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Abstract: 

 
The decentralized over-the-counter (OTC) market generates a trading network among dealers. In this paper, I model 

the driver behind the formation of this inter-dealer network (the selling network in particular) as the need for dealers 

to share risk. The trade-off between the benefit of risk-sharing and the funding cost of collateral determines the 

shape of the inter-dealer network. In equilibrium, dealers’ markups and trading volumes increase with the number of 

links they have to other dealers, whereas dealers’ inventory risks decrease as they form links. In addition, when 

capacity of providing liquidity differentiates dealers, the network formed exhibits the empirically observed core-

periphery structure. Specifically, dealers with large capacity comprise the core of the network, connecting them to 

all other dealers, while dealers who have small capacity operate at the periphery. My model matches recent 

empirical findings on the negative relationship between order sizes and markups. More importantly, I show that 

there may be structural breaks in this negative relationship as variations in order sizes may alter the inter-dealer 

network. These results suggest that empirical studies on OTC markets should control for the stability of an inter-

dealer network to avoid model misspecification. 
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 Introduction 1.

Over-the-counter (OTC) markets have grown exponentially in the last decade. As OTC markets 

grow, researchers have increasingly investigated the trading structure of these markets. Research 

interest is further stimulated by the recent financial crisis, which has brought attention to the 

OTC market for subprime mortgage derivatives. However, studies on OTC markets overlook an 

important element — inter-dealer trading. Since dealers act as intermediaries in OTC markets, 

inter-dealer trades should affect trades between dealers and other market participants, and hence 

affect the entire market. To provide new insights into how inter-dealer trades influence OTC 

trading, I study an important aspect of inter-dealer trades, the dealers’ trading network. 

Specifically, I ask several questions. How does such a network form? What determines a dealer’s 

position within the network? How does the network affect price determination in an OTC 

market? 

 To address these questions, I construct a theoretical model to study how dealers strategically 

form an inter-dealer network (the selling network in particular), and I then examine how such an 

inter-dealer network affects other aspects of an OTC market.2 In my model, OTC dealers form an 

inter-dealer network and trade through the network to share their inventory risks. The more links 

a dealer has, the more benefits the dealer obtains from risk-sharing. But the more links a dealer 

has, the greater are the costs he has to bear for maintaining his links. A major part of this linking 

cost comes from the funding constraint of collateral. For example, a seller in the CDS markets is 

usually required to post collateral as a protection in case he fails to deliver his commitment.3 

                                                
2	I focus on the selling network because dealers are more likely to be net sellers in OTC derivative markets. 
Empirical research by Peltonen, Scheicher, and Vuillemey (2014) shows that dealers are net sellers in the CDS 
markets. 
3	Duffie, Scheicher, and Vuillemey (2014) provide detail discussion on collateral requirements in the CDS markets. 



 

2 

Preparing collateral could be costly because of funding liquidity. A dealer with many links faces 

a larger linking cost, as he has to prepare a larger collateral pool in the event of selling in the 

inter-dealer market.  

 The trade-off between the benefit of risk-sharing and the funding cost of collateral determine 

the shape of the inter-dealer network. At one extreme, when the collateral cost is trivial 

compared with the risk-sharing benefit, the inter-dealer network is a complete network. In a 

complete network, all dealers are connected. At the other extreme, when the collateral cost is 

overwhelming, the inter-dealer network is an empty network, one in which no dealer is 

connected with any other dealer. Between these two extremes, inter-dealer networks can exhibit 

connectedness to varying degrees depending on the risk-sharing benefit and the collateral cost. 

 Inter-dealer networks affect OTC trading insofar as the number of links a dealer has 

influences his markup (the difference between the price for which a dealer buys a security and 

the price at which he sells it), trading volume, and inventory risk. In a more connected network, a 

dealer has more links, which leads to a higher markup, higher volume, and lower inventory risk. 

In such a network, having more links gives a dealer greater market power in the inter-dealer 

market, which enables the dealer to sell at a higher price to other dealers. Since a markup is 

proportional to its corresponding inter-dealer price, this highly connected dealer charges a higher 

markup. Having more links also provides a dealer with more opportunities to trade in the inter-

dealer market. As a result, the dealer completes more trades and manages his inventory risk more 

effectively. 

 My model resonates with recent empirical studies which show that inter-dealer networks 

have a significant influence on OTC trading. Hollifield, Neklyudov, and Spatt (2012) study the 

inter-dealer network of securitization markets (e.g., asset-backed securities, collateral debt 
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obligations, commercial mortgage-backed securities, and collateral mortgage obligations) and Li 

and Schürhoff (2012) study the inter-dealer network operating in the municipal bond markets. 

Both studies document that the structure of the inter-dealer network correlates with dealers’ 

markups in OTC trading. Moreover, they show that inter-dealer networks across OTC markets 

exhibit structural similarity in spite of trading distinct classes of assets. This common structure is 

the core-periphery structure. That is, some dealers are closer to the center of a network than 

others.  

 In the abovementioned empirical studies, inter-dealer networks are treated as exogenously 

determined. This limits the capacity of the analyses to explain why inter-dealer networks form 

the observed core-periphery structure, and how the core-periphery network is related to prices in 

OTC trading. In principle, inter-dealer networks should be jointly determined with prices and 

trading volumes in equilibrium, since these are outcomes based on dealers’ decisions. This 

suggests that theoretical models are needed to explain the formation of inter-dealer networks. 

More importantly, such theoretical models should generate new empirical implications by 

treating inter-dealer networks as endogenously determined rather than exogenously determined 

as in past empirical studies. The theoretical model I construct in this paper satisfies these 

conditions. 

 Using differences in dealers’ capacity of providing liquidity, my model explains the core-

periphery feature of an inter-dealer network. Large-capacity dealers who can accommodate large 

orders comprise the core, while small-capacity dealers who only accommodate small orders 

become the periphery. This gives a novel testable empirical prediction regarding a dealer’s 

location in a network: a dealer’s capacity of liquidity provision positively determines his 

centrality (a measure that captures how central a dealer is in a network).  
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 In addition, I show that the unconditional relationship between investors’ trading prices and 

dealers’ centrality is ambiguous. Dealers with high centrality do not necessarily offer better 

prices to investors than dealers with low centrality. However, this relationship is determined 

when it is conditioned on the size of the investor order. On orders with the same size, high-

centrality dealers offer investors more favorable prices than low-centrality dealers. This 

conditional relationship between investors’ trading prices and dealers’ centrality is consistent 

with empirical findings in Hollifield, Neklyudov, and Spatt (2012). The above suggests that the 

order size is an important control variable in determining how centrality is related to investors’ 

trading prices. 

 Another novel empirical implication arising from my model involves potential structural 

breaks in the price-size and price-volatility relationships in OTC markets. Changes in order sizes 

or volatility can alter the fundamental structure of an economy, which in the setup of this work is 

the inter-dealer network. As a result, sudden structural jumps emerge in these relationships. 

Based on this result, I suggest that empirical studies examining OTC markets should control for 

the stability of an inter-dealer network in order to avoid model misspecification. Empirical 

research should, for example, include a measure of a network’s connectedness as an additional 

control variable interacting with other control variables in the regression model. 

 To the best of my knowledge, my study is the first to study strategic formation of an inter-

dealer network arising from dealers’ risk-sharing needs. My model not only confirms existing 

empirical findings, but also provides new empirical implications pertaining to OTC markets. 

Malamud and Rostek (2013) have also studied dealers who share risks through inter-dealer 

networks. While they focus on dealers’ strategic interactions in simultaneous trading on the 

network, I emphasize the formation process of the network. Although I model the rise of an inter-
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dealer network from a risk-sharing perspective, I do not rule out other possible forces that may 

generate such a network. For example, sharing information is a possible incentive for building a 

dealers’ network. 

 My study is also the first to apply the risk-sharing idea of the network formation literature to 

a specific type of financial market, the OTC market. This approach provides the advantage of 

identifying the relationship between agents’ payoffs and primitive parameters, e.g., order sizes 

and volatility, as the trading protocol and needs are concrete and specific. As a result, I can 

explore issues that have not yet received much attention. For example, I consider how order sizes 

and volatility contribute to determining a network as well as how they affect equilibrium 

outcomes such as prices and quantities traded through the network. 

 In the next section, I review the related literature. Section 3 presents the benchmark model 

and Section 4 analyses the equilibrium results. In Section 5, I extend the benchmark model to a 

case in which dealers’ capacity of providing liquidity varies and show the core-periphery 

network that emerges in equilibrium. Section 6 discusses the implications of the model for “hot 

potato” trading, which involves trades that occur between successive dealers. The empirical 

implications are summarized in Section 7. Finally, I conclude in Section 8. 

 Literature Review 2.

Inter-dealer trading has been an important subject in market microstructure studies for a long 

time. Ho and Stoll (1983) point out that inter-dealer trading benefits dealers, since dealers are 

better able to manage their inventory risks by trading among themselves instead of filling an 

investor order with uncertain arrival. Viswanathan and Wang (2004) show that inter-dealer 

trading also benefits investors. In their model, an investor prefers trading with one dealer and 

letting that dealer unwind his extra inventory later in the inter-dealer market rather than splitting 
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up the order and trading with multiple dealers. Thus, inter-dealer trading is beneficial to both 

dealers and investors. Both papers model the incentive for inter-dealer trading as the sharing of 

inventory risks. Based on this risk sharing idea, others build models to study issues such as price 

formation, information transmission, and transparency in multi-dealer markets (see Biais (1993), 

Lyons (1997), Naik, Neuberger, and Viswanathan (1999), de Frutos and Manzano (2002), Yin 

(2005), and Cao, Evans, and Lyons (2006)). Empirical evidence supports risk-sharing as the 

main driver behind inter-dealer trading. Reiss and Werner (1998) and Hansch, Naik, and 

Viswanathan (1998) find that dealers on the London Stock Exchange use the inter-dealer market 

primarily to share their inventory risks. In the foreign exchange market, Lyons (1995) finds that 

dealers control risk by systematically laying off inventory to other dealers.  

 Another thread of literature to which this work contributes, studies price determination in 

OTC markets. Duffie, Garleanu, and Pedersen (2005, 2007) study how search and bargaining 

determine prices in OTC markets.4 Spulber (1996), employing an alternative type of search 

model, shows that prices in decentralized markets (OTC markets) are determined by dealers’ 

transaction costs. 5  In addition, dealers’ transaction costs also affect OTC market structure. 

Atkeson, Eisfeldt, and Weill (2013) show that market entry costs help to determine the structure 

of OTC trading, and thereby prices charged in OTC trading. Past studies also show that dealers’ 

strategies influence price determination. For example, Zhu (2012) shows that repeated visits to 

the same dealer results in a less favorable price for the trader. Empirically, the price of an asset in 

OTC trading seems to depend on order sizes and transparency of the market environment. Green, 

                                                
4 Vayanos and Wang (2007), Vayanos and Weill (2008), and Weill (2008) extend the original model to study OTC 
markets with multiple assets. Lagos and Rocheteau (2009) relax the assumption on constraint asset holdings in the 
original model, which enables market participants to accommodate trading frictions by adjusting their asset 
positions. 
5 This type of search model also receives extended treatment in the literature. Rust and Hall (2003) extend the 
original model by introducing a centralized market to compete with decentralized markets. Zhong (2013) 
incorporates Knightian uncertainty into the search process to study the impact of transparency on OTC markets. 
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Hollifield, and Schürhoff (2007) find that a dealer earns smaller markups on larger trades in 

municipal bond markets. This negative relationship between order sizes and markups is also 

found in corporate bond markets by Schultz (2001) and Randall (2013). Bessembinder, Maxwell, 

and Venkataraman (2006), Goldstein, Hotchkiss, and Sirri (2007), and Edwards, Harris, and 

Piwowar (2007) estimate the bid-ask spread in the OTC market for corporate bonds, finding that 

more transparent bonds have smaller bid-ask spreads. Recently, new empirical studies (Li and 

Schürhoff (2012) and Hollifield, Neklyudov, and Spatt (2012)) have discovered a new factor that 

affects prices in OTC markets, namely the inter-dealer network. 

 Finally, my study adds to the growing literature on network studies in financial markets. 

Compared with the rich applications of network theory that have been made to other areas in 

economics, the application of network theory to financial markets has only just begun.6 Blume et 

al. (2009) and Gale and Kariv (2007) study how a network intermediates trades in a 

decentralized market. Gofman (2011) assesses the efficiency of resource allocation through the 

trading network in an OTC market. Malamud and Rostek (2013) develop a general framework 

for studying dealers’ strategic interactions in decentralized markets. The decentralized market in 

their model is represented by a hypergraph (an abstract network, loosely speaking). Breton and 

Vuillemey (2014) perform a numerical analysis on the network of credit exposures in OTC 

derivative markets to examine impacts from different regulatory collateral and clearing 

requirements. Many past studies also focus on information acquisition from a network and its 

impact on financial markets. Han and Yang (2012) extend the rational expectation equilibrium 

model to study the information network in a financial market. Babus and Kondor (2012) study 

                                                
6  Economic research on networks has tapped into various fields, such as job hunting in labor economics, 
decentralized market trading in microeconomics, and international alliance and trading agreements in 
macroeconomics. Jackson (2008) and Easley and Kleinberg (2010) provide excellent surveys of network 
applications in economic research. 
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information transmission through inter-dealer networks in OTC markets by extending the model 

in Vives (2011) to games in networks. In addition to using network models to study OTC 

markets, others apply network models to the inter-bank market to analyze the contagion risk in 

the banking system (see Leitner (2005), Babus (2013), Blume et al. (2013), and Elliott, Golub, 

and Jackson (2013)). There is also a growing body of empirical studies that explore networks’ 

implications on a variety of topics ranging from return predictability to CEOs’ wages (see Cohen 

and Frazzini (2008), Cohen, Frazzini, and Malloy (2008), and Engelberg, Gao, and Parsons 

(2012)). 

 The Model 3.

3.1 The Environment 

Suppose there are ܰ ≥ 2 dealers in an OTC market. All dealers have the same mean-variance 

utility function over their wealth ܹ, and all dealers have the same risk-aversion parameter ߩ >

0. That is, 

 ܷ(ܹ) = (ܹ)ܧ −
ߩ
ݎ2ܸܽ

(ܹ). (1) 

The initial endowment, consisting of a portfolio of ݉ units of a risk-free asset and ܫ units of a 

risky asset, is identical for all dealers. In this initial endowment, the risk-free asset has a constant 

value of 1, while the risky asset has a random value ݒ following a normal distribution ࡺ(̅ߪ,ݒଶ).  
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Figure 1: The Timeline 

 Figure 1 illustrates the timeline within the model. The timeline goes as follows. At date 0, 

dealers strategically form an inter-dealer network by building or severing links between each 

other. At date 1, an investor arrives and wants to trade an order of size ݖ. Only one dealer in the 

network meets this investor, with a probability of meeting of  ଵ
ே

, which is the matching rate. 

Assuming that the matching rate is  ଵ
ே

  implies that the arriving investor meets and trades with a 

dealer with probability one. The price of the investor-dealer transaction is ଵ . At date 2, the 

dealer who fills the investor’s order at date 1 re-trades with other dealers to adjust his inventory 

risk. However, this order-filling dealer can trade only with those dealers who are connected to 

him. In this inter-dealer trade, the order-filling dealer solicits bids from his connected dealers, 

and then chooses the price that clears the market. To differentiate that price from the investor-

dealer price ଵ, I denote the price in the inter-dealer market as ଶ. Finally, at date 3, the value of 

the risky asset is realized. In Section 6, I extend the model to consider multiple rounds of inter-

dealer trading before the value of the asset is realized. By doing so, I am able to generate 

Date 0:
Dealers form an 
inter-dealer 
network.

Date 1: 
An investor 
arrives and sells z 
shares to one 
randomly drawn 
dealer.

Date2: 
The order-filling 
dealer unloads 
extra inventory 
through the inter-
dealer network.

Date3: 
The asset's value 
is realized.
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implications on “hot potato” trading in inter-dealer markets. 

 I assume that the risk-aversion parameter, the initial endowment, the distribution of the risky 

asset’s value, the matching rate, and the cost of adding links are common knowledge to all 

dealers. Further, I assume that the arriving investor is a seller. Another interpretation of this 

assumption is that the order-filling dealer (at date 1) faces a positive order imbalance that he has 

to sell in the inter-dealer market to balance his inventory. An example of this assumption is the 

AIG, whose book consisting almost solely of sold protection before the crisis. 

 Since the equilibrium is solved by backward induction, I discuss the equilibrium at each date 

in a backward sequence in the following sections. 

3.2 The Inter-Dealer Trade at Date 2 

In an inter-dealer market, a given dealer is able to contact several other dealers to explore their 

interest in trading through inter-dealer brokers. Typically, a dealer who has filled an investor’s 

order solicits bids from other dealers. Then, as soon as the order-filling dealer receives quotes 

from interested dealers he chooses the price to clear the market. Past studies use search-theoretic 

models to capture such an inter-dealer trade (see Duffie, Garleanu, and Pedersen (2005, 2007) 

and Lagos and Rocheteau (2009)). Those studies postulate that an order-filling dealer 

sequentially searches for another dealer with whom to conduct a bilateral trade. Recently, 

empirical studies by Saunders, Srinivasan, and Walter (2002), Dunne, Hau, and Moore (2010), 

and Hendershott and Madhavan (2013) suggest that inter-dealer trading in OTC markets has 

become more like multilateral trading than bilateral trading. Services from inter-dealer brokers 

and the evolution of inter-dealer markets into limit-order book alike systems enable the order-

filling dealer to approach other dealers at the same time rather than searching sequentially among 

dealers. To capture this multilateral feature of inter-dealer trading, I model the inter-dealer trade 
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as an auction of shares, as in Viswanathan and Wang (2004).7 

 To reflect that an order-filling dealer trades only through his inter-dealer network, I modify 

the model in Viswanathan and Wang (2004) by restricting the order-filling dealer to soliciting 

bids only from his connected dealers. Specifically, if dealer ݅ fills the investor’s order at date 1, 

he then announces an auction at date 2 to all his connected dealers. In the auction, dealer ݅’s 

connected dealers submit their demand schedules, which are combinations of prices and 

quantities, to dealer ݅. After dealer ݅ collects those demand schedules, he chooses the price and 

quantity to clear the market.  

 Following Viswanathan and Wang (2004), in such an inter-dealer trade auction, dealer ݅’s 

equilibrium strategy is 

 
൝൭ܫ + ݖ − ܺ,ᇣᇧᇧᇤᇧᇧᇥ

quantity	supply
, ⏟ଶ
the	inter-dealer	price

൱ :ܺ, = ൫ݒ − ଶ ൯ߛ +
ܫ + ݖ
݊

ൡ, 
(2) 

where ܺ, is dealer ݅’s risky holding after the inter-dealer trade, ݊ is the number of links dealer 

݅ has, and ߛ = (݊ − 1) (݊ߪߩଶ)⁄ . Let dealer ݆ be a dealer who is linked to dealer ݅; dealer ݆’s 

equilibrium strategy is  

 
൝൭ ܺ,ต

quantity	demand
, ⏟ଶ
the	inter-dealer	price

൱ :ܺ, = ൫ݒ − ଶ ൯ߛ −
݊ − 1
݊

 ,ൡܫ
(3) 

where ܺ, is the quantity demanded by dealer ݆. The market-clearing condition, which requires 

that ܫ + ݖ − ܺ, = ∑ ܺ,
:	is	linked	with	 , indicates that the inter-dealer price is 

ଶ  = ݒ − ଶߪߩ ൬ܫ +
ݖ

݊ + 1൰. (4) 

                                                
7 The share auction is also called a uniform-price double auction. In such an auction, each player (the dealer in my 
model) bids for his residual supply and the market-clearing condition determines the price. This trading structure is 
used extensively in the literature to study the impact of strategic player interactions on asset prices (e.g., Kyle 
(1989), Vives (2011), and Malamud and Rostek (2013)). 
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 Viswanathan and Wang (2004) prove that the above strategies (Eq.(2), Eq.(3)) and price 

(Eq.(4)) constitute a unique linear equilibrium in the inter-dealer trade. In the linear equilibrium, 

dealer ݅’s risky holding after the inter-dealer trade is 

 ܺ, = ܫ +
ݖ2

݊ + 1, (5) 

and dealer ݆ receives  

 ܺ, =
݊ − 1
݊

ݖ
݊ + 1, (6) 

shares of the risky asset from the inter-dealer trade. Dealers who are not connected with dealer ݅ 

maintain their risky holdings as before. Eq.(6) indicates that the minimum number of links for 

ensuring that the inter-dealer trade occurs is two, since ݊ < 2 implies that ܺ, ≤ 0. In other 

words, if the order-filling dealer connects to only one other dealer, no inter-dealer trade occurs.  

 Both dealer ݅  and dealer ݆  benefit from the inter-dealer trade. For dealer ݅ , his welfare 

increases by  

 
ݑܧ ቀܹ൫ܺ,൯ቁ − ܫ)൫ܹݑܧ + ൯(ݖ =

ଶݖଶߪߩ

2
݊ − 1
݊ + 1 ≥ 0. 

(7) 

And for dealer ݆, his welfare increases by  

 
ݑܧ ቀܹ൫ܫ + ܺ,൯ቁ − ൯(ܫ)൫ܹݑܧ =

ଶݖଶߪߩ

2
݊ − 1

݊ଶ(݊ + 1)
≥ 0. 

(8) 

 These benefits become more prominent when the risk increases (that is, increases in ߩ,  ,ߪ

and ݖ), which reinforces the idea that the inter-dealer trade is a channel through which dealers 

share inventory risks. The benefit for dealer ݅ increases with the number of links he has, whereas 

the benefit for dealer ݆ decreases with the number of dealer ݅’s links. This reflects the fact that 

dealer ݅ uses his market power to extract more benefits from risk-sharing, since he can increase 
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his selling price by exerting his market power (see Eq.(4)). 

3.3 The Investor-Dealer Trade at Date 1 

In an OTC market, direct trades between investors are rare, since each investor has his unique 

needs. In most cases, investors trade with OTC dealers. Having said that, it should be noted that 

investors cannot trade with multiple OTC dealers simultaneously. The lack of a centralized venue 

where dealers and investors can post their quotes implies that investors and dealers must search 

their counterparties for trades in OTC markets.8 As a result, even though inter-dealer trades have 

evolved into multilateral trading, trades between investors and dealers remain bilateral.  

 Following precedent in the literature, I use a search-and-bargaining model to characterize the 

bilateral trading relationship between investors and dealers. To emphasize the influence of the 

inter-dealer network, I simplify the search problem. In particular, the probability that a dealer is 

matched with an incoming investor equals his matching rate  ଵ
ே

. The matching rate measures the 

intensity of a dealer’s search for an investor. 

 When an investor meets a dealer, they bargain over the price. Following Nash (1950), the 

price is the solution of the following bargaining problem  

 max
భ

൬ݑܧ ቀܹ൫ܺ,൯ቁ − ൯൰(ܫ)൫ܹݑܧ

ቀݖ൫ଵ ܯ− + ଶ൯ቁߪଵܯ

ଵି
 (9) 

where ݍ represents the dealer’s bargaining power and ܯ)ݖ  ଶ) is the investor’s reservationߪଵܯ−

value of holding the asset. Hence, ଵ ܯ− +  ଶ is the per unit utility gain for the investor ifߪଵܯ

he sells. The investor’s gains from the trade can arise from aspects such as the search cost, his 

information about the asset, his risk aversion, and so on.9 To ensure that the investor is willing to 

                                                
8 Although some inter-dealer markets have adopted limit-order book systems in which dealers can post their quotes, 
those systems are usually not accessible to investors. 
9 One can replace this reduced-form assumption by explicitly modeling the seller’s decision; e.g., a seller having a 
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sell, I assume that 0 < ܯ ଶߪଵܯ− < ݒ̅ − ଶߪߩ ቀܫ + ௭
ଶ
ቁ. 

 If there exists an inter-dealer trade at date 2, then the order-filling dealer’s gains from trade 

is ݑܧ ቀܹ൫ܺ,൯ቁ − ൯(ܫ)൫ܹݑܧ , which equals ଶ൫ݖ	 − ଵ ൯ ଶ .  is the inter-dealer price from 

Eq.(4). Hence, the solution to the bargaining problem involving an inter-dealer trade is  

ଵ  = (1− ଶ(ݍ + ܯ)ݍ  ଶ). (10)ߪଵܯ−

 Eq.(10) implies that the investor-dealer’s price, ଵ , is proportional to the inter-dealer’s price, 

ଶ . In other words, when dealer ݅ realizes that he can unload the extra inventory at a higher price 

in the inter-dealer market, he is more inclined to fill the investor’s order at a higher price. 

 If there is no inter-dealer trade at date 2, then the order-filling dealer’s final risky holding is 

ܫ + ܫ)൫ܹݑܧ This indicates that the order-filling dealer obtains .ݖ + ൯(ݖ −  ൯ in gains(ܫ)൫ܹݑܧ

from trade, which equals ݖ ቀ̅ݒ − ଶߪߩ ቀܫ + ௭
ଶ
ቁ − ଵቁ . Under this case, the solution of the 

bargaining problem is  

 
ଵ = (1− ݒቆ̅(ݍ − ଶߪߩ ቀܫ +

ݖ
2ቁቇ+ ܯ)ݍ  .(ଶߪଵܯ−

(11) 

 In all, 

ଵ  = (12) 

⎩
⎪
⎨

⎪
⎧(1− ݒ൭(ݍ − ଶߪߩ ൬ܫ +

ݖ
݊ + 1൰

൱ + ܯ)ݍ ,trading	inter-dealer	exists	there	ଶ),whenߪଵܯ−

(1− ݒቆ(ݍ − ଶߪߩ ቀܫ +
ݖ
2ቁቇ+ ܯ)ݍ ,(ଶߪଵܯ− when	there	is	no	inter-dealer	trading.

 

                                                                                                                                                       
liquidity shock maximizes his mean-variance preference. This setting does not change the result of the model, but it 
adds considerable complexity and introduces more parameters. 
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3.4 Network Formation at Date 0 

In Sections 3.2 and 3.3, I show that the inter-dealer price, the investor-dealer price, and trading 

volume of an inter-dealer trade depends on the equilibrium number of a dealer’s links. In this 

section, I show that the equilibrium network determines the equilibrium number of a dealer’s 

links. In particular, I demonstrate how the trade-off between the risk-sharing benefit and the 

funding cost of collateral determines the equilibrium network, and hence prices and trading 

volume in OTC trading. 

 At date 0, dealers strategically form and sever links with each other. For every link the 

dealer adds, he incurs larger linking costs. In reality, the predominant part of the linking cost 

comes from the funding cost of preparing collateral. Many OTC traded products are credit 

derivatives, which usually impose collateral requirements on the seller of the credit product. 

When a dealer adds more links to his network, he sells more in the inter-dealer market. (Recall 

that a dealer sells ܫ + ݖ − ܺ, = ݖ ቀ1− ଶ
ାଵ

ቁ in his inter-dealer trading.) This means the dealer 

has to arrange more collateral in the event of selling in the inter-dealer market. Since the 

preparation of extra collateral is costly, the dealer incurs larger funding cost on collateral when 

he increases his links (see Brunnermeier and Pedersen (2008) for more discussion on funding 

liquidity in trading).  

 The funding cost of collateral is  

 

Pr{sell	in	inter-dealer	trading} × ߪ ݖ
݊ − 1
݊ + 1

ᇩᇭᇪᇭᇫ
shares	sold

ᇣᇧᇧᇤᇧᇧᇥ
the	risk	of	shares	sold

× ݉. 

(13) 

Eq.(13) shows that the funding cost of collateral consists of three parts. The first part is the 

probability that collateral is needed in inter-dealer trading. That happens when the order-filling 
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dealer needs to sell parts of his investor order in the inter-dealer market, since only the seller 

needs to post collateral in OTC trading. The second part measures the risk of shares sold, which 

is the standard deviation of the value of shares sold. The last part, ݉, is an arbitrary multiplier 

capturing the funding constraint. The larger the ݉, the higher the funding cost. This constraint 

could relate to the margin requirement or the aggregate stress of obtaining funding. 

 The value of adding links to a dealer is his risk-sharing benefit from inter-dealer trading as 

shown in Eq.(7) and Eq.(8). With the benefit and the cost specified, I can solve for the 

equilibrium network at date 0. A natural approach to modeling network formation is defining a 

non-cooperative game among dealers, and such a non-cooperative game generates an equilibrium 

outcome as a graph. An equilibrium network is such a graph, consisting of a set of nodes and 

pairs of links that connect those nodes. Hence, the equilibrium network ܩ is written as (ࣨ,ℰ). 

ࣨ is the set of all dealers, i.e., ࣨ = {1, 2, 3, … ,ܰ}, and ℰ is the set of all links among those 

dealers, i.e., ℰ = {݆݅:	for	some	݅, ݆ ∈ ࣨ}. 

 Although it is appealing to study network formation within a game-theoretical framework, 

there are problems. There are, for example, various ways to specify such a game, such as the 

simultaneous link-announcement game in Myerson (1977) and the sequential link-announcement 

game in Aumann and Myerson (1988). In addition, as pointed out by Jackson and Wolinsky 

(1996), some standard game-theoretic equilibrium notions are not suitable for the study of 

network formation, since those notions do not reflect communication and coordination in the 

formation of networks. 

 To circumvent the abovementioned problems, network theorists study properties of networks 

that are of interest to them and can be satisfied in the equilibria of some network-formation 

games. In this spirit, I define an equilibrium inter-dealer network formed at date 0 using the 
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strong stability concept from Jackson and van den Nouweland (2005): 

Definition 1 

A network ܩ′ is obtainable from ܩ via deviation by ࣨ′ ⊂ ࣨ if 

i) ݆݅ ∈ ݆݅ and ′ܩ ∉ ,݅} implies ܩ ݆} ⊂ ࣨ′, and 

ii) ݆݅ ∈ ݆݅ and ܩ ∉ ,݅} implies ′ܩ ݆} ∩ࣨᇱ ≠ ∅. 

In the above, ݆݅ ∈ ݆݅ whereas ,ܩ means that ݅ and ݆ are linked in network ܩ ∉  ݅ means that ܩ

and ݆ are not linked in network ܩ. ࣨ is the set of all nodes and ࣨᇱ is the subset of nodes. 

 Definition 1 says that changes in a network can be made by a coalition ࣨ′ without the 

consent of any dealers outside of ࣨ′. Specifically, i) indicates that any new links that are built 

involve only dealers in ࣨ′; ii) indicates that at least one dealer involved in any deleted link is in 

ࣨ′. 

Definition 2 

Let ܷ(ܩ) be the payoff for dealer ݅ in network ܩ. Network ܩ is strongly stable if, for any 

ࣨ′ ⊂ ݅ via deviations by ࣨ′, and ܩ is obtainable from ′ܩ ,ࣨ ∈ ࣨ′ such that ܷ(ܩ′) > ܷ(ܩ), 

there exists ݆ ∈ ࣨ′ such that ܷ(ܩᇱ) < ܷ(ܩ). 

 Definition 2 states that one cannot find a coalitional deviation from a strongly stable 

network in which all relevant dealers are better off and with some are strictly better off. Strong 

stability requires that the network formed be coalition-proof. That is, a coalitional move from 

any subset of dealers cannot make all of them better off without hurting some dealers in this 

subset. 

 Requiring that a network exhibit strong stability imposes a requirement that is stricter than 

most other network stability requirements, since a strongly stable network makes tighter 

predictions due to coalitional considerations. Thus, strong stability is more robust than other 
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definitions of an equilibrium network. In addition, the concept of being coalition-proof, which is 

used for cases in which players can communicate before they play a game, is particularly 

applicable to describing the equilibrium of an inter-dealer network. In an inter-dealer market, 

communications among dealers are almost inevitable. 

 Another appealing feature of strong stability is that a strongly stable network is the outcome 

of a pure strategy Nash equilibrium from Myerson's (1977) simultaneous link-announcement 

game. More importantly, such a strongly stable network is the Pareto-efficient outcome of this 

simultaneous link-announcement game (see Jackson and van den Nouweland (2005) and Jackson 

(2008)). 

 To simplify the notation, let ݉∗ = ଶ
ఘఙ௭

 be the effective margin. Given a network ܩ, dealer ݅’s 

payoff ܷ(ܩ) is  

 

ܷ(ܩ) =
1
ܰ ൫ܹ(ܺ,)൯ݑܧ
ᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ

	fills	the	order

+ 
1
ݑܧܰ

൫ܹ(ܺ, + ൯(ܫ
:∈ீ

ᇩᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇫ
ᇲs	connected	dealer	fills	the	order

+ ቌ1 −
1
ܰ − 

1
ܰ

:∈ீ

ቍݑܧ൫ܹ(ܫ)൯
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ

neither		nor	his	connected	dealers	fill	the	order

−
1
ܰ ݖߪ

݊ − 1
݊ + 1݉

ᇩᇭᇭᇭᇪᇭᇭᇭᇫ
total	cost	of	links

 

(14) 

=

⎩
⎪
⎨

⎪
ଶݖଶߪߩ⎧

ܰ ൮(ݍ −݉∗)
݊ − 1

2(݊ + 1) + 
1
2

݊ − 1	

݊
ଶ൫ ݊ + 1൯

:∈ீ

ൣೕஹଶ൧൲ + ܷ, ݊ ≥ 1

ܷ, ݊ = 0

, 

where ݊ is the number of links dealer ݅ has in network ܩ, ൣೕஹଶ൧ is an indicator function that 
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takes 1 when ݊ ≥ 2 and 0 otherwise, and ܷ is the payoff when dealer ݅ has no link,  

 
ܷ =

ݒ)ݖݍ − ܫଶߪߩ − ܯ + (ଶߪଵܯ
ܰ + ൯(ܫ)൫ܹݑܧ −

ଶݖݍଶߪߩ

2ܰ . 
(15) 

 Since all dealers are identical ex-ante, a strongly stable network in equilibrium should be 

symmetric. That is, all dealers should obtain the same level of payoff. If not, then some dealers 

enjoy higher payoffs than others. In such cases, dealers with lower payoffs could deviate together 

with those connected to a higher payoff dealer to provide an improving deviation. Thus, the 

original network would not be strongly stable. Proposition 1 formalizes this intuition. 

Proposition 1 

Let a connected component be a sub-graph in which any two nodes are either directly 

connected or indirectly connected through a path consisting of several links. In a strongly stable 

network, all dealers in the same connected component, which has more than one connection, 

have the same number of connections. If such a strongly stable network consists of more than 

one connected component, then dealers in distinct components obtain identical payoffs. 

 The symmetry of a strongly stable network suggests that the total number of dealers, ܰ, 

affects the existence of such a network. For example, when ܰ is 6, symmetric networks are those 

in which every dealer has 2, 3, or 5 links. Any discontinuity between links in a symmetric 

network implies that no strongly stable network involving those links exists. In the above case, 

when ܰ is 6, there is no strongly stable network in which every dealer has 4 links. To avoid such 

discontinuities, I assume that ܰ equals 2 , where ݇ is an integer greater than one. Under this 

assumption, a symmetric network can have links the number of which equals any integer 

between 2 and 2 − 1. 

 In Proposition 2, I characterize a strongly stable network in equilibrium. Together with 
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Eq.(2), Eq.(3) and Eq.(4), which characterize the inter-dealer equilibrium, and Eq.(10), which 

characterizes the price of the investor-dealer trade, Proposition 2 describes the equilibrium of 

the model. 

Proposition 2 

The following describes a strongly stable network in equilibrium. 

a) If ݉∗ > ݍ + 1, then the strongly stable network is an empty network. 

b) If ݉∗ < ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ
, then the strongly stable network is a complete network.  

c) If ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ
≤ ݉∗ ≤ ݍ + 1, the strongly stable network is such that all dealers 

have the same number of links, and the number equals ൴ଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ ൸.10  

In equilibrium, risky asset holdings, the inter-dealer price, and the investor-dealer price 

depend on the number of dealers’ links. Specifically, under a), there is no inter-dealer network. 

Hence, there is no inter-dealer trading. The investor-dealer price is  

 
ଵ
) = (1− ݒቆ(ݍ − ଶߪߩ ቀܫ +

ݖ
2ቁቇ+ ܯ)ݍ  .(ଶߪଵܯ−

(16) 

Under b), the price in the inter-dealer trade is  

ଶ 
) = ݒ − ଶߪߩ ቀܫ +

ݖ
ܰቁ, (17) 

and the price in the investor-dealer trade is  

ଵ 
) = (1 − ଶ(ݍ

) + ܯ)ݍ  ଶ). (18)ߪଵܯ−

Under c), the inter-dealer price is 

                                                
10 ൴ଵାඥଶିଶାଶ

∗

ଵିଶାଶ∗ ൸ = arg max
∈ቊభశඥమషమశమ

∗
భషమశమ∗ ,భశඥమషమశమ

∗
భషమశమ∗ ାଵቋ

ቀݍ −݉∗ + ଵ

ቁ ିଵ
ାଵ

, where ඌଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ ඐ represents the 

largest integer no larger thanଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ . 
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ଶ
) = ݒ − ଶߪߩ

⎝

⎜
⎛
ܫ +

ݖ

ቢ
1 + ඥ2 − ݍ2 + 2݉∗

1 − ݍ2 + 2݉∗ ባ + 1
⎠

⎟
⎞

, 

(19) 

and the price in the investor-dealer trade is  

ଵ 
) = (1− ଶ(ݍ

) + ܯ)ݍ  ଶ). (20)ߪଵܯ−

 Figure 2 shows a complete network as an equilibrium network corresponding to Proposition 

2.b), while Figure 3 shows a 4-link symmetric network as an equilibrium network, which 

corresponds to Proposition 2.c). The total number of dealers in Figure 2 and 3 is eight. 

 

 

Figure 2: A Strongly Stable Network that is Complete 

The above figure shows an equilibrium network that is complete. In the complete network all dealers are connected. 

Every dealer has seven links. 
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Figure 3: A Strongly Stable Network with Four Links 

The above figure shows an equilibrium network in which every dealer has four links. 

 Proposition 2 indicates that the trade-off between the collateral cost and the risk-sharing 

benefit determines the equilibrium of a network. A dealer becomes more connected when the 

benefit from risk-sharing increases or when the collateral cost decreases. The following 

proposition formalizes this statement. 

Proposition 3 

The number of links made by a dealer increases when the effective margin ݉∗ decreases, 

that is, a) when the order size increases, ceteris paribus; b) when volatility increases, ceteris 

paribus; or c) when the funding constraint (݉) loses, ceteris paribus. 
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Figure 4: The Equilibrium Number of Links and the Effective Margin 

Figure 4 depicts the relationship between the equilibrium number of links and the effective margin. The effective 

margin is ݉∗ = ଶ
ఘఙ௭

. Parameters chosen are ܰ = 8, ߩ = ߪ,1 = 1, ݖ = ݍ ,1 = 0.5 and ݉∗ ∈ [0,0.8]. 

 Figure 4 shows the negative relationship between the number of links and the effective 

margin as stated in Proposition 3. Proposition 3 implies that larger orders give rise to more 

connected inter-dealer markets. This seems to be consistent with anecdotal evidence from dealer 

markets with tightly connected dealers. For example, in the foreign exchange market, the bulk of 

the trading volume comes from inter-dealer trades, and those trades usually consist of larger 

orders. In the past, stock trading in the upstairs market, where broker-dealer firms trade with 

each other, almost exclusively carries out block trades. Proposition 3 provides a testable 

empirical prediction pertaining to the inter-dealer network of an OTC market. The connectedness 

of an inter-dealer network is positively related to order sizes and volatility in an OTC market. 

 Comparative Statics Analysis of an Inter-Dealer Network 4.

Proposition 3 suggests two ways, or layers, in which primitives such as order sizes and volatility 

can affect equilibrium. At the first layer, primitives change equilibrium outcomes when an 
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equilibrium network does not change. At the second layer, primitives change the equilibrium 

network, which then changes equilibrium outcomes. I refer to the first layer as the local property 

and the second layer as the global property. In the following sections, I first show the results of a 

comparative analysis of the local property and then illustrate results regarding the global 

property. Finally, I discuss the connection between local and global properties. 

4.1 The Local Property of an Inter-Dealer Network 

To investigate the local property of an equilibrium network, I fix the equilibrium network and 

then investigate how order sizes and volatility affect equilibrium prices. An important 

equilibrium price is the markup for an order-filling dealer. The markup measures the order-filling 

dealer’s profitability in making the market for investors. The markup is the price difference 

between the price at which the order-filling dealer buys an asset from an investor and the price at 

which he sells it to other dealers. That is, 

 markup = ଶ − ଵ = ଶ൫ݍ ܯ− +  ଶ൯. (21)ߪଵܯ

Proposition 4 

Given an equilibrium network, the inter-dealer price, the investor-dealer price, and the 

markup decrease with the order size. 

 When the order size increases, inventory risk also increases. Meanwhile, the order-filling 

dealer’s risk-sharing ability is fixed insofar as the network is fixed. To unload extra inventory, 

the order-filling dealer has to sell it at a lower price in the inter-dealer market. The lower inter-

dealer price reduces the investor-dealer price. The order-filling dealer decreases his price when 

buying an asset from an investor in the anticipation of a lower price for off-loading a large order 

in the inter-dealer market. However, due to bargaining, the order-filling dealer is not able to 

transfer completely the decrease in the inter-dealer price to the investor. This reduces the order-
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filling dealer’s profitability because he must accept a smaller markup. 

 The negative relationship between markups and order sizes conforms to empirical findings 

for corporate and municipal bond markets (see Randall (2013) and Green, Hollifield, and 

Schürhoff (2007)). More importantly, my model offers an alternative explanation to those offered 

in past studies. Past studies argue that larger orders are from sophisticated investors who have 

greater bargaining power and hence lead to smaller markups for dealers. I show that, even if 

dealers have the same bargaining power as investors (when ݍ = ଵ
ଶ
), the negative relationship 

between markups and order sizes persists because of the increasing cost to dealers of unloading 

large inventory volume in the inter-dealer market. That said, my explanation for this negative 

relationship does not contradict the explanation based on bargaining power. Eq.(21), makes it 

obvious that a decrease in dealers’ bargaining power, ݍ, decreases the markup. Thus, a larger 

order associated with a smaller dealer’s bargaining power decreases the markup. 

Proposition 5 

The inter-dealer price and the investor-dealer price decrease with volatility. If ܯଵ >

ߩ ቀܫ + ௭
ାଵ

ቁ,	then the markup increases with volatility; otherwise the markup decreases with 

volatility. 

 As the previous discussion of the relationship between inter-dealer prices and order sizes 

suggests, when volatility increases, a traded asset becomes more risky, which intensifies the 

order-filling dealer’s risk-sharing need. Consequently, the inter-dealer price decreases, which 

leads to a decrease in the investor-dealer price. However, the impact of volatility on the markup 

is different from the impact of an order size on the markup. Besides affecting the markup from 

the dealer side, volatility also affects the markup from the investor’s side. Specifically, when 

volatility increases the investor’s utility for holding the asset ܯ ଶߪଵܯ−  decreases, which 
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implies that the investor is more willing to sell the asset. This results in a further decrease in the 

investor-dealer price. When the investor’s willingness to sell is relatively strong (when ܯଵ >

ߩ ቀܫ + ௭
ାଵ

ቁ), the drop in the investor-dealer price exceeds the drop in the inter-dealer price, and 

hence the markup increases. The relationship between price markups and volatility depends on 

the investor’s altitude towards risk. 

4.2 The Global Property of an Inter-Dealer Network 

In Section 4.1, I discussed relationships between equilibrium outcomes and order sizes and 

relationships between equilibrium outcomes and volatility within a fixed equilibrium network. In 

this section, I consider the global property of an equilibrium network. In other words, I examine 

what happens to equilibrium outcomes such as prices and trading volumes when the equilibrium 

network changes. 

Proposition 6 

If the number of links that an order-filling dealer has increases, he sells at a higher inter-

dealer price, buys at a higher investor-dealer price, and earns a larger markup. 

 In an inter-dealer trade, the order-filling dealer solicits bids from his connected dealers. If 

the network becomes more connected, the order-filling dealer links to more dealers. The bidding 

competition becomes more intense, and hence drives the inter-dealer price in favor of the order-

filling dealer. Consequently, the order-filling dealer is willing to buy at a higher price from the 

seller. However, the order-filling dealer increases the investor-dealer price only to the extent that 

his profit still increases. That is, his markup goes up. 

 Trading volume for a dealer involve two parts. The first part is his trading volume when he 

is an order-filling dealer; the second part is his trading volume when one of his connected dealers 

is an order-filling dealer. Specifically, dealer ݅′s expected number of trades is  
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 1
ܰ + 

1
ܰ

:∈ீ

=
݊ + 1
ܰ . (22) 

And dealer ݅’s expected trading volume is  

 1
ܰ
൫ܫ + ݖ − ܺ,൯ + 

1
ܰܺ

,

:∈ீ

=
2
ܰ ൬1−

2
݊ + 1൰  (23) .ݖ

 In the above, both equalities are obtained as ݊ = ݊ because dealer ݅ and dealer ݆ have the 

same number of links when they are connected in an equilibrium network (see Proposition 1). 

Proposition 7 

The more links a dealer has in an inter-dealer network, the more trades he makes and the 

greater is his trading volume. 

 Proposition 7 states that more trades take place when the network becomes more connected. 

This is not surprising, as more links increase a dealer’s probability of participating in risk-

sharing trades with other dealers. 

 To see if a more connected network improves risk-sharing, I examine the risk of a dealer’s 

inventory in equilibrium. The expected risky holding for dealer ݅ is  

 
ܺܧ =

1
ܰܺ

, + 
1
ܰ
൫ܫ + ܺ,൯

:∈ீ

+ ቌ1 −
1
ܰ − 

1
ܰ

:∈ீ

ቍ  ܫ
(24) 

And the variance of the risky holding is  

൫ܺ൯ݎܸܽ  =
1
ܰ ܺ,ଶ + 

1
ܰ
൫ܫ + ܺ,൯ଶ

:∈ீ

+ ቌ1 −
1
ܰ − 

1
ܰ

:∈ீ

ቍ ଶܫ − ൫ܺܧ൯
ଶ
 

(25) 
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Proposition 8 

The variance of a risky holding decreases as the number of links a dealer has increases. 

 Based on Proposition 8, a more connected network reduces dealers’ inventory risks. 

Together, Proposition 7 and 8 imply that a more connected network achieves better risk-sharing 

among dealers, which accompanies higher trading volumes in the inter-dealer market. The 

positive relationship between a dealer’s connectedness and his trading volume and the negative 

relationship between a dealer’s connectedness and his inventory risks yield two testable 

empirical predictions from my model. 

4.3 The Connection between Local Properties and Global Properties 

As discussed at the beginning of Section 4, changes in primitives have two layers of impacts on 

equilibrium. One affects equilibrium outcomes directly, while the other exerts influence through 

changing the equilibrium network’s structure. Because of the second impact, the local property 

of the network is not stable. In other words, relationships between prices and order sizes, or 

between prices and volatility, can exhibit structural breaks as variations in order sizes and 

volatility can also change the structure of the equilibrium network.  
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Figure 5: The Relationship between Prices and Order Sizes 
Figure 5 depicts structural breaks in the negative relationship between inter-dealer prices and order sizes, and the 

negative relationship between markups and order sizes. Parameters chosen are ݉ = 0.5,ܰ = ߩ,8 = ߪ,1 = 0.5, ܫ =

1, ݒ = ݍ,30 = ܯ,0.5 = ଵܯ,0 = 4, and ݖ ∈ [6, 14]. The structural break occurs at ݖ = 8,10, and 12. 

 Figure 5 shows that the negative relationship between markups and order sizes exhibits 

jumps as the order size increases. Such jumps occur when the network becomes more connected, 

i.e., the number of a dealer’s links increases. As shown in Proposition 6, the markup and the 

inter-dealer price increase when the network becomes more connected, and the jumps shown in 

Figure 5 reflect this increase. The same pattern exists in relationships between prices and 

volatility (see Figure 6). 
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Figure 6: The Relationship between Prices and Volatility 
Figure 6 depicts structural breaks in the negative relationship between inter-dealer prices and volatility, and the 

negative relationship between markups and volatility. Parameters chosen are ݉ = 0.5,ܰ = ߩ,8 = 1, ݖ = 10, ܫ =

1, ݒ = ݍ,120 = ܯ,0.5 = ଵܯ,1 = 0, and ߪ ∈ [3, 7]. The structural break occurs at ߪ = 4, 5, and 6. 

 The above discussion suggests that empirical research on OTC markets should take into 

account the stability of the underlying network. Otherwise, the regression model used runs the 

risk of model misspecification, since the regression model may suffer from structural breaks. For 

example, empirical research should include a measure of a network’s connectedness as an 

additional control variable interacting with other important explanatory variables in a regression 

model. In Section 7, I discuss this empirical implication more thoroughly, together with other 

implications of the model. 

 Core-Periphery Inter-Dealer Networks  5.

In the previous model I assume that dealers are homogeneous. This assumption reduces the 

model’s complexity. In the model dealers have to decide only how many links to make, but they 
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do not have to decide with whom they should connect, since all dealers are the same ex-ante. In 

this section, I introduce heterogeneity among dealers into the model. Dealers are different in their 

capacity of providing liquidity to investors. Specifically, there are three types of dealers. The first 

type consists of dealers with small capacity ݏௌ =  Those dealers are small or regional banks .ݖ

who can only accommodate retail-sized orders, i.e., the size of the order is no larger than ݖ. The 

second type consists of dealers with medium capacity ݖ + ெݏ . The third type dealer has large 

capacity ݖ + ݏ  and ݏெ < ݏ ≤ 1. Large-capacity dealers are those big banks who are able to 

provide liquidity to both retail investors (with small orders) and institutional investors (with huge 

orders).  

 In addition to introducing differences in dealers’ capacity of liquidity provision, I relax the 

assumption that the size of the investor order is constant. I assume that the size of the investor 

order is random and follows a uniform distribution.11 This assumption together with the above 

assumption that dealers have different capacity determines a dealer’s probability of trading with 

an investor. Specifically, at date 1, an investor arrives and wants to trade an order of size 

ݖ ∼ Uniform൫ݖ, ݖ + 1൯. The investor meets with one dealer in the network with probability ଵ
ே

. If 

the order size ݖ is smaller than the chosen dealer’s capacity, then the dealer fills the investor 

order. Otherwise, no investor-dealer trade occurs. Hence, for a large-capacity dealer, his 

probability of trading with an investor equals ଵ
ே

× Prൣݖ ≤ ݖ + ൧ݏ = ௦ಽ
ே

; for a medium-capacity 

dealer, his probability of trading with an investor equals ௦ಾ
ே

; for a low-capacity dealer, his 

                                                
11 The assumption that the order size follows a uniform distribution does not affect any implication in the model. For 
any distribution, large capacity dealers always have the highest probability of trading with an investor, since large 
capacity dealers are able to accommodate any orders that medium or small capacity dealers accommodate. The 
probability of trading is the key driver that gives rise to the asymmetric equilibrium network (such as the core-
periphery network). That being said, using the uniform distribution significantly reduces redundancy in the 
mathematical derivation. 
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probability of trading with an investor is zero. 

 

Figure 7: The Timeline of the Extended Model 
Figure 7 gives the timeline of the extended model. At date 0, dealers form an inter-dealer network. At date 1, a 

randomly selected dealer meets with the investor. They trade if the order size is smaller than the dealer’s capacity. 

Otherwise, they don’t trade. At date 2, the dealer who fills the order at date 1 starts to re-trade through his inter-

dealer network. At date 3, the asset’s value is realized. 

 Figure 7 gives the timeline of this extended model. It is similar to the model in Section 3 

except for two differences. The first difference is that the size of the investor order is random, 

and it follows a uniform distribution. The second difference is that at date 1, an investor-dealer 

trade occurs if the order size is smaller than the capacity of the selected dealer. Otherwise, no 

investor-dealer trade occurs. All the rest is the same as the benchmark model (see Figure 1). 

 With capacity as the only device of heterogeneity that differentiates dealers, I show that the 

equilibrium network is asymmetric. An asymmetric network means that dealers do not have the 

same number of links. The core-periphery structure is a special case of this asymmetric network. 

Additionally, I show that differences in capacity create a vacillating relationship between 

Date 0:
Dealers form an 
inter-dealer 
network.

Date 1:
If the order size is 
smaller than the 
capacity of the 
randomly drawn 
dealer, then the 
investor trades with 
the dealer.

Date 2:
The order-filling 
dealer unloads extra 
inventory through 
the inter-dealer 
network.

Date 3:
The asset's value 
is realized.

Date 1:
Otherwise, no 
investor-dealer 
trade occurs.
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investor-dealer prices and dealers’ centrality (measured by the number of a dealers’ links). 

 Denote ݉
∗∗ = ଷ

ఘఙ௦
, ݉

∗∗  is dealer ݅’s effective margin. Given a network ܩ , the payoff for 

dealer ݅ is, 

 

ܷ(ܩ) = න
1
ܰൣ௭ஸ௭ା௦൧ݑܧ

൫ܹ(ܺ,)൯
ᇩᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇫ
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௭ାଵ

௭
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1
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:∈ீ

ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ
ᇲs	connected	dealer	fills	the	order

ݖ݀

+ ቌ1 −
ݏ
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ݏ
ܰ

:∈ீ

ቍݑܧ൫ܹ(ܫ)൯
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ

neither		nor	his	connected	dealers	fill	the	order

−න
1
ܰൣ௭ஸ௭ା௦൧ݖߪ
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=

⎩
⎨

ଶߪߩ⎧

3ܰ
ቌݏଷ(ݍ − ݉

∗∗)
݊ − 1

2(݊ + 1) + 
1
2 ݏ

ଷ ݊ − 1	

݊
ଶ൫ ݊ + 1൯

:∈ீ

ൣೕஹଶ൧ቍ + ܷ, ݊ ≥ 1

ܷ, ݊ = 0

, 

and where ܷ is dealer ݅’s payoff when he has no link. ܷ is defined as follows, 

 
ܷ =

ଶݏ

ݍ2ܰ
ݒ) − ܫଶߪߩ − ܯ + (ଶߪଵܯ + ൯(ܫ)൫ܹݑܧ −

ଷݏݍଶߪߩ

6ܰ . 
(27) 

Proposition 9 

Let ݊௦ಽ , ݊௦ಾ, and ݊௦ೄ  be the number of links for large-capacity dealers, medium-capacity 

dealers, and small-capacity dealers, respectively. Then, in a strongly stable network,  

 ݊௦ಽ ≥ ݊௦ಾ ≥ ݊௦ೄ . (28) 

 Proposition 9 indicates that the equilibrium network when dealers have different capacity in 
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providing liquidity is asymmetric. Some dealers have more links than others. I show that 

centrality measured by the number of links a dealer has is positively determined by the dealer’s 

capacity. A dealer who has larger capacity and is more capable of accommodating investors’ 

orders has more links. The dealer with large capacity has greater risk-sharing needs, since he has 

a greater likelihood of facing a liquidity shock. Such a liquidity shock occurs if the dealer fills 

the order from an incoming investor. As a result, the large-capacity dealer is inclined to build 

more links. At the same time, connecting with the large-capacity dealer implies more chances for 

other dealers to participate in risk-sharing activities, which means greater benefits. Hence, other 

types of dealers are also inclined to connect to the large-capacity dealer. This mutual consent 

leads to the equilibrium in which the large-capacity dealer has the greatest number of links. 

 Since the core-periphery network is a special case of the asymmetric network, Proposition 9 

explains the core-periphery structure of the inter-dealer network found in empirical studies 

(Hollifield, Neklyudov, and Spatt (2012) and Li and Schürhoff (2012)). In a core-periphery 

network, some dealers operate at the core of the network, connecting to all dealers, while 

peripheral dealers connect to no one but those at the core. Consequently, core dealers have more 

links than peripheral dealers. Proposition 9 suggests that large-capacity dealers comprise the 

core and have more links than peripheral dealers, who are those small-capacity dealers. 

 As a large-capacity dealer has a higher probability of trading than other dealers, Proposition 

9 also justifies the model in Neklyudov (2012). In that paper, the author studies the impact of the 

core-periphery structure using a dealer’s matching rate, which is essentially a dealer’s probability 

of trading, as the proxy for a dealer’s centrality in the network. My model supports this idea of 

approximating a dealer’s centrality with his matching rate. I show that dealers with high 

matching rates have higher centrality than dealers with low matching rates, which is an 
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equilibrium consequence of strategic network formation.  

 To focus on the core-periphery network and illustrate the vacillating relationship between 

investor-dealer prices and dealers’ centrality, I assume that ݏெ < ଷ
ఘఙ

< ݏ . This implies that 

݉௦ಽ
∗∗ < ݍ < ݉௦ಾ

∗∗ . In addition, I assume that ݏଷ
ேିଶ

(ேିଵ)మே
> ெଶݏ ቀ

ଷ
ఘఙ

− ெቁ. Let ௦ܰಽݏ  be the total 

number of large-capacity dealers, ௦ܰಾ = 2 	(݇ > 1) be the total number of medium-capacity 

dealers, and ௦ܰಾ > ௦ܰಽ > 2, I characterize the core-periphery equilibrium network as follows. 

Proposition 10 

When dealers have varying capacity ݏ,  ௌ, a strongly stable network in equilibriumݏ ெ, andݏ

is as follows. Dealers with the large capacity ݏ form the core of the network and connect to all 

dealers; dealers with the small capacity ݏௌ form the periphery and connect only to those at the 

core; dealers with the medium capacity ݏெ  connect to all large-capacity dealers and other 

݊௦ಾ
∗ − ௦ܰಽ  medium-capacity dealers. ݊௦ಾ

∗  is  

 
݊௦ಾ
∗ = arg max

ೞಾ∈ℕ
ቆݍ −݉௦ಾ

∗∗ +
݊௦ಾ − ௦ܰಽ

݊௦ಾଶ
ቇ
݊௦ಾ − 1
݊௦ಾ + 1. 

(29)  

 Proposition 10 shows the equilibrium network that exhibits the core-periphery structure as 

found in empirical studies. Figure 8 gives an example of this core-periphery network. In Figure 

8, there are 20 dealers (3 large-capacity dealers, 8 medium-capacity dealers, and 9 small-capacity 

dealers). Only large-capacity dealers operate at the core of the network, while small-capacity 

dealers are the periphery of the network. 
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Figure 8: A Core-Periphery Network 

Figure 8 shows a core-periphery network in which large-capacity dealers comprise the core of the network and 

small-capacity dealers become the periphery. L represents the large-capacity dealer, M represents the medium-

capacity dealer, and S represents the small-capacity dealer. In equilibrium, each L has 19 links, each M has 7 links, 

and each S has only 3 links. 

 In the core-periphery network, core dealers do not necessarily offer more favorable prices to 

investors. Two opposite forces affect the investor-dealer price that a core dealer offers. On one 

side, a core dealer has more links, thereby greater market power in inter-dealer trading. Greater 

market power in the inter-dealer market enables the core dealer to sell at a higher price, and 

hence to buy from an investor at a higher price. On the other side, a dealer becomes the core 

because of his large capacity, which implies he fills larger orders than other dealers. Larger 

orders overburden the dealer’s inventory rebalancing in inter-dealer trading, and hence worsen 

the dealer’s price in the inter-dealer market. Consequently, the large-capacity dealer buys from 

an investor at a lower price. In short, the cross-sectional relationship between investor-dealer 

prices and dealers’ centrality is ambiguous. Proposition 11 illustrates this undetermined 
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relationship. 

Proposition 11 

Denote ̅௦ಽ
  and ̅௦ಾ

  as the average investor-dealer price from large-capacity dealers and 

medium-capacity dealers, respectively. If ቆݒ − ܫଶߪߩ + 
ଵି

ܯ)	 )ቇ	ଶ)ߪଵܯ− ݏ) − (ெݏ ≥

ఘఙమ

ଶ
	൬௦ಽ

మ

ே
− ௦ಾ

మ

ೞಾ
∗ ାଵ

൰ , then ௦ಽ
 ≥ ௦ಾ

 . Otherwise, ௦ಽ
 < ௦ಾ

 . In the above, ݊௦ಾ
∗  is defined in 

Proposition 10 and ܰ is the total number of dealers. 

 Proposition 11 gives the condition under which large-capacity dealers buy from investors at 

higher prices, and under which large-capacity dealers buy at lower prices. Since a dealer’s 

capacity positively determines his centrality, Proposition 11 suggests that the relationship 

between investor-dealer prices and dealers’ centrality vacillates between positive and negative. 

Figure 9 further illustrates this ambiguous relationship between investor-dealer prices and 

dealers’ centrality by following the example in Figure 8. In the figure, a medium-capacity dealer 

has 7 links and a large-capacity dealer has 19 links in equilibrium. The large-capacity dealer has 

higher centrality than the medium-capacity dealer. In the upper panel of the figure, the 

relationship between investor-dealer prices and centrality is positive. This occurs when the 

difference in capacity between high centrality dealers and low centrality dealers is small. That is, 

ቆݒ − ܫଶߪߩ + 
ଵି

ܯ)	 )ቇ	ଶ)ߪଵܯ− ݏ) − (ெݏ ≥ ఘఙమ

ଶ
	൬௦ಽ

మ

ே
− ௦ಾ

మ

ೞಾ
∗ ାଵ

൰ . However, when the 

difference in capacity is big, the relationship becomes negative, which is illustrated in the bottom 

panel of the figure. This occurs when ቆݒ − ܫଶߪߩ + 
ଵି

ܯ)	 )ቇ	ଶ)ߪଵܯ− ݏ) − (ெݏ <

ఘఙమ

ଶ
	൬௦ಽ

మ

ே
− ௦ಾ

మ

ೞಾ
∗ ାଵ

൰. 
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Figure 9: The Relationship between Investor-Dealer Prices and Centrality 
Figure 9 shows that the relationship between average investor-dealer prices and dealers’ centrality (which measures 

how central a dealer is in the network) is undetermined. In the upper panel of the figure, the relationship is positive. 

This occurs when the difference in capacity between high centrality dealers and low centrality dealers is small. That 

is, ቆݒ − ܫଶߪߩ + 
ଵି

ܯ)	 )ቇ	ଶ)ߪଵܯ− ݏ) − (ெݏ ≥ ఘఙమ

ଶ
	൬௦ಽ

మ

ே
− ௦ಾ

మ

ೞಾ
∗ ାଵ

൰. However, when the difference in capacity is 

big, the relationship between investor-dealer prices and centrality is negative. This occurs whenቆݒ − ܫଶߪߩ +


ଵି

ܯ)	 )ቇ	ଶ)ߪଵܯ− ݏ) − (ெݏ < ఘఙమ
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	൬௦ಽ

మ

ே
− ௦ಾ
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൰	 Parameters chosen are ܰ = 20, ௦ܰಽ = 3, ௦ܰಾ = 8,݉ = 0.45,

ݍ = ଶ
ଷ

ߩ, = 1, ܫ = ݒ,2 = ܯ,26.25 = ଵܯ,0 = ߪ,0.02 = 5 , ݖ ∼ Uniform(0, 1), ெݏ = 0.4 , (small)ݏ = 0.405  and 

(large)ݏ = 1. Based on Proposition 10, this set of parameters implies that ݊௦ಾ
∗ = 7. 

 Though the relationship between investor-dealer prices and dealers’ centrality is 

undetermined, the conditional relationship between them is determined. When conditioning on 

the size of the investor order, high-centrality dealers offer better prices than low-centrality 

dealers. That is, when ݖ  is fixed, ଵ = (1− ݒቆ̅(ݍ − ଶߪߩ ቀܫ + ௭
ାଵ

ቁቇ+ ܯ)ݍ (ଶߪଵܯ−  is 

positively determined by ݊. This is consistent with Hollifield, Neklyudov, and Spatt (2012), 
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which shows that investors get more favorable prices when trading with core dealers. The above 

suggests that the size of the investor order is an important control variable in determining how 

dealers’ centrality is related to investor-dealer prices. 

  “Hot Potato” Trading in an Inter-Dealer Market 6.

So far in this study, transactions among dealers take place only when an order-filling dealer 

initiates an auction in the inter-dealer market. This setup helps to demonstrate that risk-sharing 

drives network formation, since the sole role played by dealers in the inter-dealer market is risk-

sharing. However, such one-shot trading limits the analysis of strategies that could be deployed 

by dealers, since dealers who connect to the order-filling dealer can only be end-users. In reality, 

one of the strategies deployed by dealers is intermediary or “hot potato” trading. “Hot potato” 

trading occurs when a dealer who has traded with the order-filling dealer continues to trade with 

other dealers who do not connect with the order-filling dealer. In so doing, this dealer serves as 

the intermediary between the order-filling dealer and dealers who are not in the order-filling 

dealer’s network. 

 To analyze “hot potato” trading in an inter-dealer network, I relax the one-shot trading 

assumption, and allow dealers who trade with the order-filling dealer to also trade in their own 

networks simultaneously. Specifically, let dealer ݅ be the order-filling dealer and dealer ݆ be one 

of ݅’s connected dealers. When dealer ݅ starts an auction, dealer ݆ not only submits his orders to ݅, 

he also solicits bids from his connected dealers ݆ᇱ (to focus sharply on “hot potato” trading, I 

consider only the case in which ݆ᇱ does not connect to dealer ݅). Similarly, dealer ݆ᇱ submits his 

orders to ݆, and in the meantime solicits bids from his connected dealers, and so forth. One can 

visualize this setup as consisting of multiple rounds of trading that occur instantaneously. That is, 

in a short period of time the order-filling dealer trades with his connected dealers in the first 
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round, and then those order-filling-connected dealers trade in their own networks in the second 

round, and so forth. 

 Unlike the model with one-shot trading only, the above setup allows dealers to continue 

trading in an inter-dealer network. However, this general setup complicates the analysis of the 

equilibrium at date 2. Since trades continue through the network, a dealer’s strategy depends not 

only on who he connects to (as in the one-shot setup) but also on who his connected dealers 

connect to and who his connected dealers connected dealers connect to, and so forth. Fortunately, 

the equilibrium at date 2 is still solvable, and it is characterized on another network derived from 

the inter-dealer network. Let us denote this derived network as the “trading-sets network.” 

Definition 3 and 4 show how a “trading-sets network” is derived from an inter-dealer network. 

Definition 3 

 Given the flow of trades in an inter-dealer network, dealers in an inter-dealer network are 

grouped into various trading sets. In each trading set, there is a dealer, called the initiator, who 

trades in the previous round of trading, and there are other dealers, called participants, who do 

not participate in previous rounds but participate in the current round initiated by the initiator. 

Furthermore, if a trading set has only one participant who is not a participant in any other 

trading set, then the trading set is considered as an empty set. If this unique participant in the 

trading set is also the only participant in other trading sets, then these trading sets are grouped 

into one set consisting of only one participant but many initiators. 

 Definition 3 indicates that a trading set can take only two forms. One form includes many 

participants but a unique initiator; the other has many initiators but a unique participant. Figure 

10 provides an example of the grouping for a symmetric network with three links. In those 

trading sets, numbers before the semicolons stand for initiators and numbers after the semicolons 
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stand for participants. In Figure 10, the arrow on a link indicates the flow of trades.  

 

Figure 10: Trading-Sets derived from a Symmetric Network with Three Links 
Figure 10 provides an example of dealers in an inter-dealer network that is grouped into trading sets. In the figure, 

the arrow represents the direction of the flow of trades. The thickest line represents the first round of trading. The 

dashed line represents the second round of trading. The thinnest line represents the final round of trading. In the 

trading set brackets, the numbers before the semicolons stand for the initiator and the numbers after the semicolons 

stand for the participants. 

Trading Set1 = {1; 2, 3, 4} 
 
Trading Set2 = {2; 5, 6} 
 
Trading Set3 = {3; 5, 7} 
 
Trading Set4 = {4; 6, 7} 
 
Trading Set5 = {5, 6, 7; 8} 
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Figure 11: A “Trading-Sets Network"” derived from an Inter-Dealer Network 
Figure 11 shows a “trading-sets network” that is derived from the inter-dealer network shown in Figure 8. In Figure 

8, trading set 1 connects to trading set 2 but not to trading set 5, since the intersection between trading set 1 and 2 

contains a common dealer, dealer 2, but the intersection between trading set 1 and trading set 5 is empty. 

Definition 4 

Two trading sets are connected if their intersection is not empty. 

 While Definition 3 defines how nodes (trading sets) in a “trading-sets network” are derived 

from an inter-dealer network, Definition 4 defines how links in a “trading-sets network” are 

derived. Figure 11 gives an example of a “trading-sets network” derived from an inter-dealer 

network. It is obvious that with a given flow of trades in an inter-dealer network the grouping of 

trading sets is unique. Since links between trading sets are determined only by members of those 

sets, a “trading-sets network” is uniquely derived from an inter-dealer network through 

Definition 3 and Definition 4. This means that characterizing the date 2 equilibrium when 
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dealers continually trade along an inter-dealer network is equivalent to characterizing the 

equilibrium when dealers trade in the derived “trading-sets network.” 

 As in Section 3.2, initiators trade with participants strategically in each trading set. When the 

market in each trading set clears, it generates a unique price associated with the corresponding 

trading set. In other words, inter-dealer trading occurs in various fragmented markets (trading 

sets), and these fragmented markets are linked when they have common members (dealers). 

 In each of these trading sets dealers are divided into two classes, initiators and participants. 

This fits the model description in Malamud and Rostek (2013), in which exactly two classes of 

dealers trade in each trading set.12  In fact, Definition 3 and Definition 4 map the dealers’ 

network into the “trading-sets network” which is first studied by Malamud and Rostek (2013). 

 The equilibrium in inter-dealer trading is that every dealer (say dealer ݇) submits a vector of 

demand schedules (ݍ) to all trading sets (say ॸ  sets) he belongs to, and his vector of demand 

schedules is 

(߉)ݍ = ൫ߪߩଶॴॸೖ×ॸೖ + ൯߉
ିଵ൫̅ݒॴॸೖ×ଵ − ঐॸೖ×ଵ −  ,ॴॸೖ×ॸೖ൯ܫଶߪߩ

where ߉ is dealer ݇’s price impact and ঐॸೖ	×ଵ is a vector of equilibrium prices in ॸ  sets.13 To 

be more specific, ߉ is the ॸ × ॸ  Jacobian matrix ܦঐ, in which entry (ݎ,  stands for the (ݏ

price change in set ݏ caused by a demand change in set ݎ. In equilibrium, ߉ is determined by the 

market-clearing condition. Although solving the equilibrium is equivalent to finding every 

dealer’s price impact, the actual work of solving for those price impacts (solving ܰ matrices with 

ॸ × ॸ  dimensions) is non-trivial, let along specifying how the network and ߉  are jointly 

determined in the network formation process. 

                                                
12 See Example 1 (ii) in Malamud and Rostek (2013). 
13 ॴॸೖ×ॸೖ  is an ॸ by ॸ matrix with all entries equal to 1. 
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 To circumvent this difficulty, I focus on the property regarding “hot potato” trading that is 

persistent in any strongly stable network. 

Proposition 12 

Denote a dealer as a monopolistic dealer if his connected dealers belong to distinct 

connected components. In any strongly stable network, monopolistic dealers always buy and sell 

at different prices gaining non-zero markups in “hot potato” trading. In contrast, if a pair of 

dealers has more than two unconnected common neighbors, then this pair of dealers and all 

their common neighbors receive zero markups in “hot potato” trading.14 

 Proposition 12 identifies which dealer in the inter-dealer network receives non-zero 

markups for “hot potato” trading. Interestingly, the dealer with the most links does not 

necessarily enjoy non-zero markups. In fact, this dealer may receive zero markups for “hot 

potato” trading. For example, in Figure 12, dealer 6 has the highest number of links but he 

always receives zero markups since he has exactly two common neighbors with every dealer he 

connects to. The dealer who always receives non-zero markups is the one who reaches different 

groups of dealers, for example dealer 7 in Figure 12. This dealer is called the monopolistic 

dealer, as his ability to access unconnected parts of the inter-dealer network provides him with 

local monopoly power in “hot potato” trading.  

                                                
14 Neighbors of a dealer are his connected dealers. 
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Figure 12: An Inter-Dealer Network in which Dealer 7 is the Monopolistic Dealer 
In Figure 12, if there is “hot potato” trading, dealer 7 is the monopolistic dealer with non-zero markups, even 

though he has fewer links than dealer 6. In fact, dealer 6 gets zero markups in “hot potato” trading. 

 Proposition 12 is an extension of the study by Malamud and Rostek (2013). Their model 

implies that a dealer who acts as a “monopolistic bridge” in a “trading-sets network” is the one 

with non-zero markups. Proposition 12 extends their results to identify the “monopolistic 

bridge” in an inter-dealer network. This helps empirical research to identify which dealer has 

local monopoly power in “hot potato” trading. 

 Empirical Implications 7.

My model offers novel testable hypotheses in addition to confirming findings from past 

empirical studies. As an inter-dealer network is formed to share risks among dealers, the 

connectedness of the network is closely related to volatility and order sizes that characterize 

dealers’ inventory risks. 
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Hypothesis 1: 

An asset with high volatility has a more connected inter-dealer network than an asset with 

low volatility. 

Hypothesis 2: 

An asset traded in large order sizes has a more connected inter-dealer network than an asset 

traded in small order sizes. 

 The above hypotheses are novel empirical predictions obtained from endogenizing the 

formation of an inter-dealer network. However, the empirical design involved in testing those 

hypotheses requires statistics that measure the connectedness of an inter-dealer network. In the 

network literature, several statistics have been proposed to describe the connectedness of a 

network including average path length, cliquishness, a clustering coefficient, cohesiveness, etc.15 

In econometrics, Diebold and Yilmaz (2011) propose statistics based on variance decompositions 

to measure the connectedness of the network of financial firms. 

 Based on my model, the connectedness of an inter-dealer network determines prices and 

trading volume in an inter-dealer market. In a more connected inter-dealer market, dealers trade 

more and gain higher markups. This yields the following hypotheses: 

Hypothesis 3: 

In a more connected inter-dealer network, dealers generate larger trading volumes and face 

smaller inventory risks. 

Hypothesis 4: 

In a more connected inter-dealer network, dealers earn higher markups. 

 My model explains the observational finding regarding core-periphery networks in OTC 

                                                
15 See Jackson (2008) and Easley and Kleinberg (2010) for more details. 
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markets with varying capacity of providing liquidity among dealers. Dealers with large capacity 

of providing liquidity are more central in a network than dealers with small capacity. As a result, 

my model provides an additional testable implication: 

Hypothesis 5: 

A dealer with larger capacity of liquidity provision has higher centrality. 

 As mentioned above, here the empirical design would entail constructing measures for each 

dealer’s centrality in a network. Past studies in the network literature have used degree centrality, 

closeness centrality, betweenness centrality, eigenvector related measures, etc., to capture 

dealers’ centrality.16 One proxy for a dealer’s capacity would be the size of the dealer. A large 

dealer is more likely to be capable of accommodating huge orders than a small dealer. 

 An important empirical implication of the model pertains to sudden jumps in relationships 

between prices and primitive parameters, e.g., volatility and order sizes. Such jumps occur as an 

inter-dealer network changes along with continuous changes in primitive parameters (see Figures 

5 and 6). This implies that when an asset whose volatility or order sizes change over time is 

involved, empirical studies should consider testing for structural breaks since the corresponding 

inter-dealer network may have changed over time. The potential structural break in an inter-

dealer network implies that time-series data on prices and trading volume may not be stationary. 

With respect to cross-sectional studies, my model implies that an inter-dealer network entails 

another layer of heterogeneity that should be controlled for. For example, assets traded in larger 

orders differ from assets traded in smaller orders not only in terms of the order size but also in 

terms of the structure of corresponding inter-dealer networks. Thus, statistics that describe inter-

                                                
16 Hollifield, Neklyudov, and Spatt (2012) and Li and Schürhoff (2012) use degree centrality, closeness centrality, 
betweenness centrality, and eigenvector centrality to measure dealers’ centrality in the inter-dealer network. Refer to 
Jackson (2008) for further elaboration of centrality measures in network studies. 
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dealer networks, e.g., the clustering coefficient, should be included as additional control 

variables in a regression model. In all, the structure of the inter-dealer network is an important 

state variable that should not be overlooked in empirical OTC studies. 

 Conclusion 8.

 In this paper, I investigate inter-dealer network formation in an OTC market. I assume that 

dealers form inter-dealer networks to share inventory risks. In equilibrium, the benefit from such 

risk-sharing and the funding cost of collateral determine the shape of a network. An equilibrium 

network pins down outcomes such as prices and trading volume. Furthermore, I show that 

differences in dealers’ capacity of liquidity provision imply that dealers with large capacity have 

high centrality, whereas dealers with small capacity have low centrality. Hence, an equilibrium 

network exhibits the core-periphery structure. My model not only matches empirical findings in 

OTC markets, it also generates novel empirical implications. I demonstrate that empirical models 

that fail to control for the connectedness of an inter-dealer network may suffer from structural 

breaks.  

 In my model, dealers strategically form an inter-dealer network to share inventory risks. The 

inter-dealer network serves as the channel for dealers to rebalance their inventory. This feature 

differs from Babus and Kondor (2012), in which they assume that dealers use the network to 

share information. In reality, dealers are likely to use the inter-dealer network for both risk-

sharing and information-sharing purposes. As a result, future research should emphasize the 

interaction between the inventory model and the information model in the formation of an inter-

dealer network as well as the trading in this network market. 
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Appendix 

Proof of Proposition 1 

Proof: 

 Suppose ܩ is a strongly stable network, in which dealers in the same component have 

uneven links. Let dealer ݆ be the one with the maximal number of links in this component. 

Then there exists a pair of unconnected dealers ݅ and ݅ᇱ, both of whom are connected with ݆ 

and at least one of whom has fewer links than ݆ (let’s say ݅ has fewer links than ݆). Consider a 

deviation such that both ݅ and ݅ᇱ cut their connections with ݆ and then build a link between 

themselves. Denote the obtainable network via this deviation as ܩᇱ. Since 1 < ݊ < ݊  and 

1 < ݊ᇲ ≤ ݊, 

 ܷ(ܩᇱ)− ܷ(ܩ)

=
ଶݖଶߪߩ

2ܰ
݊ᇲ

݊ᇲ + 1 ൬
1

݊ᇲ + 1 −
1

݊ᇲ + 2൰

−
ଶݖଶߪߩ

2ܰ
݊

݊ + 1
ቆ

1
݊ + 1

−
1

݊ + 2
ቇ ≥ 0 

(A1) 

and 

 ܷᇲ(ܩᇱ)−ܷᇲ(ܩ)

=
ଶݖଶߪߩ

2ܰ
݊

݊ + 1 ൬
1

݊ + 1 −
1

݊ + 2൰

−
ଶݖଶߪߩ

2ܰ
݊

݊ + 1ቆ
1

݊ + 1 −
1

݊ + 2ቇ > 0. 

(A2) 

The deviation is an improving deviation, since ݅ᇱ is strictly better off and ݅ is weakly better 

off. Hence, ܩ cannot be a strongly stable network. 

 The above shows that dealers in the same component have the same number of links. 

Now suppose that a strongly stable network ܩ෨ has components of varying sizes and that, for 

݅	and	݅ᇱ from distinct components, ܷ൫ܩ෨൯ > ܷᇲ൫ܩ෨൯. Consider a deviation such that ݅ᇱ cuts all 

his links, all ݅’s connected dealers (call them ݕ) cut their links with ݅, and ݅ᇱ then builds links 
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with those ݕ dealers. The deviation replaces ݅’s position in the network with ݅ᇱ. The new 

network is called ܩ෨ ᇱ . In ܩ෨ᇱ , ௬ܷ൫ܩ෨ ᇱ൯ = ܷ௬൫ܩ෨൯ , since nothing is changed for them. But 

ܷᇲ൫ܩ෨ ᇱ൯ > ܷᇲ൫ܩ෨൯, since ݅ᇱ  replaces ݅’s position in the network and ܷ൫ܩ෨൯ > ܷᇲ൫ܩ෨൯. The 

deviation is an improvement, which contradicts to the proposition that ܩ෨ is a strongly stable 

network. 

Q.E.D. 

Proof of Proposition 2 

Proof: 

 The following lemma is useful in my proof of Proposition 2. 

 

Lemma A.1 

 In a strongly stable network no connected dealer has exactly one link. 

 

Proof: 

 Based on Proposition 1, if a connected network is strongly stable and one dealer has just 

one link, then the network consists of  ே
ଶ
 pairs. In this network, a dealer’s payoff equals ܷ 

(from Eq.(15)). Thus, a dealer is indifferent between getting connected with one link or not. 

In such a case, I say the strongly stable network is the empty network, since an infinitesimal 

amount of cost could make the dealer prefers the empty network to the one link network. 

Q.E.D. 

 Lemma A.1 implies that a connected strongly stable network is such that all connected 

dealers have the same number of links and this number is greater than one. If ܩ is a strongly 

stable network, then ܷ(ܩ) can be rewritten as 

 
ቐ
ଶݖଶߪߩ

2ܰ ൬ݍ − ݉∗ +
1
݊൰ ൬1 −

2
݊ + 1൰+ ܷ , ݊ ≥ 2

ܷ , ݊ = 0
, 

 

(A3) 
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which implies 

 
ܷ(ܩ)− ܷ =

ଶݖଶߪߩ

2ܰ ൬ݍ − ݉∗ +
1
݊൰ ൬1 −

2
݊ + 1൰. 

(A4) 

Based on Eq.(A4), for any ݊, when ݉∗ > ݍ + 1, ܷ(ܩ) − ܷ < 0. Thus, a strongly stable 

network should be an empty network when ݉∗ > ݍ + 1.  

 Now suppose the strongly stable network is an empty network when ݉∗ < ݍ + 1 . 

Consider an obtainable deviation in virtue of which all dealers build two links. Then the 

change in a dealer’s payoff is ఘఙ
మ௭మ

ே
ቀݍ − ݉∗ + ଵ

ଶ
ቁ > 0. Thus, the deviation is an improvement 

in those dealers’ payoffs. The discussion above proves that when ݉∗ < ݍ + 1, the empty 

network cannot be strongly stable. Together with the above paragraph, I show that ݉∗ > ݍ +

1 is the sufficient and necessary condition for the strongly stable network being empty. 

 To find out the equilibrium number of links for each dealer in a connected network 

(when ݉∗ ≤ ݍ + 1), we have to consider the following continuous function ܨ(݊): 

(݊)ܨ  = ൬ݍ −݉∗ +
1
݊൰ ൬1 −

2
݊ + 1൰, (A5) 

and ݊ ∈ [0,ܰ − 1]. Taking the derivative of ܨ(݊), we have 

(݊)ܨ݀ 
݀݊ =

1
݊ଶ(݊ + 1)ଶ (݊ଶ(2ݍ − 2݉∗ − 1) + 2݊ + 1). 

(A6) 

 When ݉∗ > ݍ − ଵ
ଶ

(݊)ܨ ,  achieves the maximum at ݊∗ = ଵାඥଶିଶାଶ∗

ଵିଶାଶ∗ , ௗி(∗ష)


>

0, ௗி൫
∗శ൯


< 0 , and ௗி(∗)


= 0 . When ݊∗ > ܰ − 1 , that is, ݉∗ < ݍ + ଶேିଵ

(ேିଵ)మ
− ଵ

ଶ
, then the 

strongly stable network is the complete network.  

 Based on the analysis of ܨ(݊), when ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ
≤ ݉∗ ≤ ݍ + 1, the strongly stable 

network is such that every dealer has ඌ1+ඥ2−22݉+ݍ∗

∗2݉+ݍ1−2 ඐ or ඌ1+ඥ2−22݉+ݍ∗

∗2݉+ݍ1−2 ඐ+ 1  links, whichever 
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gives the dealer greater utility.17 Formally speaking, the equilibrium number of links is 

  

൴ଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ ൸ = arg max
∈൜ඌ

భశඥమషమశమ∗

భషమశమ∗ ඐ,ඌ
భశඥమషమశమ∗

భషమశమ∗ ඐାଵൠ
ቀݍ −

݉∗ + ଵ

ቁ ିଵ
ାଵ

. 

(A7) 

 To close the proof, I summarize the shape of the strongly stable network and the 

corresponding condition as follows. If ݉∗ < ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ
, then ܩ is a complete network. If 

ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ
≤ ݉∗ ≤ ݍ + 1, then the strongly stable network ܩ has ൴ଵାඥଶିଶାଶ

∗

ଵିଶାଶ∗ ൸ links. If 

݉∗ > ݍ + 1, then the strongly stable network is an empty network. If none of the above 

conditions is satisfied, there is no strongly stable network. 

Q.E.D. 

Proof of Proposition 3 

Proof: 

 We first show that the equilibrium number of links weakly increases when the effective 

margin ݉∗ decreases. From Proposition 2, we know when ݉∗ > ݍ + 1, the strongly stable 

network is an empty network. When ݉∗  decreases such that ݉∗ < ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ

, the 

strongly stable network is the complete network. When ݍ + ଶேିଵ
(ேିଵ)మ

− ଵ
ଶ
≤ ݉∗ ≤ ݍ + 1, every 

dealer has	൴ଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ ൸ links. Thus, to show that the equilibrium number of links weakly 

increases when the effective margin decreases, we have to show only that ൴ଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ ൸ 

weakly increases when ݉∗ decreases. 

 Since  

                                                
17 ඌଵାඥଶିଶାଶ

∗

ଵିଶାଶ∗ ඐ is the largest integer no larger than ଵାඥଶିଶାଶ
∗

ଵିଶାଶ∗ . 
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 ݀݊∗

݀݉∗ = −
ඥ2 − ݍ2 + 2݉∗ + 3

2 − ݍ2 + 2݉∗

ඥ2 − ݍ2 + 2݉∗(1 − ݍ2 + 2݉∗)ଶ
< 0, 

(A8) 

if ݉ଵ
∗ < ݉

∗ , then Eq.(A8) shows that ඌଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ඐ ≥ ඌଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ඐ. Due to the definition 

of ⟦. ⟧ , ඌଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ඐ > ඌଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ඐ  implies ൴ଵାඥଶିଶାଶభ

∗

ଵିଶାଶభ
∗ ൸ > ൴ଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ൸ . Hence, 

we focus on the case, which ඌଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ඐ = ඌଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ඐ.  

 Now suppose that ݉ଵ
∗ < ݉

∗  and ඌଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ඐ = ඌଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ඐ. Let ݊∗ =

ඌଵାඥଶିଶାଶబ
∗

ଵିଶାଶబ
∗ ඐ. We will prove the claim by contradiction. Suppose that when ݍ + ଶேିଵ

(ேିଵ)మ
−

ଵ
ଶ
≤ ݉∗ ≤ ݍ + 1 , the equilibrium number of links strictly increases in ݉∗ . So ݉ଵ

∗ < ݉
∗  

implies ൴ଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ൸ < ൴ଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ൸ . Since ඌଵାඥଶିଶାଶభ

∗

ଵିଶାଶభ
∗ ඐ = ඌଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ඐ = ݊∗ , it 

has to be the case that ൴ଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ൸ = ݊∗  and ൴ଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ൸ = ݊∗ + 1 . That is, the 

equilibrium number of links equals ݊∗  when the effective margin is ݉ଵ
∗, but it equals ݊∗ + 1 

when the effective margin increases to ݉
∗. This implies that  

  ቀݍ −݉ଵ
∗ + ଵ

బ∗
ቁ బ

∗ିଵ
బ∗ାଵ

> ቀݍ −݉ଵ
∗ + ଵ

బ∗ାଵ
ቁ బ∗

బ∗ାଶ

⇒ ݉ଵ
∗ > ݍ − 1 + ଶ

బ
∗ , 

(A9) 

and 

  ቀݍ −݉
∗ + ଵ

బ
∗ቁ

బ∗ିଵ
బ
∗ାଵ

< ቀݍ − ݉
∗ + ଵ

బ
∗ାଵ

ቁ బ∗

బ
∗ାଶ

⇒ ݉
∗ < ݍ − 1 + ଶ

బ∗
. 

(A10) 

Eq.(A9) and Eq.(A10) imply that ݉ଵ
∗ > ݍ − 1 + ଶ

బ∗
> ݉

∗  contradicting our set-up. Hence, 

when ݉ଵ
∗ < ݉

∗ , ൴ଵାඥଶିଶାଶభ
∗

ଵିଶାଶభ
∗ ൸ > ൴ଵାඥଶିଶାଶబ

∗

ଵିଶାଶబ
∗ ൸. 

 Overall, Proposition 2 implies that an equilibrium network becomes increasingly 
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connected when ݉∗  decreases. To prove Proposition 3, we have only to show that ݉∗ 

decreases when ߪ or ݖ increases, ceteris paribus, and ݉∗ decreases when ݉ increases, ceteris 

paribus. This is true, since  

 ݀݉∗

ߪ݀ = −
2݉
ݖଶߪߩ < 0, 

(A11) 

 ݀݉∗

ݖ݀ = −
2ܿ
ଶݖߪߩ < 0, 

(A12) 

and  

 ݀݉∗

݀݉ =
2

ଶݖଶߪߩ > 0. 
(A13) 

Q.E.D. 

Proof of Proposition 4 

Proof: 

 Fixing an equilibrium network, we have  

ଶ݀ 

ݖ݀ = −
ଶߪߩ

݊ + 1 < 0, 
(A14) 

ଵ݀ 

ݖ݀ = −(1− (ݍ
ଶߪߩ

݊ + 1 < 0, 
(A15) 

 ݀markup
ݖ݀



= ݍ−
ଶߪߩ

݊ + 1 < 0. 
(A16) 

Q.E.D. 

Proof of Proposition 5 

Proof: 

 Given a fixed equilibrium network, we have  

ଶ݀ 

ߪ݀ = ߪߩ2− ൬ܫ +
ݖ

݊ + 1൰ < 0, 
(A17) 

ଵ݀ 

ߪ݀ = −2(1 − ߪߩ(ݍ ൬ܫ +
ݖ

݊ + 1൰ < 0, 
(A18) 

 ݀markup
ߪ݀



= ߪߩݍ2− ൬ܫ +
ݖ

݊ + 1൰ +  .ߪଵܯݍ2
(A19) 

If ܯଵ ≥ ܫቀߩ + ௭
ାଵ

ቁ, then ௗmarkup
ௗఙ


≥ 0. Otherwise, ௗmarkup

ௗఙ


< 0. 
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Q.E.D. 

Proof of Proposition 6 

Proof: 

 We want to show that ଵ ଶ, , and the markup increase in ݊. Without loss of generality, 

we let ݊ < ݊ᇱ. Then  

 
ଶ (݊′) − ଶ (݊) =

ݖଶߪߩ
ܰ ൬

1
݊ + 1 −

1
݊ᇱ + 1൰ > 0 ⇒ ଶ (݊ᇱ)

> ଶ (݊). 

(A20) 

Since ଵ = (1 − ଶ(ݍ + ܯ)ݍ (ଶߪଵܯ− , it is obvious that ଵ (݊ᇱ) > ଵ (݊) . Similarly, as 

markup = ଶ൫ݍ ܯ− + ଶ൯, markup(݊ᇱ)ߪଵܯ > markup(݊). 

Q.E.D. 

Proof of Proposition 7 

Proof: 

 The number of trades is  

 1
ܰ + 

1
ܰ

:∈ீ	

=
݊ + 1
ܰ , (A21) 

which obviously increases in ݊. 

 Since, in an equilibrium network, when dealer ݅ and dealer ݆ are linked they have the 

same number of links, the volume of trades is  

 1
ܰ ൫ܫ + ݖ − ܺ,൯ + 

1
ܰܺ

,

:∈ீ

=
1
ܰ ൬1 −

2
݊ + 1൰ ݖ +

݊
ܰ
݊ − 1
݊

ݖ
݊ + 1

=
2
ܰ ൬1 −

2
݊ + 1൰  ,ݖ

(A22) 

which also increases in ݊. 

Q.E.D. 
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Proof of Proposition 8 

Proof: 

 The expected risky holding is  

 
ܺܧ =

1
ܰܺ

, + 
1
ܰ ൫ܫ + ܺ,൯

:∈ீ

+ ቌ1 −
1
ܰ − 

1
ܰ

:∈ீ	

ቍ  ܫ
(A23) 

 =
1
ܰ ൬ܫ +

ݖ2
݊ + 1൰

+ 
1
ܰቆܫ + ݊ − 1

݊

ݖ
݊ + 1ቇ

:∈ீ

+ ቌ1 −
1
ܰ − 

1
ܰ

:∈ீ

ቍܫ 

 

 =
1
ܰ ݖ +   .ܫ

The variance if the risky holding is  

൫ܺ൯ݎܸܽ  = ൫ܺ൯ܧ
ଶ
− ൫ܺܧ൯

ଶ
 (A24) 

 

 
=

1
ܰ ൬ܫ +

ݖ2
݊ + 1൰

ଶ

+ 
1
ܰቆܫ + ݊ − 1

݊

ݖ
݊ + 1ቇ

ଶ

:∈ீ

+ ቌ1 −
1
ܰ − 

1
ܰ

:∈ீ

ቍܫଶ − ൬
1
ܰ ݖ + ൰ܫ

ଶ

 

 

 
=

1
ܰ ൬ܫ +

ݖ2
݊ + 1൰

ଶ

+ ݊ ቆܫ + ݊ − 1
݊

ݖ
݊ + 1ቇ

ଶ

+ ൬1 −
1
ܰ −

݊
ܰ൰ ܫ

ଶ − ൬
1
ܰ ݖ + ൰ܫ

ଶ

. 

 

We have only to prove that the claim is true for ݊and ݊ + 1, and then by induction we infer 

that the claim is true for any ݊ < ݊. 

ݎܸܽ  ቀܺ(݊)ቁ − ݎܸܽ ቀܺ(݊ + 1)ቁ (A25) 
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=

1
ܰ ൬ܫ +

2
݊ + 1 ൰ݖ

ଶ

−
1
ܰ ൬ܫ +

2
݊ + 2 ൰ݖ

ଶ

 

 
+
݊
ܰ ቆ൬ܫ +

݊ − 1
݊

ݖ
݊ + 1൰

ଶ

− ൬ܫ +
݊

݊ + 1
ݖ

݊ + 2൰
ଶ
ቇ 

 

 
−

1
ܰ ൬ܫ +

݊
݊ + 1

ݖ
݊ + 2൰

ଶ
+

1
ܰ ܫ

ଶ. 
 

   

Since  

 1
ܰ ൬ܫ +

2
݊ + 1 ൰ݖ

ଶ

−
1
ܰ ൬ܫ +

2
݊ + 2	 ൰ݖ

ଶ

=
1
ܰ ݖ

2
(݊ + 1)(݊ + 2) ൬2ܫ

+ ݖ2
2݊ + 3

(݊ + 1)(݊ + 2)൰, 

(A26) 

 ݊
ܰ ቆ൬ܫ +

݊ − 1
݊

ݖ
݊ + 1൰

ଶ

− ൬ܫ +
݊

݊ + 1
ݖ

݊ + 2൰
ଶ
ቇ

=
1
ܰ ݖ

݊ − 2
(݊ + 1)(݊ + 2)ቆ2ܫ + ݖ

2݊ଶ + ݊ − 2
݊(݊ + 1)(݊ + 2)ቇ

, 

(A27) 

and 

 
−

1
ܰ ൬ܫ +

݊
݊ + 1

ݖ
݊ + 2൰

ଶ
+

1
ܰ ܫ

ଶ

= −
1
ܰ ݖ

݊
(݊ + 1)(݊ + 2) ൬2ܫ + ݖ

݊
(݊ + 1)(݊ + 2)൰

, 

(A28) 

we have  

ݎܸܽ  ቀܺ(݊)ቁ − ݎܸܽ ቀܺ(݊ + 1)ቁ
ଶݖ
ܰ

		 
(A29) 

 
= 4

2݊ + 3
(݊ + 1)ଶ(݊ + 2)ଶ +

(݊ − 2)(2݊ଶ + ݊ − 2)
݊(݊ + 1)ଶ(݊ + 2)ଶ

−
݊ଶ

(݊ + 1)ଶ(݊ + 2)ଶ 

 
=

݊ଷ + 5݊ଶ + 2݊ + 4
݊(݊ + 1)ଶ(݊ + 2)ଶ > 0. 

Q.E.D. 
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Proof of Proposition 9 

Proof: 

 Obviously, a small-capacity dealer never connects to his own kind, as there is no risk-

sharing benefit. This implies that small-capacity dealers connect only to large-capacity or 

medium-capacity dealers. Hence, ݊௦ೄ ≤ ݊௦ಾ , ݊௦ಽ . 

 Now suppose that ܩ is a strongly stable network such that ݊௦ಾ > ݊௦ಽ > 2. Let dealer ݅ be 

one of ݏெ ’s connected dealers who does not connect to ݏ . Consider another network ܩ′ 

obtained via replacing the ݏெ݅ link with the ݏ݅ link. Since ݏெ < ݏ , which implies ݉௦ಾ
∗∗ >

݉௦ಽ
∗∗, we have 

 
ܷ(ܩᇱ)− ܷ(ܩ) =

ଶߪߩ

6ܰ ቆݏଷ
݊௦ಽ − 1

݊௦ಽଶ ൫݊௦ಽ + 1൯
− ெଷݏ

݊௦ಾ − 1
݊௦ಾଶ ൫݊௦ಾ + 1൯

ቇ

> 0, 

(A30) 

 ௦ܷಽ(ܩᇱ)−ܷ௦ಽ(ܩ)

=
ଶߪߩ

3ܰ ቆݏଷ൫ݍ −݉௦ಽ
∗∗൯

݊௦ಽ
2൫݊௦ಽ + 2൯

+
1
2 ݏ

ଷ ݊ − 1	
݊ଶ(݊ + 1)ቇ

≥
ଶߪߩ

3ܰ ቆݏெଷ ൫ݍ −݉௦ಾ
∗∗ ൯

݊௦ಾ − 1
2൫݊௦ಾ + 1൯

+
1
2 ݏ

ଷ ݊ − 1	
݊ଶ(݊ + 1)ቇ. 

(A31) 

 For ܩ to be a strongly stable network it has to be the case that cutting the link between 

ெݏ  and ݅  cannot make ݏெ  better off. This means that ఘఙ
మ

ଷே
൬ݏெଷ ൫ݍ − ݉௦ಾ

∗∗ ൯
ೞಾିଵ

ଶ൫ೞಾାଵ൯
+

ଵ
ଶ
ଷݏ

ିଵ

మ(ାଵ)

൰ > 0, which implies that ܷ௦ಽ(ܩᇱ) > ௦ܷಽ(ܩ). Thus, ܩ′ makes both ݏ and ݅ better 

off, which means ܩ cannot be a strongly stable network. 

Q.E.D. 
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Proof of Proposition 10 

Proof: 

 Since ݉௦ಽ
∗∗ <  a large-capacity dealer always want to connect to an additional dealer. As ,ݍ

a small-capacity dealer never has the chance to trade with an investor and hence never sells in 

the inter-dealer market, he does not pay any linking cost for preparing collateral. Based on 

these two arguments, a large-capacity dealer always connects to its own type and small-

capacity dealers. 

 A small-capacity dealer does not connect to his own type, as there is no risk-sharing 

benefit. 

 For a medium-capacity dealer, he never connects to a small-capacity dealer because of 

ݍ < ݉௦ಾ
∗∗ . If ݏଷ

ேିଶ
(ேିଵ)మே

> ெଶݏ ቀ
ଷ
ఘఙ

−  ெቁ, then all medium-capacity dealer connect to allݏ

large-capacity dealer because this condition implies that for any ݊௦ಾ ,݊௦ಽ ≤ ܰ − ெଷݏ ,1 ൫ݍ −

݉௦ಾ
∗∗ ൯

ೞಾିଵ

ଶ൫ೞಾାଵ൯
+ ଵ

ଶ
ଷݏ

ೞಽିଵ

ೞಽ
మ ൫ೞಽାଵ൯

> 0. That is, a medium-capacity dealer is always better off 

connecting to a large-capacity dealer. 

 Since any medium-capacity dealer connects to all high-capacity dealers, all medium-

capacity dealers have at least ௦ܰಽ  links. Since all medium-capacity dealers are identical, 

Proposition 1 still applies. The payoff function for a medium-capacity dealer ݉ is 

 
ܷ(ܩ) =

ெଷݏଶߪߩ

6ܰ ቆݍ −݉௦ಾ
∗∗ +

݊௦ಾ − ௦ܰಽ
݊௦ಾଶ

ቇ
݊௦ಾ − 1
݊௦ಾ + 1. 

(A32) 

 Let  

 
݊௦ಾ
∗ = arg max

ೞಾ∈ℕ
ቆݍ −݉௦ಾ

∗∗ +
݊௦ಾ − ௦ܰಽ

݊௦ಾଶ
ቇ
݊௦ಾ − 1
݊௦ಾ + 1

, 
(A33) 

where	݊௦ಾ
∗  is the number of links a medium-capacity dealer has in equilibrium. 

Q.E.D. 
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Proof of Proposition 11 

Proof: 

 Since  

 
௦ಽ̅
 − ௦ಾ̅

 = න ௦ಽ
 ݖ݀

௭ା௦ಽ

௭
− න ௦ಾ

 ݖ݀
௭ା௦ಾ

௭
, 

(A34) 

 
= (1 − ݒቌ൭(ݍ − ܫଶߪߩ +

ݍ
1 − ݍ

ܯ) ଶ)൱ߪଵܯ− ݏ) − (ெݏ

+
ଶߪߩ

2 ቆ
ெଶݏ

݊௦ಾ∗ + 1 −
ଶݏ

ܰቇ
ቍ, 

 

it is obvious if ቆݒ − ܫଶߪߩ + 
ଵି

ܯ)	 )ቇ	ଶ)ߪଵܯ− ݏ) − (ெݏ ≥ ఘఙమ

ଶ
	൬௦ಽ

మ

ே
− ௦ಾ

మ

ೞಾ
∗ ାଵ

൰ , then 

௦ಽ
 ≥ ௦ಾ

 . Otherwise, ௦ಽ
 < ௦ಾ

 . 

Q.E.D. 

Proof of Proposition 12 

Proof: 

 

Definition A.1 

 A cycle in a “trading-sets network” is a path consisting of more than two non-repeated 

trading sets and the starting set is the same as the ending set. 

 

Lemma A.2 [Theorem 4.2 in Malamud and Rostek (2013)] 

 Any two trading sets in the “trading-sets network” have the same prices if and only if 

these two sets are on the same cycle. 

 

Proof: 

 See Malamud and Rostek (2013). 

Q.E.D. 
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Definition A.2 

 A link in a “trading-sets network” is a bridge if cutting it would cause its ending points 

to lie in separate components. 

 

Lemma A.3 

 A monopolistic dealer in an inter-dealer network is a bridge in the “trading-sets 

network” derived from the inter-dealer network.  

 

Proof: 

 Suppose a monopolistic dealer is not a bridge in the “trading-sets network.” Then 

removing the monopolistic dealer does not increase the number of components in the 

“trading-sets network.” This means that all trading sets that include the monopolistic dealer 

are still connected, even when the monopolistic dealer is removed. To see if dealers in those 

trading-sets are connected in the inter-dealer network, we do the following. 

i) Label those trading-sets in sequence from 1 to ݉. 

ii) Start from set 1, and then find its connected sets.  

iii) Start from those connected sets identified in step 2, and then find their connected 

sets. 

iv) Repeat step 3 until all trading sets are exhausted. 

 Based on Definition 3 and 4, the above algorithm shows that dealers in the same trading 

set are connected, and dealers in trading sets identified in step 3 are also connected. Since all 

those trading sets are connected, step 4 eventually ends, which means that all dealers in those 

trading sets are connected. This contradicts the definition of the monopolistic dealer, whose 

neighbors belong to separate components. Hence, a monopolistic dealer is a bridge in the 

“trading-sets network.” 

Q.E.D. 

 Lemma A.2 is used to prove the second half of Proposition 12. If a pair of dealers have 
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more than two unconnected common neighbors, then in the “trading-sets network” this pair 

of dealers and their unconnected common neighbors construct a cycle. By Lemma A.2, 

prices along the cycle are the same, which means that any of those dealers buys and sells at 

the same price in distinct trading sets. That is, the markup for “hot potato” trading is zero. 

The first half of Proposition 12 is proved by Lemma A.3, which states that a monopolistic 

dealer is a bridge in the “trading-sets network.” Hence, the monopolistic dealer can never be 

in a cycle. Lemma A.2 then implies that the monopolistic dealer always charges non-zero 

markups. 

Q.E.D. 
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