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Abstract

I document evidence of structural changes in key moments of the yield curve and the

correlation between bond-stock returns and consumption growth-inflation. I estimate an

equilibrium model that features regime shifts in monetary policy aggressiveness and the

conditional covariance of consumption and inflation that generate endogenous regime-

switching inflation and bond price dynamics. The shifts in the conditional covariance

process affect the dynamics of the yield curve and asset prices, while policy changes

mostly influence their second moments. The model accounts for several bond market

features, including the presence of unspanned macroeconomic factors and changes in

the bond-stock return correlation.
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1 Introduction

There is mounting evidence that the U.S. Treasury yield curve and macroeconomic

fundamentals, that is, consumption growth and inflation, have undergone structural

changes over the past decade. For example, recent empirical studies have come to

understand that U.S. Treasury bonds have served as a hedge to stock market risks in

the last decade.1 In sharp contrast to the 1980s, during which both bond and stock

returns were low and tended to co-move positively, the bond-stock return correlation

has turned strongly negative in the 2000s. Several other aspects of bond markets have

changed over the years between 1998 and 2011. Among them are a flattening of the yield

curve and a substantial drop in the degree of time variation in excess bond returns. The

striking feature is that the correlation between consumption growth and inflation has

also changed from negative to positive in the same period.2 In this paper, I study the role

of structural changes in macroeconomic fundamentals as well as in the aggressiveness

of monetary policy in explaining the bond market changes over the last decade. The

central contributions of this paper are to investigate whether the bond market changes

are brought about by external shocks, by monetary policy, or by both, and to quantify

and characterize bond market price exposures to macroeconomic and monetary policy

risks.

I develop a state-space model to capture the joint dynamics of consumption growth,

inflation, and asset returns. The real side of the model builds on the long-run risks

(LRR) model of Bansal and Yaron (2004) and assumes that consumption growth con-

tains a small predictable component (i.e., long-run growth), which, in conjunction with

investors’ preference for early resolution of uncertainty, determines the price of real

assets. The nominal side of the model extends Gallmeyer, Hollifield, Palomino, and

Zin (2007) in that inflation dynamics are derived endogenously from the monetary pol-

icy rule, and the nominal assets inherit the properties of monetary policy. My model

distinguishes itself from the existing literature in two important dimensions. First, it

allows for changes in the monetary policy rule, both in the inflation target and in the

1See Baele, Bekaert, and Inghelbrecht (2010); Campbell, Pflueger, and Viceira (2013); Campbell,
Sunderam, and Viceira (2013); and David and Veronesi (2013).

2See Table 1 for descriptive statistics and Figure 1 for impulse responses.
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stabilization rule (i.e., the central bank’s response to deviations of actual inflation from

the inflation target and to fluctuations in consumption). The regime-switches in stabi-

lization policy coefficients are modeled through a Markov process. Second, I allow for a

channel that breaks the long-run dichotomy between the nominal and real sides of the

economy. I assume that the fluctuations in the long-run growth component are not just

driven by its own innovation process but also by the innovation to the inflation target of

the central bank. I add flexibility to this channel by allowing for both positive-negative

fluctuations.3 In essence, there is a regime-switching Markov process that captures the

sign-switching behavior of the conditional covariance between long-run growth and the

inflation target.

As a consequence of my model features, asset prices and macroeconomic aggregates

are affected through two distinct channels: (1), changes in the conditional covariance

between the inflation target and long-run growth, and (2), changes in the stabilization

policy rule. This leads to endogenous inflation dynamics, and the resulting nominal

bond market prices are differentially affected through both channels. In order to em-

pirically assess the relative strengths of the two channels and examine the quantitative

fit of the model, I apply a Bayesian approach to the estimation. I embed a particle-

filter-based likelihood approximation into a Metropolis-Hastings algorithm to generate

parameter draws from the posterior distribution and to solve a nonlinear filtering prob-

lem. The estimation incorporates mixed-frequency data to maximize the use of data.

The idea is to combine data from a quarterly survey of professional forecasters with

monthly macroeconomic fundamentals and bond yields to identify hidden regimes, la-

tent conditional means, and conditional variance dynamics of growth and inflation. All

of these procedures are done simultaneously in a nonlinear state-space framework.

The estimation of the model delivers several important empirical findings. First, the

estimation results suggest that the economic environment involves two regimes with

3The economic reasoning behind the changes in the covariance structure shares the New Keynesian
view that there are periods in which the inflation target is above the so-called desirable rate of inflation,
e.g., the rate at which prices can be changed without costs. Any positive shock to the inflation target
during such periods creates distortions by reducing long-run growth. When the inflation target is
assumed to be lower than the desirable one, positive shocks to the inflation target will actually remove
distortions and generate positive long-run growth movements. See Aruoba and Schorfheide (2011) for
more.
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different conditional covariance dynamics: one with a negative covariance between the

inflation target and long-run growth (countercyclical inflation) and one with a posi-

tive covariance (procyclical inflation). The relative magnitude of the conditional het-

eroscedasticity present is larger in the countercyclical inflation regime. In each inflation

regime the central bank either increases interest rates more than one-for-one with infla-

tion (active monetary policy) or does not (passive monetary policy). Overall, a total of

4 different regimes affect the comovement of bond prices and macroeconomic aggregates.

Second, the changes in the conditional covariance between the inflation target and long-

run growth alter the dynamics of the long-run components and have a persistent effect

on bond markets. On the other hand, the changes in the conduct of monetary policy are

more targeted to affecting the short-run volatility dynamics of inflation, and therefore,

their effect on bond markets is relatively short-lived. Therefore, the model predicts

the changes in the conditional covariance dynamics to be the main driver of structural

changes in bond markets, such as sign changes in the stock-bond return correlation and

the time variations in risk premiums.

Third, each regime carries distinctly different risk prices, and uncertainty about mov-

ing across regimes poses additional risks to bond markets. The risk channels can be

broadly classified into two types: “within-regime” and “across-regime” risks. For the

purpose of explanation, I decompose the long-term bond yields into the expected sum of

future short rates (the expectations component) and the term premium (risk compen-

sation for long-term bonds). Risks associated with the countercyclical inflation regime

raise both the expectations component and the term premium.4 Risks for the procycli-

cal inflation regime work in the opposite direction. With regard to monetary policy

risks, the effect is mostly on the expectations component, but its directional influence

depends on the inflation regime. When the policy stance is active, monetary policy

works to lower the inflation expectation and produces a downward shift in the level of

the term structure (i.e., lowers the expectations component). With passive monetary

policy and a countercyclical inflation regime, agents understand that the central bank

is less effective in stabilizing the economy (raising the expectations component) and

they demand a greater inflation premium, leading to the steepest term structure. With

4Note that this is how Piazzesi and Schneider (2006) and Bansal and Shaliastovich (2013) generate
the inflation premium.
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passive monetary policy and a procyclical inflation regime, the inherent instability as-

sociated with the passive monetary policy will amplify the “procyclicality” (lower the

expectations component). The across-regime risks imply that the risk properties of al-

ternative regimes are incorporated, since agents are aware of the possibility of moving

across regimes. This is a prominent feature of the model that generates an upward-

sloping yield curve even when the economy is in the procyclical inflation regime. When

in the procyclical inflation regime, which otherwise would lead to a downward sloping

yield curve, the risks of the monetary authority not responding aggressive by enough

to inflation fluctuations and the risks of transitioning to the countercyclical inflation

regime generate an upward sloping yield curve.

Fourth, the time variations within a regime and risks associated with moving across

regimes give rise to time variations in risk premia, which provide testable implications

for the expectations hypothesis (EH). The estimated model as a whole overwhelmingly

rejects the EH and provides strong empirical evidence of time variations in expected

excess bond returns. The evidence is supported by the model-implied term spread

regression of Campbell and Shiller (1991) and the excess bond return predictability

regression of Cochrane and Piazzesi (2005). I find that the degree of violation of the EH

is least apparent within the procyclical inflation and passive monetary policy regime,

which is also supported in the data.

Finally, due to the nonlinearities created by regime switching, the model is not affine

in yields. This model feature allows me to analyze issues related to unspanned macroe-

conomic risks (see Joslin, Priebsch, and Singleton (2014) for example). In the context

of linear predictive regression analysis, model simulations reveal that current macroe-

conomic variables, i.e., consumption growth and inflation, are informative about future

values of macroeconomic variables, the level of bond yields, and risk premiums after

controlling for the current cross-section of bond yields. My model provides strong evi-

dence of macroeconomic risks in consumption growth and inflation that are unspanned

by the cross-section of the current bond yields. However, consumption growth and

inflation become insignificant once I condition on the model state variables. This find-

ing implies that the information set of the model state variables encompasses those of

macroeconomic variables and of the cross-section of bond yields. This finding further
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indicates that the model state variables contain (nearly) all risks in consumption growth

and inflation that are priced in the bond market. I then ask how much of the varia-

tion in model state variables is spanned by the cross-section of yields. The R2 values

from the linear regression for predicting the real state variables (i.e., long-run growth

and its volatility component) are about one third of those from predicting the nominal

ones. The evidence is consistent with the findings in Joslin, Priebsch, and Singleton

(2014) that the portfolio of risks that shape real economic growth is not spanned by the

cross-section of bond yields.

Related Literature. This paper is related to several strands of the literature. My work

is related to a number of recent papers that study the changes in the bond-stock return

correlation. Baele, Bekaert, and Inghelbrecht (2010) utilize a dynamic factor model in

which stock and bond returns depend on a number of economic state variables, e.g.,

macroeconomic, volatility, and liquidity factors. The authors attribute the changes

in the bond-stock return correlation to liquidity factors. Campbell, Sunderam, and

Viceira (2013) embed time-varying bond-stock return covariance in a quadratic term-

structure model and argue that the root cause is due to changes in nominal risks in

bond markets. What distinguishes my work from these reduced-form studies is that it

builds on a consumption-based equilibrium model with monetary policy to identify the

driving forces behind the bond-stock return correlation changes.

The works that come closest to my paper are Burkhardt and Hasseltoft (2012), Camp-

bell, Pflueger, and Viceira (2013) and David and Veronesi (2013). Burkhardt and Has-

seltoft (2012) find an inverse relation between bond-stock correlations and correlations

of growth and inflation. Burkhardt and Hasseltoft (2012) rationalize their finding in

a long-run risks model with regime shifting (in the conditional dynamics of macroeco-

nomic fundamentals) calibrated to data on fundamentals and asset returns. Campbell,

Pflueger, and Viceira (2013) examine the role of monetary policy in nominal bond risks

using a New Keynesian model. Using macroeconomic fundamentals and asset prices,

Campbell, Pflueger, and Viceira (2013) estimate the model separately over three differ-

ent subsamples. From the counterfactual analysis, the authors claim that the change

in monetary policy parameters is the main driver of bond risks. David and Veronesi

(2013) estimate an equilibrium model of learning about inflation news and show that
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market participants’ variation in their beliefs about inflation regimes strongly affects

the direction of bond-stock comovement.

Here are a few of the important distinctions between my paper and the existing ones.

First, the structural changes in the economy are identified from macroeconomic funda-

mentals and asset prices without imposing (sometimes ad hoc) assumptions, e.g., known

break points as in Burkhardt and Hasseltoft (2012) and Campbell, Pflueger, and Viceira

(2013). Second, I explicitly account for the role of market participants’ beliefs about

regime switches in the bond market. I find strong empirical evidence in the data that the

anticipation of moving across regimes is one of the most important risk factors priced in

the bond market. For example, ignoring the role of beliefs overstates (understates) the

implications of a passive (active) monetary policy regime or countercyclical (procyclical)

inflation regime because the risk properties of alternative regimes are not incorporated.

Campbell, Pflueger, and Viceira (2013) do not allow for a beliefs channel to operate.

Third, my model exhibits a richer structure than that of David and Veronesi (2013).

By accounting for time variations in all elements (beyond diagonal components) of the

covariance matrix of macroeconomic innovations and in monetary policy parameters, I

am able to provide extensive descriptions of the bond market transmission mechanism

of monetary policy and macroeconomic shocks. In this regard, my model complements

Burkhardt and Hasseltoft (2012), Campbell, Pflueger, and Viceira (2013), and David

and Veronesi (2013).

By investigating the time variation in the stance of monetary policy, my work also con-

tributes to the monetary policy literature, e.g., Clarida, Gali, and Gertler (2000), Coi-

bon and Gorodnichenko (2011), Fernández-Villaverde, Guerrón-Quintana, and Rubio-

Ramı́rez (2010), Lubik and Schorfheide (2004), Schorfheide (2005), and Sims and Zha

(2006).5 While most of these papers study the impact of changes in monetary policy on

macroeconomic aggregates, Ang, Boivin, Dong, and Loo-Kung (2011) and Bikbov and

Chernov (2013) focus on their bond market implications (using reduced-form modeling

frameworks). My work distinguishes itself from these last two papers, since I focus on

a fully specified economic model and characterize time-varying bond market exposures

to monetary policy risks.

5Note that I am including those that explicitly account for changes in monetary policy.
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In terms of modeling the term structure with recursive preferences, this paper is closely

related to those of Bansal and Shaliastovich (2013), Le and Singleton (2010), Doh (2012),

and Piazzesi and Schneider (2006), who work in an endowment economy setting, and,

van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012), who study a

production-based economy. My work generalizes the first four by endogenizing inflation

dynamics from the monetary policy rule. While van Binsbergen, Fernández-Villaverde,

Koijen, and Rubio-Ramı́rez (2012) allow for endogenous capital and labor supply and

analyze their interaction with the yield curve, which are ignored in my analysis, they

do not allow for time variations in volatilities and in monetary policy stance, both of

which are key risk factors in my analysis.

There is a growing and voluminous literature in macro and finance that highlights the

importance of volatility for understanding the macroeconomy and financial markets (see

Bansal, Kiku, and Yaron (2012); Bansal, Kiku, Shaliastovich, and Yaron (2013); Bloom

(2009); and Fernández-Villaverde and Rubio-Ramı́rez (2011)). This paper further con-

tributes to the literature by incorporating a time-varying conditional covariance process.

Finally, the estimation algorithm builds on Schorfheide, Song, and Yaron (2013), yet fur-

ther develops to accommodate Markov-switching processes (see Kim and Nelson (1999)

for a comprehensive overview of estimation methods for the Markov switching mod-

els) and efficiently implements Bayesian inference using particle filtering in combination

with a Markov chain Monte Carlo (MCMC) algorithm.

The remainder of the paper is organized as follows. Section 2 provides empirical

evidence on structural changes in the U.S. economy. Section 3 introduces the model

environment and describes the model solution. Section 4 presents the empirical state-

space model and describes the estimation procedure. Section 5 discusses the empirical

findings, and Section 6 provides concluding remarks.

2 Empirical Evidence on Structural Changes

Here, I provide empirical evidence on structural changes in macroeconomic fundamen-

tals, in the Treasury yield curve, and in the correlation between bond and stock returns.
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2.1 Changes in Macroeconomic Fundamentals

A recurrent theme of macro-finance term structure models that underlies risk premiums

is that inflation uncertainty makes nominal bonds risky.6 A common pattern to model

inflation uncertainty, which Piazzesi and Schneider (2006) provide empirically and which

is found by many others, is to assume that inflation is a carrier of bad news to con-

sumption growth. By construction, inflation erodes the value of nominal bonds precisely

at times when consumption growth is low (or marginal utility is high). However, this

pattern does not appear to be robust over different sub-samples.

Following Piazzesi and Schneider (2006), I assume that the vector of inflation (π) and

consumption growth (∆c) has the following state-space representation

zt = st−1 + εt, zt = [πt,∆ct]
′ (1)

st = φst−1 + φKεt, εt ∼ N(0,Ω).

The state vector st is 2-dimensional and contains expected inflation and consumption,

φ is the 2×2 autoregressive matrix, and K is the 2×2 gain matrix. I estimate this

system with data on quarterly consumption and inflation that span 1959 to 2011 using

Bayesian methods. Details (priors and posterior estimates) are provided in the Online

Appendix. The estimation sample is split into two parts. One is from 1959 to 1997 and

the other spans the period 1998 to 2011. In order to understand the key properties of

the estimated dynamics, I report the impulse responses of the system in Figure 1. Each

response represents either the change in consumption or inflation forecasts following a

1 percent inflation shock επ,t.

The findings on the left (the top and bottom left plots) are consistent with what

Piazzesi and Schneider (2006) report. Two aspects of the results on the right are

noteworthy. First, the sign of consumption’s reaction to an inflation shock changed

from negative (the top left plot) to positive (the top right plot) over the last fifteen

years. A 1 percent inflation surprise predicts that consumption growth will be higher

6Macro-finance term structure models refer to models in which the pricing kernel comes directly
from a utility-maximization problem. Gürkaynak and Wright (2012) provide a nice overview of macro-
finance term structure models.

8



Figure 1: Consumption and Inflation Reaction to 1 Percentage Point Inflation Surprises
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Notes: Black lines represent posterior median reactions to 1 percentage point surprises in inflation.
Light (dark) gray-shaded areas correspond to 90 (60)% credible intervals. x-axis represents the impulse
response horizon (in quarters).

by approximately 10 basis points in the next year.7 Second, the own-shock responses

for inflation decayed much faster over the last fifteen years. The impact of a 1 percent

inflation surprise on itself completely dies out over the next 1-2 years (the bottom right

plot). This is mainly due to a large decline in the persistence of the expected inflation

process, e.g., the autoregressive coefficient for inflation dropped from 0.96 to 0.41 (see

7Table 1 also reports the unconditional correlation between different measures of real growth and
inflation. The sign-switching pattern is robust to the choice of growth and inflation variables and to
different sampling frequencies.
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Table 1: Descriptive Statistics

Pre-1998 Post-1998 Full Sample

Annualized Average Bond Yields

Mean (y3m) 6.07 2.64 5.16
Mean (y1y) 6.51 2.88 5.55
Mean (y3y) 6.87 3.35 5.94
Mean (y5y) 7.05 3.78 6.19
Mean (y10y) 7.35 4.38 6.57

Correlation between Growth and Inflation

Corr(∆c, π) -0.19 0.02 -0.11
Corr(∆c, π)Q -0.36 0.18 -0.16
Corr(∆gdp, π)Q -0.26 0.33 -0.13
Corr(E∆gdp,Eπ)Q -0.43 0.19 -0.31

Correlation between Stock and Bond Returns

Corr(rm, r2y) 0.16 -0.13 0.09
Corr(rm, r3y) 0.21 -0.14 0.13
Corr(rm, r4y) 0.22 -0.14 0.14
Corr(rm, r5y) 0.24 -0.14 0.15

Term Spread Regression, Slope Coefficient

r2y,t+1y onto spread2y,t -0.95 0.89 -0.62
r3y,t+1y onto spread3y,t -1.37 0.43 -1.00
r4y,t+1y onto spread4y,t -1.77 0.02 -1.40
r5y,t+1y onto spread5y,t -1.69 -0.28 -1.41

Excess Bond Return Predictability, R2

rx2y,t+1y onto forwardt 34.34 13.60 20.68
rx3y,t+1y onto forwardt 35.29 13.92 21.54
rx4y,t+1y onto forwardt 37.72 15.79 24.38
rx5y,t+1y onto forwardt 34.49 19.15 22.32

Notes: The top three panels report descriptive statistics for aggregate consumption growth (∆c), gross
domestic product (GDP) growth (∆gdp), expected GDP growth (E∆gdp), consumer price index (CPI)
inflation (π), expected inflation (Eπ), log returns of the aggregate stock market (rm), the log bond yields
(yn), log bond returns (rn), and log bond excess returns (rxn) where n ∈ {3m, 1y, 2y, 3y, 4y, 5y, 10y} .
It shows mean (Mean) and pairwise correlation (Corr) between growth and inflation and market and
bond returns. Measures of expected GDP growth (E∆gdp) and expected inflation (Eπ) are based on
the Survey of Professional Forecasters historical forecasts, which are available from 1968 to 2011. The
remaining variables are available from 1959 to 2011. The numbers in the table are derived from monthly
frequency data except for those with the superscript “Q”; those numbers are derived from quarterly
frequency data. The fourth panel provides the slope coefficient from the term spread regression of
Campbell and Shiller (1991). The “spreadn,t” is the difference between an n year yield and a 1-year
yield. I focus on a 1-year return horizon. rn (rxn) denotes return (excess return) on an n year bond.
The last panel provides R2 values (in percent) from the excess bond return predictability regression
found in Cochrane and Piazzesi (2005). “forwardt” includes a constant term, a 1-year bond yield, and
four forward rates.
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the Online Appendix for details).

The key aspects of the data are that the inflation dynamics have changed substantially

over time and there are periods in which inflation an surprise can be good news for

consumption growth.8

2.2 Changes in the Treasury Bond Yields and Asset Returns

The top panel of Table 1 shows that yields with longer maturities are on average higher

than those with shorter maturities. This evidence is typically known as un upward

sloping yield curve. What is puzzling from the perspective of existing term structure

models is that the Treasury yield curve still slopes upward during those periods in which

inflation is a carrier of good news to consumption growth. It is interesting to observe

that several other aspects surrounding the Treasury bond markets have also changed

during this period (see the bottom three panels of Table 1). The correlation between

bond and stock returns changed from positive to negative, and the degree of violation

of the expectations hypothesis (explained in detail later) and the excess nominal bond

return predictability (risk premiums) appear to be much lower over the last fifteen years.

Overall, the evidence in Table 1 is interesting not only because it shows the limita-

tions of the existing approaches, but also because it implies that the sources of risk

behind the yield curve might have changed over time. There is an important reason

to believe that the yield curve and inflation dynamics are sensitive to monetary pol-

icy shifts or changes in the distribution of economic shocks. In fact, a large literature

in macroeconomics supports frequent shifts in the Federal Reserve’s inflation policy

action and in the distribution of fundamental shocks (see Clarida, Gali, and Gertler

(2000), Coibon and Gorodnichenko (2011), Fernández-Villaverde, Guerrón-Quintana,

and Rubio-Ramı́rez (2010), Justiniano and Primiceri (2008), Schorfheide (2005), and

Sims and Zha (2006)). Such empirical facts posit the need to look at the data from a

broader perspective, which calls for a more flexible approach to the joint modeling of

macroeconomic fundamentals, monetary policy, and stock and bond asset prices.

8This evidence is also documented in David and Veronesi (2013).
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3 The LRR Model with Monetary Policy

In response to the previous empirical facts, I develop an asset pricing framework that

embeds risks through regime changes in the monetary policy action as well as in the

covariance matrix of nominal inflation and real growth innovations. These shifts, which

give rise to endogenous regime switching inflation and bond price dynamics, are con-

sidered to be a potential source of risk variations that can explain several bond market

features, including the upward sloping yield curve.

3.1 Preferences and Cash-Flow Dynamics

I consider an endowment economy with a representative agent who maximizes her life-

time utility,

Vt = max
Ct

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

,

subject to the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk

aversion, θ = 1−γ
1−1/ψ

, and ψ is the intertemporal elasticity of substitution (IES).

Following Bansal and Yaron (2004), consumption growth, gc,t+1, is decomposed into a

(persistent) long-run growth component, xc,t+1, and a (transitory) short-run component,

σ̄cηc,t+1. The persistent long-run growth component is modeled as an AR(1) process

with two fundamental shocks: a shock to growth, σc,tec,t+1, and a shock to the inflation

target, σπ,teπ,t+1 (both with stochastic volatilities). The inflation target is modeled

by an AR(1) process with its own stochastic volatilities and the persistence is allowed

to switch regimes. The persistence of the long-run growth, ρc(St+1), and its exposure

to an inflation target shock, which is captured by χc,π(St+1), are subject to regime

changes, where St+1 denotes the regime indicator variable. The value of χc,π(St+1) can

be either negative or positive. The economic reasoning behind this follows the view that
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there are periods in which the inflation target is above the so-called desirable rate of

inflation,9 and that any positive shock to the inflation target during those periods creates

distortions and hampers long-run growth. The negative χc,π(St+1) values correspond to

these periods. The periods with positive χc,π(St+1) values depict periods during which

the inflation target is assumed to be lower than the desirable one, and a positive shock

to the inflation target removes distortions and facilitates long-run growth. Dividend

streams, gd,t+1, have levered exposures to both xc,t+1 and σ̄cηc,t+1, whose magnitudes

are governed by the parameters φx and φη, respectively. I allow σ̄dηd,t+1 to capture the

idiosyncratic movements in dividend streams. Overall, the joint dynamics for the cash

flows are [
gc,t+1

gd,t+1

]
=

[
µc

µd

]
+

[
1

φx

]
xc,t+1 +

[
1 0

φη 1

][
σ̄cηc,t+1

σ̄dηd,t+1

]
(2)

xc,t+1 = ρc(St+1)xc,t + σc,tec,t+1 + χc,π(St+1)σπ,teπ,t+1,

xπ,t+1 = ρπ(St+1)xπ,t + σπ,teπ,t+1

where the stochastic volatilities evolve according to

σj,t = ϕjσ̄c exp(hj,t), hj,t+1 = νjhj,t + σhj

√
1− ν2

jwj,t+1, j = {c, π}, (3)

and the shocks are assumed to be

ηi,t+1, ej,t+1 ∼ N(0, 1), i ∈ {c, d}.

Following Schorfheide, Song, and Yaron (2013), the logarithm of the volatility process is

assumed to be normal, which ensures that the standard deviation of the shocks remains

positive at every point in time.

9In a New Keynesian model, the desirable rate of inflation would be the rate at which prices can be
changed without costs. See Aruoba and Schorfheide (2011) for a more detailed discussion.
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3.2 Monetary Policy

Monetary policy consists of two components: stabilization and a time-varying inflation

target. Stabilization policy is “active” or “passive” depending on its responsiveness to

the consumption gap and inflation fluctuations relative to the target. The monetary

policy shock, xm,t, is also modeled as an AR(1) process. In sum, monetary policy follows

a regime-switching Taylor rule,

it = µMP
i (St) + τc(St)(gc,t − µc)︸ ︷︷ ︸

consumption gap

+ τπ(St)(πt − xπ,t)︸ ︷︷ ︸
short-run inflation

+xπ,t + xm,t, (4)

= µMP
i (St) +

[
τc(St), 1− τπ(St), 1, τc(St)

]
XB
t + τπ(St)πt, XB

t = [xc,t, xπ,t, xm,t, ηc,t]
′,

where τc(St) and τπ(St) capture the central bank’s reaction to the consumption gap

and to the variation in short-run inflation, respectively. To recap, the dynamics of the

inflation target and monetary policy shocks are

xπ,t+1 = ρπ(St+1)xπ,t + σπ,teπ,t+1, xm,t+1 = ρmxm,t + σmem,t+1.

Observe that several important modifications have been made in (4). To begin with,

the role of interest rate smoothing is assumed to be absent. While (4) may look quite

restrictive in its form, it yields a much simpler expression in that the current short rate

is affine with respect to the “current” state variables, XB
t , and “realized” inflation, πt,

without any “lagged” term. Moreover, given the argument posited in Rudebusch (2002),

it seems sensible to consider the monetary policy rule without an interest rate smoothing

motive in order to study the term structure.10 More important, however, (4) assumes

that the central bank makes informed decisions with respect to inflation fluctuations at

different frequencies. While the central bank attempts to steer actual inflation toward

the inflation target at low frequencies, it aims to stabilize inflation fluctuations relative

to its target at high frequencies. Furthermore, in the context of the term structure

models, it is very important to consider an explicit role for the target inflation since it

behaves similarly to a level factor of the nominal term structure. The specification of

10Based on the term structure evidence, Rudebusch (2002) shows that monetary policy inertia is not
due to the smoothing motive but is due to persistent shocks.
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(4) resembles specifications in which the level factor of the term structure directly enters

into the monetary policy rule (see Rudebusch and Wu (2008), for example).11 Finally,

(4) assumes that the strength with which the central bank tries to pursue its goal—a

stabilization policy—changes over time along the lines explored in Clarida, Gali, and

Gertler (2000).

3.3 Endogenous Inflation Dynamics

Inflation dynamics can be determined endogenously from the monetary policy rule (4)

and a Fisher-type asset-pricing equation, which is given below,

it = −Et [mt+1 − πt+1]− 1

2
Vt [mt+1 − πt+1] (5)

≈ µAPi (St) +
[ 1

ψ
Et[ρc(St+1)], 0, 0, 0

]
XB
t + Et [πt+1] , XB

t = [xc,t, xπ,t, xm,t, ηc,t]
′.

(See Cochrane (2011) and Backus, Chernov, and Zin (2013) for a similar discussion.)

The approximation is exact if the short rate contains no risk premium.12 Substituting

the asset-pricing equation (5) into the monetary policy rule (4), the system reduces to

a single regime-dependent equation

τπ(St)πt = Et [πt+1] + Λ(St)X
B
t , (6)

where Λ(St) =
[

1
ψ
Et[ρc(St+1)], 0, 0, 0

]
−
[
τc(St), 1 − τπ(St), 1, τc(St)

]
.13 In the Online

Appendix, I show that the equilibrium inflation dynamics can be expressed as

πt = Γ(St)X
B
t , where Γ(St) = [Γx,c(St),Γx,π(St),Γx,m(St)︸ ︷︷ ︸

Γx(St)

,Γη(St)]. (7)

11Note also that incorporating a time-varying inflation target is quite common in the monetary policy
literature (see Coibon and Gorodnichenko (2011) and Aruoba and Schorfheide (2011)).

12This assumption is not unreasonable given the results of the variance decomposition of the short
rate in the subsequent section; see Table 6. Also, Campbell, Pflueger, and Viceira (2013) apply a
similar assumption.

13Equation (6) holds true if µMP
i (St) = µAPi (St).
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3.4 Markov Chain

In order to achieve flexibility while maintaining parsimony,14 I assume that the model

parameters evolve according to a four-state Markov chain St = (SXt , S
M
t ) (i.e., that

the regime switching is not synchronized). It can be further decomposed into two

independent two-state Markov chains, SXt , S
M
t ,

PX =

[
pX1 1− pX1

1− pX2 pX2

]
, PM =

[
pM1 1− pM1

1− pM2 pM2

]

where Xi and Mi are indicator variables for correlation and monetary policy regimes,

i = 1, 2. Define

St =



1 if SXt = X1 and SMt = M1

2 if SXt = X1 and SMt = M2

3 if SXt = X2 and SMt = M1

4 if SXt = X2 and SMt = M2,

from which I construct the transition probability P = PX ⊗ PM .

3.5 Solution

The first-order condition of the agent’s expected utility maximization problem yields

the Euler equations

Et [exp (mt+1 + rk,t+1)] = 1, k ∈ {c,m}, (Real Assets) (8)

pn,t = logEt[exp(mt+1 − πt+1 + pn−1,t+1)], (Nominal Assets) (9)

where mt+1 = θ log δ − θ
ψ
gc,t+1 + (θ − 1)rc,t+1 is the log of the real stochastic discount

factor (SDF), rc,t+1 is the log return on the consumption claim, rm,t+1 is the log market

return, and pn,t is the log price of an n-month zero-coupon bond.

14There is no reason to assume a priori that the coefficient, χc,π, and the monetary policy parameters,
τc, τπ, switch simultaneously.
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The solutions to (8) and (9) depend on the joint dynamics of consumption, divi-

dend growth, and inflation, which can be conveniently broken up into three parts and

rewritten as:

Fundamental Dynamics
gc,t+1

gd,t+1

πt+1

 =


µc

µd

µπ

+


e1

φxe1

Γx(SXt+1, S
M
t+1)

Xt+1 +


1 0 0

φη 1 0

Γη(S
X
t+1, S

M
t+1) 0 1



σ̄cηc,t+1

σ̄dηd,t+1

σ̄πηπ,t+1


The Conditional Mean and Volatility Dynamics
xc,t+1

xπ,t+1

xm,t+1


︸ ︷︷ ︸

Xt+1

=


ρc(S

X
t+1) 0 0

0 ρπ(SXt+1) 0

0 0 ρm


︸ ︷︷ ︸

Υ(SXt+1)


xc,t

xπ,t

xm,t


︸ ︷︷ ︸

Xt

+


1 χc,π(SXt+1) 0

0 1 0

0 0 1


︸ ︷︷ ︸

Ω(SXt+1)


σc,tec,t+1

σπ,teπ,t+1

σmem,t+1


︸ ︷︷ ︸

Et+1[
σ2
c,t+1

σ2
π,t+1

]
︸ ︷︷ ︸

Σt+1

=

[
(1− νc)(ϕcσ̄)2

(1− νπ)(ϕπσ̄)2

]
︸ ︷︷ ︸

Φµ

+

[
νc 0

0 νπ

]
︸ ︷︷ ︸

Φν

[
σ2
c,t

σ2
π,t

]
︸ ︷︷ ︸

Σt

+

[
σwcwc,t+1

σwπwπ,t+1

]
︸ ︷︷ ︸

Wt+1

.

In the above, derivations of Γx(S
X
t+1, S

M
t+1),Γη(S

X
t+1, S

M
t+1) are provided in (7), e1 =

[1, 0, 0], and the shocks follow ηj,t+1, ek,t+1, wl,t+1 ∼ N(0, 1) for j ∈ {c, d, π}, k ∈
{c, π,m}, and l ∈ {c, π}, and Wt+1 ∼ N(0,Φw). I approximate the exponential Gaus-

sian volatility process by linear Gaussian processes such that the standard analytical

solution techniques that have been widely used in the LRR literature can be applied.

The approximation of the exponential volatility process is used only to derive the solu-

tion coefficients in the law of motion of the asset prices. {St+1, Xt+1,Σt+1} are sufficient

statistics for the evolution of the fundamental macroeconomic aggregates.

3.5.1 Real Equity Asset Solutions

Real asset prices are determined from the approximate analytical solution described

in Bansal and Zhou (2002) and Schorfheide, Song, and Yaron (2013). Let It denote

the current information set
{
SXt , Xt,Σt

}
and define It+1=It ∪ {SXt+1} that includes
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information regarding SXt+1 in addition to It.
15 Suppose SXt = i for i=1,2. The derivation

of (8) follows Bansal and Zhou (2002), who make repeated use of the law of iterated

expectations and log-linearization, and Schorfheide, Song, and Yaron (2013), who utilize

a log-linear approximation for returns and for volatilities

1 = E
(
E [exp (mt+1 + rm,t+1) | It+1] | It

)
=

2∑
j=1

PXijE
(

exp (mt+1 + rm,t+1) | SXt+1 = j,Xt,Σt

)

0 =

2∑
j=1

PXij

(
E
[
mt+1 + rm,t+1 | SXt+1 = j,Xt,Σt

]
+

1

2
V
[
mt+1 + rm,t+1 | SXt+1 = j,Xt,Σt

])
︸ ︷︷ ︸

B

.

The first line uses the law of iterated expectations, the second line uses the definition

of Markov chain, and the third line applies log-linearization (i.e., exp(B) − 1 ≈ B), a

log-normality assumption, and log-linearization for returns and for volatilities.

The state-contingent solution to the log price to consumption ratio follows

zt(i) = A0(i) + A1(i)Xt + A2(i)Σt,

where[
A1(1) A1(2)

]
= (1− 1

ψ
)e1

[
pX1Υ(1) + (1− pX1)Υ(2) (1− pX2)Υ(1) + pX2Υ(2)

]
×

[
I2 − pX1κ1,cΥ(1) −(1− pX2)κ1,cΥ(1)

−(1− pX1)κ1,cΥ(2) I2 − pX2κ1,cΥ(2)

]−1

[
A2,c(1)

A2,c(2)

]
=

θ

2

[
I2 − κ1,cνcPX

]−1
× PX ×


{(

(1− 1
ψ )e1 + κ1,cA1(1)

)
· Ω(1)e′1

}2

{(
(1− 1

ψ )e1 + κ1,cA1(2)

)
· Ω(2)e′1

}2


[
A2,π(1)

A2,π(2)

]
=

θ

2

[
I2 − κ1,cνπPX

]−1
× PX ×


{(

(1− 1
ψ )e1 + κ1,cA1(1)

)
· Ω(1)e′2

}2

{(
(1− 1

ψ )e1 + κ1,cA1(2)

)
· Ω(2)e′2

}2

 .
15Note that regime information on SMt is irrelevant for real equity asset solutions.
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The log price to consumption ratio is loaded with respect to long-run growth and A1,c(i)

will be positive whenever the IES, ψ, is greater than 1. The loadings on the inflation

target, A1,π(i), and on the monetary policy shock, A1,m(i), are zero. The sign of the

responses of the log price to consumption ratio to long-run growth and inflation target

volatilities, A2,c(i) and A2,π(i), will be negative if θ < 0 (i.e., γ > 1 and ψ > 1).

3.5.2 Nominal Bond Asset Solutions

Similar to the previous case, the approximate analytical expressions for the state-

contingent log bond price coefficients pn,t = Cn,0(i) + Cn,1(i)Xt + Cn,2(i)Σt are derived

by exploiting the law of iterated expectations and log-linearization,

pn,t ≈
4∑
j=1

Pij log

(
E[exp(mt+1 − πt+1 + pn−1,t+1)|St+1 = j, St = i]

)
,

where

Cn,1(i) =
4∑
j=1

Pij
(
Cn−1,1(j)− 1

ψ
e1 − Γx(j)

)
Υ(j)

Cn,2(i) =
4∑
j=1

Pij
(
Cn−1,2(j)Φν + (θ − 1) {κ1,cA2(j)Φν − A2(i)}

+
1

2

[
{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′1}

2

{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′2}
2

]′)

with the initial conditions C0,1(i) = [0, 0, 0] and C0,2(i) = [0, 0] for i=1,. . . ,4. Because

of the regime-switching feature, the coefficients are not easy to interpret. However, it is

relatively easy to verify that bond prices will respond negatively to positive shocks to

long-run growth and the inflation target when n = 1.
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4 State-Space Representation of the LRR Model

To facilitate estimation, it is convenient to cast the LRR model of Section 3 into a

state-space form. The state-space representation consists of a measurement equation

that relates the observables to underlying state variables and a transition equation that

describes the law of motion of the state variables. I use the superscript o to distin-

guish observed variables from model-implied ones. The regime-contingent measurement

equation can be written as

yot+1 = At+1

(
D(St+1)+F (St+1)ft+1+F v(St+1)f vt+1+Σεεt+1

)
, εt+1 ∼ iidN(0, I). (10)

The vector of observables, yot+1, contains consumption growth, dividend growth, the log

price to dividend ratio, inflation, U.S. Treasury bills with maturities of one and three

months, U.S. Treasury bonds with maturities of between one and five years, as well as

bonds with maturity of ten years, and measures of one-quarter-ahead forecasts for real

growth from the historical forecasts taken from the Survey of Professional Forecasters

(SPF). The vector ft+1 stacks state variables that characterize the level of fundamentals.

The vector f vt+1 is a function of the log volatilities of long-run growth and the inflation

target, ht and ht+1, in (3). Finally, εt+1 is a vector of measurement errors, and At+1 is

a selection matrix that accounts for deterministic changes in the data availability.

The solution of the LRR model sketched in Section 3.5 provides the link between the

state variables and the observables yot+1. The state variables themselves follow regime-

contingent vector autoregressive processes of the form

ft+1 = Φ(St+1)ft + vt+1(St+1)(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ iidN(0, I), (11)

where vt+1(St+1) is an innovation process with a variance that is a function of the log

volatility process ht, and wt+1 is the innovation of the stochastic volatility process.

Roughly speaking, the vector ft+1 consists of the long-run components xc,t, xπ,t, and

xm,t in Section 3. In order to express the observables yot+1 as a linear function of ft+1

and to account for potentially missing observations it is necessary to augment ft+1 by

lags of xc,t, xπ,t, xm,t as well as the innovations for the fundamentals.
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The novelty in the estimation is that the state-space representation is set up in a way

that incorporates the measurement error modeling of consumption growth outlined in

Schorfheide, Song, and Yaron (2013). The authors show that post-1959 monthly con-

sumption series are subject to sizeable measurement errors and argue that accounting

for measurement errors is crucial in identifying the predictable component in consump-

tion growth. In addition, the state-space representation exploits the SPF measures that

are released in a different (quarterly) frequency. As argued in Bansal and Shaliastovich

(2013), survey-based expected measures provide the most accurate forecasts of future

growth, which is why bringing this information into the estimation will sharpen the

inference on expected terms. For purposes of illustration, I represent the monthly time

subscript t as t = 3(j − 1) + m, where m = 1, 2, 3. Here j indexes the quarter and m

the month within the quarter. The formulae below summarize the implementation of

measurement error modeling of consumption and exploitation of the SPF measures:

1. A Measurement Equation for Consumption

goc,3(j−1)+1 = gc,3(j−1)+1 + σε
(
ε3(j−1)+1 − ε3(j−2)+3

)
− 1

3

3∑
m=1

σε
(
ε3(j−1)+m − ε3(j−2)+m

)
+σqε

(
εq(j) − ε

q
(j−1)

)
goc,3(j−1)+m = gc,3(j−1)+m + σε

(
ε3(j−1)+m − ε3(j−1)+m−1

)
, m = 2, 3,

the monthly and quarterly measurement errors follow ε3(j−1)+m, ε
q
(j) ∼ N(0, 1).

2. Exploiting the SPF Measures

xq,oc,(j) =
5∑

τ=1

(
3− |τ − 3|

3

)
xc,3j−τ+1 + σqx,εε

q
x,(j),

where xq,oc,(j) denotes the jth quarter median SPF forecasts for real growth measured

at j − 1th quarter, and the measurement error follows εqx,(j) ∼ N(0, 1).
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4.1 Bayesian Inference

The system to be estimated consists of equations (10) and (11), whose coefficient ma-

trices are functions of the parameter vector

Θ0 =
(
δ, ψ, γ

)
(12)

Θ1 =

(
{ϕk, σ̄k, µk, νk, σwk}

π
k=c , µd, ϕd, φx, φη, σε, ρm, σm,

{
ρ(i)
c , ρ

(i)
π , χ

(i)
c,π, τ

(j)
c , τ (j)

π

}2

i,j=1

)
Θ2 =

(
PX1 ,PX2 ,PM1 ,PM2

)
.

I will use a Bayesian approach to make inferences about Θ = {Θ0,Θ1,Θ2} and the latent

state vector S and study the implications of the model. Bayesian inference requires the

specification of prior distributions p(Θ) and p(S|Θ2) and the evaluation of the likelihood

function p(Y o|Θ, S).

The posterior can be expressed as

p(Θ, S|Y o) =
p(Y o|Θ, S)p(S|Θ2)p(Θ)

p(Y o)
, (13)

which can be factorized as

p(Θ, S|Y o) = p(Θ|Y o)p(S|Θ, Y o). (14)

The practical difficulty is to generate draws from p(Θ|Y o), since it requires a numerical

evaluation of the prior density and the likelihood function p(Y o|Θ). Due to the presence

of the volatility states and the regime-switching processes, the computation of the like-

lihood function relies on a sequential Monte Carlo procedure also known as a particle

filter. To obtain a computationally efficient filter, I extend the algorithm developed in

Schorfheide, Song, and Yaron (2013), in which they exploit the partially linear structure

of the state-space model conditional on the volatility states and derive a very efficient

particle filter. The key feature of my state-space model is that it is still nonliner con-

ditional on the volatility states. However, conditional on the volatility states, I can

apply Kim’s filter in Kim and Nelson (1999) (i.e., an extension of the Kalman filter

with a collapsing procedure that is proposed for handling Markov-switching models) to
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evaluate the likelihood. In essence, I use a swarm of particles to represent the distri-

bution of volatilities and employ Kim’s filter for each particle (i.e., volatility). After

a resampling step (i.e., eliminating particles with low weights), the filter produces a

sequence of likelihood approximations. I embed the likelihood approximation in a fairly

standard random-walk Metropolis algorithm and draw the parameter vector {Θ(m)}nsimm=1.

Conditional on the parameter vector, {Θ(m)}nsimm=1, I use Kim’s smoothing algorithm in

Kim and Nelson (1999) to generate draws from the history of latent states, {S(m)}nsimm=1.

5 Empirical Results

The data set used in the empirical analysis is described in Section 5.1.

5.1 Data

Monthly consumption data represent per capita series of real consumption expenditure

on nondurables and services from the National Income and Product Accounts (NIPA)

tables available from the Bureau of Economic Analysis. Aggregate stock market data

consist of monthly observations of returns, dividends, and prices of the CRSP value-

weighted portfolio of all stocks traded on the NYSE, AMEX, and NASDAQ. Price

and dividend series are constructed on a per share basis as in Campbell and Shiller

(1988b) and Hodrick (1992). Market data are converted to real data using the consumer

price index (CPI) from the Bureau of Labor Statistics. Growth rates of consumption

and dividends are constructed by taking the first difference of the corresponding log

series. Inflation represents the log difference of the CPI. Monthly observations of U.S.

Treasury bills and bonds with maturities at one month, three months, one to five years,

and ten years are from CRSP. The time series span of the monthly data is 1959:M1

to 2011:M12.16 The quarterly SPF forecasts are from the Federal Reserve Bank of

Philadelphia. I use the median survey forecast values for GDP growth that span the

period 1968:Q4 to 2011:Q4. The descriptive data statistics are provided in Table 2.

16Monthly consumption growth is available from 1959:M2.
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Table 2: Descriptive Statistics - Data Moments

(a) Quarterly Frequency: 1968:Q4–2011:Q4

∆c ∆gdp E∆gdp π

Mean 0.43 0.68 0.58 1.08
StdDev 0.44 0.86 0.58 0.80
AC1 0.54 0.33 0.71 0.74

(b) Monthly Frequency: 1959:M1–2011:M12

∆c ∆d π rm pd y1m y3m y1y y2y y3y y4y y5y y10y

Mean 0.16 0.11 0.32 0.43 3.57 0.40 0.43 0.46 0.48 0.50 0.51 0.52 0.55
StdDev 0.34 1.26 0.32 4.55 0.39 0.24 0.25 0.25 0.24 0.24 0.23 0.22 0.22
AC1 -0.16 -0.01 0.63 0.10 0.99 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99

Notes: I report descriptive statistics for aggregate consumption growth (∆c), gross domestic product
(GDP) growth (∆gdp), expected GDP growth (E∆gdp), consumer price index (CPI) inflation (π),
dividend growth (∆d), log returns of the aggregate stock market (rm), log price to dividend ratio (pd),
and U.S. Treasury yields (yn) with maturity n ∈ {1m, 3m, 1y, 2y, 3y, 4y, 5y, 10y}. The table shows
mean, standard deviation, and sample first-order autocorrelation. Means and standard deviations are
expressed in percentage terms.

5.2 Prior and Posterior Summaries

I begin by estimating the state-space model described in Section 4.

Prior Distribution. This section provides a brief discussion of the prior distribution.

Percentiles for marginal prior distributions are reported in Table 3. The prior distribu-

tion for the preference parameters that affect the asset pricing implications of the model

are the same as those used in Schorfheide, Song, and Yaron (2013). Thus, I focus on

the parameters of the fundamental processes specified in (2) and (3).

The prior 90% credible intervals for average annualized consumption and dividend

growth and inflation are fairly wide and agnostic and range from approximately -7%

to +7%. The priors for φx and φη, parameters that determine the comovement of

consumption and dividend growth, are centered at zero and have large variances. σ̄c

and σ̄π are the average standard deviation of the iid component of consumption growth

and inflation whose 90% prior intervals range from 1.2% to 7.2% at an annualized rate.
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The parameters ϕd, ϕc, and ϕπ capture the magnitude of innovations to dividend growth

and the long-run growth and inflation target component relative to the magnitude of

consumption growth innovations. The prior for ϕd covers the interval 0.2 to 12, whereas

the priors for ϕc, and ϕπ cover the interval 0 to 0.11. Finally, the prior interval for

the persistence of the volatility processes ranges from -0.1 to 0.97 and the prior for

the standard deviation of the volatility process implies that the volatility may fluctuate

either relatively little, within the range of 0.67 to 1.5 times the average volatility, or

substantially, within the range of 0.1 to 7 times the average volatility.

The prior distribution for the persistence of the long-run growth, inflation target, and

monetary policy shock xc,t, xπ,t, xm,t is a normal distribution centered at 0.9 with a

standard deviation of 0.5, truncated to the interval (−1, 1). The corresponding 90%

credible interval ranges from -0.1 to 0.97, encompassing values that imply iid dynamics

as well as very persistent local levels. The prior distribution for the parameter that

captures the contemporaneous correlation between the long-run growth and inflation

target shocks is a normal distribution centered at zero with a relatively large standard

deviation of 0.5. Sign restrictions are imposed to identify two different correlation

regimes: one is truncated below zero, and the other is truncated above zero. The prior

intervals for the standard deviation of the monetary policy shock cover the range from

0 to 0.001.

The priors for the monetary policy rule coefficients are normal distributions that

range between ±4.28, but those for the inflation components are truncated above zero,

reflecting the view that the central bank raises rather than lowers the interest rate in

response to positive inflation fluctuations. Finally, I employ beta priors for the Markov-

chain transition probabilities that cover 0.38 to 1.00.

Posterior Distribution. Percentiles for the posterior distribution are also reported

in Table 3. The estimated parameters for preferences and dividend growth (first panel)

are, by and large, similar to those reported in Schorfheide, Song, and Yaron (2013).

Those for the consumption and inflation process (second panel) are consistent with the

sample mean and standard deviation reported in Table 2. One interesting feature is that

the unconditional standard deviation of long-run growth is substantially smaller than

that of the inflation target, 0.07% versus 0.29% at annualized rates. The estimation
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Table 3: Posterior Estimates

Prior Posterior Prior Posterior
Distr. 5% 95% 5% 50% 95% Distr. 5% 95% 5% 50% 95%

Preferences Dividend Process

δ B [.9951 .9999] .9985 .9989 .9991 µd N [-.007 .006] - .0010 -
ψ G [ 0.31 3.45] 1.80 1.81 1.82 φx N [-13.1 13.4] 2.39 2.51 2.67
γ G [ 2.74 15.45] 10.82 10.99 11.17 φη N [-1.68 1.63] 1.09 1.10 1.13

ϕd G [0.22 11.90] 4.74 5.01 5.19

Consumption Process Inflation Process

µc N [-.006 .006] - .0016 - µπ N [-.007 .006] .0027 .0029 .0030
σ̄c IG [.001 .006] .0020 .0021 .0021 σ̄π N [.001 .006] .0015 .0015 .0016
ϕc G [ 0.00 0.11] .026 .031 .033 ϕπ G [ 0.00 0.11] 0.11 0.12 0.12
νc NT [-0.08 0.97] .9906 .9952 .9959 νπ NT [-0.08 0.97] .9915 .9928 .9937
σwc IG [0.22 1.03] 0.30 0.31 0.34 σwπ IG [0.22 1.03] 0.43 0.45 0.46

Regime-Switching VAR Coefficients
Countercyclical Inflation Regime Procyclical Inflation Regime

ρc NT [-0.08 0.97] .9957 .9957 .9958 ρc NT [-0.08 0.97] .951 .953 .957
ρπ NT [-0.08 0.97] .9957 .9959 .9961 ρπ NT [-0.08 0.97] .980 .980 .981
χc,π N [-0.80 0.80] -.40 -.40 -.41 χc,π N [-0.80 0.80] .150 .155 .162
ρm NT [-0.08 0.97] .9906 .9916 .9929 ρm NT [-0.08 0.97] .9906 .9916 .9929
σm IG [.000 .001] .0001 .0002 .0003 σm IG [.000 .001] .0001 .0002 .0003

Regime-Switching Monetary Policy Coefficients
Active Monetary Policy Regime Passive Monetary Policy Regime

τc N [-4.28 4.28] .9540 .9543 .9545 τc N [-4.28 4.28] .548 .550 .551
τπ NT [ 0.00 4.28] 3.09 3.10 3.11 τπ NT [ 0.00 4.28] .960 .960 .961

Markov-Chain Transition Probabilities
Inflation Regime Monetary Policy Regime

PX1 B [ 0.38 1.00] .989 .992 .995 PM1 B [ 0.38 1.00] .987 .990 .991
PX2 B [ 0.38 1.00] .938 .941 .945 PM2 B [ 0.38 1.00] .974 .975 .979

Notes: The estimation results are based on monthly data from 1959:M1 to 2011:M12 with the exception
that the consumption series starts only in 1959:M2. For consumption I adopt the measurement error
model of Schorfheide, Song, and Yaron (2013) with the modification that the statistical agency uses
the proxy series to distribute quarterly (instead of annual) consumption growth over the three months
of the quarter (instead of the twelve months of a year). I fix µc = 0.0016 and µd = 0.0010 in the
estimation. B, N , NT , G, and IG denote beta, normal, truncated (outside of the interval (−1, 1))
normal, gamma, and inverse gamma distributions, respectively.

results also provide strong evidence for a stochastic variation in the long-run growth

and inflation target. According to the posteriors reported in Table 3, all σc,t and σπ,t

exhibit significant time variation. The posterior medians of νc and νπ are .9952 and
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.9928, respectively, and the unconditional volatility standard deviations σwc and σwπ

are around 0.31 and 0.45.

The most important results for the subsequent analysis are provided in the third

and fourth panels of Table 3. First, there is strong evidence of parameter instability

in the VAR dynamics of the long-run components. Most prominently, the posterior

median estimate of χc,π, which captures the contemporaneous correlation between the

long-run growth and inflation target shocks, is -0.40 in the first regime and 0.15 in

the second regime. Another notable difference between the two regimes is the drop

in the persistence of the long-run growth and inflation target components. Unlike in

their appearance, the process half-life is very different between the two regimes: the

process half-life for the long-run growth (inflation target) component in the first regime

is about 12 (12) years, while that in the second regime is about 1 (3) year(s). The values

of persistence and the standard deviation of the monetary policy shock are 0.9916 and

0.0002, and are assumed to be identical across regimes. In general, the magnitude of the

differentials between the two VAR coefficient regimes is small, but the sign change in the

correlation structure is notable. Since the groups of estimates distinguish themselves as

ones that generates a negative correlation between long-run growth and inflation target

shocks and ones that do not, I label the first regime as the “countercyclical” inflation

regime and the second regime as the “procyclical” inflation regime.

Second, two very different posterior estimates of the monetary policy rule in the

fourth panel of Table 3 support the view of Clarida, Gali, and Gertler (2000) that

there has been a substantial change in the way monetary policy is conducted. One

regime is associated with larger monetary policy rule coefficients, which implies that

the central bank will respond more aggressively to consumption gap, short-run, and

long-run inflation fluctuations. The other regime is characterized by a less responsive

monetary policy rule, in which I find much lower loadings on consumption gap and

short-run inflation fluctuations. In particular, the magnitude of the loading on short-

run inflation fluctuations τπ is one-third of that in the former regime and is below one.

Following the convention in the monetary policy literature, I distinguish the regimes by

which has an “active” central bank, and which has a “passive” central bank.

Finally, the bottom panel of Table 3 reports posterior estimates of the Markov-chain
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Figure 2: Smoothed Probabilities for Transitions between Regimes
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Notes: Dark gray shaded areas represent posterior medians of smoothed regime probabilities. Light
gray shaded bars indicate NBER recession dates. Figure 2(a) displays the smoothed probabilities of the
procyclical inflation regime, while Figure 2(b) shows the smoothed probabilities of the active monetary
policy regime.

transition probabilities. The countercyclical inflation regime is most persistent: The

probability that it will continue is 99.2%. The procyclical inflation regime, on the

contrary, is the less persistent one: Its duration is one-fourteenth of the countercyclical

inflation regime. This result can be interpreted as indicating that the “risks” of falling

back to the countercyclical inflation regime are substantial. The transition probability

of the active monetary policy regime is around 0.99, which implies that agents expect its

average duration to be about 9 years. For the passive monetary policy regime, the same

result is about 3-4 years. Given the posterior transition probabilities, it is interesting

to look at the smoothed probabilities for transitions between regimes.

Smoothed Posterior Regime Probabilities. Figure 2 depicts the smoothed poste-

rior probabilities of the procyclical inflation and active monetary policy regimes. Fig-

ure 2(a) is consistent with the evidence provided in Table 1 that procyclical inflation

regimes were prevalent after the late 1990s. It also suggests that the switch is not a
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permanent event, but rather, an occasional one.17 Figure 2(b) provides the historical

paths of the monetary policy stance: Active monetary policy appeared in the mid-1960s

but was largely dormant during the 1970s; it became active after the appointment of

Paul Volcker as Chairman of the Federal Reserve in 1979 and remained active for 20

years (except for short periods in the early 1990s). After that, in response to the eco-

nomic crisis triggered by the 9/11 attacks in 2001, the central bank lowered interest

rates and took a passive stance for 3-4 years. Around the mid-2000s, it switched back

to a more active stance until the Great Recession started. Finally, the post-2008 periods

are characterized by the passive regime.18

Smoothed Mean and Volatility States. The top panel of Figure 3 depicts smoothed

estimates of long-run growth xc,t and the inflation target xπ,t, which are overlaid with

monthly consumption growth and inflation, respectively.19 xc,t tends to fall in recessions

(indicated by the shaded bars in Figure 3) but periods of falling xc,t also occur during

expansions; the pattern is broadly similar to the one reported in Schorfheide, Song, and

Yaron (2013). xπ,t reaches its peak during the Great Inflation periods and substantially

decreases afterward. It is interesting to note that during the 1970s and 1980s, reces-

sions were accompanied by increases in the inflation target. The pattern clearly reverses

starting in the late 1990s. The smoothed volatility processes are plotted below. Recall

that my model has two independent volatility processes, hc,t and hπ,t, which are associ-

ated with the innovations to long-run growth and the inflation target, respectively. The

most notable feature of hc,t is that it captures a drop in growth volatility that occurred

in the 1980s, also known as the Great Moderation. The stochastic volatility process

for the inflation target displays different properties: It jumps around 1970 and remains

high for 25 years, and features wide fluctuations at the beginning of the 2000s that are

not apparent in hc,t. Overall, the smoothed hπ,t seems to exhibit more medium and

high-frequency movements than hc,t. Also, due to the inclusion of a greater amount

of data on bond yields, hπ,t is more precisely estimated than hc,t, indicated by tighter

credible intervals.

17This evidence is also supported by David and Veronesi (2013).
18The smoothed paths for monetary policy are broadly consistent with those found in Clarida, Gali,

and Gertler (2000), Ang, Boivin, Dong, and Loo-Kung (2011), Bikbov and Chernov (2013), and Coibon
and Gorodnichenko (2011).

19Figure C-1 in the Online Appendix provides the path of the estimated monetary policy shock.
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Figure 3: Smoothed Mean and Volatility States

(a) Long-Run Growth (b) Inflation Target

(c) Long-Run Growth Volatility (log-transformed) (d) Inflation Target Volatility (log-transformed)

Notes: Blue lines represent posterior medians of smoothed states and the dark gray shaded area
corresponds to 90% credible intervals. Light gray shaded bars indicate NBER recession dates. In the
top panel, I overlay the smoothed states with monthly consumption growth and inflation (gray solid
lines).

5.3 Implications for Macro Aggregates and Asset Prices

It is instructive to examine the extent to which sample moments implied by the esti-

mated state-space model mimic the sample moments computed from the actual data

set. To do this, I conduct a posterior predictive check (see Geweke (2005) for a textbook

treatment). I use previously generated draws Θ(s), S(s), s = 1, . . . , nsim, from the poste-

rior distribution of the model parameters p(Θ, S|Y o) and for each Θ(s), S(s) I simulate

the model for 636 periods, which corresponds to the number of monthly observations

in the estimation sample.20 This leads to nsim simulated trajectories, which I denote

20To generate the simulated data, I also draw measurement errors.
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Table 4: Model-Generated Correlations between Consumption and Inflation

Data Model
corr(∆ct, πt) corr(∆ct, πt) corr(E∆ct+1,Eπt+1)

Regime Estimate Median 5% 95% Median 5% 95%

CA -0.24 -0.58 [-0.80, -0.22] -0.93 [-0.99, -0.64]
CP -0.09 -0.48 [-0.78, 0.02] -0.74 [-0.95, -0.15]
PA 0.01 0.17 [-0.13, 0.42] 0.59 [ 0.27, 0.80]
PP 0.03 0.19 [-0.14, 0.47] 0.27 [ 0.44, 0.84]

Notes: “CA” stands for the countercyclical inflation and the active monetary policy regimes, while
“PP” stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA”
indicate the remaining combinations of regimes. Data estimates are based on monthly consumption
growth and inflation series.

by Y (s,o). For each of these trajectories, I compute various sample moments, such as

means, standard deviations, and cross correlations. Suppose I denote such statistics

generically by S(Y (s,o)). The simulations provide a characterization of the posterior

predictive distribution p(S(Y (s,o))|Y o).

Matching Moments of the Macroeconomic Aggregates and Stock Price. To

save space, the model-implied distributions for the first and second moments of the

macroeconomic aggregates and stock price are provided in Table C-3 and Table C-4 in

the Online Appendix. In sum, the first and second moments for consumption and div-

idend growth, log price to dividend ratio, and inflation implied by the model replicate

the actual counterparts well. Since monetary policy does not affect cash flows, the sam-

ple moments for consumption and dividend growth and the log price to dividend ratio

do not differ across monetary policy regimes (i.e., column-wise comparisons). Yet the

sample moments across inflation regimes (i.e., row-wise comparisons) are quite differ-

ent: Those in the countercyclical inflation regime are much more volatile. This finding

is consistent with the near unit-root estimates of long-run growth and inflation target

persistence in the countercyclical inflation regime (see Table 3). The sample correlation

between consumption and inflation is provided in Table 4. While the model-implied

numbers are somewhat larger than their data estimates, the model performs well in

terms of matching the sign-switching patterns. One notable feature is that monetary
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Figure 4: Equilibrium Nominal Bond Yield Loadings
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Notes: Model-implied nominal bond yield loadings on long-run growth (xc,t), the inflation target (xπ,t),
long-run growth volatility (σ2

c,t), and inflation target volatility (σ2
π,t) are provided. “CA” stands for the

countercyclical inflation and the active monetary policy regimes, while “PP” stands for the procyclical
inflation and the passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations
of regimes. Maturity on the x-axis is in months. Numbers are displayed in percent.

policy does seem to matter for the correlation of expected values: Passive monetary

policy lowers the correlation of expected values particularly more during the procyclical

inflation regime. Overall, I find that χc,π is the key model ingredient for capturing the

sign-switching patterns, and that monetary policy influences the correlation of expected

consumption growth and inflation but on its own cannot change the sign.

Equilibrium Nominal Bond Yield Loadings. It is also instructive to understand

the equilibrium bond yield loadings first before looking at the model-implied yield curve.

Figure 4 shows the regime-contingent bond yield loadings on long-run growth, the in-

flation target, and long-run growth and the inflation target volatilities based on the

median posterior coefficient estimates.21 To ease exposition, I use abbreviations for

each regime: “CA” stands for the countercyclical inflation and the active monetary pol-

icy regimes, while “PP” stands for the procyclical inflation and the passive monetary

policy regimes; “CP” and “PA” indicate the remaining combinations of regimes. The

CP loading on the inflation target for a bond with a maturity of 1 month is normalized

21I do not present the graph for monetary policy since its influence on bond yields is very small
compared to these variables.
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to 100% to bring all of the loadings into proportion with one another.22 It is evident

from Figure 4 that the inflation target is the most important factor in the term struc-

ture analysis. Note that loadings on inflation target volatility increase over maturities

and become the second most important factor for longer maturity yields. In terms of

patterns of the loadings, I find that they are broadly in line with those found in Bansal

and Shaliastovich (2013). The loadings on long-run growth and inflation targets are

positive; the loading on long-run growth volatility has a negative decreasing slope; and

the loading on inflation target volatility is mostly positive and rises with maturities.

However, the loadings across regimes have very different implications. Let us focus on

monetary policy regimes. For example, while a positive shock to the inflation target

induces an essentially parallel shift in the entire yield curve (loadings are nearly flat

across maturities) in the active monetary policy regime, it has disproportionately larger

effects on yields with short maturities (loadings decrease substantially over maturities)

in the passive case. It seems that in the active monetary policy regime, the inflation

target behaves like a level factor, but in the passive cases it becomes a slope factor.23

Moreover, the magnitude of the loadings in the passive monetary policy stance almost

doubles. With regard to inflation regimes, the loadings on all model state variables will

be uniformly shifted out in the countercyclical inflation regime, implying that the risks

associated with the countercyclical inflation regime are much larger than those in the

procyclical case.

Matching Moments of the Yield Spread. The estimated model is quite successful

at fitting Treasury yields over the entire sample—the yield prediction errors at different

maturities are generally quite small over the entire sample. To save space, the evidence

is provided in Figure C-5 in the Online Appendix. Now, in order to evaluate whether

the model can reproduce key patterns in the data, I focus on the posterior predictive

assessment in the main text. Distributions generated from the LRR model using the

posterior estimates are graphically provided in Figure 5. The top and bottom ends

of the boxes correspond to the 5th and 95th percentiles, respectively, of the posterior

distribution, and the horizontal lines signify the medians. The first row of Figure 5 is

22An easier way to interpret this is to fix one regime and compare loadings across the model state
variables. By focusing on one state variable, you can move across regimes to compare their magnitudes.

23Readers are referred to Figure 1 in Rudebusch and Wu (2008).
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Figure 5: Model-Generated Yield Spread

CA CP

1y 2y 3y 4y 5y 10y
−1

0

1

2

3

4

5

6

7

1y 2y 3y 4y 5y 10y
−1

0

1

2

3

4

5

6

7

PA PP

1y 2y 3y 4y 5y 10y
−1

0

1

2

3

4

5

6

7

1y 2y 3y 4y 5y 10y
−1

0

1

2

3

4

5

6

7

Notes: “Spread” is the difference between 3m yield and yields with maturity at 1y–10y. Black squares
indicate values from actual data. Figure also depicts medians (red lines) and 90% credible intervals
(top and bottom lines of boxes) of the distribution of yield spreads obtained with model-generated
data. “CA” stands for the countercyclical inflation and the active monetary policy regimes, while
“PP” stands for the procyclical inflation and the passive monetary policy regimes. “CP” and “PA”
indicate the remaining combinations of regimes. Numbers are displayed in percent (annualized).

simulated conditional on the countercyclical inflation regime, while the second row in

Figure 5 is generated from the procyclical inflation one. For each row, the figure on

the left conditions on the active monetary policy regime, while the one on the right

does the same on the passive monetary policy regime. The figure also depicts the same

moments computed from U.S. data (black squares). “Actual” sample moments that

fall far into the tails of the posterior predictive distribution provide evidence for model

deficiencies. Roughly speaking, the model performs well along this dimension since the

model-implied median values are fairly close to their data estimates. Yet important
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distinctions arise across regimes. Going from left to right (CA to CP or PA to PP), I

find that yield spread distributions are more dispersed. The 90% credible intervals in

the latter, right-hand figures (CP or PP) are approximately twice as large as those in the

left-hand column (CA or PA). This is consistent with the impulse response functions

shown in Online Appendix Figure C-2, in that the passive monetary policy leads to

more unstable economic dynamics. From top to bottom (CA to PA or CP to PP), I

find that the 10y-3m yield spreads in the countercyclical inflation regime are roughly

150 basis points (annualized) higher than those in the procyclical inflation regime. This

implies that agents will demand higher yields as compensation for the risks associated

with the countercyclical inflation regimes. An interesting feature of the model is that

even in the procyclical inflation regime, which otherwise would lead to a downward

sloping yield curve, the risks of the monetary authority not responding aggressive by

enough to inflation fluctuations and the risks of transitioning to the countercyclical

inflation regime give rise to an upward sloping yield curve. The second moment for the

yield spread implied by the model is provided in Figure C-6 in the Online Appendix.

The model performs well along this dimension and the model-implied patterns are very

similar to the first moment case.

Bond Risk Premia Implications. Under the expectations hypothesis (EH), the

expected holding returns from long-term and short-term bonds should be the same

(strong form) or should only differ by a constant (weak form). However, even the weak

form has been consistently rejected by empirical researchers. For example, Campbell

and Shiller (1991), Dai and Singleton (2002), Cochrane and Piazzesi (2005), and Bansal

and Shaliastovich (2013) all argue that the EH neglects the risks inherent in bonds and

provide strong empirical evidence for predictable changes in future excess returns.

The presence of stochastic volatilities and regime-switching loadings in my model gives

rise to time variations in risk premia, which has testable implications for the EH.24 First,

I focus on the term spread regression of Campbell and Shiller (1991) to examine the

validity of the EH. The excess log return on buying an n month bond at t and selling

24My model extends Bansal and Shaliastovich (2013) by allowing regime-switching bond yield load-
ings that provide additional channels for time variations in risk premia.
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Figure 6: Term Spread Regression
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Notes: The model-implied 90% distributions for the slope coefficient, βn, from the regression below are
provided.

yt+12,n−12 − yt,n = αn + βn

((
yt,n − yt,12

) 12

n− 12

)
+ εt+12, n ∈ {24, 36, 48, 60} .

Medians are depicted by red lines. Black squares indicate estimates from actual data. “CA” stands
for the countercyclical inflation and the active monetary policy regimes, while “PP” stands for the
procyclical inflation and the passive monetary policy regimes. “CP” and “PA” indicate the remaining
combinations of regimes.

it as an n− 12 month bond at t+ 12 is denoted by

rxt+12,n = (n)yt,n − (n− 12)yt+12,n−12 − 12yt+12.

Under the weak form of the EH, the expected excess bond returns are constant, which

implies that the theoretical slope coefficient βn value (below) predicted by the EH is
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equal to unity for all n

yt+12,n−12 − yt,n = αn + βn

((
yt,n − yt,12

) 12

n− 12

)
+ εt+12. (15)

Bansal and Shaliastovich (2013)25 show that the population value for βn can be expressed

by

βn = 1− cov(Etrxt+12,n, yt,n − yt,12)

var(yt,n − yt,12)
. (16)

This means that downward deviation from unity, equivalent to cov(Etrxt+12,n, yt,n −
yt,12) > 0, implies that the term spread contains information about the expected excess

bond returns. Put differently, the predictability of excess bond returns (by the term

spread) reflects time variations in the expected risk premium.

Figure 6 compares model-implied distributions for the slope coefficient, βn, to the

corresponding data estimates. The first thing to note is that the model generates very

comparable results. Roughly speaking, the model produces βns that are significantly

lower than unity and whose absolute magnitudes rise over maturities, as in the data.

Second, it is important to understand that the violations of the EH or deviations from

unity are less apparent in the passive monetary policy regimes. In particular, the model-

implied distributions for βns in the PP regime are close to or even greater than zero.

The striking feature is that the data estimates for βn in the PP regime are all greater

than zero and even close to unity for maturities of two and three years. It can be

deduced from (16) that either the term spread contains much less information about

the expected excess bond returns, or the variance of the term spread is much larger in

the passive monetary policy regime.

In order to understand this feature, I decompose the bond yields into the component

implied by the EH, the expected sum of future short rates, and the term premium,

yt,n =
1

n

n−1∑
i=0

Et(yt+i,1)︸ ︷︷ ︸
short-rate expectations

+term premiumt,n. (17)

25The earlier version of their paper considered this explanation.
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Figure 7: Term Premia
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Notes: The model-implied 90% distributions for the term premiumt,n = yt,n − 1
n

∑n−1
i=0 Et(yt+i,1)

are provided, n ∈ {12, 24, 36, 48, 60, 120} . Medians are depicted by red lines. Black squares indicate
estimates from actual data. “CA” stands for the countercyclical inflation and the active monetary policy
regimes, while “PP” stands for the procyclical inflation and the passive monetary policy regimes. “CP”
and “PA” indicate the remaining combinations of regimes.

Let us focus on the monetary policy regimes and assume that we are in the countercycli-

cal inflation regime. Here are two possible channels through which the passive monetary

policy stance can affect bond yields. In order to generate results that are consistent with

Figure 5, we would expect to see an increase either in the expected sum of future short

rates or in the term premium.

Figure 7 compares the model-implied distributions for the term premium to the cor-

responding data estimates (black squares). Data estimates are within-regime averages

from Figure C-7 in the Online Appendix where the time-series of the estimated term
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premia for bonds with maturities of 1–10 years are depicted. It is very interesting to

observe that the term premia in the passive monetary policy regime are actually smaller

than those in the active regimes (both in the data and model-implied estimates). This

implies that the effect of monetary policy is mostly on the expectations component

(without affecting the term premium component), which further implies an increase in

the variance of the current period’s term spread. From (16), an increase in the term

spread variance will bring the slope coefficient, βn, closer to 1. The underlying economic

intuition is that the future yields will incorporate the expected increase into future in-

flation rates, as the passive monetary policy stance is more prone to large inflation,

which is predicted by the EH. While the estimated model is successful in generating

these patterns, it falls short of data estimates found in the CA regime. The model is

not able to capture the substantive increase in term premiums as in the data.

Similar logic can be applied when the inflation regime is procyclical. The directional

influence of the passive monetary policy stance on the expectations component is am-

biguous because, on the one hand, the procyclicality will lower expected inflation, but

on the other hand, the risks of falling back to the countercyclical inflation regime will in-

crease expected inflation. However, the inherent instability associated with the passive

monetary policy stance will increase the relative weight on the expectations component,

which brings the bond market closer to what the EH predicts.

In contrast to monetary policy, the countercyclical inflation regime affects both terms.

It is clear from the row-to-row comparison of Figure 7 that the risks associated with

the countercyclical inflation regime increase the term premiums, which are on average

50 basis points higher for 10-year bonds.26

Another exercise consists of running regressions that predict excess bond returns.

Following Cochrane and Piazzesi (2005), I focus on regressing the excess bond return

of an n year bond over the 1-year bond on a linear combination of forward rates that

includes a constant term, a 1-year bond yield, and four forwards rates with maturities

of 2 to 5 years. The model-implied 90% distributions for R2 values (in percents) from

26Note that the differences are modest because the term premia are generated from the uncondi-
tional distributions. Once I condition on different levels of volatilities (the relative magnitude of the
conditional heteroscedasticity present is larger in the countercyclical inflation regime), the results will
change.
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Figure 8: Excess Bond Return Predictive Regression by Cochrane and Piazzesi (2005)

CA CP

2y 3y 4y 5y
0

10

20

30

40

50

60

70

80

2y 3y 4y 5y
0

10

20

30

40

50

60

70

80

PA PP

2y 3y 4y 5y
0

10

20

30

40

50

60

70

80

2y 3y 4y 5y
0

10

20

30

40

50

60

70

80

Notes: The model-implied 90% distributions for R2 values (in percents) from the excess bond return
predictability regression by Cochrane and Piazzesi (2005) are provided. Medians are depicted by red
lines. Black squares indicate estimates from actual data. I focus on regressing the excess bond return of
an n year bond over the 1-year bond on a linear combination of forward rates that includes a constant
term, a 1-year bond yield, and four forward rates with maturities of 2 to 5 years. “CA” stands for the
countercyclical inflation and the active monetary policy regimes, while “PP” stands for the procyclical
inflation and the passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations
of regimes.

the regression are provided in Figure 8. Consistent with previous findings, the expected

excess returns are less predictable (indicated by R2 values that are about 5% lower)

in the passive monetary policy stance.27 This is due to the relative decrease in the

role played by the risks channel (term premium) in the passive monetary policy regime.

Also, I find that the procyclical inflation regimes (PA and PP) deliver, on average, R2

27Again, the differences are modest since they are generated from the unconditional distributions.
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values that are 5–10% lower (see the bottom panel in Table 1).

Unspanned Macroeconomic Risks. The standard implication of the macro-finance

affine term structure model is that the state vector is closed under affine transforma-

tion of yields. This theoretical spanning condition often implies that macroeconomic

risk factors, e.g., expected consumption growth and expected inflation (see Ang and

Piazzesi (2003)), can be fully spanned by yields. Equivalently put, the information

set of current bond yields encompasses that of current macroeconomic variables. This

implies that macroeconomic variables ought to be uninformative about future values of

macroeconomic variables or bond yields after controlling for the current yield curve.

To illustrate this point further, I run the following univariate predictive regression

zt+H = α + βXt + residt+H , zt+H =

 (1)
∑H

h=1 ∆ct+h, (2)
∑H

h=1 πt+h,

(3) y5y,t+H , (4) rxH,t+12.
(18)

Consider four cases where zt+H is (1) cumulative consumption growth, (2) cumulative

consumer price index inflation, (3) log bond yield with maturity at five years, and

(4) the excess (log) bond return of an H year bond over the 1-year bond, respectively.

Suppose Xt is a vector of the (linearly transformed) current cross-section of bond yields.

Then, the theoretical spanning condition implies that the incremental predictive power

for the addition of macroeconomic variables is marginal. However, as emphasized by

Joslin, Priebsch, and Singleton (2014), the data run strongly counter to what theory

tells us (see Ludvigson and Ng (2009) and Stock and Watson (2003), for example). The

evidence of unspanned macroeconomic risks poses a significant challenge to standard

affine term structure models.

Due to the nonlinearities created from regime switching, the model is not affine in

bond yields. This model feature allows me to analyze issues related to unspanned

macroeconomic risks. For ease of exposition, define macrot = {∆ct, πt}, statet =

{xc,t,xπ,t, xm,t, σ2
c,t, σ

2
π,t}, and pct= first as the five principal components of yields with

maturities at one month, three months, one to five years, and ten years.28 I simulate

28I set the dimension of principal components to be identical to that of the model state variables for
concreteness. Nonetheless, my finding is robust to the number of principal components.
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Figure 9: The Incremental Gain in the R-squared due to Macroeconomic Fundamentals
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Notes: Dark (light) gray bars represent the increment in adjusted R2 due to macroeconomic funda-
mentals as predictors of zt+2y after controlling for model state variables (principal components of bond
yields). First, I run the following univariate predictive regression, zt+2y = α + βXt + residt+2y. I

consider four cases where zt+2y is (1) cumulative consumption growth (
∑2y
h=1 ∆ct+h), (2) cumulative

consumer price index inflation (
∑2y
h=1 πt+h), (3) log bond yield with maturity at five years (y5y,t+2y),

and (4) the excess (log) bond return of a 2-year bond over the 1-year bond (rx2y,t+1y), respectively.
Define macrot = {∆ct, πt}. Second, I obtain adjusted R2 values (in percents) from the predictive
regression when Xt = X\macrot ∪macrot and subtract the R2 values obtained from the regression in
which Xt = X\macrot . X\macrot is either “Model States” {xc,t,xπ,t, xm,t, σ2

c,t, σ
2
π,t} or “PC” first five

principal components of yields with maturities at one month, three months, one to five years, and ten
years. I set the dimension of principal components to be identical to that of the model state variables
for concreteness. I compare the findings from the model-generated data (“Model”) to those from the
actual data (“Data”). Data R2 estimates are obtained by taking the median estimated model state
variables as predictors in the predictive regression. To facilitate comparison with data estimates, the
R2 differences are calculated based on the median adjusted R2 values from model-generated predictive
regressions.

Interquartile Model States PC
Range ∆c π y5y rx2y ∆c π y5y rx2y

80% 2.33 0.68 0.46 0.50 11.53 24.85 3.52 4.81
20% 0.05 -0.02 -0.07 -0.20 1.21 4.76 0.01 -0.08

I report the posterior 60% interquartile range of R2 differences. Except for ∆c, all intervals reported
above include zero for “Model States.” For “PC” all intervals except rx2y exclude zero.
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statet and macrot forward and construct bond yields with statet and regime-switching

equilibrium yield loadings. Note that I am also simulating measurement errors for bond

yields. Based on the estimated regime probabilities, the simulated economy occasionally

switches regimes. Consider two cases where the predictor vector X\macrot is statet and

pct, respectively. For each X\macrot , define Xt = X\macrot ∪macrot. I set H = 2 years

and run equation (18) twice by changing the predictor vector from Xt to X\macrot to

examine the incremental predictive power of macrot. Differences in adjusted R2 values

are provided in Figure 9.

First, the evidence for unspanned macroeconomic risks is strongly supported by both

the model-generated and the actual data. Even after controlling for principal compo-

nents, the improvements in R2 values are not small (see light gray bars). For model-

generated (actual) data, the increase in the predictive power for two-year-ahead cumu-

lative consumption growth, cumulative inflation, yield with maturity at five years, and

one-year excess holding period return on the 2-year bond over the 1-year bond is 7(4)%,

15(33)%, 2(5)%, and 2.5(5)%, respectively. Figure 9 also provides the posterior 60%

interquartile range of R2 differences for the model-generated data. All intervals except

the excess return of a 2-year bond exclude zero. Second, the incremental predictive

power of macrot is very little after controlling for the model state variables. All dark

gray bars are on average less than 0.5%. Except for cumulative consumption growth,

all 60% interquartile ranges reported in Figure 9 include zero. The findings imply that

the null hypothesis of no improvement cannot be rejected.

A more natural question to ask is how much of the variation in statet is spanned by

pct. In order to identify the role played by the regime-switching dynamics, I consider

the following regression

state
(i)
t = α + βpc

(i)
t + resid

(i)
t , (i) ∈ {regime switching, fixed regime}. (19)

(i) denotes whether the economy is subject to regime switching. Resulting R2 values are

provided in Table 5. With the exception of σ2
c,t, the predictive power of pct substantially

drops for xc,t,xπ,t, xm,t, σ
2
π,t when the economy switches regimes. This finding implies that

nonlinearity generated from the regime-switching dynamics has a substantial impact
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Table 5: R2 Values from State Predictive Regression: statet = α + βpct + residt

Data Model

Regime-Switching CA CP
State Estimate Median 5% 95% Median 5% 95% Median 5% 95%

xc 0.30 0.21 [0.01, 0.66] 0.60 [0.16, 0.91] 0.53 [0.06, 0.84]
xπ 0.69 0.58 [0.19, 0.86] 0.80 [0.41, 0.96] 0.69 [0.30, 0.91]
xm 0.40 0.54 [0.17, 0.86] 0.32 [0.04, 0.65] 0.54 [0.10, 0.83]
σ2
c 0.16 0.18 [0.03, 0.52] 0.17 [0.00, 0.51] 0.16 [0.00, 0.51]
σ2
π 0.60 0.60 [0.15, 0.94] 0.84 [0.44, 0.98] 0.75 [0.24, 0.96]

PA PP
State Median 5% 95% Median 5% 95%

xc 0.21 [0.01, 0.54] 0.42 [0.20, 0.65]
xπ 0.41 [0.05, 0.79] 0.74 [0.51, 0.88]
xm 0.71 [0.25, 0.95] 0.92 [0.66, 0.98]
σ2
c 0.17 [0.02, 0.48] 0.17 [0.02, 0.52]
σ2
π 0.60 [0.19, 0.94] 0.49 [0.13, 0.89]

Notes: In order to understand whether the model state variables (statet = {xc,t,xπ,t, xm,t, σ2
c,t, σ

2
π,t})

are spanned by the principal components of the yield curve (pct= eight principal components of
{y1m,t, y3m,t, y1y,t, y2y,t, y3y,t, y4y,t, y5y,t, y10y,t}), R2 values from the OLS regression, statet = α +
βpct+ residt, are provided. Data R2 estimates are obtained by replacing statet with median estimated
state variables, ˆstatet in the OLS regression. The table provides medians and 90% credible intervals
of distributions of R2 values obtained with model-generated data. “CA” stands for the countercyclical
inflation and the active monetary policy regimes, while “PP” stands for the procyclical inflation and the
passive monetary policy regimes. “CP” and “PA” indicate the remaining combinations of regimes.

(lowers) on the spanning ability of pct. When the economy switches regimes, I find that

the R2 values for xc,t and σ2
c,t are around 20% (see Table 5). This evidence is consistent

with the findings in Joslin, Priebsch, and Singleton (2014) that the portfolio of risks

that shape real economic growth is not spanned by the principal components of bond

yields. The finding is also supported by the actual data. On the other hand, the R2

values for nominal state variables, xπ,t, xm,t, and σ2
π,t, are larger by a factor of 3 (around

60%).

Another thing to point out is that even when there is no regime-switching in the

data-generating process, none of statet is fully spanned by pct. The solution is affine in

state variables, so this result is puzzling at first. However, I get near 100% R2 values

if I remove measurement errors for bond yields in the simulation. Even though the
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Table 6: Variance Decomposition

Long-Run Growth Monetary Policy Shock Long-Run Growth Vol.
Variable Name & Inflation Target & Inflation Target Vol.

Median 5% 95% Median 5% 95% Median 5% 95%

log Price-Dividend Ratio 51.3 [43.5, 62.7] - [- -] 49.7 [37.1, 57.2]
3-Month Bond Yield 94.5 [91.1, 97.4] 4.2 [2.1, 5.5] 0.2 [0.0, 0.3]
10-Year Bond Yield 80.7 [71.0, 94.3] 5.3 [3.3, 6.2] 14.2 [6.3, 23.7]

Notes: Fraction of volatility fluctuations (in percents) of the log price dividend ratio, the 3-month
nominal bond yield, and the 10-year nominal bond yield that is due to long-run growth (xc,t), the
inflation target (xπ,t), the monetary policy shock (xm,t), long-run growth volatility (σ2

c,t), and inflation

target volatility (σ2
π,t), respectively. Note that due to measurement errors, the numbers do not sum to

100%.

measurement error variances are about 5% of the unconditional variance of bond yields,

they significantly lowers the spanning ability of pct.

In sum, I have shown through various exercises that the model is capable of addressing

the empirical regularities that often pose a serious challenge to affine term structure

models.

Determinants of Asset Price Fluctuations. Table 6 provides the contribution of

various risk factors, namely, the variation in long-run growth, the inflation target, the

monetary policy shock, and the conditional volatility variations of long-run growth and

the inflation target to asset price volatility. Given the posterior estimates of the state-

space model I can compute smoothed estimates of the latent asset price volatilities.

Moreover, I can also generate counterfactual volatilities by sequentially shutting down

each risk factor. The ratio of the counterfactual volatility to the actual volatility mea-

sures the contribution of the non-omitted risk factors. If I subtract this ratio from one,

I obtain the relative contribution of the omitted risk factor, which is shown in Table 6.

I find that the key risk drivers of stock price variations are long-run growth, long-run

growth volatility, and inflation target volatility. Since the shock to the inflation target

moves long-run growth (captured by χc,π), it becomes one of the major drivers of stock

price variations. Bond yield variations are mostly driven by variations in the inflation

target and in its volatility. Going from the short end to the long end of the yield curve,

the importance of the inflation target volatility increases. My findings demonstrate that

long-term rates are much more sensitive to fluctuations in inflation target volatility than
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Figure 10: Estimated Stock-Bond Return Correlation

Notes: The correlation between stock market returns and bond returns for a 1-year holding period for
maturity at 10 years is provided. Black dashed line depicts the monthly realized stock-bond correlation
obtained from daily data. Blue solid line represents posterior median of correlations. Light gray shaded
bars indicate NBER recession dates. The unconditional correlation between the two measures is about
0.68.

short-term rates. My model also shows that the variations in short-term rates are not

driven by fluctuations in volatility. Hence, the assumption that the short rate contains

no risk premium seems very plausible (see the Fisher-type asset-pricing equation in

Section 3.3).

Understanding Stock-Bond Returns Comovement. An important feature of my

estimation is that the likelihood also focuses on the conditional correlation between

stock market returns and bond returns. Figure 10 displays the time-series of the esti-

mated stock-bond correlation, which is overlaid with the monthly realized stock-bond

correlation (dashed line). During the Great Inflation periods (1970s–1980s), returns

on both assets were low, which resulted in positive comovements. The striking feature

here is that in the beginning and toward the end of the estimation sample, the return

performances decoupled, and stock and bond returns started to move in opposite di-

rections. Through the estimation, I have identified that the economy faced changes in

the covariance between the inflation target and long-run growth shocks (i.e., transition

from the countercyclical inflation regime to the procyclical inflation regime). Hence,

from an agent’s perspective, positive shocks to the inflation target component are per-

ceived as positive signals to long-run growth. Thus, stock returns, unlike bond returns,

can respond positively to long-run inflation shocks.29 The regime-switching covariance

29David and Veronesi (2013) support this evidence.
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Figure 11: Stock-Bond Return Correlation
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Notes: The estimated correlation between stock market returns and bond returns for a 1-year holding
period for maturities of 2-5 years is provided. Black squares indicate regime-dependent sample corre-
lations of actual data. “CA” stands for the countercyclical inflation and the active monetary policy
regimes, while “PP” stands for the procyclical inflation and the passive monetary policy regimes. “CP”
and “PA” indicate the remaining combinations of regimes.

coefficient in the model, χc,π, is able to capture this data feature. Figure 11 displays the

unconditional stock-bond correlation implied by the model. This experiment is useful

because it disentangles the role of monetary policy in the stock-bond return correla-

tion. I find that the active monetary policy stance tends to generate stronger positive

stock-bond comovement, although the effect is small. My results are consistent with

the findings in Campbell, Pflueger, and Viceira (2013), in which they argue that a more

aggressive response of the central bank to inflation fluctuations will increase the stock-

bond correlation. However, I find that changes in monetary policy stance alone cannot
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generate a sign-switch in the stock-bond return correlation.30

6 Conclusion

I developed an equilibrium term structure model incorporating monetary policy to ad-

dress the issue of whether the structural changes in the U.S. Treasury yield curve are

caused by changes in external shocks or in monetary policy. The model framework is

general enough to encompass both Markov-switching coefficients and stochastic volatil-

ity processes. To estimate the model, I conditioned on the volatility states to achieve an

efficient implementation of a particle Markov chain Monte Carlo algorithm and made

inferences about the model parameters, volatility states, and Markov states. Through

the estimation, I characterized bond market exposures to macroeconomic and monetary

policy risks, and identified the changes in the conditional covariance dynamics of long-

run growth and the inflation target as the main driver of structural changes in bond

markets. I found that the changes in monetary policy affect the volatility of bond yields,

while the changes in the correlation between growth and inflation affect both the level

and the volatility of bond yields. Overall, the model is quite successful in explaining

several bond market phenomena.
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Raḿırez (2012): “The Term Structure of Interest Rates in a DSGE Model with

Recursive Preferences,” Journal of Monetary Economics, 59(7), 634–648.

52



Online Appendix

Bond Market Exposures to Macroeconomic and
Monetary Policy Risks

A Piazzesi and Schneider (2006) Revisited

Following Piazzesi and Schneider (2006), I assume that the vector of inflation and con-

sumption growth has the following state space representation

zt = st−1 + εt, zt = [πt,∆ct]
′ (A.1)

st = φst−1 + φKεt, εt ∼ N(0,Ω).

The state vector st is 2-dimensional and contains expected inflation and consumption,

φ is the 2×2 autoregressive matrix, and K is the 2×2 gain matrix. Denote

φ =

[
φ1 φ12

φ21 φ2

]
, K =

[
k1 k12

k21 k2

]
, Ω =

[
Ω1 Ω12

Ω12 Ω2

]
.

I estimate this system with data on consumption and inflation using Bayesian method.

Table A-1 provides details of parameter prior and posterior distributions. The complete

estimation information in the tables can be difficult to absorb fully, however, so here

I briefly present aspects of the results in a more revealing way. The parameters to be

estimated are those in the transition equation φ,K and those in the covariance matrix Ω.

Hence I simply display the estimated transition equation and the estimated Ω matrices.
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1. From 1959:Q1 to 1997:Q4

st =

 0.96
[0.92,0.98]

0.14
[0.03,0.25]

−0.06
[−0.10,−0.02]

0.52
[0.36,0.69]

 st−1 +

 0.63
[0.57,0.73]

0.25
[0.07,0.50]

−0.21
[−0.22,−0.16]

0.27
[0.11,0.57]

 εt

εt ∼ N(0,

 2.35
[2.13,2.60]

−0.14
[−0.21,−0.05]

−0.14
[−0.21,−0.05]

2.68
[2.40,2.96]

), var(φKεt) =

 1.06
[0.68,2.10]

−0.14
[−0.26,0.52]

−0.14
[−0.26,0.52]

0.32
[0.14,1.02]

.
2. From 1998:Q1 to 2011:Q4

st =

 0.41
[0.28,0.55]

0.26
[0.12,0.39]

0.07
[−0.03,0.18]

0.83
[0.72,0.91]

 st−1 +

 0.33
[0.12,0.69]

0.43
[0.14,0.86]

−0.02
[−0.20,0.24]

0.71
[0.48,1.02]

 εt

εt ∼ N(0,

 5.42
[4.63,6.37]

−0.01
[−0.09,0.07]

−0.01
[−0.09,0.07]

1.10
[0.93,1.30]

), var(φKεt) =

 0.78
[0.08,4.14]

0.29
[0.01,2.28]

0.29
[0.01,2.28]

0.55
[0.42,1.77]

.
Many aspects of the results are noteworthy; here I simply mention a few. First,

the autoregressive matrix φ estimates are quite different across the two periods. More

specifically, I find a large decline in the persistence of the expected inflation process.

Also, the lagged inflation used to predict negative future consumption, but in the last

fifteen years it positively forecasts consumption. Second, the sign of the estimated

covariance (in the reduced-form covariance matrix var(φKεt)) changed from negative

to positive during the recent periods.
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Table A-1: Posterior Estimates

1959:Q1 - 1997:Q4 1998:Q1 - 2011:Q4
Prior Posterior Posterior

Distr. 20% 80% 20% 50% 80% 20% 50% 80%

φ1 NT [-.35 .99] 0.92 0.96 0.98 0.28 0.41 0.55
φ12 N [-.82 .82] 0.03 0.14 0.25 0.12 0.26 0.39
φ21 N [-.82 .82] -0.10 -0.06 -0.02 -0.03 0.07 0.18
φ2 NT [-.35 .99] 0.35 0.52 0.69 0.72 0.83 0.91
k1 N [.15 1.81] 0.63 0.71 0.80 0.53 0.87 1.26
k12 N [-.82 .82] 0.07 0.18 0.29 0.22 0.53 0.90
k21 N [-.82 .82] -0.44 -0.32 -0.20 -0.26 -0.10 0.02
k2 N [.15 1.81] 0.33 0.55 0.83 0.68 0.81 0.95
Ω1 IG [0.80 5.78] 2.13 2.35 2.60 4.63 5.42 6.37
Ω12 N [-.82 .82] -0.21 -0.14 -0.05 -0.09 -0.01 0.07
Ω2 IG [0.80 5.78] 2.40 2.68 2.96 0.93 1.10 1.30

Notes: The estimation results are based on (annualized) quarterly consumption growth data and
inflation data from 1959:Q1 to 2011:Q4. N , NT , and IG are normal, truncated (outside of the interval
(−1, 1)) normal, and inverse gamma distributions, respectively.
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B Solving the LRR Model

This section provides approximate analytical solutions for the equilibrium asset prices.

B.1 Exogenous Dynamics

The joint dynamics of consumption, dividend growth, and inflation are
gc,t+1

gd,t+1

πt+1

 =


µc

µd

µπ

+


e1

φxe1

Γx(SXt+1, S
M
t+1)

Xt+1 +


1 0 0

φη 1 0

Γη(S
X
t+1, S

M
t+1) 0 1



σ̄cηc,t+1

σ̄dηd,t+1

σ̄πηπ,t+1

 .(A.2)

The conditional mean and volatility processes evolve according to
xc,t+1

xπ,t+1

xm,t+1


︸ ︷︷ ︸

Xt+1

=


ρc(S

X
t+1) ρc,π(SXt+1) ρc,m(SXt+1)

ρπ,c(S
X
t+1) ρπ(SXt+1) ρπ,m(SXt+1)

0 0 ρm(SXt+1)


︸ ︷︷ ︸

Υ(SXt+1)


xc,t

xπ,t

xm,t


︸ ︷︷ ︸

Xt

(A.3)

+


1 χc,π(SXt+1) 0

χπ,c(S
X
t+1) 1 0

0 0 1


︸ ︷︷ ︸

Ω(SXt+1)


σc,tec,t+1

σπ,teπ,t+1

σmem,t+1


︸ ︷︷ ︸

Et+1[
σ2
c,t+1

σ2
π,t+1

]
︸ ︷︷ ︸

Σt+1

=

[
(1− νc)(ϕcσ̄)2

(1− νπ)(ϕπσ̄)2

]
︸ ︷︷ ︸

Φµ

+

[
νc 0

0 νπ

]
︸ ︷︷ ︸

Φν

[
σ2
c,t

σ2
π,t

]
︸ ︷︷ ︸

Σt

+

[
σwcwc,t+1

σwπwπ,t+1

]
︸ ︷︷ ︸

Wt+1

,

where ηj,t+1, ek,t+1, wl,t+1 ∼ N(0, 1) for j ∈ {c, d, π}, k ∈ {c, π,m}, and l ∈ {c, π} and

Wt+1 ∼ N(0,Φw).

Note that the VAR dynamics are generalized to allow for intertemporal feedback

effects (captured by off-diagonal coefficients) and that the inflation target can become

correlated with long-run growth innovation. Furthermore, the channels through which

monetary policy shock affects long-run growth or inflation target, are not restricted to

zero as in the main text. (Of course, one could set them equal to zero.)
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B.2 Derivation of Approximate Analytical Solutions

The Euler equation for the economy is

1 = Et [exp (mt+1 + rk,t+1)] , k ∈ {c,m} , (A.4)

where mt+1 = θ log δ − θ
ψ
gt+1 + (θ − 1)rc,t+1 is the log stochastic discount factor, rc,t+1

is the log return on the consumption claim, and rm,t+1 is the log market return. All

returns are given by the approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0,c + κ1,czc,t+1 − zc,t + gc,t+1 (A.5)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1.

Let It denote the current information set
{
SX1:t, Xt,Σt

}
and define It+1=It ∪ {SXt+1}

that includes information regarding SXt+1 in addition to It. Suppose SXt = i for i=1, 2.

Derivation of (A.4) follows Bansal and Zhou (2002), who make repeated use of the law

of iterated expectations and log-linearization, and Schorfheide, Song, and Yaron (2013)

who utilize log-linear approximation for returns and for volatilities.

1 = E
(
E [exp (mt+1 + rm,t+1) | It+1] | It

)
(A.6)

=
4∑
j=1

PijE
(

exp (mt+1 + rm,t+1) | St+1 = j,Xt,Σt

)

0 =
4∑
j=1

Pij
(
E [mt+1 + rm,t+1 | St+1 = j] +

1

2
V [mt+1 + rm,t+1 | St+1 = j] .

)
︸ ︷︷ ︸

B

The first line uses the law of iterated expectations, second line uses the definition of

Markov-chain; and the third line applies log-linearization, exp(B)−1 ≈ B, log-normality

assumption, and log-linearization for returns and for volatilities.
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B.3 Real Consumption Claim

Conjecture that the price to consumption ratio follows

zt(S
X
t ) = A0(SXt ) + A1(SXt )Xt + A2(SXt )Σt, (A.7)

A1(SXt ) =
[
A1,c(S

X
t ) A1,π(SXt ) A1,m(SXt )

]
and A2(SXt ) =

[
A2,c(S

X
t ) A2,π(SXt )

]
.

From (A.2), (A.3), (A.5), and (A.7),

rc,t+1 = κ0,c + κ1,cA0(SXt+1)− A0(SXt ) + µc + κ1,cA2(SXt+1)Φµ (A.8)

+
{

(e1 + κ1,cA1(SXt+1))Υ(SXt+1)− A1(SXt )
}
Xt +

{
κ1,cA2(SXt+1)Φν − A2(SXt )

}
Σt

+ σ̄cηt+1 + (e1 + κ1,cA1(SXt+1))Ω(SXt+1)Et+1 + κ1,cA2(SXt+1)Wt+1

and from (A.2), (A.3), (A.5), (A.6), and (A.7)

mt+1 = θ log δ + (θ − 1)
{
κ0,c + κ1,cA0(SXt+1)− A0(SXt ) + κ1,cA2(SXt+1)Φµ

}
− γµ(A.9)

− 1

ψ
e1Υ(SXt+1)Xt + (θ − 1)

{
((1− 1

ψ
)e1 + κ1,cA1(SXt+1))Υ(SXt+1)− A1(SXt )

}
Xt

+ (θ − 1)
{
κ1,cA2(SXt+1)Φν − A2(SXt )

}
Σt − γσ̄cηc,t+1

+
{
−γe1 + (θ − 1)κ1,cA1(SXt+1)

}
Ω(SXt+1)Et+1 + (θ − 1)κ1,cA2(SXt+1)Wt+1.

The solutions for As that describe the dynamics of the price-consumption ratio are

determined from (A.6), and they are,[
A1(1) A1(2)

]
= e1

[
pX1Υ(1) + (1− pX1)Υ(2) (1− pX2)Υ(1) + pX2Υ(2)

]
(A.10)

×(1− 1

ψ
)

[
I2 − pX1κ1,cΥ(1) −(1− pX2)κ1,cΥ(1)

−(1− pX1)κ1,cΥ(2) I2 − pX2κ1,cΥ(2)

]−1

[
A2,c(1)

A2,c(2)

]
=

θ

2

[
I2 − κ1,cνcPX

]−1
× PX ×

[
ξc(1)

ξc(2)

]
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[
A2,π(1)

A2,π(2)

]
=

θ

2

[
I2 − κ1,cνπPX

]−1
× PX ×

[
ξπ(1)

ξπ(2)

]
[
A0(1)

A0(2)

]
=

[
I2 − κ1,cPX

]−1
× PX ×

[
Ā0 + κ1,cA2(1)Φµ + θ

2κ
2
1,cA2(1)ΦwA2(1)′ + θ

2ξm(1)σ2
m(1)

Ā0 + κ1,cA2(2)Φµ + θ
2κ

2
1,cA2(2)ΦwA2(2)′ + θ

2ξm(2)σ2
m(2)

]

where Ā0 = log δ + κ0,c + µc(1− 1
ψ

) + θ
2
σ̄2
c (1− 1

ψ
)2 and

ξc(i) =

{(
(1− 1

ψ
)e1 + κ1,cA1(i)

)
· Ω(i)e′1

}2

, ξπ(i) =

{(
(1− 1

ψ
)e1 + κ1,cA1(i)

)
· Ω(i)e′2

}2

ξm(i) =

{(
(1− 1

ψ
)e1 + κ1,cA1(i)

)
· Ω(i)e′3

}2

, i ∈ {1, 2}.

B.4 Real Market Returns

Similarly, using the conjectured solution to the price-dividend ratio

zm,t(S
X
t ) = A0,m(SXt ) + A1,m(SXt )Xt + A2,m(SXt )Σt, (A.11)

the market return equation can be expressed as

rm,t+1 = κ0,m + κ1,mA0,m(SXt+1)−A0,m(SXt ) + µd + κ1,mA2,m(SXt+1)Φµ (A.12)

+
{

(φxe1 + κ1,mA1,m(SXt+1))Υ(SXt+1)−A1,m(SXt )
}
Xt

+
{
κ1,mA2,m(SXt+1)Φν −A2,m(SXt )

}
Σt + φησ̄cηc,t+1 + σ̄dηd,t+1

+ (φxe1 + κ1,mA1,m(SXt+1))Ω(SXt+1)Et+1 + κ1,mA2,m(SXt+1)Wt+1.

From (A.2), (A.3), (A.5), and (A.11), the solutions for Am-s that describe the dynamics

of the price-dividend ratio are[
A1,m(1) A1,m(2)

]
= (φx −

1

ψ
)e1

[
pX1Υ(1) + (1− pX1)Υ(2) (1− pX2)Υ(1) + pX2Υ(2)

]
×

[
I2 − pX1κ1,mΥ(1) −(1− pX2)κ1,mΥ(1)

−(1− pX1)κ1,mΥ(2) I2 − pX2κ1,mΥ(2)

]−1
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[
A2,c,m(1)

A2,c,m(2)

]
=

[
I2 − κ1,mνcPX

]−1
(
PX

[
(θ − 1)κ1,cνcA2,c(1) + 1

2fc(1)

(θ − 1)κ1,cνcA2,c(2) + 1
2fc(2)

]
− (θ − 1)

[
A2,c(1)

A2,c(2)

])

fc(i) =

(
(φx − γ)e1 · Ω(i)e′1 +

[
A1(i) · Ω(i)e′1 A1,m(i) · Ω(i)e′1

] [ (θ − 1)κ1,c

κ1,m

])2

,

[
A2,π,m(1)

A2,π,m(2)

]
=

[
I2 − κ1,mνπPX

]−1
(
PX

[
(θ − 1)κ1,cνπA2,π(1) + 1

2fπ(1)

(θ − 1)κ1,cνπA2,π(2) + 1
2fπ(2)

]
− (θ − 1)

[
A2,π(1)

A2,π(2)

])

fπ(i) =

(
(φx − γ)e1 · Ω(i)e′2 +

[
A1(i) · Ω(i)e′2 A1,m(i) · Ω(i)e′2

] [ (θ − 1)κ1,c

κ1,m

])2

,

[
A0,m(1)

A0,m(2)

]
=

[
I2 − κ1,mPX

]−1
(
PX

[
Ā0,m + f0(1)

Ā0,m + f0(2)

]
− (θ − 1)

[
A0(1)

A0(2)

])
Ā0,m = θ log δ + (θ − 1)κ0,c − γµc + κ0,m + µd +

1

2
σ̄2
d +

1

2
σ̄2
c (φη − γ)2

f0(i) = (θ − 1)κ1,c

(
A0(i) +A2(i)Φµ

)
+
σ2
wc

2

([
A2,c(i) A2,c,m(i)

] [ (θ − 1)κ1,c

κ1,m

])2

+
σ2
wπ

2

([
A2,π(i) A2,π,m(i)

] [ (θ − 1)κ1,c

κ1,m

])2

+ κ1,mA2,m(i)Φµ

+
1

2

(
(φx − γ)e1 · Ω(i)e′3 +

[
A1(i) · Ω(i)e′3 A1,m(i) · Ω(i)e′3

] [ (θ − 1)κ1,c

κ1,m

])2

σ2
m(i),

for i ∈ {1, 2} .

B.5 Linearization Parameters

Let p̄j = 1−pl
2−pl−pj

. For any asset, the linearization parameters are determined endoge-

nously by the following system of equations

z̄i =
2∑
j=1

p̄j

(
A0,i(j) + A2,c,i(j)(ϕcσ̄)2 + A2,π,i(j)(ϕπσ̄)2

)
κ1,i =

exp(z̄i)

1 + exp(z̄i)

κ0,i = log(1 + exp(z̄i))− κ1,iz̄i.
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The solution is determined numerically by iteration until reaching a fixed point of z̄i for

i ∈ {1, 2} .

B.6 Nominal Bond Prices

B.6.1 Endogenous Inflation Determination under a Regime-Switching Tay-

lor Rule

I consider a version of the model where inflation is endogenous. The natural framework

in which to this is a model where monetary policy is implemented by a central bank

that follows a Taylor rule

it = µMP
i (SMt ) + τc(S

M
t )(gc,t − µc) + τπ(SMt )(πt − xπ,t) + xπ,t + xm,t, (A.13)

= µMP
i (SMt ) +

[
τc(S

M
t ) 1− τπ(SMt ) 1 τc(S

M
t )

]
XB
t + τπ(SMt )πt,

where gc,t is consumption growth, xπ,t is the long-run inflation, and xm,t is the mon-

etary policy shock. Assume for simplicity that πt is “demeaned” inflation and XB
t =

[xc,t, xπ,t, xm,t, ηc,t]
′.

The asset pricing equation for the short-rate is

it = −Et [mt+1] + Et [πt+1]− 1

2
V art [mt+1]− 1

2
V art [πt+1] + Covt [mt+1, πt+1](A.14)

= µ̃APi (SXt ) + αXB (SXt )XB
t + αΣ(SXt )Σt

≈ µ̃APi (SXt ) + αXB (SXt )XB
t + αΣ(SXt )Σ̄

= µAPi (SXt ) +
[ 1

ψ
Et[e1Υ(SXt+1)], 0

]
XB
t + Et [πt+1] .

The first to second line uses the log normality assumption, the second to third line

uses the fact that stochastic volatility contribute very little to the short-rate, and the

third to fourth line rearranges parameter values such that the short-rate is expressed in

terms of XB
t and Et [πt+1] .
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SXt and SMt are discrete-valued random variables that follow a two-state Markov chain,

PX =

[
pX1 1− pX1

1− pX2 pX2

]
, PM =

[
pM1 1− pM1

1− pM2 pM2

]
,

where X1 (X2) stands for negative (positive) correlation regime and M1 (M2) stands for

active (passive) monetary policy regime. For notational convenience, define

St =



1 if SXt = X1 and SMt = M1

2 if SXt = X1 and SMt = M2

3 if SXt = X2 and SMt = M1

4 if SXt = X2 and SMt = M2

and P = PX ⊗ PM .

Joint restriction of (A.13) and (A.14) gives

τπ(SMt )πt = Et [πt+1] +

([ 1

ψ
Et[e1Υ(SXt+1)], 0

]
−
[
τc(S

M
t ), 1− τπ(SMt ), 1, τc(S

M
t )
])

︸ ︷︷ ︸
Λ(SXt ,S

M
t )

XB
t(A.15)

= Et [πt+1] + Λ(SXt , S
M
t )XB

t ,

assuming µMP
i (SMt ) = µAPi (SXt ). Since (A.15) is satisfied for each current state, I can

express them as

Diag

(

τπ(St = 1)

τπ(St = 2)

τπ(St = 3)

τπ(St = 4)


)
×


πt(St = 1)

πt(St = 2)

πt(St = 3)

πt(St = 4)

 =


E [πt+1|St = 1]

E [πt+1|St = 2]

E [πt+1|St = 3]

E [πt+1|St = 4]

+


Λ(St = 1)

Λ(St = 2)

Λ(St = 3)

Λ(St = 4)

Xt.(A.16)

In a slight abuse of notation, I use (i) to denote the current state instead of (St = i)
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for i=1,2,3,4. From (A.9), observe that
Λ(1)

Λ(2)

Λ(3)

Λ(4)

 = P×


1
ψ
e1Υ(1) 0

1
ψ
e1Υ(2) 0

1
ψ
e1Υ(3) 0

1
ψ
e1Υ(4) 0

−

τc(1) 1− τπ(1) 1 τc(1)

τc(2) 1− τπ(2) 1 τc(2)

τc(3) 1− τπ(3) 1 τc(3)

τc(4) 1− τπ(4) 1 τc(4)

 . (A.17)

I posit regime-dependent linear solutions of the form as in Davig and Leeper (2007).
πt(1)

πt(2)

πt(3)

πt(4)

 =


Γ(1)

Γ(2)

Γ(3)

Γ(4)

XB
t (A.18)

where Ξ(i) =
[

Γx,c(i) Γx,π(i) Γx,m(i) Γη(i)
]

for i=1,2,3,4.

Necessary and Sufficient Conditions for the Existence of a Unique Bounded

Solution. According to Proposition 2 of Davig and Leeper (2007), there exists a unique

bounded solution if the following conditions are satisfied:

1. τπ(i) > 0, for i=1,2,3,4,

2. All the eigenvalues of

(
τπ(1) 0 0 0

0 τπ(2) 0 0

0 0 τπ(3) 0

0 0 0 τπ(4)


−1

×P
)

lie inside the unit

circle.

Solution. Substituting (A.18) to (A.16) yields
τπ(1) 0 0 0

0 τπ(2) 0 0

0 0 τπ(3) 0

0 0 0 τπ(4)




Γ(1)

Γ(2)

Γ(3)

Γ(4)

XB
t = P×


Γ(1)Υ(1)

Γ(2)Υ(2)

Γ(3)Υ(3)

Γ(4)Υ(4)

XB
t +


Λ(1)

Λ(2)

Λ(3)

Λ(4)

XB
t .(A.19)

A-11



Analytical expressions for Γ(i)s are quite difficult to interpret, but are easily obtained

from solving (A.19).

B.6.2 Nominal Bond Prices

Define m$
t+1 = mt+1 − πt+1. Let Pn,t be the price at date t of a nominal bond with n

periods to maturity. Conjecture that pn,t depends on the regime St and the current

state variables,

pn,t = Cn,0(St) + Cn,1(St)Xt + Cn,2(St)Σt (A.20)

where Cn,1(St) =
[
Cn,1,c(St) Cn,1,π(St) Cn,1,m(St)

]
and Cn,2(St) =

[
Cn,2,c(St) Cn,2,π(St)

]
.

Exploit the law of iterated expectations

Pn,t = Et

(
E[exp(m$

t+1 + pn−1,t+1)|It+1]

)
and log-linearization to solve for pn,t

pn,t ≈
4∑
j=1

Pij log

(
E[exp(m$

t+1 + p$
n−1,t+1)|St = i, St+1 = j]

)
.
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The solution to (A.20) is

Cn,1(i) =
4∑
j=1

Pij
(
Cn−1,1(j)− 1

ψ
e1 − Γx(j)

)
Υ(j)

Cn,2(i) =

4∑
j=1

Pij
(
Cn−1,2(j)Φν + (θ − 1) {κ1,cA2(j)Φν −A2(i)}

+
1

2

[ {(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′1}
2

{(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′2}
2

]′)

Cn,0(i) =
4∑
j=1

Pij
(
θ log δ + (θ − 1) {κ0,c + κ1,cA0(j) + κ1,cA2(j)Φµ} − (θ − 1)A0(i)− γµ− µπ

+ Cn−1,0(j) + Cn−1,2(j)Φµ +
1

2
σ̄2
c (Γη(j) + γ)2 +

1

2
σ̄2
π

+
1

2
{(Cn−1,2,c(j) + (θ − 1)κ1,cA2,c(j))σwc}

2 +
1

2
{(Cn−1,2,π(j) + (θ − 1)κ1,cA2,π(j))σwπ}

2

+
1

2

{
(Cn−1,1(j)− γe1 − Γx(j) + (θ − 1)κ1,cA1(j)) · Ω(j)e′3

}2
σm(j)2

)
,

with initial conditions C0,0(i) = 0, C0,1(i) =
[

0 0 0
]
, and C0,2(i) =

[
0 0

]
for

i ∈ {1, 2, 3, 4} .
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C Supplementary Figures

Figure C-1: Smoothed Mean States

Notes: Black lines represent posterior medians of smoothed states and the dark gray shaded area
corresponds to 90% credible intervals. Light gray shaded bars indicate NBER recession dates. I
overlay the smoothed long-run growth with monthly consumption growth and the smoothed long-run
inflation with realized inflation (blue solid lines).

Figure C-2: Impulse Response Function
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Figure C-3: Model-Generated Unconditional Mean
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Figure C-4: Model-Generated Unconditional Standard Deviation
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Notes: Black squares indicate values from actual data. The figure also depicts medians (red lines) and
90% credible intervals (top and bottom lines of boxes) of the distribution of yield spreads obtained
with model-generated data. “CA” stands for the countercyclical inflation and the active monetary
policy regimes while “PP” stands for the procyclical inflation and the passive monetary policy regimes.
“CP” and “PA” indicate the remaining combinations of regimes. Numbers are displayed in percents
(annualized).
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Figure C-5: Yield Prediction Errors
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are also provided in basis points (annualized).
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Figure C-6: Model-Generated Yield Spread: Unconditional Standard Deviation
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Notes: The “spread” is the difference between the 3m yield and yields with maturities of 1y–10y. Black
squares indicate values from actual data. The figure also depicts medians (red lines) and 90% credible
intervals (top and bottom lines of boxes) of the distribution of yield spreads obtained with model-
generated data. “CA” stands for the countercyclical inflation and the active monetary policy regimes
while “PP” stands for the procyclical inflation and the passive monetary policy regimes. “CP” and
“PA” indicate the remaining combinations of regimes. Numbers are displayed in percents (annualized).
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Figure C-7: Risk and Term Premia

Term Premia

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−2

−1

0

1

2

3

4

 

 

1y
2y
3y
4y
5y
10y

10-Year Bond Risk and Term Premia

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−4

−2

0

2

4

6

8

10

12

 

 

Term Premium
Risk Premium

Note: The median estimates of term premiumt,n = yt,n − 1
n

∑n−1
i=0 Et(yt+i,1) and risk premiumt,n =

−covt(mt+1 − πt+1, rxt+1,n) are provided.
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Figure C-8: Univariate Predictability Checks
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Notes: Adjusted R2 values (in percents) from the univariate predictive regressions of aggregate con-
sumption growth (∆ct), consumer price index inflation (πt), log bond yield with maturity at five years
(y5y,t), and the excess (log) bond return of an n year bond over the 1 year bond (xrn,t+12y) are pro-
vided. I regress each of them on Xt using OLS, Xt ∈

{
{macrot, statet}, statet, {macrot, pct}, pct

}
where macrot = {∆ct, πt}, statet = {xc,t,xπ,t, xm,t, σ2

c,t, σ
2
π,t}, pct= first five principal components of

{y1m,t, y3m,t, y1y,t, y2y,t, y3y,t, y4y,t, y5y,t, y10y,t}. Each bar represents the adjusted R2 value from the
OLS regression when Xt is {macrot, statet} (blue), statet (light blue), {macrot, pct} (yellow), or pct
(red), respectively. Data R2 estimates are obtained by replacing statet with median estimated state
variables, ˆstatet in the OLS regression. To facilitate comparison with data estimates, median (adjusted)
R2 values from model-generated data regression are reported.
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