and σ to generate 1, 2, or 3 steady state levels of Ht,
given the cost parameters κ and τ. First note that if θσ

0 ≤ H̃, a low human capital steady state H0

obtains in which parents with Ht = H0 = θσ
0 set Et = 0, so that Ht+1 = H0 = θσ

0 . Consider the
case in which θσ

0 = H̃ holds exactly, so that θ0 solves the equation (τw)−1/σ ( θ0/θ1
σ − κ)1/σ − θ0 = 0.

Assume σ = 1
2 , so that the polynomial has roots θ0 = κσθ1 + (τwσθ1)

2 [ 1
2 ± ( κ

(τw)2θ1σ
+ 1

4 )
1/2], and

select the larger root, which is guaranteed to be positive. Then a steady state exists at hL = H̃,
where ψ (·) is tangent to the 45 degree line. The existence of additional steady states depends on
ψ′ (Ht) = σ1+σ

(1−σ)σ · θ1τw
[θ1(κ+τwHt)−θ0]1−σ . Because limHt→∞ ψ′ (Ht) = 0 and ψ′′ (Ht) < 0 for all Ht >

H̃, ψ (Ht) intersects the 45 degree line from above at another steady state H1 > H̃ if and only if

ψ′
(
h̃
)
> 1. Setting θ1 >

(1−σ)θ1−σ
0

σ2τw guarantees that ψ′
(

H̃
)
> 1. Therefore, with σ = 1

2 , the equation

θ0 = κσθ1 + (τwσθ1)
2 [ 1

2 + ( κ

(τw)2θ1σ
+ 1

4 )
1/2] and the inequality θ1 >

2θ1/2
0

τw can solve for values of θ0

and θ1 that generate two steady human capital levels. A single steady state obtains for θ1 <
2θ1/2

0
τw .

To obtain three steady states, define a new human capital production function ĥ (·) with parame-
ters θ̂0, θ̂1, and σ̂. Set θ̂0 = θ0− ε for ε > 0, and set θ̂1 and σ̂ such that θ̂1 = θ1 +

1
τw

(
2θ1/2

0 − 2(θ0 − ε)σ̂
)

and σ̂ = θ̂0/θ̂1
2θ0/θ1

, such that H̃ remains unchanged, and the resulting dynamical system ψ̂ (Ht) contin-
ues to have ψ̂′ (Ht) > 1 in the vicinity of H̃. A low steady state Ĥ0 still exists because θ̂σ̂

0 < h̃. As
ε → 0, ψ̂ (Ht) intersects the 45 degree line from below to generate a second steady state Ĥ1. By the
reasoning above, ψ̂ (Ht) also intersects the 45 degree line from above to form a third steady state
Ĥ2. Therefore, given the cost parameters κ and τ, one can choose θ0, θ1, and σ to guarantee three
steady state human capital levels, Ĥ0 < Ĥ1 < Ĥ2. Since ψ̂ (Ht) intersects the 45 degree line from
above at Ĥ0 and Ĥ2 and from below at Ĥ1, Ĥ0 and Ĥ2 are stable, while Ĥ1 is unstable.`

Proof of Proposition 3 Denote the stable steady state human capital levels in generation t as H0
t

and H1
t , with H0

t < H1
t , and let N0

t and N1
t denote the associated fertility levels. Let H0

t+1, H1
t+1,

N0
t+1, and N1

t+1 be the same outcomes for the next generation of the 0 and 1 lineages. Then the
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intergenerational transmission coefficient is β =
N1

t+1−N0
t+1

N1
t −N0

t
. If the child cost parameters and the

human capital production function is the same in both t and t+ 1, then Hi
t+1 = Hi

t and Ni
t+1 = Ni

t for
all dynasties, so β = 1. In the transition between two Malthusian regimes, N0

t < N1
t , N0

t+1 < N1
t+1,

N0
t+1 ≥ N0

t , and N1
t+1 < N1

t , so β ∈ (0, 1). In the transition between two modern regimes, N0
t > N1

t ,
N0

t+1 > N1
t+1, N0

t+1 ≥ N0
t , and N1

t+1 < N1
t , so β > 1. In a transition between Malthusian and modern

regimes, N0
t > N1

t , N0
t+1 < N1

t+1, N0
t+1 ≥ N0

t , and N1
t+1 < N1

t , so β < 0.`
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Figure  1:  Distribution  of  Age-­‐‑25  Intergenerational  Transmission  Coefficients  

  
Note:    Kernel  density  estimates  with  a  bandwidth  of  0.01.  Sample  includes  554,182  women  from  
257  country-­‐‑cohort  cells.     
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Figure  2:  Cohort  Effects  in  Age-­‐‑25  Parameter  Estimates  

  
Note:  Sample  includes  554,182  women  from  257  county-­‐‑cohorts  cells.  Plots  represent  cohort  
effects  from  regressions  of  the  estimated  country-­‐‑cohort  parameters  on  country  and  cohort  fixed  
effects.  Gray  bars  represent  95%  confidence  intervals  (based  on  standard  errors  clustered  at  the  
country  level).  
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Figure  3:  Age-­‐‑25  Intergenerational  Transmission  Coefs.  vs.  Sibsize-­‐‑Education  Coefs.  

  
Note:  Sample  includes  554,182  women  from  257  county-­‐‑cohorts  cells.  Thick  curves  are  local  
linear  regressions  with  bandwidths  of  0.1.     
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Figure  4:  Composition  Effects  on  Age-­‐‑25  Fertility  
A.  Overall  Effect  

  
B.  Decomposition,  Linear  Case    

  
Note:  Sample  includes  554,182  women  from  257  county-­‐‑cohort  cells.  Curves  are  local  linear  
regressions  with  a  bandwidth  of  0.5.  
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Figure  5:  Composition  Effects  on  the  Total  Fertility  Rate  
A.  Overall  Effect  

	
     
B.  Decomposition,  Linear  Case    

  
Note:  966,498  women  from  80  surveys.  Curves  are  local  linear  regressions  with  a  bandwidth  of  
0.5.  
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Figure  7:  Composition  Effects  over  the  Fertility  Transition,  Binned  Models  
A.  Age-­‐‑25  Mean  Children  ever  Born  

  
B.  Total  Fertility  Rate  

  
Note:  Panel  A  reports  coefficients  and  95%  confidence  intervals  from  regressions  of  age-­‐‑25  
composition  effects  on  indicators  for  deciles  in  the  distribution  of  de-­‐‑weighted  children  ever  
born  at  age  25.  Sample  includes  554,182  women  from  257  county-­‐‑cohort  cells.  Panel  B  reports  
coefficients  and  95%  confidence  intervals  from  regressions  of  TFR  composition  effects  on  
indicators  for  deciles  in  the  distribution  of  de-­‐‑weighted  TFR.  Sample  includes  554,182  women  
from  257  county-­‐‑cohort  cells.     
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Table  1:  Regression  of  Age-­‐‑45  Transmission  Coef.  on  Transmission  Coef.  at  Age  a  

  
Ever-­‐‑born  fertility  

  
Surviving  fertility  

Age  a   (1)   (2)        (3)   (4)  
20   1.29   0.71  

  
0.77   0.96  

  
[0.32]   [0.57]  

  
[0.34]   [0.27]  

25   1.14   1.05  
  

1.04   0.99  

  
[0.19]   [0.28]  

  
[0.30]   [0.22]  

30   1.05   0.95  
  

1.11   0.74  

  
[0.11]   [0.16]  

  
[0.23]   [0.23]  

35   1.04   1.06  
  

1.17   0.82  

  
[0.09]   [0.15]  

  
[0.15]   [0.19]  

40   1.07   1.04  
  

1.03   0.80  

  
[0.06]   [0.12]  

  
[0.11]   [0.14]  

                 Country  &  Cohort  FE   No   Yes  
  

No   Yes  
Note:  Dependent  variable  is  the  age-­‐‑45  transmission  coefficient.  Sample  includes  110  country-­‐‑
cohort  cells.  Brackets  contain  standard  errors  clustered  at  country  level.  
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Table  2:  Summary  Statistics  on  Age-­‐‑25  Parameter  Estimates  
         Distribution  of  t-­‐‑statistics  

  
Mean  [S.E.]  (S.D.)      t  ≤  -­‐‑1.96      -­‐‑1.96  <  t  <  1.96      t  ≥  1.96  

   (1)      (2)      (3)      (4)  
A.  Ever-­‐‑born                       
βE25   .015  [.020]  (.030)      4  (2%)      183  (71%)      70  (27%)  
BE25   .013  [.019]  (.022)      3  (1%)      198  (77%)      56  (22%)  
ΓE25   -­‐‑.098  [.018]  (.050)      227  (88%)      28  (11%)      2  (1%)  
φE25   .006  [.044]  (.158)      65  (25%)      93  (36%)      99  (39%)  
                       
B.  Surviving                       
βS25   .005  [.022]  (.030)      23  (9%)      195  (76%)      39  (15%)  
BS25   .007  [.021]  (.024)      11  (4%)      210  (82%)      36  (14%)  
ΓS25   -­‐‑.070  [.016]  (.051)      200  (78%)      52  (20%)      5  (2%)  
φS25   .078  [.053]  (.179)      38  (15%)      87  (34%)      132  (51%)  
Note:  Sample  includes  554,182  women  from  257  country-­‐‑cohort  cells  with  at  least  250  
observations.  S.E.  =  standard  error  of  the  mean  parameter.  S.D.  =  standard  deviation  of  the  
parameter.  
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Table  3:  Relating  Age-­‐‑25  Transmission  Coefs.  to  Other  Associations  

  
Ever-­‐‑born  fertility  

  
Surviving  fertility  

     (1)   (2)   (3)   (4)        (5)   (6)   (7)   (8)  
Sibsize-­‐‑edu.  association   -­‐‑0.12   -­‐‑0.12   0.02   -­‐‑.002  

  
-­‐‑0.09   -­‐‑0.10   .002   -­‐‑0.01  

  
[0.02]   [0.03]   [0.03]   [0.04]  

  
[0.01]   [0.02]   [0.02]   [0.03]  

Edu.-­‐‑fertility  association  
     

-­‐‑0.04   -­‐‑0.09  
        

-­‐‑0.02   -­‐‑0.11  

        
[0.05]   [0.07]  

        
[0.04]   [0.09]  

Interaction  
     

1.15   1.14  
        

1.08   0.98  

        
[0.23]   [0.22]  

        
[0.19]   [0.22]  

                             Overall  R-­‐‑squared   0.38   0.67   0.44   0.71  
  

0.28   0.61   0.37   0.64  
Within  R-­‐‑squared  

  
0.18  

  
0.27  

     
0.12  

  
0.24  

                             Country  &  Cohort  FE   No   Yes   No   Yes  
  

No   Yes   No   Yes  
Note:  Dependent  variable  is  the  age-­‐‑25  transmission  coefficient.  Sample  includes  554,182  
women  from  257  county-­‐‑cohort  cells.  Brackets  contain  standard  errors  clustered  at  the  
country  level.  
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Appendix  Figure  1:  Intergenerational  Transmission  Coefficients  for  Age-­‐‑25  Fertility  

  
Note:  Coefficients  and  95%  confidence  intervals  (adjusted  for  cluster-­‐‑based  survey  design).  
Sample  includes  554,182  women  from  257  county-­‐‑cohort  cells.  
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Appendix  Figure  2:  Age-­‐‑25  Intergenerational  Transmission  Coefs.:  Surviving  vs.  Ever-­‐‑born  

  
Note:  Sample  includes  554,182  women  from  257  county-­‐‑cohort  cells.  The  local  linear  regression  
uses  a  bandwidth  of  0.03.  The  correlation  between  the  coefficients  is  0.77.  
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Appendix  Table  1:  Demographic  and  Health  Surveys  Included  in  the  Sample  
  

Benin:  1996,  2006  
Bolivia:  1994,  2003,  2008  
Burkina  Faso:  1999  
Burundi:  2010  
Cambodia:  2000,  2005,  2010  
Cameroon:  1998,  2004  
Central  African  Republic:  1995  
Chad:  1996,  2004  
Congo,  Democratic  Republic:  2007  
Congo,  Republic:  2005  
Cote  d'ʹIvore:  1994  
Dominican  Republic:  2002,  2007  
Ethiopia:  2000,  2005,  2010  
Gabon:  2000  
Guinea:  2000,  2005  
Haiti:  2000,  2005  
Indonesia:  2012  
Kenya:  2003,  2008  
Lesotho:  2004,  2009  
Madagascar:  1992,  1997,  2004,  2008  

Malawi:  1992,  2000,  2004,  2010  
Mali:  1995,  2001,  2006  
Morocco:  1992,  2003  
Mozambique:  1997,  2003  
Namibia:  1992,  2000  
Nepal:  1996,  2006  
Nigeria:  2008  
Peru:  1992,  1996,  2000,  2004  
Philippines:  1993,  1998  
Rwanda:  2000,  2005,  2010  
São  Tomé  &  Príncipe:  2008  
Senegal:  1992,  2005  
Sierra  Leone:  2008  
South  Africa:  1998  
Sudan:  2010  
Swaziland:  2007  
Tanzania:  1996,  2004,  2010  
Togo:  1998  
Zambia:  1996,  2001,  2007  
Zimbabwe:  1994,  1999  
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Appendix  Table  2:  Regression  of  Age-­‐‑45  Transmission  Coef.  on  Transmission  Coef.  at  Age  a    
Country-­‐‑Cohort  Cells  with  at  Least  200  Observations  

  
Ever-­‐‑born  fertility  

  
Surviving  fertility  

Age  a   (1)   (2)        (3)   (4)  
20   1.11   0.61  

  
0.30   0.67  

  
[0.36]   [0.59]  

  
[0.31]   [0.37]  

25   1.14   0.98  
  

0.81   0.75  

  
[0.20]   [0.32]  

  
[0.37]   [0.33]  

30   1.08   0.83  
  

1.05   0.47  

  
[0.15]   [0.24]  

  
[0.36]   [0.40]  

35   1.08   0.99  
  

1.19   0.75  

  
[0.11]   [0.22]  

  
[0.21]   [0.35]  

40   1.09   1.01  
  

1.04   0.87  

  
[0.07]   [0.14]  

  
[0.14]   [0.19]  

                 Country  FE   No   Yes  
  

No   Yes  
Cohort  FE   No   Yes  

  
No   Yes  

Note:  Dependent  variable  is  the  age-­‐‑45  transmission  coefficient  (from  the  “short”  regression).  
Sample  includes  99  country-­‐‑cohort  cells.  Brackets  contain  standard  errors  clustered  at  country  
level.  
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Appendix  Table  3:  Regression  of  Age-­‐‑25  Trans.  Coef.  on  Other  Associations  
Country-­‐‑Cohort  Cells  with  at  Least  500  Observations  

  
Ever-­‐‑born  fertility  

  
Surviving  fertility  

     (1)   (2)   (3)   (4)        (5)   (6)   (7)   (8)  
Sibsize-­‐‑edu.  association   -­‐‑0.12   -­‐‑0.15   0.03   -­‐‑0.02      -­‐‑0.09   -­‐‑0.11   0.020   -­‐‑0.02  

  
[0.02]   [0.03]   [0.03]   [0.04]      [0.01]   [0.02]   [.021]   [0.03]  

Edu.-­‐‑fertility  association         -­‐‑0.06   -­‐‑0.14            -­‐‑0.04   -­‐‑0.10  

  
      [0.05]   [0.09]            [0.05]   [0.11]  

Interaction         1.27   1.20            1.28   0.96  

  
      [0.24]   [0.25]            [0.19]   [0.27]  

  
                          

Overall  R-­‐‑squared   0.41   0.70   0.49   0.74      0.31   0.66   0.43   0.68  
Within  R-­‐‑squared      0.24      0.34         0.17      0.28  

                             Country  FE   No   Yes   No   Yes  
  

No   Yes   No   Yes  
Cohort  FE   No   Yes   No   Yes  

  
No   Yes   No   Yes  

Note:  Dependent  variable  is  the  age-­‐‑25  transmission  coefficient  (from  the  “short”  regression).  
Sample  includes  225  county-­‐‑cohort  cells.  Brackets  contain  standard  errors  clustered  at  the  
country  level.  
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