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1 Introduction

The consumption of energy is nearly always achieved through the operation of some durable good.

Motor vehicles combust gasoline; appliances use electricity; furnaces burn natural gas; and so on.

To correct the market failures caused by the pollution that attends energy consumption, economists

typically advocate the pricing of emissions. As argued by Pigou (1932), if externalities can be taxed

directly, then market efficiency can be fully restored. Such policy prescriptions are indifferent to

the durables that act as an intermediary between fuel inputs and emissions outputs.

Policies that directly target emissions are, however, relatively rare. Instead, a proliferation of

policies focus on these durable intermediaries, often through the regulation of their energy efficiency.

Examples include fuel economy regulations, appliance efficiency mandates, and building codes. It

is well established that energy efficiency policies suffer from inefficiencies both because they fail to

incentivize abatement on the intensive margin and because, even if they get relative prices of goods

right within a market, they typically fail to set the average price level correctly.1 The aim of this

paper is to establish another inefficiency of such policies, one that stems from heterogeneity in how

long durables last.

To see the logic of our inquiry, consider a consumer who is to buy one vehicle and will drive

that vehicle a fixed number of miles per year. Her only choice is which of several vehicles to buy.

The vehicles have different expected longevities, due to differences in their quality. Differences

in longevity imply that two vehicles with the same fuel economy will nevertheless have different

lifetime emissions. A gasoline tax (or a carbon tax) would raise the lifetime expected fuel cost of

each model according to both its fuel economy and its expected longevity. In contrast, policies that

regulate the durables themselves, rather than emissions (or fuel inputs), are almost always unable

to take such heterogeneity in durability into account. Rather, policy treatment generally depends

exclusively on the durable good’s energy efficiency rating (e.g., fuel economy). This limits the

ability of durable goods regulations to induce consumers to purchase the socially optimal products,

which creates the inefficiency that is the subject of our investigation.

Broadly, heterogeneity in the utilization of a durable can come from ex ante differences in the

product’s quality, ex ante differences in the intensity of use across consumers, or ex post realiza-

tions of random product failure. Random failure that is independent of choice will not influence

the relative efficiency of one policy versus another, and so we focus on the other two sources of

heterogeneity. The heart of our analysis is focused on the first source: ex ante differences in product

quality that predict longevity.

To illustrate the importance of this source of heterogeneity for an example durable, automobiles,

1For example, a gasoline tax would raise the price of driving and thus reduce automobile usage, and it would raise
the cost of ownership for all cars, thereby shrinking the car market overall. In contrast, fuel economy regulations lower
the cost of driving, and they implicitly subsidize efficient cars while taxing inefficient cars, which fails to optimally
shrink the market. See Anderson, Parry, Sallee, and Fischer (2011) and Sallee (2011), respectively, for discussions
of the efficiency of fuel economy regulations and taxes. See Borenstein (Forthcoming) for a recent treatment of the
economics of the rebound effect, which relates to the intensive margin issue. See Holland, Hughes, and Knittel (2009)
for an exploration of how performance standards create inefficiencies due to their average price effects.
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Figure 1: Distribution of Lifetime Carbon Emissions for Vehicles with EPA Average Rating of 23
Miles per Gallon
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An observation is the average lifetime miles driven of a particular type of vehicle, across many

individual units, divided by fuel economy rating multiplied by the tons of carbon per gallon

of gasoline. The data are described in detail below.
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we plot the average lifetime carbon emissions for different types of cars that have the same fuel

economy rating in Figure 1; i.e., we illustrate the variance in lifetime pollution for products with

identical energy efficiency ratings. The figure uses data, which we describe in detail below, on

the odometer readings of vehicles shortly before they are scrapped, which we convert into tons of

carbon using the vehicle’s fuel economy rating and the average carbon content of gasoline. Each

data point is the average lifetime carbon emissions across a number of individual vehicles of the

same type (e.g., a 2012 Toyota Camry). The graph suggests a wide dispersion in lifetime emissions

among vehicles with a common 23 miles per gallon rating (the median in our data); the standard

deviation is 20% of the median. At $39 per ton, which is the current federal guideline for the social

cost of carbon, the standard deviation in damages across cars with the same fuel economy rating is

over $600. Thus, a durable goods policy, like Corporate Average Fuel Economy (CAFE) standards,

that gives all cars with the same fuel economy rating the same implicit regulatory shadow price

is necessarily imprecise; it places the same implicit tax or subsidy on products that in fact have

substantially different lifetime externalities.

We are not the first to consider how heterogeneity affects the welfare properties of policies

that regulate durable goods, as compared to efficient policies that target emissions. Our paper

is most related to Fullerton and West (2010).2 Using data on vehicle ownership, miles driven,

and emissions, Fullerton and West (2010) simulate the welfare improvement from the optimal set

of Pigouvian taxes as well as a simple gas tax. While their focus is not on the heterogeneity in

externalities due to variation in the durability of products, their analysis does account for other

important sources of heterogeneity. A major advantage of the simulation exercise in Fullerton and

West (2010), and similar papers that either simulate or structurally estimate market equilibria, is

that they are able to study the welfare implications of a rich set of policies.

Rather than emphasizing a particular model of the market, we take a sufficient statistics ap-

proach that allows us to make welfare statements with a minimal amount of market data and only

a couple of key parameters. Our focus is on developing an intuitive theoretical structure that can

clarify how heterogeneity in utilization affects the welfare properties of a variety of important poli-

cies. To do so, we derive a sufficient statistic for the welfare consequences of second-best policies

that tax products based only on their energy efficiency. Therefore, our paper is also related to

papers such as Chetty (2009) that bridge the gap between structural estimation and simulation

and reduced form results.

Our paper does three things. First, we develop a representative consumer model—within which

heterogeneity is driven entirely by product quality—and derive sufficient statistics for the dead-

weight loss of using regulations based solely on energy efficiency ratings in lieu of policies, such as an

emissions tax, that account for differences in product longevity. To highlight the role of heterogene-

2A number of other papers, including Fullerton and West (2002), Feng, Fullerton, and Gan (2013), Holland,
Mansur, Muller, and Yates (2014) and Knittel and Sandler (2013), also explore the implications of heterogeneity
in local air pollution from automobiles for policy design. Another strain of literature explores heterogeneity in
emissions reductions in electricity generation from renewables or demand side management, including Cullen (2013)
and Callaway, Fowlie, and McCormick (2015). Our paper differs from all of these in using the sufficient statistics
approach.
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ity, we assume that intensive margin utilization is exogenous. In this case, the first-best allocation

can be achieved by a set of new product taxes that raises the price of each product according to

its ex ante expected lifetime external damages, which depend on both energy efficiency ratings and

average longevity. In contrast, a regulatory policy that mandates a market-wide average energy

efficiency rating (like CAFE does for cars), is constrained to implement an implicit tax schedule

that is a linear function of energy consumption ratings. Our framework illustrates that, under some

plausible conditions, the fraction of the welfare gain achieved by the first-best policy—as compared

to a baseline policy that sets a single tax rate on all products—that can be achieved by a linear tax

on energy efficiency is equal to the R2 from a regression of the lifetime emissions of products on

their energy efficiency ratings. Intuitively, the first-best policy assigns each product a tax equal to

its lifetime damages. The ability of the linear tax to mimic this differentiation is determined by the

degree to which efficiency ratings predict lifetime emissions. This result links directly to graphs like

Figure 1; when such figures show a greater spread in lifetime emissions for a given energy efficiency

rating, the R2 of a regression of lifetime emissions on energy efficiency ratings will be lower and

the policy’s deadweight loss will be greater. Under alternative assumptions, terms other than this

R2 will also influence welfare, but the R2 remains an important, often dominant, factor.

Second, we demonstrate the quantitative importance of our theoretical results using the case

of automobiles. We use data from the emissions compliance program in California, paired with

an industry source that identifies when a vehicle has been retired from the U.S. fleet, to estimate

the average lifetime miles driven for many types of automobiles. We document evidence of very

large differences in longevity across different makes and models. We use our data to calculate

the welfare statistics derived in our theoretical model and conclude that CAFE-style policies that

ignore heterogeneity in longevity recover only about 25% of the welfare gains that are achievable

by the efficient policy.

Third, we investigate the robustness of our sufficient statistics in a more general model that

accounts for heterogeneity across types of consumers, who may use durable goods differently. In

this setting, the simple R2 will no longer be a sufficient statistic. Our results demonstrate that a

vast amount of information is required in order to formulate the welfare implications of second-best

policies. In particular the remaining deadweight loss will depend on a matrix of interactions between

cross-product price elasticities and marginal external damages.3 We plan to develop simulations

that allow us to investigate the accuracy of using the simple R2 measure to approximate welfare in

this more general setting.

2 Model with a representative consumer

We begin with a representative consumer model. This allows us to isolate the welfare implications

of heterogeneity in externalities caused by inherent differences across products, rather than het-

3Our analysis in this section is related to Diamond (1973), which considers the second-best tax rates for a single
consumption good that causes a different externality when consumed by different individuals. Our model generalizes
the results of Diamond (1973) to the case of many interrelated goods (e.g., types of cars) that each cause externalities.
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erogeneity caused by different consumers who buy identical products but use them differently. We

make several assumptions that allow us to highlight the implications of this type of heterogeneity.

First, we assume that intensive margin utilization of each product type is exogenous to the policy

regime. For example, in the car market, we would assume that the average lifetime mileage of each

type of car is fixed. This abstracts from differences in outcomes between a gas tax and fuel economy

standard that are due to the intensive margin (rebound effect). The second key assumption is that

the characteristics of the products are fixed. That is, this is a short-run perspective that does not

include endogenous technology adoption or the response of other product attributes to policy.

With a representative consumer and exogenous intensive utilization and exogenous technology,

each product will have a fixed lifetime social cost, and the only thing that determines welfare

is the consumer’s portfolio choice of goods. Thus, in this setting, the first-best outcome can be

achieved by taxing each product according to its marginal damages. For greenhouse gas emissions

from automobiles, the tax on each car should be equal to the social cost of carbon times the car’s

average lifetime emissions, which is equal to average lifetime miles driven divided by fuel economy.4

Absent the extensive margin, this is exactly what a gasoline tax would do, assuming that consumers

are forward looking and rational.5

Alternative policies can be modeled as constraints on the planner’s choice of the product tax

vector. Our model uses a sufficient statistics approach to characterize the welfare loss of using any

alternative set of taxes instead of the first-best tax schedule. We can then use that to model the

effects of any particular policy that can be mapped into a tax schedule. For example, CAFE imposes

an implicit tax schedule on vehicles that is a linear function of each vehicle’s fuel consumption rate.6

Our model can characterize the efficiency loss from using the second-best linear schedule instead

of the first-best flexible one. This then indicates the difference in welfare between a gasoline tax

and CAFE.

2.1 Model setup

The model setup is as follows. A representative consumer purchases a portfolio of different types of

goods, indexed j = 1, ..., J . For example, each j would be a particular automobile model. The quan-

tities chosen of each are denoted xj . We assume that the set of models, and their characteristics,

are fixed.

Consumers derive utility, U , from the consumption of these products: U(x1, ..., xJ). Each

product generates an externality, denoted φj , which we assume is linearly related to quantities and

enters the social welfare function separably.7 We denote the cost of production by C(x1, ..., xJ).

4This setup allows for random failure rates. It is over the random failure of products that we take averages
(expectations), rather than over different types of consumers.

5There is a literature that debates whether or not consumers fully value energy efficiency. Recent evidence is
consistent with full valuation, or at most modest undervaluation (Busse, Knittel, and Zettelmeyer 2013; Allcott and
Wozny 2014; Grigolon, Reynaert, and Verboven 2014; Sallee, West, and Fan 2015)

6Total fuel consumption for a given number of miles traveled is linearly related to per-mile fuel consumption, but
non-linearly related to fuel economy. CAFE creates a shadow price linear in per-mile fuel consumption.

7The φ terms can equally be thought of as the expected lifetime damages for a product that has a distribution of
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There is an exogenous amount of income in the economy, M , and all remaining income is consumed

in a quasi-linear numeraire, n. The planner maximizes social welfare, denoted W , which is just

utility from the durable goods and numeraire, net of externalities. We write W substituting the

budget constraint in for the numeraire:

W = U(x1, ..., xJ) +M − C(x1, ..., xJ)−
J∑
j=1

φjxj . (1)

We assume that there are many consumers, so that they do not internalize the externality when

making their choice. And, we assume that the supply side is perfectly competitive. We assume

that both U(·) and C(·) are twice differentiable and are weakly convex and concave, respectively.

The consumer perceives the prices of all goods to be constants, written as pj , and they pay

taxes tj . Thus, the consumer chooses a vector of goods to maximize:

max
x1,...,xJ

Z = U(x1, ..., xJ) + n

s.t.
J∑
j=1

(pj + tj)xj + n ≤M.
(2)

The consumer’s first-order conditions imply that ∂U
∂xj

= (pj + tj). Under marginal cost pricing,

this implies that ∂U
∂xj
− ∂C

∂xj
= tj , which is just the standard tax wedge between marginal utility and

marginal cost.

The planner can maximize utility by setting tax rates equal to external damages, that is, by

choosing tj = φj for all products. This simply imposes a Pigouvian tax on each good, and it fully

internalizes the externality—the first-best is achieved. This can be seen by differentiating (1) with

respect to each tax rate tj :

dW

dtj
=

J∑
k=1

(
∂U

∂xk
− ∂C

∂xk
− φk

)
∂xk
∂tj

=
J∑
k=1

(tk − φk)
∂xk
∂tj

. (3)

The first-order condition will be met (dWdtj = 0) when tj = φj .

Our aim is to characterize the welfare loss of deviating from this first-best schedule of Pigouvian

taxes (in which tj = φj ∀ j) to some arbitrary alternative tax schedule. We can then consider

particular alternative tax schedules, such as the second-best tax system where tax rates are a linear

function of some other variable that is imperfectly related to damages, such as energy efficiency.

To characterize the deadweight loss induced by an alternative tax schedule, we follow the sufficient

statistics tradition of differentiating W with respect to the tax and integrating. But, we have many

lifetime emissions, where uncertainty stems, for example, from random failure of a durable good. Heterogeneity in
realized damages due to random failure will not influence the relative efficiency of product-based taxes as compared
to fuel taxes, though it will result in different incidence on consumers who get above, or below, average lifetimes from
their product.
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tax rates and thus employ an intermediate algebraic step to derive our expression.

2.2 Derivation of sufficient statistics

Let any generic tax schedule be denoted as τ1, ..., τJ . We characterize the welfare loss of moving

from the tax schedule tj = φj to tj = τj by specifying a weighted average of the two tax schedules

and then integrating the marginal welfare losses of moving the weights from φj to τj . That is, we

specify the function tj = (1 − ρ)φj + ρτj . We will differentiate W with respect to ρ, and then

characterize the welfare loss of moving from the optimal policy (when ρ = 0) to the alternative

policy (when ρ = 1).

First, we differentiate equation (1) with respect to ρ and substitute in the consumer’s optimality

condition. This yields:

dW

dρ
=

J∑
j=1

J∑
k=1

(
∂U

∂xj
− ∂C

∂xj
− φj

)
∂xj
∂tk

∂tk
∂ρ

=

J∑
j=1

J∑
k=1

(tj − φj)
∂xj
∂tk

∂tk
∂ρ

. (4)

This term, dWdρ , is the incremental change in welfare as we move from the first-best rates toward the

alternative tax schedule, where all rates move by an amount proportional to the difference between

the first-best and the alternative taxes.8 However, this object is not of particular interest to us;

it is only an intermediate step that enables us to characterize deadweight loss in terms of demand

derivatives (which are estimable) instead of the utility function (which is more difficult to recover

with data).

Next note that, by our definition, ∂tk∂ρ = (τk−φk). This term, (τk−φk), is the difference between

the first-best and actual tax rates, which we call the “tax residual” for reasons that will become

apparent. We use that substitution, as well as the definition of tj , and simplify:

dW

dρ
=

J∑
j=1

J∑
k=1

({(1− ρ)φj + ρτj} − φj)
∂xj
∂tk

(τk − φk)

=

J∑
j=1

J∑
k=1

ρ (τj − φj)
∂xj
∂tk

(τk − φk)

(5)

Because ρ is a constant, we can remove it from the summation, which yields the final equation.

To get the change in social surplus from moving fully between the two tax schedules, we integrate

from ρ = 0 to ρ = 1. If the demand derivatives are constant over the relevant range, then ρ can be

pulled out in front of the summation and the integration is straightforward. This yields:

8This procedure is related to the technique developed in Hendren (2013), who labels an object that is similar to
our dW

dρ
the “policy elasticity”.
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W (ρ = 0)−W (ρ = 1) = −1

2

J∑
j=1

J∑
k=1

(τj − φj) (τk − φk)
∂xj
∂tk

. (6)

This formula is in the form of a Harberger triangle; it is 1/2 times a tax wedge squared times a

quantity derivative.9 More specifically, it is closely related to a result in Harberger (1964), which

characterizes the deadweight loss of taxing a good when distortions exist in multiple markets. The

derivation in Harberger (1964) is different from ours, but the result is the same, except that our

setup includes externalities whereas his does not (there are no φ terms in his result).

This expression can be decomposed to gain further insight. We denote W (ρ = 1)−W (ρ = 0) as

simply DWL(τ) and use the substitution ej ≡ (τj−φj) for the tax residuals. Rearranging equation

(6) yields:

−2×DWL(τ) =

J∑
j=1

e2
j

∂xj
∂tj︸ ︷︷ ︸

“own effects”

+

J∑
j=1

∑
k 6=j

ejek
∂xj
∂tk︸ ︷︷ ︸

“cross effects”

. (7)

Equation (7) separates the deadweight loss formula into a term related to own-price deriva-

tives (the way that a tax affects demand for the product itself) and a term related to cross-price

derivatives (the way that a tax affects demand for alternative products). Under some conditions,

which we discuss in detail below, the cross-price term will be zero, or at least small compared to

the own-price term. We start with this special case to build intuition and then reintroduce the

cross-price term.

When the cross-price term is zero, equation (7) simplifies to:

−2×DWL(τ) =
J∑
j=1

e2
j

∂xj
∂tj

(8)

=

J∑
j=1

e2
j︸ ︷︷ ︸

SSR

× J−1
J∑
j=1

∂xj
∂tj︸ ︷︷ ︸

Mean Derivative

+

J∑
j=1

(
e2
j − ē2

)(∂xj
∂tj
−

¯∂xj
∂tj

)
︸ ︷︷ ︸

Covariance

, (9)

9This equation can alternatively be written in matrix notation. Note that

dW

dρ
=
(
τ1 − φ1 . . . τJ − φJ

)
dx1
dt1

. . . dx1
dtJ

. . . . . . . . .
dxJ
dt1

. . . dxJ
dtJ


 τ1 − φ1

. . .
τJ − φJ

 = (τ − φ)TD(τ − φ),

where D is the substitution matrix and (τ − φ) is the vector of tax residuals. We can now rewrite

W (ρ = 0) −W (ρ = 1) = −1

2
(τ − φ)TD(τ − φ).

.

8



where bars indicate means of variables. This first line, equation (8), shows that the deadweight loss

is determined by the magnitude of the errors in the tax rate and the partial derivatives of demand.

The error in the tax rate ej is the tax wedge, relative to the socially efficient value. Thus, this

formulation demonstrates that deadweight loss is the summation of a set of Harberger triangles

across all the products. This is intuitive, as the assumption of the net zero cross-price terms implies

that the sum of the partial equilibrium tax wedges are equal to the general equilibrium effect that

considers all taxes.

Equation (9) provides additional insight by decomposing the Harberger triangle version into

three parts, using the definition of the covariance. The first term is the sum of squared errors in

the tax rate, multiplied by the average demand response (own-price derivative). We label the sum

of squared errors as SSR because in an intuitive special case, discussed below, this will be precisely

the sum of squared residuals from an OLS regression of lifetime damages φj on some observable

metric upon which policy is based. The second term is the covariance between the errors in the

tax rate and the own-price derivatives.

This formulation is particularly useful for understanding second-best linear tax schedules be-

cause it relates directly to ordinary least squares regression. Specifically, suppose that a planner

is constrained to choose a tax schedule of the form τj = α + βθj , where θj is some observable

metric, such as a government energy efficiency rating. (CAFE, loosely defined, is such a pol-

icy.) The planner’s second-best problem is then to choose α and β to minimize deadweight loss

(from equation (9)). When true damages φj are uncorrelated with own-price derivatives (so that

the covariance term is zero), this second-best problem collapses to the standard OLS problem of

minimizing residuals, where the residuals are the errors in the tax rates:

min
α,β

= −
J∑
j=1

∂xj
∂tj
×

J∑
j=1

(φj − α− βθj)2. (10)

This is the standard OLS optimization problem, and the solution will be the standard OLS

regression coefficients. In that case, the sum of squared errors in the tax schedule will be exactly

the sum of squared residuals from an OLS regression of lifetime damages φj on θj , which is the

metric that determines policy treatment.

For example, θj might be official fuel consumption (inverse of fuel economy) ratings. As dis-

cussed above, CAFE implicitly imposes a set of taxes and subsidies for vehicles that are a linear

function of fuel consumption.10 If there were no heterogeneity in average lifetime mileage of differ-

ent models of cars, then this linear function could exactly predict lifetime damages; i.e., the R2 of

a regression of lifetime fuel consumption on fuel consumption ratings would be 1, and the sum of

squared residuals would be zero. To the extent that there is utilization heterogeneity across models

with the same fuel efficiency, however, the observable metric (fuel consumption) will be imperfectly

10Note that CAFE is additionally constrained on the extensive margin because vehicles with fuel-economy ratings
larger than the standard be are subsidized, while vehicles with fuel-economy ratings below the standard are taxed.
Thus, CAFE will fail to shrink the overall size of the car market by the optimal amount, as would a gas tax. Our
characterization of CAFE as a linear tax schedule abstracts from this “overall market size” issue.
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correlated with true damages. The deadweight loss of the second-best linear policy is then directly

tied to the sum of squared residuals from the linear regression, as captured in equation (10). In-

tuitively, the deadweight loss from these imperfect tax rates are scaled by the size of own-price

demand derivatives. As demand is more sensitive to prices, the inefficiency of getting prices wrong

rises.

These equations express deadweight loss in dollars, but we can also express the welfare gain of

using the optimal second-best linear policy (the OLS fitted line for the special case where damages

are uncorrelated with own-price derivatives), in lieu of an efficient policy. To do so, we need some

benchmark policy. One useful benchmark is a policy that puts a single tax rate on all products.

This policy does not change the relative price of any of the products, but it allows the policymaker

to impose the correct average tax on the extensive margin to correct the size of the market. In

terms of equation (10), this baseline policy allows the planner to choose only a constant term, but

forces the slope coefficient to be zero.

Compared to this baseline, the efficiency gain of using the linear policy over the baseline, divided

by the efficiency gain of the first-best policy over the same baseline is equal to the R2 from the

regression:

DWL(Linear)−DWL(Constant)

DWL(First best)−DWL(Constant)
=
ESS

TSS
= R2 (11)

This formulation is particularly useful because it relates directly to data. In Section 4 we

demonstrate this for the case of CAFE. There, we estimate the total lifetime damages of different

vehicle models using data on lifetime mileage shortly before vehicles are scrapped. We then cal-

culate the degree to which a CAFE-style policy is inefficient by estimating the best linear fit and

calculating the R2. We then use estimates of the social cost of carbon and of the own-price demand

elasticity of cars, which we take from the literature, to convert the R2, which characterizes welfare

in proportional terms, into dollar amounts.

Actual policies, of course, need not be second-best. The formula in equation (7) is a valid

equation for any alternative policy, provided that demand derivatives are constant over the relevant

range of tax rates. (When demand derivatives are not constant, the formula is an approximation,

which will be a good approximation for “small” changes in the way that traditional Harberger

triangles are.) One useful decomposition is to separate the mean bias in tax rates from their

variance, which can be seen by rewriting deadweight loss for the special case with zero net cross

effects and no correlation between tax rate errors and demand derivatives, as follows:

min
α,β

= −
J∑
j=1

∂xj
∂tj
×

J × ēj2︸ ︷︷ ︸
Bias

+

J∑
j=1

(ej − ēj)2

︸ ︷︷ ︸
Variance

 . (12)
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This illustrates that there is a bias in the tax rates, and there is a variance in the tax rate errors,

and their effects on welfare can be separated. The bias can be eliminated by a linear policy, but

the variance cannot. A CAFE-style policy will be biased if there is a correlation between lifetime

utilization and energy efficiency ratings that is not accounted for in policy design.

2.3 When are cross-price effects small?

The above discussion focused on the case when the cross-price effects in equation (7) were zero.

The intuition for this can be seen by focusing on cases where the tax rates are unbiased, that is,

where ēj = 0. In that case, the cross-price term is the sum of the product of three things, cross-

price demand derivatives (which will generally be positive) and two different tax rate errors, ej and

ek. In the unbiased case, the errors are zero on average, so, on average, the cross-price terms are

multiplying ej and ek, and these products will be sometimes positive, sometimes negative. As a

result, it is possible for the cross-price effects to cancel out. In contrast, so long as all own-price

derivatives are negative (i.e., there are no Giffen goods), the own-price terms in equation (7) must

each be positive, so the summation will be positive.

Again, the OLS case helps with intuition. The sum of the product of all pairwise combinations

of residuals from OLS is zero. Thus, when the alternative tax schedule τ is the OLS best fit, the

cross-price term could be zero. If the tax rates are biased, then the cross-price effects will not be

zero on average, but will have a bias term.

The cross-price effects also involve the cross-price derivatives, so the OLS residual intuition is

not sufficient to tell us when this summation will net to zero. To see this further, we can decompose

the cross-price effects further to characterize them as a function of covariance and bias.

−2×DWL(τ) =
J∑
j=1

e2
j

∂xj
∂tj︸ ︷︷ ︸

“own effects”

+
J∑
j=1

ej ×


∑
k 6=j

(
(ek − ēk)

(
∂xj
∂tk
−

¯∂xj
∂tk

))
︸ ︷︷ ︸

“covariance term”

+ J × ēk
¯∂xj
∂tk︸ ︷︷ ︸

“bias term”


(13)

For the unbiased policy, the bias term in the bracketed expression will be zero, leaving only the

covariance term. The covariance term is the covariance between the error in the tax rate and the

degree of substitutability across alternative products k for a given model j. This will be zero, on

average, when the errors in the tax rates are uncorrelated with the degree of substitutability across

products.

We do not expect that the cross-price terms will be exactly zero in real settings for second-best

policies because products with similar differences in utilization from the average are also likely to

be closer substitutes than average. For example, if luxury vehicles tend to last longer than average,

and also tend to be close substitutes for each other, we would expect the cross-price effects overall

to be nonzero.
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Even when the cross-price terms are not zero it is still intuitive to expect that they may be

small, as compared to the own-price terms, because they have the tendency of canceling each other

out (the sum of the product of all pairwise combinations of tax residuals ejek is zero). But, this

is ultimately an empirical question. We thus emphasize the theoretical intuition of the special

case with zero cross-price terms here and then, in our empirical investigation below, determine

the degree to which cross-price effects are likely to be important by modeling a range of possible

correlations between tax rate errors and demand derivatives.

3 Data

Our empirical analysis considers the case of automobiles. It uses data on vehicle miles traveled from

the emissions compliance program in California matched to a comprehensive registration micro

data that allows us to infer when a vehicle has been retired. Our analysis is primarily based upon

the universe of emissions inspections from 1996 to 2010 from California’s vehicle emissions testing

program—the Smog Check Program, which is administered by the California Bureau of Automotive

Repair (BAR). An automobile appears in the data for a number of reasons. First, vehicles more

than four years old must pass a smog check within 90 days of any change in ownership. Second, in

large parts of the state an emissions inspection is required every other year as a pre-requisite for

renewing the registration on a vehicle that is six years or older. Third, a test is required if a vehicle

moves to California from out-of-state. Vehicles that fail an inspection must be repaired and receive

another inspection before they can be registered and driven in the state. There is also a group

of exempt vehicles. These are: vehicles of 1975 model-year or older, hybrid and electric vehicles,

motorcycles, diesel-powered vehicles, and large natural-gas powered trucks.

These data report the location of the test, the unique vehicle identification number (VIN),

odometer reading, the reason for the test, and test results. We decode the VIN to obtain each

vehicle’s make, model, engine, and transmission. Using this information, we match the vehicles to

EPA data on fuel economy. Because the VIN decoding is only feasible for vehicles made after 1981,

our data are restricted to these models. This yields roughly 120 million observations.

The primary use of the smog check data is to calculate the vehicle’s odometer reading at the

time the vehicle was scrapped. However, vehicles may leave the smog check data because they

leave California. To accurately measure when a vehicle is scrapped, we also use data obtained

from CARFAX Inc. These data contain the date and location of the last record of the vehicle,

regardless of state, reported to CARFAX for 32 million vehicles in the smog check data.11 Because

the CARFAX data include import/export records, we are able to correctly classify the outcomes of

vehicles which are exported to Mexico as censored, rather than scrapped, thus avoiding the issues

identified in Davis and Kahn (2010). We define a vehicle as being scrapped if the vehicle is not

11The actual date of retirement of the vehicle is not the same as the last date of registration. The vehicle’s odometer
reading occurs at the last registration date. Rather than imputing the odometer at the moment of scrap using hazard
rates, we simply use the last observed reading for reasons of transparency. Such an imputation would be unlikely to
have an impact on the R2 in our regressions.
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Figure 2: The Distribution of Vehicle Age at Death for Different Vintages
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registered anywhere in the US for two years. The CARFAX data do not report odometer readings;

therefore, we restrict analysis to vehicles that were in the smog check program two years prior to

being scrapped.

Together, the smog check and CARFAX data give us a measure of the total lifetime vehicle miles

traveled (VMT) for a particular unit, but we do not observe all units, which creates the possibility

of statistical bias. The R2 in an OLS regression, which is our primary statistic of interest, is biased

downwards if there is classical mismeasurement in the dependent variable (lifetime mileage), which

could arise in our case from sampling variation.12 We have a large sample, but we only observe a

limited number of retirements for many vintages of less popular models. This can cause a downward

bias in the R2 of a regression of lifetime gasoline consumption on fuel economy, but in Section 4

we report evidence that the bias appears to be very small in economic terms.

In addition, we observe relatively few vehicles that are under six years old because most of them

are not required to take an emissions test. And, we do not observe the final odometer reading for

vehicles that have not yet been retired. This creates a censoring problem, which will vary across

model years. To illustrate this, Figure 2 shows the age at retirement of vehicles that appear in our

sample for model year 1981 and 1995 vehicles separately. Because our data on retired vehicles span

the period from 1996 to 2008, we observe 1981 vehicles that were at least 15 years old at retirement,

whereas we observe retirements up to age 13 for 1995 models.13 This censoring can create (non

classical) mismeasurement, which will be particularly problematic when comparing across cohorts.

In this draft, we explore the importance of censoring for our empirical conclusions by comparing

how our results vary when we use all of our data versus when we restrict attention to model

12When the independent variable is correlated with the true dependent variable but not the white noise mismea-
surement of it, the R2 must be driven down, and more so as the variance in the noise is large relative to the variance
in the true dependent variable. Intuitively, this is because noise inflates the total variation in the observed outcome,
but it leaves the explained variation unchanged.

13Our smog check data extend to 2010, but we must observe a two year window after a vehicle’s last smog check
to know if it has missed its next required check. Thus, we identify vehicle retirements that occurred between 1996
and 2008.
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years 1988 to 1992, for which censoring will be less problematic. We also use additional data and

extrapolation techniques to paint a more complete picture of lifetime VMT for each vehicle in our

sample. Specifically, we have access to comprehensive national registration data from R.L. Polk.

These data measure the stock of registered vehicles of each 10-digit VIN-prefix (“VIN10-prefix”)

in each year. Thus, we can use these data to measure the number of vehicles that are censored and

to determine the scrappage rate of models for certain years (and ages) outside of our smog sheck

sample. We will use this additional information, along with the pattern of mileage of related models

in the data to predict lifetime VMT for all censored vehicles. Our empirical analysis uses these

extrapolated data to provide an upper bound on R2. We are working on alternative extrapolation

techniques to further explore the robustness of our R2 estimates to censoring. In Section 4, we show

robustness of our results across various samples and conclude that the censoring may ultimately

have a limited impact on our conclusions.

4 Numerical Results for the Representative Consumer Model

In this section, we use our theoretical results and our automobile data to quantify the deadweight

loss that results from using second-best policies. We focus first on the R2 of regressions relating

fuel-economy rating to lifetime gasoline consumption. We report the R2 measure from a variety

of specifications which take alternative approaches to dealing with the limitations of our data,

namely censoring problems and sampling error. As discussed in Section 2, under certain simplifying

assumptions, the R2 alone is a sufficient statistic. Specifically, it is equal to the fraction of the

welfare gain achieved by the first-best (over a baseline policy that places a common tax rate on

all automobiles) that can be achieved by the optimal second-best linear policy; this fraction is

an upper bound on the welfare gain from CAFE.14 Other factors will enter the calculation that

determines economic efficiency when our simplifying assumptions do not hold, or when we wish

to evaluate a policy other than the second-best linear one. In those cases, the R2 will remain a

rough indicator of economic efficiency. In ongoing work, we are using simulations to determine how

important these other factors may be. In Section 4.2, we use estimates of the social cost of carbon

and the derivative of vehicle demand with respect to price to convert the R2 into deadweight loss

measured in dollars.

Our empirical analysis makes several important assumptions. First, we focus here on greenhouse

gas emissions, in part because our data allow us to look at this externality more easily than others.

Our data indicate the total miles that a vehicle has been driven, but they do not tell us where

those miles were driven. This is not a problem for global pollutants like carbon dioxide, but it

means that we can paint only an incomplete picture of the heterogeneity in damages from local air

pollution. Our focus on greenhouse gases likely understates the overall importance of heterogeneity

by omitting local air pollution, but it is conceivable that the two sources of heterogeneity could

14Because a fuel-economy standard will have the wrong intercept, Holland, Hughes, and Knittel (2009) show that
there is no guarantee that welfare will increase, relative to the case of no regulation.
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partially offset. We intend to incorporate local pollutants in the future.15

Second, we assume that in-use fuel economy matches the EPA’s estimate of the combined

fuel economy rating, for each type of vehicle on average across drivers and miles driven. If some

vehicles are driven disproportionately in city traffic, while others are driven disproportionately on

highways, or if the owners of some vehicles drive particularly aggressively, then the differences

between laboratory test ratings and average in-use performance will differ across models. Either

factor could be substantial, and by omitting such factors we suspect that we are understating

heterogeneity. But, it is possible that heterogeneity in the deviation between on-road fuel economy

and official test ratings is negatively correlated with durability, thereby offsetting some of our

measured heterogeneity. We will explore this issue in the future.16

Third, at present, we ignore the timing of emissions. That is, we sum total miles driven and

do not discount them into the present value at the time when a car is new. We do so both for

simplicity, but we also note that the time path of the social cost of carbon suggested by current

federal guidelines roughly offsets discounting. That is, as the social cost of carbon is set to rise at

roughly the rate of interest, accounting for the time path of the social cost of carbon and the time

path of vehicle emissions will yield a result that is quite similar to a baseline that ignores discounting

and uses the current social cost of carbon and full lifetime mileage without discounting.

Fourth, at present, we ignore carbon emissions stemming from the construction (and scrappage)

of each vehicle. We can account for this in the future by estimating the carbon emissions “embodied”

in the manufacturing process.

Fifth and finally, before proceeding to the results, we remind the reader that our welfare analysis

is derived in a simplified model that does not allow for lifetime VMT to respond to policy (no

intensive margin response) and assumes that product attributes are fixed (i.e., we consider the

short run).

4.1 The Degree of Heterogeneity in Durability Across Models

To begin, we show scatterplots of the relationship between lifetime gasoline consumption and of-

ficial fuel consumption ratings. Figure 3 shows the relationship between a model’s total lifetime

externality (gallons of gasoline) and its fuel economy, for both cars and trucks. A point in the fig-

ure corresponds to the average gasoline consumption at the VIN10-prefix level, which corresponds

15Registration data and survey data could allow us to identify the population density and local air quality of the
location where each type of vehicle is registered. We are currently exploring the possibility of estimating heterogeneity
in local air pollution by vehicle type using these data sources. See Knittel and Sandler (2013) for a related analysis
of how heterogeneity in local air pollution across vehicles influences the efficiency of a fuel tax as a policy instrument.

16We can use a combination of registration data and survey data from the National Household Transportation
Survey to assess the degree to which vehicles are registered and driven in rural versus highway settings. This analysis
will have limitations, but it will likely allow us to make an order of magnitude determination about this source of
heterogeneity. Regarding heterogeneity due to driving style, see Langer and McRae (2014) for evidence that the
variation across consumers in on-road fuel economy is vast. Note that what matters for our analysis is not the
variance across individuals, but the degree to which the average consumer of a particular model differs from the
average consumer of another model. Their analysis is based on data from a single type of vehicle, so it offers little
guidance for our purposes.
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Figure 3: The Relationship Between Lifetime Gasoline Consumption and Fuel-Efficiency
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Note: The unit of observation is a type of vehicle (a VIN10-prefix), and gallons consumed is the average across

observations for that type. The sample is restricted to models for which we observe at least 200 vehicle retirements

from model years 1988 to 1992. Observations with VMT ≥ 1, 000, 000 miles are dropped. Solid lines are OLS

prediction lines.

roughly to a unique make, model, vintage, and engine size, and sometimes also distinguishes trim

levels and transmissions. The figure ignores within-VIN10 variation in gasoline consumption. The

sample in the figure is restricted to model years 1988 to 1992, the years for which censoring is least

problematic (we observe retirements between 1996 and 2008), and to vehicle models for which we

have at least 200 observed retirements. This mitigates sampling error and reduces the number of

observations for visual clarity. In addition, we drop observations above 1,000,000 miles to limit the

influence of outliers. The figures also show an OLS fitted line for reference.

The figure illustrates that there is, as expected, a strong, positive correlation between fuel

consumption ratings (the inverse of fuel economy ratings) and lifetime gasoline consumption. But,

there is also a great deal of dispersion. Vehicles have significantly different average longevity (total

lifetime mileage), and this translates into variation in lifetime fuel consumption, conditional on the

official fuel consumption rating. The R2 for cars and trucks in this sample is only 0.18 and 0.12,

respectively. (The R2 from a combined sample regression is 0.29.) When the assumptions hold for

the special case of our model, this implies that the second-best CAFE-style policy captures only

18% and 12% of the welfare gains for cars and trucks that would be achievable with an efficient set

of product-based taxes that varies not only with fuel economy, but also with vehicle durability.

The figures are drawn with a particular subset of the data. To illustrate how the implied

efficiency of second-best policies varies with different sample restrictions, Table 1 reports the R2

from a set of regressions that take the form:

Average Lifetime Gasoline Consumptionj = α+ βGallons per Milej + εj , (14)

where j indexes a vehicle type (VIN10-prefix). We report a range of estimates in order to assess
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the importance of sample restrictions, weighting, censoring and sampling error.

Table 1 shows our estimates of the R2 for different sample restrictions, both using OLS and

weighted least squares (WLS), where VIN-prefixes are weighted by the number of observed re-

tirements N . In all cases, we drop observations with reported mileage above one million (1,525

observations out of roughly 4 million, or less than 0.05%). The first two panels treat a VIN10-

prefix or VIN8-prefix (which groups model years together, but still distinguishes make, model,

engine type, etc.) as a unit of observation, consistent with Figure 3 above. The third and fourth

panels use the microdata: the unit of observation is a retired vehicle.

Table 1: Regression R2 Using Raw Data

Regressions using VIN-prefix averages

VIN10-prefix VIN8-prefix
OLS WLS OLS WLS

All model years
All models .26 .20 .23 .19
Models with N ≥ 200 .22 .17 .27 .19

Model years 1988-1992
All models .27 .26 .28 .27
Models with N ≥ 200 .29 .22 .34 .25

Regressions using microdata

All model years
All models .08

Model years 1988-1992
All models .10

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating.

The unit of observation is either a VIN10-prefix or a VIN8-prefix, except for the last two rows, which

include individual vehicles. Observations with VMT ≥ 1, 000, 000 miles are dropped. N is the number

of observed retirements N , and WLS weights the regressions by N .

Panel 1 shows that our estimate of the R2 remains small in all VIN10-prefix specifications,

ranging from a low of 0.17 to a high of 0.29. R2 is slightly higher when the data is collapsed at the

VIN8-prefix level (0.19 to 0.34).

Importantly, our estimates change very little when we restrict the sample to include only 1988

to 1992 model years (panel 2). As these model years span the age range in which the majority

of retirement happens, this provides us with a first indication that our welfare conclusions will be

broadly robust to additional measures that account for censoring in the data.

As discussed above, white noise in the measurement of lifetime mileage by type (sampling error),

should cause a downward bias in the R2. To assess the importance of sampling error, we compare

results from OLS to WLS, which weights models by the number of vehicles that is observed as

being scrapped. We also check how our results change when we limit the sample to vehicles for

which we observe relatively many retirements (N ≥ 200). The R2 changes only modestly when

17



moving between OLS and WLS, and when restricting the sample to N ≥ 200. This suggests that

our qualitative findings are not overly sensitive to sampling considerations. We explore this issue

further below.

For reference, panels 3-4 also report the R2 from the OLS regression on our underlying mi-

crodata, rather than on the data collapsed to VIN-prefix averages. The R2 is 0.08 for all model

years and 0.10 for model years 1988-1992. It is important to emphasize that this is not the relevant

measure in the representative consumer model, as these regressions include heterogeneity in mileage

across different individual drivers of the same vehicle model. As such, it includes differences in how

individual drivers depreciate their vehicles, including accidents that lead vehicles to be scrapped.

Accidents are ex post realizations of random product failure. As discussed in the introduction,

such random failures will not influence the relative efficiency of one policy versus another and is

therefore not the prime object of our study. We include it here to demonstrate the full degree of

heterogeneity in the underlying microdata.

Overall, the relatively low R2 statistics suggest that there is substantial variation in lifetime

gasoline consumption, conditional on fuel-economy ratings. We have also explored a number of

alternative estimates that treat cars and trucks separately and that estimate the R2 for each model

year separately. In all cases, the qualitative conclusion remains that there is substantial variation

in lifetime consumption that is not explained by fuel economy, which implies that policies based

only of fuel economy ratings, not on average product durability, will raise welfare by significantly

less than would an efficient policy (including a carbon tax or a gasoline tax).

4.1.1 Policies May Also Be “Biased”

Our approach can be altered to consider something other than just the second-best linear policy.

For a nonlinear fuel economy policy, the R2 would still be the relevant summary statistic, but

the relevant independent variable would be different. For example, if CAFE were more flexible so

that it could put a shadow price on each model that was a quadratic function of fuel consumption

ratings, we could estimate the R2 from a quadratic regression.

Alternatively, if the linear policy used is not the second-best (that is, if the predicted line is

biased), then this bias causes an additional source of welfare loss, as demonstrated in equation (12).

This will occur when there is a correlation between average lifetime mileage and fuel consumption

ratings in the data, but the policy is determined as if there is no such correlation. We illustrate

this in Figure 4, which replicates Figure 3, but adds a line that represents the relationship between

fuel consumption ratings and lifetime fuel consumption, if all cars (or trucks) were driven the same

number of miles, which we set equal to the observed mean in our data. This line represents the

best fit line that a policymaker would choose if they knew only the average mileage (separately

for cars and trucks) across all vehicles, but did not know the correlation between average mileage

and fuel consumption ratings. This is our depiction of a “näıve” linear tax, which gets the average

shadow price right, but ignores durability completely. The current CAFE standards are näıve in

this way, as the standards are not based on expected VMT. Figure 4 shows that the näıve linear
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Figure 4: The Relationship Between Lifetime Gasoline Consumption and Fuel-Efficiency
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Note: The unit of observation is a type of vehicle (VIN10-prefix), and gallons consumed is the average across

observations for that type. The sample is restricted to models for which we observe at least 200 vehicle retirements

from model years 1988 to 1992. Observations with VMT ≥ 1, 000, 000 miles are dropped. Solid lines are OLS

prediction lines. Dashed lines are linear fits under the assumption that all vehicles are driven the mean number of

miles.

tax differs noticeably from the best linear tax for trucks, but that the difference for cars is small.

This mispricing represents another source of inefficiency from ignoring heterogeneity in durability.

It turns out not to be the dominant concern in our data, but it may be important in other contexts.

4.1.2 Additional Robustness Checks: Outliers, Sampling and Censoring

Our data include some cases of very high lifetime VMT, which raises the possibility of coding errors.

Our estimates of the R2 could be sensitive to such outliers, even when restricting to vehicles with

relatively large sample sizes. In the results above, we have dropped observations for which VMT-

at-death exceeds 1,000,000 miles. To check whether our R2 results are sensitive to this sample

restriction, we have run regressions that include all observations as well as regressions in which we

winsorize the underlying micro data at different VMT thresholds. When we include the vehicles

with the highest mileage, R2 is virtually unchanged. The R2 increases only modestly when we

winsorize the highest VMT vehicles at increasingly stringent levels. The OLS R2 rises from a

baseline of 0.28 to a maximum of 0.37 when we limit the influence of data over 400,000 miles. The

WLS R2 rises from a baseline of 0.22 to a maximum of 0.30 for the same restriction. See Appendix

Table A.1 for details. Our qualitative conclusions are therefore robust to outliers.

Winsorizing the data at a level as low as 400,000 miles does seem to be restrictive; that is,

we suspect that most of the cases of reported high lifetime VMT are legitimate. To demonstrate

this, we plot the full histogram of lifetime odometer readings across all of our microdata in Figure

5. The data have a mode around 160,000 miles, but there is a long right tail. Just under 7% of

vehicles in our data are scrapped with over 400,000 miles. It is useful to recall that our data are

for California, where the climate may facilitate longer vehicle lifetimes than would be true in other
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Figure 5: Distribution of Lifetime VMT Across All Observations
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climate zones.

Above we argued that bias in the R2 due to mismeasurement from sampling variation was

likely to be small because our results are not overly sensitive to restricting the set of vehicles to

those with a large sample. To further examine the importance of sampling variation, we test how

the R2 changes when we randomly select subsets of our data for analysis. Specifically, we limit

our sample to all VIN10-prefixes for our focal vintages of 1988 to 1992, for which we have at

least 200 retirements in our sample. We then bootstrap that sample and estimate the R2 many

times. The mean estimate is 0.283 (which corresponds to the parallel specification in 1). Next, we

bootstrap the sample again, but in each iteration we drop 50%, 90% or 98% of our sample randomly.

Dropping these fractions of the sample decreases the R2 to 0.282, 0.273 and 0.229, respectively.

The negligible change in R2 as the sample size is cut in half provides strong evidence that sampling

error is unlikely to cause a downward bias in our R2 estimates. Even cutting our data down to just

2% of our preferred sample reduces the R2 by only 20 percent.

Finally, we further assess the importance of censoring. Table 1 above showed that restricting the

sample to model years 1988-1992 does not affect the R2 much, providing a first indication that the

bias from censoring may be limited. Here we consider two alternative methods. The first method

is an extrapolation technique that assigns retirement counts and VMT-at-death to non-observed

ages for each individual VIN10-prefix. The extrapolation is intentionally conservative, so that the

resulting R2 should be considered an upper bound on the true R2. The second method exacerbates

the censoring by progressively removing vehicles of certain ages, and shows how the R2 changes in

response.

The extrapolation method starts with the national registration data at the VIN10-prefix level.
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We first compute annual scrap rates for each VIN10-prefix over the sample period 1999-2009. Next,

we fill in missing scrap rates for unobserved ages using average scrap rates by age at the VIN8-prefix

level, which does not distinguish model year. In other words, if the scrap rate for a 20-year-old 1985

Toyota Corolla LE is missing, we replace it with the average scrap rate of any 20-year-old Toyota

Corolla LE, regardless of vintage (assuming that at least one vintage is observed at age 20). For

ages that are not observed at the VIN8-prefix level, we assign scrap rates based on sample-wide

average scrap rates by age (weighted by registration counts).17 Having extrapolated missing scrap

rates (and, indirectly, missing vehicle retirements), we then impute missing VMT-at-death using a

similar procedure. We first replace VMT-at-death for each age without data using VMT averages

across VIN8-prefixes. For ages that are never observed at the VIN8-prefix level, we use a similar

polynomial fit for the relationship between VMT-at-death and age, averaged across all models and

weighted by the number of retirements.

This is an extremely conservative approach, in that we assume that missing scrap rates and

VMT-at-death are the same across all vehicles. This is “conservative” in that it necessarily reduces

cross-model variation in lifetime mileage and thus raises the R2. The process essentially removes

all relevant variation for the imputed observations. The resulting R2 from regressions with imputed

data should therefore be considered an upper bound, one that is likely substantially above the true

R2 that would be obtained with a fully uncensored sample.

Table 2: Regression R2 Using Imputed Data

VIN10-prefix averages, model years 1988-1992 OLS WLS

VMT imputed for all models
All models .44 .43
Models with N ≥ 200 .45 .38
Models with Nimputed ≥ 400 .47 .40

VMT imputed for models with ≤ 12 ages
All models .34 .25
Models with N ≥ 200 .29 .24
Models with Nimputed ≥ 400 .28 .23

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating,

where scrap rates and VMT for missing ages are imputed. The unit of observation is a VIN10-prefix.

Observations with VMT ≥ 1, 000, 000 miles are dropped. WLS uses the actual number of observed

retirements N when the sample is selected based on N ≥ 200 and the imputed number of retirements

Nimputed when the sample is selected based on Nimputed ≥ 400.

Table 2 presents the results for model years 1988-1992 using this imputation. When missing

data are imputed for all models, the R2 increases to 0.38-0.47, depending on whether the regression

is weighted and if the sample is restricted to observations with at least 200 observed retirements or

at least 400 imputed retirements (panel 1). While this range is clearly above 0.22-0.29 (as reported

17Specifically, we fit a fifth-order polynomial to the scrap rate by age pattern, and use the polynomial fit for
imputing missing data.
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in panel 2 of Table 1), the R2s are still low from an absolute perspective. Panel 2 shows that when

we restrict the sample to VIN10-prefixes for which we impute retirements and VMT-at-death for

at most 12 ages, the range goes down to 0.23-0.34. This provides further evidence that censoring

is unlikely to cause a large bias in our results.

Our second approach to investigating the impact of censoring is to drop vehicles of certain ages,

thereby exacerbating the censoring problem, to see how that influences the R2. The idea is that

the change in R2 in response to more restrictive censoring can provide additional insight into what

would happen if we could instead relax the censoring.

Specifically, we restrict the sample to models with N ≥ 200 and model years 1988-1992 and show

how the R2 estimates change as we progressively remove vehicles of older ages from the sample.

Table 3 shows the results for vehicles in the age ranges 10-X years old, where X goes up from 13 to

20 years. We find that the R2 increases from 0.28 to 0.36 when the age range is further censored,

suggesting that less censoring would yield lower values. We have also run age-specific regressions

(i.e., regressions on only 10-year-old cars). The R2 falls as vehicles get older. Intuitively, it seems

that censoring “young” vehicles depresses the R2, as there will be less variation in VMT among cars

that are scrapped (generally because of accidents) at young ages, whereas censoring “old” vehicles

likely exaggerates the R2 by understating heterogeneity.18 The smog check data are censored to

omit vehicle deaths below six years, but relatively few vehicle deaths occur in those years, so on

balance our data are mostly missing deaths at older ages. This suggests that the censoring problem

is most likely, on net, causing us to exaggerate the R2.

Table 3: Regression R2 With Different Vehicle Age Restrictions

VIN10-prefix averages, model years 1988-1992, N ≥ 200
Low age High age OLS WLS

10 13 .36 .30
10 14 .35 .29
10 15 .33 .28
10 16 .31 .26
10 17 .29 .24
10 18 .29 .23
10 19 .28 .22
10 20 .28 .21

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating.

The unit of observation is a VIN10-prefix. Observations with VMT ≥ 1, 000, 000 miles are dropped. WLS

weights the regressions by the number of observed retirements N .

18We have run age-specific regressions in which we compute R2 using data only for ages 10,. . . ,17. R2 decreases
from 0.37 for 10-year-old vehicles to 0.22 for 17-year-old vehicles.
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4.2 Estimates of Deadweight Loss

We can translate the relative gains from the first- and second-best product-based taxes, expressed

above as an R2, into deadweight loss by assigning a dollar value to the externality and considering

the pattern of substitution across vehicles. We begin with the 1988 through 1992 model years

(as in Table 1 above), computing the possible welfare gains from a product-level tax and the

deadweight loss from the second-best tax based on fuel economy. We then narrow the focus to

demand in a single model year, using 1990 as an example, in order to explore the influence of a

range of substitution patterns across vehicles. We show how certain correlations in the off-diagonal

elements of the demand derivatives, ∂xj/∂tk, can influence the fraction of welfare recovered in the

second best.

Evaluating the formula in equation (6) first requires estimates for the externality generated

by each car as well as its own- and cross-price elasticities with respect to the other vehicles in the

market. We assign a value of $39 for the social cost of carbon (Interagency Working Group on Social

Cost of Carbon (2013)), leading to an external cost of 34.6 cents per gallon.19 Using our data on

lifetime fuel use this implies an average of $3,172 in external costs for each vehicle sold. We further

impose an own-price elasticity of -5 (roughly comparable to the estimates in Berry, Levinsohn, and

Pakes (1995)) and cross-price elasticities distributed evenly over the full set of models. We relax

both of these assumptions below, considering higher and lower own-price elasticities and cross-price

elasticities that are correlated with similarity in attributes.

As above we compute welfare results relative to a baseline that controls for substitution to an

outside good (since a revenue-neutral CAFE standard does not directly incentivize switching to

an outside good) and so isolate the welfare effects coming from switching among vehicles. Under

our assumptions on elasticities the welfare gains with a separate Pigouvian tax on each of the 1636

VIN10-prefixes amount to $239 per car sold, or about $3.4 billion per year. The best linear tax on

fuel use per mile, equivalent here to the optimal average fuel economy standard, generates about

$0.75 billion per year in surplus and so leaves $2.6 billion in deadweight loss. This corresponds

directly to the intuition on R2 above: for the 1988-1992 model years the weighted R2 is 0.22,

implying 22% of possible gains are recovered with a single linear policy.

The single linear policy over the five years also contains an inefficiency related to the differing

sets of fuel economies available each model year. As an alternative, we repeat the calculation for a

more flexible policy that updates each year. The fraction of first-best welfare recovered increases

only slightly, to 23%.

Table 4 repeats the welfare calculation, now exploring sensitivity to the own- and cross-price

elasticities across cars. We focus on substitution across cars in a single model year, 1990, for clarity.

The first panel under the central case considers changes in the own-price elasticity of demand for

individual models (-5 in the central case). More elastic demand allows a larger change in the

composition of the fleet and so greater welfare gains are possible in the first best. The ratio of

19If the cost associated with carbon emissions has been rising approximately at the discount rate, we interpret this
value as being in 2011 dollars (looking retrospectively at the 1988-1992 vintages).
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second- to first-best welfare gains remains fixed at 0.24, the value of R2 for the 1990 model year.

The remaining panels in Table 4 explore correlation in cross-price elasticities related to attributes

of the vehicles. Recall that the derivation ofR2 as a summary statistic involves own-price elasticities,

with idiosyncratic variation in the cross-price effects canceling out. Strong correlation in cross-price

effects (particularly with respect to the externality) can influence the pattern of welfare effects.

Panel B allows cross-price effects to be related to the relative fuel economy of vehicles, with the

two cases differing in how rapidly substitutability decays as cars become more distant. A car

with the same fuel economy is twice as good a substitute as a car one standard deviation away

(about 1 gallon per hundred miles) in the first case, and five times as good a substitute in the

second case. When introducing this substitution pattern the gains possible in the first best become

smaller. Intuitively, it is now harder to move people across vehicles with different externalities,

at least to the extent the externality is correlated with fuel economy. This change in cross-price

effects worsens the performance of the second-best policy even more dramatically than the first-

best: this is because the only margin on which the second-best policy operates (fuel economy) is

the margin that the cross-price effects are limiting. Panel C repeats the experiment, this time

with cross-price elasticities such that cars with similar lifetime miles are the best substitutes. This

pattern instead limits the importance of heterogeneity in durability since substitution across cars

of different durabilities is slow even in the first best. The relative performance of the second-best

policy is therefore improved. Finally, Panel D introduces substitution correlated with vehicle prices.

Since price is not as strongly correlated with the externality as fuel economy or durability (which

combine to define the externality) the effects on welfare in this case are quite small.

Table 4: Welfare Effects for Model Year 1990

Second best First best Ratio

Central case 0.81 3.39 0.24

A Own-price elasticity
-4 0.66 2.73 0.24
-6 0.97 4.03 0.24

B Cross-price elasticities, fuel economy
2 0.71 3.30 0.21
5 0.55 3.15 0.17

C Cross-price elasticities, lifetime miles
2 0.87 2.89 0.30
5 0.88 2.29 0.38

D Cross-price elasticities, vehicle price
2 0.81 3.44 0.23
5 0.79 3.50 0.23

Note: Welfare gains are expressed in billions of 2011 dollars relative to a constant tax at the average

externality. Cross-price elasticities are expressed as the factor by which substitutability decreases per

standard deviation difference in the specified attribute.

24



The estimates above are subject to several important caveats. Perhaps the most important

consideration is the role of technology: we consider a static portfolio of durables offered for sale

while in the long run the products can be re-engineered according to incentives provided by the

tax schedule. In the case of cars this amounts to altering attributes, for example reductions in

weight and horsepower, and introducing efficiency-enhancing engine technologies. The second-best

intuition developed here will also apply to the distribution of these technologies across cars: the

most advanced technologies and lightest materials should be placed in the cars that have the highest

expected lifetime mileage. A linear tax (or standard) based on fuel economy will encourage these

technologies to be distributed much more equally across the fleet, missing welfare gains possible if

the improvements could instead be targeted. Interactions between the second-best effects here and

a set of other distortions produced by standards (for example due to attribute-basing or changes

to durability induced via the used market) also have the potential to influence welfare.

5 Model with heterogeneous consumers

In Section 2 we present a model in which consumers are all alike, but there is heterogeneity in

lifetime utilization of durable goods due to differences in product durability. We now generalize to

a setting in which consumers have different intensities of use of the same good and, therefore, each

consumer-good pairing can have a different lifetime externality.

5.1 The Standard Diamond Model

Diamond (1973) derives the second-best tax t∗ for the case where there is a single externality-

generating good x but there are i = 1, . . . , I consumers who have different own-price derivatives of

demand and generate different externalities.

t∗ =

−
I∑
i=1

∑
k 6=i

∂Uk

∂xi

∂xi
∂t

(p+ t)

I∑
i=1

∂xi
∂t

(p+ t)

(15)

The marginal damages (externality) is expressed as the impact of person i’s consumption on

others −
∑

k 6=i
∂Uk

∂xi
≡ ei. Equation (15) has a simple interpretation: the second-best tax is the

average of the externalities, weighted by the individuals’ own-price derivatives. If more responsive

consumers have higher damages ei, the second-best tax rate exceeds the unweighted average exter-

nality ē. If demand derivatives are uniform across consumers, t∗ = ē. Note that if consumers are

identical and have the same quasi-linear utility function (U i = U ∀i) then the optimal demands

x∗i = x∗ and the externality ei = e for all consumers. Also, ∂U i

∂xk
= ∂Uk

∂xi
∀i∀k and ∂xi

∂t (p+ t) = x
′ ∀i.

In that case, the problem collapses to a first-best solution in which the optimal tax is equal to the

total externality imposed on all other consumers: t∗ = e.
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5.2 A Diamond Model with Multiple Goods

When consumers have a different intensity of use of the same durable good, they will produce

different externalities, eji, from an ex-ante identical product j. For example, different car owners

may drive different amounts of miles over the lifetime of the same model.20 Another example is

that some drivers are more aggressive than others and as such realize a lower fuel economy and

higher emissions (Langer and McRae (2014)). Another source of heterogeneity for local pollutants

is geography; the same tailpipe emission will have a different external damages depending on

population density and the starting level of pollution.

We now generalize the Diamond model to include multiple goods j = 1, ..., J . We continue to

abstract from the rebound effect, as our aim is to compare different types of product-based policies.

The setup is quite general: every consumer can have unique expected damages when paired with

each product.21 This encompasses heterogeneity due to breakdowns or accidents.22 Each consumer

i holds a continuous bundle of goods, where demand for good j by consumer i is denoted xji. In

the context of vehicles, we can interpret consumer i as a “driver type” that holds a portfolio of

vehicles. There are J second-best tax rates t∗j , one for each good, whereas the first-best solution

(which we assume to be infeasible) would be J × I tax rates t∗ij = eji. Note that the latter set of

taxes, which are unique to a consumer-product pairing, are equivalent to a gasoline tax as long as

we abstract from the mileage rebound effect.

If a first-best (gasoline) tax were feasible, elasticities are irrelevant. The only information re-

quirement is the marginal externality per unit of energy consumption. The first-best tax guarantees

that all consumers pay exactly their total externality and choose their vehicles optimally (Pigou,

1932). In the second-best setting described here, elasticities do matter. The second-best taxes will

be a function of the elasticity of substitution between vehicles, and the externality imposed by

consumer i’s individual use of car j: different people drive the same models differently (i.e., they

have different ex-ante VMT distributions for the same vehicle at the moment of purchase).

We now derive expressions for the second-best taxes with heterogeneous consumers and multiple

goods. In the Diamond framework, utility is given by:23

U i(x11, ..., xji, ..., xJI) + µi, (16)

20To the extent that vehicle depreciation is a function of mileage, rather than time, different annual VMT is not
enough to imply heterogeneity. Consumer heterogeneity comes from different accident risk or time-based depreciation.

21Restricted versions of this model could assume that each consumer carries a fixed amount of “utilization” (e.g.,
vehicle miles traveled), regardless of the product type (car) (s)he owns. In this case, the remaining individual-level
heterogeneity comes from driving style and accidents. In general, the dimensions of the problem might be reducible
depending on the shapes of the person-car externalities eji. If each consumer has a fixed distribution of lifetime
mileage VMTi and each vehicle has a fixed fuel economy MPGj , then eji = VMTi/MPGj (ignoring discounting).
We can capture this with fewer than J × I taxes.

22The marginal damage can be interpreted as relative to the risk-adjusted mean damages.
23Note that in this specification, consumers derive utility from owning cars. Services derived from owning cars

(VMT) are not explicitly modeled. However, this framework allows for different drivers of the same car to impose a
different externality on other consumers. Implicitly, we can think of this as heterogeneity in VMT. In fact, in this
general framework, consumer i driving car j may impose a different externality on consumer k vs. consumer l. This
is relevant for local pollutants, but not for a uniformly mixed pollutant such as CO2.
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where µi is income spent on other goods by consumer i. We further follow Diamond in assuming

that externalities are diseconomies:

∂U i

∂xjk
≤ 0, (17)

for k 6= i. The marginal utility of consumption is independent of the demands of other consumers:

∂2U i

∂xji∂xjk
= 0, (18)

for k 6= i and for all goods j. Each consumer i maximizes utility subject to a budget constraint:

max
x1i,...,xJi

U i(x11, ..., xji, ..., xJI) + µi, (19)

subject to:

J∑
j=1

(pj + tj)xji + µi = mi, (20)

where mi is total income. The first order conditions assuming an interior solution and using

equation (18) are given by:

∂U i

∂xji
(x1i, ..., xJi) = pj + tj = p̃j , (21)

for all goods j. The optimal choices for consumer i depend not only on the tax-inclusive price of

the durable good p̃j , but also on the consumption level – and therefore the tax-inclusive price – of

the other durable goods:

x∗ji = xji(p̃1, ..., p̃J). (22)

Analogous to Diamond (1973), we derive the optimal tax rate by writing down an expression

for total utility:

W (t1, ..., tJ) =

I∑
i=1

U i(x11(p̃1, ..., p̃J), ..., xji(p̃1, ..., p̃J), ..., xJI(p̃1, ..., p̃J)) +

I∑
i=1

µi. (23)

Using equation (20) and assuming that tax revenues are returned lump-sum, we can rewrite

this as:
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W (t1, ..., tJ) =
I∑
i=1

U i(x11(p̃1, ..., p̃J), ..., xji(p̃1, ..., p̃J), ..., xJI(p̃1, ..., p̃J)),

+
I∑
i=1

mi −
J∑
j=1

pjxji(p̃1, ..., p̃J)

 .

(24)

To find the second-best optimal vector of tax rates (t∗1, ..., t
∗
J), we need to calculate first order

conditions by differentiating equation (24) w.r.t. to each of the tj ’s:

dW

dtj
=

J∑
l=1

I∑
i=1

I∑
k=1

∂U i

∂xlk

∂xlk
∂tj

(p̃1, ..., p̃J)−
J∑
l=1

I∑
i=1

pl
∂xli
∂tj

(p̃1, ..., p̃J) = 0. (25)

Now use the FOCs in equation (21) to rewrite this as:

dW

dtj
=

J∑
l=1

I∑
k=1

∑
i 6=k

∂U i

∂xlk

∂xlk
∂tj

(p̃1, ..., p̃J) +
J∑
l=1

I∑
i=1

tl
∂xli
∂tj

(p̃1, ..., p̃J) = 0. (26)

In sum, the formula equalizes the change in consumer surplus for both cars and the change in

total externalities when tj is raised.

This is a fairly intuitive expression. The first term in equation (26) is the total net change

in the externality from an increase in tj . If cars j and l are substitutes, this is an improvement

from car j and a worsening from car l. The double summation over k and i summarizes the total

externality imposed on all others for each consumer k. The marginal utility gains from reduced

externalities reflect the benefits from raising the tax on car j. The second term is the reduction

in consumer surplus for all cars and consumers and reflects the costs of raising tj . In sum, we

set tj to equalize the change in net consumer surplus for all cars (“costs”) and the change in net

externalities (“benefits”).

For the 2-good case (we are still confirming the proper notation for the J-good case), solving

the system of 2 equations yields the following expression:

t∗1 =

∑
i

∂x2i

∂t1

∑
k

∑
i 6=k

(
∂U i

∂x1k

∂x1k

∂t2
+
∂U i

∂x2k

∂x2k

∂t2

)
−
∑
i

∂x2i

∂t2

∑
k

∑
i 6=k

(
∂U i

∂x1k

∂x1k

∂t1
+
∂U i

∂x2k

∂x2k

∂t1

) 1
∆ ,

t∗2 =

∑
i

∂x1i

∂t2

∑
k

∑
i 6=k

(
∂U i

∂x1k

∂x1k

∂t1
+
∂U i

∂x2k

∂x2k

∂t1

)
−
∑
i

∂x1i

∂t1

∑
k

∑
i 6=k

(
∂U i

∂x1k

∂x1k

∂t2
+
∂U i

∂x2k

∂x2k

∂t2

) 1
∆ ,

(27)

where the arguments (p̃1, ..., p̃J) are omitted for notational simplicity and:
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∆ =
∑
i

∂xi1
∂t1

(p̃1, p̃2)
∑
i

∂xi2
∂t2

(p̃1, p̃2)−
∑
i

∂xi2
∂t1

(p̃1, p̃2)
∑
i

∂xi1
∂t2

(p̃1, p̃2). (28)

In the single good, standard Diamond model in equation (15), the second-best tax is the average

of the externalities, weighted by the individuals’ own-price derivatives. In the multiple goods case,

this simple intuition no longer holds. t∗1 now consists of two terms. The second term still contains the

weighted sum of the externalities, but now also the weighted average externalities generated by the

change in consumption of the second car when the first car is taxed: the weights for the externalities

from the second car are cross-price derivatives. Next, the entire second term is multiplied by a

scale factor (the sum of the own-price elasticities of car 2 across the consumers). The first term

of the expression for t∗1 is similar to the second term, but it reflects changes in externalities when

the second car is taxed and its overall scale factor is a sum of cross-price derivatives. Hence, if the

own-price elasticities are large relative to the cross-price elasticities, the second term dominates

and the expression converges back to the simple Diamond model. ∆ is a scale factor.

We conjecture that this can be simplified using matrix notation. Label two objects from equa-

tion (27) for ease of notation. First, ∆Djl is the change in demand for good j when the price of good

l changes. If J = 2, this is a 2×2 matrix. Second, ∆Ej is the total net change in externalities from a

change in the price of good j. For example,
∑

i
∂α2i
∂t1

= ∆D21 and
∑

k

∑
i 6=k

(
∂U i

∂α1k

∂α1k
∂t2

+ ∂U i

∂α2k

∂α2k
∂t2

)
=

∆E2. For J = 2, we can write the vector of optimal taxes as T ∗ = (∆D
′
)−1∆E.

∆D is the standard market-level Marshallian substitution matrix. To calculate ∆D, we need

to know aggregate cross-price elasticities, but not who changed demand. ∆E is the net change

in the externality resulting from a change in the price of a vehicle. Its element j is the sum of

each person k’s change in externality from a price increase of car j, which we denote as ∆ejk ≡∑
i 6=k

(
∂U i

∂α1k

∂α1k
∂tj

+ ∂U i

∂α2k

∂α2k
∂tj

)
. This term can be negative or positive. For example, when J = 2 we

expect ∂α11
∂t1

< 0 and ∂α12
∂t1

> 0): raising the price of car 1 will lower demand for car 1 but raise

demand for car 2. The net effect on the externality depends on relative magnitude of the elasticities

and externalities.

To calculate ∆ekj we need to know the correlation between marginal damages and the own-

and cross-price elasticities. Absent a homogeneity assumption, we need to know this for each

individual. We therefore conclude that the informational requirements to calculate the second-best

taxes for the general case of heterogeneous consumers and multiple goods in equation (27) are

large. We interpret this as a “negative result”: the second-best tax rates require substantially more

information than a first-best gasoline tax. Moreover, it may be hard to estimate these correlations

without highly granular individual-level and product-level data. We are developing simulations to

assess how much welfare is lost by resorting to product-based standards that ignore heterogeneity

in usage intensity, and we are simultaneously investigating whether or not an analytical expression

for deadweight loss can be derived for this general case.

The heterogeneous consumers, multiple goods model simplifies when additional restrictions are

imposed. We consider three special cases (see Appendix B for the derivations). First, when cross-
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price derivatives are all zero, the second-best taxes collapse to the single-good Diamond formula in

equation (15) for each durable good j. Second, when there is no correlation between damages and

elasticities, the second-best tax rate for each good j is the average externality over all consumers

ēj . Hence, the optimal tax formula collapses back to the durability-only case presented in Section

2. Third, consider a case in which consumers are homogeneous in that different individuals i and

k drive car model j in an identical way, though cars have different fuel economy and durability

(VMT). In other words, the externality from driving vehicle j is the same across each pair of

consumers. The optimal tax for each vehicle reduces to its expected externality: t∗j = ej . In other

words, the optimal tax in the durability only model in Section 2 is now first-best (again, maintaining

the assumption of no rebound effect).

6 Conclusion

Product-based policies are a ubiquitous policy tool for regulating energy-related externalities. Het-

erogeneity in the lifetime utilization of durables causes product-based policies to be inefficient, as

compared to emissions taxes (or, for some pollutants, equivalent fuel taxes). We show that, under

intuitive conditions in a model with a representative consumer, the R2 from a regression of lifetime

emissions on energy efficiency ratings across products maps directly into welfare loss and acts as a

sufficient statistic for the use of restricted policies that place a linear subsidy on products based on

their energy efficiency rating, as compared to the efficient Pigouvian benchmark.

We use detailed data on vehicle scrappage, miles traveled and fuel economy to estimate welfare

losses of using product-based policies versus gasoline taxes to mitigate greenhouse gas emissions in

the automobile market. We estimate that CAFE-style policies recover only about one quarter of

the welfare gains that could be achieved by a gasoline tax. We also derive second-best tax rates in a

more general model that allows for usage heterogeneity from differences across consumers as well as

differences across products. There, we demonstrate that second-best policy design requires a vast

amount of information that is not likely to be available to policy makers. We plan to use simulation

to assess how much welfare is lost by resorting to optimal product-based standards. An emissions

tax would create superior welfare gains while simultaneously requiring much less information.
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A Appendix: Additional Empirical Results

Table A.1 shows the sensitivity of R2 to different treatments of observations with very high VMT-

at-death. The first two rows indicate that dropping observations with VMT ≥ 1, 000, 000 miles

hardly affects R2. Rows 3-6 indicate that, starting from the full sample, winsorizing at progressively

lower VMT levels slightly increases R2. For example, in the fourth row, any observation that has

a reported odometer rating above 600,000 miles is recoded as having exactly 600,000 miles. Its

gasoline consumption is recalculated assuming the new odometer reading, and the observation is

then averaged along with all other observations from the same VIN10-prefix. The table reports

OLS and WLS results, restricting the sample to model years 1988 to 1992 and to VIN10-prefixes

with at least 200 observed retirements.

Table A.1: Regression R2 Using Winsorized Data

VIN-pre averages, model years 1988-1992, models with N ≥ 200 OLS WLS

All odometer readings .29 .22

Drop if odometer ≥ 1, 000, 000 miles .28 .22

Winsorize at 1,000,000 miles .28 .22

Winsorize at 600,000 miles .30 .23

Winsorize at 500,000 miles .32 .25

Winsorize at 400,000 miles .37 .30

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating.

The unit of observation is a VIN10-prefix.

B Appendix: Special Cases of the Multiple Goods Diamond Model

This appendix contains the derivations for the three special cases of the heterogeneous consumer,

multiple good model presented in Section 5. These special cases may aid in interpretation of the

general result.
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B.1 No Cross-Price Effects in Demand

First, we demonstrate the our results collapse to the one-good result from Diamond (1973) when

cars are neither substitutes nor complements for each other. Assume that:

∂xji
∂tl

=
∂xli
∂tj

= 0, (B.1)

for all pairs of goods j and l. Demand for one good does not depend on the price of the other good.

Then, equation (22) simplifies to:

x∗ji = xji(p̃j). (B.2)

In that case, the problem is separable in the different goods. Equation (26) reduces to:

dW

dtj
=

I∑
i=1

∑
k 6=i

∂Uk

∂xji

∂xji
∂tj

(p̃j) + tj

I∑
i=1

∂xji
∂tj

(p̃j). (B.3)

The second-best taxes t∗j reduce to J separate Diamond-style formulas of externalities weighted by

own-price derivatives:

t∗j =

I∑
i=1

∑
k 6=i

∂Uk

∂xji

∂xji
∂tj

(p̃j)

∑
i

∂xji
∂tj

(p̃j)

. (B.4)

B.2 No Correlation Between Elasticities and Externalities

Next we show what happens if if we demand elasticities are uncorrelated with the externalities.

Specifically, assume that:

I∑
k=1

∑
i 6=k

(
∂U i

∂αlk

∂αlk
∂tj

)
=

I∑
k=1

∂αlk
∂tj

I∑
k=1

∑
i 6=k

∂U i

∂αlk
/I. (B.5)

If we substitute these terms into the second-best tax rates for the 2-good case in equation (27), the

result is:
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t∗1 =
∑
i

∂x2i

∂t1

∑
k
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∂U i
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= −
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k
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∂U i

∂αk1
/I = ē1.

(B.6)

Analogously, t∗2 = ē2. Hence, with no correlation between elasticities and externality, the

second-best tax formula reduces to taxing each good at its average externality, which is the same

as the second-best tax rate that we derive in the representative consumer case in section 2.

B.3 Homogeneous Consumers

Another possible step would be to assume that consumer types are homogeneous in the following

way: different individuals i and k drive car model j in exactly the same way. In other words, cars

may differ on characteristics such as fuel economy and durability (VMT), but there is no within-

model heterogeneity of driving habits. As a consequence, the externality from driving vehicle j is

the same across consumers. This restriction can be expressed as follows:

∂U i

∂xjk
= ∂U i

∂xjl
= u

′
j ,

∂U i

∂xjk
= ∂Uk

∂xji
= u

′
j ,

(B.7)

for k 6= l 6= i. The first condition imposes that if consumers k and l drive the same car j, they

impose the same externality ej on consumer i. The second condition says that k’s externality on i

from driving car j is the same as i’s externality on k from driving the same car.

Substituting these constraints in the optimal tax FOCs in equation (26) yields:

dW

dtj
=

J∑
l=1

I∑
k=1

∑
i 6=k

u
′
l

∂xlk
∂tj

(p̃1, ..., p̃J) +

J∑
l=1

I∑
i=1

tl
∂xli
∂tj

(p̃1, ..., p̃J),

= (I − 1)
J∑
l=1

I∑
i=1

u
′
l

∂xli
∂tj

(p̃1, ..., p̃J) +

J∑
l=1

I∑
i=1

tl
∂xli
∂tj

(p̃1, ..., p̃J) = 0,

(B.8)

which implies:

t∗j = −(I − 1)u
′
j = −

∑
k 6=i

∂Uk

∂xji
= ej . (B.9)
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Under this assumption, product-based taxes can yield the first-best policy, where the optimal taxes

are given by t∗j = ej . Here, the first-best tax equals the optimal tax in the durability only model

in Section 2, and the first-best is obtainable because of the assumption that all people generate a

common externality when using each type of product.
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