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Abstract

The gravity relationship is one of the most robust empirical results in economics.
This success has led to a proliferation of general equilibrium models that offer theo-
retical foundations for the gravity relationship. In this paper we develop a universal
framework that nests previous general equilibrium gravity models and show that many
of the macro-economic implications these various models depend solely on two key
model parameters, which we term the “gravity constants.” On the theoretical side, we
provide sufficient conditions for the existence and uniqueness of the trade equilibrium
and show that the equilibrium can be equivalently considered as the solution to plan-
ning problems either maximizing world income or world welfare. On the empirical side,
given observed trade flows, we show that gravity models are fundamentally underiden-
tified, yet we can characterize all comparative statics for any change in bilateral trade
frictions solely in terms of observed trade flows and the gravity constants. Based on
these results, we derive a closed form solution of a new gravity estimator that improves
upon standard reduced-form gravity regressions by directly incorporating general equi-

librium effects.

*We thank Andy Atkeson, Lorenzo Caliendo, Arnaud Costinot, Dave Donaldson, John Geanakoplos,
Penny Goldberg, Sam Kortum, Giovanni Maggi, Steve Redding, and Xiangliang Li for excellent comments
and suggestions. A Matlab toolkit which is the companion to this paper is available on Allen’s website. All
€rTors are our own.



1 Introduction

The gravity relationship — where trade flows increase with the origin and destination countries
incomes and decrease with the distance between the two countries — is one of the most robust
empirical results in economics.! This success has led to a proliferation of general equilibrium
models that offer theoretical foundations for the gravity relationship, see e.g. Anderson
(1979); Bernard, Eaton, Jensen, and Kortum (2003); Eaton and Kortum (2002); Chaney
(2008). However, due to the numerous and varied general equilibrium effects at play in these
gravity trade models, little is known about the extent to which the predictions of each model
depends on its particular theoretical foundation.

In this paper, we develop a universal framework that nests previous general equilib-
rium gravity models and show that many macroeconomic implications depend solely on two

"2 Different micro-economic

key model parameters, which we term the “gravity constants.
foundations affect the interpretation of the gravity constants, but do not affect the general
equilibrium structure of the model. Simply put, conditional on the value of these constants,
all gravity trade models deliver the same macro-economic predictions.

The general equilibrium gravity framework we develop is based on four restrictions: (i) a
“modern” version of gravity, whereby bilateral trade flows depend on (endogenous) origin and
a destination country shifter and (exogenous) bilateral trade frictions;® (ii) aggregate output
equals total sales; (iii) trade is balanced; and (iv) (gross) income is a log-linear function of
the origin and destination shifters (which practically translates to the condition that gross
income is proportional to labor income). The aforementioned gravity constants are simply
the coefficients of this log-linear function. It turns out that these assumptions — which are
ubiquitous throughout the trade literature — impose sufficient structure on aggregate trade
flows to completely characterize all general equilibrium interactions.

We classify our results into two groups: theoretical and empirical. In the first group,
we first examine the existence and uniqueness properties common to all general equilibrium

gravity trade models. We show that their solution can be represented by a nonlinear op-

IThe literature on the gravity equation in trade is vast; an excellent starting place are the recent review
articles by Baldwin and Taglioni (2006), Anderson (2011) and Head and Mayer (2013).

2Examples of models covered under our specification is perfect competition models such as Anderson
(1979), Anderson and Van Wincoop (2003), Eaton and Kortum (2002), Caliendo and Parro (2010) monopo-
listic competition models such as Krugman (1980), Melitz (2003) as specified by Chaney (2008), Arkolakis,
Demidova, Klenow, and Rodriguez-Clare (2008), Di Giovanni and Levchenko (2008), Dekle, Eaton, and Ko-
rtum (2008), and the Bertrand competition model of Bernard, Eaton, Jensen, and Kortum (2003); see Table
1 for details.

3This version of the gravity model was first introduced by Eaton and Kortum (2002), Anderson and
Van Wincoop (2003), and Redding and Venables (2004). Baldwin and Taglioni (2006) and Head and Mayer
(2013) carefully discuss the econometric issues arising from the use of this specification.



erator on a compact set, which allows us to provide sufficient conditions for existence and
uniqueness of a trade equilibrium as a function solely of the two gravity constants. Given the
simple mapping of different gravity models to gravity constants, these sufficient conditions
are straightforward to check and relax the sufficient conditions presented by Alvarez and
Lucas (2007). The parameter region where uniqueness applies can be expanded when trade
frictions are “quasi-symmetric”, as is assumed in much of the empirical gravity literature,
e.g. Eaton and Kortum (2002) and Waugh (2010). Our methodology can also be extended
to consider multiple sectors of production, as in Chor (2010) and Costinot, Donaldson, and
Komunjer (2010).

Second, we show that there exists two “dual” interpretations of the general equilibrium
gravity model. In the first interpretation, a planner maximizes world income subject to trade
remaining balanced and an aggregate world resource constraint. In the second interpretation,
a planner maximizes a weighted average of world welfare subject to only the aggregate world
resource constraint, where welfare is assumed to be written as a function of trade openness (as
in the class of trade models considered by Arkolakis, Costinot, and Rodriguez-Clare (2012)).
Using these dual interpretations, we apply the envelope theorem to derive the elasticity
of both world income and world welfare to any bilateral trade costs, which can both be
expressed solely as a function of observed trade flows and the gravity constants. While the
expression for world income is, to the best of our knowledge, novel, the expression for world
welfare has been derived previously for gravity models with CES demand by Atkeson and
Burstein (2010), Burstein and Cravino (2012), and Fan, Lai, and Qi (2013); our derivation
extends this result to any gravity trade model where welfare can be expressed as a function
of trade openness (which Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2012) show
holds for a large class of homothetic utility functions).

We then turn to the empirical properties of the model by asking what can be said using our
framework given observed trade flows. We first characterize the extent to which model fun-
damentals can be recovered from the trade data. We show that trade models are intrinsically
underidentified: the same trade data can be perfectly matched by different combinations of
model fundamentals. Notably, the gravity constants cannot be identified from observed trade
flows alone. This result provides a general characterization of the non-identification inherent
to gravity models which has been discussed for particular models previously by in Waugh
(2010), Eaton, Kortum, Neiman, and Romalis (2011), Burstein and Vogel (2012), Ramondo,
Rodriguez-Clare, and Saborio-Rodriguez (2012) and Arkolakis, Ramondo, Rodriguez-Clare,
and Yeaple (2013).

To examine how changes in bilateral trade frictions affect equilibrium trade flows and

incomes we first derive an analytical expression for the (large) matrix of elasticities of all



bilateral trade flows and incomes to changes in all bilateral trade frictions. As with the
aggregate elasticities, this expression depends only on observed trade flows and the gravity
constants, indicating that apart from these two model parameters, all macro-economic im-
plications — i.e. the changes in trade flows and gross incomes — for all gravity models are
the same. We then derive a system of equations that show how arbitrary (possibly non-
infinitesimal) changes to the trade friction matrix affect macro-economic variables; again
this expression only depends on the gravity constants and observed trade flows. While the
non-infinitesimal results generalize those developed by Dekle, Eaton, and Kortum (2008)
and Arkolakis, Costinot, and Rodriguez-Clare (2012), the closed form solution for the trade
elasticities is, the the best of our knowledge, the first in the literature.®

Building upon these theoretical results, we develop a new general equilibrium gravity
estimator. Unlike the widely used fixed effects gravity estimator made popular by Eaton
and Kortum (2002) and Redding and Venables (2004)°, our estimator, which is in the spirit
of Anderson and Van Wincoop (2003), explicitly incorporates the general equilibrium effects
that a change in the bilateral trade friction between any two countries has on all other
bilateral trade flows.% Unlike Anderson and Van Wincoop (2003), however, we derive a closed
form solution for the general equilibrium estimator, and show that it can be interpreted as
an ordinary least squares regression where the typical gravity regressors have undergone a
transformation to account for general equilibrium effects. Using Monte Carlo simulations, we
show that the general equilibrium estimator can not only outperform a fixed effects gravity
estimator, it can also overcome concerns of omitted variable bias by relying on the general
equilibrium effects as a source of identification.

Finally, we put our gravity framework to work in two empirical applications. First,
we show how to optimally allocate “infrastructure improvements” that lower bilateral trade
frictions to maximize the welfare of any particular country (or total world welfare). Second,
we estimate the effect of WTO membership on trade flows, and find that while the WTO
substantially increases the welfare of member countries, it does so at a cost to non-members.

Our work is related to a small but growing literature analyzing the structure of general

4The analysis of Arkolakis, Costinot, and Rodriguez-Clare (2012) and Arkolakis, Costinot, Donaldson,
and Rodriguez-Clare (2012) applies only to models where the trade elasticity, i.e. the response of trade flows
to trade costs, pins down our first gravity constant and the second gravity constant is equal to zero. Formally,
models that violate the assumption R2’ in Arkolakis, Costinot, and Rodriguez-Clare (2012) are not covered
in that class. Models that our framework nests that violate R2’ in Arkolakis, Costinot, and Rodriguez-Clare
(2012) include Di Giovanni and Levchenko (2009), Arkolakis (2010) when domestic labor is fully or partially
used for marketing costs of exporting, and models with intermediate inputs as in Eaton and Kortum (2002).

SEarlier applications of the fixed effects estimator include Harrigan (1996) and Hummels (1999).

6Other papers that develop general equilibrium estimation procedures for the gravity equation include
Balistreri and Hillberry (2007), Anderson and Yotov (2010), and Fally (2012); our paper, however, is the
first to derive a closed form least squares estimator that incorporates general equilibrium effects.



equilibrium models of trade. Notably, Arkolakis, Costinot, and Rodriguez-Clare (2012) derive
a closed form expression for changes in welfare as a function of openness that holds true across
a large set of trade models. This paper follows in their footsteps by deriving closed form
expressions for all other outcomes of interest, e.g. changes in bilateral trade flows, incomes,
and global welfare that hold universally across gravity models. Our paper is also related to
Costinot (2009), who examines the patterns of trade that hold true across many models. His
primary focus, however, is on the specialization of countries in particular sectors, whereas
we are concerned with the pattern of aggregate trade flows in a gravity framework.

The paper is organized as follows. In the next section, we present the universal framework
and discuss how it nests existing general equilibrium gravity models. In Section 3, we present
the theoretical results for existence and uniqueness, as well as the dual interpretations of the
problem. In Section 4, we present the empirical results for identification, comparative statics
and estimation. In Section 5, we present two empirical applications illustrating our results.

Section 6 concludes.

2 The general equilibrium gravity framework

Consider a world comprised of a set S = {1,..., N} of locations.” Let Y; denote the gross
income of country ¢, X;; the total value of country j’s imports from country 7, and K;; > 0 the
associated bilateral trade frictions. As indicated in the introduction we focus our attention
on models satisfying the “modern” version of the gravity equation, first discussed by Eaton
and Kortum (2002), Anderson and Van Wincoop (2003), and Redding and Venables (2004).
Formally, we define a gravity trade model as any model which yields an equation of the

following type:

Assumption 1. For any countries i € S and j € S, the value of bilateral trade flows is
given by X;; = K;;v0;, where K;; > 0 is the exogenous bilateral trade friction and ~; and o;

are endogenous model outcomes.

In this specification, the origin shifter v; and the destination shifter J; can represent
endogenous model outcomes — such as wages or the measure of firms as well as model fun-
damental parameters — such as productivities or labor endowments. The bilateral trade
frictions are exogenous and capture the effects of bilateral trade costs; they could be inverse
functions of bilateral distance, various exporting barriers faced by exporting countries, etc.

Note that larger values of K;; indicate lower bilateral trade frictions. Whereas we do not

"The choice of a finite number of locations is not necessary for the the results that follow, but it saves on
notation, avoids several thorny technical issues, and is consistent with the majority of the trade literature.



take a particular stand on the model that yields this gravity specification, we explain how
different models map to this specification and to our subsequent results below.

Goods market clearing and trade balance. We proceed by defining two equilibrium
conditions that are standard assumptions for modern general equilibrium gravity models:
goods market clearing and trade balance. We say that goods markets clear if the output
for all + € S is equal to the value of the good sold to all destinations. This condition is

practically an accounting identity. Formally:

Assumption 2. For any country i € S\Y; =3 .o X;j.

jes
Furthermore we assume that trade is balanced, i.e. that output for all 7 € S is equal to

the amount spent on good purchased from all other destinations:

Assumption 3. For any country i € S, Y; = ZjeS Xji.

While balanced trade is a standard equilibrium condition in general equilibrium gravity
models, it is important to note that trade is not balanced empirically. This empirical discrep-
ancy is an inherent limitation arising from the use of a static model to explain an empirical
phenomenon with dynamic aspects. However, given both its ubiquity in the literature and
the necessarily ad hoc nature of any alternative assumption (e.g. exogenously trade deficits),
balanced trade seems the natural assumption on which to focus. We relax this assumption
in characterization of the empirical properties of the model in Section 4.

Our last assumption postulates a log-linear parametric relationship between gross income

and the origin and destination shifter:

Assumption 4. For any countryi € S, Y; = Bﬂfdig

1

where we define o« € R and f € R to

be the gravity constants and B; > 0 is an (exogenous) country specific shifter.

Contrasting with A.1 which controls the matrix of bilateral flows, A.4 regulates the extent
to which income responds to changes in the two endogenous shifters. The gravity constants
determine the importance of the origin and destination shifters in determining a country’s
income. Let us consider the case that « and (3 are negative (which turns out to be a useful
one). A larger origin shifter represents a higher exporting potential of the country. With a
negative a this higher exporting ability is only achieved through a lower income (conditional
on the destination shifter). A similar relationship holds between the destination shifter and
income with a negative 5. These inverse relationships guarantee that there exists a stabilizing
force in the gravity network, which will prove important when we discuss the existence and
uniqueness of equilibria.

In practice, A.4 is analogous to the standard condition that the income in a location is

equal to the income earned by the factors of production in that location but reformulated



in terms of the origin and destination shifters of the gravity equation. This formulation is
general enough to incorporate a number of seminal gravity trade models, e.g. Armington
(1969); Anderson (1979); Krugman (1980); Eaton and Kortum (2002); Melitz (2003).

Finally, to choose the numeraire, we normalize world income equal to one:

ZYizl. (1)

In what follows, we define a general equilibrium gravity model to be any gravity trade model
such that goods market clears, trade is balanced, factor markets clear, (conditions A.1-A 4)
and the normalization (1) is satisfied.

Example: the Armington model To make things concrete, we will provide a simple
example of a general equilibrium trade model that satisfies our assumptions. In the Arming-
ton (1969) model, first formulated in general equilibrium by Anderson (1979), each location
produces a differentiated variety (which is sold at marginal cost) and consumers have CES
preferences with elasticity of substitution ¢ and where we denote by P; the Dixit-Stiglitz
CES price index across all varieties. We assume that production combines labor and an
intermediate input in a Cobb-Douglas fashion, where the share of labor is given by § € (0, 1],
and the intermediate input uses the same CES aggregator of goods from all countries as the
final consumption good. Thus, with productivity A; the unit cost of production in country
i is simply w?P!°/A;.

In this model, the value of bilateral trade between i € S and 5 € S is:

(WP
Xij = Tj; < 1 > PyYY; (2)

where w; is location’s ¢ wage, A; is the location’s productivity and the marginal production
cost is X—i, 7i; is the iceberg cost of delivering ¢’s good in destination j, and Y; is again its
income. It is also straightforward to show that output is proportional to wage income and
is given by

Y, =w;L;/6 (3)

where L; is the population in location i. According to the definition of gravity, A.1, we have

wi PO\
i = | 6 = PPy,
f)/ ( AZ ) Y 7



which allows us to write A.4 as

o—1 6(c—1)

1
Y_ 1066105A051LU(51
i =

5(o—1)
so that o = ==, = { —, and B; —A”‘S 1L°5 " . Note that if ¢ > 1 and 06 > 1, then

a, f< 0 and a higher productivity A; will increase both the exporting ability and the income

of the country. At the same time increases in wages increase exports but decrease income as
discussed earlier.

Table 1 shows how to express the two gravity constants, parameters o and 3, in several
models that map to our framework. As we will see below, these two constants can be used
to sufficiently characterize whether or not an equilibrium is unique and, along with observed
trade flows, fully determine how changes to model parameters will affect trade flows and

incomes.

3 Theoretical properties

We first consider the theoretical properties of the general equilibrium gravity framework.

3.1 Existence and Uniqueness

In this section, we provide sufficient conditions for establishing existence and uniqueness in a
general equilibrium gravity model. We start by formulating the equilibrium system implied
by our assumptions. Using A.2 and A.3 and substituting out X;; and Y; with the definitions
A.1 and A.4, respectively, yields:

ol — ZKU(S (4)
and

BAfo) =D Ky (5)
J

Thus, the solution of a gravity model is given by v; and 9; for all 7 € S such that equations
(4) and (5) and the normalization from equation (1) are satisfied.

To proceed, we define x; = nyf"léf and y; = B; ?51-5 ~!. By reformulating the system
in terms of z;, y; (see Appendix A.1 for details), equations (4) and (5) take the form of a



standard system of non-linear equations. It turns out that this reformulation of the problem
provides a method of solving for the trade equilibrium system using functions that map a
compact space onto itself. This has two advantages over the standard formulation given in
equations Equations (4) and (5): first, by restricting the potential solution space, it facilitates
the calculation of the equilibrium; second, it allows us to generalize results used in the study
of integral equations to prove the following theorem regarding the existence and uniqueness

of general equilibrium gravity models:

Theorem 1. Consider any general equilibrium gravity model. Then:
i) If a + 8 # 1, the model has a positive solution and all possible solutions are positive;
it) If a, B < 0 or a, 8 > 1, then the model has a unique solution.

Proof. See Appendix A.1. m

Note that condition (ii) of Theorem 1 provides sufficient conditions for uniqueness; for
certain parameter constellations (e.g. particular geographies of trade costs), equilibria may
be unique even if the conditions are not satisfied. In practice, however, we have found that

there exist multiple equilibrium for particular geographies when condition (ii) is not satisfied.

Quasi-symmetry

It turns out that we can extend the range in which uniqueness is guaranteed if we constrain
our analysis to a particular class of trade frictions which are the focus of a large empirical

literature on estimating gravity trade models. We call these trade frictions quasi-symmetric.

Definition 1. Quasi Symmetry: We say the trade frictions matrix K is quasi-symmetric if
there exists a symmetric N x N matrix K (i.e. foralli,j € S, f(ij = [N(ji) and N x 1 vectors
K# and KP such that for all 4, € S we have:

Kij = Ky K{'KP.

Loosely speaking, quasi-symmetric trade frictions are those that are reducible to a sym-
metric component and an origin- and destination-specific component. While restrictive, it is
important to note that the vast majority of papers which estimate gravity equations assume
that trade frictions are quasi-symmetric; for example Eaton and Kortum (2002) and Waugh
(2010) assume that trade costs are composed by a symmetric component that depends on
bilateral distance and on a destination or origin fixed effect.

When trade frictions are quasi-symmetric we can show that the system of equations (28)

and (29) can be dramatically simplified, and the uniqueness more sharply characterized.



Theorem 2. Consider any general equilibrium gravity model with quasi-symmetric trade
costs. Then:
i) The balanced trade condition is equivalent to the origin and destination fized effects

being equal up to scale, i.e.
B = R K ©)

for some k > 0 that is part of the solution of the equilibrium.
it) If a and [ satisfy
a+pB<0ora+pB>2 (7)

the model has a unique positive solution.

Proof. See Appendix A.2. n

Part i) of the Theorem 2 is particularly useful since it allows to simplify the equilibrium

system into a single non-linear equation:
o' —1 1-8
,yi +5 ﬁ 1 Z KA (KB) (8)

In addition, because the origin and destination shifters in gravity models will (generally)
be composites of exogenous and endogenous variables, by showing that the two fixed effects
are equal up to scale, Theorem 2 provides a more precise analytical characterization of the
equilibrium. We should note that the results of Theorem 2 have already been used in the
literature for particular models, albeit implicitly. The most prominent example is Anderson
and Van Wincoop (2003), who use the result to show the bilateral resistance is equal to

8 To our knowledge, Head and Mayer (2013) are the first to recognize the

the price index.
importance of balanced trade and market clearing in generating the result for the Armington
model; however, Theorem 2 shows that the result applies more generally to any general
equilibrium gravity model with quasi-symmetrical trade costs.

Figure 1 illustrates the range of o and 8 for which uniqueness of the model can be guar-
anteed. It should be noted that while most of the examination of existence and uniqueness of
trade equilibria has proceeded on a model-by-model case, the gross substitute methodology
used by Alvarez and Lucas (2007) has proven enormously helpful in establishing condi-
tions for existence and uniqueness. It can be shown (see Online Appendix B.3) that the
gross-substitutes methodology works only when o« < 0 and g < 0; hence, the tools used in
Theorems 1 and 2 extend the range of trade models for which uniqueness can be proven,

including, for example, Armington model with intermediate inputs.

8The result is also used in economic geography by Allen and Arkolakis (2013) to simplify a set on non-
linear integral equations into a single integral equation.
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Example: Armington model with quasi-symmetry Consider again an Armington
model with intermediate inputs, but now assume that trade costs are quasi-symmetric. From

part (i) of Theorem 2, we have ~; = kd;, which implies:

s pl-on 17
<U’T) K2 = kP7w, L, KB,

or equivalently:

1
(1+<z;(—1>g) ) KB\ 0-02-9)
_ 1—0)(2— —0 7
7

Equation (9) provides some intuition for the uniqueness condition presented in Theorem 2:
when o < %, it is straightforward to show that the elasticity of the price index with respect to
the wage is less than one. This implies that the wealth effect may dominate the substitution
effect, so that the excess demand function need not be downward sloping.

In addition, combining equation (9) with equation (8), assuming § = 1, and noting that

welfare W; = % yields the following equation:

RWPTLT =y Ky AT 7 AP LW e, (10)

J

where 6 = Z—. Equation (10) holds for both trade models (where labor is fixed) and
economic geography models (where labor is mobile); in the former case, L; is treated as
exogenous parameter and W; solved for; in the latter case L; is treated as endogenous and
W; is assumed to be constant across locations. Hence, Theorem 2 highlights the fundamental

similarity between trade and economic geography models.?

Multiple sectors

Our approach also can be naturally extended to the cases where there are multiple sectors.

Suppose there are a set s € {1, e S } of sectors and that the bilateral trade flow between

YWhen there are only two countries (so that trade costs are necessarily quasi-symmetric), we can use
equation (10) to derive a single non-linear equation that yields the relative welfare in the two countries

W oG w (1—0o)5 w G
Ko (1> - K <VV;> + Koy (VV;) = Ky».

Comparative statics for welfare with respect to changes in K;; can be characterized using the implicit function
theorem in this case.

11



country ¢ and country 7 in sector s is
X5 = K3 (00 (5).

With multi-sector gravity models, we implicitly assume that there are no frictions on labor
markets so that the wages in country ¢ is equalized across sectors. That is why we can assume

that the origin effect, v;, is independent of the sector s. Assumption A.4 becomes:

B
Y = Bi(%)° (H(@S)@t) :

S

The first two terms are the same as before, but the last term is slightly different from what

we have in a single-sector economy. In general the income for country ¢ depends on the price
B
index P;, which can be captured by <HS (5f)et)

The other two equilibrium conditions are:
> X = BY,
J
3 ST
J

S

The first equation assumes that country ¢’s expenditure in each sector is a constant fraction of
its total income. The second equation is the extension of the good market clearing condition
we have in a single-sector case.

It turns out that the conditions for uniqueness with multiple sectors are the same as with

a single sector, which we formalize in the following proposition:

Proposition 1. (1) There exists a solution to the multi-sector gravity model if o, 5 < 0 or
a, > 1. (2) That solution is unique if a, 5 <0 or o, 5 > 1.

Proof. See Appendix A.3. O]

Note that unlike the single sector case, we cannot prove the existence of a solution when

it is not unique; this is due to the presence of cross-sectoral linkages.

3.2 Two dual representations

In this section, we show that the solution of the general equilibrium gravity model can
be equivalently expressed as the solution to two distinct maximization problems: one for

world income and one for world welfare. These dual interpretations allow us to apply the

12



envelope theorem to derive expressions for the elasticity of world income and world welfare,
respectively, to any change in bilateral trade frictions.

Consider first the problem of choosing the set of origin and destination fixed effects to
maximize world income subject to trade remaining balanced and the aggregate feasibility

constraint that world income can be equivalently calculated by summing over trade flows or
max Z Z K,]’)/l(sj
10y i€S jes

s.t. Z KZ]/Y’Léj = ZKJZ’YJ(SZ Vi S S and Z Z KZ]’Y’L(SJ = Z BZ ?5%8’ (]‘1)
J J

i€S jeS icS

using assumption A.4:

where we now choose as a numeraire that v; = 1 rather than choosing world income as a
numeraire (since maximizing the numeraire is not a well defined problem).

Alternatively, consider the problem of maximizing a weighted average of world welfare
subject to only the aggregate feasibility constraint. Of course, in the absence of a micro-
foundation of the gravity trade model nothing can be directly said about the welfare of
the equilibrium (as we have not specified preferences). However, Arkolakis, Costinot, and
Rodriguez-Clare (2012) show that for a large class of trade models, the welfare of a country
can be written solely as an increasing function of its openness to trade and an exogenous

parameter, i.e. for all 7 € .S, welfare in country i, can be written as:

W, =COWar =W (BZ- 5*155*1>p, (12)

where C}¥ > 0 is an (exogenous) parameter and p > 0 is an exogenous scalar equal to
negative of the inverse of the elasticity of Kj;; to the iceberg trade costs. If welfare can be

written as in equation (12), we can define world welfare as a weighted average of the welfare

W= wlWi=> wcl (Bi ?*16?*1)’),

€S €S

in each country:

where w; > 0 are the weights placed on the welfare in each country. Then the following world

welfare maximization problem is well defined:

max W
{v}.{s}
s.t. Z Z KZ]’}/Z(SJ = Z Bz Zaéf (13)
i€S jes i€S

It turns out that the solution to both the world income maximization problem (11) and the

world welfare maximization problem (13) is the solution to the general equilibrium gravity

13



model, which we prove in the following proposition:

Proposition 2. Consider any general equilibrium gravity model. If o+ > 2 ora+ £ <0
(which by part (ii) of Theorem 2 guarantees uniqueness), Then:

(i) The solution of the general equilibrium gravity model is equivalent to the solution of
the world income mazimization problem (11).

(i) If welfare can be expressed as in equation (12), then there exists a set of weights {w;}
such that the solution of the general equilibrium trade model is equivalent to the solution of

the world welfare mazimization problem (13).
Proof. See Appendix A.4. ]

An advantage of the dual approach is that it allows us to apply the envelope theorem
to derive an expression for how any change in bilateral trade frictions affects world income
and world welfare. Using the world income maximization dual interpretation, the elasticity

of world income to Kj; is:

dInk; [“"_”J'Hz—a—ﬁ YW’

where k; is the Lagrange multiplier on the balanced trade constraint and can be shown to

be the solution to the following linear system:

f—« Xij
T TR = — Kj.
2—(a+B) Z;Y :

When trade costs are quasi-symmetric, part (i) of Theorem 2 implies that X;; = X; so that

expression (14) becomes even more straightforward:

w w N
l(alnY OlnY ) a+ X (15)

5 81nKZ]+81nKﬂ ZQ—Q—BY_W7

i.e. a symmetric increase in any pair of K;; (i.e. a symmetric reduction bilateral trade

frictions) increases world income by an amount proportional to the importance of those

bilateral trade flows, where the proportion is a function of the gravity constants.!°
Applying the envelope theorem to the world welfare maximization interpretation, the

elasticity of world welfare to K;; is even simpler::

8111Kij _pYW

(16)

ONote that if « + 38 > 2 or a + 8 < 0, then 2?:58 > 0.
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Since p is the inverse of the negative of the trade elasticity, equation (16) says that the
elasticity of welfare to the trade cost is simply equal to —;(—V{, This expression has been
derived for gravity models with CES demand by Atkeson and Burstein (2010), Burstein
and Cravino (2012), and Fan, Lai, and Qi (2013); our derivation extends this result to any
gravity trade model where welfare can be expressed as in equation (12). Arkolakis, Costinot,
Donaldson, and Rodriguez-Clare (2012) show that this expression holds for a larger class
of homothetic demand function that includes the symmetric translog demand function (see
also Feenstra (2003b)) and the Kimball demand function (see Kimball (1995)).

4 Empirical implications

Thus far, we have examined the theoretical properties of the general equilibrium gravity
framework. In this part of the paper, we ask in what ways can the general equilibrium gravity
framework be used in conjunction with an observed set of bilateral trade flows. In particular,
given any set of observed trade flows {X;;} and gravity constants a and 3: we (1) show to
what extent model fundamentals such as bilateral trade frictions can be recovered; (2) derive
expressions for how the model equilibrium will change with any change in the underlying
bilateral trade flows; and (3) use these results to develop a new general equilibrium gravity
estimator that can outperform the standard gravity regression.

Before proceeding to these results, however, we must address an issue familiar to trade
empiricists: in contrast to assumption A.3, trade data is usually not balanced. It is not obvi-
ous how one ought to address unbalanced trade (which we view as a dynamic phenomenon)
in the context of a static model. In what follows, we we treat the trade deficits as exogenous.
Define E; = ZjeS Xi to be the expenditure in location i € S, Y; = Zjes X;; to be the out-
put in location ¢ € S and D; = E; —Y; to be the (exogenous) trade deficit. In the derivations
that follow, we allow for any set of {Di}, which of course includes the case where observed

trade flows are balanced (i.e. D; =0 for all i € S). In this case, equation (5) becomes:

Bn2o! + Di =Y Kjiv;bi (17)

J
However, there are two disadvantages to allowing for exogenous deficits: first, the theoretical
results presented above (in particular, the uniqueness of the equilibrium) do not necessarily
hold; second, welfare cannot be expressed as in equation (12). Subject to these caveats, the

empirical results below hold with (exogenous) trade deficits.
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4.1 Identification

We first examine the extent to which one can recover model parameters given observed trade
flows alone. In particular, suppose that we observe trade flows {X;;}; to what extent can
we recover the gravity constants o and (3, the income shifter {B;}, the trade frictions {K;;}
and origin and destination fixed effects {7;} and {0;}?

The following proposition shows the extent to which the remaining model parameters can
be identified.

Proposition 3. For any set of observed trade flows {X;;} and gravity constants o and 3,

Kij

there exists a unique set of relative trade frictions - and appropriately-

(KB/K,) TP (B/By) o=

scaled origin and destination fived effects ¢ —52—— ¢ and —% % that are consis-
Ko Ppf-e KB P
tent with a trade equilibrium, which can be written solely as a function of observables:

% (K3> =Y in?,ﬁ’ and
B Fa B #ﬁ
K;B;\"° Y; X\ "
K3 Bi Yi X35
Proof. See Appendix A.5. O

Proposition 3 shows that general equilibrium gravity models are fundamentally underi-
dentified in two ways. First, there exists a fundamental inability to determine which model
parameter is responsible for the level of trade flows. In particular, the scale of the bilateral
trade frictions and the income shifters cannot be separately identified: this is immediately
obvious by noting that one could simply divide both sides of equations (4) and (5) by B;,
thereby normalizing B; = 1 in all locations. Intuitively, a larger value of the income shifter
can be counteracted with lower bilateral trade frictions without affecting the equilibrium.
Similarly, the origin and destination fixed effects cannot be disentangled from either the
income shifter or the level of own trade frictions {K;;}: increasing either fixed effect can be
offset by an appropriate decline in either B; or K;; without affecting the equilibrium. This in
turn implies that bilateral trade friction K;; cannot be separately identified from the level of

own trade frictions or income shifter in either the origin or destination location. To put it a
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different way, one can normalize K;; = B; = 1 for all « € S without affecting the equilibrium
of the model.

Second, even with the appropriate normalization, however, the observed trade flows can
be rationalized by the model for any chosen value of « and g (as long as a # (). That is,
the gravity constants cannot be identified using trade flow data alone. This result underpins
why previous attempts to estimate (transformations of) these gravity constants have relied
on additional sources of data such as prices (see e.g. Eaton and Kortum (2002), Simonovska
and Waugh (2009), and Waugh (2010)).

4.2 Comparative Statics

In this section, we consider how changes in model fundamentals affect trade flows and income.
We first consider infinitesimal changes and derive a closed form expression that yields the
elasticities of all origin and destination fixed effects to all bilateral trade frictions that depends
only on observed trade flows and the gravity constants. We then derive a system of equations
that show how arbitrary changes to the trade friction matrix affect trade flows that also

depend only on observed trade flows and the gravity constants.

4.2.1 Local Comparative Statics

Consider an infinitesimal change in any bilateral trade friction K;;; how does this affect equi-
librium trade flows and incomes? The following proposition provides a analytical expression
for the elasticity of all origin or destination fixed effects to all changes in bilateral trade

frictions:

Proposition 4. Consider any general equilibrium gravity model where condition (ii) of The-
(a—1)Y pY-X
aFE - XT (B-1)Y
“+7 denotes the Moore-Penrose pseudo-inverse, Y is the N x N diagonal income matriz

orem 1 is satisfied. Define the 2N x 2N matrix A = , where the

whose i'" diagonal element is Y;, E is the N x N diagonal income matriz whose i'" diagonal

element is E; and X is the N x N trade flow matriz whose <i,j>th element is X;;. Then:

Oln (Sl
Oln Kij

dln~,
Oln Kij

= Xij X (Au —+ AN-{-l,j) +c and = Xij X (AN+l,i + Al,j) + C, (18)

where Ay is the (k, l>th element of A and c is a scalar't that ensures the normalization
S, Biy2dl =YW holds.

111y particular, ¢ = WX”* El Y, (a (Al,i + AN-H,j) + B (AN—i-l,i + Al,j)).
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Proof. See Appendix A.6. O

We should note that the choice of the constant ¢ (and hence the elasticities) will depend
on the normalization chosen: for example, the alternative normalization that 7, = 1 implies
aallln;; =0, so that ¢ = X;; x (A1; + Any1). We should also note that while the expression
for A will hold even if trade flows are unbalanced, we can only guarantee that the equilibrium

is unique (and the elasticities are well-defined) if trade is balanced and condition (ii) of
Theorem 1 is satisfied.

Because all model outcomes (e.g. trade flows and country incomes) are functions of the
origin and destination fixed effects, Proposition 4 provides a closed form solution for the
the complete set of model elasticities. In particular, it is straightforward to determine how
changing the trade costs from 7 to j affects trade flows between any other bilateral trade pair
k and [:'2

8lnXkl _ 8ln’yk 81D(Sl

X Xij X (A + Angry + Angi + Ary) (19)

Similarly, Proposition 4 can be applied to determine how changing the trade costs from i to

j affects income in any country [:

0lnY, dln~, 0ln ¢,

oc¢ Xij X (o (A + Anyiy) + B (Anyrs + Ay)) . (20)

If trade flows are balanced and welfare can be written as in equation (12), then we can also

determine the elasticity of welfare in any country [ to any change in trade costs from 7 to j:

olnW,
81DKZ']‘

oc Xij X p((a = 1) (A + Anyig) + (B = 1) (Angs + Arg)) (21)

Hence, given observed trade flows and the gravity constants o and 8 (and p in the context
of welfare), all general equilibrium gravity models deliver identical predictions for all local
comparative statics. We use this powerful result in Section 4.3 to derive a new general
equilibrium gravity estimator and in Section 5.1 to characterize the optimal set of trade

friction reductions.

4.2.2 Global Comparative Statics

Now consider how an arbitrary change in the trade friction matrix K affects bilateral trade

flows. The following proposition, which generalizes the results of Dekle, Eaton, and Kortum

2If k =4 and | = j, then giﬁ ?‘Jl =14 6811?1?; + aahlfllgij, where the addition of one accounts for the direct
effect on Kjy;.
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(2008) for all general equilibrium gravity trade models, provides an analytical expression
relating the change in the origin and destination fixed effects to the change in trade frictions

and the initial exporting and importing shares:

Proposition 5. Consider any given set of observed trade flows X, gravity constants o and
B, and change in the trade friction Kij Then the percentage change in the fized effects, {¥;}

and { Z}, if it exists, will solve the following system of equations:

. X; D; X\ ~ o«
ra—1¢68 aspB i ji ~
o7 51.—2(}/1)](”6 and%(SzEWLEZ Z(EZ)KV(S (22)
J jES
Proof. See Appendix A.7. O]

Note that equation (22) inherits the same mathematical structure as equations (4) and
(17). As a result, if trade is balanced (so that D; = 0 and Y; = E; for all i € S), then
part (i) of Theorem 1 proves that there will exist a solution to equation (22) and part (ii) of
Theorem 1 provides conditions for its uniqueness.

As with the local comparative statics, equation (22) only depends on trade data and
parameters « and ; hence, for any given change in trade frictions, all the gravity trade
models with the same o and § must imply the same change in the fixed effects ~; and ¢; and
hence trade flows and incomes. If welfare can be written as in equation (12), the change in
country and global welfare will also be the same.

This proposition characterizes the comparative statics for a wide class of gravity trade
models. In the case where § = 0, it can be shown (see Online Appendix B.4) that the
comparative statics can be characterized using import shares alone. This special case (and

its welfare implications) is discussed in Proposition 2 of Arkolakis, Costinot, and Rodriguez-
Clare (2012).

4.3 Estimation

Our final contribution is to develop a new estimator of the gravity equation. For a given
set of gravity constants, this estimator directly accounts for the general equilibrium effects
that bilateral trade flows between any two locations have on all other trade flows. This
“general equilibrium estimator” potentially has two advantages over the standard fixed ef-
fects estimator most commonly employed today: first, by using all observed variation in
trade flows rather than controlling for origin and destination fixed effects, it can be more

t‘13

efficient;"” second, it offers a simple way of circumventing the endogeneity issues common

13This potential efficiency gain was first noted by Anderson and Van Wincoop (2003).
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to standard gravity regressions. Somewhat surprisingly, the general equilibrium estimator
is no more difficult to implement than any other gravity regression: using the results from
Section 4.2.1, we show that the estimator can be implemented using ordinary least squares
once the explanatory variables have been appropriately transformed to incorporate general
equilibrium effects.

As we showed in Sections 4.1 and 4.2, while model fundamentals cannot be identified
using trade flow levels, observed trade flows (along with the gravity constants) are sufficient
to predict counterfactual changes in trade flows. For this reason, in what follows, we con-
sider gravity regressions based on changes in trade flows. Using the “hat” notation from
Section 4.2.2 and applying the gravity structure A.1 yields the following gravity equation in
differences:

X@'j = Aij:}/igj- (23)

Suppose that the (log) change in bilateral trade frictions can be written as a linear function
of a vector of observables, i.e. In IAQ]- = TZ’] i, and than an econometrician observes trade

flows with measurement error. Then taking logs of equation 23 yields:
IHX% :Ti/ju—i-ln’%—kln@—i—éij, (24)

where )A(Z‘} are the observed ratio of trade flows between ¢ and j in period 1 to period 0,
Tij is an S x 1 vector of observables and TZ’] denotes its transpose, p is an S x 1 vector of
parameters, and ¢;; is the measurement error. The goal of the econometrician is to estimate

1, i.e. the effect of the various observables on bilateral trade frictions.

The fixed effects estimator

To provide a point of comparison for our estimator, it is helpful to first describe what
has become the standard method of estimating p, which we refer to as the “fixed effects
estimator.” The fixed effects estimator estimates p using equation (24) by including a full
set of origin and destination fixed effects in an ordinary least squares regression framework.
Formally, the fixed effects estimator pu* is the one that minimizes the squared error between

observed (hatted) trade flows and the gravity regression, conditional on the optimal set of

14The fixed effects estimator is discussed in detail in the review articles of Baldwin and Taglioni (2006)
and Head and Mayer (2013). The latter review credits Harrigan (1996) as the first to use the fixed effects
estimator and Redding and Venables (2004) and Feenstra (2003a) for showing that the fixed effects estimator
could be used to control for the endogenous “multilateral resistance” terms present in general equilibrium
gravity models. Since then, the fixed effects literature has been used extensively in the empirical trade
literature.
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fixed effects:

Ppp = arg Hel]gé ( min ZZ <lnX° p—In%y; —ln5j>2> .

4,0, ERN

By taking first order conditions, it is straightforward to derive an analytical solution for p* :

-1
g = (ZZ%TL) STy (X~ ), (25)
7 J 7 J

where the estimated fixed effects are identified up to scale:

_%gln%_%Z((ln){w )—%;(m)@gj—ﬁju*»

J

and:

lngj Zlnék NZ((lnX ]u> ;{Z(ln)@k Tku ))
k

We should emphasize that there are a number of attractive properties of the fixed effects
estimator, most notably that it is easy to implement, and, as long as the measurement error
is uncorrelated with the observables or fixed effects, it is a consistent and unbiased estimator

of p.

The general equilibrium estimator

The major disadvantage of the fixed effects estimator is that it treats the origin and desti-
nation fixed effects — which capture the general equilibrium effects of the gravity model — as
nuisance parameters to be controlled for. We now develop a “general equilibrium estimator”
that directly accounts for these general equilibrium effects, which, as we will see, allows
the econometrician to exploit the network structure of trade to overcome some common
econometric issues.

As the theoretical portion of the paper demonstrated, the (hatted) origin and destination
fixed effects are functions of the entire matrix of (hatted) bilateral trade frictions, i.e. for
all i € S and j € 5, we can write J; (T/L) and 5 (T ), where Ty is an N x N matrix
whose (i, j) element is T’ ;- The general equilibrium estimator pg; minimizes the squared

deviation from observed (hatted) bilateral trade flows while accounting for the effect of u on
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the equilibrium (hatted) origin and destination fized effects:

. A/ 2
Ui = arg nel]gg (ZZ (lnX" J,u In~; (T,u> —Iny; (T,LL)) ) :

By taking first order conditions, it is straightforward to derive an implicit equation for pug .
In principal, the general equilibrium estimator could then be calculated through an iterative
procedure or through a non-linear least squares routine as in Anderson and Van Wincoop
(2003). However, it turns out that we can do better. Consider the following first order

approximations of the log change in the origin and destination fixed effects:
. Oln~, Olnd
I (Tp) ~ S and by (T) = 20 (2
n-. % Xk:il:aankl g an n ZZ@IHK[ kI ( 6)

By taking first order conditions and applying these first order approximations, we can de-
rive a straightforward closed form solution for the general equilibrium estimator (once we
turn the N x N matrices into N? x 1 vectors). Let T now denote the N2 x S vector
whose (i +j (N — 1)) row is the 1 x S vector 7;, D denote the N? x N? matrix whose

(i+7(N—=1),k+1(N—1)) element is g;zik’l, and y denote the N? x 1 vector whose

(i4+j(N —=1)) row is In Xz Then the general equilibrium gravity estimator is:

e = ((P1) (1)) (0T). )

Equation (27) says that, to a first order, the general equilibrium estimator is the coefficient

one gets from of an ordinary squares regression of the observed hatted variables on a “general

equilibrium transformed” explanatory variable TGE :

In X, = (TGE) o+ ey,

where:

5= Yy S,

Jln Kk:l
Intuitively, the general equilibrium transformed regressors capture the effect of the entire
set of explanatory variables on any particular observed bilateral trade flow. To do so, the
estimator relies on knowing the elasticities of all bilateral trade flows on all bilateral trade

frictions. From Section (4.2.1) and, in particular, equation (19), the complete set of such

elasticities can be simultaneously determined by a simple matrix inversion given observed
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trade flows and a set of gravity constants'®. As a result, the general equilibrium estimator
directly accounts for all (first-order) general equilibrium effects arising from the network
structure of trade flows. It is important to emphasize that while the matrix of elasticities D
can be immediately calculated from equation (19), it requires specifying the gravity constants
a and (. Intuitively, because the general equilibrium effects depend (only) on the gravity
constants and observed trade flows, it is impossible to incorporate the general equilibrium

effects into any estimation procedure without specifying the gravity constants.

Comparing the fixed effects and general equilibrium estimators

To assess the relative benefit of the fixed effects and general equilibrium estimators, we
conduct a set of Monte Carlo simulations. For each simulation, we draw a random set of
initial bilateral frictions {K(;} and a random set of (time-invariant) income shifters {B;}.
We then randomly assign half of the locations to be “existing members” of a “multilateral
trade organization” and ten percent of locations to be “new members” of the same trade
organization. Next, we suppose that the observed change in trade frictions arises from the
new members joining the trade organization; in particular, we assume Kij = Tij 1, where Tij
is an indicator variable equal to one if either the origin or destination is a new member of the
organization and its trading partner is either an existing or new member. For a given set of
gravity constants, we calculate the equilibrium in both periods.'® We then add idiosyncratic
measurement error to the trade flows in both periods and implement the two estimators
based on these “observed” trade flows.!” We calculate the coefficient of variation of the root
mean squared deviation “CV(RMSD)” for both estimators over five hundred simulations to
assess their relative efficiency.!® We repeat this procedure for varying numbers of countries,
size of measurement error, and magnitudes of the effect of the trade agreement (i.e. p).
The top panel of Table 2 presents the results. For the sake of readability, we highlight the
most efficient estimator under a particular set of simulation parameters in bold. As is evident,

which estimator is more efficient depends on the particular set of simulation parameters.

150ne ought not be concerned that equation (19) provides elasticities for gig iJ whereas the elasticities
]

81IIX1']‘
611]Kkl7

required for the general equilibrium estimator are the “hatted” elasticities as it is straightforward to

aln)ZiJ o 61nXi1j

show that MR = 821n Ko

16We choose o = —5and = —%; see below.

I"The results are very similar if we instead add an error term to K'Z-j, ie. Kij = Tz‘/jﬂ + €45

1 M true _  x \2 %
18The CV(RMSD) is defined as (M MZIEﬁme i) ) , where p'™¢ is the true value of u, and u¥, is

the estimated value for simulation m € {1,..., M}, i.e. the CV(RSMD) reports the ratio of the standard
deviation of an estimator to the true parameter value. Like the root mean squared error, the CV(RMSD)
is a statistic that combines both the accuracy and precision of an estimator; unlike the root mean squared
error, its value is not dependent on the size of p!"#¢.

i.e. the “hatted” elasticities are the same as the period 1 elasticities.
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When there are a few number of locations, the general equilibrium estimator is more efficient
than the fixed effects estimator; this is because fixed effects estimator requires estimating
2N nuisance parameters, which reduces the degrees of freedom available for estimating p. In
contrast, with many locations and a large effect size, the fixed effects estimator outperforms
the general equilibrium estimator; this is because the first order approximation (26) is less
accurate the larger the effect size.

While the general equilibrium estimator often outperforms the fixed effect estimator,
its true advantage arises from the ability to exploit the general equilibrium structure of
the gravity model to overcome the common econometric concern of omitted variable bias.
For example, whether or not a country signs a trade agreement is likely correlated with
unobservable variables (e.g. expectations about future trade flows) that are also correlated
with observed trade flows. Such omitted variables will result in biased estimates in a typical
gravity equation. However, because the identification in the general equilibrium estimator
relies on the effect of particular bilateral observables have on all bilateral trade flows, one can
estimate p using only trade flows between locations that did not choose to sign a particular
trade agreement. That is, the decision of country ¢ to join a trade agreement will have a
general equilibrium effect on trade flows between countries 5 and k. This general equilibrium
effect can be used to infer the effect of a trade agreement without the need to directly consider
how the trade flows of country i change.

To illustrate the power of this method, the bottom panel of Table 2 shows the efficiency
of the estimators when we include an omitted variable in the error term that increases the
observed period 1 trade flows!? by 5 percent only between countries in which one entered
the trade agreement.?’ As is evident, the omitted variable biases both the fixed effects
estimator and the baseline general equilibrium estimator upward by an amount equal to the
size of the omitted variable. However, when we use the general equilibrium estimator but
exclude observations of trade between countries in which one entered the trade agreement
(the “GE - switchers” column), the effect of omitted variable on the efficiency of the estimator
is small. As a result, the general equilibrium estimator substantially outperforms the fixed

effects estimator as long as there are a sufficiently large number of countries to allow for the

19We choose to add the omitted variables to period 1 trade flows rather than period 0 trade flows in order
to introduce bias into the elasticity calculations used for the general equilibrium estimator.

20Because we interpret the error term as measurement error, this procedure should be interpreted as
capturing the possibility that countries who sign trade agreements have observed trade flows that are on
average b percent higher than their actual trade flows, while their actual trade flows are affected only by
the trade agreement. If we replace the measurement error with an endogeneous error term in the change

in bilateral trade frictions (i.e. Kij = T{j'y + €45 where E [Tijsij] # 0), the general equilibrium estimator
excluding the “switchers” still outperforms the fixed effects estimator, although the differences in efficiency

are less stark since the endogeneous error term in this case also has a general equilibrium effect on trade
flows between all other locations.
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indirect identification of the effect of the trade agreement.

5 Empirical applications

In the final part of the paper, we illustrate two potential applications of the tools developed
above: first, we determine the optimal reduction in bilateral trade frictions; second, we
estimate the effect on trade flows and welfare of joining the WTO.

To illustrate the tools developed above, we use the CEPII gravity data set of Head,
Mayer, and Ries (2010). This data set has several advantages: it covers bilateral trade flows
between over two hundred countries, allowing us to construct the nearly complete world
trade network; it includes both trade flow and GDP data, allowing us to measure own trade
flows; and it is widely used, allowing comparability with other empirical studies.

We clean the data in three steps. First, we construct own trade flows. To do so, we rely
on the market clearing and balanced trade conditions, which implies that own trade is simply
the difference between observed income and total exports or total imports, respectively.?!
Second, to avoid inferring infinitely high trade frictions between bilateral trade flows we
replace any missing bilateral trade flow with a small positive value. Finally, we balance the
trade flows; while this is not strictly necessary, it guarantees that the equilibrium is unique,
and as a result, the elasticities we estimate are well-defined. To do so, we ignore the observed
level of trade flows and instead treat the observed import shares \;; = ZX—;(] as the true
data. We then find the unique set of incomes that are consistent with those import shares

and balanced trade. In particular, we solve the following linear system of equations:
VY
J

By the Perron-Frobenius theorem, there exists a unique (to-scale) set of Y;;*? we pin down
the scale with the normalization that ) ... Y; = 1. Given these equilibrium Y;, we then
define the balanced trade flows Xf’j = \;Y;.?® The advantage of this procedure is that if

the observed X;; are balanced, the resulting re-balanced trade flows will be identical to the

2f income exceeds total imports (exports), we define own trade flows as income less total exports (im-
ports); if income exceeds both total imports and exports, we define own trade flows as income less the average
of total imports and exports.

22The Perron-Frobenius theorem guarantees that there exists a unique (to-scale) strictly positive vector
that solves Y; = k> i Y for the largest value of k > 0. Since import shares sum to one, it is straightforward

. . Y; Y;
to show that x = 1 in this case: k = 5 %J vl > %21 poie 1.
23 Tt is straightforward to see that these trade flows are balanced: > ;X =X NiYi=Yid,

Y; = Zj AijYj = Zj Xzbg“

225 Xji
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original trade flows, i.e. Xz-bj = Xj for all 7 € S and j € S. The disadvantage is that it is not

the unique way of balancing trade flows; for example, we could have just as easily treated

export shares m;; = Z)j)](” as the true data and found the unique set of incomes consistent
with balanced trade and those export shares using the equation Y; = > ;i

As Proposition 4 and 5 show, for any given set of gravity constants and observed trade
flows, all local and global comparative statics can be calculated without specifying a particu-
lar micro-foundation of the gravity model. Hence, it remains to specify our choice of gravity
constants. In the main analysis, we choose o = —%, b= —%, and p = %; in the context of an
Armington trade model with intermediate inputs, these constants reflect a trade elasticity
of negative four (consistent with Simonovska and Waugh (2009)) and a labor share in the

production function of one-half (consistent with Alvarez and Lucas (2007)).

5.1 Optimal trade friction reductions

In this subsection, we demonstrate how the local comparative static results from Proposition
4 can be used to inform the choice of optimal trade policy, as well as estimate the potential
welfare gains from such a policy. From equation (21), once the matrix A has been calculated
from observed trade flows and the gravity constants, the elasticity of welfare in any country

[ € S with respect to the change in trade costs between any two countries i € Sand j € S, i.e.

ah’lWl
Oln Ky

These welfare elasticities allow one to address a number of empirically relevant questions,

can be immediately determined from a linear combination of elements of the matrix.
including:

From the perspective of a particular country, which set of world-wide trade
friction reductions would benefit it the most and how much would it benefit
from these reductions? Suppose that there exists a world trade organization which
specifies how much each country in the world ought to reduce its trade frictions subject
to two constraints: first, the total amount of trade friction reductions worldwide is fixed
(e.g. for political or technological reasons), so that the purpose of the trade organization
is to allocate the trade friction reduction across countries; and second, the trade friction
reductions cannot discriminate, so that they are applied uniformly to the imports and exports
of all other countries.

Formally, let z; be the percentage change in bilateral trade frictions (both imports and
exports) of country ¢ € S and let 2’ denote the N x 1 vector of z;. To represent the constraint
that the total amount of trade friction reductions worldwide is fixed, suppose that [|Z]| = 1.

We can now examine what the optimal set of trade friction reductions Z' from the per-

spective of any country [ € S. Country [ will want to choose trade friction reductions 2" in
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order to maximize the (first-order) effect on its welfare:

olnW, 9
mad D o, S 2 =L

icS jes iesS

or equivalently in matrix notation:

max 2T W'Zs.t. ||Z]| = 1,

Jln W,
Oln K;;

W' equal so that changing bilateral trade frictions does not affect trade frictions with oneself.

where W' is an N x N matrix whose (i, 7)™ element is . We set the diagonal elements of
Let z! denote the optimal trade friction change in country i from the perspective of country
[. Tt is straightforward to show that optimal set of trade frictions from the perspective of
country [ are simply the eigenvectors of the matrix % (Wl + (WI)T) corresponding to the
largest eigenvalue A'. Furthermore, it is also straightforward to show the largest eigenvalue

A\l is the total value of welfare to country [ under its optimal set of trade frictions:
A= () Wi,

These results allow us to immediately determine both the optimal set of trade friction changes
from the perspective of any country [ € S and the resulting change in its welfare. Figure 2
depicts the optimal set of trade frictions for all countries from the perspective of the United
States. The results are intuitive: to maximize welfare in the U.S., its own trade frictions as
well as trade frictions in its major trading partners (e.g. Canada, Mexico, China, Brazil, and
Western Europe) ought to fall. In contrast, trade frictions in certain countries like North
Korea and Burma actually ought to increase to divert trade to benefit the United States.

How much does the U.S. (or any other country) benefit from such a “selfish” multilateral
policy? Figure 3 depicts the welfare gain for the U.S. and for all other countries from their
respective optimal set of trade frictions, i.e. it reports the maximum potential gains each
country could achieve from multilateral trade friction reduction. The potential benefits of
multilateral trade friction reductions are the smallest in countries with sizable domestic
production relative to external trade such as the United States, India, and Russia. The
potential gains for smaller countries which engage in substantial trade (e.g. Belgium) are
larger. However, countries where there exist political constraints that result restrict trade
— for example, North Korea, Burma, Somalia, Cuba, and Iraq — face the largest potential
gains from freer trade.

We should note that these calculations, while possible without the closed form solution
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for the complete set of local comparative statics derived in Section 4.2.1, would be onerous,
as it would require re-simulating the model N? times, each time calculating the welfare effect

of a shock to a particular bilateral pair.

What set of world-wide trade friction reductions would increase world welfare
the most and what would be the distribution of those gains? Finally, we can use
the global welfare elasticity result from Section 3.2 to determine the set of trade friction
reductions that would maximize world welfare. Recall from part (ii) of Proposition 2 that
the general equilibrium gravity model can be interpreted as maximizing a weighted average
of welfare across countries, which implies that the the elasticity of world welfare W to
any bilateral trade friction can be written as proportional to the fraction of world income

Olmw X
onk;; _ Pyw:

Using this result, we can find the set of trade frictions that maximize world welfare to

r&?}?{ZZp%zzzJ s.t. sz =1

i€S jes €S

comprised by trade between ¢ and 7, i.e.

solve:

Since p does not affect the maximization and YW is the numeraire, from above the optimal
set of trade friction reductions are simply the eigenvectors corresponding to the largest
eigenvalue of the matrix who (7, j) element is X;; + X;; (with zeros on the diagonal). That
is, the reduction in bilateral trade frictions which maximizes world welfare is simply the
eigenvector of the observed (balanced) trade flows (corresponding to the largest eigenvalue).
Furthermore, that largest eigenvalue represents the elasticity of world welfare to increasing
the extent of the trade friction reductions in an optimal way.

Figure 4 depicts the optimal set of trade friction reductions. As is evident, to maximize
world welfare, the countries responsible for the most trade in the world (such as the U.S.,
China, Japan, and Germany) reduce their trade frictions the most, whereas trade frictions
in smaller countries fall by less. The largest eigenvalue of the system is 1.006, which implies
that increasing the extent of trade friction reductions by one percent yields a world welfare
gain of slightly more than one percent. Figure 5 depicts the distribution of these welfare
effects; as is evident, North America and South Asia benefit the most from such a policy,

while parts of Africa and South America are actually made worse off.

5.2 Estimating the gains from WTO membership

In this subsection, we illustrate the general equilibrium gravity estimator presented in Section
4.3 by estimating the effect of the WTO membership on bilateral trade frictions. We then

use this estimate to calculate the welfare gains of WTO membership.
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The WTO was founded on January 1, 1995, replacing the General Agreement on Tariffs
and Trade (GATT). Of the 201 countries in our trade data, 125 were original WTO members.
Between 1995 and 2005, an additional twenty-one countries joined the WTO.2* In what
follows, we will identify the effect of the WTO on trade flows by comparing the observed
bilateral trade flows in 1995 to those in 2005 using as identification the twenty-one new
countries as members. In particular, we assume that, apart from a common time trend
v, the only change in bilateral frictions between 1995 and 2005 was a (common) reduction
in trade costs (i.e. an increase in K;;) between new WTO members and all other WTO
members:

kij = ,UTij + v,

where Tij is an indicator variable equal to one if either ¢ or j is a new WTO member and
its trading partner is a new or existing WTO member. While this is admittedly a strong
assumption, note that by focusing on the change in trade flows rather than their level, we
allow for any effect of time-invariant variables (e.g. distance, common language, shared
border, etc.) on trade frictions. With this assumption, the parameter of interest p can be

estimated from the following fixed effects gravity regression:
In X;; = uTy; + In4; 4+ Ind; + &4,

where we interpret €;; as measurement error. Note that the time trend v cannot be separately
identified from the fixed effects.
Alternatively, parameters p and v can be estimated from the following general equilibrium
gravity regression:
In Xij = uTgE + I/ISE + €ij,

where:

Nelo Oln X - dln Xy
75 Xk:zam T and 157 Zzamml
are the “general equilibrium transformed” variables.

Table 3 presents the results of the two estimators. The first column reports the fixed
effects estimator: joining the WTO is associated with a 49.5 percent increase in bilateral
trade flows with other WTO members. Interpreting the chosen values of the gravity constants
as having a trade elasticity of four, this implies that joining the WTO is associated with a

12.4 percent decline in bilateral iceberg trade costs. Columns two and four present the

24The new members were Albania, Armenia, Bulgaria, China, Ecuador, Estonia, Georgia, Croatia, Jordan,
Kyrgyzstan, Cambodia, Lithuania, Moldova, Macedonia, Mongolia, Nepal, Oman, Panama, Saudi Arabia,
and Taiwan.
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general equilibrium estimator using both the raw trade data and the re-balanced trade data;
the general estimates are similar to the fixed effects estimates, finding that joining the WTO
is associated with a 42.5 and 47.9 percent increase in bilateral trade flows, corresponding
to a 10.6 and 12.0 percent reduction in iceberg trade costs, respectively.?> Finally, we can
use the general equilibrium estimator while excluding the observed trade flows of new WTO
members in order to mitigate the concerns of endogeneity. Columns three and five present
the results using the raw and re-balanced trade data, respectively. While the point estimate
for the raw data declines, it increases slightly when trade is balanced, and in both cases
is statistically indistinguishable from the point estimates when including the new WTO
members in the sample. In fact, we cannot statistically reject that any of the five estimates
are different from WTO membership being associated with a 45 percent increase in trade
flows (12 percent reduction in iceberg trade costs).

Given these estimates, we can use the methodology of Section 4.2.2 to ask what the
welfare effect would be of removing these 21 countries from the WTO. To do so, we take the
observed trade flows in 2005 and increase the trade frictions (i.e. reduce IA(W) by 45 percent
between these 21 countries and all other WTO members. Figure 6 depicts resulting change
in welfare for all countries in the world. For the countries being removed, bilateral trade
costs increase substantially with a majority of trading partners. This leads to an average
decline in welfare of 9.3 percent. Existing WTO members are also made worse off by an
average of 0.9 percent (the effect is smaller in magnitude since trade costs increase for a
smaller subset of trading partners). However, non-WTO members actually benefit — their
welfare increases by an average of 0.5 percent — since the increase in trade costs between
other trading partners results in trade being diverted to non-members. As Figure 6 makes
clear, however, these averages mask substantial heterogeneity across countries arising from

the network structure of international trade flows.

6 Conclusion

Despite the empirical importance of gravity trade models, little is known about their prop-
erties which hold universally, i.e. regardless of the micro-economic foundation of the model.

In this paper, we have developed a framework which nests a large set of general equilibrium

25While the estimates of joining the WTO agreement are not substantially affected by whether or not
we re-balance the observed trade flows, the estimated time trend is substantially different, as the raw data
suggesting a slightly negative time trend (i.e. a small increase in trade costs), while the balanced trade data
suggest a large and positive time trend. Given that the elasticities used in the calculation of the general
equilibrium estimator are not necessarily well-defined when trade is imbalanced, we prefer the balanced trade
estimate (which also corresponds to our prior that trade costs in general are falling over time).
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gravity models. Using this framework, we have shown that nearly all theoretical and empir-
ical predictions for trade depend only on the value of two “gravity constants.” This paper
hence contributes to a growing literature emphasizing that the micro-economic foundations
are not particularly important for determining a trade model’s macro-economic implications.
By providing a universal framework for understanding the general equilibrium forces in
gravity trade models, we hope that this paper provides a step toward unifying the quan-
titative general equilibrium approach with the gravity regression analysis common in the
empirical trade literature. Toward this end, we have developed a toolkit that operationalizes
all the theoretical results presented in this paper, including the calculation of the equilibrium,
identification, calculation of local and global comparative statics, and estimation.?8
However, in developing a universal framework, several limitations remain. First, since the
general equilibrium forces are entirely determined by the value of the two gravity constants,
an important future task is finding an effective way of estimating the value of these parame-
ters. Second, there remains the need to address trade imbalances directly rather than relying
(as we do) on ad hoc corrections. As trade imbalances are fundamentally dynamic phenom-
ena, we look forward to future research incorporating the gravity structure into dynamic

models of trade.

26The toolkit is available for download on Allen’s webiste.
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Tables and Figures

Figure 1: Existence and Uniqueness

. Uniqueness (general)

Uniqueness (symmetric trade costs)

Notes: This figure shows the regions in («, ) space for which the gravity equilibrium is
unique generally and in the special case when trade frictions are quasi-symmetric. Existence
can be guaranteed throughout the entire region with the exception of when o+ g = 1.
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Figure 2: Optimal multilateral trade friction reduction from the perspective of the U.S.

Optimal reduction in bilateral frictions
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Notes: This figure shows the set of country reductions in trade frictions (subject to the total
reduction of bilateral frictions being constant) that maximizes the welfare of the United
States. Countries are sorted by deciles; red indicates a greater reduction in trade frictions
while blue indicates a smaller reduction (or even increase) in trade frictions.

Figure 3: Potential welfare gains from multilateral trade friction reductions
== e [ *

Notes: This figure shows the welfare gain each country would achieve if all countries in the
world were to alter their trade frictions in such a way as to maximize the change in welfare
of that country, i.e. the figure shows the distribution across countries of the potential gains
of reduced trade frictions. Countries are sorted by deciles; red indicates a greater potential
increase in welfare while blue indicates a smaller potential increase in welfare.

37



Figure 4: World optimal multilateral trade friction reduction

World welfare maximizing
reduction in trade frictions
(population weighted)
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Notes: This figure shows the set of country reductions in trade frictions (subject to the total
reduction of bilateral frictions being constant) that maximizes the a population-weighted
average of welfare across all countries. Countries are sorted by deciles; red indicates a greater
reduction in trade frictions while blue indicates a smaller reduction (or even increase) in trade
frictions.

Figure 5: Welfare gains from world optimal multilateral trade friction reduction
e =il -2 e T -
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Notes: This figure shows the welfare gain each country would achieve if all countries in the
world were to alter their trade frictions in order to maximize a population-weighted average
of welfare across the world, i.e. the figure shows the distribution across countries of welfare
gains from an optimal multilateral trade friction reduction. Countries are sorted by deciles;
red indicates a greater increase in welfare while blue indicates a smaller increase in welfare.
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Figure 6: Welfare effect of removing the new members from the WTO

Welfare effect of
removing new
WTO members

Notes: This figure shows the change in welfare in each country resulting from removing the
twenty-one countries (highlighted in green) who joined the WTO between 1995 and 2005.
Welfare is measured in percentage changes; the darker the red color, the more positive the
increase in welfare; the darker the blue color, the more negative the decrease in welfare.
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A  Proofs

A.1 Proof of Theorem 1

We analyze a transformed system by deﬁning T, = Bﬂia_léf and Y = Bmo‘éﬁ !, Then it
can be shown that §; = x5+°‘ ly““ "B and v; = x““ ly‘“" "B, "7 so that for any

set of {B;} € RY,, {K;;} € RYZN, {a,8} € {(a, B) € R*|a + B # 1}, the equilibrium of a

general equilibrium gravity model can be written using

1 « 11—«
xr; = Z Kl'ijl_a_ﬁ CCja-HB_lyij'ﬂ_l’ (28)
J
and L ,
ZK Bl a=p a+ﬂ 1yja+ﬁ—1_ (29)

The proof of Theorem 1 proceeds in four parts. In the first part, we consider a general math-
ematical structure, for which the general equilibrium gravity model (defined by equations
(28) and (29)) is a special case. In the second part, we prove a lemma that will allow us to
convert the general mathematical result to the particular case of the gravity trade model. In
the third and fourth parts, we show how the general mathematical result can be applied to

the trade model to prove existence and uniqueness, respectively.

A.1.1 The general case

We start with the result for the general mathematical system, stated as the following lemma.
For the proof, we use a version of Schauder’s fixed point theorem (FPT for short). The

original statement is found in Aliprantis and Border (2006).

Theorem 3. (Schauder’s FPT) Suppose that D C RY, where D is a convex and compact
set. If a continuous function f : D — D satisfies the condition that f (D) is a compact
subset of D, then there exists x € D such that f (x) = x.

Lemma 1. Consider the following system of non-linear equations; for all i € S,

y =l (30)
ZvafoyJ

g = s My (31)
i Higwsyy

for some a,b,c,d € R, Cy,C, € Ry and matrices F, H with all elements non-negative and
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the diagonal strictly positive (i.e. for alli € {1,..,N}, F;, > 0 and H; > 0). Then the

system has a positive solution x,y € Ri and all its possible solutions are positive.

Proof. To apply the Schauder’s FPT, we set up a subset D of R?% such that D satisfies the
conditions in Schauder’s FPT.
Now consider the system (30)-(31). We define the set I' as

= {(x,y) EA(RS) XA(RS);mISxiSMr, my <y; < M, for alli},

and the following constants

s
I
-8
i

_ Fi;
m, = min
i, Zz FiJ
M, = i
y = maXZ T
I i Hi,j
H;;
my, = min —=——

0, Z Hw'

I is convex and compact subset of R%5.

We define the following operator for d = (z,y) € T'.

Td = T (z,y)
= ((T%(z,y)) . (T (z,y))),

where

a,b
Zj E7jxjyj

T —
7 (‘ray> ZZ Zj E,jx?y?
cAnd > Zj Hiijjy;l'

It is easy to show that
my S ,I;x (xay) S anmy S j—;x ("L‘ay) S My

so that the operator T is from I' to I'.
To show that T is continuous, it suffices to show that T and T} are continuous for all .

Since the range is compact, these functions are trivially continuous.
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Since Schauder’s FPT is applied for T, then there exists a solution to the system. Also

by construction, any fixed points satisfy for all 7,

0 < my<ux;

0 < mygyl

A.1.2 Preliminary mathematical result

Second, we prove a result that will allow us to map the general equilibrium gravity model to

the general mathematical system.

Lemma 2. Suppose that (x,y) satisfies

1 @ 11—«
. }—a—ﬁ {H-ﬂ—l g+[3—1
Z]. K;;B; ; Y

Tr; = 1 a l—a
. l-a—pB _,a+p—-1_ at+p—1
2y KBy ity
1 1-8 B
1—a—0 a+671 a+B—1
v = Z j KjiB‘ Z; Y;
N 1-p B :
Z K Bl a—p3 a+ﬁ—1 at+p-1
4.J J y]

Then we have

1-53 B
E KZJBI a—F a+B 1 a+ﬁ 1 E K Bl a—f a+ﬁ 1y‘,1+ﬁ71.

J J
7]

In particular we can take t such that

1 o 11—
(tz;) = ZK@-jB*“*’ (tarj) =50t 77

s B
Yi = ZKJZBl 7 tx)(“’ﬂ 1y1a+5 g

Proof. Note that

l—«
_)\ E K Bl a—pB a+ﬂ 1y]{1-&-ﬁ—17

where

11—
E K Bl o— B cx+B 1y9+3*1

J
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1-8 B 1
Multiply both sides by x/** 'y B!~*""  which yields:

1-38 B 1 1 e 11—« 1-8 B 1
T; ¥ xf%»aflyiﬁi»afl Bilfafﬁ _ /\x ZKiijlfafﬁ x;+671yja+671 > xi6+a71yi6+a71 Bilfafﬁ
J
a B 1 1 a 11—« 1-3 B 1
xiBJraflyi[H»afl Bilfafﬁ _ /\m ZKij lefafﬁ x;ﬁﬂflyjqﬂﬂl « xiﬁ+a71yiﬁ+a71 Bilfa—ﬁ
J

Now sum over all ¢ and rearrange to solve for \,:

a B 1 1 o l1—a 1-8 B 1
B+a—1_ B+a—1 l-a—8 __ . l—-a—p ,a+pB—-1,  a+B-—1 B+a—1_ B+a—1 l—a—p
g X, Y, B, =\ E g Ki; Bj T Y; X |z Y, B, —
i i

a B 1
B+a—1 _  B+a—1 l—a—p
A — >0 T Yi B;
r =

1 « 11—« 1-8 B 1
I—a—B . atB—1 . atB—1 Bta—1_ fBta—1 pl-a—B
> Zj Ki; | B; xj Y; X\ Yi B;

1

a B
B+a—1 _ B+a—1 1—a—f
>0 % Yi B,

7

- 1 a 1—a 1-8 B 1
l—a—p ,a+B—1_ a+p—1 B+a—1 _  B4+a—1 l1—a—0
> 1D jKZ-j B: €T Y X |z vy B,

J J J 7 7

Now let us consider the second equilibrium condition:

1 1-8 8
_ l1-a—pB ,a+p-1_ a+B-1
Yi = Ny E KjiBj Z; Y;

J

where

1 1-8 Jel
_ l-a—pB ,a+B—-1_ at+p—1
A=Y KB s

J J
1,J
11—«

& 1
Multiply both sides by z; ™ 'y /™" B/~*"%:

7

a l—« 1 1 1-5 B a l—« 1
yx (@B ) = NS K (BT a iy ) o (T BT ) e
J
a Je] 1 1 1-8 B a l1—a 1
xiﬂ+a—lyiﬁ+a—l Bil_a_ﬁ _ )\y Z sz‘ le—a—ﬁ w;w—lyjaw—l « xiﬁ+a—lyiﬂ+a—1 Bil—a—ﬂ

J
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Now sum over all ¢ and rearrange to solve for A,:

a B 1 1 1-53 B o l1—a 1
Bt+a—1_ B+a—1 l—-a—8 __ . 1-a—B ,a+p—-1_ a+p—1 Bt+a—1_ B+a—1 l1—a—p
E X, Y, B, _)‘yg E K Bj ; Y; x|z, Y, B, “—
a B 1
B+a—1 _ B+a—1 l1-a—p
> i T Yi B,
1 1-8 B a 11—« 1
1-a—B ,a+B—-1_ a+B—-1 B+a—1 _ B+a—1 1—-a—p
ZiZjKji B; X Y; e Yi B;
a B 1
Bt+a—1 _ B+a—1 1—a—p
Zz‘xi Yi B;

a —« 1 1 1-8 B :
B+a—1 E+a 1 l1—a—p l—-a—p ,a+B—-1_ a+p-—1
5, [zj K, ( Y7 B! )} Y (Bz- Ty )

Comparing the expressions for A\, and A,, we immediately have A\, = A\,

Now take t as

Ay =

A

1
1 o 1-a \ '"a¥s-1
o . l—-a—p ,a+pB—1,  a+B—1
t= E Ki;B; T Y; :

i?j
To complete the proof of the lemma, we have to show that if (x,y) is a solution to
5, KB (1) 757 7

(z:)) = : St/
Zi,j KZ']B] _O‘—ﬂ (xj)a+ﬁ_1 y-a+ﬂ_

1 _ B
—1 -8
> KB (@ J) T Y
y’i = 1 B

5, KB () w1 g

then (tz,y) is a solution to a general equilibrium trade model. Namely (tz,y) solves

1 o l-a

(r) = Y KB (tay) ey
J

1 5 _B

i = Y KB ()@ 1y

J

To prove this last point, note that

«
i T—a—p T
o— «
tr; = - — EKB tx)a+51y
l—a—p at+B—1 .
Zi,j Ki;B,; (%’)‘”5 LY,
N
-~

=1

ZK 31 1-a=p tm)a+5 1y“+6 '
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1 -
The equality holds by construction of ¢. Thus first equation that tz; = 3, K,-ijl_“_B () aTaT y‘“rﬁ !

is satisfied. To show the second equation, it suffices to show
T—a=p R
ZKJ%BJ (t.fl?j)oﬁﬁfl y] = 1
i’j
This holds since?”

1—a— E 1-5 a+[‘1 1 _1=8 17;73 a«lﬁ»z%[il a+g71
g K;iB; (tay)o+o-T y; = tats-1 E K;iB; X Y;

J

1 e 11—«
170475 a+B71 a+pB—1

_ J J _
a = s Sl
l—a— a+ —1 a+pB—1
ZZJK B X Yj

A.1.3 Existence for trade models

We next consider the existence of a strictly positive solution to the general equilibrium

gravity model defined by equations (28) and (29).

Proof. We apply Lemma 1 with

«o l—«
a@=—, b= ————
l—a-p a+pf -1
_1-p _ B

c= —, d= ———
a+pf—1 a+p—-1

1 1

F; :Kiijl‘“‘ﬁ, H;; = KJZB;‘“‘ )

Then there exits a solution, (tz,y), to the system
— a _l-a
(til?i) = Z KijB,l—a—ﬂ (tl‘j)rﬁ_l yjqﬂﬁ—l
—p
Y, = ZK Blaﬁ tx)aJrﬁ lya+ﬁ 17

proving the result. [

27If B3 = 1, then this last line is not true, since the equation for y is no longer dependent on z. In this case,
however, existence and uniqueness follows immediately from Theorem 1 of Karlin and Nirenberg (1967), as
the two integral equations can be treated as distinct from each other.
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A.1.4 Uniqueness for trade models

We now consider the uniqueness of the general equilibrium gravity model. We prove unique-

ness by contradiction.

Proof. For Part ii), uniqueness, we make use of the same Proposition. Gravity models imply

the following restrictions to the coefficients of equations (30) and (31):

" B « b 11—«
a a+pB—-1" a+p-1
. L 1-5
c = a =~ 51
s
d =b+1 = ———.
* a+6-1

Suppose that there are two solutions (z,y), (7, y) for the system. Also assume that there

are no constants ¢ such that
T =1Z. (32)

Without loss of generality, we can assume that for all ¢,
> Fy=) Hy=1
J J
Also we can take (z,7y) = (1, 1) since
1= > Fji
J
1= > Hyjlt
J

Define

m, = min;
K3

M, = maxuz;
K3

m, = miny;
K2

M, = max y;.

From (32), m, (m,) is strictly less than M, (M,) respectively.
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Under the conditions we make, it is easy to show

c < 0<a
b < 0<d.
Then we can show that;
maxzy; = M, = maxZFi,ja:?y? < Mgmz
J

maxy, = M, =max E Hi,jxjy;l < m;M;
J
m, = minx; = min g F”x?y;’ > mgMé’
J

— : _ : c, d c,-d
m, = miny; = min g H; jx5y; > Mymy,.
J

It is easy to show®®

M 1—a M b
() (o) <o
My My

which is equivalent to

l—a b
M, M,
() () <
My My
For second equation, multiply second and fourth equation.
(M) M;fmz < (mgMj) My,

which implies

50



Sincec=a—1,and d =b+ 1,

M l1—a M b Mz l—a M b
o) G ==(0) ()
My My My My
which is a contradiction. OJ

A.2 Proof of Theorem 2

Proof. Part i) This relation comes from assumptions A.2 and A.3 clearing conditions.
> X=X
which is equivalent to

i

B =
KZ‘ 51 Zj Ki,jKij

It is easy to show that

is a solution to the problem. From the Perron-Frobenius theorem, this solution is unique up

to scale. Therefore for some k, we have

v KA = k6 KB, (33)
Part ii) The relation (33) implies
Vi Ky
Y; = 6—il'z = /{KAZUZ
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Substituting this expression into (28), we get

1-a ~ 1 /KB a+ﬁ I 1

v = ket Yy K KAKP B < KZA) TR (34)
; i

Also if we substitute the same expression into (29), we get the exact same expression. There-
fore one of the two equations is trivially satisfied. From Theorem 1 of Karlin and Nirenberg

‘ < 1, which is equivalent to (7). O

(1967), the system has an unique solution if ’a +é_1

A.3 Proof of Proposition 1
The proof is the same as in a single-sector case, but done with slightly different notation.

A.3.1 Preliminary

The system is rewritten in the following form by redefining 67 = ;Y.

X = KjvojY;
i = 22X

s 7

ByY; = ZX

v
}/; = 1’71 ( ) 1-8
0t
6 = 116",
t
where ) B = 1. The new set of a* and * is a* = and b = Actually it turns out

that it is easier to show existence and uniqueness of the system Wlth thls notation. However
we need to show that it suffices to establish existence and uniqueness for o* and *. The
following lemma tells that the mapping between these two is one-to-one so that if the system

has an property for (a*, 5*), then the (original) system has the same property under («, ).
Lemma 3. There is an one-to-one mapping between (c, B) and (a*, *)if 5 # 1.

Proof. Fix («, B), then (o, 5*) is uniquely pinned down. Fix (a*, 5*), then there exists an
unique [ such that

B*
1+ 3%
Then o* is uniquely pinned down by a = (1 — ) o* =

b=

a*
145"
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Lemma 4. Denote the function from («, 8) as f. Then f (D) = {(a*, 5*);a*,0* < 0,a* — 1 < 5%},
where D = {(a,8) € R*a,3<0 or o, 3 > 1}.

Proof. Take («, 8) € f (D). Namely

_a—f-1+F a-1_
N 1-3 C1-8 "

which implies (a*, *) € {(a*, 5*);a*, * < 0,0 —1 < *}. Suppose «, 5 are greater than
1. Then both o* and * are negative, and

0,

oz—1<0'
1-5~

Again we have (o, 5*) € {(a*, 5*);a*,8* < 0,a* — 1 < 5*}.
Fix (a*, f*) € {(a*, f*);a", * < 0,a* — 1 < g*}. Then define (a, ) as follows.

af—1-p0"=

Then if 1 4+ 8* < 0, then

T !
_ &
ﬁ—1+ﬁ*>1

1

If 1+ p* > 0, then both are negative. Namely (a*,5*) € f (D), which completes the
proof. O

Lemma 5. Denote the function from (a, ) as f. Then f (D) = {(a*, *);a", p* <0},
where D = {(a, B) € R*a, <0 ora>0,8>1}.
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Proof. Take (a, 5) € f (D). Namely

Then if @ and [ are both negative, then, o and §* are both negative,which implies (a*, 5*) €
{(a*, B*);a*, 5* <0} . Suppose a > 0 and § > 1. Then both o* and J* are negative. Again
we have (a*, 8*) € {(a*, 8*);a*, * < 0,a* — 1 < *}.

Fix (a*, f*) € {(a*, B*); a*, * < 0}. Then define (a, 3) as follows.

Then if 1 4+ g* < 0, then

B

= > 1.
14 p* —

If 14+ 5% > 0, then both are negative. Namely (a*,8*) € f (D), which completes the
proof. O

These lemmas imply that if we can establish existence (uniqueness) on (a*, 3*)-space, then
under the associated (o, ), we can show that the system has a solution (unique solution).
Strictly speaking, we loose uniqueness result when 5 = 1.

From now on, for notational convenience, we omit the star “*”. From the previous lemma,
it suffices to show that if («, 8) € f (D), the system

Xy = KymojY;
V= 22N
s 7

BY: = ) X,
J
 — B.AY(5)°
Y; - Blﬁ)/z <5z>

5 = J[EH”"

t
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has an unique solution. Then for (o, 8) € D, the (original) system has an unique solution.

As we did in a single-sector economy, we can re-define variables as follows.

i = B ()
v o= ()7 (= (

Zi = H((yf)et)

S

s = TT@)" =TT

t t

= [H (yf)“] = (=) 77 .

B
P
(a—p)

t

Here z;, loosely speaking, represents the aggregate price index for country i P;. The power
o — 3 is £ for Armington with intermediate case, and (65" = (y) = (P%)' 7.

Then we can express (v;, 0;,07) by (x;,ys, ;) -

51':

(’Yi)a_l

B a8
’YZ — ’L) a—1 (xi>a71 (Zi)(a—ﬂ)(a_l)

55 =
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Then substituting these (7;, d;, 07) into the equilibrium conditions, we get
Z Z B K657 ( .)
S5 By () (B (e () T ()72
s J
33 B () )75 o) )
= ZZ )75 (2,)7 () 7 (z) 75
vio= 0= ZKJSNJ
ZK; B;)” Bj)iﬁ (@-)ﬁ(zj)(a—m’%
J
wo= TI(o)" .

s

The system is finally written in the following form.
-1 B 1
no G B ) ) )
8
v LELETE) T ()7 () A

z = H((yf)et)( 7

s

A.3.2 Existence proof
The existence proof consists of two steps. First we consider the following system.
1 -1 B 1
252 K55 (B )1 © (25)77 (y5) ()77
-1 B 1
Zzsg ( )1 ¢ (‘x])a ! (y]) (Zj)aiﬁail
1 B
Yy, = Z 5 (BY) " (B))~ = (@;) o (25) @@
J
s et (afﬁ)
s = IT(w")

S

i

™

Then we know that x; is bounded since we normalize ;. The following lemma ensures that

we can obtain the bounds for y; and z; under certain conditions.
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Lemma 6. If a,8 <0 and o — 1 < 3, then y; and z; are bounded.

Proof. First we construct (candidate) bounds, and show that actually they are bounds.

Suppose that
my < y; < M,.
Suppose that o, 3 <0 ,a > 3, and a — 1 < 3. Then z; is bounded as follows
(my)a_ﬁ <% < (My)a_ﬁ-

Then

1 1 N~

y; = Z K5 (B)) ™ (By) ™o ()7 (25) =0

-
< max [Z K5 (B)) <Bj>w] ()= ((ag,)?) 7
J

-

20,

1 _B_
= C, (ma) 7T (M,)7

: s S\~ T a—1 a—1 o
y; > min [Z K3 (B (B)) ] (M) (my) =
J

~~

A

=cy

It is easy to show M, > m, since afiﬁ > 0.

Now suppose that a < 5. Then z; is bounded as follows

(My>a_5 <z < (my)a_ﬁ'
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Then

1 1 N~

y; = Z K3 (By) ™ (By) ™o ()71 () =0

6B
< max [Z K5 (B)) <Bj>a1] ()= ((ag,)?) 7
J

TV
écy
B

= C, (my)7 (M) 7T

s . s S\ — ——= oy £
Yi = 1mIn [Z K5 (B7) ' (B;) a_ll (Mg) o= (my)eT
J

~~

Y
=cy

1 _B_
= ¢y (My)o=T (my)o=T .

Set m, and M, in the same as before,

Note that

ot 5 = 0. Therefore M, > m,,. =

«

Since we bound the variables, existence follows immediately from the Schauder’s FPT.

Lemma 7. (Scaling) Suppose that (x;,ys, z;) solves
s 1 _a s\ —1 L%
o Zs Zj Kij (Bj) == ()T (yj) (zj)oPB -

= . S B
Zi,s,j KZ (Bj)lfa (l’j)&*l (y]s) (zj)afﬁ a—1
- S ¥ Sy g —
vio= YK (BT (BT (a) 7 () e
j

w = (e

S

Then
s __« e s —1 #
> BiKG (By) w ()5 () ()@ PE =1,

Z7s7]
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Proof. Define A\, for notational convenience.

= DKy (BT ()7 (1) ()7

1,8,

1

5
Multiply [(Bj)ﬁ ()T (%) (a—ﬂ)(a—U] for the first equation and take a sum w.r.t. i.

_ i i [(Bj)i ()7 (Zz')@*"f(a*“}
XX K (BT ()7 (3) 7 () TR [(B) T (1) () T |
_ EWWﬁwﬁ@w%q
XX (06) (BT ()T () | (By) T ()7 () ()

1

Also multiply [(Bl)ﬁ ()1 (y) " (zi)f%ﬂﬁ} for the second equation, and sum up w.r.t.

i,S.

1=

S 05 K (B3) 3 ()77 () @A (BT ()77

|: 1 @ Z aal (Zl)%ﬁ}

This lemma tells that it suffices to prove existence for

S X K (By) T ()55 () () a
Lw<>ﬂwM@ﬁw%ﬁ

i = LK (B)) ™ ()77 () @D
z% = H((yf) )(a 7

S

xr;, =
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A.3.3 Uniqueness proof

Proof. Suppose that there are two solutions. As in a single-sector case, we can take one of

the solutions as follows without loss of generality
Suppose that o < § < 0. Then we can bound z;.

(Ny)aiﬁ <z < (ny)aiﬁ-

Then we can bound the maximums of x; and y; and the minimums of them as follows.

N\ (N,\ait!
ez < (X ]
o) =)
NN\ N\ A
G =)
Ty Ny

Since there are two solutions, one of the inequalities is strict.

N,\TF  [N,\*T
1<(_J <(_) <1
Ny Ny

which is a contradiction. Therefore the system has an unique solution.

As for z, it is easy to show

As for y, we get

Suppose that « — 8 > 0, and «, 8 < 0, and o — 1 < . Then we can bound z;.
(ny)a_ﬁ <2 S (Ny)a_ﬁ'

Then we can bound the maximums of x; and y; and the minimums of them as follows.

1 B
N:E a—1 Ny a—1+1
-z < |
Ny Ny
N\ at N, a1
) <[ == )
Ny Ng

Since there are two solutions, one of the inequalities is strict.

1 1
N\ 51 /N,\+1
1<(_> <(_) <1,
o Ny

As for z, it is easy to show

Then As for y, we get



which is a contradiction. Therefore the system has an unique solution. O]

A.4 Proof of Proposition 2

A.4.1 Part (i): The trade equilibrium solves the world income maximization

problem.

Proof. To show that the trade equilibrium maximizes the world income, we show that the
FONCs for the maximization problem coincide with the equilibrium conditions for the trade
model. Mathematically we show that any solutions to the world income maximization satisfy
the trade equilibrium conditions.

The associated Lagrangian of the maximization problem is:

i€S jeS €S i€S jES €S
ZZKW% Z’%Z (Z Kiji0; ZKJWJ ) +)‘sz o7,
€S jeS €S €S

where {k;} are the Lagrange multipliers on the balanced trade constraint and A is the La-
grange multiplier on the aggregate factor market clearing.

First order conditions with respect to -; are:

(1 — /\ — Iiz') Z KZ]’)/Z(% + Z Kij’yiéj’ij + O!)\BZ aéf =0 (35)

J J

First order conditions with respect to 9; are:
(1 - A + KJZ‘) Z Z’)/J Z ﬁj&/{j + ﬁ)\Bz ZOC(;ZB =0 (36)
J

We first solve for the A. Add the two FOC together and sum over all ¢ € S:

ZZKZ]FYZd + ZZ z]’}/z ]2735) O{ + ﬁ )\ZBZ a(S/B = 0

which implies

C2—a-—-p4"
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The FONCs for 7; and ¢; become:
a—+p 2—a—
(%24 ) X it

o a+p 2—a-p

Biy{'o;

We now try to solve for the k. Equating the two FOC yields:

a+p 2—a—
(52 ) s,

b —«
2—a—ﬁ+

Substituting (40) back into the FOC for ~; yields:

ah a—f—ﬁ —a—
- (252 >m

Zzz

2—a—p
I Zj:Kij%‘(Sj/fj =

2—a—p
- T Z Kiﬂidj’{j (38)

2-a-p Z K;vyiik;  (39)

a+ﬁ 2—a—p
( 23 % ) Z 1750 + Z
B 2 <a+6 K0 + a+ﬂKij7i5j> k
> Kijid;
(40)

2—a—p
_ T ZKU%(SJH]' <

—a—f Zj (OH_@ Kjivj0i + a+,3Kij7i5j> K

b —«

Bin2o? — OHFBZKU b

Bino? = O‘+BZKU 76

20 z]: a+p
5 Z ( 57303 Kij7i5j> K
Substituting (40) back into the FOC for §; yields:

92—
Byl = <oz+ﬁ a ﬂfﬁi)ZKﬁ’Yy&—F
J

iV 94 23 - 23

200 > Kijid;

s 5 -
Kjiv0i + mKij7¢5j> Hj) ~ o

J
T d %:Kij%‘

“ Z K76 -

J

(41)

2—a—p
) Kjyibiny <=
28 : §iVj0iR;

Z] <a+,8 117]6 + a—i—ﬁKU’héj) K

b — «

Bs? — atf 2-a-p
Bk 26 28 25 Kijid;

- 1J It Kz 5
B2 = Z T BZ( 105 = Ry >mj
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Note that equating the two FOC yields:
—p 750, Kz 7i0; - 17105 — Kiv;0i
ZK’AJ%‘S _|_ Z Ky J Z ﬂj(si-i— Z ﬂ’ JiVj o
2-—a—-p K0 Kij%‘5j _ 2 —a—f sz%5j - Kji’7j5i

Z Kjwjémj = Z Kz'j’)/z'(sj’fja
J J

where the second to last line imposed balanced trade. Hence the first order conditions

become:
Binj6; = Z Kijid;
Bi ?(55 Z 17]

Therefore the solution to the problem is unique and coincides with the allocation of the

general equilibrium gravity model. O]

A.4.2 Part (ii) : The trade equilibrium solves the world welfare maximization

problem.

Proof. With the assumption we made that the utility for country i is expressed in the fol-

lowing form
_ _ P
Ui = (Bi (%’)a ' (51)’8 1) )
the welfare maximization problem is to maximize the weighted sum of {u;}, subject to the
same constraints. To show that the competitive allocation is Pareto efficient, we show that

under a particular choice of (6;), the competitive allocation ( E §cF ) solves the planning

problem.

Set the Pareto weights (w;), as follows.

(Bk)p (’Y/?E)p(a_l) (5I§E)p(ﬁ—1)

a1 6-1) (80" (+£7)" (57%)°
" By ey S

(wk) .

From Karlin and Nirenberg (1967), we know there is a solution to the system.
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The associated Lagrangian is

L= wBi o (Z 2 Kby = > B aéf’) -
Taking the FONCs w.r.t. 7; and ¢;, we get
pla—1)wBf f(a_l)(Sf(ﬁ =\ Z Kijvid; — aA\B; 0‘56

p@—nwwﬂ%%ﬁmzAij% — \BB287.
J

Adding the two equations, and solving for A, we have

w

Substitute this expression into the FONCs.
a—1\ [wBAfe et a5
(@)( i Y me +me-”@
B—1\ [wiBAf VY Y
(%5 Y S K )+ S Koy = Bl

From the construction of w;, the bracket term is zero if we evaluate the system at ( E §cE )Z .

a B
(a1) (6-1) > B ()" (95F)
(wiBf (%CE)p (5iCE)p D) _ZKU ZCE(SCE =0.

S wilBl (v (6¢EY

J

Then the second equation is solved at (7%, 67" )Z since

S K EOE = B ()] (65%)
J
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A.5 Proof of Proposition 3

Proof. From the gravity equation A.1 we have:

Xi' = ij’}/iéj <
X,

Kij = — (43)
%’53‘

Combining factor market clearing A.4 with goods market clearing yields:
Bi zq 51'8 = ZX” <
J

> Xij
agf — =11 44
0 B, (44)
The gravity equation A.1 yields the following relationship between origin and destination

fixed effects:

Xii = Kiiid <=
Xii

(Si — .
Kiivi

(45)

Combining equations (44) and (45) to solve for v; and §; yields:

ZXU D‘iiﬁ Xz Wia Xzz %7[3 ZXZJ Bf#"‘
Vi = J and 0; = J ,
B, K Ka B,

which substituting into equation (43) yields an expression for trade frictions K;; that depends

only on observed model parameters and trade flows

X. B XP Ka\°F
K = X5 x —Zk JkX—ZX—ZX—JBJ ,
> X  Bi o XP o Kj

thereby proving the claim. O

A.6 Proof of Proposition 4

Proof. The proof is simply done by implicit function theorem. First some notation is neces-
sary. Define y; = Inv;, 2z; = Ind;, ki; = InK;;. Let ¥ = {y;} and 2= {z;} both be N x 1
vectors and let Z = {:Z} be a 2N x 1 vector. Let k = {ki;} be a N? x 1 vector. Now
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consider the function f <f; E) : RN x RN’ — R2N given by:
|Bi(exp ()" (exp L) = X2, exp (i} (exp {ui}) (exp {23}

B0 (exp ()" exp (1 — 5, exp Gk (xp ) e {3,
In the general equilibrium trade model, we have:
f <f; /%’) —0.

Full differentiation of the function hence yields:

faDpZ + fr =0, (46)
where fz is the 2N x 2N matrix:

o (5:F) = ( R ) ,

where Y is a N x N diagonal matrix whose i"* diagonal is equal to ¥; and X is the N x N

trade matrix.

Similarly, f7 is a 2N x N? matrix that depends only on trade flows:

X Xiv 0 0 0 0
0 0 Xo Xon
ﬂ<;z-‘k):— : : : : : : X1 - Xnn
FAT Xy - 0 Xy -+ 0 o Xng - 0
0 0 . 0 . :
0 v Xin 0 oo Xgn oo+ 0 oo Xun

If fz was of full rank, we could immediately invert equation (46) (i.e. apply the implicit

function theorem) to immediately yield:

DiZ=—(fz)"" Ji

However, because Walras Law holds and we can without loss of generality apply a normal-
ization to {7;} and {0;} (see Online Appendix B.1 for details), we effectively have N — 1

equations and N — 1 unknowns, i.e. matrix fz is of rank 2N — 1. Hence, there exists an

66



infinite number of solutions to equation (46), each corresponding to a different normalization.
To find the solution that corresponds to our choice of world income as the numeraire, note

that from equation (1):

> Bl =YV =
l

dln~, 0ln o,
Y, = 0. 47
; : (aﬁanij _'_BathZ] ( )
We Claim that if 881:1}32]_ = Xij X (Al,i + AN—H,j) — C and % = Xij X (AN—i—l,i + Am) — C,
where ¢ = m){ij Zl Yl (a (Al,z‘ + AN—H,j) + ﬁ (AN-H,z' + Al’j)), then é)alinl'(yjj and 861:11?;

solve equations (46) and (47). It is straightforward to see that our assumed solution ensures
equation (46) holds, as the generalized inverse is a means of choosing from one of the infinitely
many solutions; see James (1978). It remains to scale the set of elasticities appropriately
to ensure that our normalization holds as well. Given our definition of the scalar ¢, it is

straightforward to verify that equation (47) holds:

ZYZ (a dlny, L3 Oln g, ) 2 Vi (X x (A + Avga) — o) +
l OlnkK;;  JlnKj +8 (Xij X (Antri + Arj) —¢))
Xij 22 Vi (o (X X (A + Anig)) + B8 (Xij X (Avtis + Asy)))
—c(a+p8) Y
Xij 22 Vi (o (Xij X (A + Anag)) + B (Xij X (Ania + Aig))) —
(v Xis Vi @ (A + Awsag) + B (Awii + Ay)) ) (a+ B) YV

=0,

i.e. equation (47) also holds. More generally, different choices of ¢ correspond to different

normalizations. A particularly simple example is if we choose the normalization v; = 1.

Since this implies that ;ﬁfg; =0, c=X;; x (A1, + An+1;). In this case, however, an

alternative procedure is even simpler: the elasticities for all ¢ > 1 can be calculated directly
by inverting the (2N — 1) x (2N — 1) matrix generated by removing the first row and first

column of fz. O]
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A.7 Proof of Proposition 5

Proof. We want to rewrite the equilibrium conditions in changes by defining (#;) = z}/x;.

Starting from (4) we have

/5/
Z Z Kz]'%

5267 ZZW iYid; =
j

§e0) = miK 65
j

where m;; = X,/ > ; Xij represents the exporting shares. Similarly we can rewrite the second

equilibrium condition, Equation (5), in changes as

Aa(gﬁ Z z’yj
>, Kjinsdi
3007 =D MK A0 =

J
caif-1 5
007 =3 NG,
j

—

where \;; = X;;/ Y. Xi; represents the import shares. This system of equations in changes
is the same as the system of equations in levels. As long as \;;, 7;; are the same and «, are
the same all the gravity models give the same changes in +;,d; for a given change in Kj;.

m
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B Online Appendix (not for publication)

This Online Appendix provides some additional theoretical results referenced in the paper.

B.1 Normalization

Without loss of generality we can normalize the world income.

Proposition 6. Suppose that (v,0) solves the non-linear system. Denote the associated

(x,y). Then (t%t_}%g5> induces (t_%x,ty>, which again solves the non-linear equation.

The world income YW under (ty,t_tig(F) is tSEY Y. In particular if t = (Y“’)_ﬁ , then
YW =1.

Proof. Take (tv, sd), where

_l-a
s = t 1-8
Denote the associated (z (¢, ),y (t,s)) . Then
z(ts) = t* s

1—
= 1T,

=

™

-
y(t,s) = t%s" 1y
= ty.

T

It is easy to show

@ l—«
z; (t,s) = t7 sy ZK 31 I=a=f ta 148 .)a+5—1 (tasﬁ—lyj)mﬁ—i
= KB (ay (1 5) T (1 (1 5) 7
J

W0.9) = SRRBTT () T ()

= ZK B (1) (1, 8)) 75T (g (1, 5))75
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Thus a solution to the The world income induced by (tfy, t_}%g5> is

—a \B —a
S Bity)* (£7F8) = Y Bogd

_a=g . . .
In particular if we take ¢t~ 1-5 = Y™, then the world income is normalized to 1. O

B.2 Walras law

In the previous section, we showed that without loss of generality, we can normalize the
system of equations so that world income is equal to an arbitrary constant. In this section,
we show that Walras law holds, i.e. if all equilibrium equations but one hold with equality,
then the remaining one holds with equality as well. The two facts together imply that the
equilibrium is really defined by 2N — 1 equations and 2N — 1 unknowns.

To see this, define v = {v;}, 0 = {d§;} and z = {~;d}, where = is a 2N x 1 vector.
Consider the function f (z) : R?Y — R*N given by:

i

[Bﬂ?_lfiﬂ p» K,-jéj]
f(x) = :
[Zj Kjivj — Bi ?55_1}

7

Note that the general equilibrium trade model is in equilibrium if f (z) = 0. Walras law can

be written as:

f(z)-x=0.

To see this is the case, note that:

f@) z=0 <

> (Bﬂ;*—laf -y Kij5i> XYty (Z Ky — B; gaf—1> X0 =0 <

| > B g;f -3 Kiﬂiéj + 2]: > Ko =Y Bl =0 <=
i P i i

0=0.

Hence, Walras law holds.
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B.3 Existence and Uniqueness using Gross Substitutes Method-
ology (a la Alvarez and Lucas (2007))

We will illustrate the application of the gross-substitute property to prove uniqueness equi-
librium in an excess demand system. This is a necessary step in the proof of Alvarez and
Lucas (2007) but it is not sufficient, as a number of other properties need to be proved for
an equation to be an excess demand system, as we discuss below.

Because of the complexity of the system that we analyze we cannot apply the gross-

substitutes property directly to equations (4) and (5).
Biyi~'o) =y Ko (48)
J
Combining gravity A.1 with balanced trade A.(3) and asumption A.4 yields:
BAes) ™ =Y K (49)
J

In order to find the equation that can be used to prove, we need to eliminate one variable.

sKsi ﬁ
6i = (ZSGS’Y > (50)

Bz’%‘a

Use (5) to express 0; as

into equation (4), we obtain

B 1
a Zs ,}/SKSi B-1 Zs /YSKS‘ B-1
B (L = Y (Ees ) g e

’ By e Bj~s
_B_ 1
BT L
&5 %1 Zs Vs s\ P
Bz'l B’Vil ’ (E 75K3i> = Z (%) Kij (51)

o
ses jes i

We define the corresponding excess demand function might be

_B_ 1
1 %1 a<10—_ﬁ—1 B—1 zs S%Ks , B—1
Zi(v) = - By 0 (Z ’YsKm') - Z (;/—Wﬁj Kij
J

seS j'es

This system written as such needs to satisfy 5 properties to be an excess demand system and
the gross substitute property to establish existence and uniqueness (see Propositions 17.B.2,
17.C.1 and 17.F.3 of Mas-Colell, Whinston, and Green (1995)). The six conditions are:
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1. Z () is continuous for v € (A (RY))’
2. Z (7y) is homogenous of degree zero.
3. Z(y)-v =0 (Walras’ Law).
4. There exists a k > 0 such that Z; (y) > —k for all j.
5. If there exists a sequence w™—w’, where w® # 0 and w? = 0 for some 4, then it must
be that:
max ;i {Z;(w™)}—o00 (52)

and the gross-substitute property:

6. Gross substitutes property: %“:) > 0 for all j # k.

Properties 1-3 are trivial by the way we define the system. Properties 4 and 5 are chal-
lenging and may require an analysis case-by-case which restrict further the set of parameters
that uniqueness applies. We thus only discuss the region where gross-substitutes applies. To
consider this system as an excess demand system and apply the tools originally developed
in Alvarez and Lucas (2007), we need to differentiate the expression above. We only use the

bracketed term without loss of generality. We have:

_1 —B+2
0Z:;(v) _ B g o S e\
= KjiBil—ﬂ’yi 1-5 Z’)/SKL%' _——_— Z Kz_]’ SE—aJ KJJ/
97; p—1 prd f—1 P B;S
Sf2 e a—
bk Y aes Vs Ky \ 7 | KBy — aBiv ™ Y es 1 Ky
B o T SRS
seS §€8,5'#] j
—B+2
— 1 K. <ZS€S WSKSJ) ot |:,7]KJ] -« ZSES ’)/SKsj’:|
-1 By Vi

Let 8 < 0 and a < 0 then the expression is positive and the gross-substitute property
holds. Similar results can be easily established for § = 0, « < 0 and f < 0, a = 0. The
same cannot be, in generally, established if 5 > 1 or @ > 1 since the expression cannot
be signed in that case, and in particular we have found parametric specifications where the
gross-substitutes property may fail.? Thus, the region that uniqueness applies with this
approach is a < 0,5 < 0.

29In particular, we analyzed the Armington case with intermediate inputs as in Section 2. We can show
that this model for o = 3 and v = 1/4 corresponds to the case a, 8 > 1 but the gross-substitute condition
does not obtain in the case of many symmetric regions with symmetric trade costs or even two regions with
no trade costs.
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B.4 Comparative Statics when § =0

Let us consider a particularly interesting special case, 5 = 0. We have in this case that the

equilibrium is characterized by

sKs' -
Bar =3 (ZL) Ky —

A
jes Bﬂj

By )

a—1 J 1

et =3 () Bk,
(ZSES’YSKSJ ’

jes
which is the standard single-equation gravity model that we find in papers such as Anderson
(1979); Eaton and Kortum (2002); Chaney (2008). We can rewrite this system re-written

using A.4 as
Vi Kij )
Y = (— Y,
; ZSES ,YSKSJ' ’

In this last equation the technique developed by Dekle, Eaton, and Kortum (2008) can be
applied (see details in Arkolakis, Costinot, and Rodriguez-Clare (2012)) so that computing
the changes in 7; require only knowledge of changes in Kj;; and initial trade and output levels
across all the models that can be captured by this formulation.

Notice that given equation 50 and the above equation we have for § = 0 that we can

express the origin fixed effects as a function of the destination fixed effects and parameters

3, Kb\ 7
Vi = (Tz) . (53)
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