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Introduction

This paper examines empirical implications of a dynamic theoretical model of
speculative trading, in which trading is motivated by both differences in private
information and differences in beliefs. The derived structural model imposes eco-
nomic restrictions on the term structure of expected returns but yet it is sufficiently
flexible to be consistent with the documented patterns of medium-term momen-
tum and long-term mean-reversion, see Jegadeesh and Titman (1993) as well as
DeBondt and Thaler (1985) for earlier references.
We formulate a theory of expected returns in the context of smooth trading

model of Kyle, Obizhaeva and Wang (2013). In that dynamic model of speculative
trading among oligopolistic traders, traders agree to disagree about the precision of
their private information about unobservable growth rate of the risky asset. When
there is enough disagreement among traders, the equilibrium exists in which traders
trade on their information smoothly, balancing the incentives to slow down trading
and reduce market impact costs versus the incentives to speed up and profit from
perishable information.
Strictly speaking, it is impossible to make empirical predictions about expected

returns based on such a model, because the players in the model might have beliefs
about parameters which are incorrect in any arbitrary manner. If traders have in-
correct beliefs about model parameters, then traders predictions about expected
returns “in the model” are likely to be incorrect. This may explain some asset pric-
ing puzzles, as we illustrate using several stylized examples with a representative
agent who has incorrect beliefs.
We therefore have to introduce the “true” subjective beliefs. We suppose there

is an external observer or an economist who studies the equilibrium prices. He
believes in his own “true” parameters of the model. The equilibrium returns then
depend both on the traders’ parameters that determine prices and the economist’s
parameters that define dynamics.
We show that expected returns depend on the history of dividend-to-price ratios

and the history of dividend surprises. If the economist agrees with traders on
the total precision of signals, then expected returns depend only on the current
dividend-to-price ratio and the history of dividend surprises. These implications
can be thought of as specific economic restrictions that can be imposed on the
present-value approach by Campbell and Shiller (1988).
According to Samuelson (1965) and the efficient market hypothesis popularized

by Fama (1970), the prices are expected to follow a martingale. Except for rare
coincidences, however, the economist in our framework will usually find anomalies
and predictable returns. The intuition is as follows. Each trader’s valuation is a
martingale under his own beliefs. The evolution of traders’ valuations is compli-
cated because they learn about the common value of a growth rate. The market
aggregates those correlated valuations into the single market price that, as a re-
sult, does not follow a martingale under any beliefs. The average of martingales is
usually not a martingale.
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It is fashionable to attribute predictability in asset returns to irrational behav-
ior motivated by psychology. This presumes that rational behavior not motivated
by psychology would lead to no returns predictability. Our paper shows that pre-
dictable returns may result from rational behavior if markets aggregate information
in a manner that results in predictability.
Information aggregation can be implemented through a construct of a represen-

tative agent. In our framework a representative agent exists. To replicate the price
dynamics and ensure consistency with the Bayesian learning, however, one would
need to assign him beliefs that are different from beliefs prevailing in the market,
even with respect to parameters the traders themselves may agree with each other
about. Thus, even in the world where traders behave rationally, it may be neces-
sary to attribute unusual values to the parameters when calibrating the equivalent
representative-agent frameworks.
One could find the anomalies being more in a line with behavior finance paradigm.

In our framework, however, even though the traders are overconfident about their
own signals, they rationally maximize utility functions and correctly apply Bayes
law. Fama (1998) criticizes behavior finance for its inability to formulate a con-
sistent alternative to market efficiency that would explain both underreaction and
overreaction patterns, which must therefore instead be attributed to a chance.
Every scientific theory has to be formulated within some framework describing

the subject of interest and also making it possible to come up with alternatives
and derive their predictions. A proposed theory should be described in sufficiently
precise terms and predicts sufficiently improbable outcomes in contrast to those
implied by alternatives. For example, Muth (1961) describes the theory of ratio-
nal expectations equilibrium in the context of a simple production economy and
contrasts it with alternative theories of adaptive expectations. In a similar spirit,
we formulate a theory of expected returns in the context of smooth trading model
of Kyle, Obizhaeva and Wang (2013). Our structural approach can be thought of
as a constructive synthesis of the efficient market and behavior finance paradigms.
We illustrate our ideas using the smooth trading model developed in Kyle,

Obizhaeva and Wang (2013), where trading among traders is generated by over-
confidence. There is ample evidence that market participants have heterogeneous
beliefs, as reflected, for example, in dispersion of forecasts by professional analysts.
However, the proposed methodology can also be applied in the context of other
models where trading is motivated either by private values as in Du and Zhu (2013)
or endowment shocks as in Vayanos (1999).
The idea of studying the term structure of returns using theoretical modeling

was pioneered by Cox, Ingersoll and Ross (1985), who examine the interest rates
and bond prices in the context of the general equilibrium model with rational
expectations. In their model, identical competitive individuals optimally decide on
their consumption path and allocation to risky projects giving their expectations
about changing investment opportunities. There are no effects of heterogeneous
information or heterogeneous beliefs, which are the main subject of our paper.
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Our approach is similar to Xiong and Yan (2010) who discuss how to make em-
pirical predictions about bond returns using the dynamic competitive model. In
their model, agents observe the same signal about the long-run mean of the infla-
tion rate but interpret it differently due to their heterogeneous beliefs. The paper
primary focuses on the effects of fluctuating relative wealth and shuts down the
effects of dynamic learning, since the later can be presumably captured using a
representative-agent framework; different from our paper, however, the belief of
the constructed representative agent does not follow the Bayes law. In contrast,
we shut down the wealth effect by using the CARA utility functions and focus on
the learning effect; in addition to heterogeneous beliefs, we also incorporate pri-
vate information and imperfect competition. Our paper complements the growing
literature on equilibrium implications of heterogeneity of market participants.
In modeling the term structure of expected returns, we place a predominant

emphasis on the expectations and abstract from modeling other components of
the term structure. One of those may be related to differences in risk premium for
exposure to various factors at different horizons. It is known, for example, that
market beta is sensitive to return interval used to estimate it; market betas of
small stocks tend to increase with the horizon, while market betas of large stocks
tend to decrease with the horizon, see Levhari and Levy (1977) for the earlier
discussion. Another component may be related to liquidity premium, which can
be calibrated based on market microstructure invariance proposed by Kyle and
Obizhaeva (2013).
This paper is structured as follows. Section I discusses several stylized exam-

ples in which incorrect beliefs of a representative agent may explain some known
empirical facts in asset pricing. Section II presents a formal model of dynamic in-
formation processing by a representative agent with similar implications. Section
III explains that incorrect beliefs of a representative agent may arise as a result
of information aggregation in the model with heterogeneous agents and derives a
structural model for equilibrium returns. Section IV concludes.

I. Motivating Examples

We first present three simple examples which illustrate several principles which
are important in this paper.

• The actual return process depends on two sets of parameters: correct param-
eters and possibly incorrect parameters used by the market.

• The possibly incorrect parameters used by the market can affect expected
return, return volatility, and the entire term structure of expected returns.

• It is usually more appropriate to model financial markets using dynamic
steady-state models, because insights of static non-stationary models often
can not be easily mapped into real data.
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While none of these examples correspond precisely to the model examined in the
paper, they are very helpful for understanding the main point of our paper.

Gordon’s Growth Model With Geometric Brownian Motion Dividends.

The simplest illustration assumes that investors use a possibly incorrect dividend
growth rate when applying Gordon’s growth formula to an asset whose dividend
follows a geometric Brownian motion. Suppose that dividends follow the geometric
motion process

(1) dD(t) = γ ·D(t) · dt+ σ ·D(t) · dB(t),

where γ is the growth rate investors expect and σ measures the volatility of divi-
dends. Suppose that investors require expected return r. Then, the asset’s price
is determined by Gordon’s growth formula

(2) P (t) =
D(t)

r − γ
.

The actual percentage return process is

(3)
dP (t) +D(t) · dt

P (t)
= r · dt+ σ · dB(t).

Investors expect a return of r, which can be decomposed into a return of r−γ from
dividend yieldD(t)/P (t)·dt and expected return of γ from capital gain dP (t)/P (t).
Suppose the true growth rate in equation (1) is γ̂, not γ. Then, contrary to

investors’ expectations if γ ̸= γ̂, investors obtain an expected return of r−γ+γ̂; the
observed dividend yield of r− γ remains unchanged, but the unobserved expected
return from capital gains changes from γ to γ̂. Let Êt{. . .} denote an expectation
operator calculated using information available at time t based on true beliefs.
Then, the actual expected return is given by

(4) Êt

{
dP (t) +D(t) · dt

dt

}
= (r − γ + γ̂) · P (t).

A higher expected rate of growth rate γ lowers dividend yield and therefore low-
ers expected returns. Note that the actual expected return r − γ + γ̂ depends
on two parameters, the investors’ expected growth rate γ and the true expected
growth rate γ̂. In a steady state with unchanging required return r, unchanging
actual growth rate γ̂ and unchanging expected growth rate γ, expected returns are
constant r − γ + γ̂, not time-varying.
The volatility of returns σ is the “Black-Scholes volatility”.1 Incorrect expecta-

tions about the growth rate of dividends have no effect on returns volatility.

1We refer to a constant standard deviation of log-returns as a “Black-Scholes volatility.” In the
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In this example, expected returns are constant over time and the volatility of
returns is not affected by investors’ expectations of the growth rate. In the next
example, expected returns vary over time, and the constant standard deviation of
dollar returns changes in response to changes in investors’ beliefs about parameters
governing the dividend process.

Excess Volatility and Mean Reversion Model With Arithmetic AR-1
Dividends.

Suppose investors believe that de-meaned dividends follow an Ornstein-Ühlenbeck
process given by

(5) dD(t) = −α · (D(t)− D̄) · dt+ σ · dB(t),

where α is a constant rate of mean reversion, σ measures the volatility of dividends,
D̄ is the constant steady state mean dividend level, and B(t) is a standardized
Brownian motion process (zero mean and unit variance). Let r denote the required
return which equals the risk free rate for a zero-net supply asset. Then the asset’s
price P (t) is

(6) P (t) =
D̄

r
+

D(t)− D̄

r + α
.

This formula is obtained by applying Gordon’s growth formula to the two compo-
nents D̄ and D(t)− D̄, with growth rates of zero and −α, respectively.
Suppose that investors’ beliefs about the mean reversion parameter in equation

(5) are possibly incorrect, with a correct value of the mean reversion parameter
equal to α̂, not α. The actual returns process (in dollars per share) is given by2

(7) dP (t) +D(t) · dt = r · P (t) · dt+ α− α̂

r + α
· (D(t)− D̄) · dt+ σ

r + α
· dB(t).

Let Êt{. . .} denote an expectation operator calculated using information avail-
able at time t based on true beliefs. Then, the actual expected return is given

Black-Scholes model of option pricing, both the actual volatility and the implied volatility have
the same value σ, where σ∆t1/2 measures the percentage standard deviation of log-returns over a
period ∆t. When the stock price and therefore returns are observed continuously, the variance of
returns σ2 can be inferred with arbitrarily high accuracy from the realized variance of log-returns∑N

n=1 (ln[P (tn+1)/P (tn)])
2
/∆t over an arbitrary time interval ∆t with tn = t0 + n∆t/N . The

realized variance is a consistent estimator of σ2 for large N .
2For reasons of analytical tractability, this paper uses arithmetic AR-1 processes rather than

geometric brownian motion. With arithmetic processes, the standard deviation of dividends over
a given time period is constant when measured in units of dollars per share, and it is appropriate
to measure expected returns in units of dollars per share per unit of time. With geometric
brownian motion, the volatility of dividends over a given time period is constant when measured
as a percentage of the amount invested, and it is appropriate to measure expected returns in
units of percent of amount invested per unit of time.
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by

(8) Êt

{
dP (t) +D(t) · dt

dt

}
= r · P (t) +

α− α̂

r + α
· (D(t)− D̄).

Investors obtain their expected return r · P (t) when their beliefs are correct and
α = α̂; otherwise, investors also obtain an unexpected excess return α−α̂

r+α
· (D(t)− D̄)

which varies randomly over time, depending on whether the investors’ mean re-
version parameter is too high or too low and depending on whether dividends are
above or below their long-run mean.
Investors’ beliefs also affect the volatility of returns. The standard deviation of

dollar returns per share is

(9) ˆV ar
1/2

t

{
dP (t) +D(t) · dt

dt

}
= σ · (r + α)−1.

The volatility of returns depends only on the investors’ mean reversion parameter
α, not on the true mean reversion parameter α̂.
If investors believe that the dividend process is more persistent than it actually

is, i.e., α < α̂, then there is excess volatility and mean reversion. There is excess
volatility because the actual volatility σ · (r + α)−1 is greater than the correct
volatility σ · (r+ α̂)−1. There is mean reversion because the expected excess return
α−α̂
r+α

· (D(t) − D̄) is negative (positive) when dividends and therefore prices are
above (below) their long term mean. In this example, it can be shown that the
entire term structure of expected returns varies over time as well.

One-Period Model With Information Processing.

Information processing is an essential function of financial markets. When in-
vestors attribute incorrect precisions to the information flow, this may affect the
returns process and lead to returns predictability.
Consider the following one-period example (in the spirit of the multi-period

model of Daniel, Hirshleifer and Subrahmanyam (1998)). A risky asset has an
unobserved liquidation value denoted v. Investors observe a signal denoted ∆I
and believe that the signal has the form ∆I = τ 1/2v + z, where τ is the investors’
possibly incorrect belief about a parameter governing the precision of the signal.
The random variables v and z are identically and independently distributed as
N(0, 1). The initial price P0 is normalized to zero at time t = 0. Upon observation
of the signal at time t = 1, the investors’ expectation of the asset’s liquidation
value changes to P1. At time 2, the liquidation value v is realized.
The true value τ̂ of the precision parameter is possibly different from the in-

vestors’ belief τ . Let Ê{. . .} and ˆV ar{. . .} be expectation and variance under true
beliefs.
The two periods in this simple model are quite different. Assuming no discount-

ing, the expected returns and price volatility over the period from t = 0 to t = 1
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are given by

Ê{P1 − P0|∆I} =
τ 1/2

1 + τ
∆I, ˆV ar

1/2
{P1 − P0} =

τ 1/2(1 + τ̂)1/2

1 + τ
.

The expected returns and price volatility over the period from t = 1 to t = 2 are

Ê{v−P1|∆I} =

(
τ̂ 1/2

1 + τ̂
− τ 1/2

1 + τ

)
∆I, ˆV ar

1/2
{v−P1} =

((1 + τ − τ̂ 1/2τ 1/2)2 + τ)1/2

1 + τ
.

If investors have correct beliefs, i.e., τ = τ̂ , then expected return for the second
period is equal to zero; returns variances during two periods are equal to the true
expected volatility of τ̂ · (1 + τ̂)−1 and (1 + τ̂)−1, respectively. Otherwise, various
patterns in expected returns and volatility are possible depending on a particular
choice of parameters.
The predictions are quite different for two periods. For example, the first-period

volatility may be lower or higher than the second-period volatility depending on
parameters. This makes it difficult to use one-period models to derive realistic
implications for continuously operating financial markets. Similar concerns are
relevant for any non-stationary model.

Summary of Motivating Examples.

The three motivating examples are all based on modeling market prices as the
result of a single representative agent processing information.
The first example shows that overly pessimistic beliefs about the growth rate

of dividends lead to a higher expected return, thus providing an explanation for
the equity premium puzzle of Mehra and Prescott (1985). If investors’ beliefs are
too pessimistic in recessions and too optimistic in booms, then risk premium is
counter-cyclical, as shown by Campbell and Shiller (1988) and Fama and French
(1989).
The second example shows that a belief that mean-reverting dividends are more

persistent than the actual rate of mean reversion leads to excess volatility and
mean reversion in asset prices, consistent with Shiller (1981).
The third example shows that overconfidence about the precisions of signals can

lead to excess volatility and mean reversion. Its intrinsic limitation as a one period
model reminds us that dynamic steady-state models are more appropriate tools
for studying dynamic properties of returns.
The motivating examples do not illustrate how overconfident processing of private

information works in a dynamic context, nor do the examples show how informa-
tion aggregation in prices results from the dynamic trading decisions of individual
market participants.
In the rest of this paper we extend these examples in two steps. First, we con-

struct a model of continuous information processing which shows how predictabil-
ity of returns arises when prices are set by a representative agent with possibly
incorrect beliefs about the precision of privately observed signals.



8

Second, we use the dynamic smooth trading model of Kyle, Obizhaeva and Wang
(2013) as the micro-foundations for modeling the behavior of individual investors
and show that the incorrect beliefs of the representative agent may naturally arise
in the equilibrium due to specific properties of information aggregation.

II. Dynamic Model of Information Processing

In this section, we construct a dynamic model in which a representative agent
observes “private” signals (not observed by the economist), processes this infor-
mation according to possibly incorrect beliefs, and sets market prices to make the
expected return on the risky asset equal to the risk-free rate. In subsequent sec-
tions, we replace the representative agent with heterogeneous agents with different
beliefs.
In what follows, we mark with “breves” (“ ˘ ”) parameters assigned by the mar-

ket’s representative agent.
Suppose a risky asset continuously pays out dividends D(t), self-liquidating itself

over time. Dividends follow a stochastic process with mean-reverting stochastic
growth rate G∗(t), constant instantaneous volatility σD > 0, and constant rate of
mean reversion αD > 0,

(10) dD(t) := −αD ·D(t) · dt+G∗(t) · dt+ σD · dBD(t).

The growth rate G∗(t) follows an AR-1 process with the mean-reversion ᾰG and
volatility σ̆G:

(11) dG∗(t) := −ᾰG ·G∗(t) · dt+ σ̆G · dBG(t).

For simplicity, we assume a zero-net-supply asset discounted at a fixed risk-free
rate r. If both the dividend D(t) and G∗(t) were observable, then the price of the
asset would equal its fundamental value given by the generalization of Gordon’s
growth formula,

(12) F (t) =
D(t)

r + αD

+
G∗(t)

(r + αD)(r + ᾰG)
.

The market also gets signals about the growth rate G∗(t) and impounds this in-
formation into prices.
Let Ĕt{. . .} and ˘V art{. . .} denote the market’s expectations and variances cal-

culated with respect to information at time t. Then the market price is obtained
by substituting the market’s estimate of G∗(t) for G∗(t) itself into equation (12):

(13) P (t) =
D(t)

r + αD

+
Ĕt{G∗(t)}

(r + αD)(r + ᾰG)
.

This formula generalizes Gordon’s growth formula (6) in the second example by
replacing the constant dividend mean D̄ with a stochastically time-vary dividend
level D(t).
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The market price aggregates the information content of the divided D(t) and N
signals I1(t), . . . , IN(t). We assume that each signal In(t) produces a continuous
stream of information given by

(14) dIn(t) := τ̆ 1/2n · G∗(t)

σ̆G · Ω̆1/2
· dt+ dBn(t), n = 1, . . . , N,

where dBD, dBG, dB1, ...dBN are independent Brownian motions. Since its drift is
proportional to G∗(t), each increment dIn(t) in the process In(t) is a noisy observa-
tion of the unobserved growth rate G∗(t). This is a convenient way to model infor-
mation flow, because the “precision” parameter τ̆n measures the informativeness of
the signal dIn(t) as a signal-to-noise ratio describing how fast the information flow
generates a signal of a given level of statistical significance. It also corresponds
to the R squared of the predictive regression. Kyle, Obizhaeva and Wang (2013)
discuss this choice for modeling information in more detail.
The parameter Ω̆ is a scaling coefficient in equation (14). It denotes the steady

state error variance of the estimate of G∗(t), scaled in units of the standard devi-
ation of its innovation σ̆G:

(15) Ω̆ := ˘V ar{(G∗(t)− Ğ(t))/σ̆G},

where Ğ(t) is the market’s estimate of the growth rate as defined in (23). If time
is measured in years, Ω̆ = 4 means that the estimate of G∗(t) is “behind” the true
value of G∗(t) by an amount equivalent to four years of volatility unfolding at rate
σ̆G per year. We also assume a steady state in which Ω̆ is a constant.
Dividends contain information about the dividend growth. Define dI0(t) :=

[αD ·D(t) · dt+ dD(t)] /σD, dB0 := dBD, and

(16) τ̆0 := Ω̆ · σ̆2
G/σ

2
D

Then, the information I0(t) about growth rate in the divided stream (10) can be
written with notation similar to In(t):

(17) dI0(t) := τ̆
1/2
0 · G∗(t)

σ̆G · Ω̆1/2
· dt+ dB0(t).

Observing the process I0(t) is informationally equivalent to observing the dividend
process. The quantity τ̆0 measures the precision of the dividend process in units
analogous to the units of precision for other signals.
Let τ̆ be the total precision of information equal to the sum of all precision

parameters:

(18) τ̆ := τ̆0 +
N∑

n=1

τ̆n.
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Stratonovich-Kalman-Bucy filtering implies that the steady state error variance is
given by

(19) Ω̆−1 := 2 · ᾰG + τ̆ .

As discussed in Kyle, Obizhaeva and Wang (2013), the history of each informa-
tion flow In(t) can be summarized by a sufficient statistic H̆n(t) or a signal defined
as

(20) H̆n(t) :=

∫ t

u=−∞
e−(ᾰG+τ̆)·(t−u) · dIn(u), n = 0, 1, ...N.

The importance of each bit of information dIn about the growth rate decays expo-
nentially at a rate ᾰG+ τ̆ , which depends on the natural mean-reversion rate of the
growth rate and the speed of learning in the economy. If all signals are reflected
in the market price, then Stratonovich-Kalman-Bucy filtering implies

(21) Ĕt{G∗(t)} := σ̆G · Ω̆1/2 ·

(
N∑

n=0

τ̆ 1/2n · H̆n(t)

)
.

It is natural to assume that the market assigns the same precision to all signals.
Let τ̆n = τ̆I for n = 1, ..N . Define the aggregated sufficient statistics H̆(t) as a
linear combination of individual statistics

(22) H̆(t) = τ̆
1/2
0 · H̆0(t) +

N∑
n=1

τ̆
1/2
I · H̆n(t).

Then, the market’s estimate of the growth rate Ğ(t) is

(23) Ğ(t) := Ĕ{G∗(t)} = σ̆G · Ω̆1/2 · H̆(t).

The market price can be therefore written as

(24) P (t) =
D(t)

r + αD

+
σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)
· H̆(t).

This formula generalizes equation (2) in the first example and equation (6) in the
second example.

The Economist’s Inference in Dynamics Model of Information
Processing.

In order to derive implications for returns dynamics, we need to introduce the
true parameters into the model. In what follows, we mark with “hats” true pa-
rameters and refer to them as beliefs of the economist.
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Thus, while the market uses possible incorrect parameter values ᾰG, σ̆G, and τ̆I
the economist derives implications for return dynamics using correct parameter
values α̂G, σ̂G, and τ̂I .
Assume that the economist otherwise has the same beliefs as the market about

the structure of the dividend, dividend growth, and information processes. In par-
ticular, we assume that the economist and the market agree about the parameters
αD and σD. This assumption makes calculations simpler in what follows. It does
not make sense to assume that the economist and the market disagree about the
value of σD since its value can be inferred with perfect accuracy from observing
the dividend process D(t) continuously.
By placing “hats” over the variables in equations (11), (14), (16), (18), (19), (20),

(22), and (23) above, we obtain definitions of Ω̂, τ̂0, τ̂ , and Ĥn(t) for n = 0, 1...N
which are consistent with the economist’s expectation operator Êt{. . .}. We briefly
list those definitions below.

(25) dG∗(t) = −α̂G ·G∗(t) · dt+ σ̂G · dBG(t).

(26) τ̂0 := Ω̂ · σ̂2
G/σ

2
D,

(27) τ̂ = τ̂0 +N · τ̂I ,

(28) Ω̂ := ˆV ar[(G∗(t)− Ĝ(t))/σ̂G] = (2 · α̂G + τ̂)−1,

(29) dIn(t) := τ̂
1/2
I · G∗(t)

σ̂G · Ω̂1/2
· dt+ dBn(t), n = 0, . . . , N,

(30) Ĥn(t) :=

∫ t

u=−∞
e−(α̂G+τ̂)·(t−u) · dIn(u), n = 0, 1, ...N.

(31) Ĥ(t) = τ̂
1/2
0 · Ĥ0(t) +

N∑
n=1

τ̂
1/2
I · Ĥn(t).

(32) Ĝ(t) := Ê{G∗(t)} = σ̂G · Ω̂1/2 · Ĥ(t).

Both the market and the economist construct their signals Ĥ(t) and H̆(t) as
linear combinations of all increments in information flow with the weights decaying
exponentially. There is the following relationship between their signals, Ĥn(t) and
H̆n(t), n = 0, 1...N :

(33) Ĥn(t) = H̆n(t) + (ᾰG + τ̆ − α̂G − τ̂) ·
∫ t

u=−∞
e−(α̂G+τ̂)·(t−u) · H̆n(u) · du.
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If the market has correct beliefs, then Ĥn(t) = H̆n(t). Otherwise, the relationship
between the two variables depends on the entire history of information flow, since
the economist disagrees with the market on how quickly information becomes ob-
solete. For example, the economist may assign higher weights to the information
from the distant past if he believes that dividends are more persistent or signals
are less precise than the market believes, i.e., when ᾰG + τ̆ > α̂G + τ̂ .

Returns Dynamics in a Dynamic Model of Information Processing.

We derive next returns dynamics under the true beliefs of the economist. Plug-
ging the equilibrium price P (t) from equation (24) and using equation (20) for
dH̆n(t), equation (29) for dIn(t), and then equation (32) for the economist’s esti-
mate Ĝ(t) yields the returns process

(34) dP (t) +D(t) · dt = r · P (t) · dt+ (ă · H̆(t) + b̆ · Ĥ(t)) · dt+ dB̂r(t),

where the coefficients ă and b̆ are given by

(35) ă := − σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)
· (r + ᾰG + τ̆),

(36) b̆ :=
σ̂G · Ω̂1/2

(r + αD)
+

σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)
· (τ̆ 1/20 τ̂

1/2
0 +N · τ̆ 1/2I · τ̂ 1/2I ).

This equation is the generalization of equation (3) in the first motivating example
and equation (7) in the second motivating example.
Recall that Êt{. . .} denote an expectation operator based on true beliefs cal-

culated using information available at time t. The true expected return is given
by

(37) Êt

{
dP (t) +D(t) · dt

dt

}
= r · P (t) + ă · H̆(t) + b̆ · Ĥ(t).

As in the first and second motivating examples, investors obtain the expected
return of r · P (t) when beliefs of the market coincide with the true beliefs, i.e.,
ᾰG = α̂G, σ̆G = σ̂G, and τ̆I = τ̂I . Otherwise, investors also obtain an unexpected
risk premium equal to a linear combination ă·H̆(t)+b̆·Ĥ(t), where the signals of the
market H̆(t) and the signal of the economist Ĥ(t) depend in a complicated manner
on the entire history of information flow, as shown in equations (20) and (30). The
first sufficient statistics H̆(t) can be extracted from current prices and dividends
using equation (24). The second sufficient statistics Ĥ(t) can be extracted from
the history of H̆(t) using equations (22), (31), and (33).
The uncertainty term dB̂r(t) in equation (34) is defined as

(38)

dB̂r(t) :=
σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)

(
τ̆
1/2
0 · dB∗

0(t) + τ̆
1/2
I ·N · dB̄∗(t)

)
+

σD

(r + αD)
·dB∗

0(t).
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The processes dB̄∗(t) and dB∗
0(t) are defined as

(39) dB̄∗(t) := τ̂
1/2
I · (σ̂G · Ω̂1/2)−1 · (G∗(t)− Ĝ(t)) · dt+

N∑
n=1

dBn(t)/N

(40) dB∗
0(t) := τ̂

1/2
0 · (σ̂G · Ω̂1/2)−1 · (G∗(t)− Ĝ(t)) · dt+ dB0(t)

are the Brownian motions under the true beliefs. Note that the variance of dB∗
0(t)

is equal to one, but the variance of dB̄∗(t) is equal to 1/N . It can be shown
that when the market has correct beliefs, i.e., ᾰG = α̂G, σ̆G = σ̂G, and τ̆I = τ̂I ,
the economist will find that prices adjusted for the interest expense follow a ran-
dom walk and its actual volatility coincides with its true fundamental volatility.
Otherwise, volatility is a constant, which may be higher or lower than the funda-
mental volatility depending on the true parameters and the parameters used by
the market.

III. Micro-Foundation of Dynamic Model with
Information Processing

There is returns predictability when the market’s beliefs differ from the true be-
liefs, as illustrated in the motivating examples and the model in section II. We next
use the smooth trading model of Kyle, Obizhaeva and Wang (2013) to illustrate
how the incorrect beliefs of the market can simply arise in the equilibrium even
when investors apply the Bayes law correctly. Predictable returns may result from
rational behavior of investors if the market aggregates information in a manner
that results in predictability.
We first review the smooth trading model. Suppose there are N traders. Each

trader n chooses a consumption intensity cn(t) and trading rate Xn(t, .) to max-
imize an expected constant-absolute-risk-aversion (CARA) utility function. Let
U(cn(s)) := −e−A·cn(s) be an exponential utility function with a constant absolute
risk aversion parameter A. Letting ρ > 0 denote a time preference parameter,
trader n solves the maximization problem

(41) max
{cn(t),Xn(t,.)}

En
t

{∫ ∞

u=t

e−ρ(u−t) · U(cn(u)) · du
}
,

where Mn(t) is the money account in dollars and Sn(t) is the inventories in shares.
These variables are described by the following processes with continuous paths:

dMn(t) = (r ·Mn(t) + Sn(t) ·D(t)− cn(t)− P (xt) ·Xn(t, P (t))) · dt,

dSn(t) = Xn(t, P (t)) · dt,
Here En

t {. . .} denotes the expectation of trader n calculated with respect to infor-
mation at time t. In this notation, the superscript n indicates that the expectation
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is taken with respect to the beliefs of trader n. The subscript t indicates that the
expectation is taken with respect to trader n’s information set at time t. Each
trader is assumed to trade “smoothly” and explicitly take into account the effect
of his trading on the price of a risky asset P (x), where x = dSn(t)/dt.
Each trader n observes a continuous stream of private information In(t) about

the unobservable growth rate G∗(t):

(42) dG∗(t) := −αG ·G∗(t) · dt+ σG · dBG(t),

(43) dIn(t) := τ 1/2n · G∗(t)

σG · Ω1/2
· dt+ dBn(t).

Since the equilibrium price reveals the average signal in the symmetric model, each
trader infers the average of other traders’ private signals from the market price.
Each trader also infers information I0(t) about the growth rate from the dividend
stream,

(44) dI0(t) := τ
1/2
0 · G∗(t)

σG · Ω1/2
· dt+ dB0(t),

where dB0 = dBD, dBG, dB1, ...dBN are independent Brownian motions.
Traders agree on the precision τ0 of public information and agree to disagree

about their interpretations of private information. Agreement to disagree is the
mechanism that generates trading in the model. It is a common knowledge that
each trader believes his own signal has high precision τH while signals of the others
have low precision τL. Symmetry implies that traders agree on the total precision

(45) τ := τ0 + τH + (N − 1) · τL.

In equations (43)-(45), we define the precision of public information τ0 and the
error variance Ω as

(46) τ0 := Ω · σ2
G/σ

2
D,

(47) Ω := V ar[(G∗(t)−Gn(t))/σG] = (2 · αG + τ)−1,

where Gn(t) := En
t {G∗(t)} is trader n’s estimate of the growth rate. Due to

symmetry, τ0 and Ω are the same for all traders. The parameters αG, σG, τ , τH ,
and τL, without “breves” or “hats”, describe the beliefs of traders in the model.
The information set includes the history of public signal I0(t), the history of

private signals In(t) and the history of private signals of the others inferred from
the market prices. The trader n’s estimate Gn(t) can be conveniently written as
the weighted sum of signals H0(t), Hn(t), and H−n(t) that summarize all pubic
and private information:

(48) Hn(t) :=

∫ t

u=−∞
e−(αG+τ)·(t−u) · dIn(u), n = 0, 1, ...N,
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(49) H−n(t) :=
1

N − 1

∑
m=1,..,N,m ̸=n

Hm(t).

(50) Gn(t) := σG · Ω1/2 ·
(
τ
1/2
0 ·H0(t) + τ

1/2
H ·Hn(t) + (N − 1) · τ 1/2L ·H−n(t)

)
.

When forming his signal, each trader assigns a larger weight τH to his own signal
and smaller weight τL to signals of the others. Each piece of information decays
exponentially at a rate αG + τ .
Kyle, Obizhaeva and Wang (2013) find that, if there is enough disagreement,

there is a symmetric linear equilibrium of a simple and intuitive form. Each trader
calculates a target inventory proportional to his risk tolerance and proportional to
the difference between his own valuation and the average valuation of other traders.
Each trader correctly believes that the price is a linear function of the average val-
uations of other traders, his own inventory, and the derivative of his own inventory.
Since trading a nontrivial quantity over a very short period of time has transitory
price impact proportional to the derivative a trader’s inventory, each trader trades
smoothly; demand schedules and market clearing quantities are defined in terms of
derivatives of inventories, not levels of inventories. In the equilibrium, each trader
adjusts his inventory towards the target level gradually, demanding liquidity by
trading on his own private information and providing liquidity to other traders by
trading against their information. The rate of partial adjustment is determined by
a trade-off between the half-life of private information and price resilience.
In this paper, we are more concerned with equilibrium prices and returns rather

than quantities traded. The equilibrium price instantly and fully reveals informa-
tion. Define the average of the N traders’ expected growth rates by

(51) Ḡ(t) :=
1

N

N∑
n=1

Gn(t),

the equilibrium price is then given by

(52) P ∗(t) =
D(t)

r + αD

+ CG · Ḡ(t)

(r + αD)(r + αG)
.

With one important exception, this formula is similar to the Gordon’s growth
model formula in equation (2) in the first example, equation (6) in the second
example, and equation (24) in the model above.
The exception is the endogenously determined coefficient CG, which is equal to

one in Gordon’s growth formula but is not equal to one in equation (52). Based
on numerical calculations, Kyle, Obizhaeva and Wang (2013) find that constant
CG is always less than one; this “dampening effect” makes the market price less
sensitive to changes in the average growth rate forecasts’ of investors than if the
average expected growth rate were plugged into Gordon’s growth formula. The
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intuition for the dampening effect is as follows. Each trader is trading against the
others, planning to unwind positions in the future when other traders discover that
their information was incorrect. As the degree of disagreement is reduced to the

level barely large enough to sustain trading, i.e., τ
1/2
H /τ

1/2
L converges from above

to 2 + 2/(N − 2), market depth decreases, trading opportunities shrink, trading
volume decreases, and CG converges to one.
In the next section, we examine whether there exists a set of beliefs about model

parameters, attributable to a hypothetical representative agent, such that the mar-
ket price in equation (52) is consistent with these beliefs in the sense that the
expected return under the representative agent’s beliefs is always equal to the
risk-free rate.

Incorrect Beliefs of Representative Agent as Result of Information
Aggregation

The representative agent’s beliefs about parameter values are different from
traders’ beliefs in a non-trivial way.
Common-sense intuition suggests that if all traders in the market agree about

the value of a parameter such as αG or σG (and this value is common knowledge),
then the representative agent will have the same beliefs about this parameter.
Common-sense intuition also suggests that if agents disagree about the value of a
parameter, then the representative agent’s belief about this parameter will be equal
to some appropriate weighted average across traders. For example, this intuition,
combined with the symmetry of the equilibrium, suggests that the representative
agent will assign to each trader’s signal the same precision, equal to some weighted
average of precisions τH and τL.
The next theorem shows, however, that beliefs of the representative agent may

differ from the beliefs suggested by reasonable common-sense intuition. It can
therefore be misleading, even incorrect, to impute the beliefs of the representative
agent to traders in a market. Specific interactions among individual traders in a
dynamic game-theoretic context can make their average beliefs quite different from
the beliefs of a representative agent consistent with equilibrium prices.

THEOREM 1: For any sets of parameters in the smooth trading model, the in-
formation aggregation by imperfectly competitive strategic overconfident traders is
consistent with the information processing by the representative agent. The beliefs
of the representative agent are defined by the three parameters: growth-rate persis-
tency ᾰG > αG, growth-rate volatility σ̆G, and the same precision τ̆I that he assigns
to each of N signals,

τ̆I = τp ·
CG · (r + αG + τ)

r + αG + CG · (τ0 +N · τp)
,

ᾰG = αG +
r + αG

r + αG + CG · (τ0 +N · τp)
· (τ − CG · (τ0 +N · τp)),
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σ̆G = σG ·
[ CG · (r + αG + τ)

r + αG + CG · (τ0 +N · τp)
·
(
1 +

ᾰG − αG

2 · αG + τ

)]1/2
,

where τ
1/2
p := (τ

1/2
H + (N − 1)τ

1/2
L )/N and a constant CG ≤ 1. The representative

agent agrees with traders on the other parameters αD, σD, r, ρ, and A.

Proof. The outline of the proof is as follows. At any point of time, the represen-
tative agent would need to have beliefs such that the equilibrium price

(53) P (t) =
D(t)

r + αD

+CG · σG · Ω1/2

(r + αD)(r + αG)
·
(
τ
1/2
0 ·H0(t) + τ 1/2p ·

∑
n=1,..N

Hn(t)
)

coincides with his estimate of the fundamental value

(54) F̆ (t) =
D(t)

r + αD

+
σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)
·
(
τ̆
1/2
0 · H̆0(t) + τ̆

1/2
I ·

∑
n=1,..N

H̆n(t)
)
.

The fundamental value F̆ (t) is the version of Gordon’s formula given the estimate
Ğ(t) of a growth rate in equation (23).
First, the history of signals H̆n(t) in equation (20) has to coincide with the history

of signals Hn(t) in equation (48). This implies the following restriction:

ᾰG + τ̆ = αG + τ.

Second, the coefficients of random variables in the two equations (53) and (54)
have to match. This leads to the other two restrictions:

CG · σG · Ω1/2

(r + αD)(r + αG)
· τ 1/20 =

σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)
· τ̆ 1/20 ,

CG · σG · Ω1/2

(r + αD)(r + αG)
· τ 1/2p =

σ̆G · Ω̆1/2

(r + αD)(r + ᾰG)
· τ̆ 1/2I .

The definition of τ̆0 and equation (19) yield the last restriction,

σ̆G = σD · τ̆ 1/20 · (2 · ᾰG + τ̆)1/2.

The solution of the system is the set of three parameters ᾰG, σ̆G, and τ̆I describ-
ing beliefs of the representative agent and stated in the theorem as well as the
expression for τ̆0:

τ̆0 = τ0 ·
CG · (r + αG + τ)

r + αG + CG · (τ0 +N · τp)
.

Since N · τp < τH + (N − 1)τL, we have ᾰG > αG.

The theorem implies that the imputed beliefs of the representative agent will
usually be quite different from the typical beliefs of traders in the model. Even
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for his beliefs about parameters αG and σG concerning which the consensus among
traders exists, researchers may need to assign values different from the consensus
ones.
The beliefs of the representative agent will need to be complicated. The mean

reversion parameter ᾰG of the representative agent has to be larger than the mean
reversion parameter αG of the market. The volatility parameter σ̆G of the repre-
sentative agent can be either higher or lower than the market’s dividend growth
volatility σG, depending on particular parameters. Guessing those beliefs would
be impossible without solving the model.
This result has a simple intuition. In the dynamic model, the beliefs about

precisions play two roles. First, beliefs determine the weights with which the
representative agent aggregates incoming information into his current estimate
of a growth rate in equation (31); these weights are proportional to the square
roots of precisions. Second, beliefs determine the speed with which he thinks his
signal deteriorates; this speed is proportional to precisions themselves. In other
words, the precisions determine price resilience and the square roots of precisions
determine price volatility; both have to match for the representative agent to exist.
If ᾰG = αG and σ̆G = σG, there are no symmetric beliefs that can simultaneously
match both current price level and its dynamics.

Returns Dynamics in the Smooth Trading Model.

We discuss next the returns dynamics in the context of the smooth trading
model. Actual expected returns are generally different from the risk free rate. The
distribution of returns depend on both the parameters traders use and the true
parameters.
Suppose the economist believes that the true parameters have values different

from parameters assigned by traders in the smooth trading model. Let α̂G, σ̂G,
and τ̂I denote the true parameter values used by the economist. By analogy with
equation (31), the economist constructs his signal Ĥ(t) as

(55) Ĥ(t) = τ̂
1/2
0 · Ĥ0(t) + τ̂

1/2
I ·

N∑
n=1

Ĥn(t).

To derive returns dynamics, we use a shortcut.
First, we construct returns for the representative agent for the smooth trading

model. The representative agent extracts the signal H̆(t) from information flow.
We get that signal by plugging the beliefs ᾰG, σ̆G, and τ̆I from Theorem 1 into
equation (22) and then taking into account that the representative agent’s signals
H̆n(t) by definition have to coincide with trader’s signals Hn(t) for n = 0, ..N .
Thus, the signal H̆(t) is given by

(56) H̆(t) = τ̆
1/2
0 ·H0(t) + τ̆

1/2
I ·

N∑
n=1

Hn(t).
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Second, we use the insights from section II on how to derive returns dynamics in
the model where a single investor processes all information and incorporates it into
prices. Replacing this single investor with the constructed representative agent, we
use equation (34) to derive the actual dynamics of the returns process. Thus, the
expected returns are given by

(57) Êt

{
dP (t) +D(t) · dt

dt

}
= r · P (t) + ă · H̆(t) + b̆ · Ĥ(t).

where parameters ă and b̆ are defined in equations (35) and (36). The variables
H̆(t) and Ĥ(t) are sufficient statistics for describing the returns process, calculated
by the representative agent and the economist, respectively.
Third, it is convenient to replace “breve”-variables related to the representa-

tive agent with the original parameters assigned by traders in the smooth trading
model. Define the aggregate weighted average signal H(t) of traders as

(58) H(t) = τ
1/2
0 ·H0(t) + τ 1/2p ·

N∑
n=1

Hn(t).

The expected return is a linear combination of the average signal H(t) of traders
and the signal Ĥ(t) of economist. Both signals summarize information available
up to time t but put different weights on the past information. The signal H̆(t) of
the representative agent in equation (57) can therefore be replaced by the average
signal H(t) of traders. Thus, the expected returns are given by

(59) Êt

{
dP (t) +D(t) · dt

dt

}
= r · P (t) + a ·H(t) + b · Ĥ(t),

where the coefficients a and b are defined in terms of parameters in the model as

(60) a := − σG · CG · Ω1/2

(r + αD)(r + αG)
· (αG + r + τ),

(61) b :=
σ̂G · Ω̂1/2

r + αD

+
σG · CG · Ω1/2

(r + αD)(r + αG)
· (τ 1/20 τ̂

1/2
0 + τ 1/2p ·N · τ̂ 1/2I ).

This equation is a generalization of equation (3) in the first motivating example,
equation (7) in the second motivating example, and equation (34) in the dynamic
model. It implies a complicated path-dependent and auto-correlated returns pro-
cess.
As before, expected returns are equal to the risk-free rate r · P (t) only if the

beliefs of the representative agent happen to coincide with the true beliefs. As
Theorem 1 suggests, however, the beliefs of the representative agent are usually
different from typical beliefs of traders in the smooth trading model and thus most
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likely they are different from the true beliefs. Unexpected excess returns thus are
time varying, depending in a complicated manner on the entire history of past
signals.
The variables H(t) and Ĥ(t) are ultimately related to the history of dividends

and prices. The next theorem states the returns dynamics explicitly in terms of
the history of observable market data.

THEOREM 2: In the smooth trading model, the economist with true beliefs as-
signs precision τ̂0 to public information, τ̂I to each of N sources of private in-
formation; the total true precision is τ̂ = τ̂0 +N · τ̂I , whereas the total precision
according to beliefs of traders is τ = τ0 + τH + (N − 1) · τL. Thus, equilibrium re-
turns dynamics can be expressed as a linear combination of past dividends and
prices:

dP (t) +D(t) · dt = r · P (t) · dt+ α1 ·
(
P (t)− D(t)

r + αD

)
· dt

+α2 ·
[ ∫ t

u=−∞

(
P (u)− D(u)

r + αD

)
· e−(α̂G+τ̂)(t−u) · du

]
· dt

(62) +α3 ·
[ ∫ t

u=−∞
e−(α̂G+τ̂)·(t−u) · dI0(u)

]
· dt+ dB̂∗

r (t),

where constants α1, α2, and α3 are defined by

α1 := (a+ b · τ̂ 1/2I /τ 1/2p ) · (r + αD) · (r + αG)/(CG · σG · Ω1/2),

α2 := b · τ̂ 1/2I /τ 1/2p · (αG + τ − α̂G − τ̂) · (r + αD) · (r + αG)/(CG · σG · Ω1/2),

α3 := b · (τ̂ 1/20 − τ̂
1/2
I · τ 1/20 /τ 1/2p ).

Parameters a and b are defined in equations (60) and (61).

The formula has a simple intuition. First, investors obtain the unconditional
expected return of r · P (t). Second, investors obtain unexpected excess returns
linearly related to the deviation of the current price P (t) from the unconditional
level D/(r + αD). Third, investors obtain unexpected excess returns linearly re-
lated to the deviations of prices from their unconditional expected value and the
dividends surprises dI0 in the past. The importance of each past component decays
exponentially at a rate α̂G + τ̂ .
The specification suggests that it is the entire history of the dividend-to-price

ratios and dividends—rather than only their current values—that may need to
be included as explanatory variables into the return-forecast regressions such as
in Campbell and Shiller (1988) and Cochrane (2008). Similarly to Campbell and
Kyle (1993), our structural model implies economic restrictions of the parameters
describing that relationship.
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REMARK 1: When traders have correct beliefs about the mean reversion rate αG

and total precision τ , i.e., αG+τ = α̂G+ τ̂ , then α2 = 0, which implies that returns
depend only on the current deviation of the price from its unconditional mean and
the history of dividends surprises.

REMARK 2: Suppose α̂G = αG and σ̂G = σG. When economist and traders agree
on the total precision, τ̂ = τ , then α1 > 0, α2 = 0, and α3 < 0.

These inequalities can be proved by noticing that Ω̂ = Ω and τ̂0 = τ0 and then
showing τ̂I > τp. This implies that prices above (below) their unconditional levels
predict high (low) returns in the short run. At the same time, positive (negative)
surprises about dividends predict negative (positive) returns in the short run.

The Term Structure of Returns in Dynamic Smooth Trading Model.

In this section, we derive the term structure of returns under the beliefs of an
economist who assigns precision τ̂0 to the public signal and precision τ̂I to each
private signal; the total precision is τ̂ = τ̂0 +N · τ̂I . The traders and the economist
generally have different forecasts of expected returns.
Let R(t, t + T ) denote the cumulative holding period mark-to-market cash flow

per share on a fully levered investment into the risky asset from time t to time
t+ T .

(63) R(t, t+ T ) =

∫ t+T

u=t

(dP (u) +D(u) · du− r · P (u) · du) .

From equation (59), we get

(64) R(t, t+ T ) =

∫ t+T

u=t

(
a ·H(u) + b · Ĥ(u)

)
· du+

∫ t+T

u=t

dB̂∗
r (u).

The term structure of returns R(t, t + T ) at time t can be further simplified
to a linear combination of the average signal H(t) of traders and the signal Ĥ(t)
extracted from prices and dividends by the economist. Using the definitions of
H(t) and Ĥ(t) in equations (58) and (55) as well as equations (29), (30), (32), and
(33), we can write a continuous 2-vector stochastic process y(t) = [H(t), Ĥ(t)]′ as
satisfying the following linear stochastic differential equation:

(65) dy(t) = K · y(t) · dt+ C · dZ(t).

where K is a 2× 2 matrix and C is a 2× 2 matrix:

K =

(
−αG − τ τ

1/2
0 · τ̂ 1/20 +N · τ̂ 1/2I · τ 1/2p

0 −α̂G

)
.

C =

(
τ
1/2
0 N · τ 1/2p

τ̂
1/2
0 N · τ̂ 1/2I

)
.
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From the perspective of the economist, the vector dZ(t) = [dB∗
0(t), dB̄

∗(t)]′ is
a 2 × 1-dimensional Brownian motion, where dB∗

0(t) is a Brownian motion with
variance of one defined in equation (40) and dB̄∗(t) is a Brownian motion with
variance 1/N defined in equation (39).
Using results about linear continuous-time stochastic processes, we can represent

the process y(t) = [H(t), Ĥ(t)]′ in an integral form as

(66) y(s) = eK·(s−t) · y(t) +
∫ s

u=t

eK·(s−u) · C · dZ(u).

It can be also shown that the exponential 2× 2 matrix eK·t is given by

eK·t =

(
e−(αG+τ)·t τ

1/2
0 ·τ̂1/20 +N ·τ̂1/2I ·τ1/2p

τ+αG−α̂G
· (e−α̂G·t − e−(αG+τ)·t)

0 e−α̂G·t

)
.

Plugging eK·t back into equation (66), we obtain recursive formulas for the stochas-
tic vector y(s) = [H(s), Ĥ(s)]′ as a function of y(t) = [H(t), Ĥ(t)]′. Using this re-
sult, we can express the term structure of returns as a linear function of the vector
y(t).

THEOREM 3: The term structure of expected returns can be represented as a lin-
ear combination of the average traders’ sufficient statistics H(t) and the economist’s
sufficient statistics Ĥ(t), inferred from past prices and dividends:

(67) R(t, t+ T ) = β1(T ) ·H(t) + β2(T ) · Ĥ(t) + B̄(t, t+ T ),

where time-varying coefficients β1(T ) and β2(T ) are defined as

β1(T ) =
a

αG + τ

(
1− e−(αG+τ)T

)
β2(T ) = b·1− e−α̂GT

α̂G

+a·τ
1/2
0 τ̂

1/2
0 +Nτ̂

1/2
I τ

1/2
p

α̂G · (αG + τ)
·
(
1+

α̂Ge
−(αG+τ)T − (αG + τ)e−α̂GT

τ + αG − α̂G

)
.

A random variable B̄(t, t+ T ) :=
∫ t+T

s=t

∫ t+T

u=s
[a, b]eK(u−s)Cdu · dZ(s) +

∫ t+T

s=t
dB̂∗

r (s)
and constants a and b are defined in equations (60) and (61).

Several forces define the term structure of returns. The term structure depends
on the beliefs of traders represented by H(t) and the beliefs of the economist
represented by Ĥ(t). The beliefs of traders anchor current prices; the beliefs of the
economist anchor long-run fundamentals.
Prices tend to exhibit momentum due to the dampening effects on prices from

the endogenous Keynsian beauty contest among traders. When the economist and
traders disagree about the true parameters of the model, however, a wider range
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of patterns may arise. Some of those patterns are consistent with the empirical
evidence, i.e., the momentum in the short run and the mean-reversion in the long
run. We illustrate those patterns with several numerical examples.

We consider several combinations of H(t) and Ĥ(t). The unconditional means
of H(t) and Ĥ(t) are zero. In order to generate the term structure of returns
graphically for different cases of H(t) and Ĥ(t), we first derive the steady-state
unconditional variance-covariance matrix Q = ((q11, q12), (q12, q22)) of vector y(t).
It can be shown that

(68) q11 =
τ0 +N · τp
2(αG + τ)

+
(2α̂G + τ̂) · (τ 1/20 τ̂

1/2
0 +N · τ̂ 1/2I · τ 1/2p )2

2α̂G · (αG + α̂G + τ) · (αG + τ)
,

q12 =
(2α̂G + τ̂) · (τ 1/20 · τ̂ 1/20 +N · τ̂ 1/2I · τ 1/2p )

2α̂G · (αG + τ + α̂G)
,

q22 =
τ̂

2α̂G

.

The distribution of Ĥ(t) conditional on H(t) is described by the first two moments

E{Ĥ(t)|H(t)} = q12/q11 ·H(t), V ar{Ĥ(t)|H(t)} = q22 − q212/q11.

To be in a line with economically relevant ranges, we consider a one-standard

deviation event H(t) = q
1/2
11 and k-standard deviation events Ĥ(t) conditional on

H(t),

Ĥ(t) = q12/q11 ·H(t) + k · (q22 − q212/q11)
1/2, k = −2,−1, 0, 1, 2,

where q11, q12 and q22 defined in equation (68). Since the patterns for negative
H(t) are symmetric to the patterns for positive H(t), we only focus on cases with
positive H(t).
Figure 1 illustrates the case when both the economist and traders agree on the

total precision of information flow, τ̂ = τ . They also agree on the parameters of
the model, α̂G = αG and σ̂G = σG. The parameters are r = 0.01, A = 1, αD = 0.1,
αG = 0.2, σD = 0.5, σG = 0.1, τ̂0 = τ0 = 0.016, τL = 0.016, τH = 0.16, and N = 100;
this implies τ̂ = τ = 1.9 assuming Ĥ(t) coincides with H(t) in this case, both are
assumed to be equal to one-standard deviation away from the mean, i.e., Ĥ(t) =

H(t) = q
1/2
11 . The figure depicts the cumulative returns R(t, t + T ) for different

horizons T .
The upward sloping term structure indicates the momentum in returns. It is

explained by the dampening effect of the Keynsian beauty contest. The cumulative
returns increase monotonically and level up, as the profit opportunities disappear
with time.
Figure 2 illustrates the case when traders and the economist agree on the param-

eters of the model, α̂G = αG and σ̂G = σG, but disagree about the total precision
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Figure 1. The term structure of return when τ = τ̂ , α̂G = αG, and σ̂G = σG.

in the information flow. Traders are absolutely overconfident and τ > τ̂ . The pa-
rameters are the same as before, except τ̂ = 1.3 and τ = 1.9. The left subplot and
the right subplot depict the term structure for the case when H(t) is one-standard

deviation from its unconditional mean, i.e., H(t) = q
1/2
11 and the case when H(t)

is two-standard deviation from its unconditional mean, i.e., H(t) = 2 · q1/211 , re-
spectively. Several deviations of conditional distribution of Ĥ(t) are considered for
both cases. In each subplot, Ĥ(t) is k-standard deviation away from its conditional
mean, from above to bottom k = 2, 1, 0,−1, and −2.
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Figure 2. The term structure of return when τ > τ̂ , α̂G = αG, and σ̂G = σG for

different H(t) and Ĥ(t).

The figures imply that the momentum effect continues to be dominating. The
only exception are the cases when signals of the economist are low relative to the
signal of traders as inferred from the price. The returns then exhibit a slight mean-
reversion in the short run before the momentum effects start dominating in the
long run.
Figure 3 illustrates a more general case when the economist and traders dis-

agree about the total precision of information and also parameters of the model.
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The term structure then depends on the particular assumptions about the mean-
reversion rate α̂G and the volatility σ̂G. We assume τ = 1.9 > τ̂ = 1.3. We
also assumed α̂G = 0.3 > αG = 0.2 and σ̂G = 0.08 < σG = 0.10 in Case (a), and
α̂G = 1 > αG = 0.2 and σ̂G = 0.5 > σG = 0.1 in Case (b). As in Figure 2, the left
subplot and the right subplot depict the term structure for the case when H(t)
is one-standard deviation and two-standard deviation away from its unconditional
mean, respectively. In each subplot, Ĥ(t) is k-standard deviation away from its
conditional mean, from above to bottom k = 2, 1, 0,−1, and −2.
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Figure 3. The term structure of return when τ > τ̂ , α̂G ̸= αG, and σ̂G ̸= σG for

different H(t) and Ĥ(t).

The figure depicts more realistic patterns. When the economist has a more
bullish signal relative to traders, the price exhibits momentum in the short run
and mean-reversion in the long run.
In general, the term structure of returns exhibits different patterns depending

on the parameters. It can be shown that the graph always starts from zero and
converges to a constant as the horizon increases. It can be also proved that the
derivative of R(t, t + T ) with respect to T does not change its sign more than
once. There are therefore four possible patterns: only momentum, only mean-
reversion, first mean-reversion and then momentum, first momentum and then
mean-reversion. It is interesting to think about reasonable values of parameters
and examine whether a calibrated model can generate empirically realistic patterns
of expected returns.

Excess Volatility in Dynamic Smooth Trading Model.

Our model makes it possible to illustrate some issues concerning the the concept
of excess volatility, which is often associated with the concept of market efficiency.
The idea that prices are equal to discounted expected cash flows implies that the
efficient prices have to satisfy some model-free variance-bound tests. The literature
on these tests started with the work of Shiller (1979), LeRoy and Porter (1981),
and Shiller (1981).
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As discussed by LeRoy (1989), volatility tests are based on the idea that prices
are equal to the expected value of the sum of discounted dividends,

(69) P (t) = Êt

{
∞∑
j=1

ρj ·D(t+ j)

}
.

Given that V ar(E(x̃|ỹ)) < V ar(x̃) for any random variables x̃ and ỹ, prices should
satisfy the following variance-bounds test:

(70) ˆV ar{P} = ˆV ar

{
Êt{

∞∑
j=1

ρj ·D(t+ j)}

}
≤ ˆV ar

{
∞∑
j=1

ρj ·D(t+ j)

}
.

In efficient markets, prices are supposed to be less volatile than the ex-post realized
present values that they should forecast, regardless of information on which traders
condition their expectations.
Empirically, however, volatility of asset prices appear to systematically exceed

volatility of fundamentals and the market prices appear to be inconsistent with
variance-bounds restrictions. Thus, as Shiller (1981) suggests, the market is inef-
ficient and may be even irrational.
Our model illustrates why the connection between market efficiency and excessive

volatility is subtle in models with heterogeneous investors. The equilibrium price is
formed on the basis of the estimates of market participants of the risky asset’s value,
a common value in the model. The price depends on the average of expectations
of traders,

(71) P (t) =
1

N

N∑
n=1

En
t

{
∞∑
j=1

ρj ·D(t+ j)

}
̸= Êt

{
∞∑
j=1

ρj ·D(t+ j)

}
,

where En
t {. . .} is the expectation of trader n. The average of expectations is usually

not equal the true expectation. Moreover, according to the economist who analyzes
the market, traders’ estimates are correlated with each other. These problems make
the argument underlying variance-bound tests somewhat misleading, because it
does not properly take into account the averaging of traders’ expectations and
potentially non-zero covariances of those expectations.
More formally, the uncertainty term of the process dP (t) +D(t) · dt in equation

(62) is defined by analogy with equation (38). The term is given by

dB̂∗
r (t) :=

σG · CG · Ω1/2

(r + αD)(r + αG)

(
τ
1/2
0 · dB∗

0(t) + τ 1/2p ·N · dB̄∗(t)
)
+

σD

(r + αD)
·dB∗

0(t),

where dB∗
0(t) and dB̄∗(t) are as defined in (39) and (40).

The returns volatility depends only on what traders think about the precision of
signals, but not on the true beliefs of the economist. The instantaneous volatility
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of returns dP (t) +D(t) · dt is equal to

ˆV ar
{
dB̂∗

r (t)
}
=
[ σD

r + αD

+
σG · Ω1/2 · CG · τ 1/20

(r + αD)(r + αG)

]2
+

(σG · Ω1/2 · CG)
2 ·N · τp

(r + αD)2(r + αG)2
.

In rare cases when parameters are such that the representative agent turns out to
have true beliefs, the returns volatility coincides with the volatility of fundamentals
dF (t)+D(t) ·dt, where F (t) is defined by the Gordon’s growth formula but with no
dampening effect. It is more likely, however, that the beliefs of the representative
agent are different from the beliefs of economist. In this case, the relationship
between fundamental volatility and returns volatility becomes more complicated.
The interpretation of the empirical literature on excess returns volatility is even

less straightforward. Since it is impossible to calculate instantaneous volatility of
returns, researchers usually examine volatility of returns sampled at some frequen-
cies, for example, by looking at daily, monthly, or annual returns. The relationship
between these empirical estimates of volatility and fundamental volatility may be
even more complicated, because one would need to take into account a non-zero
drift term in equation (62). This illustrates why one has to exercise caution when
defining market efficiency as the concept related to excess volatility.

IV. Conclusion

Our framework provides a convenient operational laboratory for testing theories
about financial markets. We use the smooth trading model to lay out issues in-
volved, but the principles are more general. Also, in the model where everybody
disagrees with each other, it is more natural to think about economists arguing
about their theories as well. Any preferred theory of expected returns and potential
alternatives can be formulated by specifying particular sets of parameters of the
model. Each theory will then imply specific predictions about returns dynamics,
which can be formally tested against each other using available data.
The implied term structure usually exhibits complicated patterns of momentum

and mean-reversion. The calibration of the model and studying whether it may
generate quantitatively realistic patterns of the term structure is an interesting
issue for future research.
We have focused on developing tools for testing theories about returns. The

smooth trading model, however, allows us to extend analysis to other market vari-
ables. It is possible to generate predictions concerning sizes of positions as well as
turnover rates and then test alternatives using the data on institutional holdings
and trades.
The methods developed have applications beyond those considered in the pa-

per. The same framework can be used to derive predictions concerning the term
structures of expected volume and expected volatility, which received less atten-
tion in the literature. The proposed theories can then be judged based on their
predictions concerning jointly determined term structures of returns, volume, and
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volatility. This approach would provide an internally consistent structural bench-
mark for empirical studies of joint dynamics of those variables. It can also be used
for thinking about other anomalies such as excessive volatility, IPO underpricing,
and post earnings announcement drift.
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