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Abstract

This paper studies how one may overestimate the social cost of a long-run corrective policy
by neglecting the possibility of hysteresis, i.e. that the policy in earlier periods may have lasting
impacts in later periods. In a price-theoretic framework, we show that one statistic is key to
evaluate such a bias: the long-term impact of a similar but temporary policy that was known
to be temporary. We then provide evidence of the importance of hysteresis, and estimate such
a statistic, for a policy-relevant behavior: residential electricity use in a developing country
context. We study the 10-year impact of a 9-month long policy in Brazil, which aimed at large
temporary reductions in residential electricity use. We exploit the fact that customers of some
distribution utilities were not subject to the policy through a difference-in-difference strategy.
Using utility-level administrative data, we find that the temporary policy led to a long-run and
stable reduction in average electricity use of 11%, or about half of the short-run impact. Using
individual monthly billing data for one distribution utility, we find that 69% of customers were
still consuming less electricity four years after the policy ended. Household-level microdata
suggest that the main mechanism of hysteresis is a persistent change in consumption habits.
Incorporating our estimates into our framework illustrates that, neglecting the possibility of
hysteresis, one could dramatically overestimate the social cost of long-run corrective policies.



Policymakers may want to change behaviors of economic agents that may be privately optimal
but are socially suboptimal. Such corrective policies are desirable when the social gain from ad-
dressing the externality outweighs the social cost of the policy. In a standard partial-equilibrium
setup, the social cost in any period depends on the size of the required behavioral change and the
associated change in agents’ welfare. The main intuition from price theory is that the later is cap-
tured by agents’ demand (or supply) curve for the behavior. Inducing large and lasting changes in
a behavior that presents a low price elasticity is thus seen as carrying a high social cost. As a result,
it may not be considered desirable even when the associated externality is sizable. This influen-
tial argument rests on the assumption that the level of a behavior only depends on the concurrent
economic environment. It leaves out the possibility that part of the impact of the policy in earlier
periods may persist in the long run, even in the absence of the policy in later periods. This paper
studies the importance of such hysteresis for the social cost of corrective policies.

Hysteresis is defined as the failure of an effect to reverse itself as its underlying cause is reversed
(Dixit, 1989). We use the term hysteresis to refer to the possibility that there may be multiple steady
states for a given behavior and that a temporary policy could move economic agents between steady
states. This is in contrast with the persistence that is sometimes studied in the literature (e.g.,
Allcott and Rogers, 2012). Observing a delay before a behavior returns to its prior level once some
incentives are removed could result from a difference between short- and long-run elasticities. The
implications are known in this case: long-run elasticities should be used to evaluate the social cost
of long-run policies. Several theories allow for hysteresis.1 However, there is much less evidence
that it is an empirically relevant phenomenon in many contexts of interest.

We proceed in steps. First, we use a price-theoretic framework to illustrate how one would over-
estimate the social cost of a long-run corrective policy by neglecting the possibility of hysteresis.
We highlight a key statistic to evaluate this bias: the long-term impact of a similar but temporary
policy that agents expected to be temporary. Second, we provide evidence of the importance of
hysteresis, and estimate such a statistic, in a policy-relevant behavior: residential electricity use in
a developing country context. We estimate the 10-year impact of a 9-month long electricity saving
program that was imposed on millions of Brazilian households in 2001 and that led to dramatic
short-run reductions in residential electricity use. Exploiting administrative data and differences
in the implementation of the policy across regions, we find that about half of the short-run impact
subsisted in the long run. Household level microdata suggest that the main mechanism of hys-
teresis was a change in electricity utilization habits. Finally, we incorporate our estimates into our
conceptual framework to illustrate implications for the social cost of corrective policies.

1For example, asymmetric adjustment costs (e.g. learning costs). Habit formation à la Becker and Murphy (1988)
allows for, but does not imply, the existence of multiple steady states. Therefore, it certainly implies a difference
between short and long-run elasticities, but may or may not imply hysteresis.
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We begin by showing why hysteresis matters for the social cost of corrective policies in a sim-
ple theoretical framework. The intuition is straightforward. Consider a policymaker that imposes
a permanent change in behavior, e.g. a 20% reduction in residential electricity use. In the absence
of hysteresis, one would assume that the policy distorts behavior by 20% in all periods. Yet, in the
presence of hysteresis, part of the reduction in later periods is already caused by the policy in ear-
lier periods and should not be double-counted as caused by the concurrent policy in later periods.
An estimate of the long-term impact of a similar but temporary policy that agents expected to be

temporary quantifies the degree of hysteresis and thus the residual distortion that the permanent
policy would cause in later periods. Studying long-term impacts rules out any persistence resulting
from a difference between short- and long-run price elasticities. Studying a policy that was known
to be temporary rules out any persistence that would not be due to the temporary policy but due
to past responses in anticipation of the policy in future periods. Integrating the demand (or sup-
ply) curve over the estimated residual distortion vs. the 20% reduction evaluates how one would
overestimate the social cost of the policy in later periods by neglecting the possibility of hysteresis.

We then study the long-term impact on residential electricity use of the temporary electricity
saving program that was implemented during the so-called 2001 Brazilian electricity crisis. Our
empirical setting is ideal to provide evidence of hysteresis because the policy was known to be
temporary and because we can study impacts up to ten years after the policy ended. Several
theories also suggest that hysteresis is more likely to be relevant for large changes in behaviors.2

The Brazilian program led to the largest short-run reductions in household electricity use among
temporary electricity saving programs around the world (Meier, 2005).3

Our empirical setting is also relevant in itself. First, energy use is expected to continue to be a
major source of greenhouse gas emissions in the future. Potential energy savings from residential
electricity use have attracted a lot of attention.4 Yet, existing estimates of price elasticities are typ-
ically low. Thus, inducing large and persistent changes in residential electricity use is an example
where the social cost may be considered too large despite sizable externalities. Second, most of
the growth in energy use is forecast to come from the developing world. In particular, greenhouse
gas emissions from residential electricity use are growing rapidly (IPCC, 2014). Yet, the energy
saving potential of households in developing countries, who are poorer, own fewer appliances, are
more credit-constrained, and consume less energy to begin with, is largely unknown.

2Hysteresis in a model with asymmetric adjustment costs (e.g. learning costs) may rely on a policy pushing agents
to pay possibly high fixed costs. Hysteresis in a rational habit formation model relies on the existence of multiple
steady states and on a policy pushing agents far enough from their prior steady state (Becker and Murphy, 1988).

3Other policies led to smaller reductions in average electricity use at a given point in time and/or were shorter lived.
4Improving the energy efficiency of residential electricity use is often viewed as the most cost-effective policy to

abate greenhouse gas emissions around the world (McKinsey, 2009). Utilities have to meet specific energy saving
targets through customer electricity saving programs in at least 24 states in the US. Scenarios to mitigate the impacts
of climate change typically involve large reductions in electricity use from buildings (IPCC, 2014).
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In the beginning of 2001, electricity generation capacity was severely reduced in some regions
of Brazil. A temporary shock to the streamflow level in the rivers that serves the hydroelectric
power plants in these regions led to historically low water levels in their reservoirs (see Figure
1a). Brazil relies heavily on hydroelectric generation and low transmission capacity constrained
transfers of electricity across regions. In order to prevent generalized blackouts, the government
implemented a temporary electricity saving program from June 2001 to February 2002 in affected
areas, which aimed at reducing residential electricity use by 20%. Residential customers were
assigned individual quotas and were subject to a series of incentives to consume below their quota.5

We estimate the short- and long-term impacts through a difference-in-difference comparing
distribution utilities subject to the policy to those that were exempt. We use data on average
residential electricity use per customer from monthly administrative reports for every distribution
utility in Brazil between 1991 and 2011. We confirm that the electricity saving program had large
short-run impact (−23%). Our main contribution is to show that half of the short-run impact
persisted in the long run (−11%).6 Consumption levels partially rebounded after the policy ended
but point estimates are stable from 2005 onwards (see Figure 1b). It is thus unlikely that our
estimates are due to a difference between short- and long-run elasticities rather than hysteresis.

We present many empirical tests supporting our results. Our estimates are robust to controlling
for a series of confounders such as changes in electricity tariffs, demographics (Levinson, 2014),
income levels, or climate. Moreover, utility-specific impacts estimated by synthetic control meth-
ods find negative long-term impacts for every distribution utility subject to the policy. We also rely
on longitudinal monthly billing data from 2000 to 2005 for three million customers of one affected
utility. We show that changes in average electricity use are similar in the aggregate data and in a
random sample of individual customers observed every month in the billing data. This balanced
panel is free of composition effects by construction. Almost all of these customers consumed less
electricity during the crisis than a year before (92%) and most of them continued to consume less
electricity four years after the crisis (69%). The median customer reduced electricity use by 31%
and 16.5% during the crisis and four years after, respectively. These figures are larger for cus-
tomers with higher baseline consumption and there is a strong correlation at the customer level
between short-run (during the crisis) and long-run (four years later) changes in consumption. Av-

5Incentives cannot be translated in a given increase in tariffs because they included nonlinear pecuniary incentives
(fines or bonuses for consuming above or below the quota, respectively) and non-pecuniary incentives (threats of
disconnection for consuming above the quota and moral suasion from conservation appeal campaigns).

6There is little work on the long-run impact of the 2001 Brazilian electricity crisis and its electricity saving program
on residential electricity use. Bardelin (2004) and Maurer, Pereira and Rosenblatt (2005) provide some descriptive
evidence on short-run impacts with aggregate data. Pimenta, Notini and Maciel (2009) use time-series techniques.
Mation and Ferraz (2011) use a similar difference-in-difference strategy to investigate impacts on firms’ productivity.
At last, Reiss and White (2008) present time-series evidence on how households responded to price increases and
conservation appeals during the 2000 California’s energy crisis.
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erage effects thus came from large and persistent responses by most customers. Finally, household
surveys of appliance ownership and utilization habits conducted both before the crisis and several
years later suggest that the main mechanism of hysteresis was the formation of new habits.

We recognize that one may be concerned about the external validity of our evidence. This is an
issue in any empirical setting (Allcott, 2012), which may be seen as more severe in our case given
the uniquely large short-term changes in behaviors. However, the uniqueness of our setting does
not come from a lack of interest in policies aimed at large changes in behaviors such as residential
electricity use. It comes from the fact that such policies are rarely implemented. It is therefore
particularly interesting to exploit an opportunity to learn from such a policy when available. This
is particularly true if the reason why such policies are considered politically infeasible is because
their social cost is assumed to be too large. Furthermore, the fact that we find persistent effects for
all affected utilities, which differ in the characteristics of their local demand, and for most of the
three million customers within one of these utilities, brings some external validity to our evidence.

This paper contributes to a large literature on the economics of corrective policies, dating back
to at least Pigou (1920). The existing literature typically fails to consider the role of hysteresis
for policies that aim at changing behaviors in the long run. In so doing, we show that one may
largely overestimate the social cost of such corrective policies and we identify estimable “suffi-
cient statistics” to evaluate this bias.7 Moreover, our analysis of the Brazilian program indicates
that taking hysteresis into account can be quantitatively important in a policy-relevant context. A
back-of-the-envelope calculation implies that, neglecting the possibility of hysteresis, one could
overestimate the social cost of a 10-year long version of a similar policy by 170%.

This paper also contributes to the growing empirical literature that investigates the presence and
mechanisms of persistence in various behaviors of interest. Several papers study the persistence
of some impacts after a policy was suspended.8 It is sometimes unclear whether their estimates
actually capture hysteresis. Agents may have expected the policy to continue with some probabil-
ity and the persistence is often observed for a relatively short period of time.9 Moreover, to the
extent that some do capture hysteresis, one could directly use our framework to evaluate the over-
estimation bias from neglecting hysteresis for the social cost of corrective policies in their context.
Existing studies do not consider this implication of their results.

7Hysteresis essentially implies that behaviors in different periods are complement and the same argument would
apply to any corrective policy that aims at changing two complementary behaviors. We are not aware of existing work
applying this idea to intertemporal behaviors.

8E.g. Charness and Gneezy (2009), Giné, Karlan and Zinman (2010), Ferraro and Price (2013), Bryan, Chowdhury
and Mobarak (2014), Dupas (2014), Fujiwara, Meng and Vogl (2014), Acland and Levy (2015), Miller (2014), Allcott
and Rogers (2012) and Ito, Ida and Tanaka (2015).

9For instance, Allcott and Rogers (2012) find a persistent change in electricity use after some incentives were
suspended and estimate that it would take about five years for the effect to disappear in their context. They have only
access to two years of post-intervention data, however. We would have reached a similar conclusion with a similar data
limitation. Instead, we can show that average electricity use does not return to counterfactual levels in our context.
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Finally, this paper participates to a small but growing empirical literature that studies issues
related to energy consumption in developing countries.10 We show that a temporary shock that
forced Brazilian households to rationalize their electricity use impacted consumption levels in the
long run. Moreover, this hysteresis seems to arise mostly from the formation of new habits rather
than from physical investments.11 Our results thus open up an exciting research agenda: how could
policymakers foster energy-efficient habits at an earlier stage of development to limit the rapidly
growing energy demand in the developing world, which will account for most of the growth in
greenhouse gas emissions in the future.

The rest of the paper proceeds as follows. Section 1 presents our theoretical framework. Sec-
tion 2 introduces our empirical setting and Section 3 our empirical strategy. Section 4 presents our
main results and the many robustness checks supporting them. Section 5 investigates the mecha-
nisms of hysteresis. Section 6 uses our estimates to illustrate the importance of taking hysteresis
into account for the social cost of corrective policies. Section 7 concludes.

1 Conceptual framework

In this section, we provide a theoretical framework to illustrate how one may overestimate the
social cost of long-run corrective policies by neglecting the possibility of hysteresis in the behavior
of interest.12 We present here the simplest version of the model. We discuss some extensions, but
leave the related derivations to the Appendix.

Hysteresis could emerge in several models, which would predict the same observable outcome.
For instance, hysteresis may emerge in a rational habit formation model à la Becker and Murphy
(1988) as long as there are multiple steady states and that a policy pushes agents far enough from
their prior steady state. Hysteresis may also occur in a model with asymmetric adjustment costs if
a policy pushes agents to pay some costs that cannot be reverted back (e.g., learning costs; Bryan,

10Wolfram, Shelef and Gertler (2012) argue that existing forecasts underestimate the future growth in residential
energy demand in the developing world because of an S-curve relationship between income and ownership of domestic
appliances. They also highlight that a rapidly rising energy demand also brings the risk of dramatic supply shortages
in developing countries because of vulnerable infrastructure and the difficulty of accurately planning capacity invest-
ments. Davis, Fuchs and Gertler (2014) find that an appliance replacement program in Mexico did not generate the
expected energy saving because of households’ behavioral responses to the new appliances. Zhou et al. (2011) estimate
that CO2 emissions from energy consumption would be greatly reduced if there was continued improvements in ap-
pliances’ standards and labeling in China. Allcott, Collard-Wexler and O’Connell (2014) and Fisher-Vanden, Mansur
and Wang (2015) examine firms’ short-run responses to recurrent power shortages in India and China, respectively.

11This should not be surprising. Households in developing countries are poorer and more credit-constrained, and
habit formation is relevant for residential electricity use even in developed countries (e.g., Ito, Ida and Tanaka, 2015).

12We could instead consider the role of hysteresis for the welfare effects of temporary policies. In the presence of
hysteresis, a temporary policy will deliver a persistent correction of the externality, if the prior level of the behavior
was too high from a social perspective. Properly accounted for, this may partly mitigate the social cost borne by
economic agents in moving between steady states. This does not imply, however, that a temporary policy would be
desirable as the level of electricity use in the new steady state may also remain too high from a social perspective.
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Chowdhury and Mobarak, 2014; Dupas, 2014). We do not take a strong stand on the underlying
model at play and simply assume that policies that affect past levels of a behavior may affect
agents’ utility from their level of the behavior in the long run. We illustrate the importance of
hysteresis assuming that price theory can be used to evaluate the social cost of corrective policies.
However, hysteresis could also emerge from “behavioral” theories, such as models with biased
beliefs or myopia about the returns to changing one’s behavior (e.g., Acland and Levy, 2015;
Gruber and Köszegi, 2001). We return to this point later in the paper.

1.1 Setup

Consider a representative-household two-period model of electricity use.13 The periods are as-
sumed to be long enough such that the level of electricity use in the two periods would be indepen-
dent in the absence of hysteresis, i.e. there is no difference between short- and long-run elasticities.
We adopt a standard partial-equilibrium setup to focus attention on the role of hysteresis. In partic-
ular, we assume away income effects and redistributive concerns, and we model the household as
fully rational and forward looking. For simplicity, we also assume that goods are produced com-
petitively at constant marginal costs. These assumptions allow us to illustrate the role of hysteresis
for the social cost of corrective policies using simple consumer surplus concepts.

The household chooses electricity consumption xi at price pi and ordinary consumption ci at
normalized price 1, given income yi in periods i = 1,2. The per-period utility is represented by
ui (ci,xi,si) = ci + vi (xi,si), where si is the household’s propensity to consume electricity. This is
a reduced-form variable that is aimed at capturing possible mechanisms of hysteresis. Changes
in electricity use may affect the future propensity to consume because the household develops
new (steady-state) consumption habits, learns about ways to consume electricity more efficiently,
develops a taste for appliances with different characteristics, etc.14

We assume that vi (xi,si) is strictly increasing and concave in xi and that ∂vi(xi,si)
∂ si

≤ 0 for all
xi,si ≥ 0. For instance, the household derives less utility from a consumption bundle (ci,xi) if
her habits or lack of knowledge about energy-efficient behaviors require more electricity to pro-
vide the same services. The propensity to consume in the first period is given, but in the second
period, it is allowed to depend on the level of electricity use in the first period: s2 = s(s1,x1),
with 0 ≤ ∂ s(s1,x1)

∂ s1
, ∂ s(s1,x1)

∂x1
≤ 1. Finally, we assume that ∂ 2vi(xi,si)

∂xi∂ si
> 0 for all xi,si ≥ 0: the higher

the propensity to consume (e.g., to use electrical appliances), the higher the marginal utility of

13The model can be easily adapted to apply to other behaviors of interest or extended to a multi-period setup.
14We allow for direct (costly) investments in one’s propensity to consume electricity in an extension of our model.

Note that it is unclear whether investments in physical capital such as energy-efficient appliances would lead directly
to hysteresis. A corrective policy may simply push agents to anticipate future investments in new appliances and
physical capital decays. Of course, hysteresis may arise if agents’ preferences or information sets change when they
buy energy-efficient appliances, such that they continue to buy energy-efficient appliances subsequently.
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consumption (e.g., the greater the disutility from not having access to their services). This comple-
mentarity introduces some path dependency to the utility derived from electricity use and allows
for hysteresis in electricity use. Specifically, the household solves:

max
c1,c2,x1,x2

u1 +βu2 = c1 +ν1 (x1,s1)+β [c2 +ν2 (x2,s(s1,x1))] s.t. ci + pixi ≤ yi

The parameter β accounts for discounting or differences in the relative length of the two periods.
Substituting in for ci, we obtain the following first-order conditions:

x1 :
∂v1 (x1,s1)

∂x1
+β

∂v2 (x2,s(s1,x1))

∂ s
∂ s(s1,x1)

∂x1
= p1 ; x2 :

∂v2 (x2,s(s1,x1))

∂x2
= p2 (1)

The left- and right-hand sides of each first-order condition capture the benefit and the cost of
marginal changes in electricity use, respectively. These must be equal at an optimum. As expected,
the household will use less electricity in the first period if the propensity to consume electricity in
the second period depends on past choices and the household is aware of this relationship.

1.2 The social cost of a long-run corrective policy

Without government intervention, the first-order conditions and baseline electricity prices in the
two periods, p10 and p20, will determine baseline electricity use, x10 and x20. Now, suppose that
the government wants the household to reduce electricity use to x1 < x10 and x2 < x20. We are
interested in the social cost or deadweight loss of such a corrective policy. In our framework, this
is the change in the household’s indirect utility: DWL = V (x1,x2)−V (x10,x20). We can recover
it by tracing the change in indirect utility along any path from (x10,x20) to (x1,x2). In our setting,
it is natural to first consider changing x1 to x1 and then changing x2 to x2, holding constant x1. In
the presence of hysteresis, we have to take into account the fact that the optimal level of x2 at price
p20 will change in the first step as can be seen from the first-order condition for x2. We have:

DWL =

ˆ x1

x10

dV (x1,x2)

dx1
dx1 +

ˆ x2

x2(x1)

dV (x1,x2)

dx2
dx2

=

ˆ x1

x10

∂v1 (x1,s1)

∂x1
+β

∂v2 (x2,s(s1,x1))

∂ s
∂ s(s1,x1)

∂x1
− p10 +β

∂x2

∂x1

[
∂v2 (x2,s(s1,x1))

∂x2
− p20

]
︸ ︷︷ ︸

=0

dx1

+β

ˆ x2

x2(x1)

[
∂v2 (x2,s(s1,x1))

∂x2
− p20

]
dx2

=

ˆ x1

x10

[p1(x1)− p10]dx1 +β

ˆ x2

x2(x1)
[p2(x2|x1)− p20]dx2 (2)
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where x2(x1) is defined by ∂v2(x2,s(s1,x1))
∂x2

= p20. Equation (2) shows that three empirical objects are
sufficient to evaluate the deadweight loss of the policy (besides the parameter β ). The first one is
the inverse demand curve in period 1, p1(x1), which factors in any effect on utility and behavior
in period 2 from changes in x1. It could be identified using exogenous price increases in period 1.
The second one, p2(x2|x1), is the inverse demand curve in period 2 for a given value of x1, and thus
a given propensity to consume in period 2. It could be identified using exogenous price increases
once in period 2, following a temporary policy that changes x1 to x1. The third one is the degree
of hysteresis, the change in x2 caused by the change in x1. It could be identified from the impact
on electricity use in period 2 of a similar temporary policy. Equation (2) is a familiar expression
for the social cost of a behavioral change. It corresponds to the sum of the area under the properly
defined inverse demand curve and above the baseline price level in each period. In the second
period, the integral is only taken over the residual change in quantity because any change in utility
from changing x2 to x2(x1) is already accounted for in the first integral.15

Assuming away hysteresis, the expression for the deadweight loss would be:

DWLNoH =

ˆ x1

x10

[
∂v1 (x1,s1)

∂x1
− p10

]
dx1 +β

ˆ x2

x20

[
∂v2 (x2,s1)

∂x2
− p20

]
dx2

=

ˆ x1

x10

[p1,NoH(x1)− p10]dx1 +β

ˆ x2

x20

[p2,NoH(x2)− p20]dx2 (3)

where NoH stands for the assumption of no hysteresis. Equation (3) differs in two respects from
equation (2). First, the inverse demand curve in a given period is assumed to be independent of
electricity use in the other period. This may not be a source of bias in itself. A researcher assuming
away hysteresis would identify the inverse demand curves in equation (3) using the same variation
that identifies the inverse demand curves in equation (2). Second, equation (3) neglects the fact
that the optimal level of x2 will change with the level of x1. This will be a source of bias as it
implies taking the integral under the demand curve in the second period over a larger interval.

Figure 2 provides a graphical illustration. Without government intervention, the equilibrium
in period 1 and 2 would be at points C and I, respectively. Reducing quantity in period 1 to x1

increases the household’s marginal utility for x1, which can be traced along the inverse demand
curve p1(x1). In the presence of hysteresis, this would reduce x2 endogenously to x2 (x1). The
demand curve p1(x1) would factor in any change in utility from such endogenous changes in x2.

15The same argument applies to any two behaviors that are complement (hysteresis essentially implies that behaviors
at different points in time are complement). Suppose for instance that one smokes only when drinking. A policy that
reduces drinking would thus also reduce smoking. The demand curve for drinking captures the associated utility from
smoking and so the demand curve for drinking is sufficient to measure any change in utility from the associated change
in smoking. Now suppose that a policy also reduces smoking below the initial level. The reduction in smoking that
took place because of the reduction in drinking should not be double-counted.
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The loss in utility from reducing quantity to x1 is then the triangle BCD (assuming locally linear
demand curves). One would arrive to the same conclusion when assuming away hysteresis, if using
the same information to recover the inverse demand curve in period 1, p1,NoH(x1) (NoH stands for
no hysteresis). Further reducing x2 to x2 (for a given x1) then increases the household’s marginal
utility for x2 which can be traced along the inverse demand curve p2(x2|x1). The associated loss in
utility is the triangle GHJ. Neglecting the possibility of hysteresis, one would arrive to a different
conclusion even if using the same information to recover the inverse demand curve p2,NoH(x2).
Tracing the change in marginal utility along the whole interval from x20 to x2, one would obtain a
loss in utility corresponding to the larger triangle GIL. The bias is the area HILJ.

An estimate of the degree of hysteresis, x20− x2(x1), is key to evaluate this bias. Consider
for instance a policy that aims at a given long-run change in electricity use D = x1−x10

x10
= x2−x20

x20
.

With a linear approximation for the demand curves, and assuming that the same variation is used
to identify the demand curves in equations (2) and (3), the bias becomes:

|DWLNoH |− |DWL|= 1
2

β
p20x20

|η2|

[
[D]2−

[
D− x2(x1)− x20

x20

]2 1
x2(x1)/x20

]
(4)

|DWLNoH |− |DWL|
|DWL|

=

β p20x20

[
[D]2−

[
D− x2(x1)−x20

x20

]2
1

x2(x1)/x20

]
|η2|
|η1| p10x10 [D]2 +β p20x20

[
D− x2(x1)−x20

x20

]2
1

x2(x1)/x20

(5)

Evaluating the bias (in level or percentage) requires estimates of the price elasticities in periods 1
and 2, η1 and η2, and an estimate of the impact in period 2 of a similar policy implemented only in
period 1, x20− x2(x1). In this paper, we focus on estimating the later statistic. This is because it is
the key source of bias and because there is limited evidence on its possible magnitude.16 We then
provide a quantitative illustration of the importance of hysteresis for the social cost of corrective
policies by evaluating equations (4) and (5) for given values of the other parameters.17

1.3 Extensions

We discuss here how our results carry on to various extensions (see Appendix for further details).
First, we consider an extension of the model where the household can make direct (costly)

investments Ii in its propensity to consume electricity. We show that using the same three empirical

16In contrast, an extensive literature focuses on estimating price elasticities for residential electricity use. Long-run
price elasticities are always difficult to estimate. In the Appendix, we estimate a medium-run price elasticity for the
years following the Brazilian temporary policy that we study. However, we are unable to do so for the years leading
to (or for the months of) the temporary policy.

17A linear approximation is likely worse for large changes in behavior, but our purpose is only to illustrate the
possible magnitude of the bias.
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objects as in equation (2), one measures an upper bound for the deadweight loss and thus a lower
bound for the bias (in absolute values). The inverse demand curve p1 (x1) will capture the utility
loss of changing x1 to x1, taking into account such endogenous investments. Similarly, the inverse
demand curve p2(x2|x1) will capture the utility loss of changing x2 for the propensity to consume
resulting from the corrective policy in period 1. However, if the household had known ex-ante
about the policy in period 2, it might have chosen a different value of the investment in period 1,
thus reducing its overall utility loss. A similar argument would apply if we were extending the
model to allow for other endogenous behaviors such as saving and borrowing.

Second, we can allow for heterogeneity in households’ preferences and in the degree of hys-
teresis. In this case, the social cost of a policy that aims at aggregate changes in behavior can
still be evaluated using aggregate inverse demand curves and the aggregate degree of hysteresis in
equation (2), as long as the corrective policy is implemented efficiently (e.g. using tradable quotas
or Pigouvian taxes).18 In so doing, one would measure again an upper bound for the deadweight
loss and thus a lower bound for the bias (in absolute values). We recognize that the temporary
policy that we study may not have allocated the aggregate change in behavior efficiently across
agents. However, we are not directly interested in the social cost of a long-run version of the exact
same policy. We then abstract from allocative inefficiencies when using our estimates to illustrate
the importance of taking hysteresis into account for the social cost of corrective policies.

Finally, households could be naive about the effect of their current choices on their future
propensity to consume. In this case, a corrective policy would also address an “internality” problem
by reducing consumption levels, which were suboptimally high from a private perspective. This
would be another reason why neglecting the possibility of hysteresis overestimates the social cost
of the policy. Agents could also have biased beliefs about the effect of their current choices on
their future propensity to consume. As long as agents underestimate such an effect, this would
also be a reason why neglecting the possibility of hysteresis overestimates the social cost of the
policy. The opposite would be true if agents overestimate the effect. We provide some suggestive
evidence that, if anything, agents underestimate this effect in our empirical application.

1.4 Connecting the theory to the data

A few comments must be made before moving to the empirical exercise.
First, the empirical analog of the key statistic x20− x2(x1) is the long-term impact of a tempo-

rary corrective policy. This is important because short- and long-run elasticities are likely to differ
for many behaviors of interest. As a result, some persistence of an impact in the aftermath of a cor-

18An implication is that we can allow for the behavior of interest to change in discrete amounts at the individual
level as long as the aggregate demand curves are smooth. This would be the case in a model with fixed adjustment
costs (e.g. learning costs), as long as thresholds triggering adjustments are smoothly distributed in the population.
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rective policy may result from the slow convergence towards a prior steady state rather than from
hysteresis. It is clear that the deadweight loss of a policy that aims at changing behaviors in the
long run should be based on long-run elasticities even in absence of hysteresis. How long is “long
enough” for the persistence to capture hysteresis will depend on the behavior under consideration
and on whether the estimated persistence is stable (vs. decays) over time.

Second, it is important to estimate the long-term impact of a policy that agents expected to be
temporary. Otherwise, part of the persistence of a temporary policy may result from past (sunk)
responses in anticipation of a possible continuation of the policy. This would not be a problem in
the simple model presented above because the only way to anticipate a possible continuation of the
policy is to change electricity use in period 1. However, it would be a problem in a model with, e.g.,
direct investments in the propensity to consume. In this case, past investments in anticipation of a
possible continuation of the policy will affect future electricity use directly, and not only through
its effect on electricity use during the temporary policy. As a result one would overestimate the
effect on future behaviors of inducing changes in behaviors during the temporary policy.

Finally, several theories suggest that hysteresis is more likely for larger changes in behaviors
(e.g. habit formation, fixed adjustment costs). Agents may be also able to deal with very brief
constraints without making significant adjustments to their behavior or forming new habits. There-
fore, the ideal experiment to provide evidence of hysteresis and discuss implications for the social
cost of corrective policies would randomize a policy that aims at relatively large changes in behav-
ior, for a temporary period that is not too short and that agents know to be temporary, and whose
persistent impact can be estimated over a relatively long period of time afterward.

2 Background and data

In the remainder of this paper, we assess the degree of hysteresis in a behavior of interest by ex-
ploiting a natural experiment that shares many features of the ideal experiment described above.
We study the 10-year impact of a 9-month long policy in Brazil that was known to be tempo-
rary, and that led to the largest short-run reductions in household electricity use among temporary
electricity saving programs around the world (Meier, 2005). Identification requires additional as-
sumptions with a natural experiment, but it would be challenging for a controlled experiment to
share all these features. One limitation of the policy that we study is that it did not rely on a
unique efficient and easily-replicable instrument to achieve its short-run reductions in electricity
use. It included individually-assigned quotas and a set of (nonlinear) pecuniary and non-pecuniary
incentives for households to consume below their quotas, which changed over time and may have
affected households differently. We have little to say about the design of the specific policy in our
empirical setting and its optimality. Our interest is that the policy allows us to provide clear evi-
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dence of hysteresis in a policy-relevant context. We then use our estimates to illustrate the possible
implications of neglecting hysteresis for the social cost of corrective policies.19

2.1 The temporary electricity saving program of the 2001 crisis

The temporary electricity saving program that we study was implemented in response to an ex-
ceptional shortage in electricity supply in specific areas of Brazil in 2001. Starting with a brief
overview of the electricity distribution system, we provide here the necessary information about
the 2001 crisis and its electricity saving program. More information is available in the Appendix.

2.1.1 Electricity distribution in Brazil

The major national electricity system in Brazil is divided into four subsystems: North (6.5% of
total load in 2000), Northeast (14.5%), Southeast/Midwest (62%), and South (17%). Almost all
households had access to the electricity grid in the South and the Southeast/Midwest in 2000. In
contrast, the electricity grid was not fully developed in the two other subsystems at the time, but
it developed rapidly in following years thanks to strong support from the federal government (e.g.
program “Luz Para Todos”). The Brazilian electricity system relies almost exclusively on hydro-
logical resources. In 2000, hydropower was responsible for 81% of the production capacity and
94% of the electricity generated in the country (ONS, 2011). More than 60 local monopolies (dis-
tribution utilities) distribute electricity to end-consumers and housing units are typically metered
and billed separately every month. Finally, electricity theft – i.e. illegal connections to the grid –
is a serious concern in Brazil. It amounts to 15% of the total load for some distribution utilities.

Electricity prices are regulated by a federal agency (Agência Nacional de Energia Elétrica,
ANEEL). The main residential tariff is a flat unit price per kilowatt hour (kWh). An alternative tar-
iff for low-income and small consumers offers percentage discounts on the main tariff depending
on the quantity consumed. Price changes typically modify the main tariff and therefore imply a
proportional change in every marginal price. The regulatory framework is a price-cap mechanism.
Every four or five years, prices are revised to guarantee the economic viability of distribution utili-
ties. However, demand risk falls entirely on them between revision years. Yearly price adjustments

only factor in changes in non-manageable costs, such as energy costs (ANEEL, 2005).20

19In our back-of-the-envelope calculations, we must also assume that the social cost comes only from distorting
quantities. This may or may not be the case with pecuniary, and especially non-pecuniary incentives. Such considera-
tions are beyond the scope of our paper. Note that any policy that aims at changing aggregate behavior in such a large
scale would likely stimulate a set of non-pecuniary incentives (e.g., peer pressure) at least endogenously.

20The price-cap mechanism encourages distribution utilities to address electricity theft. Price revisions and adjust-
ments occur at different times for different utilities. In June 2001, the main tariff was US$.229/kWh in Rio de Janeiro.
Marginal prices in the alternative tariff were US$.08 (up to 30 kWh), US$.137 (up to 100 kWh), US$.207 (up to 140
kWh), and US$.229 (above 140 kWh). Monetary values are in US$ of 2012 throughout the paper (R$1.82=US$1).
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2.1.2 History of the 2001 electricity crisis

The 2001 electricity crisis was entirely due to supply factors. In particular, it was due to excep-
tionally low streamflow in the rivers that served hydropower plants in specific areas of the country,
combined with infrastructure constraints on generation and transmission capacity. Figure 1a dis-
plays the evolution of hydro-reservoirs’ water levels in the Southeast/Midwest and in the South.
We focus on the two largest subsystems in our analysis because of their similar development stage
at the time (see next section). Water levels follow a seasonal pattern in the Southeast/Midwest with
heavy rain upstream of the reservoirs replenishing them during the austral summer. Levels were
low in the two subsystems by 2000. In the Southeast/Midwest, they reached their lowest point in
40 years (for the season) in March 2001 because of exceptionally low summer rainfall. The North-
east and the North were facing a similar situation (not shown). In contrast, generous rain dissipated
any risk of shortages in the South in 2001. Importantly, there was limited transmission capacity
across subsystems such that the South could not supply much electricity to the other subsystems.
Moreover, while growth in demand had never outpaced growth in projected demand in the years
prior to 2001 (see Appendix), it outpaced growth in generation capacity. This was a nationwide
issue and experts later concluded that the South would have faced a similar crisis if its hydropower
plants had experienced a similar situation as in the Southeast/Midwest (Kelman, 2001).

By late April, it became clear that electricity use had to decrease to avoid generalized black-
outs. The government announced that an incentive-based electricity saving program would start in
June, although details remained unclear (Globo, April 23, 2001).21 Distribution utilities supported
instead the use of rolling blackouts because “financial penalties were unlikely to succeed, in part
due to the lack of demand elasticity” and the expected length of the crisis (Veja, May 3, 2001;
Maurer, Pereira and Rosenblatt, 2005). Rolling blackouts remained part of a plan B that never
became necessary. The government program started on June 4, 2001, and from the very start, it
was expected to last until February 2002 (end of next rainy season; Veja, July 19, 2001). The ob-
jective was to reduce electricity use by 20% in the Southeast/Midwest. The program also applied
in the Northeast, and to a lesser extent in the North, but not in the South. Mation and Ferraz (2011)
provide ample evidence that the crisis, the electricity saving program, and its differential imple-
mentation across subsystems, were mostly unanticipated.22As expected, the crisis officially ended
in February 2002, but according to a specialized periodical, “people were giving signals that they

Minimum consumption levels are also charged, and local taxes increase what customers eventually pay.
21This was despite a first set of national policies in early April. Among these measures were the giveaway of efficient

lightbulbs in low-income neighborhoods, a 15% reduction in electricity consumption in federal public buildings, the
import of energy from Argentina, and the construction of new thermoelectric facilities (Veja, April 5, 2001).

22For instance, President Cardoso’s approval rates dropped differentially in areas subject to the electricity saving
program after its announcement. Mation and Ferraz (2011) provide evidence that even industrial customers did not
anticipate the (differential) implementation of the program.
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learned how to avoid wasting electricity” (Energia Elétrica, March 15, 2002).

2.1.3 Incentives of the electricity saving program

The electricity saving program included individually-assigned quotas and a set of incentives for
residential customers to consume below their quota. Rules were frequently repeated in the media
and on electricity bills, but they were relatively complicated, nonlinear, and changed more than
once.23 Therefore, it is unclear what customers were exactly responding to. However, we are not
interested in the specificities of these measures. Our interest is that households reduced electricity
use dramatically in response to the policy, which was known to be temporary.

Every customer was assigned a quota at the start of the crisis. The typical quota was equal to
80% of a baseline corresponding to their average consumption from May to July 2000. Quotas for
small consumers were set at 100% of baseline or 100 kWh, whichever was smaller.24

The incentive scheme included sticks and carrots. Customers exceeding their quota were
charged a fine per kWh consumed above 200 kWh, and not per kWh above the quota. Fines
thus targeted larger consumers. The unit fine was equal to 50% of the usual tariff up to 500 kWh
and then to 200% of the tariff. Customers who exceeded their quotas more than once were also
under the threat of power cuts of three to six days. Customers consuming less than their quota
were eligible for a bonus per kWh reduced below their quota. The only guaranteed bonus was for
customers consuming less than 100 kWh. The remaining funds from collecting fines would then
be divided among other complying customers. The unit bonus was equal to at most 200% of the
tariff. We illustrate how these incentives modified the cost of electricity in the Appendix.25

In practice, the implementation of these incentives was not smooth. First, households’ response
to the program was so large that fines did not raise enough money to pay any non-guaranteed bonus.
The government then introduced another guaranteed bonus in September 2001 for customers with
quotas below 225 kWh, with a unit bonus of 100% of the tariff. Second, distribution utilities did not
have enough staff to implement power cuts. So, power cuts were limited to a very few customers
and distribution utilities were asked to prioritize those who consumed repeatedly far above their
quota. Power cuts were even prohibited in Rio de Janeiro (Lei Municipal 3266/2001), the city for

23Firms and the public sector also faced incentives in this period. Mation and Ferraz (2011) look at impacts on firms.
We do not consider firms because the nature of their response to temporary corrective incentives may be very different
and because changes in the industrial composition of the economy complicates the study of long-term effects. The fact
that firms were subject to some incentives is only an issue for our purpose to the extent that it affected households’
electricity use indirectly. However, we control for employment or income effects in our empirical analysis.

24Quotas were revised upward in December 2001 and January 2002 because the situation was improving. Con-
sumption levels are also typically higher in the austral summer. Customers were informed of their quotas by mail prior
to their first affected billing cycle. We reproduce such a letter in the Appendix. We also display the exact mapping
between quotas and baseline consumption levels.

25Fines and bonuses were added in electricity bills, which could not be negative, limiting the payment of bonuses.
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which we have customer-level billing data.
Finally, a massive conservation appeal campaign (social incentives) was carried out in collab-

oration with distribution utilities and media outlets. Daily reports on TV compared achievements
to government targets. Energy conservation advice and stories of exemplary behaviors were shared
repeatedly in the media to promote awareness and encourage participation. Media reports and mes-
sages on electricity bills included appeals to social preferences and patriotism. The government
made sure to impose a more stringent conservation target for public buildings to set the example.

Households were also offered a lot of information in the media on how to reduce electricity
use. This information reached the whole country, as the main media outlets are national in Brazil.
It may thus explain some spillover effects to unaffected areas, but it is thus unlikely to explain any
large differential trend between areas subject or not to the electricity saving program. Even if it
were, our framework would apply as long as households internalized that information because they
were subject to the policy. In fact, we would argue that any policy that aims at changing behavior
in such a large scale would spur a market for information.

Other factors could have affected electricity use but not differentially in the Southeast/Midwest
and in the South. Tariff changes followed the usual regulatory framework during and after the
crisis.26 Some policies were implemented nationally and are thus part of our counterfactual. Taxes
on efficient lightbulbs were reduced, and taxes on electric showers, water heaters, and incandescent
lightbulbs were temporarily increased (Decreto 3827, May 21, 2001). Efficiency standards for
domestic appliances were adopted (Lei 10295, October 17, 2001), but only implemented in later
years. Finally, the rainfall pattern during the 2000-2001 summer was a clear outlier, so there was
no rational reason for customers in different subsystems to differentially update their beliefs about
the risk of future shortages.27 Even if they did, it is unclear that they would have consumed less
electricity in response, especially after the policy used grandfathering to assign individual quotas.

2.2 Data

Our analysis mostly relies on three sets of data.
A. Utility level administrative data (ANEEL).

26This is with the exception of a 2.9% extraordinary increase for distribution utilities subject to the electricity saving
program (Camara de Gestão da Crise de Energia, Resolução 91, December 21, 2001). Such a small price change is
unlikely to drive any of our results. Moreover, we control for tariffs in our empirical analysis.

27Accordingly, when the government established an insurance fund to prevent subsequent crises, it chose to finance
it through a nationwide undifferentiated increase in electricity tariffs (R$.49 per 100 kWh; Camara de Gestão da Crise
de Energia, Resolução 115). Reservoir levels were very low in 2000 even in the South. They were also more variable in
the South after the crisis. Moreover, the country had already experienced smaller weather-induced electricity shortages
in all subsystems in the past (Maurer, Pereira and Rosenblatt, 2005). These previous shortages led to blackouts and
not to the implementation of any incentive-based demand management plan.
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Our main results are based on longitudinal data at the level of distribution utilities. The regula-
tor (ANEEL) provided us with monthly administrative data from mandatory reports of distribution
utilities on total electricity consumption, total revenues, and total number of customers by category
(e.g., residential) from 1991 to 2011. Our main outcome, average residential electricity consump-
tion per customer, is equal to total residential consumption divided by the number of residential
customers. We also gathered copies of every tariff regulation published by the regulator from 1996
to 2011. As a result, we have a balanced panel of average residential electricity consumption and
residential electricity tariff at the monthly level for all distribution utilities. In 2000, we have 26
utilities in the Southeast/Midwest and 17 in the South (numbers vary slightly with sample years
due to some concession areas being split). We match our panel of distribution utilities to decennial
census data (2000 and 2010) and to yearly data on population (1996-2011), GDP (1999-2011),
formal employment, and average temperature (1996-2010), which are available at the municipality
level and can be matched using information on the concession area of each distribution utility.28

B. Household level billing data (LIGHT).
We use longitudinal data at the customer level for one distribution utility subject to the elec-

tricity saving program to evaluate the robustness of our results and to go beyond average effects.
We obtained individual billing data from January 2000 to December 2005 for the universe of low
voltage customers of LIGHT, the distribution utility serving Rio de Janeiro and 31 surrounding
municipalities (Southeast). The data include about three million residential customers in 2000.
They detail every bill component and include metering and billing dates, meter location, and the
quantity consumed in each month. Customers are uniquely identified over time until they move.

C. Household level survey data (PPH).
We exploit the microdata from the two most recent rounds of the Survey of Appliances and

Utilization Habits (PPH, Pesquisa de Posse de Equipamentos e Hábitos de Uso) to shed light on
the mechanisms behind our results. The surveys are conducted by the National Electrical Energy
Saving Program (PROCEL). A representative sample of residential customers from several utilities
was surveyed before the crisis (first round, July 1998 to June 1999) and several years after the crisis
(second round, July 2004 to June 2005). The in-house interviews included questions on household
characteristics, appliance ownership, and consumption habits. Interviewers were asked to check
some of the information directly, e.g. the number of lamps in the living room. We have a repeated
cross-section of 8,804 households and 5,448 households from the same ten distribution utilities in
1999 and 2005, respectively. We have 2 utilities in the South (total of 3,122 households) and 8
utilities in the Southeast/Midwest (total of 11,130 households).

28Census, GDP and demographic data are from the Brazilian Institute of Geography and Statistics (IBGE). Formal
employment is from the Ministry of Labor official records’ (RAIS). The average temperature data is from Matsuura
and Willmott (2012).
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D. Other data.
Finally, we confirm some of our results using time-series data on sales of appliances from

manufacturers and the Brazilian Household Expenditure Surveys (POF, Pesquisa de Orçamentos
Familiares, with rounds in 1996-1997, 2002-2003, and 2008-2009). Those data are not available
at the municipality level and cannot be matched to the concession areas of distribution utilities.

3 Empirical strategy and descriptive statistics

Our main empirical strategy exploits our panel of distribution utilities through a difference-in-
difference comparing utilities in the Southeast/Midwest and in the South over time. In this section,
we first provide descriptive statistics supporting our approach. We then present our main empirical
specification and a series of tests to evaluate the robustness of our results.

3.1 Descriptive statistics

Table 1 provides some descriptive statistics supporting our key identification assumption of a
common-trend in average residential electricity consumption for distribution utilities in the South-
east/Midwest and in the South. It also shows that such an assumption is unlikely to hold, especially
in the long term, when considering distribution utilities in the other two subsystems subject to the
electricity saving program. Columns (1)-(5) compare initial values across distribution utilities in
the four subsystems (and for LIGHT separately), namely the mean and range of relevant variables
in 2000. Columns (6)-(8) present the differential trend in these variables between 2000 and 2010
comparing utilities in each of the three other subsystems to utilities in the South.29 Some of the
variables discussed below are presented in a similar table in the Appendix.

Before comparing subsystems, note that average residential electricity use was lower in Brazil
(below 200 kWh/month in 2000) than in more developed countries (903 kWh/month in the US in
2012; www.eia.gov/tools/faqs). Households were of course poorer and less likely to own major
domestic appliances, but electricity was also relatively expensive. The main residential electricity
tariff in 2000 (US$.165/kWh) was higher than the US average price in 2012 (US$0.118/kWh).

There are two main reasons to not consider distribution utilities from the Northeast and from
the North in our analysis. First, nearly all households in the South had electricity prior to the crisis.

29Speficically, we use yearly data from the most recent census years (t ∈ 2000,2010) and the following specification:

log
(
yd,t
)
= αd + γ 1{t = 2010}+δ 1{t = 2010&d ∈ TreatRegiond}+νd,t

where ad is a fixed effect for distribution utility d, and TreatRegion indicates a distribution utility from a subsystem
subject to the electricity saving program. νd,t is an error term clustered by utility. Columns (6)-(8) report estimates of
δ̂ for samples including utilities from one of the other three subsystems and the South.
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This was not the case in the Northeast and in the North. Moreover, the share of households with
electricity increased substantially in these subsystems in the following decade, by 8 to 11 percent-
age points compared to the South. A common-trend assumption is unlikely to hold when customer
bases evolve very differently. Second, households in the Northeast and in the North were poorer
and were less likely to own major domestic appliances prior to the crisis – e.g. we observe no com-
mon support for the median household income and the share of households owning refrigerators
between utilities in the Northeast and in the South. Strong poverty alleviation, as experienced in
Brazil in the years following the crisis, can have very different effects on residential electricity use
when initial ownership rates are so different (Wolfram, Shelef and Gertler, 2012). Accordingly,
the share of households owning a refrigerator, a major domestic appliance in terms of electricity
use, increased 15%-26% more compared to the South. This is unlikely to be a consequence of the
crisis and thus clearly violates a common-trend assumption.30

Distribution utilities in the South constitute a more credible counterfactual for distribution util-
ities in the Southeast/Midwest. First, nearly all households had electricity prior to the crisis in
both subsystems. Second, customer bases evolved at a similar rate in the following decade. More-
over, this does not hide any differential trend in population size, access to electricity, urbanization,
household size, dwelling size, or dwelling characteristics. Third, initial ownership rates of major
domestic appliances (refrigerator, washing machine, TV, air conditioner), and subsequent growth
in ownership rates are comparable. Fourth, initial electricity tariffs were also comparable and did
not evolve differentially. If anything, tariffs decreased relatively in the Southeast/Midwest.

Distribution utilities in the South and in the Southeast/Midwest differ in some respects. For
instance, average electricity use and median income levels were on average higher in the South-
east/Midwest in 2000. Median income levels grew also relatively less in the Southeast/Midwest
in the following decade, even though labor market outcomes such as employment, formal employ-
ment, or farm employment did not evolve differentially (we attribute the differential trend in aver-
age electricity use to the impact of the electricity saving program below). Importantly, the range
of initial values overlapped for all these variables and many others, as did the range of changes in
these values in subsequent years (see Appendix). Therefore, we can control for many relevant vari-
ables without relying on purely parametric assumptions (this would not be true using data from the
Northeast). One factor that differs systematically between the Southeast/Midwest and the South is
climate. Average temperatures are higher in the Southeast/Midwest. This is unlikely to drive any
of our results. We show in the Appendix that there is no relationship between changes in average
residential electricity use in the Southeast/Midwest and in the South, and either levels or changes in

30Additionally, there is a data limitation preventing us to study outcomes in the North subsystem. Many customers
there are served by isolated electricity systems. Our utility-level panel data do not differentiate residential consumption
from “isolated” and “connected” customers, and the former were not subject to the electricity saving program. The
policy also started later (August) and ended earlier (December) in the North.
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average temperatures. In sum, the data appear to support our common-trend assumption, as shown
in Figure 1b for earlier periods, at least conditionally on controlling for some relevant factors.

3.2 Empirical strategy

We estimate the short- and long-term impacts of the temporary electricity saving program through a
generalized difference-in-difference. We regress the logarithm (or the level) of average residential
electricity consumption per customer for utility d from region r in calendar month m of year t using
the following specification:

log
(
Av_kWhd,r,m,t

)
=αd +βr,m + γp1

{
t ∈ TimePeriodp

}
+δp 1

{
d ∈ SE/MW& t ∈ TimePeriodp

}
+ log

(
Xd,r,m,t

)
+νd,r,m,t (6)

where the coefficients αd and βr,m are fixed effects for each distribution utility and for each calendar
month per region (seasonality), respectively. We divide our monthly observations into various time
periods, indexed by p. We consider yearly time periods before and after the crisis. We divide 2001
and 2002 into three time periods: pre-crisis (early 2001), crisis (June 2001–February 2002), and
post-crisis (rest of 2002). The coefficients γp are time-period fixed effects. The coefficients δp

then capture difference-in-difference estimators for the impact of the temporary electricity saving
program in each time period. Finally, we cluster error terms (νd,r,m,t) at the level of the distribution
utility, and distribution utilities are weighted equally in our regressions.31

Estimates of δp during the crisis and for subsequent time periods can be interpreted as the
average treatment effect of the policy on the treated under a common-trend assumption. Of course,
it is not possible to test whether this assumption holds in practice. However, we show in Figure
1b that average electricity use had been following roughly the same trend since 1991 in the South
and the Southeast/Midwest. Estimates of δp for time periods preceding the crisis will directly test
for the presence of a common-trend prior to the crisis. Moreover, as explained in Section 2, the
timing of the crisis and the differential treatment between subsystem was entirely due to supply
factors likely exogenous to potential changes in households’ electricity use. A common-trend
assumption is thus reasonable in our context, especially in the short run. As we are particularly
interested in long-run effects, we then reinforce the common-trend assumption by controlling for
variables that may be correlated with other factors affecting electricity use. In particular, we use the

31Our independence assumption seems reasonable in our context. The two subsystems cover very large and hetero-
geneous areas, providing electricity to more than 100 million individuals. Moreover, electricity sector policy, including
policies related to electricity efficiency, is centralized at the federal level. We show similar results weighting distri-
bution utilities by their customer base in the Appendix. Results are noisier as they are driven by the few very large
distribution utilities in our sample.
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variables available at the distribution utility level in each year (Xd,r,m,t): main residential electricity
tariff (1996-2011), population size (1996-2011), GDP (1999-2011), formal employment levels,
and average temperature (1996-2010). Our preferred specification includes all these controls and
the sample is therefore restricted to a balanced panel of utilities between 1999 and 2010.

3.3 Robustness checks

We undertake four types of empirical tests to evaluate the robustness of our results. First, we
obtain similar results when estimating variants of equation (6) with different sample years and
the controls available in those years. Second, we show that our estimated average impact is not
driven by outliers. To do so, we estimate the impact of the electricity saving program for each
distribution utility separately using synthetic control methods (Abadie, Diamond and Hainmueller,
2010). The synthetic control estimator is the difference between an outcome in a treated utility
during and after the crisis, and the same outcome in a “synthetic” weighted average of control

utility. The outcome of interest, Yd,t , is the demeaned seasonally adjusted logarithm of average
monthly residential consumption. The vector of weights W is chosen to minimize: ‖Yd0−Yc0W ‖=√
(Yd0−Yc0W )′V (Yd0−Yc0W ), where Yd0 and Yc0 are vectors containing the values of the outcome

in pre-crisis periods in the treated utility and in control utilities, respectively. An optimal choice of
V minimizes the mean squared error of the synthetic control estimator.

Third, we investigate whether our estimated long-term impact is robust to controlling for vari-
ables that are not available at the yearly level but that are available in the 2000 and 2010 censuses
(Xd,t), such as median household income. We show graphically the relationship between changes
in these variables and changes in average electricity consumption between 2000 and 2010. We also
estimate the following regression using only data from census years:

log(Av_kWhd,t) = αd + γ 1(t = 2010)+δ 1(t = 2010&d ∈ SE/MW)+ log
(
Xd,t
)
+νd,t (7)

where νd,t is an error term for utility d in census year t clustered by distribution utility.
Fourth, we use the longitudinal data for LIGHT customers to address a series of confound-

ing explanations that cannot be tackled with utility-level data. We compare changes in average
electricity use in LIGHT aggregate monthly data and in a random sample of individual customers
observed in every month from 2000 to 2005. This balanced panel does not suffer from composition
effects by construction. We then document the persistence of changes in consumption levels during
the crisis at the individual level.32 Finally, we investigate other dimensions of the distribution of

32We cannot estimate the causal effect of some policy variation among LIGHT customers. First, all customers were
subject to some aspects of the policy and rules were complicated and uncertain. Second, we don’t know how non-
pecuniary incentives were perceived among customers and they may have played a role. Third, there is no discontinuity
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changes in consumption levels, which are interesting in themselves and also as a way to address a
concern that “electricity theft” responses may explain some of our results.

4 Results

We first present results using utility-level data. We then turn to the customer-level data. Most of
our regression results are presented graphically, but corresponding tables with coefficient estimates
and standard errors are in the Appendix.

4.1 Utility-level data

Difference-in-difference coefficients δ̂p from estimating our preferred specification of equation (6)
are displayed in Figure 3 with their 95% confidence intervals. The sample is restricted to the bal-
anced panel of utilities between 1999 and 2010 such that we can include all the controls available
at the yearly level. Panel (a) and (b) consider specifications in logs and levels, respectively. The
first few months of 2001 are used as reference period. Point estimates are close to 0 prior to the
crisis, supporting our common-trend assumption. Average residential electricity consumption then
dropped differentially in the Southeast/Midwest when the electricity saving program came into
force. We estimate an impact of -.26 log point (23%) during the crisis, or 41.5 kWh/month. This
is the first quasi-experimental estimate of the short-run impact for residential customers, but it is
already well known that electricity consumption was successfully reduced at the time. Our main
contribution is to show that about half of the short-run impact persisted in the long run. Consump-
tion levels partially rebounded after the crisis but point estimates are stable from 2005 onwards at
about -.115 log points (11%), or 19 kWh/month. It is thus unlikely that our estimates are due to a
difference between short- and long-run elasticities rather than hysteresis.

Our results are similar if we consider all the possible combinations of sample years determined
by the availability of our yearly controls: 1991-2011 (no controls), 1996-2011 (tariffs and popula-
tion), 1996-2010 (tariff, population, formal employment, average temperature), 1999-2011 (tariff,
population, GDP). Point estimates for the log specification are displayed in Figure 4a. We omit
confidence intervals for the sake of clarity. The estimated short- and long-run impacts are almost
identical in all specifications. Moreover, Figure 4a shows that average electricity consumption fol-
lowed similar trends in the Southeast/Midwest and in the South since at least 1991. Point estimates
are slightly positive between 1997 and 2000, a pattern that is apparent in the raw data in Figure
1b, but they get closer to 0 as we add more controls. Results are also similar if: (i) we consider

or bunching in electricity use at the quota or at other levels where customers faced discontinuities or kinks in their
budget. This is consistent with the existing literature (Borenstein, 2009). In an earlier working paper, we showed that
even large quasi-exogenous variation in quotas led to only very small variation in consumption (Gerard, 2013).
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winter and summer months separately, (ii) if we weight distribution utilities by their customer base
at baseline, and (iii) if we restrict the sample to distribution utilities with overlapping support in av-
erage electricity use (outcome) and in household median income (not available at the yearly level)
at baseline to reinforce our common-trend assumption (see Appendix).

Figure 4b displays synthetic control estimates of the impact of the electricity saving program
for each distribution utility. Monthly estimates are averaged into the same time periods as in
Figure 3. Darker lines correspond to distribution utilities in the Southeast/Midwest. Lighter lines
correspond to placebo estimates in which we compare a given distribution utility in the South to
a weighted average of the others. The synthetic controls are able to match the trends pre-crisis
closely, including between 1997 and 2000. The estimated short-run impact is large for all the
distribution utilities subject to the policy, between -.19 and -.40 log points. Importantly, the long-
run impact is also negative for all those utilities. Our estimated average impact is thus not driven
by outliers (this can be seen in the raw data in the Appendix). The median and the average of the
utility-specific impacts are in fact comparable – e.g. -.13 and -.14 log points in 2011, respectively.
In contrast, the median and the average of our placebo estimates are very close to 0 in all years.33

Table 2 displays estimates of the long-term impact of the electricity saving program from using
equation (7) and controlling for variables available in the 2000 and 2010 censuses. Columns (4)-(6)
restrict the sample to distribution utilities with overlapping support at baseline in average electricity
use and household median income. The estimated impact is similar when we don’t include any
control (columns 1 and 4), when we control for the main electricity tariff and median household
income (columns 2 and 5), and when we add controls for population size, the share of households
living in urban areas, average household size, average dwelling size, the share of dwellings with a
bathroom, the employment rate, and the average temperature (columns 3 and 6). The robustness of
our results does not come from an absence of variation in these variables. We show graphically in
the Appendix that long-term changes in consumption levels are systematically lower for utilities in
the Southeast/Midwest than in the South for given baseline levels or long-term changes in all the
variables in Table 1 and in its continuation table in the Appendix.

4.2 Customer-level data

Figure 5 presents robustness checks using the longitudinal microdata for LIGHT customers. Panel
(a) shows that the time-series in average electricity use for LIGHT is similar when we use (i)
the aggregate data at the utility level, (ii) microdata from a random sample of customers in each
month, and (iii) microdata from a random sample of customers observed in every month from 2000
to 2005 (balanced panel). This provides additional evidence that composition effects, absent from

33We replicated this exercise using the main electricity tariff as outcome. In that case, the range of estimated impacts
overlap completely and is centered around 0 for utilities in the Southeast/Midwest and in the South (see Appendix).
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the balanced panel by construction, are unlikely to drive our results, at least until 2005 (the LIGHT-
specific impact remains large after 2005 in Figure 4b).34 It also implies that our estimates are not
due to electricity theft at the extensive margin. Customers who are obtaining all their electricity
through illegal connections to the grid at some point are excluded from the random sample.35

Panel (b) shows that average changes in electricity use came from sizable reductions at every
level of consumption. It displays Kernel densities for average monthly electricity use before, dur-
ing, and after the crisis. The density during the crisis is stochastically dominated. Densities one
year and four years after the crisis are similar and fall between the crisis and pre-crisis densities.
Almost all customers (92%) reduced electricity use compared to before the crisis; the median cus-
tomer reduced electricity use by 31%. Four years after the crisis, 69% were still consuming less
than before the crisis; the median customer was consuming 16.5% less electricity.36

Panel (c) shows that average changes in electricity use came from large reductions from most
customers at a given baseline consumption level. It displays the distribution of changes in average
monthly electricity use during and after the crisis compared to before the crisis, for customers
with the same baseline consumption (around 300 kWh). Kernel densities are based on electricity
use during the first five months of the crisis (and in the same months in other years), when these
customers faced the same quota and incentives. As mentioned before, we find no evidence of
bunching at the quota. During the crisis, 98% reduced electricity use and the median customer
reduced usage by 34%. Four years after the crisis, 78% were still using less electricity than before
the crisis; the median customer was using 22% less electricity (mean 19%). We show similar
patterns for other baseline consumption levels in the Appendix.

Together, panels (b) and (c) also provide evidence against electricity theft responses at the
intensive margin. Establishing illegal connections to the grid to obtain part of one’s own electricity
use is more likely to take place among poorer and smaller consumers. However, reductions in
electricity use were not concentrated among small consumers. We show in the Appendix that they
were also large among customers from relatively wealthy neighborhoods. Finally, if electricity
theft takes place among relatively large consumers, it is likely to be concentrated within a small

34There is no evidence of economically meaningful migration across regions between 2000 and 2010. de Oliveira
and de Oliveira (2011) document that the Southeast experienced a net out-migration during the period. However,
magnitudes are very small: no larger than 0.2% of the Southeast population and 0.5% of the South population.

35There is no good data on electricity theft. Distribution utilities are supposed to report yearly information on
distribution losses to the regulator, but many did not provide this information prior to 2000. In the Appendix, we use
yearly reports for 24 utilities in the Southeast/Midwest and in the South from 1998 to 2008. The data are very noisy
and, if anything, point estimates suggest that non-technical losses (a measure of theft) decreased compared to 2000.
In the Appendix, we also use microdata from the Brazilian Household Budget Survey (POF 1996/97, 2002/03 and
2008/09) and find no differential trend in the share of households who do not pay for electricity.

36We show similar patterns for summer and winter months separately in the Appendix. We show that customers
with higher baseline consumption levels made larger reductions in electricity use proportionally. Considering shifts in
the distribution of electricity use in Figure 5b avoids mean reversion issues (Borenstein, 2009; Ito, 2014).
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group. This is inconsistent with the evidence in panel (c) that most customers at a relatively large
baseline consumption level severely reduced their electricity use during the crisis.

So far, we have implicitly interpreted our results as evidence of hysteresis at the individual
level. Panel (d) shows that there is indeed a strong correlation between electricity use during
the crisis and four years after the crisis for customers with the same baseline consumption levels
(same sample as in panel c). We show similar patterns for other baseline consumption levels in the
Appendix. We provide evidence on the mechanisms of hysteresis in the next section.

5 Mechanisms of hysteresis

There are three main mechanisms that could explain a long-run reduction in household electricity
use. Households may have permanently changed the quantity of appliances that they own, the type
of appliances that they own, or their utilization of these appliances. We shed some light on each
of these mechanisms below. To do so, we rely primarily on household-level microdata from the
two most recent rounds of the Appliances and Utilization Habits surveys (PPH, 1998-1999 and
2004-2005). We use data from ten distribution utilities in the Southeast/Midwest (8) and in the
South (2) that were surveyed in both rounds.37 Conveniently, our estimated long-term impact on
household electricity use is stable starting around the time of the second PPH survey round (see
Figure 3). We also use other data sources that are described in more details in the Appendix.

5.1 Asking households directly

A natural starting point to investigate the mechanisms of persistence is to ask households directly.
The second round of PPH surveys included a special section for customers of distribution utilities
subject to the electricity saving program during the 2001 crisis. For each major domestic appliance,
it asked households whether: (1) they were using the appliance as much as before the crisis; (2)
they were using it less than before the crisis; (3) they had disconnected or disposed of the appliance
during or after the crisis; (4) they had substituted a more energy-efficient model during or after the
crisis. Households could only choose one answer and we display the share that chose each answer
in Table 3. For each appliance, we also show the average quantity per household and the estimated
average monthly electricity use for customers of these utilities prior to the crisis.

A large share of households who owned a given appliance prior to the crisis reported using it

37PROCEL did not share with us the identity of those distribution utilities due to confidentiality concerns. Therefore,
we cannot match the PPH data to the ANEEL administrative data.
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less after the crisis. This is true for electric showers (39%),38 lights (41%), and freezers (21%),39

which account for a significant portion of electricity use in Brazil, but also for other appliances.
The one exception is for refrigerators, another main source of electricity use. This is in fact reas-
suring as we don’t expect much flexibility in refrigerators’ utilization. In contrast, less than 3% of
households reported replacing their appliance with a more energy-efficient model, except for lights
(9%). Finally, a large share of households reported disconnecting or disposing of their appliance
only for the case of freezers (17%) and air conditioners (5%).

The main stated mechanism of persistence is a change in utilization habits. However, house-
holds may have changed their utilization habits and their appliance stock. Households in the South
may also have made some similar changes. We thus further investigate the three mechanisms.

5.2 Appliances’ quantity

The PPH surveys recorded data on the quantity of a list of appliances for households in the South-
east/Midwest and in the South in both survey rounds. We investigate any differential trend in
appliances’ quantity using a difference-in-difference strategy as in the previous sections:

Yh,d,t = αd + γ 1(t = 2005)+δ 1(t = 2005&d ∈ SE/MW)+ log
(
Xh,d,t

)
+νh,d,t (8)

where Yh,d,t is an outcome for household h from distribution utility d in survey round t. We control
for utility fixed effects αd and a survey round fixed effect γ . The coefficient δ is a difference-in-
difference estimator under a common-trend assumption. We cannot provide evidence of a common
trend prior to the crisis with two repeated cross-sections. We thus control for household charac-
teristics, Xh,d,t , which may be correlated with different trends in appliance ownership.40 We also
construct an appliance quantity index to avoid multiple-inference problems, normalizing the quan-
tity of each appliance using the average and standard deviation of appliance ownership in the South
in 1999 (Kling, Liebman and Katz, 2007). We display difference-in-difference estimates in Table
4A for the five main domestic appliances in terms of electricity use. Results for other appliances
are in the Appendix. Standard errors are obtained using the wild cluster bootstrap-t given our small
number of clusters (Cameron, Gelbach and Miller, 2008). The resulting confidence intervals are
large, typically including 0, so our results based on PPH remain suggestive.

38An electric shower consists in an electric heating device placed in a shower head. This is a popular technology in
Latin American countries, and other developing countries, where most of households use gas tanks. It has a low fixed
cost but a high variable cost (it consumes a lot of electricity).

39It is common in many countries for households to have smaller refrigerators than in the US with a small freezer
unit, but to have a separate larger (horizontal or vertical) freezer unit.

40The vector of household characteristics include income, squared income, number of household members, dwelling
size, and dummies identifying wealthier neighborhoods and neighborhoods close to slums (“favelas”).
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Point estimates are negative for our index and for all appliances, except for lights. They are
close to 0 for refrigerators and washing machines, which is consistent with our earlier findings
based on census data (see Section 3.1). They are large in magnitude for freezers and air condition-
ers, which is consistent with the information reported in Table 3. Finally, the coefficient is large
in magnitude (and significant) for TVs. In Table 1, we had found no difference in TV ownership.
This may be due to the fact that the census measures the share of households with TV while PPH
measures the number of TVs per household.41

5.3 Appliances’ characteristics

The PPH surveys recorded some appliance characteristics correlated with electricity use. We use
the specification in equation (8) to investigate any differential trend in these characteristics and
in two indices, one for the age of appliances and one for the type (size/power). The sign of all
variables is normalized; a positive sign implies a higher propensity to use electricity. Results are
displayed in Table 4B for the same five appliances and in the Appendix for other appliances.

Point estimates are positive for our “age” index (older) and for the age of each of our main
domestic appliances. Replacing appliances with newer models, likely consuming less electricity,
may have been difficult for Brazilian households who are relatively poorer and face a much higher
cost of credit than in more advanced countries.42 In fact, the supply side of the market for domestic
appliances expected ex-ante, and reported ex-post, losses from the electricity crisis (Folha de São

Paulo, June 5, 2001 and March 6, 2002). In the Appendix, we show that there is no discontinuous
increase in estimates of national monthly sales of major domestic appliances during the crisis. In
contrast, there is a discontinuous decrease in sales for many appliances.43

At the margin, we would still expect households to prefer models consuming less electricity
when buying an appliance during the crisis. Point estimates are negative for our “type” index and
for the size of our main domestic appliances, although standard errors are again large. In the Ap-
pendix, we show some related evidence for electric showers: the average power of electric showers
sold by a leading Brazilian manufacturer decreased differentially in the Southeast/Midwest during

41The difference between the two samples may also be due to a difference in sampling (the census is representative
of the Brazilian population; PPH is representative of customers of the ten unidentified utilities who are officially
connected to the electricity grid) or to a difference in timing (post-crisis data is from 2005 in PPH and from 2010
in the census), e.g. a temporary effect if, as we discuss in the next section, sales of appliances decreased during the
crisis. In the Appendix, we obtain similar estimates using microdata from the Household Budget Survey (POF) from
1996/97, 2002/03 and 2008/09. By 2008/09, we find a roughly zero point estimates for the quantity of refrigerators
and TV, and a negative (and larger in magnitude) point estimate for the quantity of freezers owned by households.

42In 2001, Brazil was the country with the highest real interest rate in the World Development Indicators of the
World Bank. It was 44.65 percent, compared to an average of 8.34 percent for OECD countries.

43We obtain those data from Whirlpool, a leading manufacturer, which produces those estimates for its market
strategy. It did not share with us the estimation methodology used. At the time of the crisis, the Southeast/Midwest
accounted for more than 55% of the national market of refrigerators, for example, and the South for another 20%.
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the crisis (by about 10%), but it increased again after the crisis.44

Finally, we showed in Table 3 that household reported adopting more energy-efficient light-
bulbs during and after the crisis in the Southeast/Midwest. It is well known that compact fluores-
cent lightbulbs (CFLs) spread rapidly in Brazil during and after the crisis. This national pattern is
present in the PPH data; our estimate suggests an average increase of 52 percentage points in the
share of CFLs in the South and Southeast/Midwest. However, our difference-in-difference estimate
suggests that adoption rates were even higher in the South than in the Southeast/Midwest.45

5.4 Utilization habits

The PPH surveys recorded utilization habits correlated with electricity use for many appliances.
As above, we use the specification in equation (8) to investigate any differential trend in each of
these habits and in a “utilization habit” index. The sign of all variables is again normalized such
that a positive sign implies a higher propensity to use electricity. Results are displayed in Table 4C
for the same five appliances and in the Appendix for other appliances.

Point estimates are large and negative for our index and for utilization habits related to our
main domestic appliances, except again for lights. For instance, households were much less likely
to have their separate freezer unit permanently switched on in the Southeast/Midwest after the
crisis, which is consistent with information in Table 3. Households were also less likely to regulate
the thermostat of their electric shower to the warmest setting. The result is statistically significant
even using our large standard errors. A back-of-the-envelope calculation suggests that this behavior
alone could have generated enough savings to explain our long-term impact (22 kWh/month).46

In sum, the main stated mechanism of hysteresis is a change in habits (living with fewer ap-
pliances is also a new habit). We found suggestive evidence that households indeed changed their
habits in the Southeast/Midwest. However, we cannot reject that some changes in appliances’ char-
acteristics may have also played a role. Note that our conceptual framework applies independently

44We obtained data on the monthly sale of all the models of electric showers from Fame, a leading manufacturer,
disaggregated by state. The data include the power (wattage) of each model, which is the only relevant measure of
electric showers’ propensity to use electricity. We could not find similar data for other domestic appliances. The PPH
data is too noisy to look at the characteristics of appliances of different ages.

45If we consider that this 52 percentage points national increase in adoption consisted of the substitution of an
average 60W incandencent lightbulb (with average consumption 10.2 kWh/month) by a 15W CFL (with average
consumption 2.25 kWh/month), we would have around 4 kWh/month saved per incandescent lightbulb on average. In
1999, households in the South used on average 5 incandescent lightbulbs, such that CFL substitution would account
for a reduction of around 20 kWh/month in the South. This is larger than the time series drop in average electricity
use in the South as we can see on Figure 1.

46The thermostat of an electric shower head can be switched off or set at “Low Power” (Modo Verão) or “High
Power” (Modo Inverno). An electric shower consumes on average 30% less electricity in Low Power than in High
Power. Our kWh figure is obtained by multiplying the estimated impact (-.863), the efficiency gain of regulating the
shower to Low Power (30%) and the average electricity consumption of electric showers in High Power (87.1 kWh).
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of the specific mechanisms as long as the hysteresis was due to the temporary policy.47

6 Implications for the social cost of corrective policies

We established that households reduced electricity use in the long run in response to a temporary
electricity saving program. In this section, we use our evidence to illustrate the extent to which
neglecting such hysteresis would overestimate the social cost of corrective policies.

First, a temporary policy delivers a persistent correction of the externality in the presence of
hysteresis if the prior level of the behavior was too high from a social perspective. The associated
gains could balance out part of the social cost of the policy. We estimated that the temporary policy
reduced electricity use by 11% in the Southeast/Midwest until at least 2011, which corresponds
to 67.8 billion kWh. PROCEL, the electrical energy saving program of the federal government,
claims to have obtained reductions in electricity use of 39.6 billion kWh from 2001 to 2011 at a
cost of US$366 millions. At that average level of cost-efficiency, PROCEL would thus have had to
spend US$627 millions to achieve a similar reduction in electricity use. It is unclear how PROCEL
actually measures its impact and our calculation is thus likely to be a lower bound.

Second, we evaluate equations (4) and (5) to illustrate the quantitative implication of the degree
of hysteresis that we estimated for the social cost of a long-run corrective policy. Consider a policy
that aimed at reducing electricity use by 23% (average effect during the crisis) over a period of
10 years. Period 1 corresponds to the nine months of the temporary policy and period 2 to the
following 111 months. We estimated a necessary residual reduction in electricity use in the second
period of 23%-11%=12%. In the Appendix, we estimate a medium-run price elasticity of average
residential electricity use of −.291 using yearly variation in electricity tariffs across distribution
utilities after the crisis. Applying this estimate, the change in marginal utility caused by the policy
in period 2 is equivalent to a 79% increase in electricity tariffs assuming away hysteresis, but only
a 41.2% increase given our estimated degree of hysteresis. The bias in level is then:

|DWLNoH |− |DWL|= 1
2

120

∑
t=10

β
t ptXt/.89

.2911

[
(−.23)2− (−.12)2 1

.89/1

]
=US$4.14 billions

where we use a (high) monthly discount rate of 1% (β = .99), and where ptXt is the total monthly
bill for residential electricity use in the Southeast/Midwest after the crisis. It is scaled by 1

.89 to
obtain counterfactual amounts (p20x20). A bias of US$4.14 billions corresponds to 6.44% of the

47The second round of PPH surveys (but not the first round) also asked households about the information that they
disposed on energy efficiency. In the Appendix, we show that households in the Southeast/Midwest were more likely
to have information on energy efficiency labels and energy savings behaviors after the crisis, but less likely to know
what that information implies for how much electricity they can actually save. Note that any energy efficiency policy
in Brazil, including information provision, would be implemented nationally by PROCEL.
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total (discounted) monthly bill for residential electricity use in the Southeast/Midwest after the
crisis. Even if the long-run elasticity were three times larger than the medium-run elasticity, the
bias would still amount to US$1.38 billions. Another way to provide some perspective is to express
the bias in percentage of the deadweight loss. Using equation (5), we have:

|DWLNoH |− |DWL|
|DWL|

=
∑

t=120
t=10 β t ptXt

.89

[
(−.23)2− (−.12)2 1

.89/1

]
η2
η1

∑
t=9
t=1 β t ptXt

.89 (−.23)2 +∑
t=120
t=10 β t ptXt

.892 (−.12)2 = 1.7

where we assume an equal elasticity in both periods (η2 = η1).48 Assuming away hysteresis, one
could then overestimate the social cost of the policy by 170%. This is just an illustrative calibration,
but it shows how neglecting the possibility of hysteresis could severely overestimate the social cost
of long-run corrective policies. Moreover, it would be even higher if we had assumed a longer time
horizon, a lower discount rate, or if we took into account that part of the behavioral response in
later periods of the crisis was already caused by the temporary policy in earlier periods.

So far, we have assumed that households perceived the true costs and benefits of changing their
behavior. These costs must have been relatively high given that our estimates imply that an average
household could save 11% of its electricity bill permanently by reducing electricity use by 23% for
a nine-month period. Interestingly, this contrasts with households’ reported experience during the
crisis. When asked about changes to their life quality during the crisis in PPH surveys, only 24% of
households in the Southeast/Midwest reported a decrease in life quality, 48% reported no change in
life quality, and 28% reported to have “learned to live comfortably while saving money” (see Table
5). Moreover, 43% of households who managed to reduce electricity below their quota reported
that it was “not difficult at all”, and 48% reported that it was “not very difficult”. The contrast
between large long-run private gains and limited short-run private costs suggests that, if anything,
households were underestimating the returns from changing their behavior before the crisis. This
echoes several theories and findings in the literature (Jaffe and Stavins, 1994). For instance, Bryan,
Chowdhury and Mobarak (2014) find that it is difficult to explain the low level of seasonal urban
migration in their context given the high persistent return from a one-time incentivized migration.
Agents with hyperbolic time discounting would underinvest in their habit formation, even if they
were aware of their habit formation process (Gruber and Köszegi, 2001). Of course, agents may
not be aware of such a process (Acland and Levy, 2015). Finally, households may have had the
correct private costs of changing their behavior. However, these costs may drop dramatically when
everybody is subject to a corrective policy because of, e.g., social learning (Dupas, 2014).49

48We cannot estimate a price elasticity during or before the crisis. It is unclear whether we should expect the price
elasticity to have increased or decreased. Moreover, the bias remains large under extreme assumptions: assuming that
the elasticity was three times smaller (resp. higher) in the first period, we obtain a bias of 213% (resp. 304%).

49The contrast between large long-run private gains and limited short-run private costs of changing behavior is
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7 Conclusion

This paper argued that one might overestimate the social cost of long-run corrective policies by
neglecting the possibility of hysteresis in the behavior of interest. We provided evidence of the
importance of hysteresis in a policy-relevant behavior. We then used our estimates in a simple con-
ceptual framework to illustrate the possibly large magnitude of the bias from not taking hysteresis
into account when measuring the social cost of corrective policies.

A limitation of our empirical analysis is that we cannot relate the estimated impact to one
specific easily-replicable policy instrument. Moreover, policymakers may not be interested in
implementing permanently a policy similar to the temporary policy that we studied. Yet, there
is a lot of interest in reducing energy use and the main argument against implementing sizable
corrective policies in that context is that the associated social cost would be too large. Our paper
implies that such an argument may be overstated. The big question that this study then leaves open
is how to trigger the emergence of energy-efficient habits in a credit-constrained, low-income, and
low-consumption setting. Shaping consumption patterns at an earlier stage of development may
help attenuating the pressure of energy demand growth in developing countries.

The application in this paper considers the context of energy demand. However, our argument
applies to any context where hysteresis may be relevant. For instance, Bryan, Chowdhury and
Mobarak (2014) show that a one-time incentive for Bangladeshi households to migrate during the
lean season led to 22% higher migration rates in the short-run and to 7% higher migration rates
two and a half years later. In a different setting, Fujiwara, Meng and Vogl (2014) find that a
weather-induced 1 percentage point rise in turnout in an election increased voter turnout in the
following election by 0.9 percentage points. Assuming that these impacts persist in the long run,
one would thus overestimate the social cost of long-run corrective policies by neglecting the degree
of hysteresis in those contexts. For instance, using the estimates in Fujiwara, Meng and Vogl (2014)
and similar back-of-the-envelope assumptions as in Section 6, the social cost of a policy that aims
at a 1 percentage point permanent increase in voter turnout could be overestimated by 1450%.50

also consistent with a rational inattention model. Attention costs for energy-saving opportunities may have been high
before the crisis (Sallee, 2014). Such costs would be factored in the demand curve for electricity use (and could explain
a low price elasticity) and our framework would thus apply.

50We assume a constant cost of voting, a constant baseline turnout level (at their mean of 58%), a yearly discount
rate of 5%, an infinite time horizon, and a constant elasticity with respect to voting costs.
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Figure 1: Cause and consequence of the temporary electricity saving program

(a) Stocked energy of the hydroelectric reservoirs
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(b) Average residential electricity use
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Panel (a) displays the evolution of hydro–reservoirs’ capacity in the Southeast/Midwest and in the South (dotted lines indicate January; official data from ONS, the Na-
tional System Operator). In the summer of 2000–2001, exceptionally low rainfall upstream of the reservoirs lead to dangerously low levels in the reservoirs in the South–
East/Midwest. In contrast, generous rain dissipated any risk of shortages in the South. The electricity saving program was implemented in the Southeast/Midwest from
June 2001 to February 2002 (dashed lines). Panel (b) displays the overall impact of the electricity saving program on monthly average residential electricity consumption
per customer for distribution utilities in the two subsystems (utility–level administrative data). We present unweighted averages in each month, normalized with respect to
the same month in 2000 (seasonality). Trends were similar prior to June 2001. Average residential consumption then dropped, especially for distribution utilities in the
Southeast/Midwest, subject to the electricity saving program. Average residential consumption rebounded after February 2002, once the program was suspended, but only
partially. Comparing patterns in the Southeast/Midwest and in the South suggests that some of the impact of the temporary electricity saving program persisted until at least
the end of our sample (2011).

Figure 2: The social cost (deadweight loss) of corrective policies with hysteresis
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This figure illustrates how one would overestimate the social cost or deadweight loss of corrective policies in the presence of hysteresis. Without government intervention, x10
and x20 are the equilibrium quantities in period 1 and 2 given baseline prices p10 and p20, respectively. Consider a corrective policy reducing quantities to x1 and x2. Reducing
quantity in period 1 to x1 increases the household’s marginal utility for x1 which can be traced along the inverse demand curve p1(x1). In the presence of hysteresis, this would
reduce the quantity in period 2 to x2(x1), absent any government intervention. The demand curve p1(x1) would factor in any change in utility from such endogenous changes
in x2. The loss in utility from reducing quantity in period 1 to x1 is then the triangle BCD (assuming locally linear demand curves). One would arrive to the same conclusion
when assuming away hysteresis, if using the same information to recover the inverse demand curve in period 1, p1,NoH(x1) (NoH stands for no hysteresis). Further reducing
quantity to x2 in period 2 then similarly increases the household’s marginal utility for x2 which can be traced along the inverse demand curve p2(x2|x1). The associated loss in
utility is the triangle GHJ. Neglecting the possibility of hysteresis, one would arrive to a different conclusion even if using the same information to recover the inverse demand
curve p2,NoH(x2). Tracing the change in marginal utility along the whole interval from x20 to x2, one would obtain a loss in utility corresponding to the larger triangle GIL.
The bias is the area HILJ. An estimate of the degree of hysteresis, x20− x2(x1), is key to evaluate this bias (along with the demand curves). It could be identified from the
long-run impact of a corrective policy implemented only in period 1 (temporary policy).
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Figure 3: Main difference–in–difference results on average residential electricity use

(a) in logs
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(b) in levels
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95% confidence interval in dash (s.e. clustered by utility). Utility-level administrative data for distribution utilities in the Southeast/Midwest and in the South from 1999
to 2010. The figures display coefficients from regressing the logarithm (panel a) or the level (panel b) of monthly average electricity consumption per customer for each
utility on time–period dummies (yearly dummies, three dummies for 2001–2002 to isolate the crisis period) interacted with an indicator for utilities subject to the electricity
saving program during the crisis (difference–in–difference estimators in each time period). The reference period corresponds to the first months of 2001. Regressions include
uninteracted time–period dummies, utility and calendar month–per–region fixed effects, and controls for the logarithm or level of the main residential electricity tariff and
of available yearly data matched to the concession area of each utility (population size, GDP, formal employment levels, average temperature). Point estimates are close to
0 prior to the crisis, supporting our common-trend assumption. Average residential electricity use then dropped differentially in the Southeast/Midwest when the electricity
saving program came into force. We estimate an impact of -.26 log point (23%) during the crisis, or 41.5 kWh/month. Consumption levels partially rebounded after the crisis
but point estimates are stable from 2005 onwards at about -.115 log points (11%), or 19 kWh/month.

Figure 4: Robustness checks using utility–level data

(a) Difference–in–difference results for different sam-
ple years and their available controls (in logs)
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(b) Synthetic control estimates of utility–specific im-
pact (in logs)
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Panel (a) shows that our difference–in–difference estimates in Figure 3a are almost identical if we consider all the possible combinations of sample years determined by the
availability of our yearly controls: 1991-2011 (no controls), 1996-2011 (tariffs and population), 1996-2010 (tariff, population, formal employment, average temperature),
1999-2011 (tariff, population, GDP). We omit confidence intervals for the sake of clarity (available in tables in the Appendix). It also shows that trends were similar in the
Southeast/Midwest and in the South since at least 1991. Point estimates are slightly positive between 1997 and 2000, a pattern that is apparent in the raw data in Figure 1b,
but they get closer to 0 as we add more controls. Panel (b) displays synthetic control estimates of the impact of the electricity saving program for each distribution utility.
Monthly estimates are averaged into the same time periods as in Figure 3a. Darker lines correspond to distribution utilities in the Southeast/Midwest. Lighter lines correspond
to placebo estimates in which we compare a given distribution utility in the South to a weighted average of the others. The synthetic controls are able to match the trends
pre-crisis closely, including between 1997 and 2000. The estimated short-run impact is large for all the distribution utilities subject to the electricity saving program, between
-.19 and -.40 log points. Importantly, the long-run impact is also negative for all those utilities. Our estimated average impact is thus not driven by outliers. The median and
the average of the utility-specific impact is in fact comparable — e.g. −.13 and −.14 log points in 2011, respectively. In contrast, the median and the average of our placebo
estimates are very close to 0 in all years.
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Figure 5: Lessons and robustness checks using longitudinal microdata for LIGHT customers

(a) Comparing time–series in average electricity using
the utility-level data and the microdata
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(b) Distribution of monthly electricity use over time for
a balanced panel of customers
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(c) Distribution of changes in monthly electricity use
for a balanced panel of customers with the same base-
line level/quota
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(d) Correlation between changes in electricity use dur-
ing and after the crisis for a balanced panel of cus-
tomers with same baseline level/quota
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Individual monthly billing data for the universe of residential customers of LIGHT (Southeast) from January 2000 to December 2005. Panel (a) displays average electricity
use for LIGHT customers in each month compared to the same month in 2000. It shows that the time–series is almost identical when (i) we use the aggregate data at the
utility level, (ii) microdata from a 2% random sample of customers in each month, and (iii) microdata from a random sample of customers observed in every month from
2000 to 2005 (balanced panel; 44,817 customers). This provides additional evidence that composition effects, absent from the balanced panel by construction, are unlikely to
drive our results, at least until 2005 (estimated coefficients are very stable after 2005 in Figure 3). Panel (b) shows that average changes in electricity use came from sizable
reductions at every level of consumption. It uses the same balanced panel to investigate changes in the distribution of electricity use over time. It displays Kernel densities
for monthly electricity use before, during, and after the crisis. Kernel densities are based on data from June to December, such that we can compare consumption levels up to
four years after the crisis. The density during the crisis is stochastically dominated by the other ones. Densities one year and four years after the crisis are very similar and
they fall exactly between the crisis and pre-crisis densities. Panel (c) shows that average changes in electricity use came from large reductions from most customers at a given
baseline consumption level. It displays the distribution of changes in electricity use during and after the crisis compared to the same months before the crisis, for a subset of
the sample in panel (b) in which customers had about the same baseline for quota assignment, and thus faced the same pecuniary incentives during the crisis (10% above and
below 300 kWh/month; 4,344 customers). Kernel densities are based on electricity use during the first five months of the crisis (and in the same months in other years), before
any change in quotas. The quota is not at −.2 (vertical line) because it was based on the baseline months in 2000 (May to July) and not on these five months. We find no
evidence of bunching at the quota. During the crisis, 98% reduced electricity use and the median customer reduced usage by 34%. Four years after the crisis, 78% were still
using less electricity than before the crisis; the median customer was using 22% less electricity (mean 19%). We show similar patterns for other baseline consumption levels
in the Appendix. Panel (d) displays the correlation between individual changes in electricity use during and after the crisis compared to the same months before the crisis, for
the same sample as in panel (c). Customers are averaged by bins of 5% changes in electricity use during the crisis. The strong correlation suggests that the long-term impact
is due to the persistence of individual changes in electricity use. Kernel densities use Epanechnikov kernels and optimal bandwidths.
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Table 1: Descriptive statistics for distribution utilities in the four subsystems

Descriptive statistics in 2000 Differential trends 2010 vs. 2000
Mean Coefficient, in logs

[min-max] (s.e.)
South LIGHT Southeast/Midwest Northeast North SE/MW vs. S NE vs. S N vs. S

(1) (2) (3) (4) (5) (6) (7) (8)

Average residential electricity 166 226 190 107 180 -.113*** -.001 .006
consumption (kWh/month) [133–191] [122–261] [72.7–129] [128–267] (.021) (.038) (.048)

Main residential electricity .152 .183 .164 .151 .15 -.093 -.001 -.083
tariff (R/kWh) [.134–.171] [.141–.188] [.14–.171] [.129–.165] (.062) (.065) (.098)

Number of customers 360 2864 861 834 238 .014 .151*** .165***
(1000’s) [1.63–2200] [17.7–4160] [63–2405] [12.2–857] (.041) (.044) (.045)

Population size 1457 9025 3235 4323 1605 .031 .027 .164***
(1000’s) [12.1–9208] [64.8–16661] [193–13014] [124–6122] (.03) (.028) (.047)

Share of households .982 .999 .984 .894 .83 -.002 .081*** .109***
with electricity [.949–1] [.896–1] [.759–.989] [.645–.989] (.007) (.028) (.037)

Share of households .795 .991 .861 .72 .734 -.02 -.01 -.003
in urban areas [.587–.916] [.654–.991] [.613–.851] [.414–.979] (.017) (.017) (.025)

Median household income 624 800 645 290 420 -.104** .081* -.057
(R/month) [430–800] [381–1000] [239–350] [300–680] (.045) (.043) (.082)

Share of households .937 .972 .921 .646 .708 .009 .258*** .148***
with refrigerator [.828–.994] [.806–.985] [.538–.758] [.522–.916] (.018) (.037) (.056)

Share of households .436 .554 .366 .089 .199 -.008 .369*** .06
with washing machine [.145–.661] [.1–.618] [.039–.137] [.075–.311] (.089) (.092) (.118)

Average temperature 18 21.9 21.5 25 26 -.032* -.025 -.016
(degrees Celsius) [16.7–19.5] [19–24.5] [23.1–26.4] [25.2–26.5] (.019) (.02) (.023)

Observations 17 1 26 11 8 86 56 50

Utility-level administrative data for distribution utilities in the four subsystems in 2000 and 2010 and census data matched to the concession area of these utilities in the same years. Columns (1)–(5) display
descriptive statistics in 2000 (prior to the crisis) for the variables listed in the left–hand side column for distribution utilities in the South (column 1), in the Southeast/Midwest (LIGHT in column 2, all
distribution utilities in column 3), in the Northeast (column 4), and in the North (column 5). Columns (6)–(8) display estimates of a long–term difference–in–difference estimator comparing the logarithm
of these variables in 2010 vs. 2000 for distribution utilities in the Southeast/Midwest (column 6), in the Northeast (column 7), and in the North (column 8) compared to distribution utilities in the South.
Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Regressions include fixed effects for each distribution utility and each year. The exchange rate in 2000 was about R$1.9 for US$1. A
similar table with additional variables is provided in the Appendix. We argue in the text that the information in this table shows that distribution utilities in the South constitute a credible control group for
distribution utilities in the Southeast/Midwest, but not for those in the other two subsystems.
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Table 2: Long–term difference in difference results controlling for variables available in census data

Dependent variable: Log(yearly average household electricity consumption
(1) (2) (3) (4) (5) (6)

Treatment region -.113*** -.117*** -.103*** -.121*** -.118*** -.116***
× Year2010 (.021) (.026) (.028) (.026) (.029) (.041)

Log main -.202*** -.152 -.215** -.167
tariff (R) (.071) (.094) (.089) (.109)

Log median .142 .318*** .15 .434**
household income (R) (.095) (.118) (.126) (.172)

Clusters 43 43 43 35 35 35
Restricted sample No No No Yes Yes Yes
Other controls No No Yes No No Yes

Utility-level administrative data for distribution utilities in the Southeast/Midwest and in the South in 2000 and 2010 and census data matched to the concession
area of these utilities in the same years. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). The table displays estimates of the long-term impact
of the electricity saving program, controlling for census data. The first row displays coefficients from regressing the logarithm of monthly average electricity
consumption per customer for each utility on a year dummy for 2010 interacted with an indicator for utilities subject to the electricity saving program during
the crisis (long-term difference–in–difference estimators). All regressions include a constant and utility fixed effects. Columns (4)-(6) restricts the sample to
distribution utilities with overlapping support at baseline in average electricity use and in household median income. The estimated impact is similar when we
don’t include any control (columns 1 and 4), when we control for the main electricity tariff and median household income (columns 2 and 5), and when we
additionally control for the logarithm of population size, the share of households living in urban areas, average household size, average dwelling size, the share
of dwellings with a bathroom, the employment rate, and the average temperature (columns 3 and 6). The robustness of our results does not come from an absence
of variation in these variables. We show graphically in the Appendix that long-term changes in consumption levels are systematically lower for utilities in the
Southeast/Midwest than in the South for given baseline levels or long-term changes in all the variables in Table 1.
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Table 3: Self-reported appliance usage after crisis (Southeast/Midwest)

Main domestic appliances Other domestic appliances
Electric Refrigerator Freezer Light TV Air Laundry Microwave
shower Conditioner machine

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. 1999 Survey
Average (Quantity) .97 .99 .20 8.45 1.39 .10 .53 .21
Average (kWh/month) 58.14 41.71 7.88 42.54 15.63 2.78 3.37 2.97

Panel B. 2005 Survey
Share of households who owned appliance .92 .97 .18 1 .96 .06 .68 .33
Conditional on prior ownership, share of households who:
Use appliance as much as before crisis .61 .90 .59 .5 .30 .44 .53
Use appliance less than before crisis .39 .07 .20 .41 .56 .54 .39
Disconnected or disposed of appliance .01 0 .16 0 .05 .01 .03
Substituted a more energy-efficient model 0 .03 .01 .08 .03 0 0

Household-level survey data for 8 distribution utilities in the Southeast/Midwest subsystem from Appliances and Habits of Use Survey (PPH) 1998/1999 and
2004/2005. Panel A displays the average number of appliances (in columns) per household and the inputed average monthly electricity use in 1999, before
the crisis. kWh consumption calculated by multiplying quantity by average utilization in 1999 (share of appliances owned frequently in use) and by the kWh
consumption of the average model of each appliance from PROCEL estimates – shown in R.1 in the Appendix. N=6482. Panel B reports the share of households
who owened each major domestic appliance (in columns) at some point in time that answered, in 2005, each of four answers for each appliance: (1) households
were currently using the appliance as much as before the crisis; (2) they were using it less than before the crisis; (2) they had disconnected or disposed of the
appliance during or after the crisis; or (4) they had substituted a more energy-efficient model during or after the crisis. N=4579.
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Table 4: Difference-in-difference results on appliances’ quantity, characteristics, and utilization

Panel A. Quantity
Index (KKL) Shower Refrigerators Freezer Light TV

(1) (2) (3) (4) (5) (6)

SE/MW ×Year2005 -.183 -.075 -.032 -.184 .669 -.329**
(.248) (.276) (.042) (.241) (1.063) (.153)

Average SE/MW 1999 -.020 .969 .994 .202 8.447 1.392

N 14,251 14,251 14,251 14,251 14,251 14,251

Panel B. Characteristics
Index Refrigerators Freezer Light TV

Age Type Age Size Age Size CFLs Wattage Age Size
(KKL) (KKL) (Liters) (Liters) (share) (incand.) (Inches)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SE/MW ×Year2005 .091 .034 .107 -38.373 .789 -2.706 -.263 -1.977 .230 -1.455
(.146) (.111) (.916) (56.625) (.728) (28.849) (.548) (14.839) (1.292) (4.976)

Average SE/MW 1999 -.058 .198 7.501 304.793 5.193 239.519 .150 63.215 5.291 18.754

N 14,206 14,206 12,787 8,815 2,390 2,179 13,038 13,050 12,110 13,603

Panel C. Utilization
Index (KKL) Shower Thermostat Appliance Always Switched On Appliance Frequently Used

High Power Refrigerator Freezer Light TV
(1) (2) (3) (4) (5) (6)

SE/MW ×Year2005 -.951 -.863** -.042 -.221 .595 -.473
(1.305) (.425) (.077) (.270) (1.401) (.690)

Average SE/MW 1999 .212 .391 .973 .183 3.565 1.116

N 14,251 14,251 14,251 14,251 14,251 14,251

Household-level survey data for 10 distribution utilities in the South and Southeast/Midwest subsystems from Appliances and Habits of Use Survey (PPH)
1998/1999 and 2004/2005. This table displays the difference-in-differences estimates of the energy saving program effects on the quantity, characteristics and
utilization of the five main electrical appliances, from equation (8) in Section 5. Each column corresponds to a regression of a different dependent variable and
appliance. Panel A displayes the results on the quantity of appliances owned by household, Panel B displayes the results on the indicated characteristcs of appli-
ances owned by households and Panel c displays quantity of appliances frequently used (as discribed in Section 3) or quantity of electric showers regulated on
high power (winter mode). The Indices (KKL) shown in the first columns are the average of the dependent variables shown in the columns each normalized by the
average and standard deviation of each variable in the South in 1999 as in Kling, Liebman and Katz (2007). To obtain these indices, we input missing values with
the mean of the cell group the household belong (South/South-Midwest and 1999/2005). All regressions contain utility company fixed effects, year fixed effects,
income, squared income, number of household members, floorplan area, and dummies for rich neighborhood and for proximity to "favelas". We missing values
in two control variables (income and dwelling size) with a linear regression, for each year, of the variable on class of energy consumption and remaining controls.
Significance levels: *10%, **5%, ***1% (s.e. estimated with wild-cluster bootstrap by utility level).
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Table 5: Households’ reported life quality during the crisis (Southeast/Midwest)

Percentage of respondents
(1)

How do you evaluate your change in life quality caused by the electricity saving program? (N=4376)
I did not experience any change in life quality (não houve variação) .48
I experienced some discomfort (causou desconforto) .20
I experience some severe discomfort (causou muito desconforto) .08
I learned to live with the same comfort while saving money (aprendi a viver com o .24
mesmo conforto economizando dinheiro)

If your consumption reduction was sufficient to meet your quota, how difficult was it? (N=3375)
It was very difficult (muito) .09
It was not so difficult (pouco) .48
It was not difficult at all (nenhuma) .43

Household-level survey data for 8 distribution utilities in the Southeast/Midwest subsystem from Appliances and
Habits of Use Survey (PPH) 2004/2005. This table displays the percentage of households who answered each of
the two questions indicated. These were not open questions and households had to choose one of the answers or
"Others". The original text of the two questions are "Como o(a) sr.(a) avalia a variação de qualidade de vida causada
pelo racionamento?" and "As medidas adotadas para atingir as metas durante o período de racionamento foram
suficientes ou mais que suficientes. Dificuldade?", respectively and original answers in parenthesis.
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Web Appendix (not for publication)
A Formal discussion of synthetic control methods
Formally, define T0 as the first month of the crisis, index utilities in the South by c = 1...C, and
define W =

(
wd,1, ...wd,C

)
, a vector of positive weights that sum to one. The synthetic control

estimator of the impact of the electricity saving program in t ≥ T0 is given by:

δd,t = Yd,t−
c=C

∑
c=1

w∗d,cYc,t (9)

where a weighted sum of the outcome for utilities in the South provides an estimate of the coun-
terfactual for a given utility d in the South–East/Midwest. The weights are chosen to minimize:

‖ Yd0−Yc0W ‖=
√
(Yd0−Yc0W )′V (Yd0−Yc0W ) (10)

where Yd0 and Yc0 are vectors containing the values of the outcome in pre-crisis periods in the
treated utility and in control utilities, respectively. An optimal choice of V minimizes the mean
squared error of the synthetic control estimator.

B Model with “behavioral” agents
In this section, we extend our simple theoretical framework by relaxing the assumption of fully
rational and forward looking agent. Agents may be unaware of the degree of hysteresis in their
behavior: they might be myopic about the future gains from incurring learning costs tomorrow, or
have biased beliefs about the impact of their current behavior on their future propensity to behave
in certain ways.

Suppose for instance that the perceived effect of current electricity use on the future propensity
to consume is: α

∂ s(s1,x1)
∂x1

. The first-order condition from the agent’s problem is now:

x1 :
∂v1 (x1,s1)

∂x1
+β

∂v2 (x2,s(s1,x1))

∂ s
α

∂ s(s1,x1)

∂x1
= p1 ; x2 :

∂v2 (x2,s(s1,x1))

∂x2
= p2

If the parameter α is smaller (resp. greater) than 1, the agent underestimates (resp. overestimates)
this effect. In the extreme case where α = 0, the agent is fully myopic and does not take this effect
into account. We evaluate welfare based on the true underlying effect and preferences. Therefore,
the agent consumes too much (resp. too little) electricity to begin with if she understimates (resp.
overestimates) the degree of hysteresis.

Define
(
x∗10,x

∗
20
)

the optimal level of electricity use and (x10,x20) the observed level of elec-
tricity use at baseline prices determined by the first-order conditions above. Note that given our
simplification of a two-period model, the level of x2 would be optimal as long as the level of
x1 is optimal. The social cost or deadweight loss of our corrective policy is still the change
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in the household’s indirect utility: DWL = V (x1,x2)−V (x10,x20) =
[
V (x1,x2)−V (x∗10,x

∗
20)
]
+[

V (x∗10,x
∗
20)−V (x10,x20)

]
. The first bracket accounts for the fact that consumption may have been

suboptimal to begin with. Tracing the change in indirect utility by first moving x1, we have:

DWL =

ˆ x∗10

x10

dV (x1,x2)

dx1
dx1 +

ˆ x1

x∗10

dV (x1,x2)

dx1
dx1 +

ˆ x2

x2(x1)

dV (x1,x2)

dx2
dx2

=

ˆ x∗10

x10

[p1 (x1)− p10]dx1 +

ˆ x1

x∗10

[p1 (x1)− p10]dx1 +

ˆ x2

x2(x1)
[p2 (x2|x1)− p20]dx2 (11)

where the inverse demand curves are the same as in the paper. The first term accounts for the fact
that x10 is suboptimal to begin with. If the agent was overconsuming to begin with (α < 1), the
difference in bracket is negative and we have x10 > x∗10, so the first term is positive. If the agent was
overconsuming to begin with (α > 1), the difference in bracket is positive and we have x10 < x∗10,
so the first term is also positive. The second term and third terms are similar as in the paper. In
both cases, the deadweight loss is thus smaller. Assuming away hysteresis, the social cost would
still be measured as before:

DWLNoHysteresis =

ˆ x1

x10

[p1,NoH (x1)− p10]dx1 +

ˆ x2

x20

[p2,NoH (x2)− p20]dx2

The bias is larger than the expression for the bias in the paper if the agent is myopic or underes-
timates the degree of hysteresis. This is because assuming away hysteresis, one would not take
into account the first (positive) term in equation (11) and one would take the integral in the second
term in equation (11) over a larger interval (x10 > x∗10). This may not be the case if the agent over-
estimates the degree of hysteresis. This is because assuming away hysteresis one would not take
into account the first (positive) term in equation (11), but one would take the integral in the second
term in equation (11) over a smaller interval (x10 < x∗10). We present suggestive evidence in the
paper that, if anything, households were underestimating the degree of hysteresis. Of course, there
is a limitation when trying to estimate the true deadweight loss if agents do not perceive the true
degree of hysteresis: the relevant inverse demand curve p1 (x1) is not easily observed empirically.
The difficulty, which is more severe with heterogenous agents, is raised and discussed in details in
(Allcott and Rogers, 2012).

C Model with direct investments in the propensity to consume
In this section, we extend our simple theoretical framework by allowing for direct investments in
the propensity to use electricity. Specifically, suppose that the propensity to consume is a function:
si = si (si−1,xi−1, Ii), where Ii accounts for such investment, where ∂ si

∂ Ii
< 0 (investments in energy

efficiency), and s0 and x0 are given. The idea behind this extension of our model is that households
may have different ways to reduce electricity, some of them being more likely to lead to hysteresis.
We assume that such investment has a convex cost κi (Ii), which does not have to be monetary. The
household now solves:
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max
x1,x2,I1,I2

U =U1 +βU2 =y1− p1x1−κ1 (I1)+ν1 (x1,s1)+β [y2− p2x2−κ2 (I2)+ν2 (x2,s2)]

s.t. si =si (si−1,xi−1, Ii)

We obtain the following first-order conditions:

x1 :
∂v1 (x1,s1)

∂x1
+β

∂v2 (x2,s2)

∂ s2

∂ s2

∂x1
= p1 ; x2 :

∂v2 (x2,s2)

∂x2
= p2 (12)

I1 :
[

∂v1 (x1,s1)

∂ s1
+β

∂v2 (x2,s2)

∂ s2

∂ s2

∂ s1

]
∂ s1

∂ I1
= κ

′
1 (I1) ; I2 :

∂v2 (x2,s2)

∂ s2

∂ s2

∂ I2
= κ

′
2 (I2) (13)

Define (x10,x20, I10, I20), the optimal levels of electricity use and investments at baseline prices
determined by the first-order conditions above. Define I1(x1,x2) and I2(x1,x2), the optimal levels
of investments given the corrective policy. The social cost or deadweight loss of the policy is the
change in the household’s indirect utility: DWL=V (x1,x2, I1(x1,x2), I2(x1,x2))−V (x10,x20, I10, I20).
We can trace this change with the two same steps as before: first, we change x1 to x1, then we
change x2 (x1) to x2, holding constant choices in the first period, x1 and I (x1). However, the choice
of I1 would optimally adjust to the change in x2 to x2 in the second period: I (x1,x2 (x1)) 6= I (x1,x2) .
So we need to add a third step taking this into account. This third step can only increase the house-
hold’s utility, thus reducing our measured social cost. Such a decomposition of the change in
indirect utility allows us to show that the expression for the deadweight loss in the paper would be
an upper bound for the social cost (in absolute values). Specifically, we have:

DWL =

ˆ x1

x10

dV (x1,x2, I1, I2)

dx1
dx1 +

ˆ x2

x2(x1)

dV (x1,x2, I1 (x1) , I2)

dx2
dx2 +

ˆ I1(x1,x2)

I1(x1)

dV (x1,x2, I1 (x1) , I2)

dI1
dI1

=

ˆ x1

x10

∂v1 (x1,s1)

∂x1
+β

∂v2 (x2,s2)

∂ s2

∂ s2

∂x1
− p1 +

∂V (x1,x2, I1, I2)

∂ I1︸ ︷︷ ︸
=0

∂ I1

∂x1
+

∂V (x1,x2, I1, I2)

∂x2︸ ︷︷ ︸
=0

∂x2

∂x1
+

∂V (x1,x2, I1, I2)

∂ I1︸ ︷︷ ︸
=0

∂ I2

∂x1

dx1

+

ˆ x2

x2(x1)

∂v2 (x2,s2 (x1, I1 (x1,x2 (x1))))

∂x2
− p2 +

∂V (x1,x2, I1 (x1,x2 (x1)) , I2)

∂ I2︸ ︷︷ ︸
=0

∂ I2

∂x2

dx2

+

ˆ I1(x1,x2)

I1(x1,x2(x1))

[∂v1 (x1,s1)

∂ s1
+β

∂v2 (x2,s2 (x1))

∂ s2

∂ s2

∂ s1

]
∂ s1

∂ I1
−κ

′
1 (I1)+

∂V (x1,x2, I1, I2)

∂ I2︸ ︷︷ ︸
=0

∂ I2

∂ I1

dI1

where the third integral is not nil because
[

∂v1(x1,s1)
∂ s1

+β
∂v2(x2,s2(x1))

∂ s2

∂ s2
∂ s1

]
∂ s1
∂ I1
6= κ ′1 (I1 (x1,x2 (x1))):

in the second step, we changed x2 without allowing I1 to readjust. Finally, we have:
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DWL =

ˆ x1

x10

[p1 (x1)− p10]dx1 +

ˆ x2

x2(x1)
[p2 (x2|x1, I1 (x1,x2 (x1)))− p20]dx2

+

ˆ I1(x1,x2)

I1(x1,x2(x1))

[[
∂v1 (x1,s1)

∂ s1
+β

∂v2 (x2,s2 (x1))

∂ s2

∂ s2

∂ s1

]
∂ s1

∂ I1
−κ

′
1 (I1)

]
dI1

where the inverse demand curves in the first two integrals are observationally equivalent to the
inverse demand curves in the paper. They would also be recovered by observing changes in x1
using price variation in period 1, and changes in x2 using price variation once in period 2, respec-
tively. In other words, demand curve will factor in any cost and benefit of endogenous changes in
investments. The last term must be positive as we allow the household to reoptimize I1 once in
period 2. It will thus reduce the deadweight loss (in absolute values). Assuming away hysteresis,
the deadweight loss would be measured as in the paper. Therefore, the expression in the paper for
the deadweight loss with hysteresis is an upper bound (in absolute values) if the true model has
direct investments in the propensity to use electricity. The expression in the paper for the bias from
assuming away hysteresis would then be a lower bound (in absolute values).

D Model with heterogeneous agents
In this section, we extend our simple theoretical framework by allowing for heterogeneous agents.
If the policy aims at correcting individual behaviors specifically, it is trivial that one should just
apply the argument in the paper separately for each agent. To measure the deadweight loss, one
would then need to know individual demand curves and individual degrees of hysteresis.

More interestingly, imagine a policy that aims at long-run aggregate changes in behavior and a
situation in which one could only observe aggregate demand curves and degrees of hysteresis. For
simplicity, assume that there are two households, j = A,B. Household j solves:

max
c j

1,c
j
2,x

j
1,x

j
2

U j =U j
1 +βU j

2 = c j
1 +ν

j
1

(
x j

1,s
j
1

)
+β

[
c j

2 +ν
j

2

(
x j

2,s
j(s j

1,x
j
1)
)]

s.t. c j
i + pix

j
i ≤ y j

i

One can obtain the same first-order conditions as in the paper for each agent. Define X1 and X2
as the aggregate levels of electricity use in the two periods. Without government intervention, the
first-order conditions and baseline electricity prices in the two periods, p10 and p20, will determine
baseline electricity use x j

10 and x j
20 for each agent j and aggregate baseline electricity use X10 and

X20. Now, suppose that the government wants to reduce aggregate electricity use to X1 < X10 and
X2 < X20. Define

(
x̃A

1 , x̃
B
1 , x̃

A
2 , x̃

B
2

)
an efficient allocation of

(
X̃1, X̃2

)
such that:

IV



X̃i =x̃A
i + x̃B

i

∂vA
1

(
x̃A

1 ,s
A
1

)
∂xA

1
+β

∂vA
2

(
x̃A

2 ,s
A(sA

1 , x̃
A
1 )
)

∂ sA
∂ sA(sA

1 , x̃
A
1 )

∂xA
1

=
∂vB

1

(
x̃B

1 ,s
B
1

)
∂xB

1
+β

∂vB
2

(
x̃B

2 ,s
B(sB

1 , x̃
B
1 )
)

∂ sB
∂ sB(sB

1 , x̃
B
1 )

∂xB
1

∂vA
2

(
x̃A

2 ,s
A(sA

1 , x̃
A
1 )
)

∂xA
2

=
∂vB

2

(
x̃B

2 ,s
B(sB

1 , x̃
B
1 )
)

∂xB
2

The initial allocation
(
xA

10,x
B
10,x

A
20,x

B
20
)

is clearly an efficient allocation of (X10,X20). We con-
sider corrective policies

(
X1,X2

)
implemented efficiently (e.g. with tradable quotas or pigouvian

taxes or subsidies) because they minimize the deadweight loss. Importantly for our purpose, ef-
ficient allocations are those that can be traced along aggregate demand curves. Let’s define the
following three allocations:

(
X̂1,X2

(
X̂1

))
=
(

x̂A
1 , x̂

B
1 ,x

A
2

(
x̂A

1

)
,xB

2

(
x̂B

1

))
, where X̂1 = X1 is al-

located efficiently between the agents and X2

(
X̂1

)
= xA

2

(
x̂A

1

)
+ xB

2

(
x̂B

1

)
is determined endoge-

nously by the first-order conditions for x j
2 given x̂ j

1;
(

X̂1, X̂2

)
=
(

x̂A
1 , x̂

B
1 , x̂

A
2 , x̂

B
2

)
, where the x̂ j

1 are

defined as above and X̂2 = X2 is allocated efficiently for a given level of electricity use x̂ j
1 (we

have
∂vA

2

(
x̂A

2 ,s
A(sA

1 ,x̂
A
1 )
)

∂xA
2

=
∂vB

2

(
x̂B

2 ,s
B(sB

1 ,x̂
B
1 )
)

∂xB
2

); and
(
X1,X2

)
=
(

xA
1 ,x

B
1 ,x

A
2 ,x

B
2

)
, the efficient allocation of(

X1,X2
)
. We potentially have

(
X1,X2

)
6=
(

X̂1, X̂2

)
because the allocation in period 1 is not allowed

to be readjusted once changing aggregate levels of electricity use from X̂2 to X2, and agents may
differ in their degree of hysteresis in electricity use. The social cost or deadweight loss of our
corrective policy is the change in the sum of the agents’ indirect utility. We can trace it in three
steps: from (X10,X20) to

(
X̂1,X2

)
, then to

(
X̂1, X̂2

)
, and finally to

(
X1,X2

)
:

DWL =

ˆ X̂1

X10

[
∑

j

dV j(x j
1,x

j
2)

dx j
1

dx j
1

dX1

]
dX1 +

ˆ X̂2

X2(X̂1)

∑
j

dV j(x̂ j
1,x

j
2)

dx j
2

dx j
2

dX2

dX2

+∑
j

ˆ x j
1

x̂ j
1

∂V j(x j
1, x̂

j
2)

∂x j
1

dx j
1 +

ˆ x j
2

x̂ j
2

∂V j(x j
1,x

j
2)

∂x j
2

dx j
2


=

ˆ X̂1

X10

[P1 (X1)− p10]dX1 +

ˆ X̂2

X2(X̂1)

[
P2

(
X2|X̂1

)
− p20

]
dX2

+∑
j

ˆ x j
1

x̂ j
1

∂V j(x j
1, x̂

j
2)

∂x j
1

dx j
1 +

ˆ x j
2

x̂ j
2

∂V j(x j
1,x

j
2)

∂x j
2

dx j
2

 (14)

The first two integrals are the aggregate versions of the two integrals in the comparable expression
in the paper. The inverse demand curves correspond to the aggregate demand curves (because
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we focus on efficient allocations between the agents). The first aggregate demand curve would
be recovered by observing aggregate changes in X1 using price variation in period 1. The second
aggregate demand curve would be recovered by observing aggregate changes in X2 using price
variation once in period 2 and after an efficient allocation of the constraint X1 in period 1. The
third term is positive as we allow for a re-optimization of the allocations across agents ex-post, thus
reducing the deadweight loss (in absolute values). Abstracting from this term, we thus overestimate
the true deadweight loss (in absolute values). Assuming away hysteresis (and still considering an
efficient corrective policy), we would measure the deadweight loss as:

DWLNoHysteresis =

ˆ X1

X10

[
∑

j

dV j(x j
1,x

j
2)

dx j
1

dx j
1

dX1

]
dX1 +

ˆ X2

X20

[
∑

j

dV (x j
1,x

j
2)

dx j
2

dx j
2

dX2

]
dX2

=

ˆ X1

X10

[P1,NoH (X1)− p10]dX1 +

ˆ X2

X20

[P2,NoH (X2)− p20]dX2

As discussed in the paper, the fact that one would assume that the aggregate demand curves are
independent in each period may not lead to any bias in itself. The same variation identifying
the relevant demand curves in equation (14) would be used to identify the demand curves here.
However, there will be two sources of biases. First, as before, the second integral would be taken
over a larger interval by neglecting the possibility of hysteresis. Only the aggregate degree of
hysteresis, not the individual degrees of hysteresis, is necessary to evaluate this bias. Second, the
third term in equation (14) would also be neglected. Abstracting from this second source of bias,
and thus only using information from aggregate demand curves, we would thus underestimate the
bias (in absolute values).

E The causes of the 2001 Brazilian electricity crisis
We present here additional information related to the causes of the 2001 Brazilian electricity crisis.

Figure E.1 presents the map of Brazil, highlighting the four subsystems of the National Inter-
connected System of Brazil with the population, total residential electricity demand and the share
of households connected to electricity, all values of 2000.
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Figure E.1: Map of Subsystems of the National Interconnected System of Brazil with Summary
Statistics

North

(3.22 GWh)
(12.8 millions)

(81.5%)

Northeast
(47.5 millions)
(10.6 GWh)
(87.6%)

Southeast/Midwest
(84.1 millions)
(46.9 GWh)
(98.3%)South

(24.7 millions)
(11.6 GWh)
(98.0%)

Brasilia (capital)
São Paulo (largest city)
Rio de Janeiro (LIGHT)

This map presents the four subsystems of the National Interconnected System of Brazil. The first number in parenthesis is the population, the
second number is the total residential energy consumption in 2000, and the third is the percentage of households connected to electricity. The three
red markers locate the three main cities in Brazil. Source: Censo 2000 and National System Operator (ONS).

Figure E.2 present the same information as Figure 1a in a different and useful format. It dis-
plays the evolution of hydro–reservoirs’ capacity in percentage of their maximum capacity over
calendar months within each year between 1991 and 2011 in the Southeast/Midwest (panel a) and
in the South (panel b). In the same format, Figure E.3 displays the streamflow level of the rivers
serving the reservoirs in the two regions between 1996 and 2010 in percentage of the long-term
average of streamflow levels in each month in each region. The sold line corresponds to 2001,
the year the 2001 Brazilian electricity crisis started; the dashed line to 2000; the dotted lines to
all other years. Figure E.2 shows a clear seasonal pattern in the Southeast/Midwest, heavy rainfall
upstream of the rivers serving the reservoirs replenishing them at the beginning of every year. The
levels of the reservoirs were very low in both regions at the beginning of 2000. Figure E.3 then
shows that the crisis and the differential treatment between regions was indeed due to a weather
shock affecting streamflow levels (and not to a demand shock for instance). Streamflow levels were
higher than average in both regions around September 2000. This is a period of low streamflow
levels in the Southeast/Midwest but of high streamflow levels in the South. As a result, reservoirs
were rapidly replenished in the South but not in the Southeast/Midwest. The beginning of every
year is a period of high streamflow levels in the Southeast/Midwest. However, at the beginning
of 2001, streamflow levels were much lower than average. As a result, the level of the reservoirs
did not increase in the Southeast/Midwest, as they usually do at the beginning of every year. In
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contrast, streamflow levels were higher than average over the same period in the South, and the
level of the reservoirs remained high.

Figure E.2: Stocked energy of the reservoirs by calendar month
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(b) South
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Official data from ONS, the National System Operator. The figure displays the evolution of hydro–reservoirs’ capacity in percentage of their maximum capacity over calendar
months within each year between 1991 and 2011 in the Southeast/Midwest (panel a) and in the South (panel b).

Figure E.3: Flow into the reservoirs by calendar month
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(b) South
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Official data from ONS, the National System Operator. The figure displays the evolution of streamflow levels of the rivers serving the hydro–reservoirs in the South-
east/Midwest (panel a) and in the South (panel b) between 1996 and 2010 in percentage of the long-term average of streamflow levels in each month in each region.

Table E.1 presents the realized electricity demand in each subsystem and year as as a percent-
age of the demand forecast from the 1997-2007 Decennial Energy Plan (PDE) produced by the
National System Operator along with the Mining and Energy Ministry. This is the main national
plan that guide the medium- and long-run plan of expansion of energy infrastructure in the country.
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We can see in the first cell in column (1) that the energy used in the Southeast in 1998 was 99.6
percent of the forecast demand (in PDE 1997) for that region and year. We can see in the table
that the growth in demand never outpaced growth in projected demand. However, it systematically
outpaced growth in generation capacity in the years prior to 2001. The crisis would have been
avoided if generation capacity had been expanded adequately – e.g., several infrastructure projects
were delayed or canceled. See Kelman (2001), Maurer, Pereira and Rosenblatt (2005), and Mation
and Ferraz (2011) for more discussion on the cause of the crisis and the exogenous role of weather
in the differential treatment across subsystems.

Table E.1: Realized Electricity Demand as Percentage of Demand Forecast (%)

Southeast Midwest South Brazil
(1) (2) (3) (4)

1998 99.6 98.5 97.9 99.4
1999 95.6 96.4 97.5 95.6
2000 96.2 95.7 98.5 95.6

Original calculations. Forecasts from 1997-2007 Decennial Energy Plan (PDE) produced by the National System
Operator (ONS) along with the Mining and Energy Ministry. Realized demand from ONS.
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F Timeline of the electricity crisis

Late 1999 The National System Operator (ONS) presents simulations of hydrological scenarios
for 2000 based on the actual reserve levels in 30 November of 1999. The report
concludes that the reservoir levels in some regions would hit zero (i.e., no electricity)
in 13% of these scenarios. (ONS-DPP 059/1999)

Feb 2000 The Ministry of Mining and Energy (MME) creates the Priority Thermal Program
(PPT) to increase the generation capacity of thermal power plants as the “unique so-
lution” to a possible collapse of the system.

Early 2000 The Priority Thermal Program becomes the Emergency Thermal Program.

Jul 2000 In a meeting with the President and his economic advisors, the minister of the MME
dismisses the chances of any energy crisis during 2000-2003.51

Dec 2000 ONS forecasts a scenario for 2001 with no energy crisis.

Feb 2001 Hydrological conditions reach 70% of the long run average, and ONS radically change
the forecast for 2001.

Mar 2001 ONS officially requests that the federal government intervene to assure a 20% load
reduction.

Mar 2001 First time the regulatory agency (ANEEL) publicly addressed a possible imminent
electricity shortage. It proposes the Consumption Reduction and Supply Increase
Plan (RECAO), which was abandoned shortly afterward.

Apr 2001 The Priority Thermal Program (PPT) fails and MME starts designing the load reduc-
tion program.52

May 2001 Government announces temporary electricity saving program to be implemented in
June 4. This announcement receives a lot of attention from the media.53

Jun 2001 Household incentives are implemented.

51Based on documents from the National System Operator (ONS), the minister stated: “considering the Priority
Thermal Program (PPT), even if we observe an increase in demand larger than expected, we will not face energy
supply and peak problems during 2000-2003 as long as the hydrological conditions are above 85% of the long run
average”.

52“Plan to hold expenditure on electricity” aims to reduce consumption in three regions with 25 measures. In case
these measures are not effective it is possible that these regions will have blackouts in June. (Folha de São Paulo,
Front page, A1, 06/04/2001). “Plan to avoid energy saving program failed”, only three of the planned measures were
implemented. (Folha de São Paulo, B7, 05/05/2001)

53Folha de São Paulo: “Government is not decided between regular supply interruptions or higher tariffs” (Front
page, A1, 15/05/2001); “Plan will affect households with electricity bill above R$29” [U$15.9] (Front page, A1,
18/05/2001); “Government imposes ’super tariffs’ and will cut electricity of those who don’t save” (Front page, A1,
19/05/2001); “Households should avoid storing food at home and shop for groceries more often” (B10, 29/05/2001);
“Subsidies do not reduce lightbulbs’ prices” (B7, 01/06/2001).
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Feb 2002 Household fines and threat of electricity cuts are suspended.54

March 2002 Last billing cycle (February-March) bonuses were paid.

54“Rain brings relief to reservoirs” (Folha de São Paulo, B1, 03/01/2002).
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G The electricity saving program
We present here additional information related to the electricity saving program of the 2001 Brazil-
ian electricity crisis.

Figure G.1 explains the rule of the electricity saving program to assign individual quotas to
customers at the beginning of the crisis. Customers’ baseline was defined as the average billed
monthly consumption from May to July 2000 (or the first three monthly bills for customers who
moved in after May 2000). Quotas were set at 80% of the baseline with three exceptions: (i) cus-
tomers with a baseline below 100 kWh had their quotas set at 100% of baseline; (ii) customers with
a baseline above 100 kWh but quotas below 100 kWh with the 80% rule had their quotas set at
100 kWh; (iii) because quotas were based on billed consumption and bills always charge minimum
consumption levels, quotas were at least equal to these minimum levels. Figure G.1 illustrates the
case of LIGHT, the distribution utility serving the city of Rio de Janeiro and surrounding munici-
palities, where minimum levels are 30 kWh, 50 kWh, and 100 kWh for monophasic, biphasic, and
triphasic connections, respectively.

Figure G.1: Quota assignment rule of the electricity saving program
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The figure explains the rule of the electricity saving program to assign individual quotas to customers at the beginning of the crisis.

Figure G.2 provides an example of how the pecuniary incentives of the electricity saving pro-
gram modified the cost of consuming electricity during the crisis. The figure considers the case
of customers with a quota of 250 kWh (80% of baseline in the first five months of the crisis, be-
fore any change in quotas). We assume a budget of R$500 and a tariff of R$.208/kWh (LIGHT,
June 2001). The usual marginal cost of electricity is nil up to 100 kWh because of we assume a
minimum consumption level of 100 kWh (triphasic connection). During the crisis, the total cost
of electricity is nil if consuming below 100 kWh because of the guaranteed bonus. Conditional on
exceeding the quota, the cost of electricity increases because of the fines paid for every kWh above
200. Above the quota, the fines (i) increase the marginal price (by 50% up to 500 kWh, then by
200%) and (ii) increase the cost discretely by (250−200)× .208×50% =R$5.2.
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Figure G.2: Example of the economic incentives of the electricity saving program
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The figure displays the pecuniary incentives of the electricity saving program for customers with a quota of 250 kWh (80% of baseline).
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H Additional descriptive statistics (end of Table 1)
Table H.1 displays the same information as in Table 1 in the paper, but it consider a different set of
variables. Columns (1)-(5) compare initial values across distribution utilities in the four subsystems
(and for LIGHT), namely the mean and range of relevant variables in 2000. Columns (6)-(8)
present the differential trend in these variables between 2000 and 2010 comparing utilities in each
of the three other subsystems to utilities in the South. The information in Table H.1 supports our
key identification assumption of a common-trend for distribution utilities in the Southeast/Midwest
and in the South. It also shows that such an assumption is unlikely to hold, especially in the long
term, when considering distribution utilities in the other two subsystems subject to the electricity
saving program.
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I The joint distribution of average electricity use and relevant
covariates before the crisis (2000) among distribution utilities

The following figures display the joint distribution of average residential electricity use per cus-
tomer and relevant covariates before the crisis among distribution utilities in the Southeast/Midwest
and in the South. We present figures for all the variables displayed in Tables 1 and H.1. The data
come from either utility-level data from ANEEL or from the 2000 census matched to the con-
cession area of each distribution utility. The figures show that there was some overlap in the
distributions of average residential electricity use per customer in the Southeast/Midwest and in
the South before the crisis. They also show that there was some overlap in the distributions of
almost all covariates in the Southeast/Midwest and in the South before the crisis. The exception is
for average temperatures, which are lower in the South.
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Figure I.1: Joint distribution of average electricity use and relevant covariates before the crisis I (2000)
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(b) Number of customers
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(c) Population size
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(d) Share with electricity
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(f) Median household income
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2000, the exchange rate was about R$1.9'US$1.
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Figure I.2: Joint distribution of average electricity use and relevant covariates before the crisis II (2000)

(a) Share with refrigerator
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(b) Share with washing machine

1
0

0
1
5

0
2

0
0

2
5

0
A

v
e

ra
g

e
 e

le
c
tr

ic
it
y
 u

s
e

 i
n

 2
0

0
0

 (
k
W

h
)

0 .2 .4 .6 .8
Share of households with washing machine in 2000

Southeast/Midwest (T) South (C)

(c) Average temperature
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(d) Average residential electricity price
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(e) Share with TV

1
0

0
1

5
0

2
0

0
2

5
0

A
v
e

ra
g

e
 e

le
c
tr

ic
it
y
 u

s
e

 i
n

 2
0

0
0

 (
k
W

h
)

.45 .5 .55 .6 .65 .7
Share of households with TV in 2000

Southeast/Midwest (T) South (C)

(f) Share with computer
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2000, the exchange rate was about R$1.9'US$1.
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Figure I.3: Joint distribution of average electricity use and relevant covariates before the crisis III (2000)

(a) Average household size
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(b) Average dwelling size
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(c) Share with bathroom
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(d) Share employed
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(e) Share formally employed
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(f) Share with agricultural job
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2000, the exchange rate was about R$1.9'US$1.
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Figure I.4: Joint distribution of average electricity use and relevant covariates before the crisis IV (2000)

(a) Share with air conditioning
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2000, the exchange rate was about R$1.9'US$1.
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J The joint distribution of average electricity use and relevant
covariates after the crisis (2010) among distribution utilities

The following figures display the joint distribution of average residential electricity use per cus-
tomer and relevant covariates after the crisis among distribution utilities in the Southeast/Midwest
and in the South. We present figures for all the variables displayed in Tables 1 and H.1. The data
come from either utility-level data from ANEEL or from the 2010 census matched to the conces-
sion area of each distribution utility. The figures show that there is some overlap in the distributions
of average residential electricity use per customer in the Southeast/Midwest and in the South after
the crisis. They also show that there is some overlap in the distributions of almost all covariates
in the Southeast/Midwest and in the South before the crisis. The exception is for average temper-
atures, which are lower in the South. Note that the 2010 census did not record ownership rates of
air conditioning units.
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Figure J.1: Joint distribution of average electricity use and relevant covariates after the crisis I (2010)

(a) Main residential electricity tariff
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(b) Number of customers
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(c) Population size
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(d) Share with electricity
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(e) Share urban
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(f) Median household income
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2010, the exchange rate was about R$1.75'US$1.
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Figure J.2: Joint distribution of average electricity use and relevant covariates after the crisis II (2010)

(a) Share with refrigerator
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(b) Share with washing machine
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(c) Average temperature
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(d) Average residential electricity price
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(e) Share with TV
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(f) Share with computer
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2010, the exchange rate was about R$1.75'US$1.
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Figure J.3: Joint distribution of average electricity use and relevant covariates after the crisis III (2010)

(a) Average household size
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(b) Average dwelling size
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(c) Share with bathroom
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(d) Share employed
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(e) Share formally employed
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(f) Share with agricultural job
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Each observation corresponds to a distribution utility and its concession area. The panels display the joint distribution of average residential electricity use per customer and
relevant covariates before the crisis (2000) among distribution utilities in the Southeast/Midwest and in the South. In 2010, the exchange rate was about R$1.75'US$1.
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K Changes in average electricity during and after the crisis
Figure K.1 displays the changes in average residential electricity use per customer in every dis-
tribution utility in the Southeast/Midwest and in the South during the crisis (June 2001-February
2002) and long after the crisis (June 2010-February 2011) compared to before the crisis (June
2000-February 2001). Changes in average residential electricity use per customer y are calculated
as follows: ∆y =

(
yduring/a f ter− ybe f ore

)
/ybe f ore. The figure shows that changes in average resi-

dential electricity use were lower for every distribution utility in the Southeast/Midwest during the
crisis. The figure shows that changes in average residential electricity use were lower for almost
every distribution utility in the Southeast/Midwest long after the crisis.

Figure K.1: Changes in average electricity use during and long after the crisis w.r.t before the crisis
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The figure displays the changes in average residential electricity use per customer in every distribution utility in the Southeast/Midwest and in the
South during the crisis (June 2001-February 2002) and long after the crisis (June 2010-February 2011) compared to before the crisis (une

2000-February 2001). Changes in average residential electricity use per customer are calculated as follows: ∆y =
(
yduring/a f ter− ybe f ore

)
/ybe f ore.

L The joint distribution of long-run changes in average elec-
tricity use and relevant covariates (2010 vs. 2000) among
distribution utilities

The following figures display the joint distribution of long-run changes in average residential elec-
tricity use per customer and in relevant covariates between 2010 (after the crisis) and 2000 (be-
fore the crisis) among distribution utilities in the Southeast/Midwest and in the South. Long-run
changes for a variable y are calculated as follows: ∆y = (y2010− y2000)/y2000. We present figures
for all the variables displayed in Tables 1 and H.1. The data come from either utility-level data
from ANEEL or from the 2000 and 2010 censuses matched to the concession area of each distri-
bution utility. The figures show that there is some overlap in the distributions of long-run changes
in all covariates in the Southeast/Midwest and in the South. They also show that there is a lot of
variation in terms of long-run changes in those covariates among distribution utilities. Importantly,
the figures show that long-run changes in average electricity use per customer are systematically
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lower in the Southeast/Midwest than in the South for given long-run changes in those covariates.
This explains why our results are robust to controlling for relevant covariates in Table 2.
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Figure L.1: Long-run changes in average electricity use and in relevant covariates I

(a) Changes in main residential electricity tariff
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(b) Changes in number of customers
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(c) Changes in population size
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(d) Changes in share with electricity
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(e) Changes in share urban
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(f) Changes in median household income
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The panels display the joint distribution of long-run changes in average residential electricity use per customer and in relevant covariates between
2010 (after the crisis) and 2000 (before the crisis) among distribution utilities in the Southeast/Midwest and in the South. Long-run changes for a
variable y are calculated as follows: ∆y = (y2010− y2000)/y2000.
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Figure L.2: Long-run changes in average electricity use and in relevant covariates II

(a) Changes in share with refrigerator
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(b) Changes in share with washing machine
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(c) Changes in average temperature
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(d) Changes in average residential elecitricity
price
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(e) Changes in share with TV
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(f) Changes in share with computer
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The panels display the joint distribution of long-run changes in average residential electricity use per customer and in relevant covariates between
2010 (after the crisis) and 2000 (before the crisis) among distribution utilities in the Southeast/Midwest and in the South. Long-run changes for a
variable y are calculated as follows: ∆y = (y2010− y2000)/y2000.
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Figure L.3: Long-run changes in average electricity use and in relevant covariates III

(a) Changes in average household size
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(b) Changes in average dwelling size
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(c) Changes in share with bathroom
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(d) Changes in share employed
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(e) Changes in share formally employed
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(f) Changes in share with agricultural job
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The panels display the joint distribution of long-run changes in average residential electricity use per customer and in relevant covariates between
2010 (after the crisis) and 2000 (before the crisis) among distribution utilities in the Southeast/Midwest and in the South. Long-run changes for a
variable y are calculated as follows: ∆y = (y2010− y2000)/y2000.
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M Tables with coefficient estimates and standard errors for
Figures 3 and 4a

The following tables display coefficient estimates and standard errors for the regressions behind
the results presented graphically in Figures 3 and 4a. All specifications include distribution utility
and and calendar month per region fixed effects. Each table has the same format. Column (1)
displays coefficients on time-period dummies (reference period: Early 2001) from a regression
that only includes distribution utilities in the South. Column (2) displays difference-in-difference
estimators in every time-period comparing utilities in the Southeast/Midwest and the South. The
results in column (2) are the ones presented graphically in Figures 3 and 4a. Column (3) displays
a robustness check for the results in column (2) by restricting the sample to distribution utilities
with overlapping values for average electricity use, the main residential tariff, and median income
levels in 2000. Tables vary in the sample years considered and the set of controls available in these
years, and in using specifications in logs and levels. Difference-in-difference estimates in column
(2) in Tables M.1 and M.2 are those presented in Figures 3. Difference-in-difference estimates in
column (2) in Tables M.1, M.3, M.5, M.7, and M.9 are those presented in Figure 4a.
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Table M.1: Difference–in–difference results in logs (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 -.0018 (.0164) .0099 (.0119) .0069 (.0128)
2000 -.0021 (.0086) .0025 (.0081) .0018 (.0088)

Crisis -.0813*** (.0042) -.2581*** (.0079) -.2573*** (.0087)
Rest of 2002 -.0528*** (.0077) -.1695*** (.0089) -.1705*** (.0103)
2003 -.0669*** (.0155) -.1301*** (.0097) -.1255*** (.0115)
2004 -.0604*** (.0211) -.1281*** (.0115) -.1282*** (.0138)
2005 -.0532** (.022) -.1154*** (.0117) -.1129*** (.0143)
2006 -.054** (.0235) -.1145*** (.0123) -.1129*** (.0144)
2007 -.0266 (.0257) -.1252*** (.0135) -.1267*** (.0158)
2008 -.0312 (.0291) -.118*** (.0137) -.1218*** (.0159)
2009 -.0086 (.0306) -.113*** (.0134) -.1171*** (.0153)
2010 .0115 (.0326) -.1103*** (.0136) -.1146*** (.015)
Log main tariff (R) -.0597* (.0351) -.138*** (.0277) -.1366*** (.0338)
Log population (1000’s) -.1851* (.1056) -.1514* (.0877) -.1194 (.1108)
Log formal employment (1000’s) .1069** (.0517) .121*** (.0445) .1024* (.055)
Log GDP per capita (R) -.021 (.0302) -.0335 (.028) -.0317 (.034)
Log average temperature (C) .1489* (.0808) .1439* (.0788) .141* (.0797)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2425 6169 5017
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, log), total population, total formal employment, GDP per capita, and average
temperature (yearly, log) for each utility. Column (1) reproduces coefficients on time–period dummies in the South (reference
period: Early 2001). Column (2) presents difference–in–difference estimators in every time–period comparing utilities in the
Southeast/Midwest and the South. Column (3) restricts the sample in column (2) to utilities with overlapping values for average
electricity use, the main residential tariff, and median income levels in 2000.
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Table M.2: Difference–in–difference results in levels (1999-2010)

Control region Treatment region dummy
(1) (2) (3)

1999 1.224 (1.91) 1.274 (1.635) 1.204 (1.745)
2000 .0214 (1.155) .0992 (1.271) .4208 (1.446)

Crisis -13.6*** (.9153) -41.5*** (2.484) -37.96*** (1.992)
Rest of 2002 -9.245*** (1.16) -29.5*** (1.97) -27.16*** (1.871)
2003 -11.82*** (2.408) -22.99*** (2.225) -19.74*** (2.192)
2004 -10.84*** (3.27) -21.86*** (2.343) -19.72*** (2.359)
2005 -9.832*** (3.54) -19.72*** (2.309) -17.48*** (2.299)
2006 -10.07*** (3.818) -19*** (2.412) -17.11*** (2.355)
2007 -6.234 (4.084) -20.32*** (2.447) -18.8*** (2.615)
2008 -6.764 (4.828) -19.54*** (2.386) -18.41*** (2.646)
2009 -3.803 (5.165) -18.49*** (2.343) -17.86*** (2.58)
2010 -.6471 (5.75) -19.01*** (2.354) -18.26*** (2.522)
Main tariff (R) -24.97 (21.3) -77.63*** (14.62) -82.15*** (17.75)
Population (1000’s) -.0202*** (.0073) -.0108*** (.0033) -.0035 (.0062)
Formal employment (1000’s) .03*** (.0097) .0098** (.0043) .0015 (.0099)
GDP per capita (R) .0202 (.2037) -.0983 (.1886) .0814 (.3042)
Average temperature (C) 2.056** (.831) 1.739** (.7404) 1.338* (.7525)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2425 6169 5017
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, levels), total population, total formal employment, GDP per capita, and average
temperature (yearly, levels) for each utility. Column (1) reproduces coefficients on time–period dummies in the South (reference
period: Early 2001). Column (2) presents difference–in–difference estimators in every time–period comparing utilities in the
Southeast/Midwest and the South. Column (3) restricts the sample in column (2) to utilities with overlapping values for average
electricity use, the main residential tariff, and median income levels in 2000.
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Table M.3: Difference–in–difference results in logs (1991-2011)

Control region Treatment region dummy
(1) (2) (3)

1991 -.141*** (.0215) .021 (.0223) .0222 (.0223)
1992 -.1613*** (.0195) .0236 (.0208) .0289 (.0205)
1993 -.1628*** (.018) .0134 (.0196) .0193 (.019)
1994 -.1576*** (.0157) .0118 (.0179) .0187 (.0181)
1995 -.0766*** (.0119) .0186 (.0138) .0217 (.0149)
1996 -.0206* (.0105) .0085 (.0126) .0095 (.0135)
1997 -.0187*** (.0059) .0353*** (.0081) .0365*** (.0094)
1998 -.0054 (.0068) .0438*** (.0091) .0443*** (.0101)
1999 -.0046 (.007) .0254*** (.0079) .0237*** (.0084)
2000 -.0128*** (.0046) .0202*** (.0055) .0189*** (.0061)

Crisis -.0937*** (.004) -.2508*** (.0088) -.2487*** (.0095)
Rest of 2002 -.0652*** (.0057) -.1639*** (.0086) -.1663*** (.0096)
2003 -.0966*** (.0077) -.1242*** (.0106) -.1228*** (.0123)
2004 -.0945*** (.0086) -.1314*** (.0126) -.1331*** (.0149)
2005 -.0824*** (.0083) -.1233*** (.0128) -.1265*** (.0155)
2006 -.0892*** (.0081) -.1144*** (.0141) -.1192*** (.0169)
2007 -.0679*** (.0104) -.1094*** (.0165) -.1177*** (.0199)
2008 -.0667*** (.0119) -.1028*** (.0176) -.1115*** (.0208)
2009 -.0393*** (.0135) -.1036*** (.0183) -.1121*** (.0211)
2010 -.0205 (.013) -.0983*** (.0173) -.1073*** (.0197)
2011 -.0012 (.0109) -.1112*** (.0176) -.1215*** (.0205)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2772 8820 7056
Clusters 11 35 28

Units of observation: distribution utilities as of 1991. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility).
Data from 1991 to 2011. Results from specifications including utility and calendar month per region fixed effects. Column (1)
reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents difference–
in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts
the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff, and median
income levels in 2000.
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Table M.4: Difference–in–difference results in levels (1991-2011)

Control region Treatment region dummy
(1) (2) (3)

1991 -22.72*** (3.501) .9331 (3.831) 2.629 (3.682)
1992 -25.57*** (3.266) .7361 (3.775) 3.257 (3.51)
1993 -25.71*** (3.041) -.9454 (3.63) 1.771 (3.302)
1994 -24.91*** (2.744) -1.269 (3.434) 1.446 (3.263)
1995 -12.83*** (2.095) 1.493 (2.559) 2.74 (2.661)
1996 -3.822** (1.838) .9914 (2.266) 1.294 (2.424)
1997 -3.457*** (1.022) 6.099*** (1.433) 5.971*** (1.657)
1998 -1.25 (1.219) 8.302*** (1.67) 7.788*** (1.793)
1999 -1.083 (1.227) 4.778*** (1.453) 3.999*** (1.523)
2000 -2.448*** (.8676) 3.396*** (1.09) 2.988** (1.219)

Crisis -15.35*** (1.092) -39.91*** (2.783) -36.4*** (2.213)
Rest of 2002 -10.86*** (1.152) -27.97*** (2.149) -26.06*** (1.949)
2003 -15.74*** (1.72) -22.02*** (2.604) -19.54*** (2.486)
2004 -15.49*** (1.659) -23.01*** (2.687) -20.93*** (2.664)
2005 -13.58*** (1.568) -21.71*** (2.573) -20.1*** (2.676)
2006 -14.48*** (1.432) -20.33*** (2.609) -19.02*** (2.734)
2007 -11.03*** (1.672) -19.36*** (2.715) -18.91*** (3.073)
2008 -11.02*** (1.942) -18.15*** (2.909) -17.89*** (3.27)
2009 -6.66*** (2.22) -18.25*** (3.037) -18.22*** (3.383)
2010 -3.531 (2.147) -17.49*** (2.914) -17.7*** (3.186)
2011 -.4998 (1.784) -19.43*** (2.94) -19.88*** (3.268)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2772 8820 7056
Clusters 11 35 28

Units of observation: distribution utilities as of 1991. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility).
Data from 1991 to 2011. Results from specifications including utility and calendar month per region fixed effects. Column (1)
reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents difference–
in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts
the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff, and median
income levels in 2000.
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Table M.5: Difference–in–difference results in logs (1996-2011)

Control region Treatment region dummy
(1) (2) (3)

1996 -.0327*** (.0107) .0245* (.0144) .0239 (.0154)
1997 -.0255*** (.0094) .0448*** (.0121) .045*** (.0127)
1998 -.0089 (.007) .0463*** (.0108) .0467*** (.0117)
1999 -.0059 (.0065) .0265*** (.009) .0245** (.0096)
2000 -.0105*** (.004) .0197*** (.0061) .0181*** (.0069)

Crisis -.086*** (.004) -.2551*** (.0084) -.253*** (.0089)
Rest of 2002 -.0579*** (.0056) -.1658*** (.0083) -.1679*** (.0091)
2003 -.0886*** (.0079) -.1254*** (.0095) -.1235*** (.011)
2004 -.088*** (.0092) -.1303*** (.0118) -.1313*** (.0138)
2005 -.0739*** (.0092) -.1234*** (.0121) -.1256*** (.0143)
2006 -.0801*** (.0077) -.1158*** (.0136) -.1191*** (.0158)
2007 -.0571*** (.0073) -.113*** (.0159) -.1196*** (.0187)
2008 -.0573*** (.0087) -.1065*** (.0164) -.1133*** (.0191)
2009 -.0317*** (.01) -.1052*** (.0169) -.1118*** (.0192)
2010 -.0103 (.0096) -.1026*** (.0169) -.1096*** (.0184)
2011 .0095 (.0101) -.115*** (.0176) -.1233*** (.0196)
Log main tariff (R) -.0128*** (.0023) -.0247** (.0125) -.022** (.0105)
Log population (1000’s) .0287 (.0952) .0369 (.0861) .0225 (.0915)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2496 7104 5760
Clusters 13 37 30

Units of observation: distribution utilities as of 1996. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1996 to 2011. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, log) and total population (yearly, log) for each utility. Column (1) reproduces
coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents difference–in–difference
estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts the sample in
column (2) to utilities with overlapping values for average electricity use, the main residential tariff, and median income levels
in 2000.

XXXV



Table M.6: Difference–in–difference results in levels (1996-2011)

Control region Treatment region dummy
(1) (2) (3)

1996 -4.999*** (1.877) 2.434 (2.358) 2.968 (2.493)
1997 -3.964** (1.76) 6.862*** (1.903) 6.943*** (2.031)
1998 -1.156 (1.406) 8.631*** (1.742) 8.281*** (1.83)
1999 -.7298 (1.256) 4.832*** (1.43) 4.176*** (1.486)
2000 -1.72** (.7684) 3.06*** (1.002) 2.736** (1.11)

Crisis -14.29*** (.9333) -40.52*** (2.676) -37.07*** (2.082)
Rest of 2002 -10.04*** (1.01) -28.23*** (2.035) -26.4*** (1.823)
2003 -15.24*** (1.498) -22.11*** (2.378) -19.76*** (2.253)
2004 -15.59*** (1.418) -22.53*** (2.515) -20.65*** (2.481)
2005 -13.5*** (1.355) -21.42*** (2.412) -20.06*** (2.496)
2006 -14.45*** (1.25) -20*** (2.47) -19*** (2.557)
2007 -10.77*** (1.452) -19.24*** (2.607) -19.1*** (2.901)
2008 -10.98*** (1.619) -17.8*** (2.754) -17.86*** (3.058)
2009 -6.961*** (1.796) -17.57*** (2.891) -17.88*** (3.161)
2010 -3.332* (1.836) -17.25*** (2.868) -17.82*** (3.058)
2011 -.2635 (1.609) -19.16*** (2.989) -20*** (3.224)
Main tariff (R) -.3327*** (.0546) -.2589*** (.0415) -.2612*** (.0521)
Population (1000’s) .0032 (.0031) -.0025 (.0015) -.0022 (.0026)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2496 7104 5760
Clusters 13 37 30

Units of observation: distribution utilities as of 1996. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1996 to 2011. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, level) and total population (yearly, level) for each utility. Column (1) reproduces
coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents difference–in–difference
estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts the sample in
column (2) to utilities with overlapping values for average electricity use, the main residential tariff, and median income levels
in 2000.

XXXVI



Table M.7: Difference–in–difference results in logs (1996-2010)

Control region Treatment region dummy
(1) (2) (3)

1996 -.0053 (.0136) .0156 (.0145) .0143 (.0157)
1997 -.0041 (.0103) .0379*** (.0118) .038*** (.0124)
1998 .0145 (.0097) .0296** (.0131) .029** (.0139)
1999 .0173 (.0113) .0133 (.012) .0092 (.013)
2000 .0063 (.0072) .0067 (.0082) .0045 (.0093)

Crisis -.0859*** (.0043) -.2584*** (.0087) -.257*** (.0094)
Rest of 2002 -.0614*** (.0072) -.1742*** (.0099) -.1781*** (.0113)
2003 -.0925*** (.011) -.1345*** (.0114) -.1351*** (.0138)
2004 -.0959*** (.0142) -.1362*** (.0132) -.1394*** (.016)
2005 -.0903*** (.0141) -.1296*** (.0132) -.1333*** (.0159)
2006 -.0985*** (.013) -.1243*** (.0139) -.1289*** (.0165)
2007 -.0778*** (.0135) -.1283*** (.0164) -.1364*** (.0192)
2008 -.0855*** (.0157) -.1147*** (.0162) -.1223*** (.0186)
2009 -.0667*** (.0167) -.1108*** (.0168) -.1182*** (.0192)
2010 -.0547*** (.0182) -.1061*** (.0171) -.114*** (.0187)
Log main tariff (R) -.0108*** (.0021) -.0225* (.0116) -.0202** (.0095)
Log population (1000’s) -.0042 (.0899) .0023 (.0807) .0184 (.0937)
Log formal employment (1000’s) .106*** (.0297) -.0225* (.0116) -.0202** (.0095)
Log average temperature (C) .1693 (.1065) .0023 (.0807) .0184 (.0937)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2340 6660 5400
Clusters 13 37 30

Units of observation: distribution utilities as of 1996. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1996 to 2010. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, log), total population and total formal employment (yearly, log) for each utility.
Column (1) reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents
difference–in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column
(3) restricts the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff,
and median income levels in 2000.
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Table M.8: Difference–in–difference results in levels (1996–2010)

Control region Treatment region dummy
(1) (2) (3)

1996 -2.705 (2.732) -.0804 (2.571) 1.346 (2.692)
1997 -2.879 (1.787) 4.886** (1.911) 5.691*** (2.075)
1998 1.4 (2.021) 5.108** (2.16) 5.475** (2.259)
1999 3.153 (2.067) 1.795 (1.996) 1.645 (2.153)
2000 .9916 (1.309) .5413 (1.437) .6054 (1.646)

Crisis -14.01*** (.8975) -41.1*** (2.7) -37.66*** (2.165)
Rest of 2002 -9.466*** (1.042) -29.78*** (2.207) -27.91*** (2.236)
2003 -13.14*** (1.493) -23.76*** (2.57) -21.47*** (2.672)
2004 -12.65*** (1.71) -23.43*** (2.667) -21.76*** (2.772)
2005 -11.94*** (1.265) -22.29*** (2.526) -21.08*** (2.725)
2006 -12.86*** (.9221) -21.08*** (2.557) -20.23*** (2.796)
2007 -9.429*** (1.201) -21.53*** (2.79) -21.25*** (3.262)
2008 -9.833*** (1.273) -19.32*** (2.682) -18.83*** (3.107)
2009 -7.279*** (1.829) -18.56*** (2.828) -18.4*** (3.214)
2010 -4.828** (2.272) -18.41*** (2.85) -18.07*** (3.109)
Main tariff (R) -.2718*** (.0376) -.2311*** (.0388) -.2421*** (.0459)
Population (1000’s) -.0112*** (.0032) -.0104*** (.003) -.0078 (.0054)
Formal employment (1000’s) .0205*** (.0063) .0126*** (.0042) .0092 (.01)
Average temperature (C) 51.64*** (19.56) 41.85** (16.31) 38.9** (17.15)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2340 6660 5400
Clusters 13 37 30

Units of observation: distribution utilities as of 1996. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1996 to 2010. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, levels), total population and total formal employment (yearly, levels) for each
utility. Column (1) reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2)
presents difference–in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South.
Column (3) restricts the sample in column (2) to utilities with overlapping values for average electricity use, the main residential
tariff, and median income levels in 2000.
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Table M.9: Difference–in–difference results in logs (1999–2011)

Control region Treatment region dummy
(1) (2) (3)

1999 -.0127 (.0104) .0167* (.01) .0143 (.0108)
2000 -.0128** (.0053) .0136** (.0066) .0126* (.0073)

Crisis -.0831*** (.0048) -.2552*** (.0077) -.2541*** (.0083)
Rest of 2002 -.0544*** (.0092) -.1649*** (.0078) -.1657*** (.0086)
2003 -.0767*** (.0169) -.1239*** (.0086) -.1186*** (.0098)
2004 -.0708*** (.0229) -.127*** (.0109) -.1257*** (.0127)
2005 -.057** (.0249) -.1153*** (.0113) -.1118*** (.0128)
2006 -.0597** (.0257) -.1112*** (.0125) -.1089*** (.0139)
2007 -.0363 (.0278) -.1126*** (.0136) -.1138*** (.0156)
2008 -.0378 (.0322) -.1115*** (.0142) -.1145*** (.0163)
2009 -.0119 (.0333) -.1087*** (.0138) -.1122*** (.0155)
2010 .0121 (.0352) -.1101*** (.014) -.114*** (.0151)
2011 .0299 (.0389) -.1178*** (.0149) -.1236*** (.0163)
Log main tariff (R) -.0576* (.0314) -.1359*** (.0265) -.138*** (.0318)
Log population (1000’s) -.0629 (.0798) -.0394 (.0768) -.0244 (.0804)
Log GDP per capita (R) .0173 (.0307) .0073 (.0252) .0025 (.0282)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2629 6685 5437
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility).
Data from 1999 to 2011. Results from specifications including utility and calendar month per region fixed effects. Regressions
also control for the main electricity tariff (monthly, log) and total population and GDP per capita (yearly, log) for each utility.
Column (1) reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents
difference–in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column
(3) restricts the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff,
and median income levels in 2000.
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Table M.10: Difference–in–difference results in levels (1999–2011)

Control region Treatment region dummy
(1) (2) (3)

1999 -1.693 (1.387) 3.582** (1.435) 2.695* (1.478)
2000 -2.028** (.7909) 2.192** (1.031) 1.808 (1.123)

Crisis -13.87*** (.948) -40.84*** (2.465) -37.33*** (1.952)
Rest of 2002 -9.544*** (1.266) -28.04*** (1.914) -25.91*** (1.705)
2003 -12.86*** (2.474) -21.55*** (2.174) -18.37*** (1.986)
2004 -12.19*** (3.287) -21.3*** (2.353) -18.82*** (2.267)
2005 -10*** (3.55) -19.11*** (2.378) -16.58*** (2.254)
2006 -10.26*** (3.77) -18.31*** (2.505) -16.06*** (2.324)
2007 -6.257 (4.029) -18.42*** (2.524) -16.88*** (2.528)
2008 -6.442 (4.675) -18.49*** (2.521) -17.37*** (2.633)
2009 -2.386 (4.871) -17.83*** (2.436) -17.05*** (2.548)
2010 1.891 (5.299) -18.15*** (2.505) -17.58*** (2.571)
2011 4.959 (6.012) -19*** (2.654) -18.77*** (2.628)
Main tariff (R) -37.75** (17.19) -83.45*** (13.24) -83.34*** (15.63)
Population (1000’s) .0038 (.0036) -.0034* (.0018) -.0025 (.0023)
GDP per capita (R) .0769 (.2302) -.017 (.2087) .15 (.2707)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2629 6685 5437
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2011. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, levels) and total population and GDP per capita (yearly, levels) for each utility.
Column (1) reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents
difference–in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column
(3) restricts the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff,
and median income levels in 2000.
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N Robustness of difference-in-difference results
The following figures and tables present some robustness checks for our difference-in-difference
results.

Figure N.1 and Tables N.1, N.2, N.3, and N.4 display similar results as in Figure 3 and Tables
M.1 and M.2, splitting the sample between winter and summer months. The reference periods are
the winter of 2000 and the summer of 2000-2001 (starting in 2000), respectively. We obtain similar
effects across seasons.

Figure N.1: Robustness of difference–in–difference results (by season)
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(b) in levels, winter
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(c) in logs, summer
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(d) in levels, summer
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The figure displays similar results as in Figure 3 in the paper, splitting the sample between winter and summer months. Omitted periods: winter
2000, summer 2000-2001, respectively.
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Table N.1: Difference–in–difference results for winter months in logs (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 -.0015 (.0088) .0184** (.0074) .0148** (.0075)

Crisis -.0865*** (.0084) -.2382*** (.0095) -.2384*** (.0105)
Rest of 2002 -.0575*** (.0106) -.1653*** (.0099) -.1657*** (.0105)
2003 -.0781*** (.0202) -.128*** (.0099) -.125*** (.0113)
2004 -.0632*** (.0216) -.1294*** (.0119) -.1298*** (.0134)
2005 -.0503** (.022) -.1059*** (.013) -.1053*** (.0151)
2006 -.0588** (.0237) -.1047*** (.0166) -.1013*** (.0186)
2007 -.035 (.0285) -.1234*** (.0149) -.1222*** (.0171)
2008 -.0368 (.0318) -.1228*** (.0141) -.1288*** (.0154)
2009 -.0067 (.0336) -.1218*** (.0149) -.1253*** (.0169)
2010 .0123 (.0363) -.1206*** (.0156) -.1249*** (.0175)
Log main tariff (R) -.078*** (.0268) -.1499*** (.0283) -.1462*** (.0329)
Log population (1000’s) -.1344 (.1075) -.1354 (.0906) -.1009 (.1138)
Log formal employment (1000’s) .1165** (.0471) .1117** (.0448) .0918* (.0541)
Log GDP per capita (R) -.0079 (.0329) -.0302 (.0282) -.0249 (.0335)
Log average temperature (C) -.0088 (.0631) .0717 (.0906) .0696 (.0948)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 808 2056 1672
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010, restricted to winter months. Results from specifications including utility and calendar month per region fixed
effects. Regressions also control for the main electricity tariff (monthly, log), total population, total formal employment, GDP per
capita, and average temperature (yearly, log) for each utility. Column (1) reproduces coefficients on time–period dummies in the
South (reference period: winter 2000). Column (2) presents difference–in–difference estimators in every time–period comparing
utilities in the Southeast/Midwest and the South. Column (3) restricts the sample in column (2) to utilities with overlapping
values for average electricity use, the main residential tariff, and median income levels in 2000.
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Table N.2: Difference–in–difference results for winter months in levels (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 .4994 (1.049) 3.206*** (1.163) 2.6** (1.085)

Crisis -14.54*** (1.354) -36.99*** (2.45) -34.09*** (2.03)
Rest of 2002 -10.23*** (1.841) -27.61*** (2.149) -25.42*** (1.722)
2003 -13.85*** (3.241) -21.11*** (2.213) -18.39*** (2.005)
2004 -11.06*** (3.525) -20.82*** (2.393) -18.95*** (2.008)
2005 -9.08** (3.819) -17.14*** (2.493) -15.56*** (2.228)
2006 -10.32** (4.143) -16.43*** (2.955) -14.51*** (2.734)
2007 -6.872 (4.804) -18.91*** (2.6) -17.18*** (2.496)
2008 -6.547 (5.382) -19.17*** (2.411) -18.71*** (2.442)
2009 -2.353 (5.749) -18.92*** (2.486) -18.34*** (2.627)
2010 .6001 (6.357) -19.32*** (2.51) -18.72*** (2.629)
Main tariff (R) -33.25* (18.33) -77.25*** (13.56) -81.16*** (15.93)
Population (1000’s) -.0168** (.008) -.0097*** (.003) -.0021 (.0055)
Formal employment (1000’s) .0253*** (.0088) .009** (.0037) -.001 (.0092)
GDP per capita (R) .1209 (.1999) -.0256 (.1923) .1827 (.2723)
Average temperature (C) .7363 (.7039) 1.067 (.7558) .7504 (.8024)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 808 2056 1672
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010, restricted to winter months. Results from specifications including utility and calendar month per region
fixed effects. Regressions also control for the main electricity tariff (monthly, levels), total population, total formal employment,
GDP per capita, and average temperature (yearly, levels) for each utility. Column (1) reproduces coefficients on time–period
dummies in the South (reference period: winter 2000). Column (2) presents difference–in–difference estimators in every time–
period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts the sample in column (2) to utilities with
overlapping values for average electricity use, the main residential tariff, and median income levels in 2000.
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Table N.3: Difference–in–difference results for summer months in logs (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 .0067 (.0061) -.0129* (.0074) -.013 (.0079)

Crisis -.0695*** (.0082) -.2771*** (.011) -.2725*** (.0117)
Rest of 2002 -.043*** (.0151) -.1512*** (.0128) -.1476*** (.0135)
2003 -.076*** (.0282) -.1425*** (.0123) -.1368*** (.0135)
2004 -.0672** (.0314) -.1381*** (.0122) -.1364*** (.0143)
2005 -.0632** (.0321) -.1418*** (.0141) -.1381*** (.0162)
2006 -.0375 (.0337) -.1388*** (.0158) -.1391*** (.0182)
2007 -.0409 (.0402) -.1219*** (.0144) -.1204*** (.0161)
2008 -.0363 (.0421) -.1195*** (.0176) -.1211*** (.0201)
2009 .0155 (.0419) -.137*** (.0158) -.1378*** (.0173)
2010 -.0176 (.0464) -.0933*** (.0164) -.0951*** (.018)
Log main tariff (R) -.0277 (.0463) -.1229*** (.0282) -.1145*** (.0362)
Log population (1000’s) -.1627 (.1032) -.1179 (.0819) -.0629 (.1043)
Log formal employment (1000’s) .0489 (.0554) .0956** (.047) .0669 (.0561)
Log GDP per capita (R) -.0042 (.0273) -.01 (.0257) -.0066 (.0311)
Log average temperature (C) .2597*** (.0629) .2046*** (.0752) .2033*** (.0767)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 809 2057 1673
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010, restricted to summer months. Results from specifications including utility and calendar month per region fixed
effects. Regressions also control for the main electricity tariff (monthly, log), total population, total formal employment, GDP
per capita, and average temperature (yearly, log) for each utility. Column (1) reproduces coefficients on time–period dummies in
the South (reference period: summer 2000–2001, starting in 2000). Column (2) presents difference–in–difference estimators in
every time–period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts the sample in column (2) to
utilities with overlapping values for average electricity use, the main residential tariff, and median income levels in 2000.
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Table N.4: Difference–in–difference results for summer months in levels (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 1.129 (1.013) -2.817** (1.367) -2.459* (1.372)

Crisis -12.26*** (1.405) -45.82*** (2.932) -41.76*** (2.282)
Rest of 2002 -7.997*** (2.077) -27.32*** (2.518) -24.58*** (2.337)
2003 -13.75*** (3.711) -25.08*** (2.605) -21.82*** (2.263)
2004 -12.59*** (4.18) -23.7*** (2.434) -21.5*** (2.388)
2005 -12.2*** (4.471) -24*** (2.529) -21.62*** (2.441)
2006 -8.5* (4.615) -23.08*** (2.756) -21.43*** (2.817)
2007 -9.612* (5.468) -20.56*** (2.582) -18.74*** (2.54)
2008 -9.225 (6.072) -20.69*** (2.946) -19.41*** (3.116)
2009 -1.028 (5.818) -23.84*** (2.796) -22.64*** (2.761)
2010 -7.652 (7.059) -16.74*** (2.762) -15.54*** (2.964)
Main tariff (R) -7.094 (26.43) -78.45*** (16.28) -78.98*** (21.42)
Population (1000’s) -.0264*** (.0066) -.0117** (.0046) -.0051 (.0074)
Formal employment (1000’s) .0397*** (.0114) .0111* (.0062) .0047 (.0118)
GDP per capita (R) .0024 (.2387) -.1029 (.165) .1143 (.3103)
Average temperature (C) 2.742*** (.7515) 1.882*** (.699) 1.557** (.7268)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 809 2057 1673
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010, restricted to summer months. Results from specifications including utility and calendar month per region
fixed effects. Regressions also control for the main electricity tariff (monthly, levels), total population, total formal employment,
GDP per capita, and average temperature (yearly, levels) for each utility. Column (1) reproduces coefficients on time–period
dummies in the South (reference period: summer 2000–2001, starting in 2000). Column (2) presents difference–in–difference
estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column (3) restricts the sample in
column (2) to utilities with overlapping values for average electricity use, the main residential tariff, and median income levels
in 2000.
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Figure N.2 displays similar results as in Figure 3 in the paper, limiting the sample to distri-
bution utilities with common support in average electricity use, main residential tariff, and me-
dian household income between the Southeast/Midwest and the South in 2000 (before the crisis).
We displayed above the distribution of these variables among distribution utilities in the South-
east/Midwest and in the South in 2000. Coefficients estimates and standard errors are presented in
column (3) in Tables M.1 and M.2 above. Results are similar when we restrict the sample this way.

Figure N.2: Robustness of difference–in–difference results (distribution utilities with common support in average
electricity use, main residential tariff, and median household income pre-crisis)
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(b) in levels
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The figure displays similar results as in Figure 3 in the paper, limiting the sample to distribution utilities with common support in average electricity use, main residential
tariff, and median household income between the Southeast/Midwest and the South in 2000 (before the crisis). Omitted periods: first few months in 2001.

Figure N.2 and Tables N.5, N.6 display similar results as in Figure 3 and Tables M.1 and
M.2, weighting distribution utilities by their customer base in 2000 (before the crisis). Results are
similar when we weight distribution utilities by their customer base at baseline. However, patterns
are especially driven by the few very large utilities in this case. Figure N.4 also displays the overall
impact of the electricity saving program as in Figure 1b, but presenting weighted averages in each
month, normalized with respect to the same month in 2000 (seasonality). Trends were similar prior
to June 2001, but they are more sensitive to patterns affecting the few very large utilities in this
figure. For instance, differences in average consumption levels between the Southeast/Midwest
and the South in preceding years compared to 2000 are a bit higher than in Figure 1b.
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Table N.5: Difference–in–difference results in logs weighting distribution utilities by their customer base
in 2000 (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 .0315*** (.0096) .0396*** (.0148) .0405* (.0222)
2000 .0174*** (.0051) .0221* (.0115) .0241 (.0156)

Crisis -.1032*** (.004) -.2482*** (.0139) -.2361*** (.0169)
Rest of 2002 -.0914*** (.0075) -.1606*** (.011) -.1583*** (.0143)
2003 -.1392*** (.0274) -.1224*** (.0146) -.102*** (.0198)
2004 -.1508*** (.0236) -.1257*** (.0119) -.1213*** (.0199)
2005 -.1557*** (.0243) -.1082*** (.0146) -.1101*** (.0171)
2006 -.17*** (.0273) -.114*** (.0173) -.1249*** (.0221)
2007 -.1552*** (.0322) -.1219*** (.0153) -.1459*** (.0212)
2008 -.1714*** (.0397) -.123*** (.0152) -.1491*** (.0193)
2009 -.1541*** (.0389) -.1245*** (.018) -.157*** (.0232)
2010 -.1547*** (.0438) -.125*** (.0167) -.1459*** (.0205)
Log main tariff (R) -.0525*** (.0202) -.1874*** (.0418) -.1665*** (.0406)
Log population (1000’s) .281 (.1697) -.1292 (.1243) .1057 (.1856)
Log formal employment (1000’s) .1969** (.0903) .3448*** (.0701) .4399*** (.0828)
Log GDP per capita (R) .0754 (.0561) -.1929*** (.0583) -.1903** (.0948)
Log average temperature (C) .0875 (.12) -.0282 (.2044) -.0564 (.2068)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2425 6169 5017
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, log), total population, total formal employment, GDP per capita, and average
temperature (yearly, log) for each utility. Distribution utilities are weighted by their customer base in 2000 (before the crisis).
Column (1) reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents
difference–in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column
(3) restricts the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff,
and median income levels in 2000.
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Table N.6: Difference–in–difference results in levels weighting distribution utilities by their customer base
in 2000 (1999–2010)

Control region Treatment region dummy
(1) (2) (3)

1999 6.241*** (1.647) 2.966 (2.284) -.0327 (2.43)
2000 3.262*** (.933) -.6067 (1.615) -1.514 (2.181)

Crisis -18.58*** (1.181) -41.79*** (5.081) -30.74*** (4.356)
Rest of 2002 -16.84*** (1.369) -30.01*** (2.957) -24.75*** (2.736)
2003 -25.64*** (4.162) -22.76*** (3.59) -15.4*** (2.744)
2004 -27.43*** (4) -21.72*** (3.479) -17.37*** (3.656)
2005 -28.88*** (4.714) -19.19*** (3.596) -14.55*** (3.85)
2006 -30.84*** (5.22) -19.11*** (4.407) -14.99*** (4.279)
2007 -29.65*** (5.682) -20.37*** (2.893) -19.61*** (3.996)
2008 -33.77*** (7.507) -19.14*** (3.309) -18.29*** (3.904)
2009 -32.5*** (7.66) -19.73*** (3.29) -21.2*** (4.602)
2010 -36.79*** (9.065) -20.22*** (3.426) -20.06*** (4.712)
Main tariff (R) .1717 (16.52) -86.58*** (20.99) -92.32*** (21.75)
Population (1000’s) .0001 (.005) -.0077** (.0032) .0004 (.0026)
Formal employment (1000’s) .0125*** (.0048) .0043 (.0044) -.0082 (.0053)
GDP per capita (R) 2.025*** (.4444) -.1435 (.4655) -.3833 (.7711)
Average temperature (C) 2.606*** (.8035) 3.949*** (1.417) 4.711*** (1.271)

Regions South S/SE/MW S/SE/MW
Restricted sample No No Yes
Observations 2425 6169 5017
Clusters 17 43 35

Units of observation: distribution utilities as of 1999. Significance levels: *10%, **5%, ***1% (s.e. clustered by utility). Data
from 1999 to 2010. Results from specifications including utility and calendar month per region fixed effects. Regressions also
control for the main electricity tariff (monthly, levels), total population, total formal employment, GDP per capita, and average
temperature (yearly, levels) for each utility. Distribution utilities are weighted by their customer base in 2000 (before the crisis).
Column (1) reproduces coefficients on time–period dummies in the South (reference period: Early 2001). Column (2) presents
difference–in–difference estimators in every time–period comparing utilities in the Southeast/Midwest and the South. Column
(3) restricts the sample in column (2) to utilities with overlapping values for average electricity use, the main residential tariff,
and median income levels in 2000.
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Figure N.3: Robustness of difference–in–difference results (distribution utilities weighted by their customer base
pre-crisis)
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(b) in levels
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The figure displays similar results as in Figure 3 in the paper, weighting distribution utilities by their customer base in 2000 (before the crisis). Omitted periods: first few
months in 2001.

Figure N.4: Consequence of the temporary electricity saving program (distribution utilities weighted by their cus-
tomer base pre-crisis)
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The figure displays the overall impact of the electricity saving program as in Figure ??, but presenting weighted averages in each month, normalized with respect to the same
month in 2000 (seasonality).
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O Trends in the main residential electricity tariff
Figure O.1 shows that trends in the main residential electricity tariff did not evolve differentially
for distribution utilities in the Southeast/Midwest compared to distribution utilities in the South
after the crisis. Panel (a) is constructed similarly as Figure 1b, but it displays the average of
the main residential electricity tariff for distribution utilities in the Southeast/Midwest and in the
South, instead of the average residential electricity use per customer. It shows that electricity tariffs
followed a similar trend in the two subsystems. If anything, electricity tariffs increased relatively
less in the Southeast/Midwest (in later years). Panel (b) displays utility-specific impacts obtained
by synthetic control methods as in Figure 4b, but for the main residential electricity tariff instead of
the average residential electricity use per customer. It shows that the distributions of utility-specific
impacts for the main residential electricity tariff completely overlap between distribution utilities
in the Southeast/Midwest and in the South.

Figure O.1: Trends in the main residential electricity tariff
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(b) Synthetic control estimates for the main electricity
tariff (in logs)
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Panel (a) displays the average of the main residential electricity tariff for distribution utilities in the Southeast/Midwest and in the South, normalized
with respect to the same month in 2000 (seasonality). Panel (b) displays utility-specific impacts obtained by synthetic control methods for the
demeaned logarithm of the main residential electricity tariff. Monthly estimates are averaged into the same time periods as in Figure 3a. Darker
lines correspond to distribution utilities in the Southeast/Midwest. Lighter lines correspond to placebo estimates in which we compare a given
distribution utility in the South to a weighted average of the others.
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P Difference-in-difference estimates using data on distribution
losses

There is no good data on electricity theft in Brazil. Distribution utilities are supposed to report
yearly information on distribution losses to the regulator, but many did not provide this informa-
tion prior to 2000. Distribution losses are the share of the load not charged to particular customers.
Distribution losses are divided into technical (engineering estimates) and non–technical (residual,
a noisy proxy of theft) losses. It is unclear how companies separately identify the two categories
and the resulting information is noisy. We use here yearly reports for 24 utilities in the South-
east/Midwest (13) and in the South (11) from 1998 to 2008. Table P.1 displays coefficients from
regressing several outcomes (listed above each column) on year dummies interacted with an indica-
tor for utilities subject to the electricity saving program during the crisis (difference–in–difference
estimators in every year). The reference year corresponds to 2000. Regressions include an inter-
acted year dummies and utility fixed effects, and control for the main electricity tariff, total popula-
tion, total formal employment, and average temperature (log) for each distribution utility. Column
(1) considers a specification similar to our main difference-in-difference results but looking at total
residential consumption at the yearly level for this sample of utilities. The long–term effects on
average residential electricity consumption are very similar. Columns (2)–(5) use the data from the
yearly reports on distribution losses. Note that those data are for the whole distribution utility, and
not specific to its residential customers The outcome in column (2) is the total load reported by
the distribution utility; the outcome in column (3) are the total losses reported by the distribution
utility; the outcome in column (4) are the total technical losses reported by the distribution utility;
the outcome in column (5) are the total non–technical losses reported by the distribution utility.
As expected, the total load decreased during and after the crisis. The effects are large and include
other types of customers (e.g. industrial), so the long-term effects might include changes in the
industrial composition of firms served by particular distribution utilities. Total losses were also
reduced, which is not surprising if they are proportional to the total load, but the data are noisy so
our estimates are not significant during and right after the crisis. Once we divide total losses into
technical and non-technical losses, we find some evidence that technical losses decreases, although
estimates are again noisy. We find no evidence that non-technical losses increased, which would
be the case if electricity theft increased and non-technical losses were a good proxy for theft. The
data are very noisy. For instance, point estimates imply that non-technical losses increased by .268
log points from 1999 to 2000 in the Southeast/Midwest compared to the South and then decreased
by .243 log points the following year.
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Q Robustness of the patterns based on the individual billing
data

The following figures support the robustness of the patterns based on the household-level billing
data in Figure 5 in the paper.

Figure Q.1 displays average electricity use for LIGHT customers in each month compared to
the same month in 2000 as in Figure 5a. It shows that the time–series is almost identical (i) when
we use microdata from a random sample of customers observed in every month from 2000 to
2005 (same balanced panel as in Figure 5a; 44,817 customers), (ii) when we only consider the
top decile of users (highest consumption) in this balanced panel in each month, and (iii) when we
use a similar balanced panel restricted to Leblon, a very wealthy neighborhood of Rio de Janeiro
(12,054 customers). This provides additional evidence that electricity theft is unlikely to drive our
results: electricity theft is more prevalent among smaller users and poorer neighborhoods in Rio
de Janeiro.

Figure Q.1: Comparing time–series in average electricity using household–level billing data (ro-
bustness of Figure 5a)
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The figure displays average electricity use for LIGHT customers in each month compared to the same month in 2000. It shows that the time–series
is almost identical (i) when we use microdata from a random sample of customers observed in every month from 2000 to 2005 (same balanced
panel as in Figure 5a in the paper; 44,817 customers), (ii) when we only consider the top decile of users (highest consumption) in this balanced
panel in each month, and (iii) when we use a similar balanced panel restricted to Leblon, a very wealthy neighborhood of Rio de Janeiro (12,054
customers).

Figure Q.2 displays Kernel densities for monthly electricity use before, during, and after the
crisis as in Figure 5b in the paper. Kernel densities are based on the same balanced panel of
customers observed in every month between January 2000 and December 2005. It shows that
we obtain similar patterns when we split the sample months (June to December) between colder
months (July to September) and warmer months (October to December).

Figure Q.3 displays the distribution of changes in average electricity use during and after the
crisis compared to the same months before the crisis, for subsets of the same balanced panel of cus-
tomers. The panels consider customers who had about the same baseline for quota assignment, and
thus faced the same pecuniary incentives during the crisis, as in 5c but for different baseline levels.
In particular, we consider customers with baseline levels 10% above and below 100 kWh/month
(2,973 customers), 200 kWh/month (5,546 customers), 400 kWh/month (2,628 customers), and
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Figure Q.2: Distribution of monthly electricity use over time for a balanced panel of customers (robustness of Figure
5b

(a) July-Sept
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(b) Oct-Dec
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The figures uses the same balanced panel of customers observed in every month between January 2000 and December 2005. It displays Kernel densities for monthly electricity
use before, during, and after the crisis as in Figure 5b in the paper. It shows that we obtain similar patterns when we split the sample months (June to December) between
colder months (July to September) and warmer months (October to December). Kernel densities use Epanechnikov kernels and optimal bandwidths.

500 kWh/month (1,478 customers). Kernel densities are based on electricity use during the first
five months of the crisis (and in the same months in other years), before any change in quotas. We
find no evidence of bunching at the quota. During the crisis, 85%, 96%, 99%, and 99% reduced
electricity use and the median customer reduced usage by 21%, 31%, 37%, and 39% among cus-
tomers with baseline levels around 100 kWh/month, 200 kWh/month, 400 kWh/month, and 500
kWh/month, respectively. Four years after the crisis, 54%, 70%, 81%, and 84% were still using less
electricity than before the crisis and the median customer was using 4%, 17%, 24%, and 25% less
electricity among customers with baseline levels around 100 kWh/month, 200 kWh/month, 400
kWh/month, and 500 kWh/month, respectively. Changes in consumption levels were thus large at
every baseline consumption level, but they were larger at customers with higher baseline levels.
This is shown graphically in Figure Q.4. The figure displays average electricity use during and
after the crisis compared to before the crisis for the same balanced panel of customers, as a func-
tion of baseline consumption levels. The figure displays averages by baseline bins and uses data
on the first five months of the crisis (and in the same months in other years), before any change in
quotas. The minimum baseline level is 30 kWh (minimum consumption level charged for LIGHT
customers). On average, customers at every baseline level severely reduced electricity use in the
short and the long run, except at the very bottom of the baseline consumption distribution.

Figure Q.5 displays the correlation between individual changes in electricity use during the
crisis and four years after the crisis compared to the same months before the crisis as in Figure
5d in the paper, but for the same samples as in Figure Q.3. Customers are averaged by bins
of 5% changes in electricity use during the crisis. There is a clear correlation at every baseline
consumption level, suggesting that the long-term impact is due to the persistence of individual
changes in electricity use. Figure Q.6 present similar patterns but only looking at one year after
the crisis.
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Figure Q.3: Distribution of changes in monthly electricity use for a balanced panel of customers with the same
baseline level/quota (robustness of Figure 5c)
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(b) Baseline 200 kWh/month
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(c) Baseline 400 kWh/month
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(d) Baseline 500 kWh/month
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The panels display the distribution of changes in average electricity use during and after the crisis compared to the same months before the crisis, for subsets of the same
balanced panel of customers. The panels consider customers who had about the same baseline for quota assignment, and thus faced the same pecuniary incentives during the
crisis, as in Figure 5c in the paper, but for different baseline levels. In particular, we consider customers with baseline levels 10% above and below 100 kWh/month (2,973
customers), 200 kWh/month (5,546 customers), 400 kWh/month (2,628 customers), and 500 kWh/month (1,478 customers). Kernel densities use Epanechnikov kernels and
optimal bandwidths.
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Figure Q.4: Changes in monthly electricity use during and after the crisis by baseline consumption level
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(b) 1 year after the crisis
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(c) 4 years after the crisis
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The figure displays average electricity use during and after the crisis compared to before the crisis for the same balanced panel of customers, as a function of baseline
consumption levels. The figure displays averages by baseline bins and uses data on the first five months of the crisis (and in the same months in other years), before any change
in quotas. The minimum baseline level is 30 kWh (minimum consumption level charged for LIGHT customers).
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Figure Q.5: Correlation between changes in electricity use during the crisis and four years after the crisis for a
balanced panel of customers with same baseline level/quota (robustness of Figure 5d)

(a) Baseline 100 kWh/month
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(b) Baseline 200 kWh/month
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(c) Baseline 400 kWh/month
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(d) Baseline 500 kWh/month
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The panels display the correlation between individual changes in electricity use during the crisis and four years after the crisis compared to the same months before the crisis
as in Figure 5d in the paper, but for the same samples as in Figure Q.3. Customers are averaged by bins of 5% changes in electricity use during the crisis.
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Figure Q.6: Correlation between changes in electricity use during the crisis and one year after the crisis for a balanced
panel of customers with same baseline level/quota (robustness of Figure 5d)

(a) Baseline 100 kWh/month
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(b) Baseline 200 kWh/month
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(c) Baseline 400 kWh/month
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(d) Baseline 400
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(e) Baseline 500 kWh/month
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The panels display the correlation between individual changes in electricity use during the crisis and one year after the crisis compared to the same months before the crisis as
in Figure 5d in the paper, but for the same samples as in Figure Q.3. Customers are averaged by bins of 5% changes in electricity use during the crisis.
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R Further evidence from the Survey of Appliances and Utiliza-
tion Habits (PPH)

The following tables present further evidence based on the two Survey of Appliances and Utiliza-
tion Habits (PPH) 1998/1999 and 2004/2005. First, Table R.1 presents the average kWh/month
consumption of the main appliances as calculated by PROCEL. We use these values to perform
back-of-the-envelope calculations of appliances consumption in Section 5.

Table R.2 is similar to Table 3 Panel B in the paper and reports the share of households who
answered how they changed their utilization of“Other Appliances” and “Stand By” mode. Table
R.3 shows how households in the Southeast/Midwest reported adoption of CFL lamps during the
crisis and if they kept using it afterward. These tables corroborate the pattern discussed in the main
text that households adopted new habits that persisted afterward.

Table R.4 is similar to Table 4 in the paper and presents the difference-in-differences estimates
of the energy saving program effects on the quantity, characteristics and utilization of the remain-
ing electrical appliances present in PPH. Note that the indices (KKL) are calculated including all
appliances and variables presented in the two tables. Overall, we find similar coefficients for the
indices of quantity, appliances’ type and utilization. We find a zero coefficient to the index of
appliances age (Panel B, column 1). In Panel A column (4), we find a statistically significant
reduction in the average quantity of iron owned by households, but no difference in appliance uti-
lization of this appliance (Panel C). Interestingly, the only appliance that we find a meaningful and
statistically significant increase in utilization is fans, the closer substitute for air conditioners.

Table R.5 presents suggestive evidence of access to information about energy efficient appli-
ances in the South and Southeast/Midwest in 2005. The differences between the two groups are
small and, if anything, households in the Southeast/Midwest reported they used to receive more
information than households in the South, but know less what that information is good for. Unfor-
tunately, the 1999 survey did not ask these questions.

Table R.1: Inputted Average Electricity Consumption by Appliance

Appliance Specification Utilization Average Monthly Consumption (kWh)
(1) (2)

Electric Shower Low Power 18 minutes/person/day* 61.0
High Power 18 minutes/person/day* 87.1

Refrigerator 1 Door, Frost Free 24 hours/day 42.8
Freezer 24 hours/day 43.5
Lightbulbs Incandescent 60 Watts 5 hours/day 10.2

Fluorescent 15 Watts 5 hours/day 2.25
TV 5 hours/day 13.5
Air Conditioner Wall, 9001-14000 BTU 24 hours/week 69.0
Washing M. 12 loads/month 30.9
Microwave 20 minutes/day 14.0

Notes. This table presents the hypothetical average electricity use of appliances, calculated by the Brazilian energy
efficiency program PROCEL. Thes figures are based on technical characteristics of appliances and hypothetical uti-
lization draw from PPH Survey. (*) The shower calculation is based on 3.25 household members using the shower
(number obtained from PPH 1998). The complete table can be found in the website www.eletrobras.com/procel.
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Table R.2: Self-reported appliance usage after crisis – 2005 Survey (Southeast/Midwest)

Other Stand By
Appliances

(1) (2)

Use appliance as much as before crisis .24 .68
Use appliance less than before crisis .71 .27
Disconnected or disposed of appliance .03 .05
Substituted a more energy-efficient model .02 0
Obs. 63 3325

Household-level survey data for 8 distribution utilities in the Southeast/Midwest subsystems from Appliances and
Habits of Use Survey (PPH) 2004/2005. The table reports the share of households who owened each major domestic
appliance (in columns) at some point in time that answered, in 2005, each of four answers for each appliance: (1)
households were currently using the appliance as much as before the crisis; (2) they were using it less than before the
crisis; (2) they had disconnected or disposed of the appliance during or after the crisis; or (4) they had substituted a
more energy-efficient model during or after the crisis.

Table R.3: Adoption of more efficient lightbulbs around the crisis (Southeast/Midwest)

All Some None N
(1) (2) (3) (4)

Did you substitute incandescent .29 .14 .51 4648
lightbulbs with fluorescent ones?

Do you still use fluorescent lightbulbs? .60 .09 .26 1963

Household-level survey data for 8 distribution utilities in the Southeast/Midwest subsystems from Appliances and
Habits of Use Survey (PPH) 2004/2005. This table displays the percentage of answers (in columns) for two questions
about adoption of CFL lamps (rows). Column 4 reports the number of households who asnwered each question.
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Table R.4: Difference-in-difference results on appliances’ quantity, characteristics, and utilization

Panel A. Quantity
Index (KKL) Air Conditioner Laundry Iron Dish Washer Dryer Microwave Electric Oven Fan Heater

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SE/MW ×Year2005 -.395 -.227 -.040 -.082* -.114 -.281 -.066 -.007 -1.077 -.031
(.542) (.360) (.057) (.045) (.167) (.387) (.102) (.028) (1.335) (.053)

Average SE/MW 1999 -.005 .099 .532 .954 .049 .040 .212 .087 .811 .019

N 14,251 14,251 14,251 14,251 14,251 14,251 14,251 14,251 14,251 14,251

Panel B. Characteristics
Index Air conditioner

Age Type Age Power
(KKL) (KKL) (BTUs)

(1) (2) (3) (4)

SE/MW ×Year2005 -.004 .082 -.234 1058.2
(.046) (.119) (.895) (1259.3)

Average SE/MW 1999 -.018 .118 5.873 7823.043

N 14,206 14,206 888 805

Panel C. Utilization
Index (KKL) Appliance Frequently Used

Air Conditioner Laundry Iron Dish Washer Dryer Microwave Electric Oven Fan Heater
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SE/MW ×Year2005 -.427 -.049 -.022 .008 -.014*** -.002 -.056 .010 .190*** .001
(.586) (.036) (.044) (.064) (.004) (.007) (.072) (.008) (.074) (.007)

Average SE/MW 1999 .095 .040 .083 .130 .010 .004 .099 .014 .149 .002

N 14,251 14,251 14,251 14,251 14,251 14,251 14,251 14,251 14,251 14,251

Household-level survey data for 10 distribution utilities in the South and Southeast/Midwest subsystems from Appliances and Habits of Use Survey (PPH)
1998/1999 and 2004/2005. This table displays the difference-in-differences estimates of the energy saving program effects on the quantity, characteristics and
utilization of all electrical appliances available, from equation (8) in Section 5. Each column corresponds to a regression of a different dependent variable and
appliance. Panel A displayes the results on the quantity of appliances owned by household, Panel B displayes the results on the indicated characteristcs of appli-
ances owned by households and Panel c displays quantity of appliances frequently used (as discribed in Section 3) or quantity of electric showers regulated on
high power (winter mode). The Indices (KKL) shown in the first columns are the average of the dependent variables shown in the columns of each Panel including
the main appliances in Table 4. When calculating the indices, each dependent variable is normalized by the average and standard deviation of each variable in
the South in 1999 as in Kling, Liebman and Katz (2007). To obtain these indices, we input missing values with the mean of the cell group the household belong
(South/South-Midwest and 1999/2005). All regressions contain utility company fixed effects, year fixed effects, income, squared income, number of household
members, floorplan area, and dummies for rich neighborhood and for proximity to "favelas". We missing values in two control variables (income and dwelling
size) with a linear regression, for each year, of the variable on class of energy consumption and remaining controls. Significance levels: *10%, **5%, ***1% (s.e.
estimated with wild-cluster bootstrap by utility level).
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Table R.5: Average Information Level Southeast/Midwest and South - PPH

Mean Difference
Southeast/Midwest South = (1) - (2)

(1) (2) (3)

Do you receive information about energy .73 .62 .11
efficient appliances and energy saving measures? (.33)

Do you know the label for energy .46 .50 -.04
efficient appliances (PROCEL)? (.11)

Do you know what the PROCEL label represents? .34 .40 -.06
(.14)

Do you know how much you can save .21 .21 0
by using labeled appliances? (.01)

Household-level survey data for 10 distribution utilities in the South and Southeast/Midwest subsystems from Appli-
ances and Habits of Use Survey (PPH) 2004/2005. The table reports the share of households who responded in a
positive the questions about access to information (rows) in the Southeast/Midwest (column 1) and in the South (col-
umn 2). Column 3 presents the difference between these two columns. N=3364. Significance levels: *10%, **5%,
***1% (s.e. estimated with wild-cluster bootstrap by utility level).

LXIII



S Evidence from the Household Budget Surveys (POF)
The following tables present evidence based on the three last rounds of the Household Budget
Surveys (POF) 1996/1997, 2002/2003 and 2008/2009. This is a repeated cross-section household-
level microdata from a national survey conducted by the Brazilian Geography & Statistics Institute
(IBGE), which is also responsible for the National Census. We use this data to assess appliance
holdings and ages, as well as a proxy for energy theft. We use the household level microdata from
the three most recent surveys, which are from 1996/1997, 2002/2003 and 2008/2009. All surveys
were conducted between July of the base year and June of the following year. The 1996/1997
survey covered only the main metropolitan areas of fewer states, while the two subsequent surveys
covered rural areas and more states. We restrict attention to the urban areas of the 7 states present
in the 1996/1997 survey. The microdata contains the quantities of different types of appliances
owned by the households and the year these appliances were bought. It does not have details about
the model of these appliances, or whether the appliance were bought new or second-hand.

Finally, there is a relevant difference between the sampling of this survey and the sampling
of the two datasets presented so far. The official records from the Electricity Regulatory Agency
(ANEEL), and the Appliances and Habit of Use Survey (PPH) only contain households regularly
connected to electricity. The Household Budget Survey (POF), however, aims to be representative
of all households, including those who have irregular connections to electricity. Consequently,
some households in POF own electrical appliances, but claim to have no expenses on electricity and
not to own a generator. First, we use this information to investigate the share of households who are
likely irregularly connected to the electricity grid (energy theft). Second, since these households
who do not pay for electricity were not subject to the energy saving program’s incentives, we
exclude them from the main specifications.55

We use the different round of POF surveys to investigate any differential trend in the share of
households paying for electricity (non-theft) and in appliances’ quantity and age using a difference-
in-difference strategy as in Section 5. Since We have three rounds of the survey, one just after the
end of the energy saving program (2002/2003) and one more than six years later, we regress

Yh,d,t = αd + ∑
t ′∈{2002,2008}

{
δt ′ 1(t = t ′&d ∈ SE/MW)

}
+ γt +Xh,d,t +νh,d,t (15)

where Yh,d,t is an outcome for household h from state d in survey round t. We control for state
fixed effects αd and a survey round fixed effect γt . The coefficients δ2002 and δ2008 are the short-
and long-run difference-in-difference estimator under a common-trend assumption. We control
for household characteristics, Xh,d,t , which may be correlated with different trends in appliance
ownership.56 We also construct an appliance quantity index to avoid multiple-inference problems,
as in the main text.

First, Table S.1 presents the difference-in-difference results of the energy saving program on

55In the Household Budget Survey (POF), a household may declare having more than one house, we discard second
houses and restrict attention to the main domicile. As discussed in the text, we restrict the sample of the regressions
to the households who pay for electricity. We define a household who do not pay for electricity as a household who
own at least one electrical appliance and claim no expenses on electricity or own an electricity generator. We truncate
appliances’ age at 20 years, because the year an old appliance was bought is subject to severe measurement errors.

56The vector of household characteristics include income, squared income, number of household members and
number of rooms.
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the share of households who report paying for electricity. We find close to zero point estimates
both in the short and long run.

Second, Table S.2, similar to Table 4, presents the difference-in-differences estimates of the
energy saving program on the quantity (Panel A) and age (Panel B) of all electrical appliances
present in POF. We find close to zero long-run effects on the quantity of refrigerators and TV. We
find negative long-run effect on the quantity of freezers, similarly to the results with PPH. We find
small point estimates for the long-run effects on appliances ages except for air conditioners. We
find a large increase on the average age of air conditioners, that is, air conditioners tended to get
on average 1.7 year older in the Southeast/Midwest relative to the South in this period according to
POF. This figure is substantially different from the one found using the PPH survey, but should be
interpreted with caution because the small number of non-missing values for this variable in both
surveys.

Table S.1: Difference-in-difference results on households paying for electricity (non-theft) – POF

Share of Households
Paying for Electricity

(1)

SE/MW ×Year2002 -.002
(.044)

SE/MW ×Year2008 .009
(.025)

Average SE/MW 1996 .901

N 34493

Household-level survey data for 7 states (urban area only) in the South and Southeast/Midwest subsystems from
Household Budget Survey (POF) 1996/1997, 2002/2003 and 2008/2009. This table displays the difference-in-
differences estimates of the energy saving program effects on the share of households that pay for electricity, from
equation (15). The dependent variable is a dummy equal to zero those households who own at least one electrical
appliance and claim no expenses on electricity or own an electricity generator. All regressions contain utility company
fixed effects, year fixed effects, income, squared income, number of household members and number of rooms. We in-
put missing values in income with a linear regression, for each year, of income on the remaining controls. Significance
levels: *10%, **5%, ***1% (s.e. estimated with wild-cluster bootstrap by state level).
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Table S.2: Difference-in-difference results on appliances’ quantity and age from Household Budget Surveys (POF)

Panel A. Quantity
Index Refrigerator Freezer TV AC Laundry Iron Dish Dryer Microwave Hair dryer Sound Computer
(KKL) Washer System

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

SE/MW ×Year2002 .019 .013 -.026 .044 .048 -.151 .025 .005 .055 .024 .028 .038 .019
(.016) (.049) (.027) (.052) (.031) (.131) (.120) (.038) (.080) (.026) (.214) (.085) (.029)

SE/MW ×Year2008 -.019 .006 -.035 -.007 -.009 -.088 -.001 .020 .089 -.031 -.025 -.031 -.021
(.022) (.011) (.042) (.084) (.023) (.097) (.017) (.055) (.086) (.020) (.046) (.027) (.018)

Average SE/MW 1996 -.086 .982 .207 1.299 .132 .554 1.139 .077 .092 .196 .483 .755 .083

N 31113 31113 31113 31113 31113 31113 31113 31113 31113 31113 31113 31113 31113

Panel B. Age
Index Refrigerator Freezer TV AC Laundry Iron Dish Dryer Microwave Hair dryer Sound Computer
(KKL) Washer System

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

SE/MW ×Year2002 .155** -.874 -.270 -.612* 1.560** -.258 -.266 -14.999 .214 .469 .242 -.538*** -.057
(.069) (.643) (1.466) (.332) (.781) (.251) (.334) (1994.2) (1.139) (.520) (.487) (.203) (.343)

SE/MW ×Year2008 .014** -.039 -.073 -.303 1.798 -.820 -.386 -1.712 -.143 .663 .137 .259 .227
(.006) (.132) (.905) (.210) (1.661) (.567) (.431) (1365.9) (4.372) (.518) (.641) (.233) (.318)

Average SE/MW 1996 -.026 8.024 5.336 4.378 6.46 7.038 5.119 6.032 6.215 3.257 5.76 4.687 1.784

N 31113 28908 5516 28198 2185 16018 27178 1460 2382 8093 10955 18544 7107

Household-level survey data for 7 states (urban area only) in the South and Southeast/Midwest subsystems from Household Budget Survey (POF) 1996/1997,
2002/2003 and 2008/2009. This table displays the difference-in-differences estimates of the energy saving program effects on the quantity and age of all electrical
appliances available, from equation (15). Each column corresponds to a regression of a different appliance. Panel A displayes the results on the quantity of
appliances owned by household, and Panel B displayes the results on the age of appliances owned by households. The Indices (KKL) shown in the first columns
are the average of the appliances shown in the columns. When calculating the indices, each dependent variable is normalized by the average and standard deviation
of each variable in the South in 1996 as in Kling, Liebman and Katz (2007). To obtain these indices, we input missing values with the mean of the cell group
the household belong (South/South-Midwest and 1996/2002/2008). We include only households who pay for electricity (non-theft). All regressions contain utility
company fixed effects, year fixed effects, income, squared income, number of household members and number of rooms. We input missing values in income with a
linear regression, for each year, of income on the remaining controls. Significance levels: *10%, **5%, ***1% (s.e. estimated with wild-cluster bootstrap by state
level).
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T Time-series in national sales of domestic appliances in Brazil
(Whirlpool data)

The following figures display the time-series in national sales of several domestic appliances in
Brazil. The data are estimates that we obtained from Whirlpool, a leading manufacturer, which
produces those estimates for its own market strategy. The manufacturer did not share with us the
estimation methodology used. In each figure, we plot the raw data (in logs), estimate a quadratic
fit on each side of the start of the crisis (June 2001), and display the estimate of the change in
sales at the time of the crisis from a regression discontinuity design using those quadratic fits. The
Southeast/Midwest is by far the largest market for domestic appliances in Brazil (more than 50%).
We find no evidence of an increase in sales for any of the domestic appliances. In contrast, we find
evidence of a decrease in national sales for several of them.
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Figure T.1: Log sales of different domestic appliances I (all Brazil, Whirlpool estimates)

(a) Refrigerator

1
1

.5
1

2
1

2
.5

1
3

1
3

.5

19
96

m
1

19
97

m
1

19
98

m
1

19
99

m
1

20
00

m
1

20
01

m
1

20
02

m
1

20
03

m
1

20
04

m
1

20
05

m
1

20
06

m
1

20
07

m
1

20
08

m
1

20
09

m
1

20
10

m
1

coeff: −.098 (.105)

(b) Freezer (vertical)
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(c) Freezer (horizontal)
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(d) Microwaves
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(e) Dishwasher
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(f) Gas stove (placebo)
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The panels display the time-series in national sales of several domestic appliances in Brazil. The data are estimates that we obtained from Whirlpool, a leading manufacturer,
which produces those estimates for its own market strategy. The manufacturer did not share with us the estimation methodology used. In each figure, we plot the raw data
(in logs), estimate a quadratic fit on each side of the start of the crisis (June 2001), and display the estimate of the change in sales at the time of the crisis from a regression
discontinuity design using those quadratic fits. The Southeast/Midwest is by far the largest market for domestic appliances in Brazil (more than 50%).
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Figure T.2: Log sales of different domestic appliances II (all Brazil, Whirlpool estimates)

(a) Washing machine
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(b) Dryer
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(c) Air conditioning
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The panels display the time-series in national sales of several domestic appliances in Brazil. The data are estimates that we obtained from Whirlpool, a leading manufacturer,
which produces those estimates for its own market strategy. The manufacturer did not share with us the estimation methodology used. In each figure, we plot the raw data
(in logs), estimate a quadratic fit on each side of the start of the crisis (June 2001), and display the estimate of the change in sales at the time of the crisis from a regression
discontinuity design using those quadratic fits. The Southeast/Midwest is by far the largest market for domestic appliances in Brazil (more than 50%).
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U Changes in the average power of electric showers sold in the
Southeast/Midwest and in the South (Fame data)

Figure U.1 uses data on the monthly sale of all the models of electric showers sold by Fame, a
leading manufacturer, in each Brazilian state between January 2000 and December 2003. The
data include the power (wattage) of each model, which is the only relevant measure of electric
showers’ propensity to use electricity. Figure U.1 displays the average power of electric showers
sold in each month in the Southeast/Midwest and in the South, normalized to the same months
in 2000. Figure U.1 also displays difference-in-difference estimates in each time period (early
2001, crisis, rest of 2002, 2003) from regressing the logarithm of average power on dummies for
each state, dummies for each time period, and those later dummies interacted with an indicator for
weather distribution utilities in a given state were subject to the electricity saving program during
the crisis. Standard errors are obtained by using the wild cluster bootstrap-t clustered by state (10
clusters). The average power of electric showers sold decreased by about 10% during the crisis in
the Southeast/Midwest compared to the South. We do not find any evidence of persistence. Note
that Fame also started to sell relatively less in the Southeast/Midwest compared to the South (not
shown; coefficient estimates are not significantly different from 0 during and after the crisis).

Figure U.1: Average power of electric showers sold (one manufacturer, Fame)
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The figure displays the average power of electric showers sold by Fame in each month in the Southeast/Midwest and in the South, normalized to the same months in 2000.
It also displays difference-in-difference estimates in each time period (early 2001, crisis, rest of 2002, 2003) from regressing the logarithm of average power on dummies for
each state, dummies for each time period, and those later dummies interacted with an indicator for weather distribution utilities in a given state were subject to the electricity
saving program during the crisis. Standard errors are obtained by using the wild cluster bootstrap-t clustered by state (10 clusters).

V Estimating a price elasticity of average residential electricity
use

In Section 6 in the paper, we use estimates of the price elasticity of average residential electricity
use in the Southeast/Midwest to recover an average “perceived” incentive during the crisis. We
detail here how we obtain such estimates.
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We use the same utility-level panel as in the paper for distribution utilities in the South-
east/Midwest. We are interested in a medium-run elasticity (demand typically responds with a
lag), so we average all variables at the yearly level. We are interested in a price elasticity after
the crisis, so we only consider data from 2003 onward. We then regress the logarithm of average
residential use on the logarithm of the main residential tariff:

log(kWhd,t) = ad +βt +η log(tari f fd,t)+ log(Xd,t)+νd,t (16)

where ad and βt are fixed effects for distribution utility d, and year t. νd,t is an error term clustered
by utility. Xd,t are yearly controls for total population, total formal employment, GDP, and average
temperature for each distribution utility. η capture our price elasticity.

There are two major concerns with an equation such as equation (16). First, there is rarely
a unique price of electricity. In Brazil, the main residential tariff is essentially linear, but an al-
ternative tariff for low-income and small consumers offers nonlinear percentage discounts on this
unit price. Changes in residential prices, however, typically apply to the main tariff. Therefore,
percentage changes in the main tariff capture percentage changes in every marginal price.

Second, changes in prices may be endogenous to changes in quantities. The price-cap mecha-
nism limits such a concern in Brazil. Between revision years, demand risk falls entirely on distri-
bution utilities and yearly price adjustments are not endogenous to changes in quantities by design
(ANEEL, 2005). Price revisions every four to five years may still create some endogeneity, bias-
ing estimates of η away from 0. We directly assess the extent of endogeneity in two ways. First,
we run the same regression instrumenting the main tariff by its cost-of-energy component (exoge-
nous to the firm on a yearly basis) available for every utility since 2005. Second, we estimate
equation (16) excluding years of price revisions and including utility-specific fixed effects for each
between-revision period. The only variation left comes from price adjustments.

Results are presented in Table V.1. We estimate η̂ at −.2079 (column 1) and −.1812 (column
4) with the full variation in tariffs from 2003 and 2005, respectively. Estimates using only the
variation from price adjustments (column 3) are similar (because sample years are different in
column 3, we also show results from a similar specification as in column 1 for those samples years
in column 2). Estimates are larger with the IV strategy (column 5), at −.2911 (the first stage is
strong). In the paper, we use estimates from columns (3) and (5).
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Table V.1: Price elasticity estimates using yearly variation in the South-East/Midwest post-crisis

Dependent variable: Log(yearly mean of average residential consumption)
(1) (2) (3) (4) (5)

Log(yearly mean of main residential tariff) -.2079*** -.2047*** -.2274** -.1812*** -.2911**
(.04332) (.04249) (.09434) (.0414) (.1307)

First stage dependent variable: Log(yearly mean of main residential tariff)
Log(yearly mean of the cost of energy in the main residential tariff) .2142***

(.07327)

Model OLS OLS OLS OLS IV-2SLS
First year 2003 2003 2003 2005 2005
Exclude variation from revision years No Yes Yes No No
Between-revision FE No No Yes No No
Observations 216 161 161 162 162
Clusters 27 27 27 27 27

s.e. clustered by distribution utility. Significance levels: *10%, **5%, ***1%. We use the same utility-level panel as in the
paper for distribution utilities in the Southeast/Midwest. We average all variables at the yearly level and we only consider data
from 2003 onward. We present coefficient estimates from regressing the logarithm of average residential use on the logarithm of
the main residential tariff. All regressions control for year and utility fixed effects, as well as population, formal employment,
GDP per capita, and average temperature (yearly, logs) for each utility. Column (1) uses the full variation in tariffs. Column (2)
excludes years of price revisions. Column (3) includes utility-specific fixed effects for each between-revision period. The only
variation left comes from price adjustments. Column (4) uses the full variation in tariffs from 2005 onward. Column (5) then
instrument the residential electricity tariff in those years by its cost-of-energy component (exogenous to the firm on a yearly basis
and available for every utility since 2005).
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