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Abstract
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cannot be done in a way to produce prices consistent with marginal cost. We go on to evaluate
economically correct capital allocations based on the model in the context of an international
catastrophe reinsurer with four lines of business. We find that traditional techniques can be
resurrected with 1) an appropriate definition of capital, 2) a broader conception of the cost
of underwriting, and 3) an appropriate risk measure connected to the fundamentals of the
underlying business.
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1 Introduction
The Return on Risk-Adjusted Capital (RORAC) ratio—where the expected return associated with
a risk exposure is divided by an allocation of risk capital and compared to a target rate of return—is
widely used by financial institutions for pricing and performance measurement. However, despite
ease of implementation, RORAC has been criticized for being inconsistent with value maximiza-
tion and, in particular, failing to provide an accurate picture of the institution’s effective risk aver-
sion. We revisit this issue by extending the canonical one-period model of an insurance company to
multiple periods. In particular, we allow for opportunities for raising external financing. We solve
for the marginal cost of risk in this dynamic setting and then reconcile the optimality conditions
with RORAC calculations.

We confirm earlier findings that RORAC ratios as typically conceived will not, in general, yield
results consistent with portfolio optimization in a multiperiod model. However, we show that the
practice can be resurrected by generalizing the notions of return, capital, and the cost of capital.
The necessary generalizations follow from the multiperiod context and entail 1) adjusting the ex-
pected return for the impact of the associated risk on the future value of the firm, 2) broadening
the notion of “capital” beyond economic capital to include all financial resources that could con-
ceivably be tapped by the firm, and 3) adjusting the target rate of return to reflect the net cost of
raising the marginal unit of capital.

The paper is divided into two longer sections. Section 2 describes the general multi-period
insurance model whereas Section 3 presents its implementation and corresponding results using
data from a catastrophe reinsurer.

The cost of risk in the model introduced in Section 2 reflects two important influences. First,
less risky insurers are able to charge higher prices for insurance coverage due to the risk aversion
of their customers. Second, greater risk produces a higher probability of financial distress, which
brings the burden of costly external financing and potential default. In the event of default, the
owners lose their claim to future profit flows. These two influences create risk aversion at the level
of the company and motivate the holding of capital despite its carrying cost.

As detailed in Section 2.1, the company maximizes value by choosing its participation in cov-
ering various risks, and its capital raising and shedding (dividend) decisions. The optimization
problem yields a Bellman equation, where firm value is a function of the current capital level. At
any point in time, the firm may be over- or under-capitalized: Too little capital in the firm leads
the company to forego profitable business opportunities, whereas too much capital is too costly
relative to (decreasing) profit margins. This is also reflected in the optimal capital raising decision:
A meagerly capitalized company will raise funds whereas a high-capital firm will shed by paying
dividends. In the case of an undercapitalized firm, the adjustment process is gradual due to convex
costs of raising funds.

We go on in Section 2.2 to derive the marginal cost of each risk in the company’s portfolio, from
which the RORAC of the risk can be generated. Marginal cost in a simple one-period insurance
model consists of two parts—a marginal actuarial cost and a risk charge that can be interpreted as
a capital allocation times a cost of capital. The RORAC ratio can then be calculated by deducting
the marginal actuarial cost from the price and dividing by the allocated capital, with the cost of
capital being the hurdle rate for the exposure.1

1If the portfolio is optimized, the RORACs in all lines will of course be equal to the hurdle rate.
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A similar calculation can be recovered in our analysis of the multiperiod model, but adjustments
are necessary. In addition to the actuarial component, the marginal cost of an exposure now reflects
the influence of risk on the expected costs associated with external financing in the future (in the
event such financing is needed to avert default) and the influence of risk on the continuation value
of the firm. These new components must be reflected in the numerator of the RORAC ratio
when calculating the expected return of the exposure.2 The denominator of the RORAC ratio
also requires adjustment, as the basis of the “capital” allocation that emerges from the optimality
conditions no longer corresponds to familiar definitions of capital from the literature. Rather than
referring to accounting surplus or economic capital, “capital” here includes all of the company’s
resources (including untapped ones). Moreover, the relevant capital cost or hurdle rate refers to
the net marginal cost of raising an additional dollar of equity.

Thus, RORAC techniques may be resurrected if 1) an appropriate definition of capital is used,
2) the allocation of that capital flows from the economic context in which the firm is operating
(rather than from imposition of an arbitrary risk measure), and 3) a broader conception of the cost
of underwriting business—including, for example, penalties for the impact of risk on the continua-
tion value of the firm, as well as an allocation for future costs of external financing—is used when
evaluating the profitability of a contract. However, pinpointing the underlying parameters and
quantities is difficult (if not impossible) without formulating and solving the firm’s optimization
problem.

The practical exercise of solving the optimization problem is tackled in Section 3 in the context
of a 4-line catastrophe reinsurer under several sets of parameterizations (based on industry data
where possible). We find that the value of the firm as a function of capital is concave with an
optimal capitalization point that trades off profitability and (re-)capitalization costs. The optimal
raising decision essentially pushes capital to the optimal point, although it is rigid in the area
around the optimum due to a difference in the cost of shedding (nil) and raising (positive) capital.
The optimal risk portfolio increases convexly up to a saturation point after which the portfolio is
kept constant and excess capital is shed (down to the saturation point).

We then calculate allocations of the capital to different risks and different components. While
capital costs typically present the largest component after expected claims costs, the other parts are
significant and when combined may overshadow capital costs. We compare the resulting (correct)
RORACs to RORACs calculated using conventional techniques, revealing that failure to make the
adjustments discussed above can lead to large errors in performance measurement. In particular,
relative errors—in the sense of failing to properly rank the profitability of the lines—occur due to
failure to account for all components of marginal cost, as well as failure to allocate capital in a
manner consistent with the economic context faced by the firm.

Extensions and adaptations to other financial institutions are possible, and we describe some
possible refinements in the final section of the paper. However, these do not change the main
message of the paper: As we consider more realistic models of firm value, choosing an optimal
portfolio, pricing, and measuring risk-adjusted performance require us to think carefully about
defining capital and accounting for the impact of risk on the firm. Standard allocation techniques
are not necessarily inconsistent with this guidance, but they can only be correctly implemented

2These modifications can also be interpreted as a risk adjustment of the return as within a Risk-Adjusted Return
on Capital (RAROC). Indeed, since risk adjustments enter the numerator as well as the denominator, it may be more
accurate to refer to the ratio as a Risk-Adjusted Return on Risk-Adjusted Capital (RARAC).
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if the user has a thorough understanding of the economic context in which the firm is operating.
While allocation can be deployed thoughtfully, we see no alternative to careful consideration of
the firm’s objectives, constraints, and institutional context in making optimal decisions.

Relationship to the Literature
The findings of this paper relate most closely to the discussion of RAROC/RORAC found in Froot
and Stein (1998) and Stoughton and Zechner (2007). Froot and Stein, in a multi-period model,
first observed the pitfalls of reconciling RAROC with correct measures of performance and raised
questions about its economic foundation. Stoughton and Zechner (2007), on the other hand,
spelled out an economic foundation for RAROC in the context of a single-period model with
asymmetric information. Their recommended adjustments to the numerator of RAROC reflect
their focus on particular cost sources but are conceptually similar to our adjustments in the sense of
illustrating that a broad consideration of the impact of a risk exposure is necessary when calculating
expected returns. However, there are at least two important points of clarification offered by our
paper’s extension of the economic foundation to a multi-period setting. First, we show the basis
for capital allocation is no longer necessarily the “economic capital” advocated by Stoughton and
Zechner. Second, the hurdle rate is no longer a simple carrying cost of equity or debt, as in their
work: Instead, more complex models of external financing make it necessary to consider both the
marginal costs and benefits of equity raised when calculating a hurdle rate.

The paper also relates to the literature on capital allocation techniques. The prevalence of
capital allocation in banking and insurance practice has triggered a large number of contributions
in the actuarial science and applied banking literatures on capital allocation methods (Denault,
2001; Tasche, 2004; Tsanakas and Barnett, 2003; Dhaene, Gooverts, and Kaas, 2003; Venter, 2004;
Mildenhall, 2004; Albrecht, 2004; Kalkbrener, 2005; Powers, 2007, among others). We refer to
the Bauer and Zanjani (2014) for a discussion of the different techniques and illustration in the
context of the catastrophe reinsurance data used in this paper.

The practice, however, inspires controversy on several levels. Some question its necessity
(Phillips, Cummins, and Allen, 1998; Sherris, 2006). Others argue that it leads to economically
suboptimal decisions (Venter, 2002; Gründl and Schmeiser, 2007). Various researchers have
picked up on this disparity providing various vantage points why the allocation problem may be
misguided or what the debate may be missing (Mango, 2005; Kreps, 2005; Venter, 2010; D’Arcy,
2011). As pointed out by Bauer and Zanjani (2013), there are three key elements for capital allo-
cation to be meaningful: Stakeholders must care about the solvency of the company; markets must
be incomplete; and capital must be costly. Allocations differ depending on how these features are
embedded into an economic model of the firm. For instance, the focus can be on shareholders
worried about future financing costs (Froot and Stein, 1998; Froot, 2007), a regulator assessing the
value of the shortfall (Myers and Read, 2001; Erel, Myers, and Read, 2013), or the firm’s counter-
parties concerned with their recoveries (Zanjani, 2002; Ibragimov, Jaffee and Walden, 2010; Bauer
and Zanjani, 2015).

The current paper extends the latter strands of literature, particularly by considering multiple
periods and various forms of raising capital. Our application compares the ensuing allocation
results to conventional allocations as employed in industry—thereby connecting the economic and
the applied literatures.
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2 Capital Allocation and Profit Maximization: A Multi-Period
Model

The canonical model for choosing an optimal insurance portfolio considers the maximization of
profits subject to a risk measure constraint. In such a setting, marginal cost will match up with
the gradient of the underlying risk measure—which in turn corresponds to the allocated capital
within conventional gradient allocations. In this section, we reconsider the connection between
the marginal cost of risk and the allocation of (risk) capital in a more general multi-period setting.
Here, the key question is whether the marginal cost of risk can be reconciled in theory with capital
allocation in a dynamic model of an insurance company. The next section then considers the
practical implications by implementing the model in the context of a catastrophe reinsurer.

We start off in Section 2.1 by laying out the model framework, then Section 2.2 derives the
marginal cost of risk for the insurance company. Section 2.3 provides a discussion of the results,
particularly their implications for capital allocations. Technical derivations and alternative model
versions are collected in Appendix A.1.

2.1 Profit Maximization Problem in a Multi-Period Model
Formally we consider an insurance company withN business lines and corresponding loss realiza-
tions L(i)

t , i = 1, 2, . . . , N, each period t = 1, 2, . . . These losses could be associated with certain
perils, certain portfolios of contracts, or even individual contracts/costumers, depending on context
of the question we are addressing: How to choose an optimal exposure among these N lines?

We assume that for fixed i, L(i)
1 , L

(i)
2 , . . . are non-negative, independent, and identically dis-

tributed (iid) random variables. We make the iid assumption for convenience of exposition, and
since it suits our application in Section 3. However, non-identical distributions arising from, e.g.,
claims inflation could be easily incorporated, and also extensions to serially correlated (e.g., auto-
regressive) loss structures or loss payments developing over several years are feasible at the ex-
pense of a larger state space.

We also abstract from risky investments, so that all the uncertainty is captured by the losses; we
define the filtration F = (Ft)t≥0 that describes the information flow over time via Ft = σ(L

(i)
s , i ∈

{1, 2, . . . , N}, s ≤ t). However, generalizations with securities markets are possible at the expense
of notational complication (Bauer and Zanjani, 2015).

At the beginning of every underwriting period t, the insurer chooses to underwrite certain
portions of these risks and charges premiums p(i)t , 1 ≤ i ≤ N , in return. More precisely, the
underwriting decision corresponds to choosing an indemnity parameter q(i)t , so that the indemnity
for loss i in period t is:

I
(i)
t = I

(i)
t (L

(i)
t , q

(i)
t ),

where we require I(i)t (0, q
(i)
t ) = 0, i = 1, 2, . . . , N. For analytical convenience and again because

it suits our setting in Section 3, we focus on choosing to underwrite a fraction of the risks, i.e., we
assume:

I
(i)
t = I(i)(L

(i)
t , q

(i)
t ) = q

(i)
t × L

(i)
t ,

although, here also, generalizations are possible. We denote the aggregate period-t loss by It =∑
i I

(i)
t .
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The company has the possibility to raise or shed (i.e., pay dividends) capitalRb
t at the beginning

of the period at cost c1(Rb
t), c1(x) = 0 for x ≤ 0. Moreover, it can raise capital Re

t , R
e
t ≥ 0, at the

end of the period—after losses have been realized—at a (higher) cost c2(Re
t ). Here we think of Rb

t

as capital raised under normal conditions, whereas Re
t is emergency capital raised under distressed

conditions. In particular, we assume:

c2(x) > c1(y), x, y ≥ 0, (1)

i.e., raising capital under normal conditions is less costly than in distressed states. We also assume
there exists a positive carrying cost for capital at within the company as a proportion τ of at. One
may imagine τ to arise from cost of capital charges by the shareholders (sometimes referred to as
the average cost of capital) and depreciation, whereas c1(·) are costs arising from raising capital
in the current period (which typically will be higher than τ ).

Finally, the (constant) continuously compounded risk-free interest rate is denoted by r. Hence,
the law of motion for the company’s capital (budget constraint) is:

at =

[
at−1 × (1− τ) +Rb

t − c1(Rb
t) +

N∑
j=1

p
(j)
t

]
er +Re

t − c2(Re
t )−

N∑
j=1

I
(j)
t (2)

for at−1 ≥ 0. We require that:
Rb
t ≥ −at−1(1− τ), (3)

i.e., the company cannot pay more in dividends than its capital (after capital costs have been de-
ducted).

The company defaults if at < 0, which is equivalent to:[
at−1 × (1− τ) +Rb

t − c1(Rb
t) +

N∑
j=1

p
(j)
t

]
er +Re

t − c2(Re
t ) <

N∑
j=1

I
(j)
t .

Due to limited liability, in this case the company’s funds are not sufficient to pay all the claims.
We assume that the remaining assets in the firm are paid to claimants at the same rate per dollar of
coverage, so that the recovery for policyholder i is:

min

I(i)t ,

[
at−1 × (1− τ) +Rb

t − c1(Rb
t) +

∑N
j=1 p

(j)
t

]
er +Re

t − c2(Re
t )∑N

j=1 I
(j)
t

× I(i)t

 .

The premium the company is able to charge for providing insurance now depends on the risk-
iness of the coverage as well as the underwriting decision—that is, price is a function of demand
as within an inverse demand function. Formally, this means that the total premium for line i, p(i)t ,
is a quantity known at time t− 1 (i.e., it is F-predictable) given by a functional relationship:

Pi
(
at−1, R

b
t , R

e
t , (p

(j)
t )1≤j≤N , (q

(j)
t )1≤j≤N

)
= 0, 1 ≤ i ≤ N.
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One way to specify this functional relationship that is in line with the micro-foundations of insur-
ance is to consider a set of (binding) participation constraints:

γi = Et−1

[
Ui

((
w(i)
t−1 − p

(i)
t

)
er − Lit (4)

+ min

{
I
(i)
t ,

[
at−1(1− τ) +Rb

t − c1(Rb
t) +

∑
j p

(j)
t

]
er +Re

t − c2(Re
t )∑

j I
(j)
t

I
(i)
t

})]
,

where Ui is increasing and concave, and we call w(i)
t−1 wealth and γi reservation utility. This

is the approach taken in Bauer and Zanjani (2015) in a simpler setting, and it ultimately relates
capitalization and capital allocation to consumer concerns about company solvency. However, of
course relating price and demand this way requires a great amount of supporting information for
fixing the various inputs—so that relying on it for empirical applications is challenging.

Instead, in the context of our application, we rely on an alternative reduced-form specification
that assumes premiums—as markups on discounted expected losses—are a function of the com-
pany’s default probability. The underlying intuition is that consumers rely on insurance solvency
ratings for making their insurance decisions, which in turn are closely related to default probabili-
ties (see Section 3.2 for more details). More precisely, we set:

p
(i)
t = e−r Et−1

[
I
(i)
t

]
exp

{
α− γEt−1[I] (5)

−β Pt−1
(
It >

[
at−1(1− τ) +Rb

t − c1(Rb
t) +

N∑
j=1

p
(j)
t

]
er +Re

t − c2(Re
t )

)}
,

that is the premium charged is the expected indemnity multiplied by an exponential function of the
default rate and the aggregate expected loss. Obviously, we expect both β and γ to have a positive
sign, i.e., the larger the default rate the smaller the premium loading and the more business the
company writes the smaller are the profit margins, respectively. Of course, generalizations such
as line-specific parameters are straightforward to include in theory, but they will complicate the
estimation as well as the (numerical) solution of the optimization problem.

Therefore, all-in-all, the company solves the following profit-maximization problem:

max
{p(j)t },{q

(j)
t },{Rbt},{Ret}


Et−1

[∑∞
t=1 1{a1≥0,...,at≥0} e

−rt[er∑j p
(j)
t −

∑
j I

(j)
t

−(τ at−1 + c1(R
b
t))e

r − c2(Re
t )
]

−1{a1≥0,...,at−1≥0,at<0} e
−rt [(at−1 +Rb

t)e
r +Re

t

] ]
 ,

(6)
subject to (2); (3); (5); Re

t ≥ 0; {p(j)t }, {q
(j)
t }, {Rb

t} F-predictable; and {Re
t} F-adapted. We

immediately obtain:

Lemma 2.1. The objective function may be equivalently represented as:

max
{p(j)t },{q

(j)
t },{Rbt},{Ret}

{
E
[∑

{t≤t∗:a1≥0,a2≥0,...,at∗−1≥0,at∗<0} e
−rt [−erRb

t −Re
t

] ]
− a0

}
. (7)
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Hence, the problem can be equivalently expressed as a dividend maximization problem.
Denote the optimal value function, i.e., the solution to (6) or (7), by V (a0).3 Then, under mild

conditions on the loss distributions, the value function is finite and—as the solution to a stationary
infinite-horizon dynamic programming problem—satisfies the following Bellman equation:

Proposition 2.1 (Bellman Equation). Assume r, τ > 0. Then the value function V (·) satisfies the
following Bellman equation:

V (a) = max
{p(j)},{q(j)},Rb,Re



E
[
1{(a(1−τ)+Rb−c1(Rb)+

∑
p(j))er+Re−c2(Re)≥I}

×
(∑

j p
(j) − e−rI − τ a− c1(Rb)− e−r c2(Re)

+e−r V
(
[a(1− τ) +Rb − c1(Rb) +

∑
j p

(j)]er +Re − c2(Re)− I
))

−1{(a(1−τ)+Rb−c1(Rb)+∑ p(j))er+Re−c2(Re)<I}
(
a+Rb + e−rRe

) ]


.

(8)
subject to (3); (5); {p(j)t }, {q

(j)
t }, Rb

t ∈ R; and Re
t ≥ 0 is σ(L(j), j = 1, . . . , N)-measurable.

Note that since raising capital at the end of the period—which we interpret as raising capital in
distressed states—is more costly than raising capital under “normal” conditions (Eq. (1)), it only
makes sense to either raise exactly enough capital to save the company or not to raise any capital
at all: Raising more will not be optimal since it is possible to raise at the beginning of the next
period on better terms; raising less will not be optimal since the company will go bankrupt and the
policyholders are the residual claimants. This yields:

Proposition 2.2. Re ∈ {0, Re
∗}, where Re

∗ solves:

∑
j

I(j) −

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er = Re

∗ − c2(Re
∗). (9)

More precisely:

• for
[
a(1− τ) +Rb − c1(Rb) +

∑
j p

(j)
]
er ≥ I, we have Re = 0;

• for
[
a(1− τ) +Rb − c1(Rb) +

∑
j p

(j)
]
er < I and V (0) ≥ Re

∗, we have Re = Re
∗;

• and for V (0) < Re
∗, we have Re = 0.

The latter assertion states that it is optimal to only save the company if the (stochastic) amount
of capital to be raised at the end of the period is smaller than the value of the company, i.e., if the
investment has a positive net present value. For a linear specification of end-of-period costs, this
leads to the following simplification of the optimization problem:

3Note that the discounted expected value of dividends less capital raises will equate to V (a0)+a0, so that a locally
decreasing V (·) does not imply that a less capitalized firm is worth less—solely that a slighlty less capitalized firm
may be yielding higher profits.
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Corollary 2.1. For linear costs c2(x) = ξ x, x ≥ 0:

Re
∗ =

1

1− ξ

[
I −

(
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

)
er

]
.

In particular, the Bellman equation becomes:

V (a) = (10)

max
{p(j)},{q(j)},Rb



E
[
1{(a(1−τ)+Rb−c1(Rb)+

∑
p(j))er≥I} ×

(∑
j p

(j) − e−rI − τ a− c1(Rb)

+e−r V
(
[a(1− τ) +Rb − c1(Rb) +

∑
j p

(j)]er − I
))

+1{(a(1−τ)+Rb−c1(Rb)+
∑
p(j))er<I≤(a(1−τ)+Rb−c1(Rb)+

∑
p(j))er+(1−ξ)V (0)}×(

1
1−ξ

[
[
∑

j p
(j) + a(1− τ) +Rb − c1(Rb)]− e−rI

]
+ e−rV (0)− [a+Rb]

)
+1{I>(a(1−τ)+Rb−c1(Rb)+

∑
p(j))er+(1−ξ)V (0)}

(
−(a+Rb)

) ]


.

subject to:

p(i) = e−r E
[
I(i)
]
× exp

{
α− γE[I] (11)

−β P

(
I >

[
a(1− τ) +Rb − c1(Rb) +

N∑
j=1

p(j)

]
er + (1− ξ)V (0)

)}
.

2.2 The Marginal Cost of Risk and RORAC
In what follows, we assume a linear cost for end-of-period capital as in Corollary 2.1, so that we
study problem (10) subject to the participation constraint (11). For ease of presentation, we define:

S =

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er (12)

and:

D =

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er + (1− ξ)V (0) (13)

as the thresholds of I for saving the company and for letting it default, respectively.
As shown in the Appendix, we work with optimality conditions to obtain an expression for the

balancing of marginal revenue with marginal cost for the i-th risk:
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Proposition 2.3. We have:

E
[
∂I(i)

∂q(i)

]
exp {α− γE[I]− βP(I ≥ D)}

(1− c′1)
(14)

= E
[
∂I(i)

∂q(i)
1{I≤D}

]
︸ ︷︷ ︸

(i)

+
γ

1− c′1(Rb)
E
[
∂I(i)

∂q(i)

]
exp {α− γ E[I]− βP(I > D)}︸ ︷︷ ︸

(ii)

+E
[
∂I(i)

∂q(i)
V ′ (S − I) 1{I≤S}

]
︸ ︷︷ ︸

(iii)

+E
[

ξ

1− ξ
∂I(i)

∂q(i)
1{S<I≤D}

]
︸ ︷︷ ︸

(iv)

+E
[
∂I(i)

∂q(i)

∣∣∣∣ I = D

]
×
{
P(I > D) + τ ∗

}
︸ ︷︷ ︸

(v)

,

where
τ∗ =

c′1(R
b)

1− c′1(Rb)
− ξ

1− ξ
P(S ≤ I ≤ D)− E

[
V ′
(
S − I

)
1{S≥I}

]
(15)

is the “shadow cost of raising capital.”

The shadow cost of raising capital can be interpreted as the marginal cost of an additional
dollar of capital raised in normal conditions, net of the marginal beneficial impact this dollar has
on 1) the expected future cost of “distressed” capital raises (the second term on the right hand side)
and 2) the continuation value of the firm (the third term).

We interpret the left-hand side of (14) as the marginal revenue associated with an increase in
exposure to the i-th risk. The term represents the first-order impact of the increase in exposure
on premium revenue, which increases as actuarial costs E

[
∂I(i)

∂q(i)

]
increase. Note that this term is

amplified by (1−c′1), which reflects the fact that additional premium acts as a substitute for capital
raised and thus saves the company the marginal cost of raising capital.

We interpret the right-hand side as the marginal cost of risk, which has five components. First,
an additional dollar issued in some line will increase the actuarial value of the liability in solvent
states (i). Moreover, the increased supply will yield a decrease in the price of insurance due
to our assumption of decreasing returns to scale—i.e., there are “scale costs” (ii). Also, the
higher exposure will produce changes in end-of-period outcomes, which will affect the value of the
company—that is, there is a (random) cost associated with the continuation value of the company
(iii). Since a company with a larger exposure is more expensive to bail out in case of insufficient
funds, the increase in exposure leads to an increase in the expected costs associated with saving the
company in times of distress (iv). Finally, additional exposure contributes to a marginal impact on
the probability of default (v).

It is this last term—the marginal impact on the probability of default (v)—that we interpret as a
capital allocation. It represents an allocation of costs associated with D as defined in (13), which
is an expanded notion of capital. This broad notiont of capital has two parts: The first is the
amount of available resources S (which amounts to previous assets a net of the carrying cost, plus
money raised plus premiums, compounded over the period) and the second part is the cost-adjusted
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present value of future profits for a zero-capital firm (D−S). When the firm defaults, it loses both
components. This capital is allocated by the formula E[∂I

(i)
/∂q(i)|I = D], so that each exposure

is allocated capital according to how it influences total losses at the default point threshold. This
allocation formula is the one corresponding to a Value-at-Risk measure with the threshold set atD,
which in turn comes from the specification of the premium function that assumes policyholders
assess company solvency via default probabilities (Basak and Shapiro, 2001).

We can then define the RORAC by rearranging terms, as in:

RORACi =

E
[
∂I(i)

∂q(i)

]
exp{α−γE[I]−βP(I≥D)}

(1−c′1)
− (i)− (ii)− (iii)− (iv)

E[∂I(i)/∂q(i) |I = D]
= P(I > D) + τ ∗.

Note that the RORAC definition of the numerator resolves concerns of arbitrariness in our as-
signment of the “scale” component—which reflects the pressure on margins resulting from the
expansion of exposure—to marginal cost rather than marginal revenue. The denominator reflects
an allocation of (broad) capital per unit of exposure, which is well known to add up to the total
capital of the firm when multiplied by the respective exposures and summed over lines of business:∑

i

qi E[∂I
(i)

/∂q(i) |I = D] = D.

2.3 Discussion
The multi-period setting, featuring company options to bear external financing costs when raising
additional funding, complicates the risk pricing problem considerably. Noteworthy is the fact that
this setting no longer features a mapping of capital allocation as currently practiced to marginal
cost. That is, allocating the capital of the firm is no longer sufficient to recapture all of the risk
components of marginal cost. Risk has the potential now to consume not only the current capital
of the firm, but also capital that has yet to be raised. Moreover, unlike the multi-period version of
the model in Bauer and Zanjani (2015), the continuation value of the firm is no longer independent
of its capital position due to the adjustment costs introduced by frictional costs of raising capital.
In summary, the current capital of the firm is no longer the only cushion absorbing risk, so the
marginal cost of risk can no longer be recovered solely by allocating the same.

Another difference from the one-period setting is that the firm’s marginal costs in this case,
when multiplied by the exposure quantity, will not “add up” to the firm’s total costs due to poten-
tial non-linearities in V (·), c1(·), and the premium function—several of the components ((i), (iv),
and (v) in (14)) can be fully recouped. While it is well-known that capital allocation and risk-
adjusted return calculations are only feasible at the margin (Merton and Perold, 1993), assessing
the marginal components from accounting statements presents a considerable practical challenge.

This challenge is especially evident when adapting RORAC to the multiperiod environment.
Traditional underwriting margins are no longer sufficient statistics for the “return” in the numerator.
And an allocation of book equity is no longer appropriate for the “risk-adjusted capital” of the
denominator.

We proceed in the next section to numerical analysis of the model, with the aim of comparing
the marginal costs and RORACs obtained to those implied by conventional methods. Since we
have specified the objectives and constraints facing the firm, we have gone through the “rigors of
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the pricing project” (Venter, 2010)—with the consequence that, within the context of the model,
we have the right answer on marginal cost. And while one could of course make different choices
in terms of model specification, the model addresses some key areas of interest that affect the
marginal cost of risk, such as the continuation value of the firm and costly external financing, that
should provide for revealing comparisons with static single period capital allocation models.

3 Implementation in the Context of a Catastrophe Insurer
In this section, we calibrate and numerically solve the model introduced in the previous section
using data from a catastrophe reinsurer. We describe the data in Section 3.1, Section 3.2 gives de-
tails on the calibration, Section 3.3 presents the results, and we provide marginal cost calculations
in Section 3.4. In addition to decomposing the marginal cost of risk into its various components
described in Section 2.2, here we compare the model-based results to RORAC calculations for
conventional capital allocation techniques to appraise their adequacy. Implementation details and
results illustrating the convergence of the algorithm are collected in A.2 whereas Appendix B col-
lects additional figures.

3.1 Data
We are given 50,000 joint loss realizations and premiums for 24 distinct reinsurance lines differing
by peril and geographical region. The data have been scaled by the data supplier. Figure 1 pro-
vides a histogram of the aggregate loss distribution, and Table 1 lists the lines and provides some
descriptive statistics on each line. The largest lines for our reinsurer (by premiums and expected
losses) are “US Hurricane,” “N American EQ West” (North American Earthquake West), and “Ex-
Tropical Cyclone” (Extratropical Cyclone). The expected aggregate loss is 187,819,998 with a
standard deviation of 162,901,154, and the aggregate premium income is 346,137,808.

While a practical allocation problem may consider choosing an optimal portfolio among the 24
lines, we aggregate the data to four lines and in what follows focus on the problem of optimally
allocating to these (hypothetical) lines. This has the advantage of keeping the numerical analysis
tractable and facilitates the presentation of results. Table 1 illustrates the aggregation (column
Agg), and Figure 2 shows histograms for each of these four lines.

We notice that the “Earthquake” (Agg 1) distribution is concentrated at low loss levels with
only relatively few realizations exceeding 50,000,000 (the 99% VaR slightly exceeds 300,000,000).
However, the distribution depicts fat tails with a maximum loss realization of close to one billion.
The (aggregated) premium for this line is 46,336,664 with an expected loss of 23,345,695. “Storm
& Flood” (Agg 2) is by far the largest line, both in terms of premiums (243,329,704) and expected
losses (135,041,756). The distribution is concentrated around loss realizations between 25 and
500 million, although the maximum loss in our 50,000 realizations is almost four times that size.
The 99% VaR is approximately 700 million USD. In comparison, the “Fire & Crop” (Agg 3) and
“Terror & Casualty” (Agg 4) lines are small with an (aggregated) premiums (expected loss) of
about 34 (19) million and 22.5 (11) million, respectively. The maximal realizations are around
500 million for “Fire & Crop” (99% VaR = 163,922,557) and around 190 million for “Terror &
Casualty” (99% VaR = 103,308,358).
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Line Statistics
Premiums Expected Loss Standard Deviation Agg

N American EQ East 6,824,790.67 4,175,221.76 26,321,685.65 1

N American EQ West 31,222,440.54 13,927,357.33 47,198,747.52 1

S American EQ 471,810.50 215,642.22 915,540.16 1

Australia EQ 1,861,157.54 1,712,765.11 13,637,692.79 1

Europe EQ 2,198,888.30 1,729,224.02 5,947,164.14 1

Israel EQ 642,476.65 270,557.81 3,234,795.57 1

NZ EQ 2,901,010.54 1,111,430.78 9,860,005.28 1

Turkey EQ 214,089.04 203,495.77 1,505,019.84 8

N Amer. Severe Storm 16,988,195.98 13,879,861.84 15,742,997.51 2

US Hurricane 186,124,742.31 94,652,100.36 131,791,737.41 2

US Winterstorm 2,144,034.55 1,967,700.56 2,611,669.54 2

Australia Storm 124,632.81 88,108.80 622,194.10 2

Europe Flood 536,507.77 598,660.08 2,092,739.85 2

ExTropical Cyclone 37,033,667.38 23,602,490.43 65,121,405.35 2

UK Flood 377,922.95 252,833.64 2,221,965.76 2

US Brushfire 12,526,132.95 8,772,497.86 24,016,196.20 3

Australian Terror 2,945,767.58 1,729,874.98 11,829,262.37 4

CBNR Only 1,995,606.55 891,617.77 2,453,327.70 4

Cert. Terrorism xCBNR 3,961,059.67 2,099,602.62 2,975,452.18 4

Domestic Macro TR 648,938.81 374,808.73 1,316,650.55 4

Europe Terror 4,512,221.99 2,431,694.65 8,859,402.41 4

Non Certified Terror 2,669,239.84 624,652.88 1,138,937.44 4

Casualty 5,745,278.75 2,622,161.64 1,651,774.25 4

N American Crop 21,467,194.16 9,885,636.27 18,869,901.33 3

Table 1: Descriptive Statistics (scaled)
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Figure 1: Histograms for the Aggregate Loss (scaled)

3.2 Calibration
The model as developed in Section 2 requires calibration in several areas. It is necessary to specify
costs of raising and holding capital. It is also necessary to specify how the insurance company is
affected by changes in risk.

As a starting point for the costs of holding capital, Cummins and Phillips (2005) estimate the
cost of equity capital for insurance companies using data from the 1997-2000 period. They use
several methods to derive a variety of estimates, including a single factor CAPM and Fama-French
three-factor cost of capital model (Fama and French, 1993). The estimates for property-casualty
insurance fall in the neighborhood of 10% to 20%. Given that the risk-free interest rate used
in the analysis was based on the 30-day T-Bill rate, which averaged about 5% over the sample
period, the estimates suggest a risk premium for property-casualty insurance ranging from as little
as 5% to as much as 15%. However, previous research has found unstable estimates of the cost of
capital, suggesting that the risk premium may be considerably smaller; some specifications even
suggest that the industry’s “beta” may be zero or even negative (Cox and Rudd, 1991; Cummins
and Harrington, 1985). Given the range of results, we use τ ranging from 3% to 5% in the model.
Calibrating the cost of raising capital is more difficult, as we are not aware of studies specific to the
property-casualty industry. Hennessy and Whited (2007), however, analyze the cost of external
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(a) Line 1, “Earthquake” (b) Line 2, “Storm & Flood”

(c) Line 3, “Fire & Crop” (d) Line 4, “Terror & Casualty”

Figure 2: Histograms for Aggregated (Agg) Lines (scaled)

financing average across industries by using the entire sample of Compustat firms. They find
marginal equity flotation costs ranging from 5% for large firms to 11% for small firms, and we
base our quadratic specification

c1(x) = c
(1)
1 x+ c

(2)
1 x2, x ≥ 0,

calibration of external financing costs on these figures, with the linear piece (c(1)1 ) being set at 7.5%.
Changes in risk are known to affect insurance companies. Epermanis and Harrington (2006)

focus on the property-casualty insurance industry in particular, documenting significant declines
in premium growth following rating downgrades. Sommer (1996) documents a significant con-
nection between default risk and pricing in the property-casualty industry. The foregoing research
suggests two possible ways to model the consequences of risk for a property-casualty insurer: In-
creases in risk could either produce involuntary drops in exposure volume or drops in price, or
both. We incorporate both channels in our model setup within the premium function (Eq. (5)).

On the question of how to define “risk,” credit ratings are a tempting solution. While credit
ratings are widely accepted proxies for market assessments of a company’s risk level, using them
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requires us to map credit ratings to default risk levels, which is a feasible exercise given the valida-
tion studies provided by rating companies that document the historical connection between default
risk and the various letter ratings.

The question of how to connect risk with pricing is an empirical one, requiring an analysis
of the historical relation between default risk inferred from credit ratings and insurance prices.
Since the data used for our numerical analysis is drawn from a reinsurance company, we focus on
empirical analysis of reinsurers, and specifically those identified in the Reinsurance Association
of America’s annual review of underwriting and operating results for the years 2008-2012. These
reviews yield 30 companies for the analysis, and we collected all available ratings for that set of
30 companies from Moody’s, S&P, and A.M. Best.

To calculate the default rate, we use a multi-stage procedure. We start by collecting 1)
Moody’s, S&P, and A.M. Best ratings from the 2008-2012 period for the sample of insurance
companies; 2) the joint distribution of Moody’s and S&P ratings for corporate debt as reported in
Table 1 of Cantor, Packer, and Cole (1997); and 3) one year default rates by rating as reported
in Tables 34 and 35 of Moody’s Annual Default Study: Corporate Default and Recovery Rates,
1920-2012 and Tables 9 and 24 of S&P’s 2012 Annual Corporate Default Study and Rating Tran-
sitions. We then fit smoothed default rates for Moody’s by choosing default rates for the AA1,
AA2, AA3, A1, A2, and A3 categories (AAA, BAA1, and other historical default rates are held
at their historic values)4 and perform a similar procedure for S&P ratings. We calculate an av-
erage one-year default rate for A++, A+, A, and A- A.M. Best ratings by calculating an average
“Moody’s” default rate based on our sample distribution of Moody’s ratings for each A.M. Best
rating, calculating an average “S&P” default rate in a similar manner, and then averaging the two.
This yields one-year default rates for each A.M. Best rating in the 2008-2012 sample as shown in
Table 2.5

A++ 0.006%
A+ 0.044%
A 0.072%
A- 0.095%

Table 2: Fitted One-Year Default Rates for A.M. Best Ratings

4Fit is assessed by evaluating 8 measures: 1) the weighted average default rate in the Aa category (using the
modifier distribution in Cantor, Packer, and Cole (1997) for the weights); 2) the weighted average default rate in the A
category, and “fuzzy” default rates for Aa1, Aa2, Aa3, A1, A2, and A3 categories, where the fuzzy rate is calculated
by applying the distribution of S&P ratings for each modified category to the default rates (for example, if S&P rated
20% of Moody’s Aa1 as AAA, 50% as AA+ and 30% as AA, we would calculate the “fuzzy” default rate for Aa1
as 20%×Aaa default rate + 50%×Aa1 default rate + 30%× Aa2 default rate). We calculate squared errors between
fitted averages and averages using the actual empirical data, and select fitted values to minimize the straight sum of
squared errors over the eight measures.

5It is worth noting that these are somewhat lower than suggested by A.M. Best’s own review of one-year impairment
rates, which indicated 0.06% for the A++/A+ category and 0.17% for the A/A- category (see Exhibit 2 of Best’s
Impairment Rate and Rating Transition Study – 1977 to 2011). In the empirical analysis that followed, it was also
necessary to assign a default rate for the B++ rating, which did not occur in the 2008-2012 sample but did surface when
performing the analysis over a longer time period. We used 0.20% for this default rate, which is roughly consistent
with the default rates for Baa or BBB ratings.
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Finally, we identify the relation between price and default risk and volume by fitting the model:

log pit = α + αt − βdit − γEit + eit,

where pit is calculated as the ratio of net premiums earned to the sum of loss and loss adjustment
expenses incurred by company i in year t, dit is the default rate corresponding to the letter rating
of company i in year t in percent, Eit is the expected loss of company i in year t, and eit is an error
term. The expected loss is calculated by applying the average net loss and loss adjustment expense
ratio over the sample period for each firm to that year’s net premium earned.

We use NAIC data for the period 2002 to 2010 for the sample of companies identified above
for the analysis. The results of the regression are presented in Table 3.

Variable Coefficient Std. Error t-value

Intercept (α) 0.6590 0.0614 10.73
Default rate (β) 3.9296 0.5090 -7.72
Expected Loss (γ) 1.48 E-10 2.24 E-11 -6.57

Year dummies are omitted. Observations: 288. Adj. R2 = 26%

Table 3: Premium Parametrizations

We use three sets of parameters based on the calibrations above. The sets are described in
Table 4. We vary the cost of holding capital τ from 3% to 5%; the cost of raising capital in
normal circumstances is represented by a quadratic cost function with the linear coefficient c(1)1

fixed at 7.5%; the cost of raising capital in distressed circumstances, ξ, varies from 20% to 75%;
the interest rate r varies from 3% to 6%; and the parameters α, β, and γ specify the underwriting
margin. For the latter parameters, we use the regression results, with the alpha intercept being
adjusted for the average of the unreported year dummy coefficients, and we also use an alternative,
more generous specification based on a previous unreported analysis that omits loss adjustment
expenses.

Using the loss distributions described in Section 3.1, we solve the optimization problem by
value iteration relying on the corresponding Bellman equation (10) on a discretized grid for the
capital level a. That is, we commence with an arbitrary value function (constant at zero in our
case), and then iteratively solve the one-period optimization problem (10) by using the optimized
value function from the previous step on the right hand side. Standard results on dynamic program-
ming guarantee the convergence of this procedure (Bertsekas, 1995). More details on the solution
algorithm and its convergence are presented in Appendix A.2.

3.3 Results
The results vary considerably across the parameterizations. While the value function in the base
case ranges from approximately 1.8 billion to 2 billion for the considered capital levels, the range
for the “profitable company” is in between 21.7 billion to 22.4 billion, and even around 56 to 57
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Parameter 1 (“base case”) 2 (“profitable company”) 3 (“empty company”)

τ 3.00% 5.00% 5.00%

c
(1)
1 7.50% 7.50% 7.50%

c
(2)
1 1.00E-010 5.00E-011 1.00E-010

ξ 50.00% 75.00% 20.00%

r 3.00% 6.00% 3.00%

α 0.3156 0.9730 0.9730

β 392.96 550.20 550.20

γ 1.48E-010 1.61E-010 1.61E-010

Table 4: Parametrizations

billion for our “empty company.” Nonetheless the basic shape of the solution is similar across the
first two cases, whereas the “empty company case” yields a qualitatively different form (hence the
name).

Base Case Solution

Various aspects of the “base case” solution are depicted in Figures 3, 4, and 5. Table 5 presents
detailed results at three key capital levels.
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Figure 3: Value function V and its derivative V ′ for a company with carrying cost τ = 3%, raising
costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and premium parameters
α = 0.3156, β = 392.96, and γ = 1.48E-10 (base case).

Figure 3 displays the value function and its derivative. We observe that the value function is
“hump-shaped” and concave—i.e., the derivative V ′ is decreasing in capital. However, for high
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capital levels, the derivative is approaching a constant level of −τ = −3% and the value function
is essentially affine.
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Figure 4: Optimal raising decision R for a company with carrying cost τ = 3%, raising costs
c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and premium parameters
α = 0.3156, β = 392.96, and γ = 1.48E-10 (base case).

The optimal level of capitalization here is approximately 1 billion. If the company has sig-
nificantly less than 1 billion in capital, it raises capital as can be seen from Figure 4, where the
optimal raising decision for the company is displayed. However, the high and convex cost of rais-
ing external financing prevents the company from moving immediately to the optimal level. The
adjustment can take time: Since internally generated funds are cheaper than funds raised from in-
vestors, the optimal policy trades off the advantages associated with higher levels of capitalization
against the costs of getting there. As capitalization increases, there is a rigid region around the
optimal level where the company neither raises nor sheds capital. In this region, additional capital
may bring a benefit, but it is below the marginal cost associated with raising an additional dollar,
which is approximately c(1)1 = 7.5%. The benefit of capital may also be less than its carrying cost
of τ = 3%, but since this cost is sunk in the context of the model, capital may be retained in excess
of its optimal level. For extremely high levels of capital, however, the firm optimally sheds capital
through dividends to immediately return to a maximal level at which point the marginal benefit of
holding an additional unit of capital (aside from the sunk carrying cost) is zero. The transition is
immediate, as excess capital incurs an unnecessary carrying cost and shedding capital is costless
in the model. This is also the reason that the slope of the value function approaches −τ in this
region.

Figure 5 reveals how the optimal portfolio varies with different levels of capitalization. As
capital is expanded, more risk can be supported, and the portfolio exposures grow in each of the
lines until capitalization reaches its maximal level. After this point, the optimal portfolio remains
constant: Even though larger amounts of risk could in principle be supported by larger amounts
of capital, it is, as noted above, preferable to immediately shed any capital beyond a certain point
and, concurrently, choose the value maximizing portfolio. Note that the firm here has an optimal
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Figure 5: Optimal portfolio weights q1, q2, q3, and q4 for a company with carrying cost τ = 3%,
raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and premium
parameters α = 0.3156, β = 392.96, and γ = 1.48E-10 (base case).

scale because of the γ parameter in the premium function. As the firm gets larger in scale, margins
shrink because of γ.

Table 5 reveals that firm rarely exercises its default option (measured by P(I ≥ D), which is
evidently 0.002% even at low levels of capitalization). The firm does experience financial distress
more often at low levels of capitalization. For example, the probability of facing claims that
exceed immediate financial resources, given by P(I > S), is 4.54% when initial capital is zero
but 0.45% when capital is at the optimal level, and 0.13% when capitalization is at its maximal
point. In all of these cases, the firm usually resorts to emergency financing when claims exceed its
cash, at a per unit cost of ξ = 50%, to remedy the deficit. Because of the high cost of emergency
financing, however, it restrains its risk taking when undercapitalized and also raises capital before
underwriting to reduce the probability of having to experience financial distress.

The bottom lines of the table show the various cost parameters at the optimized value. Here,
the marginal cost of raising capital is significantly greater than 7.5% for a = 0 due to the quadratic
adjustment, whereas clearly the marginal cost is zero in the shedding region (a = 4 billion). As
indicated above, around the optimal capitalization level of 1 billion neither raising nor shedding
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zero capital optimal capital high capital

a 0 1,000,000,000 4,000,000,000

V (a) 1,885,787,820 1,954,359,481 1,880,954,936

R(a) 311,998,061 0 -1,926,420,812

q1(a) 0.78 1.23 1.86

q2(a) 0.72 1.13 1.71

q3(a) 1.60 2.51 3.80

q4(a) 5.06 7.96 12.06

S 550,597,000 1,406,761,416 2,615,202,661

D 1,493,490,910 2,349,655,327 3,558,096,571

E[I] 199,297,482 313,561,933 474,841,815∑
p(i)/E[i] 1.32 1.30 1.27

P(I > a) 100.00% 2.66% 0.002%

P(I > S) 4.54% 0.45% 0.13%

P(I > D) 0.002% 0.002% 0.002%

c′1(R
b) 13.74% 4.65% 0.00%

ξ
1−ξ P(S < I < D) 4.54% 0.45% 0.12%

E[V ′ 1{I<S}] 8.03% 1.09% -2.66%

τ∗ 3.36% 3.34% 2.53%

Table 5: Results for a company with carrying cost τ = 3%, raising costs c(1) = 7.5%, c(2) =
1.00E-10, and ξ = 50%, interest rate r = 3%, and premium parameters α = 0.3156, β = 392.96,
and γ = 1.48E-10 (base case).
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is optimal—so that technically the marginal cost is undefined due to the non-differentiability of
the cost function c1 at zero. To determine the correct “shadow cost” of raising capital, we use an
indirect method: We use the aggregated marginal cost condition (14) from Proposition 2.3 to back
out the value of c′1(0) that yields the left- and right-hand side to match up.6 The cost of emer-
gency raising in this case is exactly the probability of using this option (as ξ = 50%), which—as
indicated—decreases in the capital level. Finally, the expected cost in terms of impact on the value
function (−E[V ′ 1{I<S}]) is negative for low capital levels since the value function is increasing in
this region, whereas it is positive and approaching τ for high capital levels. Combining the differ-
ent cost components, we obtain a “shadow cost” of capital τ ∗ as defined (15) that is decreasing in
a, although the level is not too different across capitalizations. In particular, it is noteworthy that
τ ∗ is considerably below the cost of raising capital. The next subsection provides a more detailed
discussion of the marginal cost of risk.

Profitable Company

The results for the profitable company are similar to the “base case” presented above, except that
the company is now much more valuable—despite the increases in the carrying cost of capital
and in the cost of emergency financing—because of the more attractive premium function. The
corresponding results are collected in Appendix B. More precisely, Figure 10 displays the value
function and its derivative, Figure 11 displays the optimal raising decision, and Figure 12 displays
the optimal exposure to the different lines as a function of capital.

Again, there is an interior optimum for capitalization, and the company optimally adjusts to-
ward that point when undercapitalized. If overcapitalized, it optimally sheds to a point where
the net marginal benefit associated with holding a dollar of capital (aside from the current period
carrying cost which is a sunk cost) is zero. There is thus a rigid range where the company neither
raises nor sheds capital, and the risk portfolio gradually expands with capitalization until it reaches
the point where the firm is optimally shedding additional capital on a dollar-for-dollar basis.

As before, Table 6 presents detailed results at three key capital levels. Although parameters
have changed, the company again rarely exercises the option to default, which has a probability
of occurrence of 0.002% even at low levels of capitalization. In most circumstances, the firm
chooses to raise emergency financing when claims exceed cash resources, which happens as much
as 3.65% of the time (at zero capitalization).

In contrast to the base case, the “shadow cost” of capital τ ∗ now is considerably higher than
before. To some extent, this originates from the different cost parameters. In particular, the cost of
raising emergency capital now is ξ = 75% and the carrying cost τ = 5%. However, in addition to
higher costs, another aspect is that given the more profitable premium function, it now is optimal
to write more business requiring a higher level of capital—which in turn leads to higher capital
costs. Essentially, the marginal pricing condition (14) requires marginal cost to equal marginal
return/profit—and the point where the two sides align now is at a higher level.

6In the differentiable regions (a = 0, 4bn, and other values), the aggregated marginal cost condition further vali-
dates our results—despite discretization and approximation errors, the deviation between the left- and right-hand side
is maximally about 0.025% of the left-hand side.
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zero capital optimal capital high capital

a 0 3,000,000,000 12,000,000,000

V (a) 22,164,966,957 22,404,142,801 22,018,805,587

R(a) 1,106,927,845 0 -6,102,498,331

q1(a) 4.81 6.14 7.82

q2(a) 4.42 5.64 7.18

q3(a) 9.83 12.56 15.98

q4(a) 31.19 39.85 50.69

S 3,659,208,135 6,215,949,417 9,412,766,805

D 9,200,449,874 11,757,191,157 14,954,008,545

E[I] 1,227,901,222 1,569,126,466 1,995,776,907∑
p(i)/E[i] 2.15 2.03 1.90

P(I > a) 1.00% 10.70% 0.07%

P(I > S) 3.65% 0.91% 0.34%

P(I > D) 0.002% 0.002% 0.002%

c′1(R
b) 18.57% 5.97% 0.00%

ξ
1−ξ P(S < I < D) 10.94% 2.72% 1.00%

E[V ′ 1{I<S}] 2.93% -2.99% -4.58%

τ∗ 8.94% 6.62% 3.58%

Table 6: Results for a company with carrying cost τ = 5%, raising costs c(1) = 7.5%, c(2) =
5.00E-11, and ξ = 75%, interest rate r = 6%, and premium parameters α = 0.9730, β = 550.20,
and γ = 1.61E-10 (profitable company).
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Empty Company

Figure 6 presents the value function and the optimal raising decision for the “empty company.”
Figure 7 plots the corresponding optimal exposures to the different business lines.

We call this case the “empty company” because it is optimal to run the company without any
capital. This can be seen from Figure 6, which shows that the total continuation value of the
company is decreasing in capital and that the optimal policy is to shed any and all accumulated
capital through dividends. The optimal portfolio is thus, as can be seen in Figure 7, always the
same—corresponding to the portfolio chosen when a = 0. Again, note that there is an optimal
scale in this case, because greater size is associated with a compression in margins.
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Figure 6: Value function V and optimal raising decision Rb for a company with carrying cost
τ = 5%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 20%, interest rate r = 3%, and
premium parameters α = 0.9730, β = 550.20, and γ = 1.61E-10 (empty company).

However, even though the company is always empty, it never defaults. This extreme result is
produced by two key drivers—the premium function and the cost of emergency financing. As with
the “profitable company,” the premium function is extremely profitable in expectation. Because of
these high margins, staying in business is extremely valuable. Usually, the premiums collected are
sufficient to cover losses. When they are not, which happens about 12% of the time, the company
resorts to emergency financing. This happens because, in contrast to the “profitable company,”
emergency financing is relatively cheap at 20% (versus 75% in the “profitable company” case).
Thus, it makes sense for the company to forego the certain cost of holding capital—the primary
benefit of which is to lessen the probability of having to resort to emergency financing—and instead
just endure the emergency cost whenever it has to be incurred. In numbers, the cost of holding
capital at a = 0 is τ × P(I ≤ S) = 4.38%, whereas the cost of raising emergency funds is
ξ

1−ξP(I > S) = 3.08%.
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Figure 7: Optimal portfolio weights q1, q2, q3, and q4 for a company with carrying cost τ = 5%,
raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 20%, interest rate r = 3%, and premium
parameters α = 0.9730, β = 550.20, and γ = 1.61E-10 (empty company).

3.4 The Marginal Cost of Risk and Capital Allocation
We now contemplate the marginal cost of risk and the allocation of capital within the three example
setups. The solutions presented above suggest some immediate difficulties in applying traditional
capital allocation methods to price risk. For example, consider the unrealistic (but pedagogically
important) example of the “empty company,” where it is optimal to hold zero capital. Zero capital
would imply zero risk penalties under typical allocation methods. However, risk clearly extends
beyond actuarial values, as the insurer, even though it shuns default, may have to raise emergency
financing. This example thus raises a key question: If we are to use an risk allocation approach for
pricing, what exactly should we be allocating? Clearly, the traditional accounting capital, which is
equivalent to risk in single period models featuring risk measure constraints, is no longer adequate:
After all, in the case of the “empty company,” it is zero. Equation (14) suggests that we need a
broader conception of what capital is and in fact indicates that the correct quantity to allocate is D,
which represents all financial resources currently held by the firm (capital and premiums) and the
maximum amount of emergency financing that it is willing to raise in case of distress.

However, the problems suggested by Equation (14) go much deeper than relative weightings of
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D. Even if we identify the correct quantity to allocate, Equation (14) shows that the marginal cost
of risk goes beyond that obtained from a simple allocation of D in two respects. First, calculating
the cost of “capital” when allocating D is not straightforward: The theoretical analysis indicates
that the key quantity is P(I ≥ D)+τ ∗, where τ ∗ is defined as a marginal cost of raising capital, net
of the benefits it provides, as defined by Equation (15). Second, the marginal cost of risk involves
terms connected to the scale of the company, the continuation value of the company, and the costs
associated with emergency capital raises that lie outside any allocation of capital, whether broadly
defined or otherwise: These additional terms are not difficult to allocate to line in theory (as their
allocation follows from actuarial values or conditional actuarial values), but 1) not all of them are
typically considered in insurance pricing practice, and 2) they are not embedded in the risk penalty
emerging from a traditional allocation.

Tables 7, 8, and 9 show the cost allocation decomposition for various capital levels in the three
cases.7

The component corresponding to the allocation of D—identified as “Capital Cost (v)” in the
tables—varies considerably in terms of its importance in the total cost picture. Restricting our
attention to parts (ii) through (v), which are the cost components other than claims payments, we
see that the capital cost component share of non-payment costs ranges from about 70% (in the
“base case” at an initial capitalization of a = 1, 250 million) to less than a third (in the “profitable”
case with a = 12 billion).

It is therefore evident that correct risk pricing entails an appreciation of all of the components
of the marginal cost of risk, one of which can be obtained from an allocation of a broadly defined
measure of capital. However, existing allocation methods will misprice risk if the other marginal
cost components are overlooked or if capital is defined too narrowly. To get a sense of this, we
calculate RORACs for the base case and the profitable company case under Value-at-Risk (VaR)
and Expected Shortfall (or Tail-Value-at-Risk, TVaR), the most common risk measures used in
practice, where we derive the RORACs as the marginal premium received minus costs divided by
allocated capital. We vary both the definition of capital and the types of costs being considered. In
particular, in addition toD,we analyze allocations of accounting capital a and surplus S.Moreover,
we consider the situations where all non-capital cost components (ii)-(iv) are taken into account
in the RORAC calculation, where only actuarial payments are considered (“act. only”), and where
also scale effects are considered (“act. and scale”). We compare the results to correct RORACs
obtained from the model. The results are presented in Tables 10 and 11.

Since the insurance portfolio has been optimized, the true RORAC is equal across all lines.
More precisely, it obviously coincides with the “shadow cost” of capital τ ∗ (cf. Tables 5 and 6). If
all costs are properly accounted for and an appropriately broad definition of capital (D) is used,
VaR-based allocation yields RORACs that are quite close to the true RORACs. This is no surprise
since VaR is built in our premium function, so that it is the correct risk measure on our framework.
Indeed, deviations between VaR-RAROCs and the correct RAROCs are solely due to inaccuracies
in the estimation of VaR. The results based on TVaR, on the other hand, do not tend to give accurate
results. In particular, they allocate too little capital to lines 1 and 3, while overpenalizing line 2.
The misstatements are significant. For example, although the correct figure never exceeds 10%
in our scenarios, RORAC estimated under TVaR for line 1 routinely exceeds 50% and sometimes

7In the tables we are taking the product of marginal cost and total exposure quantity, so it is worth noting that the
sum total will not add up to total costs because of nonlinearities in the cost and value function.



THE MARGINAL COST OF RISK AND CAPITAL ALLOCATION IN A MULTI-PERIOD MODEL 27

a = 0 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 199,259,815
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 1,054,415 6,099,197 842,700 486,629 9,001,325
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%
Continuation value, (iii) 1,787,494 10,069,585 1,395,397 781,737 14,794,219

(E[L(i) 1{I<S} V
′]) 9.43% 48.77% 15.05% 26.75% 100.00%

Raising cost, (iv) 3,136,921 21,340,216 2,782,890 1,924,195 31,920,536
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 7.67% 47.91% 13.91% 30.51% 100.00%
Capital cost, (v) 6,423,322 34,269,301 4,891,903 2,532,602 50,194,848

(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.99% 48.92% 15.55% 25.54% 100.00%
Cost, (iii)-(v) 11,347,737 65,679,102 9,070,189 5,238,533 96,909,604

9.14% 48.57% 14.93% 27.36% 100.00%
Non payments, (ii)-(v) 12,402,152 71,778,299 9,912,889 5,725,162 105,910,928

9.14% 48.56% 14.93% 27.36% 100.00%

a = 1, 250, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 313,502,671
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 1,475,632 8,535,701 1,179,341 681,028 19,819,580
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%
Continuation value, (iii) 557,566 3,411,166 442,838 281,845 7,886,781

(E[L(i) 1{I<S} V
′]) 8.68% 48.76% 14.09% 28.46% 100.00%

Raising cost, (iv) 501,193 3,356,439 489,699 227,776 7,442,867
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 8.27% 50.84% 16.52% 24.37% 100.00%
Capital cost, (v) 5,917,572 33,625,361 4,643,976 2,711,437 78,428,268

(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.27% 48.34% 14.86% 27.53% 100.00%
Cost, (iii)-(v) 6,976,331 40,392,966 5,576,513 3,221,059 93,757,915

9.14% 48.57% 14.93% 27.36% 100.00%
Non payments, (ii)-(v) 8,451,962 48,928,667 6,755,854 3,902,086 113,577,496

9.14% 48.57% 14.93% 27.36% 100.00%

a = 4, 000, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 474,752,070
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 2,080,451 12,034,241 1,662,719 960,161 42,315,511
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%
Continuation value, (iii) -467,409 -2,524,447 -361,943 -198,677 -8,951,208

(E[L(i) 1{I<S} V
′]) 9.71% 48.15% 15.37% 26.77% 100.00%

Raising cost, (iv) 165,605 1,102,308 184,135 65,213 3,676,390
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 8.38% 51.19% 19.04% 21.39% 100.00%
Capital cost, (v) 4,479,576 25,627,009 3,517,682 2,062,943 90,335,366

(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.22% 48.43% 14.80% 27.54% 100.00%
Cost, (iii)-(v) 4,177,771 24,204,869 3,339,874 1,929,479 85,060,548

9.13% 48.58% 14.93% 27.36% 100.00%
Non payments, (ii)-(v) 6,258,222 36,239,111 5,002,593 2,889,640 127,376,059

9.14% 48.57% 14.93% 27.36% 100.00%

Table 7: Cost allocation in the base case.
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a = 0 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 1,227,669,151
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 12,171,966 70,408,002 9,727,968 5,617,558 640,202,514
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%
Continuation value, (iii) 1,029,167 5,837,049 782,958 436,750 52,036,839

(E[L(i) 1{I<S} V
′]) 9.51% 49.52% 14.79% 26.18% 100.00%

Raising cost, (iv) 7,837,319 53,467,331 6,897,003 4,951,601 495,968,512
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 7.60% 47.60% 13.67% 31.14% 100.00%
Capital cost, (v) 17,186,342 91,435,424 13,142,696 6,636,818 822,504,916

(E[L(i)|I = D]× [P(I > D) + τ∗]) 10.05% 49.08% 15.71% 25.17% 100.00%
Cost, (iii)-(v) 26,052,827 150,739,804 20,822,658 12,025,168 1,370,510,267

9.14% 48.56% 14.93% 27.36% 100.00%
Non payments, (ii)-(v) 38,224,794 221,147,806 30,550,626 17,642,726 2,010,712,781

9.14% 48.56% 14.94% 27.36% 100.00%

a = 3, 000, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 1,568,829,904
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 12,749,807 73,750,484 10,189,785 5,884,241 856,948,543
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%
Continuation value, (iii) -235,099 -1,116,997 -202,680 -67,987 -13,002,123

(E[L(i) 1{I<S} V
′]) 11.11% 48.47% 19.58% 20.84% 100.00%

Raising cost, (iv) 2,579,077 18,401,683 2,557,559 1,239,091 201,178,046
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 7.88% 51.61% 15.97% 24.55% 100.00%
Capital cost, (v) 12,029,113 65,894,390 9,133,206 5,463,678 778,163,393

(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.50% 47.78% 14.74% 27.98% 100.00%
Cost, (iii)-(v) 14,373,091 83,179,077 11,488,085 6,634,782 966,339,316

9.14% 48.56% 14.93% 27.36% 100.00%
Non payments, (ii)-(v) 27,122,898 156,929,561 21,677,870 12,519,023 1,823,287,859

9.14% 48.56% 14.93% 27.36% 100.00%

a = 12, 000, 000, 000 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,530 135,002,000 18,657,049 10,772,967 1,995,399,708
(E[L(i) 1{I<D}]) 9.14% 48.55% 14.94% 27.37% 100.00%

Scale effect, (ii) 14,236,612 82,350,817 11,378,055 6,570,425 1,217,059,553
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.14% 48.56% 14.94% 27.37% 100.00%
Continuation value, (iii) -861,553 -4,764,429 -676,234 -373,605 -70,665,323

(E[L(i) 1{I<S} V
′]) 9.53% 48.38% 15.29% 26.80% 100.00%

Raising cost, (iv) 1,063,664 8,031,264 1,171,071 494,784 109,736,215
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 7.58% 52.52% 17.05% 22.86% 100.00%
Capital cost, (v) 6,522,382 35,669,393 4,880,405 2,983,652 536,155,774

(E[L(i)|I = D]× [P(I > D) + τ∗]) 9.51% 47.74% 14.54% 28.21% 100.00%
Cost, (iii)-(v) 6,724,493 38,936,228 5,375,242 3,104,832 575,226,667

9.14% 48.57% 14.93% 27.36% 100.00%
Non payments, (ii)-(v) 20,961,105 121,287,045 16,753,298 9,675,257 1,792,286,220

9.14% 48.56% 14.93% 27.36% 100.00%

Table 8: Cost allocation in the profitable company.
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a = 0 Line 1 Line 2 Line 3 Line 4 Aggregate

Solvent payments, (i) 23,345,695 135,041,756 18,658,134 10,774,413 2,487,582,817
(E[L(i) 1{I<D}]) 9.86% 46.23% 17.75% 26.16% 100.00%

Scale effect, (ii) 17,919,327 103,653,262 14,321,322 8,270,057 1,909,380,339
( γ
1−c′1(Rb)

E[L(i)]
∑
k p

(k)) 9.86% 46.23% 17.75% 26.16% 100.00%
Continuation value, (iii) -782,453 -4,526,226 -625,396 -361,120 -83,376,677

(E[L(i) 1{I<S} V
′]) 9.86% 46.23% 17.75% 26.16% 100.00%

Raising cost, (iv) 1,924,160 11,129,311 1,537,555 888,004 205,012,321
( ξ
1−ξ E[L

(i) 1{S<I<D}]) 9.86% 46.23% 17.75% 26.16% 100.00%
Capital cost, (v) na na na na na

(E[L(i)|I = D]× [P(I > D) + τ∗]) na na na na na
Cost, (iii)-(v) 1,141,707 6,603,085 912,159 526,885 121,635,644

9.86% 46.23% 17.75% 26.16% 100.00%
Non payments, (ii)-(v) 19,061,034 110,256,347 15,233,481 8,796,942 2,031,015,983

9.86% 46.23% 17.75% 26.16% 100.00%

Table 9: Cost allocation in the empty company.

goes beyond 100%.
Things get worse if cost components are overlooked, or if an incorrect notion of capital is used

in the allocation process. We consider such errors in the table by reporting what happens if return
in the RORAC numerator is calculated only by referencing actuarial (i) or actuarial and scale costs
(i) and (ii), or if a more narrow definition of capital—such as a or S—is used when constructing
the numerator. In our scenarios, where the additional cost components are positive, both of these
errors tend to work in the same direction to inflate estimates of RORAC. In a number of cases,
the incorrectly calculated RORAC appears to indicate high levels of profitability across the board.
Of course, one may compare these returns to higher hurdle rates, as it is common in practice. For
instance, when allocating S according to VaR or TVaR and when only considering actuarial costs,
the hurdle rates in the base case are around 7.5% = c

(1)
1 —which is roughly in line with figures

used in the industry. However, despite this apparent coherence, of course this approach does not
deliver optimal portfolios as it is not founded in a theoretical analysis of the firm’s optimization
problem.

4 Conclusion
In this paper, we present a multi-period model for a (re-)insurer with multiple sources of financing.
We derive capital allocations from the optimality conditions.

The presented model represents a step toward greater sophistication in firm valuation and
risk pricing, but only a step. Other nuances—such as regulatory frictions and rating agency
requirements—would obviously merit consideration in a richer model. Moreover, calibration of
any model would obviously have to be tailored to the unique circumstances of each firm.

For example, different model specifications could favor different risk measures. Our setup was
a relatively favorable one for VaR rather than TVaR, and this is rooted in how we specified the
premium function. More realistic specifications would undoubtedly point the way to risk measures
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Allocating Cost considered Line 1 Line 2 Line 3 Line 4
a = 0
Correct Allocation D yes 3.36% 3.36% 3.36% 3.36%
VaR Allocation D yes 3.38% 3.73% 3.01% 3.00%
TVaR Allocation D yes 98.46% 2.17% 11.37% 4.42%
VaR Allocation D act. only 6.53% 7.81% 6.11% 6.79%
VaR Allocation S act. only 16.06% 18.23% 20.24% 22.32%
VaR Allocation a act. only na na na na
VaR Allocation D act. and scale 5.97% 7.14% 5.59% 6.21%
VaR Allocation S act. and scale 14.69% 16.68% 18.52% 20.42%
VaR Allocation a act. and scale na na na na
TVaR Allocation D act. only 190.10% 4.55% 23.04% 9.99%
TVaR Allocation S act. only 22.95% 19.49% 20.67% 17.26%
TVaR Allocation a act. only na na na na
TVaR Allocation D act. and scale 173.94% 4.17% 21.08% 9.14%
TVaR Allocation S act. and scale 21.00% 17.83% 18.91% 15.79%
TVaR Allocation a act. and scale na na na na
a = 1, 000, 000, 000
Correct Allocation D yes 3.34% 3.34% 3.34% 3.34%
VaR Allocation D yes 3.83% 3.38% 3.25% 3.21%
TVaR Allocation D yes 90.72% 2.13% 10.79% 4.73%
VaR Allocation D act. only 5.46% 4.92% 4.73% 4.62%
VaR Allocation S act. only 9.89% 8.00% 8.00% 7.83%
VaR Allocation a act. only 16.06% 13.16% 12.23% 8.36%
VaR Allocation D act. and scale 4.51% 4.06% 3.90% 3.81%
VaR Allocation S act. and scale 8.17% 6.61% 6.60% 6.46%
VaR Allocation a act. and scale 13.26% 10.86% 10.09% 6.90%
TVaR Allocation D act. only 129.58% 3.10% 15.70% 6.81%
TVaR Allocation S act. only 8.99% 7.68% 7.34% 9.08%
TVaR Allocation a act. only 12.91% 11.13% 11.98% 11.00%
TVaR Allocation D act. and scale 106.96% 2.56% 12.96% 5.62%
TVaR Allocation S act. and scale 7.42% 6.34% 6.06% 7.49%
TVaR Allocation a act. and scale 10.65% 9.19% 9.89% 9.08%
a = 4, 000, 000, 000
Correct Allocation D yes 2.54% 2.54% 2.54% 2.54%
VaR Allocation D yes 2.61% 2.70% 2.30% 2.42%
TVaR Allocation D yes 68.61% 1.62% 8.17% 3.60%
VaR Allocation D act. only 3.64% 3.81% 3.27% 3.39%
VaR Allocation S act. only 16.18% 3.65% 4.32% 8.64%
VaR Allocation a act. only 3.19% 3.97% 3.04% 3.47%
VaR Allocation D act. and scale 2.43% 2.55% 2.18% 2.26%
VaR Allocation S act. and scale 10.80% 2.44% 2.89% 5.77%
VaR Allocation a act. and scale 2.13% 2.65% 2.03% 2.32%
TVaR Allocation D act. only 95.85% 2.30% 11.62% 5.04%
TVaR Allocation S act. only 5.44% 4.57% 3.89% 6.24%
TVaR Allocation a act. only 85.34% 2.05% 10.34% 4.48%
TVaR Allocation D act. and scale 63.99% 1.53% 7.76% 3.36%
TVaR Allocation S act. and scale 3.63% 3.05% 2.60% 4.17%
TVaR Allocation a act. and scale 56.97% 1.37% 6.90% 2.99%

Table 10: RORAC calculations, base case.
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Allocating Cost considered Line 1 Line 2 Line 3 Line 4
a = 0
Correct Allocation D yes 8.94% 8.94% 8.94% 8.94%
VaR Allocation D yes 9.23% 9.90% 8.19% 7.84%
TVaR Allocation D yes 263.48% 5.80% 30.55% 11.58%
VaR Allocation D act. only 20.53% 23.93% 19.03% 20.83%
VaR Allocation S act. only 83.91% 61.61% 69.60% 38.51%
VaR Allocation a act. only na na na na
VaR Allocation D act. and scale 13.99% 16.31% 12.97% 14.20%
VaR Allocation S act. and scale 57.19% 41.99% 47.44% 26.25%
VaR Allocation a act. and scale na na na na
TVaR Allocation D act. only 586.01% 14.03% 71.00% 30.78%
TVaR Allocation S act. only 66.20% 56.01% 60.09% 48.32%
TVaR Allocation a act. only na na na na
TVaR Allocation D act. and scale 399.40% 9.56% 48.39% 20.98%
TVaR Allocation S act. and scale 45.12% 38.18% 40.96% 32.93%
TVaR Allocation a act. and scale na na na na
3, 000, 000, 000
Correct Allocation D yes 6.62% 6.62% 6.62% 6.62%
VaR Allocation D yes 7.21% 6.85% 6.08% 6.42%
TVaR Allocation D yes 184.42% 4.18% 21.23% 9.53%
VaR Allocation D act. only 16.25% 16.32% 14.42% 14.70%
VaR Allocation S act. only 33.65% 27.35% 31.83% 30.88%
VaR Allocation a act. only 58.55% 59.79% 63.05% 62.84%
VaR Allocation D act. and scale 8.61% 8.65% 7.64% 7.79%
VaR Allocation S act. and scale 17.83% 14.50% 16.87% 16.37%
VaR Allocation a act. and scale 31.03% 31.69% 33.42% 33.31%
TVaR Allocation D act. only 415.83% 9.96% 50.38% 21.84%
TVaR Allocation S act. only 34.18% 27.54% 27.52% 32.73%
TVaR Allocation a act. only 64.22% 59.89% 64.24% 59.52%
TVaR Allocation D act. and scale 220.36% 5.28% 26.70% 11.58%
TVaR Allocation S act. and scale 18.11% 14.60% 14.58% 17.35%
TVaR Allocation a act. and scale 34.03% 31.74% 34.04% 31.55%
a = 4, 000, 000, 000
Correct Allocation D yes 3.58% 3.58% 3.58% 3.58%
VaR Allocation D yes 3.75% 3.77% 3.16% 3.50%
TVaR Allocation D yes 99.82% 2.26% 11.32% 5.20%
VaR Allocation D act. only 12.05% 12.82% 10.86% 11.35%
VaR Allocation S act. only 19.48% 18.18% 20.07% 20.06%
VaR Allocation a act. only 11.41% 15.32% 11.92% 18.85%
VaR Allocation D act. and scale 3.87% 4.12% 3.48% 3.64%
VaR Allocation S act. and scale 6.25% 5.84% 6.44% 6.44%
VaR Allocation a act. and scale 3.66% 4.92% 3.83% 6.05%
TVaR Allocation D act. only 320.79% 7.68% 38.87% 16.85%
TVaR Allocation S act. only 23.20% 17.53% 16.80% 22.83%
TVaR Allocation a act. only 15.96% 14.51% 10.59% 20.03%
TVaR Allocation D act. and scale 102.91% 2.47% 12.47% 5.41%
TVaR Allocation S act. and scale 7.44% 5.63% 5.39% 7.33%
TVaR Allocation a act. and scale 5.12% 4.66% 3.40% 6.43%

Table 11: RORAC calculations, profitable company case.
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more complicated than either VaR or TVaR. But a practitioner faces deeper problems: Even if
armed with the right risk measure and capital allocation technique, one can get highly distorted
results unless the right threshold is chosen and the right costs are considered in setting hurdle
rates.

These caveats are addressed only with a deeper understanding of what creates value at the level
of the firm. As our models move in this direction, it is evident that greater sophistication is bound
to lead to more complication in pricing risk and measuring performance in insurance. Allocation
is valid as a pricing guide only if great care is taken in its implementation and interpretation.
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Appendix
A Technical Appendix

A.1 Proofs in Section 2
Proof of Lemma 2.1. With the budget constraint (2):

e−rt at − e−r(t−1) at−1 − e−rt[erRbt +Ret ]

= e−rt

er∑
j

p
(j)
t −

∑
j

I
(j)
t − (τ at−1 + c1(R

b
t)) e

r − c2(Ret )

 .
Hence, the sum in (6) can be written as:

∞∑
t=1

1{a1≥0,...,at≥0} e
−rt

[
er
∑
j

p
(j)
t −

∑
j

I
(j)
t − (τ at−1 + c1(R

b
t))e

r − c2(Re
t )

]
−1{a1≥0,...,at−1≥0,at<0} e

−rt [(at−1 +Rb
t)e

r +Re
t

]
=

∑
{t<t∗:a1≥0,a2≥0,...,at∗−1≥0,at∗<0}

[
e−rt at − e−r(t−1) at−1

]
− e−rt[erRb

t +Re
t ]

−e−rt∗
[
(at∗−1 +Rb

t∗)e
r +Re

t∗

]
=

[∑
t≤t∗

e−rt[−erRb
t −Re

t ]

]
+ e−r(t

∗−1) at∗−1 − a0 − e−r(t
∗−1) at∗−1

=

[∑
t≤t∗

e−rt[−erRb
t −Re

t ]

]
− a0,

which completes the proof.

Proof of Proposition 2.1. Notice that our per-period profit function in (6) is bounded from above,
so the Bellman equation follows from classical infinite-horizon dynamic programming results (see
e.g. Proposition 1.1 in Bertsekas (1995, Chap. 3)).

Proof of Proposition 2.2. Let

a′ =

[
a(1− τ) +Rb − c1(Rb) +

∑
j

p(j)

]
er +Re − c2(Re)−

∑
j

I(j);

then, conditional on a′ < 0, the objective function is decreasing in Re so that zero is the optimal
choice. Conditional on a′ > 0, if Re > 0, on the other hand, decreasing Re by a (small) ε > 0
and increasing Rb in the beginning of the next period will be dominant (since c2 > c1), so Re > 0
cannot be optimal. Finally, if a′ = 0 and Re > 0, then Re = Re

∗.
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Moreover,

−
(
a+Rb

)
<

∑
j

p(j) − e−r
∑
j

I(j) − τ a− c1(Rb)− e−r c2(Re∗)

+e−r V

[a(1− τ) +Rb − c1(Rb) +
∑
j

p(j)]er +Re∗ − c2(Re∗)−
∑
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I(j)


⇔ V (0) > −

∑
j

p(j) + (1− τ)a+Rb − c1(Rb)

 er +
∑
j

I(j) + c2(R
e
∗)

⇔ V (0) > Re∗,

which proves the last assertion.

Proof of Proposition 2.3. We prove an extended version of the proposition in the main text, which
additionally includes a regulatory constraint imposed by regulation of the form:

ρ (I) ≤

(
a(1− τ) +Rb − c1(Rb) +

N∑
j=1

p(j)

)
er + (1− ξ)V (0)︸ ︷︷ ︸

Available Capital

, (16)

where ρ is a monetary risk measure.8
The first order conditions from the Bellman equation (10) are:

[qi] −e−rE
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8This specification assumes that the company can put up the present value of future profits (PVFP) as a part if
its capital, which is consistent with market-consistent embedded value principles (American Academy of Actuaries,
2011).
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[Rb] E
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From [pi] and [Rb], we obtain:
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In the absence of a regulatory constraint, ζ = 0 so that Equation (17) yields:

1
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,

which yields the expression in Proposition 2.3.

A.2 Implementation of the Multi-Period Model from Section 3
For solving the one-period problem in each step, we rely on the following basic algorithm. Details
on some of the steps, on the implementation, and evidence on the convergence is provided below.

Algorithm A.1. For a given (discretizted) end-of-period value function V end, and for capital levels
ak = ADEL× k, k = 0, 1, 2, . . . ,AGRID :

1. Given capital level ak, optimize over q(1), q(2), q(3), q(4).

2. Given capital level ak and a portfolio (q(1), q(2), q(3), q(4)), optimize over R(b).

3. Given ak, portfolio (q(1), q(2), q(3), q(4)), and raising decision R(b), determine the premium
levels by evaluating Equation (11).

4. Given ak, portfolio (q(1), q(2), q(3), q(4)), R(b), and premiums (p(1), p(2), p(3), p(4)) evaluate
V beg(ak) based on the given end-of-period function V end by interpolating in between the
grid and extrapolating off the grid.

Discretization

We rely on an equidistant grid of size of 26 (AGRID = 25) with different increments depending
on the parameters (ADEL = 250, 000, 000 for the base case and ADEL = 750, 000, 000 for the
“profitable company” and “empty company” cases). We experimented with larger grids with finer
intercepts but 26 points proved to be a suitable compromise between accuracy and run time of the
program.
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Optimization

For carrying out the numerical optimization of the portfolio values q(i), i = 1, 2, 3, 4, we rely on
the so-called downhill simplex method proposed by Nelder and Mead (1965) as available within
most numerical software packages. For the starting values, we rely on the optimized values from
the previous step, with occasional manual adjustments during the early iteration in order to smooth
out the portfolio profiles.

For the optimization of the optimal raising decision Rb, in order to not get stuck in a local
maximum, we first calculate the value function based on sixty different values across the range of
possible values [−a × (1 − τ),∞). We then use the optimum of these as the starting value in the
Nelder-Mead method to derive the optimized value.

Calculation of the Premium Levels

The primary difficulty in evaluating the optimal premium level is that premiums enter the constraint
(11) on both sides of the equation as the default rate itself depends on the premium, and this
dependence is discontinuous (given our discrete loss distributions). We use the following approach:
Starting from a zero default rate, we calculate the minimal amount necessary to attain the given
default rate; we then check whether this amount is incentive-compatible, i.e., if the policyholders
would be willing to pay it given the default probability; if so, we calculate a smoothed version of
the premium level using (11) by deriving the (hypothetical) default rate considering how much the
policyholders are willing to pay over to the minimal amount at that level relative to the amount
necessary to decrease the default rate based on the our discretized distribution; if not, we move to
the next possible default rate given our discrete loss distribution and check again.

Interpolation and Extrapolation

For arguments in between grid points, we use linear interpolation. For values off the grid ( a >
AGRID× ADEL), supported by the general shape of the value functions across iterations, we use
either linear or quadratic extrapolation. More precisely, in case fitting a quadratic regression in a
to the five greatest grid values does not yield a significant quadratic coefficient—i.e., if the value
function appears linear in this region—we use linear extrapolation starting from the largest grid
point. Otherwise, we use a quadratic extrapolation fitted over the entire range starting from the
largest grid point.

Convergence

We assess convergence by calculating absolute and relative errors in the value and the policy func-
tions from one iteration to the next. These errors are directly proportional to error bounds for the
algorithm, where the proportionality coefficients depend on the interest and the default rate (an
upper bound is given by c̄ = e−r

1−e−r , see e.g. Proposition 3.1 in (Bertsekas, 1995, Chap. 1))). More
precisely, we define the absolute and relative errors for the value function by:

AbsErrn = max
k
{‖Vn(ak)− Vn−1(ak)‖} ,

RelErrn = max
k

{
‖Vn(ak)− Vn−1(ak)‖

Vn(ak)

}
,
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where Vn denotes the value function after iteration n. Similarly, we define absolute and relative
errors for the policy function by:

AbsErr(q(i))n = max
k

∥∥∥q(i)n (ak)− q(i)n−1(ak)
∥∥∥ , i = 1, 2, 3, 4,

RelErr(q(i))n = max
k

∥∥∥q(i)n (ak)− q(i)n−1(ak)
∥∥∥

q
(i)
n (ak)

, i = 1, 2, 3, 4,

where q(i)n denotes the (optimized) exposure to line i after iteration n.
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Figure 8: Absolute and relative error in the value function for a company with carrying cost τ =
3%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and premium
parameters α = 0.3156, β = 392.96, and γ = 1.48E-10 (base case).

Figure 8 show the errors for the value function using the base case parameters and different val-
ues of n for between 90 and 320 (in increments of 10). Results (and error bounds) for the remaining
parametrizations are even smaller. After 320 iterations, the absolute error in the value function is
379, 230, which is only a very small fraction of the value function ranging from 1, 813, 454, 921
to 1, 955, 844, 603 (about 0.02%). In particular, considering the rather conservative error bound
above, these results imply that the error in V amounts to less than one percent. Similarly, Figure 9
shows the absolute and relative errors for the portfolio functions. Again, we observe that relative
changes from one iteration to the next after 320 iterations are maximally around 0.02%.

B Additional Figures
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Figure 9: Absolute and relative error in the optimal portfolio weights for a company with carrying
cost τ = 3%, raising costs c(1) = 7.5%, c(2) = 1.00E-10, and ξ = 50%, interest rate r = 3%, and
premium parameters α = 0.3156, β = 392.96, and γ = 1.48E-10 (base case).
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Figure 10: Value function V and its derivative V ′ for a company with carrying cost τ = 5%, raising
costs c(1) = 7.5%, c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and premium parameters
α = 0.9730, β = 550.20, and γ = 1.61E-10 (profitable company).
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Figure 11: Optimal raising decision R for a company with carrying cost τ = 5%, raising costs
c(1) = 7.5%, c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and premium parameters
α = 0.9730, β = 550.20, and γ = 1.61E-10 (profitable company).
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Figure 12: Optimal portfolio weights q1, q2, q3, and q4 for a company with carrying cost τ = 5%,
raising costs c(1) = 7.5%, c(2) = 5.00E-11, and ξ = 75%, interest rate r = 6%, and premium
parameters α = 0.9730, β = 550.20, and γ = 1.61E-10 (profitable company).


