
Universal Gravity∗

Treb Allen

Northwestern and NBER

Costas Arkolakis

Yale and NBER

Yuta Takahashi

Northwestern

First Version: August 2014
This Version: October 2014

Abstract

The gravity relationship is one of the most robust empirical results in economics.

This success has led to a proliferation of general equilibrium models that offer theo-

retical foundations for the gravity relationship. In this paper we develop a universal

framework that nests previous general equilibrium gravity models and show that many

of the macro-economic implications these various models depend solely on two key

model parameters, which we term the “gravity constants.” On the theoretical side, we

provide sufficient conditions for the existence and uniqueness of the trade equilibrium

and show that the equilibrium can be equivalently considered as the solution to plan-

ning problems either maximizing world income or world welfare. On the empirical side,

given observed trade flows, we show that gravity models are fundamentally underiden-

tified, yet we can characterize all comparative statics for any change in bilateral trade

frictions solely in terms of observed trade flows and the gravity constants. Based on

these results, we derive a closed form solution of a new gravity estimator that improves

upon standard reduced-form gravity regressions by directly incorporating general equi-

librium effects.

∗We thank Andy Atkeson, Lorenzo Caliendo, Arnaud Costinot, Dave Donaldson, John Geanakoplos,
Penny Goldberg, Sam Kortum, Giovanni Maggi, Steve Redding, and Xiangliang Li for excellent comments
and suggestions. A Matlab toolkit which is the companion to this paper is available on Allen’s website. All
errors are our own.
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1 Introduction

The gravity relationship – where trade flows increase with the origin and destination countries

incomes and decrease with the distance between the two countries – is one of the most robust

empirical results in economics.1 This success has led to a proliferation of general equilibrium

models that offer theoretical foundations for the gravity relationship, see e.g. Anderson

(1979); Bernard, Eaton, Jensen, and Kortum (2003); Eaton and Kortum (2002); Chaney

(2008). However, due to the numerous and varied general equilibrium effects at play in these

gravity trade models, little is known about the extent to which the predictions of each model

depends on its particular theoretical foundation.

In this paper, we develop a universal framework that nests previous general equilib-

rium gravity models and show that many macroeconomic implications depend solely on two

key model parameters, which we term the “gravity constants.”2 Different micro-economic

foundations affect the interpretation of the gravity constants, but do not affect the general

equilibrium structure of the model. Simply put, conditional on the value of these constants,

all gravity trade models deliver the same macro-economic predictions.

The general equilibrium gravity framework we develop is based on four restrictions: (i) a

“modern”version of gravity, whereby bilateral trade flows depend on (endogenous) origin and

a destination country shifter and (exogenous) bilateral trade frictions;3 (ii) aggregate output

equals total sales; (iii) trade is balanced; and (iv) (gross) income is a log-linear function of

the origin and destination shifters (which practically translates to the condition that gross

income is proportional to labor income). The aforementioned gravity constants are simply

the coefficients of this log-linear function. It turns out that these assumptions – which are

ubiquitous throughout the trade literature – impose sufficient structure on aggregate trade

flows to completely characterize all general equilibrium interactions.

We classify our results into two groups: theoretical and empirical. In the first group,

we first examine the existence and uniqueness properties common to all general equilibrium

gravity trade models. We show that their solution can be represented by a nonlinear op-

1The literature on the gravity equation in trade is vast; an excellent starting place are the recent review
articles by Baldwin and Taglioni (2006), Anderson (2011) and Head and Mayer (2013).

2Examples of models covered under our specification is perfect competition models such as Anderson
(1979), Anderson and Van Wincoop (2003), Eaton and Kortum (2002), Caliendo and Parro (2010) monopo-
listic competition models such as Krugman (1980), Melitz (2003) as specified by Chaney (2008), Arkolakis,
Demidova, Klenow, and Rodŕıguez-Clare (2008), Di Giovanni and Levchenko (2008), Dekle, Eaton, and Ko-
rtum (2008), and the Bertrand competition model of Bernard, Eaton, Jensen, and Kortum (2003); see Table
1 for details.

3This version of the gravity model was first introduced by Eaton and Kortum (2002), Anderson and
Van Wincoop (2003), and Redding and Venables (2004). Baldwin and Taglioni (2006) and Head and Mayer
(2013) carefully discuss the econometric issues arising from the use of this specification.
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erator on a compact set, which allows us to provide sufficient conditions for existence and

uniqueness of a trade equilibrium as a function solely of the two gravity constants. Given the

simple mapping of different gravity models to gravity constants, these sufficient conditions

are straightforward to check and relax the sufficient conditions presented by Alvarez and

Lucas (2007). The parameter region where uniqueness applies can be expanded when trade

frictions are “quasi-symmetric”, as is assumed in much of the empirical gravity literature,

e.g. Eaton and Kortum (2002) and Waugh (2010). Our methodology can also be extended

to consider multiple sectors of production, as in Chor (2010) and Costinot, Donaldson, and

Komunjer (2010).

Second, we show that there exists two “dual” interpretations of the general equilibrium

gravity model. In the first interpretation, a planner maximizes world income subject to trade

remaining balanced and an aggregate world resource constraint. In the second interpretation,

a planner maximizes a weighted average of world welfare subject to only the aggregate world

resource constraint, where welfare is assumed to be written as a function of trade openness (as

in the class of trade models considered by Arkolakis, Costinot, and Rodŕıguez-Clare (2012)).

Using these dual interpretations, we apply the envelope theorem to derive the elasticity

of both world income and world welfare to any bilateral trade costs, which can both be

expressed solely as a function of observed trade flows and the gravity constants. While the

expression for world income is, to the best of our knowledge, novel, the expression for world

welfare has been derived previously for gravity models with CES demand by Atkeson and

Burstein (2010), Burstein and Cravino (2012), and Fan, Lai, and Qi (2013); our derivation

extends this result to any gravity trade model where welfare can be expressed as a function

of trade openness (which Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2012) show

holds for a large class of homothetic utility functions).

We then turn to the empirical properties of the model by asking what can be said using our

framework given observed trade flows. We first characterize the extent to which model fun-

damentals can be recovered from the trade data. We show that trade models are intrinsically

underidentified: the same trade data can be perfectly matched by different combinations of

model fundamentals. Notably, the gravity constants cannot be identified from observed trade

flows alone. This result provides a general characterization of the non-identification inherent

to gravity models which has been discussed for particular models previously by in Waugh

(2010), Eaton, Kortum, Neiman, and Romalis (2011), Burstein and Vogel (2012), Ramondo,

Rodŕıguez-Clare, and Saborio-Rodriguez (2012) and Arkolakis, Ramondo, Rodŕıguez-Clare,

and Yeaple (2013).

To examine how changes in bilateral trade frictions affect equilibrium trade flows and

incomes we first derive an analytical expression for the (large) matrix of elasticities of all
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bilateral trade flows and incomes to changes in all bilateral trade frictions. As with the

aggregate elasticities, this expression depends only on observed trade flows and the gravity

constants, indicating that apart from these two model parameters, all macro-economic im-

plications – i.e. the changes in trade flows and gross incomes – for all gravity models are

the same. We then derive a system of equations that show how arbitrary (possibly non-

infinitesimal) changes to the trade friction matrix affect macro-economic variables; again

this expression only depends on the gravity constants and observed trade flows. While the

non-infinitesimal results generalize those developed by Dekle, Eaton, and Kortum (2008)

and Arkolakis, Costinot, and Rodŕıguez-Clare (2012), the closed form solution for the trade

elasticities is, the the best of our knowledge, the first in the literature.4

Building upon these theoretical results, we develop a new general equilibrium gravity

estimator. Unlike the widely used fixed effects gravity estimator made popular by Eaton

and Kortum (2002) and Redding and Venables (2004)5, our estimator, which is in the spirit

of Anderson and Van Wincoop (2003), explicitly incorporates the general equilibrium effects

that a change in the bilateral trade friction between any two countries has on all other

bilateral trade flows.6 Unlike Anderson and Van Wincoop (2003), however, we derive a closed

form solution for the general equilibrium estimator, and show that it can be interpreted as

an ordinary least squares regression where the typical gravity regressors have undergone a

transformation to account for general equilibrium effects. Using Monte Carlo simulations, we

show that the general equilibrium estimator can not only outperform a fixed effects gravity

estimator, it can also overcome concerns of omitted variable bias by relying on the general

equilibrium effects as a source of identification.

Finally, we put our gravity framework to work in two empirical applications. First,

we show how to optimally allocate “infrastructure improvements” that lower bilateral trade

frictions to maximize the welfare of any particular country (or total world welfare). Second,

we estimate the effect of WTO membership on trade flows, and find that while the WTO

substantially increases the welfare of member countries, it does so at a cost to non-members.

Our work is related to a small but growing literature analyzing the structure of general

4The analysis of Arkolakis, Costinot, and Rodŕıguez-Clare (2012) and Arkolakis, Costinot, Donaldson,
and Rodŕıguez-Clare (2012) applies only to models where the trade elasticity, i.e. the response of trade flows
to trade costs, pins down our first gravity constant and the second gravity constant is equal to zero. Formally,
models that violate the assumption R2’ in Arkolakis, Costinot, and Rodŕıguez-Clare (2012) are not covered
in that class. Models that our framework nests that violate R2’ in Arkolakis, Costinot, and Rodŕıguez-Clare
(2012) include Di Giovanni and Levchenko (2009), Arkolakis (2010) when domestic labor is fully or partially
used for marketing costs of exporting, and models with intermediate inputs as in Eaton and Kortum (2002).

5Earlier applications of the fixed effects estimator include Harrigan (1996) and Hummels (1999).
6Other papers that develop general equilibrium estimation procedures for the gravity equation include

Balistreri and Hillberry (2007), Anderson and Yotov (2010), and Fally (2012); our paper, however, is the
first to derive a closed form least squares estimator that incorporates general equilibrium effects.

4



equilibrium models of trade. Notably, Arkolakis, Costinot, and Rodŕıguez-Clare (2012) derive

a closed form expression for changes in welfare as a function of openness that holds true across

a large set of trade models. This paper follows in their footsteps by deriving closed form

expressions for all other outcomes of interest, e.g. changes in bilateral trade flows, incomes,

and global welfare that hold universally across gravity models. Our paper is also related to

Costinot (2009), who examines the patterns of trade that hold true across many models. His

primary focus, however, is on the specialization of countries in particular sectors, whereas

we are concerned with the pattern of aggregate trade flows in a gravity framework.

The paper is organized as follows. In the next section, we present the universal framework

and discuss how it nests existing general equilibrium gravity models. In Section 3, we present

the theoretical results for existence and uniqueness, as well as the dual interpretations of the

problem. In Section 4, we present the empirical results for identification, comparative statics

and estimation. In Section 5, we present two empirical applications illustrating our results.

Section 6 concludes.

2 The general equilibrium gravity framework

Consider a world comprised of a set S ≡ {1, ..., N} of locations.7 Let Yi denote the gross

income of country i, Xij the total value of country j’s imports from country i, and Kij > 0 the

associated bilateral trade frictions. As indicated in the introduction we focus our attention

on models satisfying the “modern” version of the gravity equation, first discussed by Eaton

and Kortum (2002), Anderson and Van Wincoop (2003), and Redding and Venables (2004).

Formally, we define a gravity trade model as any model which yields an equation of the

following type:

Assumption 1. For any countries i ∈ S and j ∈ S, the value of bilateral trade flows is

given by Xij = Kijγiδj, where Kij > 0 is the exogenous bilateral trade friction and γi and δi

are endogenous model outcomes.

In this specification, the origin shifter γi and the destination shifter δj can represent

endogenous model outcomes – such as wages or the measure of firms as well as model fun-

damental parameters – such as productivities or labor endowments. The bilateral trade

frictions are exogenous and capture the effects of bilateral trade costs; they could be inverse

functions of bilateral distance, various exporting barriers faced by exporting countries, etc.

Note that larger values of Kij indicate lower bilateral trade frictions. Whereas we do not

7The choice of a finite number of locations is not necessary for the the results that follow, but it saves on
notation, avoids several thorny technical issues, and is consistent with the majority of the trade literature.
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take a particular stand on the model that yields this gravity specification, we explain how

different models map to this specification and to our subsequent results below.

Goods market clearing and trade balance. We proceed by defining two equilibrium

conditions that are standard assumptions for modern general equilibrium gravity models:

goods market clearing and trade balance. We say that goods markets clear if the output

for all i ∈ S is equal to the value of the good sold to all destinations. This condition is

practically an accounting identity. Formally:

Assumption 2. For any country i ∈ S,Yi =
∑

j∈S Xij.

Furthermore we assume that trade is balanced, i.e. that output for all i ∈ S is equal to

the amount spent on good purchased from all other destinations:

Assumption 3. For any country i ∈ S, Yi =
∑

j∈S Xji.

While balanced trade is a standard equilibrium condition in general equilibrium gravity

models, it is important to note that trade is not balanced empirically. This empirical discrep-

ancy is an inherent limitation arising from the use of a static model to explain an empirical

phenomenon with dynamic aspects. However, given both its ubiquity in the literature and

the necessarily ad hoc nature of any alternative assumption (e.g. exogenously trade deficits),

balanced trade seems the natural assumption on which to focus. We relax this assumption

in characterization of the empirical properties of the model in Section 4.

Our last assumption postulates a log-linear parametric relationship between gross income

and the origin and destination shifter:

Assumption 4. For any country i ∈ S, Yi = Biγ
α
i δ

β
i , where we define α ∈ R and β ∈ R to

be the gravity constants and Bi > 0 is an (exogenous) country specific shifter.

Contrasting with A.1 which controls the matrix of bilateral flows, A.4 regulates the extent

to which income responds to changes in the two endogenous shifters. The gravity constants

determine the importance of the origin and destination shifters in determining a country’s

income. Let us consider the case that α and β are negative (which turns out to be a useful

one). A larger origin shifter represents a higher exporting potential of the country. With a

negative α this higher exporting ability is only achieved through a lower income (conditional

on the destination shifter). A similar relationship holds between the destination shifter and

income with a negative β. These inverse relationships guarantee that there exists a stabilizing

force in the gravity network, which will prove important when we discuss the existence and

uniqueness of equilibria.

In practice, A.4 is analogous to the standard condition that the income in a location is

equal to the income earned by the factors of production in that location but reformulated
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in terms of the origin and destination shifters of the gravity equation. This formulation is

general enough to incorporate a number of seminal gravity trade models, e.g. Armington

(1969); Anderson (1979); Krugman (1980); Eaton and Kortum (2002); Melitz (2003).

Finally, to choose the numeraire, we normalize world income equal to one:∑
i

Yi = 1. (1)

In what follows, we define a general equilibrium gravity model to be any gravity trade model

such that goods market clears, trade is balanced, factor markets clear, (conditions A.1-A.4)

and the normalization (1) is satisfied.

Example: the Armington model To make things concrete, we will provide a simple

example of a general equilibrium trade model that satisfies our assumptions. In the Arming-

ton (1969) model, first formulated in general equilibrium by Anderson (1979), each location

produces a differentiated variety (which is sold at marginal cost) and consumers have CES

preferences with elasticity of substitution σ and where we denote by Pi the Dixit-Stiglitz

CES price index across all varieties. We assume that production combines labor and an

intermediate input in a Cobb-Douglas fashion, where the share of labor is given by δ ∈ (0, 1],

and the intermediate input uses the same CES aggregator of goods from all countries as the

final consumption good. Thus, with productivity Ai the unit cost of production in country

i is simply wδiP
1−δ
i /Ai.

In this model, the value of bilateral trade between i ∈ S and j ∈ S is:

Xij = τ 1−σij

(
wδiP

1−δ
i

Ai

)1−σ

P σ−1
j Yj (2)

where wi is location’s i wage, Ai is the location’s productivity and the marginal production

cost is wi
Ai

, τ ij is the iceberg cost of delivering i’s good in destination j, and Yi is again its

income. It is also straightforward to show that output is proportional to wage income and

is given by

Yi = wiLi/δ (3)

where Li is the population in location i. According to the definition of gravity, A.1, we have

γi ≡
(
wδiP

1−δ
i

Ai

)1−σ

, δi ≡ P σ−1
i Yi,
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which allows us to write A.4 as

Yi = γ
1

1−σδ
i δ

1−δ
1−σδ
i A

σ−1
σδ−1

i L
δ(σ−1)
σδ−1

i ,

so that α ≡ 1
1−σδ , β ≡

1−δ
1−σδ , and Bi = A

σ−1
σδ−1

i L
δ(σ−1)
σδ−1

i . Note that if σ > 1 and σδ > 1, then

α, β< 0 and a higher productivity Ai will increase both the exporting ability and the income

of the country. At the same time increases in wages increase exports but decrease income as

discussed earlier.

Table 1 shows how to express the two gravity constants, parameters α and β, in several

models that map to our framework. As we will see below, these two constants can be used

to sufficiently characterize whether or not an equilibrium is unique and, along with observed

trade flows, fully determine how changes to model parameters will affect trade flows and

incomes.

3 Theoretical properties

We first consider the theoretical properties of the general equilibrium gravity framework.

3.1 Existence and Uniqueness

In this section, we provide sufficient conditions for establishing existence and uniqueness in a

general equilibrium gravity model. We start by formulating the equilibrium system implied

by our assumptions. Using A.2 and A.3 and substituting out Xij and Yi with the definitions

A.1 and A.4, respectively, yields:

Biγ
α−1
i δβi =

∑
j

Kijδj (4)

and

Biγ
α
i δ

β−1
i =

∑
j

Kjiγj (5)

Thus, the solution of a gravity model is given by γi and δi for all i ∈ S such that equations

(4) and (5) and the normalization from equation (1) are satisfied.

To proceed, we define xi ≡ Biγ
α−1
i δβi and yi ≡ Biγ

α
i δ

β−1
i . By reformulating the system

in terms of xi, yi (see Appendix A.1 for details), equations (4) and (5) take the form of a
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standard system of non-linear equations. It turns out that this reformulation of the problem

provides a method of solving for the trade equilibrium system using functions that map a

compact space onto itself. This has two advantages over the standard formulation given in

equations Equations (4) and (5): first, by restricting the potential solution space, it facilitates

the calculation of the equilibrium; second, it allows us to generalize results used in the study

of integral equations to prove the following theorem regarding the existence and uniqueness

of general equilibrium gravity models:

Theorem 1. Consider any general equilibrium gravity model. Then:

i) If α + β 6= 1, the model has a positive solution and all possible solutions are positive;

ii) If α, β ≤ 0 or α, β ≥ 1, then the model has a unique solution.

Proof. See Appendix A.1.

Note that condition (ii) of Theorem 1 provides sufficient conditions for uniqueness; for

certain parameter constellations (e.g. particular geographies of trade costs), equilibria may

be unique even if the conditions are not satisfied. In practice, however, we have found that

there exist multiple equilibrium for particular geographies when condition (ii) is not satisfied.

Quasi-symmetry

It turns out that we can extend the range in which uniqueness is guaranteed if we constrain

our analysis to a particular class of trade frictions which are the focus of a large empirical

literature on estimating gravity trade models. We call these trade frictions quasi-symmetric.

Definition 1. Quasi Symmetry: We say the trade frictions matrix K is quasi-symmetric if

there exists a symmetric N ×N matrix K̃ (i.e. for all i, j ∈ S, K̃ij = K̃ji) and N × 1 vectors

KA and KB such that for all i, j ∈ S we have:

Kij = K̃ijK
A
i K

B
j .

Loosely speaking, quasi-symmetric trade frictions are those that are reducible to a sym-

metric component and an origin- and destination-specific component. While restrictive, it is

important to note that the vast majority of papers which estimate gravity equations assume

that trade frictions are quasi-symmetric; for example Eaton and Kortum (2002) and Waugh

(2010) assume that trade costs are composed by a symmetric component that depends on

bilateral distance and on a destination or origin fixed effect.

When trade frictions are quasi-symmetric we can show that the system of equations (28)

and (29) can be dramatically simplified, and the uniqueness more sharply characterized.
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Theorem 2. Consider any general equilibrium gravity model with quasi-symmetric trade

costs. Then:

i) The balanced trade condition is equivalent to the origin and destination fixed effects

being equal up to scale, i.e.

γiK
A
i = κδiK

B
i (6)

for some κ > 0 that is part of the solution of the equilibrium.

ii) If α and β satisfy

α + β ≤ 0 or α + β ≥ 2 (7)

the model has a unique positive solution.

Proof. See Appendix A.2.

Part i) of the Theorem 2 is particularly useful since it allows to simplify the equilibrium

system into a single non-linear equation:

γα+β−1i = κβ−1
∑
j

K̃ijB
−1
i

(
KA
i

)1−β (
KB
i

)β
γj (8)

In addition, because the origin and destination shifters in gravity models will (generally)

be composites of exogenous and endogenous variables, by showing that the two fixed effects

are equal up to scale, Theorem 2 provides a more precise analytical characterization of the

equilibrium. We should note that the results of Theorem 2 have already been used in the

literature for particular models, albeit implicitly. The most prominent example is Anderson

and Van Wincoop (2003), who use the result to show the bilateral resistance is equal to

the price index.8 To our knowledge, Head and Mayer (2013) are the first to recognize the

importance of balanced trade and market clearing in generating the result for the Armington

model; however, Theorem 2 shows that the result applies more generally to any general

equilibrium gravity model with quasi-symmetrical trade costs.

Figure 1 illustrates the range of α and β for which uniqueness of the model can be guar-

anteed. It should be noted that while most of the examination of existence and uniqueness of

trade equilibria has proceeded on a model-by-model case, the gross substitute methodology

used by Alvarez and Lucas (2007) has proven enormously helpful in establishing condi-

tions for existence and uniqueness. It can be shown (see Online Appendix B.3) that the

gross-substitutes methodology works only when α ≤ 0 and β ≤ 0; hence, the tools used in

Theorems 1 and 2 extend the range of trade models for which uniqueness can be proven,

including, for example, Armington model with intermediate inputs.

8The result is also used in economic geography by Allen and Arkolakis (2013) to simplify a set on non-
linear integral equations into a single integral equation.
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Example: Armington model with quasi-symmetry Consider again an Armington

model with intermediate inputs, but now assume that trade costs are quasi-symmetric. From

part (i) of Theorem 2, we have γi = κδi, which implies:

(
wδiP

1−δ
i

Ai

)1−σ

KA
i = κP σ−1

i wiLiK
B
i ,

or equivalently:

Pi = w
1+(σ−1)δ

(1−σ)(2−δ)
i

(
κLiA

1−σ
i

KB
i

KA
i

) 1
(1−σ)(2−δ)

. (9)

Equation (9) provides some intuition for the uniqueness condition presented in Theorem 2:

when σ < 1
2
, it is straightforward to show that the elasticity of the price index with respect to

the wage is less than one. This implies that the wealth effect may dominate the substitution

effect, so that the excess demand function need not be downward sloping.

In addition, combining equation (9) with equation (8), assuming δ = 1, and noting that

welfare Wi = wi
Pi

yields the following equation:

κW σσ̃
i Lσ̃i =

∑
j

KijA
(σ−1)σ̃
i Aσσ̃j L

σ̃
jW

−(σ−1)σ̃
j , (10)

where σ̃ ≡ σ−1
2σ−1 . Equation (10) holds for both trade models (where labor is fixed) and

economic geography models (where labor is mobile); in the former case, Li is treated as

exogenous parameter and Wi solved for; in the latter case Li is treated as endogenous and

Wi is assumed to be constant across locations. Hence, Theorem 2 highlights the fundamental

similarity between trade and economic geography models.9

Multiple sectors

Our approach also can be naturally extended to the cases where there are multiple sectors.

Suppose there are a set s ∈
{

1, ..., S̃
}

of sectors and that the bilateral trade flow between

9When there are only two countries (so that trade costs are necessarily quasi-symmetric), we can use
equation (10) to derive a single non-linear equation that yields the relative welfare in the two countries

K22

(
W 1

W 2

)σσ̃
−K11

(
W 1

W 2

)(1−σ)σ̃

+K21

(
W 1

W 2

)σ̃
= K12.

Comparative statics for welfare with respect to changes in Kij can be characterized using the implicit function
theorem in this case.
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country i and country j in sector s is

Xs
ij = Ks

ij (γi)
(
δsj
)
.

With multi-sector gravity models, we implicitly assume that there are no frictions on labor

markets so that the wages in country i is equalized across sectors. That is why we can assume

that the origin effect, γi, is independent of the sector s. Assumption A.4 becomes:

Yi = Bi (γi)
α

(∏
s

(δsi )
θt

)β

.

The first two terms are the same as before, but the last term is slightly different from what

we have in a single-sector economy. In general the income for country i depends on the price

index Pi, which can be captured by
(∏

s (δsi )
θt
)β

.

The other two equilibrium conditions are:∑
j

Xs
j,i = Bs

i Yi∑
s

∑
j

Xs
i,j = Yi.

The first equation assumes that country i’s expenditure in each sector is a constant fraction of

its total income. The second equation is the extension of the good market clearing condition

we have in a single-sector case.

It turns out that the conditions for uniqueness with multiple sectors are the same as with

a single sector, which we formalize in the following proposition:

Proposition 1. (1) There exists a solution to the multi-sector gravity model if α, β ≤ 0 or

α, β > 1. (2) That solution is unique if α, β ≤ 0 or α, β > 1.

Proof. See Appendix A.3.

Note that unlike the single sector case, we cannot prove the existence of a solution when

it is not unique; this is due to the presence of cross-sectoral linkages.

3.2 Two dual representations

In this section, we show that the solution of the general equilibrium gravity model can

be equivalently expressed as the solution to two distinct maximization problems: one for

world income and one for world welfare. These dual interpretations allow us to apply the
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envelope theorem to derive expressions for the elasticity of world income and world welfare,

respectively, to any change in bilateral trade frictions.

Consider first the problem of choosing the set of origin and destination fixed effects to

maximize world income subject to trade remaining balanced and the aggregate feasibility

constraint that world income can be equivalently calculated by summing over trade flows or

using assumption A.4:

max
{γ},{δ}

∑
i∈S

∑
j∈S

Kijγiδj

s.t.
∑
j

Kijγiδj =
∑
j

Kjiγjδi ∀i ∈ S and
∑
i∈S

∑
j∈S

Kijγiδj =
∑
i∈S

Biγ
α
i δ

β
i , (11)

where we now choose as a numeraire that γ1 = 1 rather than choosing world income as a

numeraire (since maximizing the numeraire is not a well defined problem).

Alternatively, consider the problem of maximizing a weighted average of world welfare

subject to only the aggregate feasibility constraint. Of course, in the absence of a micro-

foundation of the gravity trade model nothing can be directly said about the welfare of

the equilibrium (as we have not specified preferences). However, Arkolakis, Costinot, and

Rodŕıguez-Clare (2012) show that for a large class of trade models, the welfare of a country

can be written solely as an increasing function of its openness to trade and an exogenous

parameter, i.e. for all i ∈ S, welfare in country i, can be written as:

Wi = CW
i λ

−ρ
ii = CW

i

(
Biγ

α−1
i δβ−1i

)ρ
, (12)

where CW
i > 0 is an (exogenous) parameter and ρ > 0 is an exogenous scalar equal to

negative of the inverse of the elasticity of Kij to the iceberg trade costs. If welfare can be

written as in equation (12), we can define world welfare as a weighted average of the welfare

in each country:

W ≡
∑
i∈S

ωiWi =
∑
i∈S

ωiC
W
i

(
Biγ

α−1
i δβ−1i

)ρ
,

where ωi > 0 are the weights placed on the welfare in each country. Then the following world

welfare maximization problem is well defined:

max
{γ},{δ}

W

s.t.
∑
i∈S

∑
j∈S

Kijγiδj =
∑
i∈S

Biγ
α
i δ

β
i . (13)

It turns out that the solution to both the world income maximization problem (11) and the

world welfare maximization problem (13) is the solution to the general equilibrium gravity

13



model, which we prove in the following proposition:

Proposition 2. Consider any general equilibrium gravity model. If α+ β > 2 or α+ β < 0

(which by part (ii) of Theorem 2 guarantees uniqueness), Then:

(i) The solution of the general equilibrium gravity model is equivalent to the solution of

the world income maximization problem (11).

(ii) If welfare can be expressed as in equation (12), then there exists a set of weights {ωi}
such that the solution of the general equilibrium trade model is equivalent to the solution of

the world welfare maximization problem (13).

Proof. See Appendix A.4.

An advantage of the dual approach is that it allows us to apply the envelope theorem

to derive an expression for how any change in bilateral trade frictions affects world income

and world welfare. Using the world income maximization dual interpretation, the elasticity

of world income to Kij is:

∂ lnY W

∂ lnKij

=

[
(κi − κj) +

α + β

2− α− β

]
Xij

Y W
, (14)

where κi is the Lagrange multiplier on the balanced trade constraint and can be shown to

be the solution to the following linear system:

β − α
2− (α + β)

+ κi =
∑
j∈S

Xij

Yi
κj.

When trade costs are quasi-symmetric, part (i) of Theorem 2 implies that Xij = Xji so that

expression (14) becomes even more straightforward:

1

2

(
∂ lnY W

∂ lnKij

+
∂ lnY W

∂ lnKji

)
=

α + β

2− α− β
Xij

Y W
, (15)

i.e. a symmetric increase in any pair of Kij (i.e. a symmetric reduction bilateral trade

frictions) increases world income by an amount proportional to the importance of those

bilateral trade flows, where the proportion is a function of the gravity constants.10

Applying the envelope theorem to the world welfare maximization interpretation, the

elasticity of world welfare to Kij is even simpler::

∂ lnW

∂ lnKij

= ρ
Xij

Y W
. (16)

10Note that if α+ β > 2 or α+ β < 0, then α+β
2−α−β > 0.
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Since ρ is the inverse of the negative of the trade elasticity, equation (16) says that the

elasticity of welfare to the trade cost is simply equal to −Xij
YW

. This expression has been

derived for gravity models with CES demand by Atkeson and Burstein (2010), Burstein

and Cravino (2012), and Fan, Lai, and Qi (2013); our derivation extends this result to any

gravity trade model where welfare can be expressed as in equation (12). Arkolakis, Costinot,

Donaldson, and Rodŕıguez-Clare (2012) show that this expression holds for a larger class

of homothetic demand function that includes the symmetric translog demand function (see

also Feenstra (2003b)) and the Kimball demand function (see Kimball (1995)).

4 Empirical implications

Thus far, we have examined the theoretical properties of the general equilibrium gravity

framework. In this part of the paper, we ask in what ways can the general equilibrium gravity

framework be used in conjunction with an observed set of bilateral trade flows. In particular,

given any set of observed trade flows {Xij} and gravity constants α and β: we (1) show to

what extent model fundamentals such as bilateral trade frictions can be recovered; (2) derive

expressions for how the model equilibrium will change with any change in the underlying

bilateral trade flows; and (3) use these results to develop a new general equilibrium gravity

estimator that can outperform the standard gravity regression.

Before proceeding to these results, however, we must address an issue familiar to trade

empiricists: in contrast to assumption A.3, trade data is usually not balanced. It is not obvi-

ous how one ought to address unbalanced trade (which we view as a dynamic phenomenon)

in the context of a static model. In what follows, we we treat the trade deficits as exogenous.

Define Ei ≡
∑

j∈S Xji to be the expenditure in location i ∈ S, Yi ≡
∑

j∈S Xij to be the out-

put in location i ∈ S and D̄i ≡ Ei−Yi to be the (exogenous) trade deficit. In the derivations

that follow, we allow for any set of
{
D̄i

}
, which of course includes the case where observed

trade flows are balanced (i.e. D̄i = 0 for all i ∈ S). In this case, equation (5) becomes:

Biγ
α
i δ

β
i + D̄i =

∑
j

Kjiγjδi (17)

However, there are two disadvantages to allowing for exogenous deficits: first, the theoretical

results presented above (in particular, the uniqueness of the equilibrium) do not necessarily

hold; second, welfare cannot be expressed as in equation (12). Subject to these caveats, the

empirical results below hold with (exogenous) trade deficits.
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4.1 Identification

We first examine the extent to which one can recover model parameters given observed trade

flows alone. In particular, suppose that we observe trade flows {Xij}; to what extent can

we recover the gravity constants α and β, the income shifter {Bi}, the trade frictions {Kij}
and origin and destination fixed effects {γi} and {δi}?

The following proposition shows the extent to which the remaining model parameters can

be identified.

Proposition 3. For any set of observed trade flows {Xij} and gravity constants α and β,

there exists a unique set of relative trade frictions

{
Kij

(Kβ
ii/K

α
jj)

1
α−β (Bi/Bj)

1
α−β

}
and appropriately-

scaled origin and destination fixed effects

{
γi

K

β
α−β
ii B

1
β−α
i

}
and

{
δi

K
α

β−α
ii B

1
α−β
i

}
that are consis-

tent with a trade equilibrium, which can be written solely as a function of observables:

γi ×

(
Kβ
ii

Bi

) 1
β−α

= Y
1

α−β
i X

β
β−α
ii ,

δi ×
(
Bi

Kα
ii

) 1
β−α

= Y
1

β−α
i X

α
α−β
ii , and

Kij ×

(
Kβ
iiBj

Kα
jjBi

) 1
β−α

= Xij

(
Yj
Yi

Xβ
ii

Xα
jj

) 1
α−β

.

Proof. See Appendix A.5.

Proposition 3 shows that general equilibrium gravity models are fundamentally underi-

dentified in two ways. First, there exists a fundamental inability to determine which model

parameter is responsible for the level of trade flows. In particular, the scale of the bilateral

trade frictions and the income shifters cannot be separately identified: this is immediately

obvious by noting that one could simply divide both sides of equations (4) and (5) by Bi,

thereby normalizing Bi = 1 in all locations. Intuitively, a larger value of the income shifter

can be counteracted with lower bilateral trade frictions without affecting the equilibrium.

Similarly, the origin and destination fixed effects cannot be disentangled from either the

income shifter or the level of own trade frictions {Kii}: increasing either fixed effect can be

offset by an appropriate decline in either Bi or Kii without affecting the equilibrium. This in

turn implies that bilateral trade friction Kij cannot be separately identified from the level of

own trade frictions or income shifter in either the origin or destination location. To put it a
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different way, one can normalize Kii = Bi = 1 for all i ∈ S without affecting the equilibrium

of the model.

Second, even with the appropriate normalization, however, the observed trade flows can

be rationalized by the model for any chosen value of α and β (as long as α 6= β). That is,

the gravity constants cannot be identified using trade flow data alone. This result underpins

why previous attempts to estimate (transformations of) these gravity constants have relied

on additional sources of data such as prices (see e.g. Eaton and Kortum (2002), Simonovska

and Waugh (2009), and Waugh (2010)).

4.2 Comparative Statics

In this section, we consider how changes in model fundamentals affect trade flows and income.

We first consider infinitesimal changes and derive a closed form expression that yields the

elasticities of all origin and destination fixed effects to all bilateral trade frictions that depends

only on observed trade flows and the gravity constants. We then derive a system of equations

that show how arbitrary changes to the trade friction matrix affect trade flows that also

depend only on observed trade flows and the gravity constants.

4.2.1 Local Comparative Statics

Consider an infinitesimal change in any bilateral trade friction Kij; how does this affect equi-

librium trade flows and incomes? The following proposition provides a analytical expression

for the elasticity of all origin or destination fixed effects to all changes in bilateral trade

frictions:

Proposition 4. Consider any general equilibrium gravity model where condition (ii) of The-

orem 1 is satisfied. Define the 2N × 2N matrix A ≡

(
(α− 1)Y βY −X
αE −XT (β − 1)Y

)+

, where the

“+” denotes the Moore-Penrose pseudo-inverse, Y is the N × N diagonal income matrix

whose ith diagonal element is Yi, E is the N ×N diagonal income matrix whose ith diagonal

element is Ei and X is the N ×N trade flow matrix whose 〈i, j〉th element is Xij. Then:

∂ ln γl
∂ lnKij

= Xij × (Al,i + AN+l,j) + c and
∂ ln δl
∂ lnKij

= Xij × (AN+l,i + Al,j) + c, (18)

where Akl is the 〈k, l〉th element of A and c is a scalar11 that ensures the normalization∑
iBiγ

α
i δ

β
i = Y W holds.

11In particular, c ≡ 1
(α+β)YW Xij

∑
l Yl (α (Al,i +AN+l,j) + β (AN+l,i +Al,j)).
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Proof. See Appendix A.6.

We should note that the choice of the constant c (and hence the elasticities) will depend

on the normalization chosen: for example, the alternative normalization that γ1 = 1 implies
∂ ln γ1

∂ lnKij
= 0, so that c = Xij × (A1,i + AN+1,j). We should also note that while the expression

for A will hold even if trade flows are unbalanced, we can only guarantee that the equilibrium

is unique (and the elasticities are well-defined) if trade is balanced and condition (ii) of

Theorem 1 is satisfied.

Because all model outcomes (e.g. trade flows and country incomes) are functions of the

origin and destination fixed effects, Proposition 4 provides a closed form solution for the

the complete set of model elasticities. In particular, it is straightforward to determine how

changing the trade costs from i to j affects trade flows between any other bilateral trade pair

k and l:12

∂ lnXkl

∂ lnKij

=
∂ ln γk
∂ lnKij

+
∂ ln δl
∂ lnKij

∝ Xij × (Ak,i + AN+k,j + AN+l,i + Al,j) . (19)

Similarly, Proposition 4 can be applied to determine how changing the trade costs from i to

j affects income in any country l:

∂ lnYl
∂ lnKij

= α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

∝ Xij × (α (Al,i + AN+l,j) + β (AN+l,i + Al,j)) . (20)

If trade flows are balanced and welfare can be written as in equation (12), then we can also

determine the elasticity of welfare in any country l to any change in trade costs from i to j:

∂ lnWl

∂ lnKij

∝ Xij × ρ ((α− 1) (Al,i + AN+l,j) + (β − 1) (AN+l,i + Al,j)) (21)

Hence, given observed trade flows and the gravity constants α and β (and ρ in the context

of welfare), all general equilibrium gravity models deliver identical predictions for all local

comparative statics. We use this powerful result in Section 4.3 to derive a new general

equilibrium gravity estimator and in Section 5.1 to characterize the optimal set of trade

friction reductions.

4.2.2 Global Comparative Statics

Now consider how an arbitrary change in the trade friction matrix K affects bilateral trade

flows. The following proposition, which generalizes the results of Dekle, Eaton, and Kortum

12If k = i and l = j, then ∂ lnXkl

∂ lnKij
= 1 + ∂ ln γk

∂ lnKij
+ ∂ ln δl

∂ lnKij
, where the addition of one accounts for the direct

effect on Kkl.
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(2008) for all general equilibrium gravity trade models, provides an analytical expression

relating the change in the origin and destination fixed effects to the change in trade frictions

and the initial exporting and importing shares:

Proposition 5. Consider any given set of observed trade flows X, gravity constants α and

β, and change in the trade friction K̂ij. Then the percentage change in the fixed effects, {γ̂i}
and

{
δ̂i

}
, if it exists, will solve the following system of equations:

γ̂α−1i δ̂βi =
∑
j

(
Xij

Yi

)
K̂ij δ̂j and γ̂αi δ̂

β
i

Yi
Ei

+
D̄i

Ei
=
∑
j∈S

(
Xji

Ei

)
K̂jiγ̂j δ̂i. (22)

Proof. See Appendix A.7.

Note that equation (22) inherits the same mathematical structure as equations (4) and

(17). As a result, if trade is balanced (so that D̄i = 0 and Yi = Ei for all i ∈ S), then

part (i) of Theorem 1 proves that there will exist a solution to equation (22) and part (ii) of

Theorem 1 provides conditions for its uniqueness.

As with the local comparative statics, equation (22) only depends on trade data and

parameters α and β; hence, for any given change in trade frictions, all the gravity trade

models with the same α and β must imply the same change in the fixed effects γi and δi and

hence trade flows and incomes. If welfare can be written as in equation (12), the change in

country and global welfare will also be the same.

This proposition characterizes the comparative statics for a wide class of gravity trade

models. In the case where β = 0, it can be shown (see Online Appendix B.4) that the

comparative statics can be characterized using import shares alone. This special case (and

its welfare implications) is discussed in Proposition 2 of Arkolakis, Costinot, and Rodŕıguez-

Clare (2012).

4.3 Estimation

Our final contribution is to develop a new estimator of the gravity equation. For a given

set of gravity constants, this estimator directly accounts for the general equilibrium effects

that bilateral trade flows between any two locations have on all other trade flows. This

“general equilibrium estimator” potentially has two advantages over the standard fixed ef-

fects estimator most commonly employed today: first, by using all observed variation in

trade flows rather than controlling for origin and destination fixed effects, it can be more

efficient;13 second, it offers a simple way of circumventing the endogeneity issues common

13This potential efficiency gain was first noted by Anderson and Van Wincoop (2003).
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to standard gravity regressions. Somewhat surprisingly, the general equilibrium estimator

is no more difficult to implement than any other gravity regression: using the results from

Section 4.2.1, we show that the estimator can be implemented using ordinary least squares

once the explanatory variables have been appropriately transformed to incorporate general

equilibrium effects.

As we showed in Sections 4.1 and 4.2, while model fundamentals cannot be identified

using trade flow levels, observed trade flows (along with the gravity constants) are sufficient

to predict counterfactual changes in trade flows. For this reason, in what follows, we con-

sider gravity regressions based on changes in trade flows. Using the “hat” notation from

Section 4.2.2 and applying the gravity structure A.1 yields the following gravity equation in

differences:

X̂ij = K̂ij γ̂iδ̂j. (23)

Suppose that the (log) change in bilateral trade frictions can be written as a linear function

of a vector of observables, i.e. ln K̂ij = T̂ ′ijµ, and than an econometrician observes trade

flows with measurement error. Then taking logs of equation 23 yields:

ln X̂o
ij = T̂ ′ijµ+ ln γ̂i + ln δ̂i + εij, (24)

where X̂o
ij are the observed ratio of trade flows between i and j in period 1 to period 0,

T̂ij is an S × 1 vector of observables and T̂ ′ij denotes its transpose, µ is an S × 1 vector of

parameters, and εij is the measurement error. The goal of the econometrician is to estimate

µ, i.e. the effect of the various observables on bilateral trade frictions.

The fixed effects estimator

To provide a point of comparison for our estimator, it is helpful to first describe what

has become the standard method of estimating µ, which we refer to as the “fixed effects

estimator.” The fixed effects estimator estimates µ using equation (24) by including a full

set of origin and destination fixed effects in an ordinary least squares regression framework.14

Formally, the fixed effects estimator µ∗ is the one that minimizes the squared error between

observed (hatted) trade flows and the gravity regression, conditional on the optimal set of

14The fixed effects estimator is discussed in detail in the review articles of Baldwin and Taglioni (2006)
and Head and Mayer (2013). The latter review credits Harrigan (1996) as the first to use the fixed effects
estimator and Redding and Venables (2004) and Feenstra (2003a) for showing that the fixed effects estimator
could be used to control for the endogenous “multilateral resistance” terms present in general equilibrium
gravity models. Since then, the fixed effects literature has been used extensively in the empirical trade
literature.
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fixed effects:

µ∗FE ≡ arg min
µ∈RS

(
min

γ̂i,δ̂i∈RN

∑
i

∑
j

(
ln X̂o

ij − T̂ ′ijµ− ln γ̂i − ln δ̂j

)2)
.

By taking first order conditions, it is straightforward to derive an analytical solution for µ∗ :

µ∗FE =

(∑
i

∑
j

T̂ijT̂
′
ij

)−1∑
i

∑
j

T̂ij

(
ln X̂o

ij − ln γ̂∗i − ln δ̂∗j

)
, (25)

where the estimated fixed effects are identified up to scale:

ln γ̂∗i −
1

N

∑
k

ln γ̂∗k =
1

N

∑
j

((
ln X̂ij − T̂ ′ijµ∗

)
− 1

N

∑
k

(
ln X̂o

kj − T̂ ′kjµ∗
))

and:

ln δ̂∗j −
1

N

∑
k

ln δ̂∗k =
1

N

∑
i

((
ln X̂ij − T̂ ′ijµ∗

)
− 1

N

∑
k

(
ln X̂ik − T̂ ′ikµ∗

))
.

We should emphasize that there are a number of attractive properties of the fixed effects

estimator, most notably that it is easy to implement, and, as long as the measurement error

is uncorrelated with the observables or fixed effects, it is a consistent and unbiased estimator

of µ.

The general equilibrium estimator

The major disadvantage of the fixed effects estimator is that it treats the origin and desti-

nation fixed effects – which capture the general equilibrium effects of the gravity model – as

nuisance parameters to be controlled for. We now develop a “general equilibrium estimator”

that directly accounts for these general equilibrium effects, which, as we will see, allows

the econometrician to exploit the network structure of trade to overcome some common

econometric issues.

As the theoretical portion of the paper demonstrated, the (hatted) origin and destination

fixed effects are functions of the entire matrix of (hatted) bilateral trade frictions, i.e. for

all i ∈ S and j ∈ S, we can write γ̂i

(
T̂µ
)

and δ̂j

(
T̂µ
)

, where T̂µ is an N × N matrix

whose 〈i, j〉 element is T̂ ′ijµ. The general equilibrium estimator µ∗GE minimizes the squared

deviation from observed (hatted) bilateral trade flows while accounting for the effect of µ on
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the equilibrium (hatted) origin and destination fixed effects :

µ∗GE ≡ arg min
µ∈RS

(∑
i

∑
j

(
ln X̂o

ij − T̂ ′ijµ− ln γ̂i

(
T̂µ
)
− ln δ̂j

(
T̂µ
))2)

.

By taking first order conditions, it is straightforward to derive an implicit equation for µ∗GE.

In principal, the general equilibrium estimator could then be calculated through an iterative

procedure or through a non-linear least squares routine as in Anderson and Van Wincoop

(2003). However, it turns out that we can do better. Consider the following first order

approximations of the log change in the origin and destination fixed effects:

ln γ̂i

(
T̂µ
)
≈
∑
k

∑
l

∂ ln γi
∂ lnKkl

T̂ ′klµ and ln δ̂j

(
T̂µ
)
≈
∑
k

∑
l

∂ ln δj
∂ lnKkl

T̂ ′klµ. (26)

By taking first order conditions and applying these first order approximations, we can de-

rive a straightforward closed form solution for the general equilibrium estimator (once we

turn the N × N matrices into N2 × 1 vectors). Let T̂ now denote the N2 × S vector

whose 〈i+ j (N − 1)〉 row is the 1 × S vector T̂ ′ij, D denote the N2 × N2 matrix whose

〈i+ j (N − 1) , k + l (N − 1)〉 element is
∂ lnXij
∂ lnKkl

, and ŷ denote the N2 × 1 vector whose

〈i+ j (N − 1)〉 row is ln X̂o
ij. Then the general equilibrium gravity estimator is:

µ∗GE =

((
DT̂

)′ (
DT̂

))−1 (
DT̂

)
ŷ. (27)

Equation (27) says that, to a first order, the general equilibrium estimator is the coefficient

one gets from of an ordinary squares regression of the observed hatted variables on a “general

equilibrium transformed” explanatory variable T̂GEij :

ln X̂o
ij =

(
T̂GEij

)′
µ+ εij,

where:

T̂GEij ≡
∑
k

∑
l

∂ ln X̂ij

∂ ln K̂kl

T̂kl.

Intuitively, the general equilibrium transformed regressors capture the effect of the entire

set of explanatory variables on any particular observed bilateral trade flow. To do so, the

estimator relies on knowing the elasticities of all bilateral trade flows on all bilateral trade

frictions. From Section (4.2.1) and, in particular, equation (19), the complete set of such

elasticities can be simultaneously determined by a simple matrix inversion given observed
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trade flows and a set of gravity constants15. As a result, the general equilibrium estimator

directly accounts for all (first-order) general equilibrium effects arising from the network

structure of trade flows. It is important to emphasize that while the matrix of elasticities D

can be immediately calculated from equation (19), it requires specifying the gravity constants

α and β. Intuitively, because the general equilibrium effects depend (only) on the gravity

constants and observed trade flows, it is impossible to incorporate the general equilibrium

effects into any estimation procedure without specifying the gravity constants.

Comparing the fixed effects and general equilibrium estimators

To assess the relative benefit of the fixed effects and general equilibrium estimators, we

conduct a set of Monte Carlo simulations. For each simulation, we draw a random set of

initial bilateral frictions
{
K0
ij

}
and a random set of (time-invariant) income shifters {Bi}.

We then randomly assign half of the locations to be “existing members” of a “multilateral

trade organization” and ten percent of locations to be “new members” of the same trade

organization. Next, we suppose that the observed change in trade frictions arises from the

new members joining the trade organization; in particular, we assume K̂ij = T̂ijµ, where T̂ij

is an indicator variable equal to one if either the origin or destination is a new member of the

organization and its trading partner is either an existing or new member. For a given set of

gravity constants, we calculate the equilibrium in both periods.16 We then add idiosyncratic

measurement error to the trade flows in both periods and implement the two estimators

based on these “observed” trade flows.17 We calculate the coefficient of variation of the root

mean squared deviation “CV(RMSD)” for both estimators over five hundred simulations to

assess their relative efficiency.18 We repeat this procedure for varying numbers of countries,

size of measurement error, and magnitudes of the effect of the trade agreement (i.e. µ).

The top panel of Table 2 presents the results. For the sake of readability, we highlight the

most efficient estimator under a particular set of simulation parameters in bold. As is evident,

which estimator is more efficient depends on the particular set of simulation parameters.

15One ought not be concerned that equation (19) provides elasticities for
∂ lnXij

∂ lnKij
whereas the elasticities

required for the general equilibrium estimator are the “hatted” elasticities
∂ ln X̂ij

∂ ln K̂kl
, as it is straightforward to

show that
∂ ln X̂ij

∂ ln K̂kl
=

∂ lnX1
ij

∂ lnKij
, i.e. the “hatted” elasticities are the same as the period 1 elasticities.

16We choose α = − 2
3 and β = − 1

3 ; see below.
17The results are very similar if we instead add an error term to K̂ij , i.e. K̂ij = T̂ ′ijµ+ εij .

18The CV(RMSD) is defined as

(
1
M

∑M
m=1(µ

true−µ∗
m)

2
) 1

2

µtrue , where µtrue is the true value of µ, and µ∗m is

the estimated value for simulation m ∈ {1, ...,M}, i.e. the CV(RSMD) reports the ratio of the standard
deviation of an estimator to the true parameter value. Like the root mean squared error, the CV(RMSD)
is a statistic that combines both the accuracy and precision of an estimator; unlike the root mean squared
error, its value is not dependent on the size of µtrue.
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When there are a few number of locations, the general equilibrium estimator is more efficient

than the fixed effects estimator; this is because fixed effects estimator requires estimating

2N nuisance parameters, which reduces the degrees of freedom available for estimating µ. In

contrast, with many locations and a large effect size, the fixed effects estimator outperforms

the general equilibrium estimator; this is because the first order approximation (26) is less

accurate the larger the effect size.

While the general equilibrium estimator often outperforms the fixed effect estimator,

its true advantage arises from the ability to exploit the general equilibrium structure of

the gravity model to overcome the common econometric concern of omitted variable bias.

For example, whether or not a country signs a trade agreement is likely correlated with

unobservable variables (e.g. expectations about future trade flows) that are also correlated

with observed trade flows. Such omitted variables will result in biased estimates in a typical

gravity equation. However, because the identification in the general equilibrium estimator

relies on the effect of particular bilateral observables have on all bilateral trade flows, one can

estimate µ using only trade flows between locations that did not choose to sign a particular

trade agreement. That is, the decision of country i to join a trade agreement will have a

general equilibrium effect on trade flows between countries j and k. This general equilibrium

effect can be used to infer the effect of a trade agreement without the need to directly consider

how the trade flows of country i change.

To illustrate the power of this method, the bottom panel of Table 2 shows the efficiency

of the estimators when we include an omitted variable in the error term that increases the

observed period 1 trade flows19 by 5 percent only between countries in which one entered

the trade agreement.20 As is evident, the omitted variable biases both the fixed effects

estimator and the baseline general equilibrium estimator upward by an amount equal to the

size of the omitted variable. However, when we use the general equilibrium estimator but

exclude observations of trade between countries in which one entered the trade agreement

(the“GE - switchers”column), the effect of omitted variable on the efficiency of the estimator

is small. As a result, the general equilibrium estimator substantially outperforms the fixed

effects estimator as long as there are a sufficiently large number of countries to allow for the

19We choose to add the omitted variables to period 1 trade flows rather than period 0 trade flows in order
to introduce bias into the elasticity calculations used for the general equilibrium estimator.

20Because we interpret the error term as measurement error, this procedure should be interpreted as
capturing the possibility that countries who sign trade agreements have observed trade flows that are on
average 5 percent higher than their actual trade flows, while their actual trade flows are affected only by
the trade agreement. If we replace the measurement error with an endogeneous error term in the change

in bilateral trade frictions (i.e. K̂ij = T̂ ′ijγ + εij where E
[
T̂ijεij

]
6= 0), the general equilibrium estimator

excluding the “switchers” still outperforms the fixed effects estimator, although the differences in efficiency
are less stark since the endogeneous error term in this case also has a general equilibrium effect on trade
flows between all other locations.
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indirect identification of the effect of the trade agreement.

5 Empirical applications

In the final part of the paper, we illustrate two potential applications of the tools developed

above: first, we determine the optimal reduction in bilateral trade frictions; second, we

estimate the effect on trade flows and welfare of joining the WTO.

To illustrate the tools developed above, we use the CEPII gravity data set of Head,

Mayer, and Ries (2010). This data set has several advantages: it covers bilateral trade flows

between over two hundred countries, allowing us to construct the nearly complete world

trade network; it includes both trade flow and GDP data, allowing us to measure own trade

flows; and it is widely used, allowing comparability with other empirical studies.

We clean the data in three steps. First, we construct own trade flows. To do so, we rely

on the market clearing and balanced trade conditions, which implies that own trade is simply

the difference between observed income and total exports or total imports, respectively.21

Second, to avoid inferring infinitely high trade frictions between bilateral trade flows we

replace any missing bilateral trade flow with a small positive value. Finally, we balance the

trade flows; while this is not strictly necessary, it guarantees that the equilibrium is unique,

and as a result, the elasticities we estimate are well-defined. To do so, we ignore the observed

level of trade flows and instead treat the observed import shares λij ≡ Xij∑
iXij

as the true

data. We then find the unique set of incomes that are consistent with those import shares

and balanced trade. In particular, we solve the following linear system of equations:

Yi =
∑
j

λijYj.

By the Perron-Frobenius theorem, there exists a unique (to-scale) set of Yi;
22 we pin down

the scale with the normalization that
∑

i∈S Yi = 1. Given these equilibrium Yi, we then

define the balanced trade flows Xb
ij = λijYj.

23 The advantage of this procedure is that if

the observed Xij are balanced, the resulting re-balanced trade flows will be identical to the

21If income exceeds total imports (exports), we define own trade flows as income less total exports (im-
ports); if income exceeds both total imports and exports, we define own trade flows as income less the average
of total imports and exports.

22The Perron-Frobenius theorem guarantees that there exists a unique (to-scale) strictly positive vector
that solves Yi = κ

∑
j λijYj for the largest value of κ > 0. Since import shares sum to one, it is straightforward

to show that κ = 1 in this case: κ =
∑

i Yi∑
i

∑
j λijYj

=
∑

i Yi∑
j Yj

∑
i λij

= 1.

23 It is straightforward to see that these trade flows are balanced:
∑
j X

b
ji =

∑
j λjiYi = Yi

∑
j

Xji∑
j Xji

=

Yi =
∑
j λijYj =

∑
j X

b
ij .
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original trade flows, i.e. Xb
ij = Xij for all i ∈ S and j ∈ S. The disadvantage is that it is not

the unique way of balancing trade flows; for example, we could have just as easily treated

export shares πij ≡ Xij∑
j Xij

as the true data and found the unique set of incomes consistent

with balanced trade and those export shares using the equation Yi =
∑

j πjiYj.

As Proposition 4 and 5 show, for any given set of gravity constants and observed trade

flows, all local and global comparative statics can be calculated without specifying a particu-

lar micro-foundation of the gravity model. Hence, it remains to specify our choice of gravity

constants. In the main analysis, we choose α = −2
3
, β = −1

3
, and ρ = 1

2
; in the context of an

Armington trade model with intermediate inputs, these constants reflect a trade elasticity

of negative four (consistent with Simonovska and Waugh (2009)) and a labor share in the

production function of one-half (consistent with Alvarez and Lucas (2007)).

5.1 Optimal trade friction reductions

In this subsection, we demonstrate how the local comparative static results from Proposition

4 can be used to inform the choice of optimal trade policy, as well as estimate the potential

welfare gains from such a policy. From equation (21), once the matrix A has been calculated

from observed trade flows and the gravity constants, the elasticity of welfare in any country

l ∈ S with respect to the change in trade costs between any two countries i ∈ S and j ∈ S, i.e.
∂ lnWl

∂ lnKij
can be immediately determined from a linear combination of elements of the matrix.

These welfare elasticities allow one to address a number of empirically relevant questions,

including:

From the perspective of a particular country, which set of world-wide trade

friction reductions would benefit it the most and how much would it benefit

from these reductions? Suppose that there exists a world trade organization which

specifies how much each country in the world ought to reduce its trade frictions subject

to two constraints: first, the total amount of trade friction reductions worldwide is fixed

(e.g. for political or technological reasons), so that the purpose of the trade organization

is to allocate the trade friction reduction across countries; and second, the trade friction

reductions cannot discriminate, so that they are applied uniformly to the imports and exports

of all other countries.

Formally, let zi be the percentage change in bilateral trade frictions (both imports and

exports) of country i ∈ S and let ~z denote the N×1 vector of xi. To represent the constraint

that the total amount of trade friction reductions worldwide is fixed, suppose that ‖~z‖ = 1.

We can now examine what the optimal set of trade friction reductions ~z from the per-

spective of any country l ∈ S. Country l will want to choose trade friction reductions ~z in
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order to maximize the (first-order) effect on its welfare:

max
{zi}

∑
i∈S

∑
j∈S

∂ lnWl

∂ lnKij

zizl s.t.
∑
i∈S

z2i = 1,

or equivalently in matrix notation:

max ~zTW l~z s.t. ‖~z‖ = 1,

where W l is an N×N matrix whose 〈i, j〉th element is ∂ lnWl

∂ lnKij
. We set the diagonal elements of

W l equal so that changing bilateral trade frictions does not affect trade frictions with oneself.

Let zli denote the optimal trade friction change in country i from the perspective of country

l. It is straightforward to show that optimal set of trade frictions from the perspective of

country l are simply the eigenvectors of the matrix 1
2

(
W l +

(
W l
)T)

corresponding to the

largest eigenvalue λl. Furthermore, it is also straightforward to show the largest eigenvalue

λl is the total value of welfare to country l under its optimal set of trade frictions:

λl =
(
~zl
)T
W l~zl.

These results allow us to immediately determine both the optimal set of trade friction changes

from the perspective of any country l ∈ S and the resulting change in its welfare. Figure 2

depicts the optimal set of trade frictions for all countries from the perspective of the United

States. The results are intuitive: to maximize welfare in the U.S., its own trade frictions as

well as trade frictions in its major trading partners (e.g. Canada, Mexico, China, Brazil, and

Western Europe) ought to fall. In contrast, trade frictions in certain countries like North

Korea and Burma actually ought to increase to divert trade to benefit the United States.

How much does the U.S. (or any other country) benefit from such a “selfish” multilateral

policy? Figure 3 depicts the welfare gain for the U.S. and for all other countries from their

respective optimal set of trade frictions, i.e. it reports the maximum potential gains each

country could achieve from multilateral trade friction reduction. The potential benefits of

multilateral trade friction reductions are the smallest in countries with sizable domestic

production relative to external trade such as the United States, India, and Russia. The

potential gains for smaller countries which engage in substantial trade (e.g. Belgium) are

larger. However, countries where there exist political constraints that result restrict trade

– for example, North Korea, Burma, Somalia, Cuba, and Iraq – face the largest potential

gains from freer trade.

We should note that these calculations, while possible without the closed form solution
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for the complete set of local comparative statics derived in Section 4.2.1, would be onerous,

as it would require re-simulating the model N2 times, each time calculating the welfare effect

of a shock to a particular bilateral pair.

What set of world-wide trade friction reductions would increase world welfare

the most and what would be the distribution of those gains? Finally, we can use

the global welfare elasticity result from Section 3.2 to determine the set of trade friction

reductions that would maximize world welfare. Recall from part (ii) of Proposition 2 that

the general equilibrium gravity model can be interpreted as maximizing a weighted average

of welfare across countries, which implies that the the elasticity of world welfare W to

any bilateral trade friction can be written as proportional to the fraction of world income

comprised by trade between i and j, i.e. ∂ lnW
∂ lnKij

= ρ
Xij
YW

.

Using this result, we can find the set of trade frictions that maximize world welfare to

solve:

max
{zi}

∑
i∈S

∑
j∈S

ρ
Xij

Y W
zizj s.t.

∑
i∈S

z2i = 1

Since ρ does not affect the maximization and Y W is the numeraire, from above the optimal

set of trade friction reductions are simply the eigenvectors corresponding to the largest

eigenvalue of the matrix who 〈i, j〉 element is Xij + Xji (with zeros on the diagonal). That

is, the reduction in bilateral trade frictions which maximizes world welfare is simply the

eigenvector of the observed (balanced) trade flows (corresponding to the largest eigenvalue).

Furthermore, that largest eigenvalue represents the elasticity of world welfare to increasing

the extent of the trade friction reductions in an optimal way.

Figure 4 depicts the optimal set of trade friction reductions. As is evident, to maximize

world welfare, the countries responsible for the most trade in the world (such as the U.S.,

China, Japan, and Germany) reduce their trade frictions the most, whereas trade frictions

in smaller countries fall by less. The largest eigenvalue of the system is 1.006, which implies

that increasing the extent of trade friction reductions by one percent yields a world welfare

gain of slightly more than one percent. Figure 5 depicts the distribution of these welfare

effects; as is evident, North America and South Asia benefit the most from such a policy,

while parts of Africa and South America are actually made worse off.

5.2 Estimating the gains from WTO membership

In this subsection, we illustrate the general equilibrium gravity estimator presented in Section

4.3 by estimating the effect of the WTO membership on bilateral trade frictions. We then

use this estimate to calculate the welfare gains of WTO membership.
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The WTO was founded on January 1, 1995, replacing the General Agreement on Tariffs

and Trade (GATT). Of the 201 countries in our trade data, 125 were original WTO members.

Between 1995 and 2005, an additional twenty-one countries joined the WTO.24 In what

follows, we will identify the effect of the WTO on trade flows by comparing the observed

bilateral trade flows in 1995 to those in 2005 using as identification the twenty-one new

countries as members. In particular, we assume that, apart from a common time trend

ν, the only change in bilateral frictions between 1995 and 2005 was a (common) reduction

in trade costs (i.e. an increase in K̂ij) between new WTO members and all other WTO

members:

K̂ij = µT̂ij + ν,

where T̂ij is an indicator variable equal to one if either i or j is a new WTO member and

its trading partner is a new or existing WTO member. While this is admittedly a strong

assumption, note that by focusing on the change in trade flows rather than their level, we

allow for any effect of time-invariant variables (e.g. distance, common language, shared

border, etc.) on trade frictions. With this assumption, the parameter of interest µ can be

estimated from the following fixed effects gravity regression:

ln X̂ij = µT̂ij + ln γ̂i + ln δ̂j + εij,

where we interpret εij as measurement error. Note that the time trend ν cannot be separately

identified from the fixed effects.

Alternatively, parameters µ and ν can be estimated from the following general equilibrium

gravity regression:

ln X̂ij = µT̂GEij + νIGEij + εij,

where:

T̂GEij ≡
∑
k

∑
l

∂ ln X̂ij

∂ ln K̂kl

T̂kl and IGEij ≡
∑
k

∑
l

∂ ln X̂ij

∂ ln K̂kl

are the “general equilibrium transformed” variables.

Table 3 presents the results of the two estimators. The first column reports the fixed

effects estimator: joining the WTO is associated with a 49.5 percent increase in bilateral

trade flows with other WTO members. Interpreting the chosen values of the gravity constants

as having a trade elasticity of four, this implies that joining the WTO is associated with a

12.4 percent decline in bilateral iceberg trade costs. Columns two and four present the

24The new members were Albania, Armenia, Bulgaria, China, Ecuador, Estonia, Georgia, Croatia, Jordan,
Kyrgyzstan, Cambodia, Lithuania, Moldova, Macedonia, Mongolia, Nepal, Oman, Panama, Saudi Arabia,
and Taiwan.
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general equilibrium estimator using both the raw trade data and the re-balanced trade data;

the general estimates are similar to the fixed effects estimates, finding that joining the WTO

is associated with a 42.5 and 47.9 percent increase in bilateral trade flows, corresponding

to a 10.6 and 12.0 percent reduction in iceberg trade costs, respectively.25 Finally, we can

use the general equilibrium estimator while excluding the observed trade flows of new WTO

members in order to mitigate the concerns of endogeneity. Columns three and five present

the results using the raw and re-balanced trade data, respectively. While the point estimate

for the raw data declines, it increases slightly when trade is balanced, and in both cases

is statistically indistinguishable from the point estimates when including the new WTO

members in the sample. In fact, we cannot statistically reject that any of the five estimates

are different from WTO membership being associated with a 45 percent increase in trade

flows (12 percent reduction in iceberg trade costs).

Given these estimates, we can use the methodology of Section 4.2.2 to ask what the

welfare effect would be of removing these 21 countries from the WTO. To do so, we take the

observed trade flows in 2005 and increase the trade frictions (i.e. reduce K̂ij) by 45 percent

between these 21 countries and all other WTO members. Figure 6 depicts resulting change

in welfare for all countries in the world. For the countries being removed, bilateral trade

costs increase substantially with a majority of trading partners. This leads to an average

decline in welfare of 9.3 percent. Existing WTO members are also made worse off by an

average of 0.9 percent (the effect is smaller in magnitude since trade costs increase for a

smaller subset of trading partners). However, non-WTO members actually benefit – their

welfare increases by an average of 0.5 percent – since the increase in trade costs between

other trading partners results in trade being diverted to non-members. As Figure 6 makes

clear, however, these averages mask substantial heterogeneity across countries arising from

the network structure of international trade flows.

6 Conclusion

Despite the empirical importance of gravity trade models, little is known about their prop-

erties which hold universally, i.e. regardless of the micro-economic foundation of the model.

In this paper, we have developed a framework which nests a large set of general equilibrium

25While the estimates of joining the WTO agreement are not substantially affected by whether or not
we re-balance the observed trade flows, the estimated time trend is substantially different, as the raw data
suggesting a slightly negative time trend (i.e. a small increase in trade costs), while the balanced trade data
suggest a large and positive time trend. Given that the elasticities used in the calculation of the general
equilibrium estimator are not necessarily well-defined when trade is imbalanced, we prefer the balanced trade
estimate (which also corresponds to our prior that trade costs in general are falling over time).
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gravity models. Using this framework, we have shown that nearly all theoretical and empir-

ical predictions for trade depend only on the value of two “gravity constants.” This paper

hence contributes to a growing literature emphasizing that the micro-economic foundations

are not particularly important for determining a trade model’s macro-economic implications.

By providing a universal framework for understanding the general equilibrium forces in

gravity trade models, we hope that this paper provides a step toward unifying the quan-

titative general equilibrium approach with the gravity regression analysis common in the

empirical trade literature. Toward this end, we have developed a toolkit that operationalizes

all the theoretical results presented in this paper, including the calculation of the equilibrium,

identification, calculation of local and global comparative statics, and estimation.26

However, in developing a universal framework, several limitations remain. First, since the

general equilibrium forces are entirely determined by the value of the two gravity constants,

an important future task is finding an effective way of estimating the value of these parame-

ters. Second, there remains the need to address trade imbalances directly rather than relying

(as we do) on ad hoc corrections. As trade imbalances are fundamentally dynamic phenom-

ena, we look forward to future research incorporating the gravity structure into dynamic

models of trade.

26The toolkit is available for download on Allen’s webiste.
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Tables and Figures

Figure 1: Existence and Uniqueness

Notes : This figure shows the regions in (α, β) space for which the gravity equilibrium is
unique generally and in the special case when trade frictions are quasi-symmetric. Existence
can be guaranteed throughout the entire region with the exception of when α + β = 1.
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Figure 2: Optimal multilateral trade friction reduction from the perspective of the U.S.

Optimal reduction in bilateral frictions
(1.1e−03,1]
(2.9e−04,1.1e−03]
(9.5e−05,2.9e−04]
(3.3e−05,9.5e−05]
(1.7e−05,3.3e−05]
(6.8e−06,1.7e−05]
(2.7e−06,6.8e−06]
(6.5e−07,2.7e−06]
(1.8e−07,6.5e−07]
[−8.1e−11,1.8e−07]
No data

Notes : This figure shows the set of country reductions in trade frictions (subject to the total
reduction of bilateral frictions being constant) that maximizes the welfare of the United
States. Countries are sorted by deciles; red indicates a greater reduction in trade frictions
while blue indicates a smaller reduction (or even increase) in trade frictions.

Figure 3: Potential welfare gains from multilateral trade friction reductions

Value of optimal ’selfish’ reduction in bilateral frictions
(.43,.5]
(.41,.43]
(.39,.41]
(.36,.39]
(.34,.36]
(.3,.34]
(.27,.3]
(.23,.27]
(.15,.23]
[9.2e−02,.15]
No data

Notes : This figure shows the welfare gain each country would achieve if all countries in the
world were to alter their trade frictions in such a way as to maximize the change in welfare
of that country, i.e. the figure shows the distribution across countries of the potential gains
of reduced trade frictions. Countries are sorted by deciles; red indicates a greater potential
increase in welfare while blue indicates a smaller potential increase in welfare.
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Figure 4: World optimal multilateral trade friction reduction

World welfare maximizing
reduction in trade frictions
(population weighted)
(6.8e−02,.46]
(2.0e−02,6.8e−02]
(6.3e−03,2.0e−02]
(2.4e−03,6.3e−03]
(1.2e−03,2.4e−03]
(5.8e−04,1.2e−03]
(3.3e−04,5.8e−04]
(1.1e−04,3.3e−04]
(2.5e−05,1.1e−04]
[3.4e−13,2.5e−05]
No data

Notes : This figure shows the set of country reductions in trade frictions (subject to the total
reduction of bilateral frictions being constant) that maximizes the a population-weighted
average of welfare across all countries. Countries are sorted by deciles; red indicates a greater
reduction in trade frictions while blue indicates a smaller reduction (or even increase) in trade
frictions.

Figure 5: Welfare gains from world optimal multilateral trade friction reduction

Welfare gain from optimal world tariff
(2.2e−03,3.8e−02]
(2.8e−04,2.2e−03]
(−1.8e−04,2.8e−04]
(−2.8e−04,−1.8e−04]
(−3.9e−04,−2.8e−04]
(−5.4e−04,−3.9e−04]
(−7.6e−04,−5.4e−04]
(−1.1e−03,−7.6e−04]
(−1.6e−03,−1.1e−03]
[−4.3e−03,−1.6e−03]
No data

Notes : This figure shows the welfare gain each country would achieve if all countries in the
world were to alter their trade frictions in order to maximize a population-weighted average
of welfare across the world, i.e. the figure shows the distribution across countries of welfare
gains from an optimal multilateral trade friction reduction. Countries are sorted by deciles;
red indicates a greater increase in welfare while blue indicates a smaller increase in welfare.
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Figure 6: Welfare effect of removing the new members from the WTO

Welfare effect of
removing new 
WTO members
(.02,.1]
(.015,.02]
(.01,.015]
(.005,.01]
(0,.005]
(−.005,0]
(−.01,−.005]
(−.015,−.01]
(−.02,−.015]
[−.1,−.02]
No data

Notes : This figure shows the change in welfare in each country resulting from removing the
twenty-one countries (highlighted in green) who joined the WTO between 1995 and 2005.
Welfare is measured in percentage changes; the darker the red color, the more positive the
increase in welfare; the darker the blue color, the more negative the decrease in welfare.
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ŕı

gu
ez

-C
la

re
(2

00
8)

;
C

h
an

ey
(2

00
8)

P
ar

et
o

sh
ap

e
p
ar

am
et

er
θ

N
/A

N
/A

α
=
−

1 θ
β

=
0

θ
≥

0
θ
≥

0

M
on

op
ol

is
ti

c
co

m
p

et
i-

ti
on

,
h
et

er
og

en
eo

u
s

fi
rm

s,
ex

p
or

ti
n
g

fi
x
ed

co
st

s
in

or
ig

in

M
el

it
z

(2
00

3)
;

D
i

G
io

va
n
n
i

an
d

L
ev

ch
en

ko
(2

00
9)

E
la

st
ic

it
y

of
su

b
st

it
u
ti

on
σ

P
ar

et
o

sh
ap

e
p
ar

am
-

et
er

θ
α

=
−

σ
−
1

θ
σ
−
σ
+
1

β
=

0
σ
≥

1,
θ
≥

σ
−
1

σ

p
re

v
io

u
s

re
gi

on
or

σ
≥

1
an

d
1 2
σ
−
1

σ
≥
θ

M
on

op
ol

is
ti

c
co

m
p

et
it

io
n
,

h
et

er
og

en
eo

u
s

fi
rm

s,
fl
ex

ib
le

ex
p

or
ti

n
g

fi
x
ed

co
st

s
A

rk
ol

ak
is

(2
01

0)
E

la
st

ic
it

y
of

su
b
st

it
u
ti

on
σ

P
ar

et
o

sh
ap

e
p
ar

am
-

et
er

;
sh

ar
e

of
fi
x
ed

co
st

sp
en

t
lo

ca
ll
y

θ,
δ

α
=

−
σ
−
1

θ
(σ
−
1
)−

(1
−
δ
)(
σ
−
1
−
θ
)

β
=

0

σ
≥

1;
θ

≥
(σ
−
1
)+
δ
(θ
−
σ
+
1
)

σ
or
σ
<

1;
θ
<

(σ
−
1
)+
δ
(θ
−
σ
+
1
)

σ

p
re

v
io

u
s

re
gi

on
s

or
θ
≤

σ
−
1

2
σ

+
δ
(θ
−
σ
+
1
)

σ

P
er

fe
ct

co
m

p
et

it
io

n
w

it
h

in
-

te
rm

ed
ia

te
in

p
u
ts

E
at

on
an

d
K

or
tu

m
(2

00
2)

;
D

ek
le

,
E

at
on

,
an

d
K

or
tu

m
(2

00
8)

E
la

st
ic

it
y

of
su

b
st

it
u
ti

on
σ

S
h
ar

e
of

la
b

or
in

p
ro

-
d
u
ct

io
n

δ
α

=
1

1
−
σ
δ

β
=

1
−
δ

1
−
σ
δ

σ
≥

1
σ
≥

1 2

E
xt

en
si

on
s

M
u
lt

ip
le

se
ct

or
s

C
h
or

(2
01

0)
;

C
os

ti
n
ot

,
D

on
al

d
so

n
,

an
d

K
om

u
n
je

r
(2

01
0)

E
la

st
ic

it
y

of
su

b
st

it
u
ti

on
σ

N
/A

N
/A

α
=

1
1
−
σ

β
=

0
σ
≥

1
σ
≥

1 2

M
u
lt

ip
le

se
ct

or
s

w
it

h
in

te
r-

m
ed

ia
te

go
o
d
s

C
al

ie
n
d
o

an
d

P
ar

ro
(2

01
0)

(w
it

h
sy

m
m

et
ri

c
IO

st
ru

c-
tu

re
an

d
co

n
st

an
t
σ

)

E
la

st
ic

it
y

of
su

b
st

it
u
ti

on
σ

S
h
ar

e
of

la
b

or
in

p
ro

-
d
u
ct

io
n

δ
α

=
1

1
−
σ
δ

β
=

1
−
δ

1
−
σ
δ

σ
≥

1
σ
≥

1 2

N
ot

es
:

T
h
is

ta
b
le

in
cl

u
d
es

a
(n

on
-e

x
h
au

st
iv

e)
li
st

of
tr

ad
e

m
o
d
el

s
th

at
ca

n
b

e
ex

am
in

ed
w

it
h
in

th
e

u
n
iv

er
sa

l
gr

av
it

y
fr

am
ew

or
k
.

40



T
ab

le
2:

M
on

te
C

ar
lo

re
su

lt
s

N
o

om
it

te
d

va
ri

ab
le

b
ia

s
10

co
u
n
tr

ie
s

20
co

u
n
tr

ie
s

50
co

u
n
tr

ie
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

M
ea

su
re

m
en

t
er

ro
r

S
iz

e
of

th
e

eff
ec

t
F

E
G

E
G

E
-

n
o

sw
it

ch
er

s
F

E
G

E
G

E
-

n
o

sw
it

ch
er

s
F

E
G

E
G

E
-

n
o

sw
it

ch
er

s
0.

05
0.

12
59

0
.1

0
4
4

0.
89

73
0.

03
22

0
.0

2
7
6

0.
11

12
0
.0

0
5
0

0.
00

51
0.

02
35

0.
1

0.
1

0.
06

10
0
.0

5
5
4

0.
35

08
0.

01
63

0
.0

1
4
7

0.
06

03
0
.0

0
2
6

0.
00

64
0.

02
83

0.
2

0.
03

07
0
.0

2
7
9

0.
14

53
0
.0

0
7
9

0.
01

24
0.

06
03

0
.0

0
1
3

0.
01

08
0.

05
39

0.
05

0.
24

86
0
.2

0
5
8

1.
16

30
0.

06
36

0
.0

5
4
8

0.
22

79
0.

01
04

0
.0

0
9
5

0.
03

92
0.

2
0.

1
0.

12
22

0
.1

0
4
5

0.
68

37
0.

03
18

0
.0

2
7
6

0.
10

50
0
.0

0
5
1

0.
00

72
0.

03
27

0.
2

0.
06

14
0
.0

5
4
8

0.
27

39
0
.0

1
5
3

0.
01

61
0.

07
57

0
.0

0
2
6

0.
01

07
0.

05
46

0.
05

0.
63

59
0
.5

3
5
3

3.
51

37
0.

16
55

0
.1

3
7
3

0.
57

57
0.

02
51

0
.0

2
0
7

0.
09

30
0.

5
0.

1
0.

31
40

0
.2

6
2
5

1.
54

72
0.

08
24

0
.0

6
9
5

0.
29

50
0.

01
43

0
.0

1
3
1

0.
05

19
0.

2
0.

15
94

0
.1

2
6
9

1.
26

24
0.

04
01

0
.0

3
5
6

0.
14

29
0
.0

0
6
2

0.
01

20
0.

05
89

O
m

it
te

d
va

ri
ab

le
b
ia

s
0.

05
1
.0

1
4
2

1.
16

12
1.

19
00

1.
00

25
1.

22
22

0
.1

2
0
6

1.
00

00
1.

26
55

0
.0

6
0
6

0.
1

0.
1

0.
50

34
0.

58
28

0
.2

9
6
5

0.
49

88
0.

61
24

0
.0

9
0
4

0.
50

00
0.

63
71

0
.0

7
1
4

0.
2

0.
25

15
0.

29
37

0
.1

9
4
1

0.
24

94
0.

31
16

0
.0

9
6
5

0.
25

00
0.

32
48

0
.0

9
5
9

0.
05

1
.0

5
4
1

1.
19

29
1.

13
86

1.
00

42
1.

22
72

0
.2

5
7
9

1.
00

06
1.

26
75

0
.0

6
7
0

0.
2

0.
1

0
.5

2
1
9

0.
59

53
0.

64
38

0.
50

20
0.

61
53

0
.1

2
0
5

0.
49

96
0.

63
76

0
.0

7
2
5

0.
2

0
.2

5
9
3

0.
29

76
0.

40
48

0.
25

08
0.

31
11

0
.1

0
8
7

0.
25

00
0.

32
51

0
.0

9
6
4

0.
05

1
.1

8
0
0

1.
26

49
2.

50
31

1.
01

98
1.

23
53

0
.5

9
6
7

1.
00

21
1.

26
72

0
.1

0
2
4

0.
5

0.
1

0
.6

1
2
0

0.
65

54
1.

56
13

0.
50

77
0.

61
90

0
.2

9
1
9

0.
49

99
0.

63
63

0
.0

8
4
8

0.
2

0
.2

9
1
8

0.
31

71
0.

72
93

0.
25

45
0.

31
56

0
.1

6
2
5

0.
24

97
0.

32
48

0
.0

9
9
4

N
o
te
s:

T
h
is

ta
b
le

sh
o
w

s
th

e
c
o
e
ffi

c
ie

n
t

o
f

v
a
ri

a
ti

o
n

o
f

th
e

ro
o
t

m
e
a
n

sq
u
a
re

d
d
e
v
ia

ti
o
n

o
f

th
re

e
e
st

im
a
to

rs
o
f

th
e

e
ff

e
c
t

o
f

a
m

u
lt

il
a
te

ra
l

tr
a
d
e

a
g
re

e
m

e
n
t

u
si

n
g

a
M

o
n
te

C
a
rl

o
p
ro

c
e
d
u
re

.
V

a
lu

e
s

in
b

o
ld

in
d
ic

a
te

w
h
ic

h
e
st

im
a
to

r
is

m
o
st

p
re

c
is

e
fo

r
a

g
iv

e
n

n
u
m

b
e
r

o
f

c
o
u
n
tr

ie
s,

si
z
e

o
f

m
e
a
su

re
m

e
n
t

e
rr

o
r,

a
n
d

si
z
e

o
f

e
ff

e
c
t.

(W
e

u
se

th
e

c
o
e
ffi

c
ie

n
t

o
f

v
a
ri

a
ti

o
n

o
f

th
e

R
M

S
E

b
e
c
a
u
se

u
n
li
k
e

th
e

R
M

S
E

it
se

lf
,

th
e

C
V

(R
M

S
E

)
is

in
v
a
ri

a
n
t

to
th

e
e
ff

e
c
t

si
z
e

b
e
in

g
e
st

im
a
te

d
.)

T
h
e

c
o
e
ffi

c
ie

n
t

o
f

v
a
ri

a
ti

o
n

o
f

th
e

ro
o
t

m
e
a
n

sq
u
a
re

d
d
e
v
ia

ti
o
n

is
c
a
lc

u
la

te
d

fr
o
m

5
0
0

si
m

u
la

ti
o
n
s

o
f

th
e

m
o
d
e
l,

w
h
e
re

in
e
a
c
h

si
m

u
la

ti
o
n
,

th
e

se
t

o
f

in
it

ia
l

b
il
a
te

ra
l

fr
ic

ti
o
n
s,

th
e

e
x
o
g
e
n
o
u
s

in
c
o
m

e
sh

if
te

rs
B

i
,

a
n
d

b
o
th

th
e

se
t

o
f

c
o
u
n
tr

ie
s

a
lr

e
a
d
y

in
th

e
m

u
lt

il
a
te

ra
l

tr
a
d
e

a
g
re

e
m

e
n
t

a
n
d

th
e

n
e
w

m
e
m

b
e
rs

a
re

ra
n
d
o
m

ly
g
e
n
e
ra

te
d
.

W
e

a
ss

ig
n

h
a
lf

o
f

th
e

c
o
u
n
tr

ie
s

to
b

e
e
x
is

ti
n
g

m
e
m

b
e
rs

o
f

th
e

tr
a
d
e

a
g
re

e
m

e
n
t

a
n
d

te
n

p
e
rc

e
n
t

o
f

c
o
u
n
tr

ie
s

to
b

e
n
e
w

m
e
m

b
e
rs

.
In

th
e

to
p

p
a
n
e
l,

th
e

g
e
n
e
ra

te
d

m
e
a
su

re
m

e
n
t

e
rr

o
r

is
in

d
e
p

e
n
d
e
n
t

o
f

w
h
e
th

e
r

o
r

n
o
t

a
c
o
u
n
tr

y
is

a
n
e
w

m
e
m

b
e
r

o
f

th
e

m
u
lt

il
a
te

ra
l

tr
a
d
e

a
g
re

e
m

e
n
t.

In
th

e
b

o
tt

o
m

p
a
n
e
l,

th
e

g
e
n
e
ra

te
d

m
e
a
su

re
m

e
n
t

e
rr

o
r,

in
a
d
d
it

io
n

to
a
n

i.
i.
d
.

te
rm

,
in

c
lu

d
e
s

a
n

o
m

it
te

d
v
a
ri

a
b
le

th
a
t

in
c
re

a
se

s
o
b
se

rv
e
d

tr
a
d
e

fl
o
w

s
b
y

0
.0

5
lo

g
p

o
in

ts
w

h
e
n

th
e

tr
a
d
e

is
b

e
tw

e
e
n

a
c
o
u
n
tr

y
w

h
o

jo
in

e
d

th
e

tr
a
d
e

a
g
re

e
m

e
n
t

a
n
d

e
it

h
e
r

a
n
o
th

e
r

n
e
w

o
r

e
x
is

ti
n
g

tr
a
d
e

a
g
re

e
m

e
n
t

m
e
m

b
e
r.

T
h
e

si
z
e

o
f

th
e

e
ff

e
c
t

is
th

e
p

e
rc

e
n
ta

g
e

re
d
u
c
ti

o
n

in
b
il
a
te

ra
l

fr
ic

ti
o
n
s

(i
.e

.
a
n

in
c
re

a
se

in
K

i
j
);

th
e

si
z
e

o
f

th
e

m
e
a
su

re
m

e
n
t

e
rr

o
r

is
th

e
st

a
n
d
a
rd

d
e
v
ia

ti
o
n

o
f

th
e

m
e
a
su

re
m

e
n
t

e
rr

o
r

re
la

ti
v
e

to
a
n

a
v
e
ra

g
e

b
il
a
te

ra
l

tr
a
d
e

fl
o
w

.
T

h
e

F
E

e
st

im
a
to

r
is

th
e

st
a
n
d
a
rd

o
rd

in
a
ry

le
a
st

sq
u
a
re

s
e
st

im
a
to

r
o
f

th
e

c
h
a
n
g
e

in
tr

a
d
e

fl
o
w

s
o
n

th
e

c
h
a
n
g
e

in
tr

a
d
e

a
g
re

e
m

e
n
t

m
e
m

b
e
rs

h
ip

w
it

h
b

o
th

o
ri

g
in

a
n
d

d
e
st

in
a
ti

o
n

c
o
u
n
tr

y
fi
x
e
d

e
ff

e
c
ts

;
th

e
G

E
e
st

im
a
to

r
is

th
e

e
st

im
a
to

r
in

tr
o
d
u
c
e
d

in
th

e
te

x
t

w
h
ic

h
d
ir

e
c
tl

y
a
c
c
o
u
n
ts

fo
r

th
e

g
e
n
e
ra

l
e
q
u
il
ib

ri
u
m

e
ff

e
c
ts

th
ro

u
g
h

th
e

n
e
tw

o
rk

st
ru

c
tu

re
o
f

tr
a
d
e
;

th
e

G
E

-
n
o

sw
it

c
h
e
rs

e
st

im
a
to

r
is

th
e

G
E

e
st

im
a
to

r
o
n
ly

id
e
n
ti

fi
e
d

o
ff

o
f

th
e

c
h
a
n
g
e

in
tr

a
d
e

fl
o
w

s
b

e
tw

e
e
n

c
o
u
n
tr

ie
s

w
h
o

d
id

n
o
t

c
h
a
n
g
e

th
e
ir

tr
a
d
e

a
g
re

e
m

e
n
t

m
e
m

b
e
rs

h
ip

.
T

o
c
a
lc

u
la

te
th

e
e
q
u
il
ib

ri
u
m

a
n
d

e
la

st
ic

it
ie

s,
w

e
a
ss

u
m

e
g
ra

v
it

y
c
o
n
st

a
n
ts
α

=
−

2
/
3
,
β

=
−

1
/
3

w
h
ic

h
in

a
n

in
te

rm
e
d
ia

te
g
o
o
d
s

tr
a
d
e

m
o
d
e
l

c
o
rr

e
sp

o
n
d

to
a

tr
a
d
e

e
la

st
ic

it
y

o
f

4
a
n
d

a
la

b
o
r

sh
a
re

in
th

e
p
ro

d
u
c
ti

o
n

fu
n
c
ti

o
n

o
f

1
/
2
.

41



T
ab

le
3:

G
en

er
al

eq
u
il
ib

ri
u
m

gr
av

it
y

es
ti

m
at

or
:

E
ff

ec
t

of
W

T
O

m
em

b
er

sh
ip

F
ix

ed
eff

ec
ts

es
ti

m
at

or
G

en
er

al
eq

u
il
ib

ri
u
m

es
ti

m
at

or

(1
)

(2
)

(3
)

(4
)

(5
)

W
T

O
ag

re
em

en
t

0.
49

48
**

*
0.

42
46

**
*

0.
27

38
0.

47
89

**
*

0.
50

24
(0

.0
97

5)
(0

.0
47

3)
(0

.2
20

3)
(0

.0
49

5)
(0

.2
84

8)
C

on
st

an
t

ti
m

e
tr

en
d

-0
.0

82
3*

**
-0

.0
53

1
0.

59
92

**
*

0.
57

68
**

*
(0

.0
09

2)
(0

.0
42

7)
(0

.0
27

2)
(0

.0
33

3)
S
am

p
le

F
u
ll

S
am

p
le

F
u
ll

S
am

p
le

E
x
cl

u
d
in

g
n
ew

W
T

O
m

em
b

er
s

F
u
ll

S
am

p
le

E
x
cl

u
d
in

g
n
ew

W
T

O
m

em
b

er
s

D
at

a
R

aw
d
at

a
or

b
al

an
ce

d
tr

ad
e

R
aw

d
at

a
B

al
an

ce
d

tr
ad

e

R
-s

q
u
ar

ed
(w

it
h
in

)
0.

01
02

0.
06

83
0.

05
98

0.
02

31
0.

01
48

O
b
se

rv
at

io
n
s

17
72

8
17

72
8

14
20

8
17

72
8

14
20

8
N

ot
es

:
T

h
is

ta
b
le

sh
ow

s
th

e
es

ti
m

at
ed

eff
ec

t
of

jo
in

in
g

th
e

W
T

O
on

b
il
at

er
al

tr
ad

e
fr

ic
ti

on
s.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
is

th
e

lo
g

ra
ti

o
of

b
il
at

er
al

tr
ad

e
fl
ow

s
in

20
05

to
b
il
at

er
al

tr
ad

e
fl
ow

s
in

19
95

.
M

is
si

n
g

an
d

ze
ro

tr
ad

e
fl
ow

s
ar

e
ex

cl
u
d
ed

.
W

T
O

ag
re

em
en

t
is

an
in

d
ic

at
or

va
ri

ab
le

eq
u
al

to
on

e
if

th
e

tr
ad

e
is

b
et

w
ee

n
a

co
u
n
tr

y
w

h
o

jo
in

ed
th

e
W

T
O

b
et

w
ee

n
19

95
an

d
20

05
an

d
ei

th
er

an
ot

h
er

n
ew

or
ex

is
ti

n
g

W
T

O
m

em
b

er
.

T
h
e

fi
x
ed

eff
ec

ts
es

ti
m

at
or

in
cl

u
d
es

a
fu

ll
se

t
of

co
u
n
tr

y
or

ig
in

an
d

d
es

ti
n
at

io
n

fi
x
ed

eff
ec

ts
.

T
h
e

ge
n
er

al
eq

u
il
ib

ri
u
m

es
ti

m
at

or
in

cl
u
d
es

on
ly

th
e

W
T

O
ag

re
em

en
t

va
ri

ab
le

an
d

a
ti

m
e

tr
en

d
;

b
ot

h
va

ri
ab

le
s

ar
e

tr
an

sf
or

m
ed

to
ac

co
u
n
t

fo
r

sp
il
lo

ve
r

ge
n
er

al
eq

u
il
ib

ri
u
m

eff
ec

ts
u
si

n
g

ca
lc

u
la

te
d

el
as

ti
ci

ti
es

.
T

o
ca

lc
u
la

te
th

e
el

as
ti

ci
ti

es
,

w
e

as
su

m
e

gr
av

it
y

co
n
st

an
ts
α

=
−

2/
3,
β

=
−

1/
3

w
h
ic

h
in

an
in

te
rm

ed
ia

te
go

o
d
s

tr
ad

e
m

o
d
el

co
rr

es
p

on
d

to
a

tr
ad

e
el

as
ti

ci
ty

of
4

an
d

a
la

b
or

sh
ar

e
in

th
e

p
ro

d
u
ct

io
n

fu
n
ct

io
n

of
1/

2.
T

h
e

co
effi

ci
en

ts
re

p
or

t
th

e
p

er
ce

n
ta

ge
re

d
u
ct

io
n

in
b
il
at

er
al

tr
ad

e
fr

ic
ti

on
s

(i
.e

.
p

er
ce

n
ta

ge
in

cr
ea

se
in
K
ij

);
d
iv

id
in

g
b
y

4
y
ie

ld
s

th
e

p
er

ce
n
ta

ge
re

d
u
ct

io
n

in
ic

eb
er

g
tr

ad
e

co
st

s.
W

e
re

p
or

t
th

e
re

su
lt

s
u
si

n
g

b
ot

h
th

e
ob

se
rv

ed
tr

ad
e

fl
ow

d
at

a
an

d
tr

ad
e

fl
ow

d
at

a
th

at
h
as

b
ee

n
b
al

an
ce

d
u
si

n
g

th
e

u
n
iq

u
e

se
t

of
b
al

an
ce

d
tr

ad
e

fl
ow

s
co

n
si

st
en

t
w

it
h

ob
se

rv
ed

im
p

or
t

sh
ar

es
.

R
ob

u
st

st
an

d
ar

d
er

ro
rs

ar
e

re
p

or
te

d
in

p
ar

en
th

es
es

.
S
ta

rs
in

d
ic

at
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

:
*

p
<

.1
0

**
p
<

.0
5

**
*

p
<

.0
1.

42



A Proofs

A.1 Proof of Theorem 1

We analyze a transformed system by defining xi ≡ Biγ
α−1
i δβi and yi ≡ Biγ

α
i δ

β−1
i . Then it

can be shown that δi = x
α

β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i and γi = x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i so that for any

set of {Bi} ∈ RN
++, {Kij} ∈ RN×N

++ , {α, β} ∈ {(α, β) ∈ R2|α + β 6= 1}, the equilibrium of a

general equilibrium gravity model can be written using

xi =
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j , (28)

and

yi =
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j . (29)

The proof of Theorem 1 proceeds in four parts. In the first part, we consider a general math-

ematical structure, for which the general equilibrium gravity model (defined by equations

(28) and (29)) is a special case. In the second part, we prove a lemma that will allow us to

convert the general mathematical result to the particular case of the gravity trade model. In

the third and fourth parts, we show how the general mathematical result can be applied to

the trade model to prove existence and uniqueness, respectively.

A.1.1 The general case

We start with the result for the general mathematical system, stated as the following lemma.

For the proof, we use a version of Schauder’s fixed point theorem (FPT for short). The

original statement is found in Aliprantis and Border (2006).

Theorem 3. (Schauder’s FPT) Suppose that D ⊂ RN , where D is a convex and compact

set. If a continuous function f : D → D satisfies the condition that f (D) is a compact

subset of D, then there exists x ∈ D such that f (x) = x.

Lemma 1. Consider the following system of non-linear equations; for all i ∈ S,

xi =

∑
j Fi,jx

a
jy

b
j∑

i,j Fi,jx
a
jy

b
j

(30)

yi =

∑
j Hijx

c
jy
d
j∑

i,j Hijxcjy
d
j

, (31)

for some a, b, c, d ∈ R, Cx, Cy ∈ R++ and matrices F,H with all elements non-negative and
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the diagonal strictly positive (i.e. for all i ∈ {1, ..., N}, Fi > 0 and H i > 0). Then the

system has a positive solution x, y ∈ RS
+ and all its possible solutions are positive.

Proof. To apply the Schauder’s FPT, we set up a subset D of R2S such that D satisfies the

conditions in Schauder’s FPT.

Now consider the system (30)-(31). We define the set Γ as

Γ ≡
{

(x, y) ∈ ∆
(
RS
)
×∆

(
RS
)

;mx ≤ xi ≤Mx, my ≤ yi ≤My for all i
}
,

and the following constants

Mx ≡ max
i,j

Fi,j∑
i Fi,j

mx ≡ min
i,j

Fi,j∑
i Fi,j

My ≡ max
i,j

Hi,j∑
iHi,j

my ≡ min
i,j

Hi,j∑
iHi,j

.

Γ is convex and compact subset of R2S.

We define the following operator for d = (x, y) ∈ Γ.

Td = T (x, y)

= ((T x (x, y)) , (T y (x, y))) ,

where

T xi (x, y) =

∑
j Fi,jx

a
jy

b
j∑

i

∑
j Fi,jx

a
jy

b
j

T yi (x, y) =

∑
j Hi,jx

c
jy
d
j∑

i

∑
j Hi,jxcjy

d
j

.

It is easy to show that

mx ≤ T xi (x, y) ≤Mx,my ≤ T xi (x, y) ≤My

so that the operator T is from Γ to Γ.

To show that T is continuous, it suffices to show that T xi and T yi are continuous for all i.

Since the range is compact, these functions are trivially continuous.
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Since Schauder’s FPT is applied for T, then there exists a solution to the system. Also

by construction, any fixed points satisfy for all i,

0 < mx ≤ xi

0 < my ≤ yi.

A.1.2 Preliminary mathematical result

Second, we prove a result that will allow us to map the general equilibrium gravity model to

the general mathematical system.

Lemma 2. Suppose that (x, y) satisfies

xi =

∑
jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

yi =

∑
jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j∑
i,jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

.

Then we have ∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

In particular we can take t such that

(txi) =
∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j

yi =
∑
j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j .

Proof. Note that

xi = λx
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j ,

where

λx =
∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j
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Multiply both sides by x
1−β

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i , which yields:

xi ×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
= λx

∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j ×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
⇐⇒

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λx

∑
j

Kij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)

Now sum over all i and rearrange to solve for λx:

∑
i

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λx

∑
i

∑
j

Kij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
⇐⇒

λx =

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

∑
jKij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)

=

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

[∑
jKij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)]
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

) .
Now let us consider the second equilibrium condition:

yi = λy
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

where

λy =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

Multiply both sides by x
α

β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i :

yi ×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
= λy

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
⇐⇒

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λy

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
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Now sum over all i and rearrange to solve for λy:

∑
i

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λy

∑
i

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
⇐⇒

λy =

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

∑
jKji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)

=

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

[∑
jKij

(
x

α
β+α−1

j y
1−α

β+α−1

j B
1

1−α−β
j

)]
×
(
B

1
1−α−β
i x

1−β
α+β−1

i y
β

α+β−1

i

) .
Comparing the expressions for λx and λy, we immediately have λx = λy ≡ λ.

Now take t as

t =

(∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

) 1
1− α

α+β−1

.

To complete the proof of the lemma, we have to show that if (x, y) is a solution to

(xi) =

∑
jKijB

1
1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j∑
i,jKijB

1
1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j

yi =

∑
jKjiB

1
1−α−β
j (xj)

1−β
α+β−1 y

β
α+β−1

j∑
jKjiB

1
1−α−β
j (xj)

1−β
α+β−1 y

β
α+β−1

j

,

then (tx, y) is a solution to a general equilibrium trade model. Namely (tx, y) solves

(txi) =
∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j

yi =
∑
j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j .

To prove this last point, note that

txi =
t1−

α
α+β−1∑

i,jKijB
1

1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j︸ ︷︷ ︸
=1

∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j

=
∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j .
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The equality holds by construction of t. Thus first equation that txi =
∑

jKijB
1

1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j

is satisfied. To show the second equation, it suffices to show

∑
i,j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j = 1.

This holds since27∑
i,j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j = t
1−β

α+β−1

∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

=

∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

= 1.

A.1.3 Existence for trade models

We next consider the existence of a strictly positive solution to the general equilibrium

gravity model defined by equations (28) and (29).

Proof. We apply Lemma 1 with

a =
α

1− α− β
, b =

1− α
α + β − 1

c =
1− β

α + β − 1
, d =

β

α + β − 1

Fi,j = KijB
1

1−α−β
j , Hi,j = KjiB

1
1−α−β
j .

Then there exits a solution, (tx, y) , to the system

(txi) =
∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j

yi =
∑
j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j ,

proving the result.

27If β = 1, then this last line is not true, since the equation for y is no longer dependent on x. In this case,
however, existence and uniqueness follows immediately from Theorem 1 of Karlin and Nirenberg (1967), as
the two integral equations can be treated as distinct from each other.
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A.1.4 Uniqueness for trade models

We now consider the uniqueness of the general equilibrium gravity model. We prove unique-

ness by contradiction.

Proof. For Part ii), uniqueness, we make use of the same Proposition. Gravity models imply

the following restrictions to the coefficients of equations (30) and (31):

a =
α

α + β − 1
, b =

1− α
α + β − 1

c = a− 1 =
1− β

α + β − 1

d = b+ 1 =
β

α + β − 1
.

Suppose that there are two solutions (x, y) , (x̃, ỹ) for the system. Also assume that there

are no constants t such that

x = tx̃. (32)

Without loss of generality, we can assume that for all i,∑
j

Fi,j =
∑
j

Hi,j = 1.

Also we can take (x̃, ỹ) = (1, 1) since

1 =
∑
j

Fi,j1
a1b

1 =
∑
j

Hi,j1
c1d.

Define

mx = min
i
xi

Mx = max
i
xi

my = min
i
yi

My = max
i
yi.

From (32), mx (my) is strictly less than Mx (My) respectively.
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Under the conditions we make, it is easy to show

c < 0 < a

b < 0 < d.

Then we can show that;

maxxi = Mx = max
∑
j

Fi,jx
a
jy

b
j ≤Ma

xm
b
y

max yi = My = max
∑
j

Hi,jx
c
jy
d
j ≤ mc

xM
d
y

mx = minxi = min
∑
j

Fi,jx
a
jy

b
j ≥ ma

xM
b
y

my = min yi = min
∑
j

Hi,jx
c
jy
d
j ≥M c

xm
d
y.

It is easy to show28

(
Mx

mx

)1−a(
My

my

)b
< 1(

Mx

mx

)c(
My

my

)1−d

< 1.

28To obtain first equation, multiply first and third equation.

Mx

(
mb
xM

b
y

)
≤ mx

(
Ma
xm

b
y

)
,

which is equivalent to (
Mx

mx

)1−a(
My

my

)b
< 1.

For second equation, multiply second and fourth equation.

(My)M c
xm

d
y ≤

(
mc
xM

d
y

)
my,

which implies (
Mx

mx

)c(
My

my

)1−d

≤ 1
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Since c = a− 1, and d = b+ 1, (
Mx

mx

)1−a(
My

my

)b
< 1(

Mx

mx

)a−1(
My

my

)−b
< 1.

Therefore the following holds.(
Mx

mx

)1−a(
My

my

)b
< 1 <

(
Mx

mx

)1−a(
My

my

)b
,

which is a contradiction.

A.2 Proof of Theorem 2

Proof. Part i) This relation comes from assumptions A.2 and A.3 clearing conditions.∑
i

Xi,j =
∑
i

Xj,i,

which is equivalent to

KA
i γi

KB
i δi

=

∑
j K̃i,jK

A
j γj∑

j K̃i,jKB
j δj

=
∑
j

K̃i,jK
B
j δj∑

j

(
K̃i,jKB

j δj

) × KA
j γj

KB
j δj

.

It is easy to show that
KA
i γi

KB
i δi

= 1

is a solution to the problem. From the Perron-Frobenius theorem, this solution is unique up

to scale. Therefore for some κ, we have

γiK
A
i = κδiK

B
i . (33)

Part ii) The relation (33) implies

yi =
γi
δi
xi = κ

KB
i

KA
i

xi.
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Substituting this expression into (28), we get

xi = κ
1−α

α+β−1

∑
j

K̃i,jK
A
i K

B
j B

1
1−α−β
j

(
KB
i

KA
i

) 1−α
α+β−1

x
1

α+β−1

j . (34)

Also if we substitute the same expression into (29), we get the exact same expression. There-

fore one of the two equations is trivially satisfied. From Theorem 1 of Karlin and Nirenberg

(1967), the system has an unique solution if
∣∣∣ 1
α+β−1

∣∣∣ ≤ 1, which is equivalent to (7).

A.3 Proof of Proposition 1

The proof is the same as in a single-sector case, but done with slightly different notation.

A.3.1 Preliminary

The system is rewritten in the following form by redefining δsi = δsiYi.

Xs
ij = Ks

ijγiδ
s
jYj

Yi =
∑
s

∑
j

Xs
ij

Bs
i Yi =

∑
j

Xs
ji

Yi = Biγ
α

1−β
i (δi)

β
1−β

δi =
∏
t

(
δti
)θt

,

where
∑

sB
s
i = 1. The new set of α∗ and β∗ is α∗ = α

1−β and β∗ = β
1−β . Actually it turns out

that it is easier to show existence and uniqueness of the system with this notation. However

we need to show that it suffices to establish existence and uniqueness for α∗ and β∗. The

following lemma tells that the mapping between these two is one-to-one so that if the system

has an property for (α∗, β∗), then the (original) system has the same property under (α, β) .

Lemma 3. There is an one-to-one mapping between (α, β) and (α∗, β∗)if β 6= 1.

Proof. Fix (α, β) , then (α∗, β∗) is uniquely pinned down. Fix (α∗, β∗) , then there exists an

unique β such that

β =
β∗

1 + β∗

Then α∗ is uniquely pinned down by α = (1− β)α∗ = α∗

1+β∗
.
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Lemma 4. Denote the function from (α, β) as f. Then f (D) = {(α∗, β∗) ;α∗, β∗ ≤ 0, α∗ − 1 ≤ β∗} ,
where D = {(α, β) ∈ R2;α, β ≤ 0 or α, β ≥ 1} .

Proof. Take (α, β) ∈ f (D) . Namely

α∗ =
α

1− β

β∗ =
β

1− β
.

Then if α and β are both negative, then, α∗ and β∗ are both negative. Also

α∗ − 1− β∗ =
α− β − 1 + β

1− β
=
α− 1

1− β
≤ 0,

which implies (α∗, β∗) ∈ {(α∗, β∗) ;α∗, β∗ ≤ 0, α∗ − 1 ≤ β∗} . Suppose α, β are greater than

1. Then both α∗ and β∗ are negative, and

α∗ − 1− β∗ =
α− 1

1− β
≤ 0.

Again we have (α∗, β∗) ∈ {(α∗, β∗) ;α∗, β∗ ≤ 0, α∗ − 1 ≤ β∗} .
Fix (α∗, β∗) ∈ {(α∗, β∗) ;α∗, β∗ ≤ 0, α∗ − 1 ≤ β∗} . Then define (α, β) as follows.

α =
α∗

1 + β∗

β =
β∗

1 + β∗
.

Then if 1 + β∗ < 0, then

α =
α∗

1 + β∗
> 1

β =
β∗

1 + β∗
> 1.

If 1 + β∗ > 0, then both are negative. Namely (α∗, β∗) ∈ f (D) , which completes the

proof.

Lemma 5. Denote the function from (α, β) as f. Then f (D) = {(α∗, β∗) ;α∗, β∗ ≤ 0} ,
where D = {(α, β) ∈ R2;α, β ≤ 0 or α ≥ 0, β ≥ 1} .
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Proof. Take (α, β) ∈ f (D) . Namely

α∗ =
α

1− β

β∗ =
β

1− β
.

Then if α and β are both negative, then, α∗ and β∗ are both negative,which implies (α∗, β∗) ∈
{(α∗, β∗) ;α∗, β∗ ≤ 0} . Suppose α ≥ 0 and β ≥ 1. Then both α∗ and β∗ are negative. Again

we have (α∗, β∗) ∈ {(α∗, β∗) ;α∗, β∗ ≤ 0, α∗ − 1 ≤ β∗} .
Fix (α∗, β∗) ∈ {(α∗, β∗) ;α∗, β∗ ≤ 0} . Then define (α, β) as follows.

α =
α∗

1 + β∗

β =
β∗

1 + β∗
.

Then if 1 + β∗ < 0, then

α =
α∗

1 + β∗
≥ 0

β =
β∗

1 + β∗
≥ 1.

If 1 + β∗ > 0, then both are negative. Namely (α∗, β∗) ∈ f (D) , which completes the

proof.

These lemmas imply that if we can establish existence (uniqueness) on (α∗, β∗)-space, then

under the associated (α, β) , we can show that the system has a solution (unique solution).

Strictly speaking, we loose uniqueness result when β = 1.

From now on, for notational convenience, we omit the star“*”. From the previous lemma,

it suffices to show that if (α, β) ∈ f (D) , the system

Xs
ij = Ks

ijγiδ
s
jYj

Yi =
∑
s

∑
j

Xs
ij

Bs
i Yi =

∑
j

Xs
ji

Yi = Biγ
α
i (δi)

β

δi =
∏
t

(
δti
)θt

.
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has an unique solution. Then for (α, β) ∈ D, the (original) system has an unique solution.

As we did in a single-sector economy, we can re-define variables as follows.

xi = Biγ
α−1
i (δi)

β

ysi = (δsi )
−1 (= (P s

i )1−σ
)

zi =
∏
s

(
(ysi )

θt
)(α−β)

δi =
∏
t

(
δti
)θt

=
∏
t

(
yti
)−θt

=

[∏
t

(
yti
)θt]−1

= (zi)
− 1
α−β .

Here zi, loosely speaking, represents the aggregate price index for country i Pi. The power

α− β is 1
1−σ for Armington with intermediate case, and (δsi )

−1 = (ysi ) = (P s
i )1−σ.

Then we can express (γi, δi, δ
s
i ) by (xi, y

s
i , zi) .

δi = (zi)
− 1
α−β
(
= (Pi)

σ−1)
(γi)

α−1 = (Bi)
−1 xi (δi)

−β

= (Bi)
−1 xi

(
(zi)

− 1
α−β

)−β
γi = (Bi)

− 1
α−1 (xi)

1
α−1 (zi)

β
(α−β)(α−1)

δsi = (ysi )
−1 .

55



Then substituting these (γi, δi, δ
s
i ) into the equilibrium conditions, we get

xi =
∑
s

∑
j

BjK
s
ijδ

s
jγ

α
j (δj)

β

=
∑
s

∑
j

BjK
s
ij

(
ysj
)−1

(Bj)
− α
α−1 (xj)

α
α−1 (zj)

αβ
(α−β)(α−1) (zj)

− β
α−β

=
∑
s

∑
j

BjK
s
ij

(
ysj
)−1

(Bj)
− α
α−1 (xj)

α
α−1 (zj)

β
α−β ( α

α−1
−1)

=
∑
s

∑
j

Ks
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

ysi = (δsi )
−1 = (Bs

i )
−1
∑
j

Ks
jiγj

=
∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1 (xj)

1
α−1 (zj)

β
(α−β)(α−1)

zi =
∏
s

(
(ysi )

θt
)(α−β)

.

The system is finally written in the following form.

xi =
∑
s

∑
j

Ks
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

ysi =
∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1 (xj)

1
α−1 (zj)

β
(α−β)(α−1)

zi =
∏
s

(
(ysi )

θt
)(α−β)

.

A.3.2 Existence proof

The existence proof consists of two steps. First we consider the following system.

xi =

∑
s

∑
jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1∑
i,s,jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

ysi =
∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1 (xj)

1
α−1 (zj)

β
(α−β)(α−1)

zi =
∏
s

(
(ysi )

θt
)(α−β)

.

Then we know that xi is bounded since we normalize xi. The following lemma ensures that

we can obtain the bounds for ysi and zi under certain conditions.
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Lemma 6. If α, β ≤ 0 and α− 1 ≤ β, then ysi and zi are bounded.

Proof. First we construct (candidate) bounds, and show that actually they are bounds.

Suppose that

my ≤ ysi ≤My.

Suppose that α, β ≤ 0 ,α ≥ β, and α− 1 ≤ β. Then zi is bounded as follows

(my)
α−β ≤ zi ≤ (My)

α−β .

Then

ysi =
∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1 (xj)

1
α−1 (zj)

β

(α− β) (α− 1)︸ ︷︷ ︸
≥0

≤ max
i,s

[∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1

]
︸ ︷︷ ︸

,Cy

(mx)
1

α−1

(
(My)

α−β
) β

(α−β)(α−1)

= Cy (mx)
1

α−1 (My)
β
α−1

ysi ≥ min
i,s

[∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1

]
︸ ︷︷ ︸

,cy

(Mx)
1

α−1 (my)
β
α−1

= cy (Mx)
1

α−1 (my)
β
α−1 .

Set my and My as follows,

My = Cy (mx)
1

α−1 (My)
β
α−1

=
[
Cy (mx)

1
α−1

] α−1
α−1−β

=
[
Cy (mx)

1
α−1

] α−1
α−1−β

my = cy (Mx)
1

α−1 (my)
β
α−1 =

[
cy (Mx)

1
α−1

] α−1
α−1−β

.

It is easy to show My > my since α−1
α−1−β ≥ 0.

Now suppose that α ≤ β. Then zi is bounded as follows

(My)
α−β ≤ zi ≤ (my)

α−β .
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Then

ysi =
∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1 (xj)

1
α−1 (zj)

β

(α− β) (α− 1)︸ ︷︷ ︸
≤0

≤ max
i,s

[∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1

]
︸ ︷︷ ︸

,Cy

(mx)
1

α−1

(
(My)

α−β
) β

(α−β)(α−1)

= Cy (mx)
1

α−1 (My)
β
α−1

ysi ≥ min
i,s

[∑
j

Ks
ji (B

s
i )
−1 (Bj)

− 1
α−1

]
︸ ︷︷ ︸

,cy

(Mx)
1

α−1 (my)
β
α−1

= cy (Mx)
1

α−1 (my)
β
α−1 .

Set my and My in the same as before,

My = Cy (mx)
1

α−1 (My)
β
α−1

=
[
Cy (mx)

1
α−1

] α−1
α−1−β

=
[
Cy (mx)

1
α−1

] α−1
α−1−β

my = cy (Mx)
1

α−1 (my)
β
α−1 =

[
cy (Mx)

1
α−1

] α−1
α−1−β

.

Note that α−1
α−1−β ≥ 0. Therefore My > my.

Since we bound the variables, existence follows immediately from the Schauder’s FPT.

Lemma 7. (Scaling) Suppose that (xi, y
s
i , zi) solves

xi =

∑
s

∑
jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1∑
i,s,jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

ysi =
∑
j

Ks
ji (B

s
i )
−1 (Bj)

1
1−α (xj)

1
α−1 (zj)

β
(α−β)(α−1)

zi =
∏
s

(
(ysi )

θt
)(α−β)

.

Then ∑
i,s,j

BjK
s
ij (Bj)

− α
α−1 (xj)

α
α−1
(
ysj
)−1

(zj)
β

(α−β)(α−1) = 1.
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Proof. Define λx for notational convenience.

λx =
∑
i,s,j

Ks
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1 .

Multiply
[
(Bj)

1
1−α (xi)

1
α−1 (zi)

β
(α−β)(α−1)

]
for the first equation and take a sum w.r.t. i.

λx =

∑
i xi

[
(Bj)

1
1−α (xi)

1
α−1 (zi)

β
(α−β)(α−1)

]
∑

s

∑
jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

(α−β)(α−1)

[
(Bi)

− 1
α−1 (xi)

1
α−1 (zi)

β
(α−β)(α−1)

]
=

∑
i

[
(Bi)

− 1
α−1 (xi)

α
α−1 (zi)

β
(α−β)(α−1)

]
∑

s

∑
j

(
Ks
ij

) [
(Bi)

− 1
α−1 (xi)

1
α−1 (zi)

β
(α−β)(α−1)

]
(Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

(α−β)(α−1)

Also multiply
[
(Bi)

1
1−α (xi)

α
α−1 (ysi )

−1 (zi)
β

α−β
1

α−1

]
for the second equation, and sum up w.r.t.

i, s.

1 =

∑
i,s

[
(Bi)

1
1−α (xi)

α
α−1 (ysi )

−1 (zi)
β

α−β
1

α−1

]
Bs
i y

s
i∑

i,s

∑
jK

s
ji (Bj)

− 1
α−1 (xj)

1
α−1 (zj)

β
(α−β)(α−1)

[
(Bi)

1
1−α (xi)

α
α−1 (ysi )

−1 (zi)
β

α−β
1

α−1

]

=

∑
i

[
(Bi)

1
1−α (xi)

α
α−1 (zi)

β
α−β

1
α−1

] =1︷ ︸︸ ︷∑
s

Bs
i∑

i,s

∑
jK

s
i,j (Bi)

− 1
α−1 (xi)

1
α−1 (zi)

β
(α−β)(α−1)

[
(Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

]
=

∑
i

[
(Bi)

1
1−α (xi)

α
α−1 (zi)

β
α−β

1
α−1

]
∑

i,s

∑
j

(
Ks
i,j

) [
(Bi)

− 1
α−1 (xi)

1
α−1 (zi)

β
(α−β)(α−1)

]
(Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

= λx.

This lemma tells that it suffices to prove existence for

xi =

∑
s

∑
jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1∑
i,s,jK

s
ij (Bj)

1
1−α (xj)

α
α−1
(
ysj
)−1

(zj)
β

α−β
1

α−1

ysi =
∑
j

Ks
ji (B

s
i )
−1 (Bj)

1
1−α (xj)

1
α−1 (zj)

β
(α−β)(α−1)

zi =
∏
s

(
(ysi )

θt
)(α−β)

.
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A.3.3 Uniqueness proof

Proof. Suppose that there are two solutions. As in a single-sector case, we can take one of

the solutions as follows without loss of generality

xi = ysi = zi = 1.

Suppose that α ≤ β ≤ 0. Then we can bound zi.

(Ny)
α−β ≤ zi ≤ (ny)

α−β .

Then we can bound the maximums of xi and ysi and the minimums of them as follows.

As for x, it is easy to show (
Nx

nx

) 1
1−α

≤
(
Ny

ny

) β
α−1

+1

.

As for y, we get (
Ny

ny

) β
α−1

+1

≤
(
Nx

nx

) 1
α−1

.

Since there are two solutions, one of the inequalities is strict.

1 <

(
Nx

nx

) 1
1−α

<

(
Nx

nx

) 1
α−1

< 1,

which is a contradiction. Therefore the system has an unique solution.

Suppose that α− β > 0, and α, β < 0, and α− 1 < β. Then we can bound zi.

(ny)
α−β ≤ zi ≤ (Ny)

α−β .

Then we can bound the maximums of xi and ysi and the minimums of them as follows.

As for x, it is easy to show (
Nx

nx

)− 1
α−1

≤
(
Ny

ny

) β
α−1

+1

Then As for y, we get (
Ny

ny

) β
α−1

+1

≤
(
Nx

nx

) 1
α−1

.

Since there are two solutions, one of the inequalities is strict.

1 <

(
Nx

nx

)− 1
α−1

<

(
Nx

nx

) 1
α−1

< 1,
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which is a contradiction. Therefore the system has an unique solution.

A.4 Proof of Proposition 2

A.4.1 Part (i): The trade equilibrium solves the world income maximization

problem.

Proof. To show that the trade equilibrium maximizes the world income, we show that the

FONCs for the maximization problem coincide with the equilibrium conditions for the trade

model. Mathematically we show that any solutions to the world income maximization satisfy

the trade equilibrium conditions.

The associated Lagrangian of the maximization problem is:

L :
∑
i∈S

∑
j∈S

Kijγiδj −
∑
i∈S

κi

(∑
j

Kijγiδj −
∑
j

Kjiγjδi

)
− λ

(∑
i∈S

∑
j∈S

Kijγiδj −
∑
i∈S

Biγ
α
i δ

β
i

)
⇐⇒

L : (1− λ)
∑
i∈S

∑
j∈S

Kijγiδj −
∑
i∈S

κi

(∑
j

Kijγiδj −
∑
j

Kjiγjδi

)
+ λ

∑
i∈S

Biγ
α
i δ

β
i ,

where {κi} are the Lagrange multipliers on the balanced trade constraint and λ is the La-

grange multiplier on the aggregate factor market clearing.

First order conditions with respect to γi are:

(1− λ− κi)
∑
j

Kijγiδj +
∑
j

Kijγiδjκj + αλBiγ
α
i δ

β
i = 0 (35)

First order conditions with respect to δi are:

(1− λ+ κi)
∑
j

Kjiγjδi −
∑
j

Kjiγjδiκj + βλBiγ
α
i δ

β
i = 0 (36)

We first solve for the λ. Add the two FOC together and sum over all i ∈ S:

2 (1− λ)
∑
i

∑
j

Kijγiδj +
∑
i

∑
j

(Kijγiδj −Kjiγjδi)κj + (α + β)λ
∑
i

Biγ
α
i δ

β
i = 0,

which implies

λ =
2

2− α− β
. (37)
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The FONCs for γi and δi become:

Biγ
α
i δ

β
i =

(
α + β

2α
+

2− α− β
2α

κi

)∑
j

Kijγiδj −
2− α− β

2α

∑
j

Kijγiδjκj (38)

Biγ
α
i δ

β
i =

(
α + β

2β
− 2− α− β

2β
κi

)∑
j

Kjiγjδi +
2− α− β

2β

∑
j

Kjiγjδiκj (39)

We now try to solve for the κ. Equating the two FOC yields:(
α + β

2α
+

2− α− β
2α

κi

)∑
j

Kijγiδj −
2− α− β

2α

∑
j

Kijγiδjκj =

(
α + β

2β
− 2− α− β

2β
κi

)∑
j

Kjiγjδi +
2− α− β

2β

∑
j

Kjiγjδiκj ⇐⇒

β − α
2− α− β

+ κi =

∑
j

(
α

α+β
Kjiγjδi + β

α+β
Kijγiδj

)
κj∑

jKijγiδj
.

(40)

Substituting (40) back into the FOC for γi yields:

Biγ
α
i δ

β
i =

(
α + β

2α
+

2− α− β
2α

κi

)∑
j

Kijγiδj −
2− α− β

2α

∑
j

Kijγiδjκj ⇐⇒

Biγ
α
i δ

β
i =

α + β

2α

∑
j

Kijγiδj +

2− α− β
2α

∑j

(
α

α+β
Kjiγjδi + β

α+β
Kijγiδj

)
κj∑

jKijγiδj
− β − α

2− α− β

∑
j

Kijγiδj −
2− α− β

2α

∑
j

Kijγiδjκj ⇐⇒

Biγ
α
i δ

β
i =

α + β

2α

∑
j

Kijγiδj +
2− α− β

2α

(∑
j

(
α

α + β
Kjiγjδi +

β

α + β
Kijγiδj

)
κj

)
− β − α

2α

∑
j

Kijγiδj −
2− α− β

2α

∑
j

Kijγiδjκj ⇐⇒

Biγ
α
i δ

β
i =

∑
j

Kijγiδj +
2− α− β
α + β

∑
j

(
Kjiγjδi −Kijγiδj

2

)
κj (41)

Substituting (40) back into the FOC for δi yields:

Biγ
α
i δ

β
i =

(
α + β

2β
− 2− α− β

2β
κi

)∑
j

Kjiγjδi +
2− α− β

2β

∑
j

Kjiγjδiκj ⇐⇒

Biγ
α
i δ

β
i =

α + β

2β
− 2− α− β

2β

∑j

(
α

α+β
Kjiγjδi + β

α+β
Kijγiδj

)
κj∑

jKijγiδj
− β − α

2− α− β

∑
j

Kjiγjδi +
2− α− β

2β

∑
j

Kjiγjδiκj ⇐⇒

Biγ
α
i δ

β
i =

∑
j

Kjiγjδi +
2− α− β
α + β

∑
j

(
Kijγiδj −Kjiγjδi

2

)
κj (42)
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Note that equating the two FOC yields:

∑
j

Kijγiδj +
2− α− β
α + β

∑
j

(
Kjiγjδi −Kijγiδj

2

)
κj =

∑
j

Kjiγjδi +
2− α− β
α + β

∑
j

(
Kijγiδj −Kjiγjδi

2

)
κj ⇐⇒

2− α− β
α + β

∑
j

(
Kjiγjδi −Kijγiδj

2

)
κj =

2− α− β
α + β

∑
j

(
Kijγiδj −Kjiγjδi

2

)
κj ⇐⇒∑

j

Kjiγjδiκj =
∑
j

Kijγiδjκj,

where the second to last line imposed balanced trade. Hence the first order conditions

become:

Biγ
α
i δ

β
i =

∑
j

Kijγiδj

Biγ
α
i δ

β
i =

∑
j

Kjiγjδi.

Therefore the solution to the problem is unique and coincides with the allocation of the

general equilibrium gravity model.

A.4.2 Part (ii) : The trade equilibrium solves the world welfare maximization

problem.

Proof. With the assumption we made that the utility for country i is expressed in the fol-

lowing form

ui =
(
Bi (γi)

α−1 (δi)
β−1
)ρ
,

the welfare maximization problem is to maximize the weighted sum of {ui}i subject to the

same constraints. To show that the competitive allocation is Pareto efficient, we show that

under a particular choice of (θi) , the competitive allocation
(
γCEi , δCEi

)
i

solves the planning

problem.

Set the Pareto weights (ωi)i as follows.

(ωi) =
∑
k

(Bk)
ρ (γCEk )ρ(α−1) (

δCEk
)ρ(β−1)

(Bi)
ρ (γCEi )

ρ(α−1)
(δCEi )

ρ(β−1)
∑
j(Bi)

ρ(γCEi )
α
(δCEi )

β∑
j Kj,iγ

CE
j δCEi

(ωk) .

From Karlin and Nirenberg (1967), we know there is a solution to the system.
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The associated Lagrangian is

L =
∑
i

ωiB
ρ
i γ

ρ(α−1)
i δ

ρ(β−1)
i − λ

(∑
i

∑
j

Kijγiδj −
∑
i

Biγ
α
i δ

β
i

)
.

Taking the FONCs w.r.t. γi and δi, we get

ρ (α− 1)ωiB
ρ
i γ

ρ(α−1)
i δ

ρ(β−1)
i = λ

∑
j

Kijγiδj − αλBiγ
α
i δ

β
i

ρ (β − 1)ωiB
ρ
i γ

ρ(α−1)
i δ

ρ(β−1)
i = λ

∑
j

Kjiγjδi − λβBiγ
α
i δ

β
i .

Adding the two equations, and solving for λ, we have

λ = ρ
W

Y
.

Substitute this expression into the FONCs.(
α− 1

α

)(
ωiB

ρ
i γ

ρ(α−1)
i δ

ρ(β−1)
i

W
Y W −

∑
j

Kijγiδj

)
+
∑
j

Kijγiδj = Biγ
α
i δ

β
i(

β − 1

β

)(
ωiB

ρ
i γ

ρ(α−1)
i δ

ρ(β−1)
i

W
Y W −

∑
j

Kjiγjδi

)
+
∑
j

Kjiγjδi = Biγ
α
i δ

β
i .

From the construction of ωi, the bracket term is zero if we evaluate the system at
(
γCEi , δCEi

)
i
.

(
ωiB

ρ
i

(
γCEi

)ρ(α−1) (
δCEi

)ρ(β−1) ∑
j Bj

(
γCEj

)α (
δCEj

)β∑
j ωiB

ρ
i (γCEi )

ρ(α−1)
(δCEi )

ρ(β−1) −
∑
j

Kijγ
CE
i δCEj

)
= 0.

Then the second equation is solved at
(
γCEi , δCEi

)
i

since∑
j

Kjiγ
CE
j δCEi = Bi

(
γCEi

)α
i

(
δCEi

)β
.
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A.5 Proof of Proposition 3

Proof. From the gravity equation A.1 we have:

Xij = Kijγiδj ⇐⇒

Kij =
Xij

γiδj
(43)

Combining factor market clearing A.4 with goods market clearing yields:

Biγ
α
i δ

β
i =

∑
j

Xij ⇐⇒

γαi δ
β
i =

∑
j Xij

Bi

. (44)

The gravity equation A.1 yields the following relationship between origin and destination

fixed effects:

Xii = Kiiγiδi ⇐⇒

δi =
Xii

Kiiγi
. (45)

Combining equations (44) and (45) to solve for γi and δi yields:

γi =

(∑
j Xij

Bi

) 1
α−β
(
Xii

Kii

) β
β−α

and δi =

(
Xii

Kii

) α
α−β
(∑

j Xij

Bi

) 1
β−α

,

which substituting into equation (43) yields an expression for trade frictions Kij that depends

only on observed model parameters and trade flows

Kij = Xij ×

(∑
kXjk∑
kXik

× Bi

Bj

× Xβ
ii

Xα
jj

×
Kα
jj

Kβ
ii

) 1
α−β

,

thereby proving the claim.

A.6 Proof of Proposition 4

Proof. The proof is simply done by implicit function theorem. First some notation is neces-

sary. Define yi ≡ ln γi, zi ≡ ln δi, kij ≡ lnKij. Let ~y ≡ {yi} and ~z ≡ {zi} both be N × 1

vectors and let ~x ≡ {~y; ~z} be a 2N × 1 vector. Let ~k ≡ {kij} be a N2 × 1 vector. Now
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consider the function f
(
~x;~k
)

: R2N ×RN2 → R2N given by:

f
(
~x;~k
)

=


[
Bi (exp {yi})α (exp {zi})β −

∑
j exp {ki,j} (exp {yi}) (exp {zj})

]
i

...[
Bi (exp {yi})α (exp {zi})β −

∑
j exp {kj,i} (exp {yj}) (exp {zi})

]
i

 .
In the general equilibrium trade model, we have:

f
(
~x;~k
)

= 0.

Full differentiation of the function hence yields:

f~xD~k~x+ f~k = 0, (46)

where f~x is the 2N × 2N matrix:

f~x

(
~x;~k
)

=

(
(α− 1)Y βY −X
αY −XT (β − 1)Y

)
,

where Y is a N ×N diagonal matrix whose ith diagonal is equal to Yi and X is the N ×N
trade matrix.

Similarly, f~k is a 2N ×N2 matrix that depends only on trade flows:

f~k

(
~x,~k
)

= −



X11 · · · X1N 0 · · · 0 · · · 0 · · · 0

0 · · · 0 X21 · · · X2N · · · ...
. . .

...
...

...
...

...
...

...
. . . XN1 · · · XNN

X11 · · · 0 X21 · · · 0 · · · XN1 · · · 0

0
. . .

... 0
. . .

... · · · 0
. . .

...

0 · · · X1N 0 · · · X2N · · · 0 · · · XNN


If f~x was of full rank, we could immediately invert equation (46) (i.e. apply the implicit

function theorem) to immediately yield:

D~k~x = − (f~x)
−1 f~k.

However, because Walras Law holds and we can without loss of generality apply a normal-

ization to {γi} and {δi} (see Online Appendix B.1 for details), we effectively have N − 1

equations and N − 1 unknowns, i.e. matrix f~x is of rank 2N − 1. Hence, there exists an
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infinite number of solutions to equation (46), each corresponding to a different normalization.

To find the solution that corresponds to our choice of world income as the numeraire, note

that from equation (1): ∑
l

Blγ
α
l δ

β
l = Y W =⇒

∑
l

Yl

(
α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

)
= 0. (47)

We claim that if ∂ ln γl
∂ lnKij

= Xij × (Al,i + AN+l,j) − c and ∂ ln δl
∂ lnKij

= Xij × (AN+l,i + Al,j) − c,
where c ≡ 1

YW (α+β)
Xij

∑
l Yl (α (Al,i + AN+l,j) + β (AN+l,i + Al,j)), then ∂ ln γl

∂ lnKij
and ∂ ln δl

∂ lnKij

solve equations (46) and (47). It is straightforward to see that our assumed solution ensures

equation (46) holds, as the generalized inverse is a means of choosing from one of the infinitely

many solutions; see James (1978). It remains to scale the set of elasticities appropriately

to ensure that our normalization holds as well. Given our definition of the scalar c, it is

straightforward to verify that equation (47) holds:

∑
l

Yl

(
α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

)
=

∑
l Yl(α (Xij × (Al,i + AN+l,j)− c) +

+β (Xij × (AN+l,i + Al,j)− c))

=
Xij

∑
l Yl (α (Xij × (Al,i + AN+l,j)) + β (Xij × (AN+l,i + Al,j)))

−c (α + β)
∑

l Yl

=
Xij

∑
l Yl (α (Xij × (Al,i + AN+l,j)) + β (Xij × (AN+l,i + Al,j)))−(

1
YW (α+β)

Xij

∑
l Yl (α (Al,i + AN+l,j) + β (AN+l,i + Al,j))

)
(α + β)Y W

= 0,

i.e. equation (47) also holds. More generally, different choices of c correspond to different

normalizations. A particularly simple example is if we choose the normalization γ1 = 1.

Since this implies that ∂ ln γ1

∂ lnKij
= 0, c = Xij × (A1,i + AN+1,j). In this case, however, an

alternative procedure is even simpler: the elasticities for all i > 1 can be calculated directly

by inverting the (2N − 1) × (2N − 1) matrix generated by removing the first row and first

column of f~x.
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A.7 Proof of Proposition 5

Proof. We want to rewrite the equilibrium conditions in changes by defining (x̂i) = x′i/xi.

Starting from (4) we have

γ̂αi δ̂
β
i =

∑
j

K ′ijγ
′
iδ
′
j∑

jKijγiδj
=⇒

γ̂αi δ̂
β
i =

∑
j

πijK̂ij γ̂iδ̂j =⇒

γ̂α−1i δ̂βi =
∑
j

πijK̂ij δ̂j

where πij = Xij/
∑

j Xij represents the exporting shares. Similarly we can rewrite the second

equilibrium condition, Equation (5), in changes as

γ̂αi δ̂
β
i =

∑
jK

′
jiγ
′
jδ
′
i∑

jKjiγjδi
=⇒

γ̂αi δ̂
β
i =

∑
j

λijK̂jiγ̂j δ̂i =⇒

γ̂αi δ̂
β−1
i =

∑
j

λjiK̂jiγ̂j

where λij = Xij/
∑

iXij represents the import shares. This system of equations in changes

is the same as the system of equations in levels. As long as λij, πij are the same and α,β are

the same all the gravity models give the same changes in γi, δj for a given change in Kij.
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B Online Appendix (not for publication)

This Online Appendix provides some additional theoretical results referenced in the paper.

B.1 Normalization

Without loss of generality we can normalize the world income.

Proposition 6. Suppose that (γ, δ) solves the non-linear system. Denote the associated

(x, y) . Then
(
tγ, t−

1−α
1−β δ

)
induces

(
t−

1−α
1−β x, ty

)
, which again solves the non-linear equation.

The world income Y W under
(
tγ, t−

1−α
1−β δ

)
is t

α−β
1−β Y w. In particular if t = (Y w)−

1−β
α−β , then

Y W = 1.

Proof. Take (tγ, sδ) , where

s = t−
1−α
1−β .

Denote the associated (x (t, s) , y (t, s)) .Then

x (t, s) = tα−1sβx

= tα−1t−β
1−α
1−β x

= tα−1−β
1−α
1−β x

= t−
1−α
1−β x

y (t, s) = tαsβ−1y.

= ty.

It is easy to show

xi (t, s) = tα−1sβxi =
∑
j

KijB
1

1−α−β
j

(
tα−1sβxj

) α
α+β−1

(
tαsβ−1yj

) 1−α
α+β−1

=
∑
j

KijB
1

1−α−β
j (xj (t, s))

α
α+β−1 (xj (t, s))

1−α
α+β−1

yi (t, s) =
∑
j

KjiB
1

1−α−β
j

(
tα−1sβxj

) 1−β
α+β−1

(
tαsβ−1yj

) β
α+β−1

=
∑
j

KjiB
1

1−α−β
j (xj (t, s))

1−β
α+β−1 (yj (t, s))

β
α+β−1 .
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Thus a solution to the The world income induced by
(
tγ, t−

1−α
1−β δ

)
is

∑
i

Bi (tγi)
α
(
t−

1−α
1−β δi

)β
= tα−

1−α
1−β β

∑
i

Biγ
α
i δ

β
i

= t
α−β
1−β Y w.

In particular if we take t−
α−β
1−β = Y w, then the world income is normalized to 1.

B.2 Walras law

In the previous section, we showed that without loss of generality, we can normalize the

system of equations so that world income is equal to an arbitrary constant. In this section,

we show that Walras law holds, i.e. if all equilibrium equations but one hold with equality,

then the remaining one holds with equality as well. The two facts together imply that the

equilibrium is really defined by 2N − 1 equations and 2N − 1 unknowns.

To see this, define γ ≡ {γi}, δ ≡ {δi} and x ≡ {γ; δ}, where x is a 2N × 1 vector.

Consider the function f (x) : R2N → R2N given by:

f (x) =


[
Biγ

α−1
i δβi −

∑
jKijδj

]
i

...[∑
jKjiγj −Biγ

α
i δ

β−1
i

]
i

 .
Note that the general equilibrium trade model is in equilibrium if f (x) = 0. Walras law can

be written as:

f (x) · x = 0.

To see this is the case, note that:

f (x) · x = 0 ⇐⇒∑
i

(
Biγ

α−1
i δβi −

∑
j

Kijδi

)
× γi +

∑
i

(∑
j

Kijγi −Biγ
α
i δ

β−1
i

)
× δi = 0 ⇐⇒∑

i

Biγ
α
i δ

β
i −

∑
i

∑
j

Kijγiδi +
∑
i

∑
j

Kjiγjδi −
∑
i

Biγ
α
i δ

β
i = 0 ⇐⇒

0 = 0.

Hence, Walras law holds.
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B.3 Existence and Uniqueness using Gross Substitutes Method-

ology (a la Alvarez and Lucas (2007))

We will illustrate the application of the gross-substitute property to prove uniqueness equi-

librium in an excess demand system. This is a necessary step in the proof of Alvarez and

Lucas (2007) but it is not sufficient, as a number of other properties need to be proved for

an equation to be an excess demand system, as we discuss below.

Because of the complexity of the system that we analyze we cannot apply the gross-

substitutes property directly to equations (4) and (5).

Biγ
α−1
i δβi =

∑
j

Kijδj (48)

Combining gravity A.1 with balanced trade A.(3) and asumption A.4 yields:

Biγ
α
i δ

β−1
i =

∑
j

Kjiγj (49)

In order to find the equation that can be used to prove, we need to eliminate one variable.

Use (5) to express δi as

δi =

(∑
s∈S γsKsi

Biγαi

) 1
β−1

(50)

into equation (4), we obtain

Biγ
α
i

(∑
s∈S γsKsi

Biγαi

) β
β−1

=
∑
j∈S

γi

(∑
s∈S γsKsj

Bjγαj

) 1
β−1

Kij ⇐⇒

B
1

1−β
i γ

α
1−β−1
i

(∑
s∈S

γsKsi

) β
β−1

=
∑
j∈S

(∑
s∈S γsKsj

Bjγαj

) 1
β−1

Kij (51)

We define the corresponding excess demand function might be

Zi (γ) =
1

γi

B 1
β−1

i γ
α+β−1

1−β
i

(∑
s∈S

γsKsi

) β
β−1

−
∑
j′∈S

(∑
s∈S γsKsj′

Bj′γαj′

) 1
β−1

Kij′


This system written as such needs to satisfy 5 properties to be an excess demand system and

the gross substitute property to establish existence and uniqueness (see Propositions 17.B.2,

17.C.1 and 17.F.3 of Mas-Colell, Whinston, and Green (1995)). The six conditions are:
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1. Z (γ) is continuous for γ ∈
(
∆
(
RN

+

))o
2. Z (γ) is homogenous of degree zero.

3. Z (γ) · γ = 0 (Walras’ Law).

4. There exists a k > 0 such that Zj (γ) > −k for all j.

5. If there exists a sequence wm�w0, where w0 6= 0 and w0
i = 0 for some i, then it must

be that:

maxj{Zj(wm)}�∞ (52)

and the gross-substitute property:

6. Gross substitutes property:
∂Z(wj)

∂wk
> 0 for all j 6= k.

Properties 1-3 are trivial by the way we define the system. Properties 4 and 5 are chal-

lenging and may require an analysis case-by-case which restrict further the set of parameters

that uniqueness applies. We thus only discuss the region where gross-substitutes applies. To

consider this system as an excess demand system and apply the tools originally developed

in Alvarez and Lucas (2007), we need to differentiate the expression above. We only use the

bracketed term without loss of generality. We have:

∂Zi (γ)

∂γj
=

β

β − 1
KjiB

1
1−β
i γ

α+β−1
1−β

i

(∑
s∈S

γsKsi

) 1
β−1

− 1

β − 1

∑
j′∈S,j′ 6=j

Kij′

(∑
s∈S γsKsj′

Bj′γαj′

)−β+2
β−1

Kjj′

−
− 1

β − 1
Kij

(∑
s∈S γsKsj

Bjγαj

)−β+2
β−1

[
KjjBjγ

α
j − αBjγ

α−1
j

∑
s∈S γsKsj′

Bjγαj

]

=
β

β − 1
KjiB

1
1−β
i γ

α+β−1
1−β

i

(∑
s∈S

γsKsi

) 1
β−1

− 1

β − 1

∑
j′∈S,j′ 6=j

Kij′

(∑
s∈S γsKsj′

Bj′γαj′

)−β+2
β−1

Kjj′

−
− 1

β − 1
Kij

(∑
s∈S γsKsj

Bjγαj

)−β+2
β−1

[
γjKjj − α

∑
s∈S γsKsj′

γj

]
Let β < 0 and α < 0 then the expression is positive and the gross-substitute property

holds. Similar results can be easily established for β = 0, α < 0 and β < 0, α = 0. The

same cannot be, in generally, established if β > 1 or α > 1 since the expression cannot

be signed in that case, and in particular we have found parametric specifications where the

gross-substitutes property may fail.29 Thus, the region that uniqueness applies with this

approach is α ≤ 0, β ≤ 0.

29In particular, we analyzed the Armington case with intermediate inputs as in Section 2. We can show
that this model for σ = 3 and γ = 1/4 corresponds to the case α, β > 1 but the gross-substitute condition
does not obtain in the case of many symmetric regions with symmetric trade costs or even two regions with
no trade costs.
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B.4 Comparative Statics when β = 0

Let us consider a particularly interesting special case, β = 0. We have in this case that the

equilibrium is characterized by

Biγ
α−1
i =

∑
j∈S

(∑
s∈S γsKsj

Bjγαj

)−1
Kij =⇒

γα−1i =
∑
j∈S

(
Bjγ

α
j∑

s∈S γsKsj

)
BiKij,

which is the standard single-equation gravity model that we find in papers such as Anderson

(1979); Eaton and Kortum (2002); Chaney (2008). We can rewrite this system re-written

using A.4 as

Yi =
∑
j∈S

(
γiKij∑
s∈S γsKsj

)
Yj

In this last equation the technique developed by Dekle, Eaton, and Kortum (2008) can be

applied (see details in Arkolakis, Costinot, and Rodŕıguez-Clare (2012)) so that computing

the changes in γi require only knowledge of changes in Kij and initial trade and output levels

across all the models that can be captured by this formulation.

Notice that given equation 50 and the above equation we have for β = 0 that we can

express the origin fixed effects as a function of the destination fixed effects and parameters

γi =

(∑
jKijδj

Bi

) 1
α−1

. (53)
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