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1 Introduction

Federal student loans and grants are a key policy tool in the effort to expand access to higher education.
These programs have the potential to produce large social returns if they facilitate valuable educational
investments. However, in the face of rising student loan debt and default rates (Department of Education,
2013), policymakers and researchers hypothesize that students from low-income, college-inexperienced
backgrounds may choose lower-return, higher-cost degrees based on poor information or targeted
marketing (GAO 2010; Lewin 2011; Lederman 2009, 2011), reducing the benefits of loan subsidies.
Moreover, uninformed decision makers may incentivize providers to raise tuition, increase advertising
expenditures, or lower admissions and academic standards rather than invest in raising the quality of
degree programs (Beyer et al. 2015).

Policymakers have focused on two types of solutions. Disclosure policies aim to help students
make financially sound decisions by compiling and distributing information on academic, labor market,
and cost outcomes for different degree programs. This could improve students’ financial outcomes by
reducing uncertainty and supplanting persuasive marketing. Alternatively, regulation policies could be
used to directly limit subsidies available to education providers with a history of poor academic and/or
labor market outcomes.* Disclosure policies may be less intrusive (Lowenstein, Sunstein & Golman
2014), but their effectiveness depends on what students already know about academic and financial
outcomes at different degree programs, how much students value these outcomes, how effectively the
government designs and communicates new information, and how the demand response to information
provision changes incentives for providers.?

We present the results of a randomized intervention in which we test a large-scale, government-
implemented disclosure policy in the Chilean higher education market. Federal student loan applicants
were asked to complete survey questions about their application plans, their beliefs about future earnings
outcomes for themselves and for others, and their beliefs about tuition costs. Randomly selected students
were then provided with information on earnings and costs at their planned application choices and given
access to a database that allowed them to build comparative tables of earnings and costs at degrees

serving students with similar baseline academic ability. We measure the impact of information on

1 In the US, proposed gainful employment rules (Department of Education, 2014a) encompass both types of policies discussed
here. See Shear (2014) for a description of ranking proposals. White House (2013) details of ranking and accompanying
accountability proposals. An analogy in personal finance markets would be providing information on payday lending interest
rates versus capping payday loan interest rates or prohibiting payday loans all together.

2 Duarte and Hastings (2012) show how disclosure requirements can be undone by strategic firms if not carefully designed to
incorporate firm response in the context of private pension markets. Beyer et al. (2015) discuss similar issues in the context of
higher-education disclosure and student loan regulation.



students’ enrollment decisions. Following predictions from a model of choice under limited information,
we also investigate how effects vary as a function of student demographics and survey responses.

We worked closely with a number of Chilean government agencies to design the intervention and
necessary supporting data. The supporting data match student records of high school graduation, college
enrollment, and standardized test scores for the population of Chilean high school graduates between
2000 and 2013 to administrative tax records. The survey and field experiment were designed and
implemented in partnership with the Ministry of Education (MINEDUC). Directly following the
submission of student loan applications, students were sent an email from MINEDUC requesting that they
log into a secure website to fill out an additional set of questions. Applicants logged in, accepted an
informed consent statement, and were asked six questions. These included questions about application
plans, questions about own earnings and tuition cost expectations at the degree programs to which the
student planned to apply, and questions about expected earnings for typical students at those degree
programs. 49,166 students completed the online survey.

Upon survey completion, randomly-selected students continued to two additional web pages
designed to provide information about and prompt search for degrees with higher earnings net of costs for
past graduates. Our web application used prior survey responses to display personalized information for
each applicant based on a back-end database linking educational and tax records for past graduates. The
first page displayed information on earnings gains (relative to no tertiary enroliment) in monthly terms for
the participant’s first-choice degree, tuition costs in monthly payments, and a “Net Value” which was the
difference between monthly gains and payments in pesos. Costs and benefits were calculated over the 15
year student loan repayment term. To encourage search, the page also displayed information on Net Value
associated with enrollment in an alternative institution offering the same major, or in a different major in
the same broad field of study (e.g. nursing vs. nutrition). Potential gains were drawn from degrees
relevant to respondents based on the selectivity of their listed application choices.

The second page consisted of a searchable database that allowed students to select a major and
enter an entrance exam score. Based on that information, the page populated a table of degrees admitting
students with similar scores, sorted in descending order by Net Value. Students were told they could save
up to ten search tables and could re-login to view them any time. We use administrative data to track
students in the treatment and control groups and identify whether and where they chose to enroll in the
subsequent school year.

Our findings are as follows. First, using survey responses and enrollment data from prior cohorts,
we examine whether there are differences in knowledge of education cost and earnings outcomes between
students from low- and high-socioeconomic status (SES) backgrounds. We find that many students have

limited knowledge of the earnings and cost outcomes associated with different degree programs, and that



students from low-SES backgrounds tend to have less information on these degree characteristics than
others. Compared to students from high-income backgrounds, students from low-income backgrounds are
6.3 percentage points (on a base of 30.7%) more likely to say that they do not know tuition costs at their
planned place of enrollment. They are 8.5 percentage points more likely to say that they do not know
what they will earn upon completing their chosen degree (on a base of 32.6%), and are similarly more
likely to say that they do not know what a typical student will earn. Students who do report expectations
about degree-specific own and typical-student earnings systematically overestimate earnings for
graduates. Low-SES students overestimate short-run earnings outcomes for graduates at their chosen
degree by an average of 70.8% with an interquartile range in expectations of 80.5%.

Earnings outcomes for past cohorts are consistent with the idea that there are gaps between low-
and high-SES students in information available at the time of choice. We estimate OLS models of returns
to education by institution and major using a flexible function of student baseline ability, gender and other
demographics. We find that mean post-college earnings at the degrees students choose rise steeply with
admissions test scores, but that many students throughout the ability distribution choose low-earning
degree programs. Statistics on average earnings outcomes for college enrollees mask lower earnings at
degrees serving lower-scoring, lower-SES students. Conditional on admissions test score, low-SES
students earn about 13.5% less than high-SES students. Almost half of this gap (47%) is due to
differences in degree choice between low- and high-SES students, as opposed to differential earnings
outcomes within degrees. Coupled with the survey results, these descriptive findings suggest that
disclosure policies have the potential to push students from low-SES backgrounds towards degrees with
better financial outcomes.

Our intervention tests the effects of such a policy. To guide our analysis, we develop a model of
degree choice under limited information where treatment provides accurate information about financial
outcomes for past students and may affect the salience of different degrees in the choice set. The model
predicts strong impacts on enrollment decisions among students who are less certain about earnings and
cost outcomes, who place more value on pecuniary degree characteristics, and who are considering
degrees spanning a broad range of financial outcomes. Our survey responses provide measures of these
mediating factors.

We first show that students from low-income backgrounds are the hardest to reach with
information, even using direct communication from the educational authority near the time of application.
However, once reached, positive ITT effects of information on the Net Value of the chosen degree are
concentrated among low-income students. This echoes findings across a range of social services on the
difficulty of program take-up for those most in need (see, e.g., Currie 2006; Choi, Laibson, and Madrian

2011; Bettinger et al. 2012; Amior et al 2012). We find no impact of disclosure on students’ extensive-



margin choice to matriculate in any degree program; point estimates are small and statistically
insignificant. Positive treatment effects are driven by the intensive margin choice of where to enroll, and
those effects are largest for students from low-SES backgrounds. For these students, treatment increases
the Net Value of the chosen degree by 3.4% of mean Net Value. This is equal to 5.3% of mean potential
gains from switching to a peer institution offering a similar degree, and 38.4% of the component of the
gap between predicted earnings outcomes for high- and low-SES students driven by differential degree
choice.

Subgroup treatment effects line up with model predictions. Effects are larger for low-SES
students who have less baseline information on earnings and costs, who exhibit lower levels of pre-
intervention preference for a given degree or program, and whose stated pre-intervention plans include
degrees at a variety of earnings levels. We find similar results when we focus on measures of earnings
value added that hold observable student characteristics fixed.

Our findings suggest that the returns on investment in informational interventions are potentially
high. Treatment raises the present discounted value of predicted earnings net of costs for respondents by
roughly USD $72m, substantially exceeding administration costs. At the same time, informational
treatments seem unlikely to substantially alter student loan default rates. Though treatment closes the gap
in student loan default rates at degrees chosen by high- and low-SES students conditional on ability by
over 70%, effects on the overall default rate are small. Nor do disclosure policies seem likely to
substantially raise incentives for higher education institutions to offer degrees where enrollees have lower
default rates. The demand shift we observe towards higher earning degrees is small relative to potential
gains, and treatment does not shift students towards lower-cost degrees.

We make several contributions to existing research. To the best of our knowledge, this is the first
paper to evaluate the effects of a federal disclosure policy in a higher-education market. We build on
smaller-scale information interventions targeted at students already enrolled in elite schools (Wiswall and
Zafar 2014; see also Arcidiacono, Hotz, and Kang 2012 and Zafar 2013), interventions that provide
information about average returns to college to grade-school students (Jensen 2010), and surveys and
interventions aimed at making the loan and college application processes more transparent (Bettinger et
al. 2012; Hoxby and Turner 2013; see also Avery and Kane 2004; Avery and Hoxby 2012; Scott-Clayton
2012; and Dynarski and Scott-Clayton 2013). ®

Like Hastings and Weinstein (2008), Jensen (2010), and Wiswall and Zafar (2014), we find that

information provision appears to improve students’ choice outcomes. However, we also find that

3 While not the primary focus of this paper, to construct earnings and costs used in the information disclosure, we contribute to a
broader literature using application or enrollment records linked to administrative data on labor earnings to construct estimates of
the labor market effects of admission to different degree programs (Hoekstra 2009; Saavedra 2008; Ockert 2010; Hastings,
Neilson and Zimmerman, 2013; Reyes, Rodriguez, and Urzua (2013); Zimmerman 2014; Kirkebgen, Leuven, and Mogstad
2014).



treatment effects are limited by negative selection into information receipt, the relatively low value many
applicants place on financial outcomes in college choice, and the fact that many applicants consider
degrees within a relatively small earnings range. This suggests the efficacy of the intervention could
increase if interacted with policies that help or incentivize students to use the new information more
effectively (Bettinger et al. 2012; Hastings, Madrian and Skimmyhorn 2013; Hastings 2014; Beyer et al.
2015).

We also contribute to the broader literature examining how behavioral biases, limited
information, and decision making skills can influence the efficacy of subsidy and safety net programs
(e.g., Thaler and Benartzi, 2004; Duarte and Hastings, 2012; Bhargava and Manoli, 2011; Bettinger et al.,
2012).* In particular, there are close parallels between the higher education market and markets for other
financial investments, such as mortgages, where government policies and loan guarantees affect market
outcomes, and where both disclosure and regulatory policies are topics of current policy debate (Agarwal
et al. 2010; Collins and O’Rourke 2010; Woodward and Hall 2012; Agarwal et al. 2014; Lowenstein,
Sunstein and Golman 2014). Disclosure policies also play an important role in nutrition and healthcare
markets (Mathios 2000; Jin 2003; Jin 2005). Our findings are consistent with modest gains from
information provision in these settings.

Finally, our approach combines survey responses that measure knowledge and preferences with
administrative data on actual decisions and field experimental variation in independent variables of
interest to test predictions from models of choice incorporating psychology and limited information. We
build here on Karlan (2005), Ashraf, Karlan, and Yin (2006), Fehr and Goette (2007), Ashraf, Berry and
Shapiro (2010), Jensen (2010), and Hastings (2014). Our approach and results contribute to the growing
body of literature incorporating behavioral economics into public policy design (Chetty 2015).

This paper is part of a set of projects investigating the returns to education and college choice in
Chile. Hastings, Neilson, and Zimmerman (2013) use discontinuous admissions rules at hundreds of
degree programs to explore how the earnings effects of college admission vary by selectivity and field of
study on lifetime earnings. Beyer et al. (2015) describes a set of policies regulating the availability of
student loans at specific degree programs that were adopted in part in response to the research described
here. Hastings et al. (2015) uses a broader set of surveys of Chilean college applicants to describe the
challenges students face in their attempts to acquire and deploy information on the degree-specific

financial and academic characteristics. Our work here draws on a Chilean literature describing the role of

4 See Madrian (2014) and Lavecchia, Lieu and Oreopoulos (2014) for reviews of this literature.
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higher education markets in determining education attainment and labor market outcomes (see e.g.,
Brunner 2004; Brunner 2009a; Brunner 2009b).’

2 Higher education and student loans in Chile

Chile is a middle-income OECD member country with a higher education system similar to those in the
US and other upper-income OECD countries in terms of educational attainment rates, the role of student
loans in financing higher education, and higher education market structure. In 2010, 38% of adults
between 25 and 34 years old in Chile in 2010 had tertiary degree, compared to 42% in the US (OECD
2013). 35.8% of students enrolled in Chilean higher education institutions used state-backed student loans
in 2011, compared to 40.2% in the US.°

Public, private non-profit, and private for-profit firms provide tertiary degrees in Chile. There are
three main degree levels and three institution types: technical schools (CFTs) offer two- to three-year
technical degrees, professional institutes (IPs) offer both technical and vocationally-oriented four-year
degrees, and universities offer traditional undergraduate and graduate degrees.” In 2012, universities held
58.4% of all undergraduate matriculation while professional institutes and technical schools had 28.1%
and 13.5% respectively. IPs and CFTs are run by private companies and can be for-profit or not-for-
profit. Universities may be public or private not-for-profit. In practice, however, portions of some
universities are owned by for-profit parent companies, including companies like Laureate International
and the Apollo Group, which also own for-profit universities in the US.?

Students in Chile apply to, take courses within, and graduate from institution-major combinations

(e.g., Sociology at the University of Chile). We will refer to an institution-major combination as a

® In particular, the Futuro Laboral program described in Brunner (2009b) compiled major- (but not institution-) specific labor
market outcomes for a subset of majors and made this data publicly available. The closest parallel to Futuro Laboral in the US is
likely government-compiled occupation-specific wage statistics compiled as in BLS (2015).

® Source: Chilean statistics from Mineduc (2012), Tables Programas, Becas y Ayudas Estudiantiles A.4.4 and Matricula D.2.45.
US statistics from Department of Education (2014b) Table 3.2-A and refer to the 2011-2012 school year.

7 Some universities, particularly public universities, also offer two-year technical degrees.

8 See “Las 11 instituciones de Educacién Superior cuestionadas por irregularidades en 2012.” La Tercera. 27 November 2012.
http://www.latercera.com/noticia/educacion/2012/11/657-495574-9-las-11-instituciones-de-educacion-superior-cuestionadas-por-
irreqularidades-en.shtml. Accessed 2 May 2013. Laureate International owns five universities in the US, including Walden
University and Kendall college. See http://www.laureate.net/, accessed 7 May 2013. The Apollo Group owns the University of
Phoenix in the US. See Apollo Global Fact Sheet, accessed 7 May 2013. See
http://www.apollo.edu/sites/default/files/files/Apollo-Group-Apollo-Global-Fact-Sheet.pdf for a discussion of Apollo’s purchase
of the Chilean university UNIACC. In 2009, the Apollo Group settled in a False Claims law suit for its recruiting and advertising
practices in the US. See http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a7cFhPKPB1mA. Accessed November
16, 2014. http://www.republicreport.org/2014/law-enforcement-for-profit-colleges/ provides a compilation of regulatory actions
and inquiries against for-profit higher-education chains in the U.S. by both federal and state authorities. Accessed November 16,
2014.




“degree.” Entrance exam scores are the key determinant of admissions as well as loan and scholarship
awards. The standardized test is called the Prueba de Selecion Universitaria, or PSU.? Entrance exam
takers complete exams in Mathematics and Language, and may take additional exams in subjects such as
science or history. Scores are scaled to a distribution with a mean and median of 500 and standard
deviation of 110.

Students hoping to be admitted to older, prestigious universities typically need to score at least
475 points on their Math and Language exams. Enrollees in these degrees were 26% of total higher
education enrollees in 2013. These degrees are referred to as the CRUCH (Council of Rectors of
Universities of Chile), and run joint admissions. In this joint admissions process, each degree scores
students based on entrance exam scores and GPAs, and students rank up to eight degrees in order of
preference. Each student is allocated to the admissions slot that is their most preferred and which has a
slot for them after higher-ranked applicants are admitted (see HNZ 2013 for admission algorithm details).

Students admitted to less prestigious universities typically have entrance exam scores over 350.
Most technical and vocational schools do not require an entrance exam score for admission, though many
students who have entrance exam scores enroll in their degree programs. Note that we will measure
selectivity using the average of Math and Language scores for enrolling students.

Chilean students rely primarily on two subsidized student loan programs. The older type of loan
is the Fondo Solidario de Crédito Universitario (FSCU). FSCU loans are both need- and merit-based, and
have existed since 1981."° To qualify for a FSCU loan, students must be Chilean citizens, have “family

income that makes payment of tuition difficult or impossible,”**

and have an average PSU score in Math
and Language of at least 475 points. FSCU loans can only be used at CRUCH institutions. The interest
rate is set at 2% and the loans are administered directly by the universities and funded by the government.
FSCU loans target the poorest students admitted to selective degree programs and are available to
relatively few students in part because most low-income students have lower academic performance when
applying to colleges.

To increase higher education opportunities for low-income students, the government introduced
the Crédito con Garantia Estatal (Loan with State Guarantee, most commonly known as CAE, for Crédito
Aval del Estado) beginning with the 2006 school year. > CAE can be used to finance education at any
accredited postsecondary institution: CRUCH universities, accredited private universities, professional

institutes, and technical schools are eligible. CAE eligibility is both need- and merit-based; for studying at

® Prior to 2004, the entrance exam was called the PAA, Prueba de Aptitude Academica.

10 Originally called Crédito Fiscal Universitario, it was first introduced in 1981 by D.F.L N°4 and modified in 1994 to its current
state by Articulo 70.

1| aw 20,027. Article 111, paragraph 2, section 9.3. NB.

12 CAE was created by the passage of a new law in 2005, “Crédito de la Ley 20.027 para Financiamento de Estudios de
Educatién Superior.”



a university, first-time applicants need to have scored an average of 475 on the PSU (the same as the
Fondo Solidario loan program). To enroll in a technical or professional degree, students need either a high
school GPA of 5.3 (approximately the median GPA, or a C average), or an average PSU score of 475.
Recipients must be from the lowest four income quintiles.™

CAE loans reshaped the higher education landscape in Chile. Following the introduction of CAE
loans, the fraction of higher education revenues in Chile coming from loan dollars rose by 170%,* and
college enrollment rates rose by more than 50% as a fraction of the college-aged population, from 48% in
2005 to 74% in 2012."°

In early- to mid-November, students apply for FSCU, CAE and several other federal grant
programs using the Formulario Unico de Acreditacion Socioeconémica (FUAS), a unified financial aid
form which is similar to the FAFSA in the US. After completing the FUAS, students face a short timeline
for college choice. They take the PSU in late November or early December, learn their PSU scores in late
December, and begin to send in applications during the first two weeks in January. Note that Chilean
college applications typically do not include components such as essays or discussion of extra-curricular
activities (see HNZ 2013). Students begin to learn of admissions outcomes as early as mid-January, and
the school year begins in late February or early March depending on the year and degree program. Table
A.1 provides a timeline of the loan and college application processes in Chile for students in the 2012-

2013 application cycle.

3 Data

In collaboration with MINEDUC and other agencies within the Chilean government, we constructed a
database combining high school records, college records, loan records, and tax records for cohorts of
Chilean college applicants from 1980 through 2013. The purpose of the data collection effort was to

conduct research to inform upcoming higher education policy decisions.

3.1 High school records

13 «“Quality Assurance in Higher Education in Chile.” OECD. November 2012.
http://www.oecd.org/chile/Quality%20Assurance%20in%20Higher%20Education%20in%20Chile%20-
%20Reviews%200f%20National%20Policies%20for%20Education.pdf. Accessed 31 May 2013. Law 20,027. Article IlI,
paragraph 2, section 9.3. NB. In the law itself, no mention is made of socioeconomic quintiles.

4 Annuario Estadistico 2012 MINEDUC based on data from Servicio de Informacion de la Educacién Superior (SIES), Divisién
de Educacion Superior. Ministerio de Educacion.See Solis (2013) for a discussion of the causal effects of loan access on college
attendance.

15 Source: World Bank (2014). http:/data.worldbank.org/indicator/SE. TER.ENRR/countries?page=1
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We use student-level high school records for the years 1995 through 2012. These data were available in
electronic form for cohorts starting in 2003 and digitized from hard copies in earlier years. The high
school data includes basic student covariates such as gender and parental education, scores on
standardized tests administered to 10" graders (known as the SIMCE, or Sistema Nacional de Medicién
de la Calidad de la Educacién), high school identifiers, and high school characteristics.

Of particular importance are school-level ratings of socioeconomic status (SES) computed by
Mineduc. The SES rating categorizes schools from A (lowest SES) through E (highest SES). These
ratings are based on parental income. Since we do not observe parental income directly, we use high
school SES as a proxy for student SES. High schools are small, given Chile’s universal voucher system,
resembling US private school class sizes with a median graduating senior class of 57. Students coming
from A and B schools are categorized as low-SES. Table A.2 shows how family background, academic
performance, and school characteristics vary with school poverty status, and describes cross-validation of
poverty rankings we did inside the tax authority using tax records for parents of children attending each
high school. Schools categorized as low-SES are much more likely to be municipal public schools (as
opposed to private or voucher schools), and graduates from low-SES schools are much less likely to

attend college or have parents who completed college degrees.

3.2 College and college application records

Data on college application, enrollment, graduation, and student aid come from several sources.
Application records include entrance exam scores for all students by subject for the years 1980-2013,
drawn from electronic storage at MINEDUC beginning with the year 2000 and digitized from archival
records in earlier years. We observe loan applications and awards for the years 2007 through 2013. These
data include information on which students take out loans and when, when students enter repayment, and
payment status for loans in the repayment stage. We use these data to construct cohort-degree specific
summary statistics on loan repayment and default rates.

We track applicants forward to college using enrollment and graduation data from MINEDUC.
These data were available at MINEDUC in electronic format for the years 2007 to 2013. To facilitate the
study of labor market outcomes over the longer run, we assisted MINEDUC in designing a rule requiring
institutions to provide additional historic enrollment and graduation data back to 2000. These data follow
students semester by semester, recording major- and institution-specific enroliment and graduation
outcomes. We do not observe semester-by-semester grade outcomes, but do observe listed semester-level

tuition and suggested degree length.



Taken together, high school, college application, and college enrollment records allow us to
construct enrollment histories at the student level, and describe degree programs in terms of the types of

students that enroll, their graduation rates, tuition costs, loan-financing, repayment and default rates.

3.3 Labor market outcomes

Through an agreement with the tax authority granted for the specific purpose of informing higher
education policies, we were permitted to link the database of student records to tax returns from the 2005-
2013 earnings years on a secure computer within the tax authority.*® Over 99% of individuals in our data
have matches in the tax records. Tax returns include wage, contract, partnership, investment and
retirement income. HNZ (2013) describe the tax data in detail, and provide an example of a tax form to
illustrate the components used to calculate student income. We were able to access tax data only inside
the Chilean tax authority on a secure, dedicated computer. In compliance with Chilean law, we were
permitted to take out aggregate data and regression output.

We use tax records to construct several measures of earnings outcomes by degree program
(institution-major) and student characteristics. The first, which we term “Net Value,” was provided to
students treated with our informational intervention. We worked with MINEDUC to develop a measure
the agency deemed appropriate for providing to students. MINEDUC’s preferences at the time of the
intervention included a focus on outcomes for graduates of degree programs rather than enrollees, and on
binned means rather than regression-adjusted predictions. " MINEDUC preferred to focus on earnings
and cost outcomes discounted back to the year of labor market entry, which may differ depending on
educational choice, as opposed to, say, the first year following high school completion.

With these constraints in mind, we compute Net Value as

t=15

(1) NVj :Zﬂt([‘n_ﬁor)_cj
t=1

Here, i, are mean earnings for graduates of degree j at experience year t, i, are mean earnings for
students who do not enroll in any degree program in at experience year t, and C; is the present value of

tuition costs for degree j, discounted to experience year 1. Net Value is the present value of earnings over

18 This disclosure is required by the Chilean government. SOURCE: Information contained herein comes from taxpayers' records
obtained by the Chilean Internal Revenue Service (Servicio de Impuestos Internos), which was collected for tax purposes. Let the
record state that the Internal Revenue Service assumes no responsibility or guarantee of any kind from the use or application
made of the aforementioned information, especially in regard to the accuracy, validity or integrity.

7 This is similar to calculations proposed in the US Gainful Employment Act. Eventually MINEDUC’s position changed to
provide information conditional on enrollment to provide incentives for institutions to increase earnings conditional on
enrollment, rather than through selective graduation (Beyer et al. 2015).
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the fifteen-year time horizon for loan repayment for graduates, less the present value of fifteen years of
earnings for students who do not attend college and the present value of direct costs.

We observe mean earnings values directly for experience years one through five. For years 6
through 15, we use predicted earnings based on field specific linear slope terms. Costs are based on
current tuition levels and suggested degree lengths. The discount rate is set to 2%, the rate of interest on
subsidized loans. We convert Net Values to a monthly equivalent before presenting the information to
students. See Online Appendix Section 2 for more details. We also present monthly equivalents of the
present discounted values of earnings gains and tuition costs.

We also consider a measure based on regression predictions of earnings conditional on

enrollment. We focus on flexible specifications of the form

2) Yijet = Xict'ﬂs(j) + 2,75y T Wi Og(jy + Hje + Eije

Here, y, is labor market earnings for student i enrolling in degree program j in cohort c at labor market

experience year t. X, includes dummies for student socioeconomic status, gender, and whether a student

took the entrance exam, linear controls for entrance exam score, years of labor market experience,

interactions between labor market experience and student covariates, and tax year dummies. Z; are major

specific dummy variables, and W, are interactions between majors and labor market experience. u;. are

degree-cohort specific mean residual components and ¢, is a mean-zero idiosyncratic error. We estimate

ijct
these equations separately within five selectivity tiers s( j) and by broadly defined CINE-UNESCO areas
of specialization.”® See Online Appendix Section 3 for more details on estimation.

The earnings measure we consider from this regression is predicted earnings averaged across

cohorts, y;, . This measure captures degree-specific earnings outcomes conditional on enrollment,

including cross-degree differences driven by student sorting. Cross-degree differences may vary with
labor market experience. In our main analysis, we focus on earnings eight years after college application,
or approximately age 26. We choose age 26 because it allows students enough time to complete
schooling. Earnings outcomes at later ages are also of interest, but measuring these outcomes becomes
more difficult as we observe fewer cohorts of students at older ages and the population of degree
programs changes over time. In Section 6, we discuss results in which we compute the present discounted

value of earnings through ages 30 and 50 for each degree program using data on selectivity- and field-

18 CINE-UNESCO areas are Business, Agriculture, Art and Architecture, Basic Sciences, Social Sciences, Law,
Education, Humanities, Health and Technology.
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specific earnings profiles. Our focus on early-career earnings outcomes reduces observed effects in
percentage terms compared to estimates that include data for older earners. See Online Appendix Section
3 for additional details.

We evaluate the effects of the disclosure treatment by estimating the impact of treatment on both
Net Value and predicted earnings of the degree enrolled in. The predicted earnings measure addresses
some of the limitations of Net Value. Earnings predictions conditional on enrollment include earnings
outcomes for dropouts, not just graduates, and compare earnings a fixed length of time from the
application year. Importantly, information treatment effects computed using predicted earnings capture
differences in earnings outcomes holding fixed student test score, gender, and SES. Treatment effect
estimates based on predicted earnings reflect changes in degree “value added” conditional on student
observables, and are not driven by, e.g., low-SES students who switch into degrees with more high-SES

students.

3.4 Non-earnings degree characteristics

We also consider the effects of treatment on other characteristics of chosen degrees, such as graduation
rate, loan repayment, and average enrollment length. We compute these values using the matriculation,
graduation, and loan data. We consider two types of loan repayment outcomes. The first is the fraction of
students in repayment whose payments are current. The second is the fraction who have defaulted

(defined as three or more payments behind schedule).

4 Survey and experimental intervention

The survey and field experiment were constructed as follows. Students in the 2012 graduating high school
cohort and all other PSU registrants (including those from older high school cohorts) were pre-assigned to
treatment and control groups. Treatment status was stratified by high school for current high school
seniors,™ and by prior PSU test score (50 point bins) for PSU registrants who had graduated in the two

prior cohorts.?’ This list was merged to loan applications as the applications were completed. Upon

19 Note that high school classes in Chile are small. Median graduating class size in 2012 was 59. Schools were broken into groups
based on high school type (private not-accepting-vouchers, private voucher-accepting, and municipal), the fraction of students
taking the PSU and the average PSU score from the prior two senior cohorts. Half of the schools within each randomization block
were assigned to treatment.

20 pSU registrants for the 2013 college entering class could use old PSU scores. This was a new policy. Hence the PSU
registration list consisted of those who currently wanted to take the PSU, as well as those who had taken the PSU in prior years in
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submitting their applications, loan applicants received an email from MINEDUC with the subject line
"Cédigo Confirmacion FUAS" (FUAS Confirmation Code). The email asked applicants to participate in a
brief survey that would be used by MINEDUC to make decisions about higher education. Students were
told that they would receive a confirmation code at the end of the survey, and that their survey responses
would be kept anonymous, used only for research, and would not affect their FUAS applications. Emails
were managed using a service which allowed us to track bounce-backs, opens, and click-throughs for
each email address.

Upon opening the email, applicants were invited to click a link taking them to the survey website.
They logged in with their identification number and email address and were given an informed consent to
accept or reject. Conditional on acceptance, they began the survey. The survey asked six questions, each
appearing on its own page, with participants clicking a “next” button to proceed to the next question.
Each question could only be completed once: if a respondent left the survey and started again it would
start them where they left off. The survey program adapted questions based on prior responses. We
present survey materials in Spanish (with English translations) in the Online Appendix Section 2, along
with screen shots of the survey pages and information treatment pages.

The first question asked students about their current educational status (e.g., whether they were
applying to college for the first time or whether they were already enrolled and considering re-applying).
The second question asked students to list at least one, but up to the top three, institutions and majors to
which they planned to apply. These were chosen from a nested set of drop down menus that filtered
results to make list sizes manageable. It required at least one entry to proceed to the next question. The
third question asked students how certain they were of their application plans. The fourth question asked
students what they thought the annual cost of studying (tuition plus registration fees) at each of their
choices would be. Choices were piped in from prior responses. Students could click an “I do not know”
button or move a slider to indicate the total annual cost. The fifth question asked about expected earnings
upon graduation. Students were asked to estimate what their monthly salary would be once they started in
a stable, full-time job after graduating from each of their choices. They were also asked to estimate what a
typical graduate in each degree would earn. They were allowed to choose “I do not know” for each sub-
question or fill in earnings amounts with a slider. The sixth question asked students about their expected
PSU scores in Language and Math.

Upon completing the final question, control subjects were shown a thank you page with their
confirmation code. They also received a thank you email with the same message. Treated students

continued to a new page which displayed five pieces of information. A table at the top presented the

case colleges requested their prior test score for admissions. Thus the PSU registrant list consisted of new test takers, test re-
takers and prior test takers who were not retaking the test. This gave us a sample of older graduates who may apply for a loan.

13



monthly earnings gain component of the Net Value measure, described in Section 3.3, in the left column.
The second column of this table displayed the monthly cost component. The third column displayed the
Net Value measure itself — the difference between monthly earnings gains and costs.

In a highlighted box below this table, students were told whether there were other institutions
they could likely get into which offered the same major with a higher Net Value, and were shown the
additional Net Value associated with a switch to the highest Net Value degree (though they were not told
which institution offered this value). The net value gain was calculated by the web application,
referencing a back-end database on earnings outcomes at different degree programs. The web application
searched across institutions offering the same major as the first-choice degree, looking for degree
programs with similar entrance exam distributions and higher Net Values. Finally, treated participants
were shown a second highlighted box indicating whether or not there were other degrees within the same
broad field of study as their first-choice degree that offered higher Net Value, as well as the expected Net
Value gain from the within-field switch. Again, the web application searched across degrees with similar
entrance exam score distributions to the listed first choice.?

After the information and suggestion page, treated subjects clicked through to a final page, the
“Buscador de Carreras” (Career Searcher). It explained what the searchable database was, and gave them
a place to enter a PSU score, degree level (technical or university/professional), and major at the top of
the page to populate a table of Net Values below. When populated, the table displayed institutions
offering the specified major and who serve students with similar PSU scores.? Institutions were sorted in
descending order by Net Value. The table displayed the institution name, the major, the earnings gains for
graduates in monthly terms, the monthly loan costs, and the Net Value. It also displayed a suggested
alternative major to search for with higher Net Value but in the same field of interest (e.g. suggesting
nursing to someone interested in nutrition). Students were informed at the top of the page that this new
database was being produced by Proyecto 3E — a consortium of international researchers collaborating
with MINEDUC - using tax records of past graduates, and with the purpose of helping students make
informed decisions for their future. Students could log back in at any time and compile and view up to ten
comparative tables to use in choosing their degree. This final page also contained a thank you message
and the confirmation code; students were not required to search the database.

We evaluate the effects of the informational intervention by linking data on treatment and control

students to administrative enrollment records post-treatment. We are able to observe whether students

2 The median gain in predicted earnings associated with the switch described in the first box was equal to 33% of predicted
earnings in students” first listed choice. The median tuition change associated with the switch was 0. The median gain in
predicted earnings associated with a switch to the degree program described in the second box was equal to 156% of predicted
first choice earnings. The median tuition change was 34.2%. See Table A.3 for more details.

22 gpecifically, the web program selected all degrees in the same major for which the stated PSU score fell within the 5th and
95th percentile for enrolling students.
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enrolled in any degree program, and describe the degree programs students chose in terms of academic

and financial outcomes for past students.

5 Empirical Analysis

5.1 Baseline differences in enrollment choices by socio-economic status

The student loan expansion in 2006 was followed by a 12% increase in the number of college enrollees
coming from low-SES backgrounds. Similarly, enrollment of students scoring below median on their high
school standardized tests (SIMCE) increased by 24%. Many of these new students attended technical and
professional institutes, where enroliment increased by 16%, and the fraction of tuition revenues coming
from student loans rose by 170%. Online Appendix Section 6 provides further detail on changes in
baseline ability of freshman enrollees, total enroliment and fraction of tuition revenues coming from
federal student loans by degree selectivity from 2006 through 2012.

Students from low-SES backgrounds make different enrollment choices than other students in
terms of expected costs and earnings outcomes. To illustrate this, we use the enrollment data and
regression output from equation (2), and calculate demographic- and degree-specific earnings predictions
at age 26 for first-year college students between 2007 and 2011.%® Figure 1 shows the mean, 10th, and
90th percentiles of the predicted earnings distribution by entrance exam (PSU) score. The horizontal line
shows average earnings for high school graduates who do not enroll in college. Earnings rise steadily by
PSU score, with mean earnings for students at the 75th percentile of the score distribution (581) 52%
higher than those for students at the 25th percentile (431). However, within test score, students choose
degrees characterized by very different earnings outcomes. For students with PSU scores equal to 505 —
the median for college enrollees—degrees at the 90th percentile of the predicted earnings distribution
have mean earnings twice as high as those at the 10th percentile. Mean earnings for the average high
school graduate remain close to those for the 10™ percentile college degree past the 75" percentile of the
score distribution. This is consistent with the idea that many students across a fairly broad range of the
ability distribution may choose degree programs where the labor market returns are negative.

Figure 2 displays differences in predicted earnings by student socioeconomic status, and

decomposes earnings into a component attributable to differences in within-degree effects by SES

2 To facilitate presentation, if a degree does not have sufficient student observations with PSU scores, we use students’ high
school test scores to predict their PSU scores, and categorize the degree accordingly on the PSU admissions scale. This happens
for 4.6% of degrees representing 3.8% of 2004-2011 enrollment. These are primarily low-selectivity degrees.
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(holding enrollment decisions constant) and a component attributable to cross-SES differences in
enrollment decisions. We display mean earnings at chosen degrees by SES category and PSU score using
either i) overall enrollment weights (the average person’s enrollment choice) or ii) SES-specific
enrollment weights (adjusting for the fact that high- versus low-SES students may make different degree
choices). Comparing the Low SES — Population weight line with the High SES — Population weight line
gives the mean within-degree difference between predicted earnings for high- and low-SES students.
Comparing the lines Low SES — SES weight and Low SES - Population weight shows how much of the
low-SES students could raise their predicted earnings by selecting the population average degree mix.
Similarly, the difference in High SES — SES weight and High SES — Population weight shows how much
high-SES students would reduce their predicted earnings by selecting the population average degree mix.

Conditional on ability, low-SES students enroll in degrees where earnings are 13.5% lower than
for high-SES students. Holding enrollment weights fixed at population averages within score bins, low-
SES students earn 7.2% less in expectation than high-SES students, and differences in enrollment choices
account for just under of the earnings gap. Low-SES students would do better in expectation if they chose
the same distribution of degrees as the broader population. In contrast, high-SES students choose degrees
with higher-than-average earnings than the distribution in the population. Within-score variation in
enrollment choices exacerbates inequality in enroliment outcomes driven by cross-group differences in
scores. As shown in Table A.2, students from low-SES backgrounds are disproportionately likely to fall
in the lower part of the PSU distribution.

Differences in costs across degree choices are relatively small compared to earnings differences.
Figure 3 displays mean predicted monthly payments by entrance exam score and SES background.
Predicted monthly payments are computed based on 2013 tuition values and observed average enrollment
durations for past students. We use the subsidized student loan interest rate of 2% and repayment period
of 15 years. Between the 25th and 75th percentiles of the score distribution for enrolling students, average
monthly payments for low-SES students rise from $20,917 to $67,326 Chilean pesos (CLP). Earnings rise
from $309,075 to $456,025 CLP, leading to an increase in take-home pay of $100,541 CLP. Similarly,
within-score differences in costs across SES groups are much smaller than differences in earnings. If low-
SES students with enrollment scores at the median for enrolling students changed their degree choices to
be the same as those in the population as a whole, their predicted monthly earnings would rise by $51,089
CLP. Their costs would rise by only $6,748 CLP.

Choice-driven gaps in earnings outcomes for low- and high-SES students persist even net of costs
and suggest that many students, and particularly those from low-income backgrounds, could choose and
get into degrees with higher returns. We use our survey and experimental data to explore whether gaps in

information exist that could explain the differences in mean choices, and if so, whether access to
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information can affect choices and close the cross-SES gap in predicted financial outcomes, or if choices

are fully-informed and reflect persistent differences in preferences.

5.2 Baseline differences in information and expectations by socio-economic

status

5.2.1 Sample description
Table 1 describes the sample of students invited to participate in our intervention, comparing
characteristics of the invited sample to those of eventual respondents. Overall, 69% of the emails we sent
were opened. Of those, the respondent read and agreed to the informed consent disclaimer 73% of the
time. 59% of students providing informed consent completed the survey through to receiving the
confirmation code. 30% of the original email requests from MINEDUC to the email address given by the
respondent for their college and loan applications resulted in a completed survey, with the largest attrition
at the survey completion stage. We refer to survey completers as respondents from this point forward.
Within our sample, students with lower baseline academic achievement, low-SES backgrounds,
and lower-educated backgrounds were harder to reach. The average PSU entrance exam score for
respondents is 31 points higher than for invitees. The fraction of invited students from low-SES high
schools was 43.7%; this falls to 35.7% for respondents. Respondents are more likely to have parents with
some tertiary education, and score substantially higher on high school standardized tests (SIMCE) than
invitees. On average, degree programs respondents list as their first choices offer Net Values of $734,948
CLP per month (just over $1,400 USD using November 2013 exchange rates) relative to not attending
college. Students could raise this value by an average of 36% ($267,566 CLP) by switching to peer
institutions offering similar degrees. 77.0% of respondents matriculate in some degree program. At age
26, our regressions predict respondents earn an average of $464,307 CLP each month, or USD $893.
Column 5 shows characteristics of treated respondents. There are no substantial differences in
baseline characteristics between treatment and control students. A p-value test of joint significance of
baseline characteristics in explaining treatment fails to reject the null of no effect with a p-value of 0.191.
The final column shows characteristics of treated students who searched the database. 43% of treated
students searched, and searchers are similar to non-searchers in terms of observable characteristics and
survey responses. Students who search have slightly higher SIMCE scores, and the Net VValue of their
stated first-choice enrollment plans is 4% higher than for non-searchers. See Tables A.4 and A.5 for a

comparison of treatment and control groups.
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5.2.2 Survey Responses

Table 2 shows survey responses broken down by the SES rating of students’ high schools. The sample is
all survey completers. The top panel of Table 2 compares expected tuition costs to actual tuition costs.
Respondents were asked, “Considering the costs of registration and tuition, approximately how much do
you think the annual costs are for studying in the institution(s) previously selected?” (See Online
Appendix 2 for the Spanish-language questionnaire.) The web program displayed for them the institution
and major they had previously listed as their first, second, and third planned enrollment choices.

A third of students responded that they do not know the tuition costs at their stated top choice for
enrollment. Ignorance of tuition costs is decreasing with socio-economic status. Among those that
registered a peso-value response, we compare their responses with actual tuition and matriculation fees
from the administrative data. Conditional on claiming some knowledge of tuition costs, students are on
average close to correct. We present results as percentage deviations from observed tuition values at
students’ first choice schools. Students from the poorest schools overestimate tuition, while students from
higher-SES schools tend to slightly underestimate it. Although tuition estimates are generally centered
around the correct values, many students’ beliefs are inaccurate. For instance, a quarter of students
underestimate tuition at their top choice degree program by at least 16.5%.

The second and third panels of Table 2 show how students responded when asked a) what they
expect earnings are for “typical” students who complete the specified first choice degree, and b) what
they would expect to earn if they completed their first choice degree. ?* We divide students’ earnings
estimates by the observed mean earnings outcomes for past cohorts at their first choice degrees (using the
linked higher-education-and-tax-records database). We describe the distribution of deviations from the
observed mean in percentage terms. Many respondents claim not to know what to expect about earnings
outcomes, either for themselves or for the typical graduate. 47.7% of students select the “I don’t know”
option when asked about earnings for a typical graduate, with the fraction rising from 43.5% in high-SES
high schools to 54.4% in low-SES high schools. 35.8% of students select the “I don’t know option” for
own earnings, with the fraction rising from 32.6% in high-SES high schools to 41.1% in the low-SES
high schools.

Conditional on providing an earnings value, expectations are highly variable and appear to be
biased upward. On average, students think that the typical graduate of their first choice degree program
will earn 60.9% more than past graduates of that program have actually earned. Overestimates are

particularly large for low-SES students, and across all SES groups they are driven by a right tail of

2 gpecifically, the question asks “What do you think YOUR monthly salary will be once you graduate and start to work in a
stable, full-time job? Please respond below in the left-hand column.” and “What you think the monthly salary with be FOR A
TYPICAL GRADUATE once s/he graduates and starts to work in a stable, full-time job? Please respond below in the right-hand
column.” We compare this value to earnings for graduates in the first two years after they complete their degrees.

18



students with large, positive prediction errors. Expectations about own earnings are slightly below those
for the typical graduates. On average, students expect their own earnings conditional on graduating from
a given degree program to be 51.8% higher than observed values for past graduates, however they expect
the average graduate to earn 60.9% more than past graduates have. Students are over-confident in
earnings outcomes for the typical graduate, but under-confident in their own outcomes relative to the
typical graduate.

The majority of students are very certain about their application plans despite lacking accurate
information on earnings and costs and being at the point of applying for a sizeable student loan to finance
their higher education choice. Panel 4 of Table 2 shows responses to the question “How sure are you that
the option(s) you listed will be the ones to which you apply next year?” The response options were: “l am
not sure at all,” “I am a little sure,” “I am fairly sure,” “I am quite sure,” and “l am absolutely sure.”
About two thirds of students are “absolutely sure” or “quite sure” about their first choice. There is little
variation by high school SES rating even though information about earnings and cost outcomes varies
substantially.

Survey findings suggest differential access to information on earnings and costs may play a role
in driving the gap in earnings outcomes between high- and low-SES students at the same ability levels.
However, the survey results are also consistent with a story in which college applicants choose not to
acquire information because they do not find it helpful in their decision process. Other surveys of Chilean
college applicants described in Hastings et al. (2015) find that the majority of respondents list prestige
and accreditation as the primary reason for degree selection while only 11% list future earnings as one of
their top three determinants of degree choice (only 2% list it as their top reason). Given a hypothetical
guestion about willingness to switch careers in response to economy-wide changes in relative earnings,
over 43% of applicants say they would never change their career in response to relative earnings
changes.? Finally, financial literacy and loan literacy (knowledge of student loan terms) is very low, and
lowest among those from low-SES backgrounds. Randomly providing access to information on returns
and costs to degrees and measuring the impact on enrollment choices provides a test between these two

alternative explanations for the observed lack of information and gap in earnings outcomes.

5.3 Experimental estimates of information treatment

% The question specifically asked “Suppose that INE [the National Labor Institute] just released a new report that proves that the
salaries for graduates in [first choice field] have fallen by 10%. Now, instead of earning [respondent estimate of earnings in that
field], you will earn [X% less than expected value]. Would you feel the need to change this career option for another?”
Xincreased if the respondent answered “no”, from 10% to 50%, at which point respondents could click “never” or fill in a value
higher than 50% for the wage change it would take to induce them to switch careers.
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5.3.1 Modeling the impact of treatment on degree choice

To motivate our analysis of the impact of information on enrollment choices, we outline a simple model
of choice under limited information and derive predictions for where we expect to find larger or smaller
treatment effects. See Online Appendix Section 4 for derivations of results shown here.

Student preferences are given by:
(3) U; :ﬂiE[yij]+é}j t¢;

where E[y,] is student i’s expected earnings in degree j, ¢; are student i ’s non-pecuniary preferences
for degree j, ¢; isatype | i.i.d. extreme value error term, and S represents student i ’s preference for

pecuniary relative to non-pecuniary degree characteristics.

Students form beliefs about earnings using information on labor market outcomes for past
graduates, as well their best guesses about their own skills and future labor market conditions. Because
we are interested in how disclosure of degree-specific average earnings affects choice, we write earnings

expectations as a linear projection onto beliefs about average earnings outcomes for past students:

E[yij] = piYije + &
where Y, is student i’s expectation of average earnings for past graduates of degree j. p; captures the
extent to which students update beliefs about own earnings as beliefs about outcomes for past graduates
change. If students find outcomes for past students uninformative about future outcomes, p, will be close
to 0. In our discussion of the model, we assume that p, is positive, so that students who believe that past

students earned more will all else equal have higher expectations about own earnings. This is consistent
with the observation that students tend to think own earnings conditional on graduation will be similar to

those for the typical graduate of the same degree, and with our empirical findings. ¢, captures

components of earnings expectations that are orthogonal to expectations about outcomes for past students.
As above, this may include knowledge of own relative skills or beliefs about future changes in degree
quality and labor market conditions.

Students have imperfect knowledge of earnings outcomes for past students. Suppose that average

past-graduate earnings for degree j,Y;, are drawn from some distribution with mean Y and variance o?.
Students receive a noisy signal Yi =Y, +¢; about each degree program j, where e; have mean zero,

variance o7, and are independent across j for each i. Assuming linear updating of expectations,

20



earnings expectations for untreated students are given by YijO = ai\fij +(—a,)Y, where

a, =0, 1 (o +0,%) is a precision weighting. Students with more precise signals on degree-specific
earnings outcomes place more weight on these signals.

Let T; be an indicator variable equal to one if our treatment provides student i with information

about degree j . Treatment provides students with the true values of Y, , so that

0 0
Yije =T (Yj =Y )+ Y
=(1l-¢ )YjTij +ain + (1—Tij)(aie.

ij

“ + (1= a)Y)

which implies that Y;© =Y, if T; =1 but students” expectations remain at Y/ =Y/ = ai\fij +(1-a)Y
for untreated students and for treated students among degrees they did not receive or seek information on.
In addition, treatment may also affect students’ preferences for degree programs through channels

other than updates to beliefs. We allow for degree-specific “salience” treatment effects so that

8; = 6, +T,0; . This captures the fact that students may not be aware of degree options they search for

and see in the searchable database, and treatment makes these options salient and therefore more likely to
be chosen than unknown or less-salient options.?®

Define P

. as the probability student i chooses career j. Then,

dP,
©) =R AR+ a-a)T,).

]

Earnings outcomes for degree j have larger effects on choice probabilities for students who receive

information, who have less precise prior beliefs, who value pecuniary characteristics more, who find
earnings outcomes for past students more informative when forming expectations about own earnings,
and who are somewhat likely but not completely certain to choose a particular degree (probability of
choice is close to 0.5).

Treatment provides students with information about a number of degree programs, and may also

affect non-pecuniary preferences for degrees. Define D; as an indicator equal to one if i chooses j, and

%6 Hastings, Hortagsu and Syverson (2013) show that this representation of the impact of information is equivalent to
a consideration set model, where information or advertising increases the probability that a particular product is
considered out of a set of available but potentially unknown products.
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define Y; = Z D;Y; as the value of expected earnings at the degree i chooses. Y; is our outcome variable
i

of interest: net earnings gains for past students at the chosen degree program. Define T, as an indicator

variable equal to one if student i receives treatment for some set of degrees and let S;; be an indicator

variable equal to one if j is in the treated set. Then for each individual i

(6) %wﬁa—aﬁ)(&aﬁs +R=P)(Y;s =)y =Vjis)) + 05,

0
Il

s ‘ Sij Pij

J

is the probability i chooses a treated degree program, ayzls =Var(Y; |S; =1) is the choice-

i

probability weighted variance of degree Net Value for the treated degrees, \7”5 = Ps‘lz S;R;Y; is the
i
mean degree effect for treated degrees.,\?nl,S =(1- Ps)‘12(1— S;;)R;Y; is the mean degree effect for
j

untreated degrees, and o, ; = Cov(Y, Sﬁﬁ) :

] ]
Treatment affects expected average earnings at the chosen degree in three ways. First, it allows

students to make more informed choices within the set of treated degrees. This is captured in the P,oy
term. Effects will be larger, all else equal, when more degrees are treated and when there is more
variation in earnings outcomes within the treated degrees. Second, updating can make students more or

less likely to choose degrees in the treated set. This is captured in the P,(1—P,)(Y;s =Y )(Y;s = Y;u._s) term.
Students become more likely to shift into treated degrees if the mean effect for treated degrees \7”5

exceeds the prior meanY . If they do shift, they realize gains proportional to the difference between mean

earnings for treated and untreated degrees, \7”5 —Y,._s - Both of these effects are larger when students

place high value on pecuniary characteristics (5, is large), when students find average outcomes for past
graduates more informative about own earnings ( p, is large) and when students have little information on
degree-specific outcomes prior to treatment (¢; is close to zero). Third, treatment raises expected

earnings at the chosen degree if salience effects of treatment are strong for high-earning degrees.
Given survey evidence suggesting that many students do not place a high weight on pecuniary

characteristics in college choice, and that many students claim a high degree of certainty about choice

despite weak knowledge of earnings and cost outcomes, the model suggests that some students will not

respond to treatment.
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5.3.2 Experimental results

Table 3 shows the impact of information on Net Value, earnings, and cost outcomes in students’ chosen
degrees. We show results separately for the full sample of students, and for subsamples coming from low-
and high-SES schools. Specifications reported here and in following tables of experimental results include
controls for randomization block and for the value corresponding to the dependent variable of students’
first-choice degree (i.e., Net Value of first-choice degree if dependent variable is Net Value, monthly debt
of first choice degree if dependent variable is monthly debt). These controls reduce standard errors but do
not substantially alter point estimates. Tables A.6, A.9, and A.10 show results without these controls.
Standard errors allow for clustering at the high school level for students applying to college directly out of
high school.

The first panel shows impacts of treatment on the extensive margin decision to matriculate to any
tertiary degree program. The impact of treatment on the extensive margin is very close to zero and
statistically insignificant across all subsamples. The second panel shows the impact of treatment on
monthly debt, earnings gains (per month over 15 years vs. no college enroliment) and Net Value (the
difference between the two). For the 23% of the sample who did not matriculate to any degree, these three
values are by definition zero. The overall impact of treatment is therefore the change in the dependent
variable given enrollment times the probability of enrollment (since the impact of treatment on enroliment
is zero). The effects of treatment on Net Value and earnings outcomes at the chosen degree are not
statistically significant at conventional levels. Point estimates suggest limited effects of treatment on cost
outcomes, with larger effects for low- than high-SES students on earnings and Net Value.

Because the impact of treatment on matriculation is zero, we can estimate the inframarginal
impact of information on the earnings and cost characteristics of the enrolled degree.?” The third panel
shows the impact of treatment conditional on matriculating to some tertiary degree. Treatment effects on
Net Value and earnings outcomes are statistically significant in the full sample and are driven by large
gains for students from low-SES backgrounds. For low-SES students, the intensive-margin effect of
treatment is to raise Net Value at the chosen degree by $15,274 CLP. This is equal to 3.4% of mean Net
Value for low-SES students matriculating in college, 5.3% of the average gain associated with a switch to

a peer institution, and 28.4% of the average monthly debt payment. The impact of treatment comes from

27 et R denote long-run annualized real return of the degree enrolled in, let M be an indicator if a student matriculates to any
tertiary degree, and let T be an indicator if the is in the treatment group. Then

dE(R) _dPr(M=1) _ dE(R|M =1))
d(T)  dT dT

treatment is independent of student observables conditional on matriculation. A joint test of the effect of student observable
characteristics on treatment within the sample of matriculating students fails to reject the null, returning a p-value of 0.194.

(RIM =1)+ -Pr(M =1) . (McDonald and Moffit (1980)). Note also here that
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gains in earnings, not savings on tuition. This is in part because there is less variation in tuition than
earnings across degrees. However the sign of the treatment effect on monthly debt is positive. This is
reminiscent of “returns chasing” in savings investments: individuals choose funds that have higher costs
(with certainty) if the funds have higher past returns (see for example Choi, Laibson and Madrian 2011).

Recall that earnings gains and Net Value were calculated using earnings and costs projections for
graduates. The fourth panel of Table 3 presents estimates of the effect of treatment on earnings at age 26
conditional on enrollment as opposed to graduation (the measure used in Figures 1 and 2). As discussed
in Section 3.3, treatment effects measured using the age 26 earnings measure reflect changes in degree
“value added” conditional on gender, student SES, and test score. We find positive and statistically
significant treatment effects for this outcome as well, again driven by gains for low-SES students. One
way to frame these results is in the context of the cross-SES earnings gaps displayed in Figure 2. The
treatment effect on predicted earnings for low-SES students of $11,759 CLP is equal to 18.4% of the gap
between earnings outcomes for high- and low-SES students conditional on ability (i.e., the average gap
between the upper and lower lines in Figure 2, weighted by the low-SES score distribution). The
treatment effect is equal to 38.4% of the component of that gap driven by differential degree choice (i.e.,
the gap between the middle two lines).

The fifth panel of Table 3 presents estimates of the effect of treatment on graduation rates and
average duration of attendance at students’ chosen degree programs. Treatment does not move students
towards longer degree programs or degree programs with higher graduation rates.

In the Appendix, we present additional analyses that explore how changes along different
enrollment margins lead to the changes in Net Value we observe. Figure A.1 shows how the distribution
of Net Value at the matriculating institution differs for the treatment and the control group. The treatment
effects we observe come from a shift of mass from between the 10" and 50" percentiles of the control
group distribution to roughly the 50" through 90" percentiles. As reported in Table A.7, low-SES students
in the treatment group are 4.7% less likely to matriculate in degrees with Net Values below the control
group median. Treatment appears to push applicants away from low-earning degree programs.

Students whose beliefs about own future earnings were above those for past graduates are the
most likely to switch from their pre-treatment top choice. Table A.8 presents results from logit
specifications in which outcome variables are dummies for an applicant matriculating in a degree
different from the stated first choice, a degree in an institution different than the stated first choice, a
degree in a different narrow major classification than the stated first choice, and a degree in a different
broad field than the stated first choice. We interact treatment with indicator variables for each tercile of
the expectation error distribution (the difference between own expected Net Value at the first choice and

the Net Value information we present to students). We control for these indicator variables as well as for
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randomization blocks. Estimates of average marginal effects indicate that treated students in the lowest
tercile of expectation errors (who typically slightly underestimate Net Value at their top choice) do not
change their behavior in response to treatment. However, low-SES students in the top tercile of Net Value
overestimation are 6.6 percentage points more likely to switch narrow majors (relative to mean rate of
57%) and 4.8 percentage points more likely to switch broad fields (relative to a mean rate of 18%) than
students in the lowest tercile. Effects on institutional switching are slightly smaller and not statistically
significant even for students who overestimate earnings.

These findings are consistent with a decomposition exercise, presented in the lower two rows of
Table A.7. Using enrollment weights, we regress our degree-specific Net Value estimates on institution
and major dummies. These dummies capture 94% of the variation in Net VValue across degrees. We then
estimate specifications identical to those in Table 3 but with estimated institution and major effects on the
left hand side. Treatment raises the institutional component of Net Value for low-SES students by a
statistically insignificant 2,225 CLP. In contrast, treatment raises the major-specific component by 13,826
CLP, or 91% of the overall effect reported in Table 3. To summarize, the effects we observe can be traced
to a movement away from low Net Value degrees through changes in major, and students who

overestimate earnings are most likely to change their behavior following treatment.

5.3.3 Heterogeneous treatment effects using survey data and choice model predictions

Table 4 presents the effects of the informational intervention on Net Value conditional on matriculation
for subgroups of the population predicted to have large or small effects based on equation 6. Tables A.11
and A.12 report results for the matriculation and predicted earnings outcomes. Note that the subgroup
definitions displayed here are only weakly correlated, so the subgroups represent distinct cuts of the data.
We document the relationship between the subgroup variables in Table A.13.

The first panel in Table 4 presents results for students who claimed to know at least one of
tuition, expected own earnings, and expected average graduate earnings for their first choice degrees and
for students who claimed not to know any of the three. We use this as a coarse measure of the precision of
prior beliefs. In the pooled sample, treatment effects are larger in magnitude for students with less
information on earnings and cost outcomes, though less precisely estimated. Focusing on low-SES
students, treatment effects are quite large for students with low information at baseline. Gains in Net
Value for this group reach $28,701 CLP, or 7.0% of average Net Value in the low-information sample.
This is more than twice the size of the effect for the high-information group, though relatively large
standard errors do not allow us to differentiate statistically between the two estimates. These findings are
consistent with the prediction from equation 6 that low-information students should respond more

strongly to treatment. For high-SES students, this pattern is reversed, with smaller (though imprecisely
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estimated) effects for low-information students. One possible explanation is that lack of information on
earnings and costs for high-SES students reflects limited interest in earnings outcomes even with low
acquisition costs, while lack of information on these outcomes for low-SES students reflects high
acquisition costs.

The second panel of Table 4 shows estimated treatment effects for students who report that they
are absolutely certain of their application choices and for students who say they are not. We interpret this
measure as capturing non-pecuniary preferences for chosen degrees, though it may capture pecuniary
preferences as well. (We note that stated certainty about degree choice has a weak negative correlation
with knowledge of earnings outcomes, suggesting the former rather than the latter.) Effects in the full
sample and for both high- and low-SES students are small and statistically insignificant for students who
are certain of their preferences. They are large and statistically significant for students who are not
certain. By the time of loan application, many students appear to have formed strong opinions about
different degree programs even in the absence of accurate information on cost and labor market outcomes.
Earnings disclosure has little effect on these students.

Equation 6 also suggests that students may not respond strongly to treatment if the variance of
earnings outcomes within their choice set is relatively low. The third and fourth panels of Table 4 address
this prediction. Because we do not observe students’ full choice sets or choice probabilities, we consider
proxies for variation in earnings outcomes within the choice set. The third panel compares students who
list careers in more than one field among their top three choices to students who do not. These students
are likely considering degrees with a broader range of financial outcomes. They may also have weaker
field-specific preferences. Treatment effects are large for students considering careers in multiple areas,
and close to zero and statistically significant for students considering careers in a single area. The fourth
panel compares students with above-median variance in Net Value of listed careers to students with
below-median variance. For low-SES students, treatment effects are positive and statistically significant
for students with high-variance listed choices, and small and statistically insignificant for students with
low-variance choice sets.

The bottom panel of Table 4 shows treatment effects for students who have at least one parent
with tertiary education, and for students who do not. We include this cut of the data as it was a planned
cut at the time of study design, though it is unclear how parental education would influence the treatment
effect. For example, children with college-educated parents may have stronger or weaker preferences for
earnings or tuition costs. Regardless of mechanism, we find that treatment effects are on average

somewhat larger for children of more educated parents.
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6 Discussion

6.1 Policy implications and cost-benefit analysis

We assess the efficacy of the informational treatment in two ways. First, we consider the intervention as a
solution or partial solution to problems of student default. Second, we evaluate the return on investment
associated with the intervention. Even if the intervention does not change default rates very much, it may
be a cheap way to nudge a fairly large number of students towards higher Net Value degrees.

Using our administrative data on loan taking and repayment, we compute degree-specific rates of
repayment and default as of 2013, and examine whether treatment pushes students to choose degree
programs with lower default and/or higher repayment rates for past students. Because the CAE loan
program is relatively new, students using CAE loans at many degree programs have not yet entered
repayment. We focus our attention on degree programs in which we observe at least ten students who
have entered repayment and for whom the time elapsed since matriculation is at least the predicted degree
length plus 1.5 years.?® We compute repayment rates for 58.0% of the degrees chosen by students in our
experimental sample (Table 5, top panel). These degrees tend to be shorter in duration and less selective
than the enrollment-weighted population of degrees. Note that treatment does not cause students to
choose a degree in the repayment sample.?

The second panel of Table 5 displays unconditional mean on-time repayment and default rates for
degrees chosen by high- and low-SES students, mean repayment and default rates conditional on entrance
exam score (weighted by the population score distribution), and the effects of the information treatment
on default and repayment rates at chosen degrees. On-time repayment rates are 8.5 percentage points
higher at the degrees chosen by high-SES students. This gap falls to 1.4 percentage points conditional on
entrance exam score. Treatment pushes low-SES students towards degrees with on-time payment rates
that are 1.0 percentage points higher. This is equal to roughly 12% of the unconditional gap between
choice outcomes for high- and low-SES students and roughly 70% of the gap conditional on exam score.
Findings for default rates are similar. The effect of treatment on default rates in the full population is
small and does not differ significantly from zero.

To evaluate the return on investment (ROI), we compute the present discounted value of post-
college earnings net of direct costs through ages 30 and 50. We extrapolate from our regression-based
earnings measure using data on field- and selectivity-specific earnings trends. See Online Appendix

Section 3 for a full description of the procedure. We estimate that the informational treatment raises the

*% We employ this last restriction so as to avoid considering only the dropouts from longer degree programs.
2 Table A.12 describes degrees in and out of the repayment sample.
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PDV of post-schooling earnings net of direct costs through age 30 by just under one million Chilean
pesos, or USD $1,923. Because treatment does not affect expected degree length, the cost of earnings
forgone while in school seems likely to be negligible. Multiplying by the 37,747 students in the
matriculating respondent sample suggests an increase in the PDV of aggregate earnings net of the direct
costs education of roughly USD $72 million at the loan interest rate of 2%. This far exceeds the costs of
the intervention. The survey and intervention took students an average of 15 minutes to complete.
Valuing students’ time at the Chilean minimum wage of USD $2.30,% this suggests a total participation
cost of USD $28,720 across all respondents. We conservatively estimate (over-estimate) the total cost of
data construction efforts for researchers and government officials at USD $1m. This includes fixed startup
costs that would not be incurred in subsequent years. The informational intervention does not seem likely
to have large effect on rates of student default, but because it is scalable and cheap to implement, the

return on investment in producing and administering the treatment remains quite large.

6.2 Interpreting Results in a Broader Policy Context

6.2.1 Treatment Effect Size and Treatment Timing

While treatment increased net earnings and decreased default rates at the degrees students chose to enroll
in, and did so particularly for low-SES students, the impacts are relatively small when compared to
potential gains across degrees available to students conditional on academic ability. Students who are
already set on enrollment plans are non-responsive to new information, regardless of how uniformed their
decision process was to date. Our intervention reached students at a salient point in time - near the time of
choice and as part of the loan application process. It could be that reaching students with degree-specific
earnings information earlier in their decision process would have a larger impact. However, recent
consumer finance research suggests that the effects of informational interventions are the largest when
they occur at or near the time of choice (Hastings, Madrian, and Skimmyhorn 2014). In addition, without
entrance exams scores in hand to determine which degrees are in their choice set, students may have
difficulty putting information on earnings outcomes to use.

In addition, information given early in high school necessarily will be more out of date,
particularly for degree-specific returns (as opposed to broad field returns). It would therefore provide
lower demand-side incentives for education improvement from institutions working to increase their
earnings ratings by adding more value to enrollees since longer-run averages respond slowly to changes

in effort (Beyer et al. 2015). Policies that improve knowledge of returns and costs early on and policies

% OECD 2014. http://stats.oecd.org/Index.aspx?DataSetCode=RMW.
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that provide immediate, updated information at the time of choice may be most effective in combination.
In Chile, policies that lengthen the gap between test score receipt and application deadlines could also
allow students time for in-depth consideration of different degree programs with the relevant information

on the strength of their application in hand.

6.2.2 Earnings disclosure versus regulation

Earnings disclosure policies necessarily rely on extrapolating future outcomes from past outcomes and in
contexts where random assignment and compliance enforcement are not possible. This raises several
issues. First, differences in cross-degree earnings outcomes for past students may not predict outcomes for
future students. This could be the case if the causal effects of enrolling in different degree programs
change over time such that outcomes for past students may no longer be relevant by the time current
applicants reach the labor market. Information provided early in student careers may be less reflective of
current relative labor market conditions across fields. Given the relatively small estimated treatment
effects, it is unlikely that disclosure policy itself would generate changes in equilibrium skill prices across
degrees as labor supply shifts.

Second, OLS estimates of earnings outcomes for past students may not accurately reflect causal
effects applicable to future enrollees. We examine how OLS value-added earnings estimates conditional
on enrollment compare to estimates of degree effects to regression discontinuity estimates similar to those
in HNZ (2013). We find that, after adjusting for measurement error in the regression discontinuity
estimates, observed differences in earnings across admissions thresholds are very similar to those
predicted by value-added estimates for the distribution of enrollment outcomes above and below the
thresholds. See Online Appendix Section 5 for details. This is consistent with recent research in the
context of teacher and school effects which suggests that value added estimates in many cases accurately
capture differences in causal effects (Kane and Staiger paper 2008 or 2009; Chetty, Friedman, and
Rockoff 2014).

In the US elementary school context, selection of teachers based on student unobservables may
be negligible given assignment policies. In the context of higher education, selection on unobservables
may be small if students are uninformed about their own degree-specific pecuniary deviation from mean
returns conditional on observables, or if they weight non-pecuniary factors more when choosing schools
(HNZ 2013). In addition, if less selective institutions face little incentive to selectively admit students
based on expected match quality (e.g. digital technology institutes do not screen students for relative
ability in that degree), but instead lower admissions standards and expand enrollment in response to loans,

supply-side selection may also be small in equilibrium.

29



However, if disclosure policy generates sufficient demand response, and/or regulation is shaped
to effectively incentivize institutions to screen students for match quality, then in equilibrium, OLS value-
added estimates of past returns may be of limited relevance for the average high school graduate, but still
very relevant for students who can actually gain admission.* This depends on institutions having both

the incentive and ability to effectively predict enrollee success.

7 Conclusion

We administered a survey and field experiment in partnership with the Chilean Ministry of Education as
part of the 2012-2013 student loan application process. We document the beliefs and preferences of
college applicants, and estimate the effects of disclosing information about institution-and-major-specific
earnings and cost outcomes on matriculation choices as a function of prior plans for and beliefs about
higher education outcomes. We focus in particular on the higher education choice process for students
from low-income backgrounds who often take out student loans to fund their degrees, as protests over
student loan debt were the impetus for our research partnership with the Chilean Government. Our
randomized controlled trial directly tested a government-implemented information disclosure policy
aimed at improving the expected educational outcomes and earnings benefits for students financing their
higher education with federally subsidized student loans.

Using a unique database of linked high school, higher-education matriculation, graduation, tax
return and student loan data, we show that average earnings outcomes for past students at the degrees
students choose rise sharply with entrance exam score and that many students with lower income
academic preparation choose degrees with average earnings similar to those for students who do not
attend college. We find that earnings for high-SES students are 13.5% higher than those for low-SES
students at the same score level, with just less than half of this gap attributable to cross-SES differences in
degree choice within ability level (as opposed to within-degree earnings differences). Responses to survey
guestions administered as part of the federal student loan application process show that many students
have limited knowledge of the earnings and cost outcomes associated with different degree programs, and
that students from low-SES backgrounds make enrollment decisions with less information about costs and

labor market outcomes than students from higher-SES backgrounds. These findings suggest that low-SES

%1 |f institutions screen effectively, students can expect to get the mean returns conditional on being admitted. This is
similar to a result in second-price common values auctions in which bidders bid their expected value conditional on
winning the auction (conditional on having a signal bigger or equal to all opponents’ signals).
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students could benefit from public policies that compile and disclose earnings and cost information on
higher-education degree options.

Our randomized controlled trial directly tests the effects of such a policy. We provided a
randomly selected subset of financial aid applicants with information on earnings and cost outcomes at
the degrees to which they plan to apply, as well as access to a searchable database of outcomes for other
degrees. Treatment causes low-SES students to enroll in degree programs with higher earnings and value
added outcomes. The informational intervention raises predicted earnings at age 26 for low-SES students
by an amount equal to 18.4% of the cross-SES earnings gap, and 38.4% of the component of that gap
attributable to enrollment choices for high- and low-SES students at the same score level. Consistent with
the predictions from a model of degree choice with limited information, effects are largest among students
who had less information on earnings and costs and who exhibited lower levels of pre-intervention
preference for a particular degree. Among these subgroups of low-SES students, effect sizes are roughly
twice as large.

Conditional on entrance exam scores, treatment effects reduce the gap in default rates at degrees
chosen by low- and high-SES students by roughly 70%. However, this gap is fairly small, so effects on
the overall average default rates at the degrees students choose are limited. The informational treatment
appears to offer a high return on investment overall. Treatment raises the presented discounted value of
earnings net of direct costs for matriculating students through age 30 by a little under USD $2,000.
Though this is only 3% of the mean present value of net earnings in the experiment sample, the treatment
is very inexpensive and easy to reproduce and scale each year. If earnings value added estimates for past
enrollees are a guide to those for current applicants, our treatment would raise aggregate earnings by USD
$72 million if applied to the full sample of respondents. This value far exceeds the costs of administering
the treatment, even including one-time fixed costs.

Gains in the predicted net present value of the chosen degree are generated by higher returns
rather than lower tuition costs. Paralleling findings from research on markets for financial investments,
this suggests that demand response to information disclosure could chase returns estimates rather than put
pressure on tuition and fees, even if costs and earnings gains are presented separately. Our results may be
related to limited financial literacy and poor understanding of loan terms we observe in other surveys of
student loan takers (Hastings et al. 2015). The effects of limited financial literacy may be exacerbated if
students interpret the public provision of loans as an endorsement of loan-eligible degree programs.

Our findings suggest that although providing information on earnings and cost outcomes for
different degree programs offers a high return on investment for policymakers, it is unlikely to
substantially reduce rates of default. It is possible that information could have a larger effect on behavior

if it were distributed earlier in secondary school as well as at the time of loan and enrollment choice
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(Dinkelman and Martinez, 2014). Though it may serve a motivational purpose, information provided
early in secondary school is likely a weaker guide to choice given changing macroeconomic and labor
markets. In addition, dated information may provide less incentive for institutions to improve value, as
gains from investments in quality may not impact demand for many years. Regulation of higher education

institutions may provide an effective alternative to disclosure (Beyer et al. 2015).

32



References

Amior, Michael, Pedro Carnerio, Emanuela Galasso and Rita Ginja. 2012. “Overcoming Barriers to the
Take-Up of Social Subsidies.” World Bank Working Paper.

Arcidiacono, Peter, V. Joseph Hotz and Songman Kang. 2012. “Modeling college major choices using
elicited measures of expectations and counterfactuals.” Journal of Econometrics, 166(1): 3-16.

Ashraf, Nava, James Berry, and Jesse M. Shapiro. 2010. "Can Higher Prices Stimulate Product Use?
Evidence from a Field Experiment in Zambia." American Economic Review, 100(5): 2383-2413.

Ashraf, Nava, Dean Karlan and Wesley Yin. 2006. “Tying Odysseus to the Mast: Evidence From a
Commitment Savings Product in the Philippines.” The Quarterly Journal of Economics, 121(2): 635-672.

Avery, Christopher and Thomas J. Kane, 2004. "Student Perceptions of College Opportunities. The
Boston COACH Program,” NBER Chapters, in: College Choices: The Economics of Where to Go, When
to Go, and How to Pay For It, pages 355-394, National Bureau of Economic Research, Inc.

Avery, Christopher and Caroline Hoxby. 2012. “The Missing “One-Offs”: The Hidden Supply of High-
Achieving, Low Income Students.” NBER Working Paper 18586.

Barnow, Burt and Jeffrey Smith. 2004. “Performance Management of U.S. Job Training Programs:
Lessons from the Job Training Partnership Act,” Public Finance and Management, 4(3): 247-287.

Bhargava S and D. Manoli. 2011. “Why are benefits left on the table? Assessing the role of information,
complexity and stigma on take-up with an IRS field experiment.” Working paper, University of Texas at
Austin.

Bettinger, Eric P., Bridget T. Long, Phillip Oreopoulos, L. Sanbonmatsu. 2012. “The role of application
assistance and information in college decisiosn: results from the H&R Block FAFSA experiment.”
Quarterly Journal of Economics. 127:1-38.

Beyer, Harald, Justine Hastings, Christopher Neilson and Seth Zimmerman. 2015. “Connecting Student
Loans to Labor Market Outcomes: Policy Lessons from Chile.” The American Economic Review: Papers
& Proceedings, forthcoming May 2015.

Brunner, , José Joaquin. 2004. “Oferta y Demanda de Profesionales y Técnicos en Chile. El Rol de le
Informacién Pablica.” RIL Editores, Santiago.

Brunner, José Joaquin. 2009a. “Educacion superior en Chile: instituciones, mercados y politicas
gubernamentales (1967-2007).” Educaciones Universidad Diego Portales.

Brunner, José Joaquin. 2009b. “Educacion Técnico-Profesional y Mercado Laboral en Chile: Un Reader.”
Gobierno de Chile, Minesterio de Educacion y Universidad Diego Portales y Ingeneria Industrial
Universidad de Chile.

Chetty, Raj. 2015. “Behavioral Economics and Public Policy: A Pragmatic Perspective.” The American
Economic Review: Papers & Proceedings, forthcoming May 2015.

33



Chetty, Raj, John Friedman and Jonah Rockoff. 2014. “Measuring the Impacts of Teachers I: Evaluating
Bias in Teacher Value-Added Estimates.” American Economic Review, 104(9): 2593-2632, 2014.

Chetty, Raj, John Friedman and Jonah Rockoff. 2014. “Measuring the Impact of Teachers Il: Teacher
Value-Added and Student Outcomes in Adulthood,” American Economic Review, 104(9): 2633-2679,
2014.

Choi, James, David Laibson and Brigitte Madrian. 2011. "$100 Bills on the Sidewalk: Suboptimal
Investment in 401(k) Plans," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 748-
763, August.

Collins, J. Michael and Collin M. O’Rourke. 2010. “Financial Education and Counseling — Still Holding
Promise,” The Journal of Consumer Affairs, 44(3): 483-498.

Courty, Parcal and Gerald Marschke. 1997. “Measuring Government Performance: Lessons from a
Federal Job-Training Program,” The American Economic Review, vol. 87(2) Papers and Proceedings of
the Hundred and Fourth Annual Meeting of the American Economic Association (May, 1997) , pp. 383-
388

Currie, Janet. "The Take-up of Social Benefits," in Alan Auerbach, David Card, and John Quigley
(eds). Poverty, the Distribution of Income, and Public Policy, (New York: Russell Sage) 2006, 80-148.

Deming, David J., Claudia Goldin and Lawrence F. Katz. 2012. “The For-Profit Postsecondary School
Sector: Nimble Critters or Agile Predators?” Journal of Economic Perspectives, 26(1): 139-164.

Department of Education. 2013.
https://www2.ed.gov/officessfOSFAP/defaultmanagement/defaultrates.html. Accessed 14 November 2014.

Department of Education. “Obama Administration Announces Final Rules to Protect Students from Poor-
Performing Career College Programs.” N.p., 30 Oct. 2014. http://www.ed.gov/news/press-
releases/obama-administration-announces-final-rules-protect-students-poor-performing-care . Accessed
14 November 2014a.

Department of Education. 2014b. “Web Tables: Student Financing of Undergraduate Education 2011-12.”
NCES 2015-173. http://nces.ed.gov/pubs2015/2015173.pdf.

Dinkelman, Taryn and Claudia Martinez. 2014. “Investing in Schooling in Chile: The Role of Information
about Financial Aid for Higher Education.” The Review of Economics and Statistics, 96(2): 244-257.

Duarte, Fabian and Justine Hastings. 2012 “Fettered Consumers and Sophisticated Firms: Evidence from
Mexico’s Privatized Social Security Market,” NBER Working Paper 18582.

Dynarski, Susan and Judith Scott-Clayton. 2013. “Financial Aid Policy: Lessons from Research,” The
Future of Children, Vol. 23, No. 1.

Fehr, Ernst and Lorenz Goette. 2007. “Do Workers Work More if Wages Are High? Evidence from a
Randomized Field Experiment,” American Economic Review, 97(1): 298-317.

34



GAO (United States Government Accountability Office). 2010. “For-Profit Colleges: Undercover Testing
Finds Colleges Encouraged Fraud and Engaged in Deceptive and Questionable Marketing Practices.”
Hearing Before the Committee on Health, Education, Labor and Pensions, U.S. Senate. Statement of
Gregory Kutz, Managing Director Forensics Audits and Special Investigations.

Garicano, Luis & Thomas N. Hubbard. 2009. “Specialization, firms, and markets: The division of
labor within and between law firms.” Journal of Law, Economics, and Organization, 25: 339-371

Gladieux, Lawrence and Laura Perna. 2005. “Borrowers Who Drop Out: A Neglected Aspect of the
College Student Loan Trend.” Retrieved from ERIC database (ED508094).

Hastings, Justine S. 2014. “Procrastination versus Information: Field Experimental Evidence from
Mexico’s Social Security System.” Unpublished Manuscript. Brown University, 2014.

Hastings, Justine S., Ali Hortagsu and Chad Syverson. “Advertising and Competition in Privatized Social
Security: The Case of Mexico.” NBER Working Paper 18881.

Hastings, Justine S., Brigitte Madrian, and William Skimmyhorn. 2013. “Financial Literacy, Financial
Education and Economic Outcomes.” The Annual Review of Economics, 5; 347-373.

Hastings, Justine S., Christopher A. Neilson and Seth D. Zimmerman. 2013. "Are Some Degrees Worth
More than Others? Evidence from college admission cutoffs in Chile,” NBER Working Papers 19241.

Hastings, Justine S., Christopher A. Neilson, Anely Ramirez, and Seth D. Zimmerman. 2015.
“(Un)informed College and Major Choice: Evidence from Linked Survey and Administrative Data.”
Unpublished manuscript. Brown University.

Hastings, Justine S. and Jeffrey M. Weinstein, 2008. "Information, School Choice, and Academic
Achievement: Evidence from Two Experiments,” The Quarterly Journal of Economics, MIT Press, vol.
123(4), pages 1373-1414, November.

Heckman, James, Lance Lochner, and Todd Petra. 2006. “Chapter 7 Earnings Functions, Rates of Return
and Treatment Effects: The Mincer Equation and Beyond,” Handbook of the Economics of Education,
(North Holland: Amsterdam), pp.307-458.

Hoekstra, Mark. 2009. "The Effect of Attending the Flagship State University on Earnings: A
Discontinuity-Based Approach." The Review of Economics and Statistics. 91(4): 717-724.

Hoxby, Caroline M. and Sarah Turner. 2013. “Expanding College Opportunities for High-Achieving,
Low Income Students.” SIEPR Discussion Paper 12-014. March.

Jin, Ginger Zhe. 2005. “Competition and disclosure incentives: an empirical study of HMOs.” RAND
Journal of Economics, 93-112.

Jin, Ginger Zhe, and Phillip Leslie. 2003. “The Effect of Information on Product Quality: Evidence from
Restaurant Hygiene Grade Cards.” The Quarterly Journal of Economics, 118(2): 409-451.

Karlan, Dean. 2005. “Using Experimental Economics to Measure Social Capital and Predict Financial
Decisions,” American Economic Review, 95(5): 1688-1699.

35



Kirkeboen, Lars, Edwin Leuven, and Magne Mogstad. 2014. “Field of Study, Earnings, and Self-
Selection.” NBER Working Papers 20816.

Lederman, Doug. “$78.5M Settles U. of Phoenix Case.” Inside Higher Ed. 15 December 2009.
https://www.insidehighered.com/news/2009/12/15/apollo . Accessed 14 November 2014.

Lederman, Doug “For-Profits and the False Claims Act.” Inside Higher Ed. 15 August 2011.
https://www.insidehighered.com/news/2011/08/15/new round of false claims act worries for profit c
olleges . Accessed 13 November 2014.

Lewin, Tamar. “For-Profit College Sued as U.S. Lays Out Wide Fraud.” The New York Times 8 August
2011. http://www.nytimes.com/2011/08/09/education/09forprofit.html? r=1& . Accessed 14 November
2014.

Lowenstein, George, Cass Sunstein, and Russell Golman. 2014. “Disclosure: Psychology Changes
Everything.” The Annual Review of Economics, 6: 391-419.

Jensen, Robert. 2010. “The (Perceived) Returns to Education and the Demand for Schooling.” The
Quarterly Journal of Economics, 125(2): 515-548.

Lavecchia, Adam, Heidi Liu and Philip Oreopoulus. 2014. “Behavioral Economics of Education: Progress
and Possibilities.” NBER Working Paper No. 20609.

Madrian, Brigitte C. 2014. “Applying Insights from Behavioral Economics to Policy Design.” NBER
Working Paper No. 20318.

Mathios, Alan D. 2000. “The Impact of Mandatory Disclosure Laws on Product Choices: An Analysis of
the Salad Dressing Market.” The Journal of Law and Economics, 43(2): 651-678.

Mincer, Jacob. 1974. “Schooling, Experience, and Earnings. Human Behavior & Social Institutions No.
2.” Retrieved from ERIC database (ED103621)

Ockert, Bjorn. 2010. “What’s the value of an acceptance letter? Using admissions data to estimate the
return to college.” Economics of Education Review, 29(4): 504-516.

Reyes, Loreto, Jorge Rodriguez, and Sergio S. Urzla. 2013. “Heterogeneous Economic Returns to
Postsecondary Degrees: Evidence from Chile.” NBER Working Papers 18817.

Saavedra, Juan E. 2008. “The Returns to College Quality: A Regression Discontinuity Analysis.”
Unpublished Manuscript, Harvard University.

Scott-Clayton, Judith. 2012. “Information Constraints and Financial Aid Policy” NBER Working Paper
17811.

Shear, Michael. “Colleges Rattled as Obama Seeks Rating System.” 25 May 2014
http://www.nytimes.com/2014/05/26/us/colleges-rattled-as-obama-presses-rating-system.html . Accessed
14 November 2014.

36



Solis, Alex. 2013. “Credit access and college enrollment.” Working Paper: Department of Economics —
Uppsala University: 12.

Thaler, Richard and Shlomo Benartzi. 2004. “Save More Tomorrow (TM): Using Behavioral Economics
to Increase Employee Saving.” Journal of Political Economy, 112(S1): S164-S187.

Thaler, Richard H., and Will Tucker. "Smarter information, smarter consumers."Harvard Business
Review 91.1 (2013): 44-54.

White House, Press Secretary. 2013. “FACT SHEET on the President’s Plan to Make College More
Affordable: A Better Bargain for the Middle Class.” Retrieved from http://www.whitehouse.gov/the-
press-office/2013/08/22/fact-sheet-president-s-plan-make-college-more-affordable-better-bargain- .

Woodward, Susan E. and Robert E. Hall. 2012. “Diagnosing Consumer Confusion and Sub-optimal
Shopping Effort: Theory and Mortgage-Market Evidence,” American Economic Review, 102(7): 3249-76.

Wiswall, Matthew and Basit Zafar. 2013. “How Do College Students Respond to Public Information
about Earnings?” Federal Reserve Bank of New York Staff Reports No. 516.

Zafar, Basit. 2013. "College Major Choice and the Gender Gap," Journal of Human Resources, vol. 48(3):
545-595.

Zimmerman, Seth. 2014. “The Returns to College Admission for Academically Marginal Students,”
Journal of Labor Economics, vol. 32(4) 711-754.

37



Table 1. Comparison of Survey Sample Invitees, Opened Email, Consenting Sample & Respondents

1) 2) 3) (4) ®) (6)
Invited Sample  Opened ~ Consent Respondents Treated Treated & Searched
PSU Score (Ave. Lang & 508.4 518.8 524.5 536.3 537.0 543.4
Math) (155,167)  (101,736) (72,474)  (47,568)  (23,402) (10,339)
Municipal High School 37.80% 37.00%  36.50% 33.10% 32.50% 32.40%
(164,798) (114,398) (83,346) (49,166) (24,162) (10,448)
Mother Some Tertiary Edu. 25.80% 26.80%  26.90% 29.80% 30.30% 29.50%
(130,324) (85,134) (60,616) (40,744) (20,041) (8,725)
Father Some Tertiary Edu. 27.20% 28.40%  28.60% 31.70% 32.00% 32.00%
(126,082) (82,449) (58,722) (39,511) (19,439) (8,452)
Low-SES School 43.70% 43.30%  43.20% 35.70% 34.50% 34.30%
(153,706) (105,441) (76,476) (46,444) (22,680) (9,891)
Ave. of Lang + Math SIMCE 0.326 0.414 0.465 0.568 0.581 0.635
(Z-score) (123,937) (79,504)  (56,255) (38,625) (18,981) (8,282)
Female 55.40% 57.30%  58.20% 57.50% 56.50% 58.90%
(164,786) (114,265) (83,215) (49,166) (24,162) (10,448)
Delayed College Entrance 26.40% 36.40%  39.60% 24.50% 24.50% 26.50%
(164,798) (114,398) (83,346) (49,166) (24,162) (10,448)
Net Value 1st Choice Degree - -- -- 734,948 736,867 769,452
- -- - (40,806) (20,048) (8,683)
Potential Institution Gains - -- -- 267,566 266,131 262,685
- -- - (48,672) (23,922) (10,350)
Observed Earnings at Age 26 -- - -- 464,307 466,988 482,513
- -- - (31,549) (15,532) (6,713)
Matriculation Rate -- -- -- 77.0% 77.2% 77.6%
- -- - (49,166) (24,162) (10,448)
Total Observations 164,798 114,398 83,346 49,166 24,162 10,448

Notes: Calculations are based on survey responses linked to administrative data from the Chilean Ministry of Education (Mineduc). The number of
observations for each calculation are in parentheses. The "Invited Sample" is all November 2012 FUAS Applicants for the 2013 school year for whom
we had a valid email address to send our survey invitation. The "Opened" sample is the subset of our Invited Sample who opened the survey invitation
email. The "Consent" sample is the subset of those who opened the email and also consented to complete the survey. The "Respondents™ are those
who consented to complete the survey, completed all 6 questions in the survey, and graduated high school between 2009-2012. The "Treated" are
those who were randomly assigned to be treated with degree information upon completion of the survey. The "Treated & Searched" are those who
were treated with information who also searched for alternative degrees after being shown information about their first choice degree and a suggested
institution and degree. PSU scores are the most recent PSU scores on record for the student. The type of high school (municipal, private, voucher) is
from the 2012 high-school (RBD) graduation (source: Mineduc). Mother and Father having some tertiary education is defined if the mother/father
have any higher education, as reported by the student in the national standardized test, SIMCE. Low-SES is defined as coming from a high school
(RBD) in one of the two highest poverty categories as defined by Mineduc. SIMCE scores are results from standardized high school test scores that
were nationally administered to all students enrolled in the 10th grade in 2001, 2003, 2006, 2008, and 2010, normalized within each testing year.
Delayed college represents those that were not directly coming from high school; those who graduated high school prior to 2012. Net-Value 1st
Choice Degree is the Net-Value displayed in the experiment for the student's stated first-choice degree. Potential Gains from Switching Institution is
the maximum gains in net-value that was displayed to treatment group if they chose a different institution in the same major as their stated first-choice
degree.
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Table 2. Survey Expectations

% "I Don't Know" Mean Error P25 Median Error P75 N
Tuition Expectation Errors
All Students 33.2% 0.94% -16.51% -5.48% 5.48% 49,166
High-SES 30.7% -2.09% -15.57% -5.55% 4.41% 29,850
Low-SES 37.0% 6.48% -18.92% -5.40% 7.33% 16,594
Typical Earnings Expectation Errors
All Students 47.7% 60.9% -23.6% 7.84% 56.5% 49,166
High-SES 43.5% 45.5% -25.5% 3.24% 46.8% 29,850
Low-SES 54.4% 87.6% -19.9% 15.64% 74.1% 16,594
Own Earnings Expectations Errors
All Students 35.8% 51.8% -25.0% 2.44% 45.6% 49,166
High-SES 32.6% 40.4% -25.7% -0.20% 40.5% 29,850
Low-SES 41.1% 70.8% -24.4% 6.71% 56.1% 16,594
Certainty of Degree Choices

Absolutely Certain  Quite Certain  Fairly Certain  Somewhat Certain ~ Not at all Certain N
All Students 33.8% 34.6% 22.3% 6.6% 2.6% 49,166
High-SES 32.7% 35.9% 22.4% 6.5% 2.6% 29,850
Low-SES 34.4% 33.0% 22.9% 7.0% 2.6% 16,594

Notes: The first panel displays the results from Q4 in our survey (P3E 2012). The question and text response options are available in the Appendix.
Respondents were asked to enter the annual tuition costs of their first choice career. The percentage difference between their response for tuition and
actual tuition for their first choice career is calculated only for those that did not choose the option "I don't know". RBD Poverty Ratings are the
poverty ratings for each school, produced by Mineduc. A is the highest poverty level, B the next highest, and E is the lowest poverty rating. This
second and third panels present the results from Q5 in P3E 2012. See the Appendix for question text and response options. Differences in own or
typical expected earnings as compared to the average earnings for graduates in their first choice degrees are calculated only for those that did not
choose the "I don't know" response option. Own earnings are what the respondent expects to earn after graduating and finding a stable job from their
first choice degree. Average earnings were calculated using tax records of previous graduates in the second year after graduating from the
respondent's first choice degree. Degrees for which earnings data for graduates was unavailable have corresponding actual average earnings set to
missing. RBD Poverty Ratings are the poverty ratings for each high school as determined by Mineduc. A is the highest poverty level, B the next
highest, and E is the lowest poverty rating. The last panel presents the results from Q3 in the survey P3E 2012. Question text and response options are
available in the Appendix. Respondents were asked how certain they were that the degrees they listed in their top three choices in Q2 would be the
degrees that they would be applying to. RBD Poverty Ratings are the poverty ratings for each high school as determined by Mineduc. A is the highest
poverty level, B the next highest, and E is the lowest poverty rating. Current high-school graduates are those who graduated high school in 2012.
Older high-school graduates are those who graduated high-school between 2009-2011.
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Table 3. Impact of Treatment on Outcome Variables

Pooled Low-SES High-SES
Matriculation 0.004 0.000 0.003
(0.004) (0.008) (0.006)
All Students
Net Value 8,270 10,749 5,427
(5,217) (7,296) (7,370)
Earnings Gains 8,856 11,252 5,932
(5,740) (7,973) (8,139)
Monthly Debt 267 319 34.8
(536) (722) (775)
Conditional on Matriculation
Net Value 10,029* 15,274* 8,040
(4,230) (7,149) (5,435)
Earnings Gains 10,971* 16,083* 9,066
(4,532) (7,671) (5,819)
Monthly Debt 376 763 125
(435) (680) (580)
Degree Average Earnings at Age 26 6,324* 11,759** 3,789
(2,814) (4,425) (3,771)
Monthly Payment (conditional on enroliment) 498 824 344
(459) (758) (568)
Degree graduation rate ('00-'05 cohorts) 0.002 0.002 0.002
(0.003) (0.005) (0.004)
Expected Length of Matric. Degree ('00-'05 cohorts) 0.014 0.019 0.010
(0.018) (0.032) (0.023)

Notes: Table reports coefficients on Treatment from a regression of the dependent variable (row) on treatment, the dependent
variable value for the survey response first-choice for enroliment in Q2, and randomization blocks used to assign treatment.
Clustered standard errors are in parentheses. For 2012 high school graduates, randomization blocks were assigned based on
four characteristics: (1) school type (2) categories for distribution of 2010, 2011 senior PSU scores (3) 2012 school size (4)
2012 PSU registration rate. For 2009-2011 high school graduates, randomization was assigned based on 50 point bins of prior
PSU scores. Regression results in the second panel combine extensive and intensive margins; values of the outcome variables
are set to zero if the respondent didn't matriculate anywhere in 2013. The third and fourth panels report intensive margin
effects, set to missing the outcome variable of interest if the respondent didn't matriculate to a higher education degree in 2013.
Net Value, Earnings Gains, and Monthly Debt are the values for degrees as exhibited in our experiment. We have five years of
experience earnings of graduates averaged on the degree level from the tax authority in Chile (SI1). We then project earnings
for years 6-15 using linear estimated growth rates. To calculate earnings gains we subtract off the earnings in the
corresponding experience year for those that did not attend a higher education institution. We take the present-value of these
earnings gains and convert it to a monthly amount. Total tuition was calculated using the 2012 tuition values for the reported
length of the degree plus any associated matriculation fees. The total tuition for the degree was amortized over 15 years (180
months) to get the monthly debt. Net Value is the difference between the monthly earnings gains and monthly debt. The LR
and SR Relative Returns are predicted earnings gains conditional on enrollment (rather than only for graduates) estimates on
the 2000-2005 freshmen cohorts. We estimate a flexible value-added model of earnings by degree enrollment as a function of
field of study, selectivity tier of the degree, SES, PSU score, and gender along with a full set of interactions. We estimate fixed
effects by degree (including adjustments for small samples). We use these regression estimates to predict expected earnings
over 7 years of experience for each individual in our sample given their characteristics and the degree characteristics. We
allow earnings to grow out to age 50 for long run estimates using estimated growth rates by field of study and selectivity tier of
the degree. The SR Relative Returns calculate predicted earnings using the same methodology, out to age 30. All present-value
calculations (PV) are calculated assuming 2% APR. Low-SES is defined as the lowest two income quintiles as defined by
Mineduc; High-SES is the highest 3 income quintiles. + p <0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 4. Impact of Treatment on Net Value

Pooled Low-SES High-SES

Information on Career Earnings & Costs

Some Information 9,729* 12,643+ 9,484+
(4,393) (7,470) (5,628)

No Information 13,002 28,701+ -151
(9,925) (15,026) (13,919)

Certainty of Enrollment Plans

Absolutely Certain 3,387 7,634 2,616
(5,696) (9,236) (7,656)

Uncertain 13,341* 19,774* 10,405
(5,393) (9,420) (6,776)

Number of Fields Listed in Top Choices

One Field 826 -197 -204
(5,468) (11,404) (6,405)

More Than One Field 15,343* 21,722* 14,146
(6,227) (9,155) (8,621)

Variation in Net-Value of Listed Choices

Low Variation 4,319 -4,904 8,723+
(4,267) (7,904) (5,186)

High Variation 8,898 25,037* 2,870
(7,319) (12,453) (9,349)

Parent's Tertiary Education

At Least One Parent Has Some Tertiary Education 15,376* 39,261* 12,615+
(6,639) (18,359) (7,317)

Neither Parent Has Any Tertiary Education 9,964+ 17,308* 4,881
(5,778) (8,665) (7,840)

Notes: Net Value is conditional on matriculation to a higher education degree in 2013. “Some Information" is defined if the respondent guessed at least one
of the following values: tuition, own expected earnings and typical expected earnings in the survey. "No Information" is defined if the respondent answered
"I don't know" for all three value expectations. "Absolutely Certain" is defined if the respondent answered "I am absolutely certain” in response to survey
question Q3. "Uncertain" is defined if the respondent answered any one of the options other than "I am absolutely certain” when asked in Q3 how certain
they were that they would be applying to their listed degree choices. "One Field" is defined if the respondent only listed one field of study in their three
choices in Q2. "More Than One Field" is defined if the respondent listed more than one field choice in their three degree choices in Q2. "Low Variation" is
defined as the student's standard deviation in net-value among their top three choices was less than the median standard deviation in net-value of choices
for all respondents; "High Variation™ is larger than the median. "At Least One Parent Has Some Tertiary Education” is defined if at least one of the
student's parents have some tertiary education, as reported by the students during SIMCE standardized tests. "Neither Parent Has Any Tertiary Education”
is defined if neither of the respondent's parents have any tertiary education. Table reports coefficients on treatment from a regression of the net-value on
treatment, the net-value for the survey response first choice for enrollment in Q2, and randomization blocks used to assign treatment. Clustered standard
errors are in parentheses. For 2012 high school graduates, randomization blocks were assigned based on four characteristics: (1) school type (2) categories
for distribution of 2010, 2011 senior PSU scores (3) 2012 school size (4) 2012 PSU registration rate. For 2009-2011 high school graduates, randomization
was assigned based on 50 point bins of prior PSU scores. Net Value are the values for degrees as exhibited in our experiment. We have five years of
experience earnings of graduates averaged on the degree level from the tax authority in Chile (SII). We then project earnings for years 6-15 using linear
estimated growth rates. To calculate earnings gains we subtract off the earnings in the corresponding experience year for those that did not attend a higher
education institution. We take the present-value of these earnings gains and convert it to a monthly amount. Total tuition was calculated using the 2012
tuition values for the reported length of the degree plus any associated matriculation fees. The total tuition for the degree was amortized over 15 years (180
months) to get the monthly debt. Net Value is the difference between the monthly earnings gains and monthly debt. The LR and SR Relative Returns are
predicted earnings gains conditional on enrollment (rather than only for graduates) estimates on the 2000-2005 freshmen cohorts. We estimate a flexible
value-added model of earnings by degree enroliment as a function of field of study, selectivity tier of the degree, SES, PSU score, and gender along with a
full set of interactions. We estimate fixed effects by degree (including adjustments for small samples). We use these regression estimates to predict
expected earnings over 7 years of experience for each individual in our sample given their characteristics and the degree characteristics. We allow earnings
to grow out to age 50 for long run estimates using estimated growth rates by field of study and selectivity tier of the degree. The SR PV Earnings Gains
calculate predicted earnings using the same methodology, out to age 35. All present-value calculations (PV) are calculated assuming 2% APR. Low-SES is
defined as the lowest two income quintiles as defined by Mineduc; High-SES is the highest 3 income quintiles. + p <0.10, * p < 0.05, ** p < 0.01, *** p <
0.001.
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Table 5. Impact of Treatment on Returns to Degree & Repayment Rates

Pooled Low-SES High-SES
Students who matriculate to a degree in repayment sample
Percent 0.580 0.606 0.561
Treatment Effect -0.002 -0.004 -0.004
(0.005) (0.009) (0.007)
Degree on-time repayment rate
Average 0.592 0.543 0.628
Average conditional on exam score 0.602 0.594 0.608
Treatment effect 0.002 0.010** -0.003
(0.002) (0.004) (0.003)
Degree default rate
Average 0.305 0.350 0.272
Average conditional on exam score 0.292 0.299 0.288
Treatment Effect -0.001 -0.008* 0.004
(0.002) (0.003) (0.003)
PDV of long- and short-run returns
Returns to Degree at Age 50 2,459,579+ 4,190,955* 1,458,519
(1,480,585) (2,107,587) (1,947,204)
Returns to Degree at Age 30 999,737* 1,369,854* 778,104
(399,217) (568,630) (526,576)

Notes: Table reports coefficients on Treatment from a regression of the dependent variable (row) on treatment, the dependent
variable value for the survey response first choice for enroliment in Q2, and randomization blocks used to assign treatment.
Clustered standard errors are in parentheses. For 2012 high school graduates, randomization blocks were assigned based on
four characteristics: (1) school type (2) categories for distribution of 2010, 2011 senior PSU scores (3) 2012 school size (4)
2012 PSU registration rate. For 2009-2011 high school graduates, randomization was assigned based on 50 point bins of prior
PSU scores. The LR and SR Relative Returns are predicted earnings gains conditional on enrollment (rather than only for
graduates) estimates on the 2000-2005 freshmen cohorts. We estimate a flexible value-added model of earnings by degree
enrollment as a function of field of study, selectivity tier of the degree, SES, PSU score, and gender along with a full set of
interactions. We estimate fixed effects by degree (including adjustments for small samples). We use these regression estimates
to predict expected earnings over 7 years of experience for each individual in our sample given their characteristics and the
degree characteristics. We allow earnings to grow out to age 50 for long run estimates using estimated growth rates by field of
study and selectivity tier of the degree. The SR Relative Returns calculate predicted earnings using the same methodology, out
to age 30. All present-value calculations (PV) are calculated assuming 2% APR. Low-SES is defined as the lowest two income
quintiles as defined by Mineduc; High-SES is the highest 3 income quintiles. Degree on-time repayment rates and default rates
are conditional on the degree having at least 10 students in repayment as of April 2013. + p <0.10, * p < 0.05, ** p < 0.01, ***
p < 0.001.
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Figure 1. Predicted Monthly Earnings (Age 26)
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Notes: The figure shows the distribution of earnings that a student scoring X on their entrance exam realizes in expectation.
We average within each score bin over predicted earnings for observed 2007-2011 enrollment outcomes. To facilitate
presentation, if a degree does not have sufficient student observations with PSU scores, we use the student’s high school test
scores to predict their PSU, and categorize the degree accordingly on the PSU admissions scale. This happens for 4.6% of
degrees in low-selectivity regions representing 3.8% of historic enrollment. We assume that a student scoring X’s relevant
degree choice set consists of the set of degrees for which his or her PSU score is in the 25™ to 90™ percentile of the historic
range of admittees to that degree. The y axis value gives the enrollment-weighted mean expected earnings for students with a
PSU of X over the degrees they could get into. The red line represents the average earnings at 26 years of age for those who
graduated high-school, but did not enroll in a HEI.
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Figure 2. Predicted Monthly Earnings (Age 26) by Socioeconomic Status
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Notes: The figure shows the distribution of earnings that a student scoring X on their entrance exam realizes in expectation.
We average within each score bin over predicted returns for observed 2007-2011 enrollment outcomes. To facilitate
presentation, if a degree does not have sufficient student observations with PSU scores, we use the student’s high school test
scores to predict their PSU, and categorize the degree accordingly on the PSU admissions scale. This happens for 4.6% of
degrees in low-selectivity regions representing 3.8% of historic enrollment. We assume that a student scoring X’s relevant
degree choice set consists of the set of degrees for which his or her PSU score is in the 25" to 90" percentile of the historic
range of admittees to that degree. The red line represents the average earnings at 26 years of age for those who graduated high-
school, but did not enroll in a HELI.
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Figure 3. Degree Costs by Socioeconomic Status
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Notes: The figure shows the distribution of monthly debt that a student scoring X on their entrance exam realizes in
expectation. We average within each score bin over monthly debt for observed experiment sample enrollment outcomes. To
facilitate presentation, if a degree does not have sufficient student observations with PSU scores, we use the student’s high
school test scores to predict their PSU, and categorize the degree accordingly on the PSU admissions scale. This happens for
4.6% of degrees in low-selectivity regions representing 3.8% of historic enrollment. We assume that a student scoring X’s
relevant degree choice set consists of the set of degrees for which his or her PSU score is in the 25" to 90" percentile of the
historic range of admittees to that degree.
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