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Abstract

We develop a general method to study the effects of non-linear taxation in dynamic set-

tings using variational arguments. We propose a sufficient condition on individual demand

that allows us to derive the effects of perturbations of the tax system in terms of intuitive pa-

rameters, such as the labor and capital income elasticities and the hazard rates of the income

distributions. We first derive general theoretical formulas that characterize the welfare effects

of local tax reforms and, in particular, the optimal tax system, potentially restricted within

certain classes (e.g., age-independent, linear, separable). Second, we apply these formulas

to various specific settings. In particular, we decompose the gains arising from each element

of tax reform, starting from a simple baseline system, as the available tax instruments be-

comes more sophisticated. We show that the design of tax systems obeys a common general

principle, namely that more sophisticated tax instruments (e.g., age-dependent, non-linear,

non-separable) allow the government to better fine-tune the tax rates by targeting higher

distortions to the segments of the population whose behavior responds relatively little to

those taxes.
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1 Introduction

Many counties use a complex system of taxes and transfers. Welfare and social insurance

payments depend on individual earnings, which creates a complex nonlinear schedule of effective

marginal labor and capital income tax rates. Figure 1 illustrates such patterns using the federal

tax programs in the U.S.1 Moreover, both the eligibility and the amount of payment often

depends on the past history of labor earnings, assets, marital status, age and the number of

children.

It is challenging to develop a theory of taxation that both allows for sufficiently rich tax

functions and provides transparent, intuitive insights about the effect of taxes. The literature

so far have mainly persued either of the following two approaches. The first approach imposes

specific parametric functional form assumptions, and characterizes the optimal taxes in terms

of intuitive measures of elasticities. This approach goes back to Ramsey (1927) and the modern

application of this technique was introduced by Diamond and Mirrlees (1971), who restrict at-

tention to linear taxes. The second approach imposes explicit informational restrictions on the

government and characterizes the constrained optimum (e.g. Mirrlees 1971, Golosov, Kocher-

lakota, and Tsyvinski 2003). Both approaches have limitations. As far as the Ramsey approach

is concerned, it is not clear a priori which functional forms best approximate the fully optimal

tax system, while the predictions of these models often rely on these specific choices. Moreover,

this approach does not allow to capture many realistic complexities of tax codes. The mecha-

nism design approach is often sensitive to the assumptions on government’s information set. The

tax systems that emerge from it are often very unrealistically complex and the intuition for the

economic forces that determine the size and the shape of the optimal taxes are not transparent.

In this paper we develop an alternative approach to the analysis of the effects of taxation

that both preserves the transparency of the Ramsey approach and allows us to handle more

complicated, nonlinear tax systems. Our approach is based on studying perturbations of a given

non-linear tax system directly. We show that as long as the baseline tax system is sufficiently

well behaved, the effect of perturbing the tax system can be expressed in terms of elasticities

and hazard rates of income distributions that can be estimated in the data. Our method is

sufficiently flexible to both allow researchers to restrict attention a priori to a given class of tax

functions (e.g., non-linear taxes that do not depend on an individual’s age and are separable

between various incomes) and to study the sources and the magnitude of welfare gains that arise

from using more sophisticated taxes (e.g., from introducing age- or history-dependent taxation).

We study a dynamic model, in which individuals’ characteristics evolve over their lifetime.2

The tax system consists of a sequence of tax functions which can be arbitrarily non-linear and

joint in the entire history of labor and capital incomes. The generality of the tax functions

1This becomes even more complicated once state-level programs are taken into account, see Maag et al (2012).
2In most of the paper we focus on a deterministic economy to make our approach transparent. In the last

Section and in our working paper (Golosov, Tsyvinski, and Werquin 2014) we develop an extension to stochastic
environments.
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allows us to study the age-dependence and history dependence of taxes, non-linear taxation of

capital income, and joint conditioning of taxes on labor and capital incomes. The first main

contribution of the paper is to provide a general formula for the welfare effects of tax reforms in a

compact and easily interpretable form. Our result is based on deriving the Gateaux differential

of individual demands, government tax revenue, and social welfare. The complexity of the

problem arises from the fact that an individual chooses his income as a function of the local

characteristics of the tax system; but these tax rates themselves depend on the income that he

chooses. Therefore, a local perturbation of the tax function faced by an individual leads him to

adjust his income, which in turn induces a shift in the tax rates if the baseline tax system is non-

linear, triggering further income adjustment. We provide a sufficient condition on the individual

demand (namely, local Lipschitz continuity), which allows us to solve this circularity issue, and

express the effects of general tax reforms only in terms of the local income and substitution

effects at the individual level, and of the curvature of the baseline tax function. Importantly,

these formulas are written only as a function of empirically observable and easily interpretable

sufficient statistics.

We then show several applications of these results. First, we apply it to optimal taxation

problems and show how it recovers the hallmark results on optimal linear commodity taxation

of Diamond (1975) and non-linear labor taxation of static model of Mirrlees (1971), both of

which are special cases of our general environment. Our formulas emphasize the insight that

the same general principle underlies the two models, namely that more sophisticated (in this

case, non-linear) tax instruments allow the government to better target the distortions associ-

ated with higher tax rates toward the segments of the populations that have either relatively

small behavioral responses, or where relatively few individuals are affected. We then show that

this fundamental principle can be generalized and applies to more general environments. In

particular, we derive several novel predictions such as the optimality conditions for the optimal

non-linear capital income tax, or for the optimal labor tax on joint income of couples.

We next turn to the analysis of tax reforms, and refine our discussion of the close connec-

tion that exists between the effects of the various tax instruments (age-dependent, non-linear,

joint taxes). We sequentially decompose the welfare gains of reforming existing, not necessarily

optimal, tax systems as the tax instruments become more sophisticated. We show the effects

of taking into account individuals’ intertemporal optimization decisions, of allowing for age-

and history-dependence, and of joint conditioning of labor and capital income. This sequential

decomposition of increasingly sophisticated tax systems shows that the welfare effects of general

tax reforms depend on aggregate measures of three key elements: the marginal social welfare

weights, which summarize the government’s redistributive objective; the labor and capital in-

come elasticities and income effect parameters with respect to the marginal income tax rates,

which capture the behavioral effects of taxes; and the properties of the labor and capital income

distributions, namely the hazard rates of the marginal and joint distributions.

Finally, we show how one can use easily available empirical moments of income distributions
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and elasticities to quantify the welfare effects of small tax reforms. Unlike the traditional ap-

proach to measuring welfare gains, which requires solving often difficult maximization problems

to find the optimum, our method is very transparent and can be done almost “by hand”. It

does not allow, however, to compute the gains from reforms that introduce large changes in the

existing tax system.

Our approach is most closely related to and builds on the work of Piketty (1997) and Saez

(2001). Like us, they extend the techniques of Ramsey (1927) and Diamond and Mirrlees (1971)

to non-linear taxation and obtain expressions for the optimal labor taxes in a unidimensional

static model in terms of the elasticities of labor supply and income hazard rates. Our paper

extends their approach to more general dynamic settings and allows the analysis of such ques-

tions as non-linear capital taxation or joint taxation of several incomes. We also show how this

approach can be used beyond optimal taxation, as we apply it to analyze tax reforms and welfare

gains from increased sophistication of tax systems. More broadly our approach is also related to

the “sufficient statistics” tax literature (e.g., Chetty 2009; Piketty, Saez, and Stancheva 2013).

Like these papers, we express our tax formulas in terms of a small number of empirically ob-

servable parameters, which fully characterize the effects of taxes for a large set of underlying

models, e.g., for very general utility functions, structures of heterogeneity, etc. Like us, Heath-

cote, Storesletten, and Violante (2014) characterize optimal taxes in dynamic models in terms

of easily interpretable parameters, but they restrict attention to specific functional forms which,

although more general than simple Ramsey (linear) instruments, are not necessarily a good ap-

proximation of the optimal schedules. Blundell and Shephard (2014) characterize numerically

the optimal tax system in a complex dynamic environment. We complement their analysis by

uncovering the theoretical forces which determine the effects of taxes. Our applications to age-

dependence is related to work of Kremer (2002) and Weinzierl (2012). Our contribution is to

uncover important sources of gains from using such tax instruments. Our work on capital tax-

ation also builds on some insights of Piketty and Saez (2013) and Straub and Werning (2014).

While these papers restrict the analysis to linear capital tax rates, we analyze the benefits of us-

ing non-linear capital taxes, and of jointly taxing labor and capital incomes. These instruments

are also analyzed by Albanesi (2011) and Shourideh (2012). Unlike them, however, we do not

aim to impose structure on the shocks and solve the mechanism design problem. Moreover, we

allow the set of tax instruments to be restricted, e.g., non-linear but separable from labor income

taxes, and we express our optimal tax formulas in terms of easily interpretable elasticities. The

joint taxation of factor income is related to the work of, e.g., Kleven, Kreiner and Saez (2009).

More generally, our paper relates to the literature on multidimensional screening problems, e.g.,

Rothschild and Scheuer (2014). While they are able to solve the complex bunching issues that

arise by collapsing their model to a one-dimensional problem, we find an assumption under

which such cases do not occur, allowing us to tackle the multidimensional problem directly.

The rest of the paper is organized as follows. Section 2 describes our environment. Sections 3

and 4 derive the responses of individual income, tax revenue and social welfare to perturbations
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Figure 1: Effective Federal Tax Rates (source: CBO 2005)

of the baseline tax system. Section 5 considers the applications of this approach to optimal

taxation. Section 6 considers the applications to tax reforms and the decomposition of welfare

gains from increasing sophistication of the tax system. Section 7 presents a brief overview of

the extension of our analysis to the stochastic model.

2 Environment

There is a measure one of agents in the economy. An agent lives for S ≤ ∞ periods, and

time is indexed by s = 1, . . . , S. At the beginning of period s = 1, there is a draw of an

exogenous vector of n characteristics θ ∈ Θ ⊂ Rn for each individual. These idiosyncratic

shocks can be, for instance, the individual’s initial level of capital stock k0, his sequence of

productivities, tastes, interest rates (i.e., investment opportunities), etc. over his lifetime. The

environment is deterministic: individuals know at the beginning of period s = 1 their entire

vector of characteristics θ.3

Given the draw of vector θ, the individual chooses in each period s ∈ {1, . . . , S} a level of

consumption cs, labor income ys, and savings or borrowings ks which yield capital income zs+1

in period s+1.4 The utility function U can be a general, not necessarily time-separable, function

of the vector of choices of consumption, labor income and capital income. We assume that the

3The deterministic environment allows us to show the main insights most transparently. We extend the analysis
to the stochastic environment Golosov, Tsyvinski and Werquin (2014), and present an overview in Section 7.

4The capital income in period s + 1 can be written as zs+1 = rs+1ks, where the interest rate rs+1 in each
period is exogenous. Our analysis allows the interest rate to be idiosyncratic, and thus the period-s savings ks to
yield any (deterministic) income zs+1 in the next period. The before-tax capital stock at the beginning of period
s+ 1 is thus ks + zs+1.

5



utility function is increasing and concave in each period’s consumption (and capital income if it

enters explicitly the utility function), decreasing and convex in each period’s labor income, and

twice differentiable in all of its variables. An example of the utility function which we use in

several applications is U =
∑S

s=1 β
s−1u (cs, zs/θs). In this case, θs is a shock to the productivity

of labor supply in period s.

In each period s ∈ {1, . . . , S}, the government levies a tax Ts. The tax liability Ts (·) in period

s is a non-linear function of the individual’s entire history of labor incomes {ys′}Ss′=1 and capital

incomes {zs′+1}Ss′=1.5,6 The sequence of tax functions {Ts (·)}Ss=1 is known to an individual at

the beginning of period s = 1, and the government can commit to it. The initial tax system

T thus consists of a set of tax functions Ts : RS+ × RS → R for each period s ∈ {1, . . . , S},
where each function Ts (·) maps a choice of labor and capital incomes x ∈ RS+ × RS to a

tax liability Ts (x) ∈ R. The tax function in period s, Ts

(
{ys′}Ss′=1 , {zs′+1}Ss′=1

)
, is assumed

twice continuously differentiable in all of its 2S variables, that is Ts ∈ C2
(
RS+ × RS ,R

)
for all

s ∈ {1, . . . , S}.7

The optimization problem of an individual with the vector of types θ is:

Uθ (T ) ≡ max
{cs,zs,rs+1ks}1≤s≤S

U
(
{cs}1≤s≤S , {ys}1≤s≤S , {zs+1}1≤s≤S ,θ

)
s.t. cs + ks = ys + (ks−1 + zs)− Ts

(
{ys′}1≤s′≤S , {zs′+1}1≤s′≤S

)
, ∀s.

(1)

We denote by xθ (T ) the argmax of this problem, i.e., the optimal choice of labor and capital

incomes of the individual θ as a function of the tax system T . That is, we define the individual

income functional as:

xθ (T ) = (yθ,1 (T ) , . . . , yθ,S (T ) , zθ,2 (T ) , . . . , zθ,S+1 (T ))′ .

The optimal choices of consumption {cθ,s}Ss=1 are then obtained from the budget constraints.

The budget constraint in period s imposes that the sum of consumption cs and savings ks is no

greater than the sum of labor income ys and capital income (ks−1 + zs), net of the tax liability

Ts.

We denote by Fθ (θ) the c.d.f. of vectors θ ∈ Θ, and fθ (θ) the corresponding density

function. We also denote by Fx (x) and fx (x) the c.d.f. and the p.d.f. of incomes x ∈ X ⊂
RS+ × RS , given the tax system T . We assume that the sets Θ and X of vectors of types θ

and incomes x are compact in Rn and RS+ × RS , respectively, and that the densities of types

5In a given period s, the planner can tax incomes earned in the future periods s′ > s because the model is
deterministic. We assume here that initial capital k0 is not taxed, because it is supplied inelastically and hence
does not induce any behavioral effects. Our formulas can be trivially extended to the case where it can be taxed.

6Throughout the paper we consider only capital income taxes and not wealth taxes. The same approach can
be used to analyze wealth taxation.

7In the deterministic model, we could without loss of generality write only one tax function, for instance TS (·).
Instead, we choose to define one tax function per period s, at the expense of slightly more cumbersome notation,
to make it easier to discuss age-dependent taxes and capital taxes in Sections 5 and 6.
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and incomes at the (piecewise smooth) boundaries ∂X and ∂Θ of the sets X and Θ are equal to

zero.8 We make the following assumption about the income vectors chosen by individuals with

different types θ:

Assumption 1. The map θ 7→ xθ (T ) between the vector of types θ and the vector of income

choices xθ (given the tax system T ) is injective. That is, if two individuals have a different

vector of types θ 6= θ′, they choose a different vector of incomes xθ (T ) 6= xθ′ (T ).

We explain below how our main results are affected in the case where Assumption 1 does

not hold, e.g., if the space of degrees of heterogeneity has a higher dimension than the space of

income choices.

We define the present discounted value of tax revenue as a function of the tax system T , or

tax revenue functional, as

R (T ) =

ˆ
Θ

[
S∑
s=1

βs−1Ts (xθ (T ))

]
dFθ (θ) , (2)

where β is the marginal rate of transformation of resources across periods for the government,

which we assume equal to the individual’s discount factor. Tax revenue is thus the sum over

time s ∈ {1, . . . , S} and over individuals θ ∈ Θ of individual tax liabilities, taking into account

the agents’ optimizing behavior given the tax system T .

We finally define the social welfare functional as a weighted average of the indirect utility

functions of individual agents and the tax revenue, as a function of the tax system T ,

W (T ) = λ−1

[
(1− α)

ˆ
Θ
G (Uθ (T )) dFθ (θ) + αV (R (T ))

]
, (3)

for some α ∈ [0, 1], where λ ≡ αV ′ (R (T )) denotes the shadow value of public funds. Here

V (R (T )) is a measure of the value of public goods that the government can provide with tax

revenues R (T ). The function G : R → R is defined over lifetime utilities of the individuals,

and is assumed continuously differentiable, increasing, and concave. The function V : R→ R is

continuously differentiable and increasing. Note that normalizing equation (3) by the marginal

value of public funds λ implies that social welfare is expressed in monetary units.

The tax system T considered so far is very general and allows for a rich set of non-linearities

and non-separabilities in taxing different incomes at different dates. In practice, we are often

interested in more restrictive classes of tax systems. For example, the classic Ramsey analy-

sis restricts the tax functions to be separable and linear in each income (e.g., Ramsey 1927,

Diamond and Mirrlees 1971, Diamond 1975). Another strand of the literature focuses on the

analysis of separable but non-linear tax functions, (e.g., Mirrlees 1971, Diamond 1998, Saez

2001, Heathcote, Storesletten, and Violante 2014). More generally, the New Dynamic Public

8In some applications of Sections 6 and 5, we let incomes evolve in the whole space RS+ ×RS . Our theory can
be generalized to this case by using an increasing sequence of compact sets X ⊂ RS+ × RS .
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Finance literature (e.g., Kocherlakota 2005, Farhi and Werning 2012, Golosov, Troshkin, and

Tsyvinski 2014) emphasizes the benefits of jointly taxing different incomes, namely labor and

capital incomes within periods, or labor incomes across periods (history-dependent taxation),

so that the tax rate on income i depends not only on its own level xi, but also on the levels xj

of other incomes j 6= i. When we impose such constraints on the tax system T , we say that T

is “restricted within a class” (e.g., of linear separable, non-linear separable, etc., tax functions).

Our paper focuses on several conceptually distinct, but closely related questions. First, we

analyze the revenue or welfare gains and losses of small perturbations of any baseline tax system

T 0. We refer to such changes as tax reforms. Suppose in particular that the tax system T 0

is restricted within a certain class. By deriving the effects of reforms that keep the perturbed

tax system within this class, we can shed light on the economic parameters that determine

whether the existing tax system is (constrained) optimal, and derive the potential welfare gains

obtained by reforming it. Moreover, we can analyze reforms that induce the tax system to

leave its restricted class. For instance, we can introduce (a small amount of) non-linearity,

age-dependence, history-dependence or joint taxation within a baseline linear, age-independent,

or separable tax system. This allows us to sequentially decompose the gains arising from each

additional element of reform as the tax code becomes more sophisticated. Second, we derive

characterizations of the optimal tax system, or the optimum within a certain class. These

two questions are closely related, because the characterization of the optimum is obtained by

imposing that the net welfare effect of any tax reform is non-positive if the baseline tax system

T 0 is optimal.

3 Behavioral Effects of Tax Reforms

In this section, we formally define the admissible perturbations of the initial tax system, i.e., our

tax reforms, and study their effect on individual behavior. We start with a baseline tax system

T 0 =
{
T 0
p

}
1≤p≤S , and consider another tax system H = {hp}1≤p≤S . The system H consists

of a set of tax functions hp : RS+ ×RS → R for each period p ∈ {1, . . . , S}, as defined in Section

2. Our goal is to analyze the revenue and welfare effects of reforming the baseline tax system

T 0 “in the direction H ”. Formally, for µ ∈ R∗+, we then define the perturbed tax system T̃ as

T̃ = T 0 +µH . That is, the perturbed tax function in any period p is given by T̃p = T 0
p +µhp.

We then derive the change in tax revenue or social welfare following this perturbation as µ→ 0.

Hence, we compute the Gateaux differential of the tax revenue and social welfare functionals,

following the local perturbation of the baseline tax system T 0 in the direction H .

We can decompose this general perturbation H of the tax system into its period-p com-

ponents hp : X → R, which only affect the period-p baseline tax function Tp : RS+ × RS → R.

The total effect of the perturbation H is then equal to the sum over periods p of the effects of

the elementary perturbations hp. Without loss of generality we can thus restrict the analysis to

perturbations of a given period-p tax function Tp (·), and keep the rest of the baseline tax system
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T 0 unchanged. We therefore define an admissible perturbation of the baseline tax function Tp (·)
as a twice continuously differentiable function hp ∈ C2 (X,R). For any µ > 0, we then define

a perturbed function in period p as T̃p = Tp + µhp, and study the effects of this tax reform as

µ→ 0.

We say that the perturbation hp is restricted within a class if it leaves the perturbed tax

system T̃ in the same class (e.g., of linear, separable, etc., tax systems) as the baseline tax

system T 0. As a first step towards deriving the effects on social welfare and tax revenue of the

perturbation hp, we characterize in this section its effects on the optimal individual behavior.

That is, we compute the Gateaux differential of the individual income functional xθ

(
T 0
)

in

the direction hp.

We first characterize the solution to the problem (1) of individual θ, i.e., his choice of incomes

xθ ∈ X given a tax system T , which can be either the baseline tax system T 0 or the perturbed

tax system T̃ . We denote by {xθ,j}1≤j≤2S the components of the income vector xθ, that is

the labor incomes ys and capital incomes zs in each period s ∈ {1, . . . , S}. The system of

the first-order conditions that characterizes the individual’s income vector given the tax system

T = {Ts (·)}1≤s≤S is:

F
(
xθ, {∇T s (xθ)}1≤s≤S , {Ts (xθ)}1≤s≤S ,θ

)
= 0, (4)

for some function F : R2S × R(2S×S) × RS × Θ → R2S . (4) is a non-linear system of 2S

equations, with 2S variables; its solution is the set of Marshallian (uncompensated) labor and

capital income chosen by the individual θ given the tax system T . For j ∈ {1, . . . , 2S}, the

jth equation of the system (4), which is given by the jth component of the function F , is the

first-order condition of the individual’s problem (1) for the jth income xθ,j = yj if 1 ≤ j ≤ S and

xθ,j = zj−S+1 if S+1 ≤ j ≤ 2S. The choice of income xθ,j of the individual with characteristics

θ depends on: (i) the other income choices xθ ∈ R2S (first argument of the function F ); (ii)

the 2S marginal tax rates that he faces in every direction xi ∈ R2S , i.e. the gradient vector

∇T s (xθ), for every period s ∈ {1, . . . , S} (second argument of F ); and (iii) the total tax liability

that the individual pays, that is the height of the tax function Ts (xθ) (third argument of F ).

These first-order conditions allow us to define the linearized budget constraints of the indi-

vidual with labor and capital incomes xθ, by replacing the tax function Ts (·) with its tangent

hyperplane at point xθ. This individual hyperplane is entirely characterized by its normal vec-

tor (the gradient of the tax function) at point xθ, and its intercept. Specifically, we define the

period-s marginal tax rates in each direction j,
{
τs,xj

}
1≤j≤2S

, and the virtual income Rs that

an individual with the income vector xθ faces, as

τs,xj (xθ) ≡ ∂Ts (xθ)

∂xθ,j
and Rs (xθ) ≡ 〈∇Ts (xθ) ,xθ〉 − Ts (xθ) . (5)

The tangent hyperplane is then defined by the individual’s marginal tax rates and virtual income
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(5) as Hs (xθ) = −Rs (xθ) +
∑2S

j=1 τs,xj (xθ)xj . In particular, the virtual income Rs (xθ) is the

income that the individual would have if he faced this linearized tax function and earned no

labor or capital income, i.e., xj = 0 for all 1 ≤ j ≤ 2S. The linearized budget constraint in

each period s, Hs (xθ), has (2S + 1) coordinates (2S marginal tax rates
{
τs,xj

}
1≤j≤2S

and the

virtual income Rs) that can be perturbed.

We can then define in the usual way the individual elasticities and income effect parameters of

the income vector xθ corresponding to each of these perturbations, keeping the other coordinates

equal. The uncompensated elasticity ζ
u,(xθ)
xi,τs,xj

is the percentage change in the ith income choice

xθ,i in response to a percentage change in the marginal tax rate τs,xj that the individual faces

in the direction of income xj . More precisely, for each s ∈ {1, . . . , S}, we define these elasticities

with respect to the marginal tax rates τs,yj , τs,zj if j 6= s, and with respect to the net-of-tax

rates 1 − τs,ys , 1 − τs,zs otherwise. Finally, the income effect parameter η
(xθ)
xi,Rs

is the change in

the income xθ,i in response to a shift of the linearized budget constraint Hs (xθ), weighted by

the marginal or net-of tax rate on income xi. Note that for each period s, there are 2S × 2S

uncompensated elasticities (change in the ith income due to a perturbation in the jth direction),

and one income effect parameter. Hence we define:

ζ
u,(xθ)
xi,τ̂s,xj

=
τ̂s,xj (xθ)

xθ,i

∂xθ,i
∂τ̂s,xj

and η
(xθ)
xi,Rs

= τ̂s,xi (xθ)
∂xθ,i
∂Rs

, (6)

where in these expressions τ̂s,x denotes either the marginal tax rate τs,x, or the net-of-tax rate

1−τs,x (if x ∈ {ys, zs}). Next, we define the compensated elasticities ζ
c,(xθ)
xi,τ̂s,xj

, i.e., the percentage

change in the Hicksian demands in response to percentage changes in the marginal or net-of tax

rates, from the Slutsky equations as:

ζ
c,(xθ)
xi,τ̂s,xj

= ζ
u,(xθ)
xi,τ̂s,xj

±
τ̂s,xj (xθ)

τ̂s,xi (xθ)

xθ,j
xθ,i

η
(xθ)
xi,Rs

, (7)

where ± stands for − if xj ∈ {ys, zs}, and + otherwise. We derive in the Appendix analytical

expressions for all these elasticities and income effect parameters.9 We finally define the 2S×2S-

matrix E
c,(xθ)
x,τs of changes in compensated income xi with respect to the period-s marginal tax

rates τs,xj , and the 2S × 1-vector I
(xθ)
x,Rs

of changes in income xi with respect to the period-s

virtual income Rs, that is,

[
E
c,(xθ)
x,τs

]
i,j

=
∂xcθ,i
∂τs,xj

and
[
I

(xθ)
x,Rs

]
i

=
∂xθ,i
∂Rs

. (8)

The elements of these matrices can be expressed in terms of the compensated elasticities and

income effect parameters (6,7) by multiplying by the corresponding marginal or net-of tax rate

9In the general model, these expressions are of course complicated. We show in Section 6 that they significantly
simplify if the utility function has no income effects on labor supply and the baseline tax system is separable.
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and dividing by the corresponding income.10

We now analyze the change in an individual’s income vector xθ in response to an admissible

perturbation hp of the period-p tax function Tp. The main difficulty in analyzing the effects of

tax reforms is that the individual’s demand xθ depends on the characteristics of the separating

hyperplane Hp (xθ) that he faces (i.e., the gradient and virtual income of the tax function),

which in turn are determined by the vector of incomes xθ that the individual optimally chooses.

Therefore a perturbation of the individual’s hyperplane has a direct effect on his demand, which

in turn induces a shift in his hyperplane if the baseline tax function is non-linear. The key

intermediate step of our analysis is to provide a sufficient condition on the individual demand

which allows us to solve this circularity issue. This condition, which states that the demand is

“well behaved” in a formal sense, will allow us to derive the change in income of each individual

due to a perturbation using only the local income and substitution effects at the individual level,

and the curvature of the baseline tax system. We specifically make the following assumption

about the income functional xθ (·):11

Assumption 2. The income functional xθ (·) is locally Lipschitz continuous in every direction

hp at the initial tax system Tp. That is, for any admissible perturbation hp ∈ C2 (X,R), there

exist µ̄ > 0 and M > 0 such that µ < µ̄ implies ‖xθ (Tp + µhp)− xθ (Tp)‖ < M × µ.

This assumption formalizes the idea that individuals’ income choices do not change by a

discrete amount in response to infinitesimal admissible perturbations of the initial tax system.

Note that this assumption is stronger than the continuity of the income correspondence at the

initial tax system in the direction hp. It requires that as the magnitude of the tax reform

shrinks to zero, the size of the change in the individual’s income vector shrinks to zero at a rate

at least as fast as that of the perturbation. This assumption implicitly imposes restrictions on

the baseline tax system T 0. It requires that every individual’s choice of income vector is located

at a strict maximum of his choice set, so that no one in the economy is indifferent between two

income vectors xθ and x′θ under the initial tax system T 0. Hence this assumption rules out

the cases where small changes in taxes have large effects on demand, which implicitly precludes

bunching.12

Using Assumption 2, we are now able to derive formally the change in individual behavior

in response to a perturbation hp of the baseline tax system, that is the Gateaux differential

of the individual income function in the direction hp. In response to this perturbation, all the

10Note that in general, the elasticities and income effect parameters depend on the value of the vector of types
θ. That is, if two individuals choose the same vector x of labor and capital incomes but have different vectors of
exogenous characteristics θ, their responses to changes in the tax rates, i.e. their elasticities ζ

u,(xθ)
xi,τs,xj

, are different.
Assumption 1, however, implies that these elasticities depend only on x and not directly on θ.

11We denote by xθ (Tp) the vector xθ

(
T 0
)

of income choices for the individual θ given the baseline tax system
T 0.

12The literature on multidimensional screening (see, e.g., Rochet and Choné 1998) highlights the issues that
bunching creates in the multidimensional case, as non-local incentive constraints may bind. We leave it for future
research to explore conditions on the primitives of the model that ensure that Assumption 2 is satisfied.
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labor and capital incomes chosen by the individual change simultaneously. We show that despite

the apparent complexity of the problem, we can derive, using the matrix notations introduced

above, a compact and transparent formula giving the change in individual’s behavior following

any such perturbation. We express these behavioral responses in terms of: (i) the elasticities

and income effect parameters (6,7) of the individual, and (ii) the local characteristics (gradient

and Hessian) of the baseline tax function. We view the derivation of the formula in the next

proposition and, most importantly, its compact and transparent representation, as one of the

main contributions of this paper.

Proposition 1. Suppose that Assumption 2 is satisfied. Then the income functional xθ (·)
is Gateaux differentiable around the initial tax system. Its Gateaux differential at Tp in the

direction hp, δxθ (Tp, hp) ∈ R2S, is given by:

δxθ (Tp, hp) =

[
i2S −

S∑
s=1

E
c,(xθ)
x,τs D2Ts (xθ)

]−1 {
E
c,(xθ)
x,τp ∇hp (xθ)− I(xθ)

x,Rp
hp (xθ)

}
, (9)

where i2S the 2S × 2S identity matrix, and D2Ts (x) the Hessian of the tax function Ts (·).

Proof. See Appendix.

We now sketch the main steps of the proof of Proposition 1. The individual’s behavior under

the baseline tax function Tp (resp., the perturbed tax function T̃p = Tp+µhp) is described by the

system of first-order conditions (4) which lead him to choose the income vector xθ (resp., x̃θ).

The first step is to write a Taylor expansion in the direction hp of the perturbed set of equations,

which yields the first-order (in µ) change in the income vector, x̃θ − xθ. The local Lipschitz

continuity of the income functional around the baseline tax system, Assumption 2, is the key to

address the circularity issue discussed above, as it ensures that the change in income remains

first-order in the size µ of the perturbation despite the feedback effect on demand generated by

the endogenous shift of the tangent hyperplane along the baseline tax function. The second step

consists of using the analytical expressions for the elasticities that we derive in the Appendix

to show that this Gateaux differential δxθ (Tp, hp) can be expressed in terms of the matrices

of elasticities and income effect parameters (8), and the gradients and the Hessians of the tax

functions.

We finally provide the intuition underlying formula (9). The change dxθ = x̃θ − xθ in the

individual’s income vector induced by the perturbation hp is the consequence of two effects. First,

there is a direct elasticity effect due to the exogenous change in the marginal tax rates ∇hp (xθ)

(the first 2S components of the linearized budget constraint Hp (xθ)) that the individual faces,

and a direct income effect due to the exogenous change dRp = (−hp (xθ)) in the virtual income

(i.e., a lump-sum change in the total tax liability Tp (xθ), corresponding to a vertical shift of

the linearized budget constraint Hp (xθ)). This direct (elasticity plus income) effect is equal

to E
c,(xθ)
x,τp ∇hp (xθ) + I

(xθ)
x,Rp

(−hp (xθ)), by definition of the matrix of compensated elasticities
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E
c,(xθ)
x,τp and the vector of income effect parameters I

(xθ)
x,Rp

. Second, this shift of the taxpayer xθ

along the non-linear tax function by dxθ produces an additional change in the marginal rates

in all periods s ∈ {1, . . . , S} equal to d (∇Ts) (xθ) =
(
D2Ts (xθ)

)
dxθ. This induces indirect

elasticity effects, leading to a further change in the income vector xθ. Note that since the vector

xθ is taxed in every period, there is such an indirect elasticity effect E
c,(xθ)
x,τs d (∇Ts) (xθ) in every

period s ∈ {1, . . . , S}. Therefore, we obtain that the individual changes his income vector xθ in

response to the perturbation by an amount

dxθ =
[
E
c,(xθ)
x,τp ∇hp (xθ)− I(xθ)

x,Rp
hp (xθ)

]
+

[
S∑
s=1

E
c,(xθ)
x,τs D2Ts (xθ)

]
× dxθ, (10)

which leads to equation (9).13 The first bracket of (10) is the standard direct effect of perturbing

the individual hyperplane, which would completely characterize the change in the individual de-

mand if the tax functions were linear. The second bracket is the indirect effect of the endogenous

adjustment in the hyperplane due to the shift in the individual demand and the non-linearity

of the baseline tax system.

Proposition 1 is useful, because it allows us to express the response of any individual’s

choice of labor and capital incomes following any local perturbation of the baseline tax system,

without having to solve for the optimization problem (1), and describe this response in terms of

empirically observable and easily interpretable parameters. To do so, we substitute the values of

the specific perturbation function hp, i.e., its marginals ∇hp (xθ) and its level hp (xθ) at point

xθ, into equation (9). Importantly, this characterization is valid in very general settings and

holds regardless of the specific dimensions of heterogeneity, utility functions, tax systems, etc.,

as long as the individual’s first-order conditions and Assumption 2 are satisfied.

We conclude this section by providing two examples of application of formula (9). First,

suppose that the baseline tax system and the perturbation are both separable and linear in

incomes. That is, for all s = 1, . . . , 2S, an individual who earns income xs pays the tax liability

τs,xsxs in the corresponding period in the baseline tax system. We consider the separable linear

perturbation hp on income xp in a given period p, defined by hp (xp) = xp. For a given µ > 0,

the perturbed tax schedule on income xp is therefore given by T̃p (xp) =
(
τp,xp + µ

)
xp, for all

xp ∈ R. Intuitively, this perturbation increases the marginal tax rate τp,xp on income xp in

period p for all individuals by the same amount µ > 0, and independently of their other income

choices; for this reason we call this reform a linear separable perturbation. This perturbation has

an effect on all the (labor and capital) income choices {xs}1≤s≤2S that individuals choose. The

first-order change as µ → 0 in the individual income xs is given by the sth component of the

13If Assumption 1 is not satisfied, then we define dx as the average of the expression (9) over all individuals
θ who choose the same vector x. If the initial tax system is locally linear around the point x, then this average

behavioral response is simply given by dx̄ = E
c,(x)
x,τp ∇h (x)−I(x)x,Rp

h (x), where E and I are the matrices of average
elasticities and income effect parameters among these individuals.
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Gateaux differential vector δxθ (Tp, hp) derived in (9).14 Therefore, applying formula (9) implies

that an individual with income vector x under the baseline tax system adjusts his income xs in

every period s following the perturbation hp by the amount:

lim
µ→0

dxs
µ

= − xs
1− τp,xp

ζ
c,(x)
xs,1−τp,xp −

η
(x)
xs,Rp

1− τp,xs
xp = − xs

1− τp,xp
ζ
u,(x)
xs,1−τp,xp . (11)

Second, consider the static Mirrlees model (S = 1) with a non-linear labor income tax

schedule T (y), and let hτ denote the perturbation of the baseline tax schedule defined by

hτ (y) = max {y − ŷ, 0}, for some fixed income level ŷ ∈ R. For a given µ > 0, the perturbed

tax schedule is therefore given by T̃ (y) = T (y) if y < ŷ, and T̃ (y) = T (y) + µ (y − ŷ) if y ≥ ŷ.

Intuitively, this perturbation increases the marginal tax rate T ′ (y) faced by individuals above

the income threshold ŷ by the same amount µ > 0. Note that this perturbation introduces a kink

in the tax system at ŷ, and hence strictly speaking it is not admissible. We smooth out the kink

by defining instead the admissible perturbation h̃τ as h̃τ (y) = hτ (y) for all y /∈ [ŷ − u, ŷ + u] for

some small u > 0, and letting h̃τ be smooth and monotonic between ŷ− u and ŷ+ u. Applying

formula (9), we obtain that an individual with income y > ŷ+u adjusts his behavior in response

to the perturbation h̃τ by the amount:

lim
µ→0

dy

µ
= −

y
1−T ′(y)ζ

c,(y)
y,1−τy

1 + y
1−T ′(y)ζ

c,(y)
y,1−τyT

′′ (y)
−

1
1−T ′(y)η

(y)
y,R

1 + y
1−T ′(y)ζ

c,(y)
y,1−τyT

′′ (y)
(y − ŷ) .

Next, consider the perturbation hR defined by hR (y) = 1, so that for a given µ > 0, the

perturbed tax schedule is therefore given by T̃ (y) = T (y) + µ. Intuitively, this perturbation

increases the total tax liability faced by individual y by the amount µ > 0. Applying formula (9),

we obtain that an individual with income y adjusts his behavior in response to the perturbation

h̃R by the amount:

4 Welfare Effects of Tax Reforms and Optimal Tax System

Having defined the perturbations and described the effects that they induce on individual be-

havior, we now derive the revenue and welfare effects of these tax reforms, and characterize

the optimal tax system. Specifically, we start from a baseline tax system, which can be sub-

optimal or optimal. We locally perturb this tax system with tax reform, as defined above.

Our first result (Proposition 2) describes the revenue and welfare effects of these local tax re-

14For any xθ, the gradient ∇hp (xθ) of the perturbation hp is the 2S-vector whose only non-zero component is
in row p and is equal to 1. In particular, the marginals of the perturbation hp do not depend on an individual’s
income. The Hessian matrices D2Ts (xθ) of the baseline tax system are equal to zero, because the baseline tax

schedule on every income xs is linear. The 2S× 2S-matrix E
c,(xθ)
x,τp in equation (9) has components

[
E
c,(xθ)
x,τp

]
i,j

=

∂xci/∂τp,xj = − xi
1−τp,xj

ζ
c,(xθ)
xi,1−τp,xj

. The 2S-vector I
(xθ)
x,Rp

has components
[
I
(xθ)
x,Rp

]
i

= ∂xi/∂Rp =
η
(xθ)
xs,Rp

1−τp,xs
.
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forms. Formally, we compute these local effects as the Gateaux differentials of the revenue and

social welfare functionals. These give the sign and the magnitude of the potential gains that

arise from reforming the current, potentially suboptimal, tax code. If the perturbation yields

a strictly positive (revenue or welfare) effect, then the corresponding tax reform is (revenue

or welfare)-improving and should be implemented. The second result that our theory yields

(Proposition 3) is a characterization of the globally optimal tax function. Specifically, the base-

line tax system is optimal only if there is no local tax reform that yields a strict improvement.

Characterizations of the revenue-maximizing or welfare-maximizing tax systems are therefore

obtained by setting the Gateaux differentials of the corresponding functionals equal to zero for

any admissible perturbation. Note finally that a similar reasoning yields a characterization of

the optimum tax system within a restricted class (e.g., of linear, separable, etc., tax systems),

by restricting the analysis to the perturbations within the corresponding class.

We start by defining the social marginal welfare weights gs (x) that the planner assigns

to agents with various income choices. These weights are defined such that the government

is indifferent between having gs (x) more dollars of public funds in period s and giving one

more dollar in period s to the taxpayers with choice vector x. The smaller gs (x), the less

the government values marginal consumption of individuals x. We formally define the period-s

social marginal welfare weight associated with an individual with the choice vector x (and type

θ such that xθ = x) as15

gs (x) ≡ 1− α
λ

β−(s−1)G′ (Uθ (T ))Ucs (θ) . (12)

Intuitively, the envelope theorem implies that an additional dollar of revenue increases the indi-

vidual’s indirect utility by dU = Ucs , and social welfare increases by d [G (U )] = G′ (U ) dU =

G′ (U )Uct . We express this welfare gain in terms of the value of public funds (that is, in

monetary units) by dividing this expression by the multiplier λ.

We now characterize the revenue and welfare effects of local tax reforms. Formally, we fix a

period p and compute the Gateaux differential of the social welfare W (·) and the tax revenue

R (·) following a perturbation of the baseline tax function Tp in the direction hp ∈ C2 (X,R).

We show:

Proposition 2. Suppose that Assumptions 1 and 2 are satisfied. The Gateaux differential of

social welfare at the baseline tax system Tp in the direction hp, is equal to

δW (Tp, hp) =

ˆ
X

{[
βp−1 (1− gp (x))− T ′ (x)D−1 (x) I

(x)
x,Rp

]
fx (x)hp (x)

+
[
T ′ (x)D−1 (x)E

c,(x)
x,τp

]
fx (x)∇hp (x)

}
dx,

(13)

15If Assumption 1 is not satisfied, then the social marginal welfare weight gs (x) should be defined as the average
of the expression (12) over all individuals θ who choose the same vector x.
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where D (x) ≡ i2S −
∑

sE
c,(x)
x,τs D

2Ts (x), and T ′ (x) ≡
∑

s β
s−1 (∇Ts (x))′ is the discounted sum

of the gradients of the baseline tax functions Ts (·).16 This expression can be equivalently written

as

δW (Tp, hp) =

ˆ
X

{
βp−1 (1− gp (x)) fx (x)− T ′ (x)D−1 (x) I

(x)
x,Rp

fx (x)

−∇ ·
(
T ′ (x)D−1 (x)E

c,(x)
x,τp fx (x)

)}
hp (x) dx.

(14)

The perturbation increases (resp., decreases), social welfare if δW (Tp, hp) ≥ 0 (resp., ≤ 0). The

Gateaux differential of the tax revenue functional, δR (Tp, hp), is given by equations (13,14) in

which gp (x) is replaced with 0. The perturbation increases (resp., decreases), tax revenue if

δR (Tp, hp) ≥ 0 (resp., ≤ 0).

Proof. See Appendix.

Formulas (13) or (14) give the effects on social welfare of any local perturbation of the

baseline tax system in the direction hp. Equation (13) is obtained from the following formula,

which follows from the definition (3) of social welfare and is formally derived in the Appendix:

δW (Tp, hp) = λ−1

[
(1− α)

ˆ
X

{
−G′ (Ux)Ucp (x)

}
hp (x) fx (x) dx

αV ′ (R)

ˆ
X

{
βp−1hp (x) + T ′ (x) δx (Tp, hp)

}
fx (x) dx

]
,

(15)

where δx (Tp, h) denotes the Gateaux differential of the individual income functional derived

in (9). The change in social welfare following the perturbation hp comes from the effect on

the individuals’ utilities (the first term in (15)) and the effect on the public goods through the

change in tax revenue (the second term in (15)). Equation (14) is then obtained by integrating

(14) by parts, using our assumption that there is no mass of individuals at the boundary of the

set X at the baseline tax system. Intuitively, the first term in equation (15) is the mechanical

effect, net of the welfare loss, of the perturbation hp, and the second term is the behavioral

effect of the tax reform. The mechanical effect captures the increase in government revenue

due to the tax reform, assuming that individuals do not change their behavior in response to

the perturbation. An individual with income x before the perturbation pays the additional tax

liability hp (x) in period p after the perturbation. By definition of the marginal social welfare

weights (12), this induces a loss in social welfare, expressed in units of tax revenue, equal to

gp (x)hp (x). Summing over all individuals x ∈ X using the density of incomes fx (x) yields

the first integral in (15). Next, the behavioral effect of the perturbation captures the change

in government revenue due to the behavioral response of individuals whose vector of labor and

capital incomes x is affected by changes in the marginal tax rates or the virtual incomes. We

derived in Proposition 1 the change dx = δx (Tp, hp) in each individual’s income vector x induced

16For instance the first component of the 2S-row vector T ′ (x) is the sum of the marginal tax rates on first-period
labor income y1 that the individual pays in every period of his life.
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by the perturbation hp. This induces in turn a change in government’s revenue in every period

s, given by d [Ts (x)] = (∇Ts (x))′ dx. The overall behavioral effect of the perturbation is thus

equal to the second integral in (15). Finally, the effect on government revenue is identical to

the effect on social welfare, except that we do not take into account the welfare loss of the

perturbation described above. We call the perturbation hp budget-neutral if δR (Tp, hp) = 0.

Formula (14) (or equivalently (15)) allows to compute in a wide variety of settings the effects

on social welfare of any local tax reform hp of the baseline tax system, by simply substituting

the values hp (x) of the corresponding perturbation in the integral of (14). We analyze several

examples of application of this result in Sections 5 and 6.

Moreover, we can use formula (14) to characterize the optimal tax system, or the optimum

within a restricted class. Specifically, if the baseline tax system is optimal (possibly within a

class) then there is no tax reform (within the corresponding class) that yields a positive effect

on social welfare. Thus, by equating the Gateaux differential of social welfare for any such

perturbation to zero, we obtain the optimum tax system. We obtain the following proposition:

Proposition 3. Suppose that Assumptions 1 and 2 are satisfied. Then:

- A necessary condition for the baseline tax function Tp to be optimal (resp., optimal within

a class) is that, for any perturbation hp ∈ C2 (X,R) (resp., for any perturbation restricted within

this class), we have

δW (Tp, hp) = 0. (16)

- In particular, applying (16) to the class of separable linear perturbations,17 we obtain that

the optimum separable linear tax system is characterized by, for all p ∈ {1, . . . , 2S}:

0 =

ˆ
X

{
βp−1 (1− gp (x))xp +

[
T ′ (x)E

c,(x)
x,τp,xp − xpT

′ (x) I
(x)
x,Rp

]}
fx (x) dx, (17)

where E
c,(x)
x,τp,xp is the pth column of the matrix E

c,(x)
x,τp .18

- In particular, applying (16) to the class of all admissible perturbations, we obtain that

the baseline tax system is the full optimum if, for any compact volume V ⊂ X with closed and

piecewise smooth boundary S = ∂V, we have, for all p ∈ {1, . . . , 2S}:

0 =

ˆ
V
βp−1 (1− gp (x)) fx (x) dx−

ˆ
V

(
T ′ (x)D−1 (x) I

(x)
x,Rp

)
fx (x) dx

+

ˆ
∂V

(
T ′ (x)D−1 (x)E

c,(x)
x,τp · −→n (x)

)
fx (x) dS (x) ,

(18)

where −→n (x) is the inward-pointing unit normal vector of the closed surface S at point x.

17The linear separable perturbations are defined (see Section 3) by hp (x) = xp and [∇hp (x)]j = 1{j=p}, i.e.,

the only non-zero component of the gradient of hp is in row p. Since the baseline tax system is linear, D−1 (x) is
equal to the 2S × 2S-identity matrix. Substituting into formula (13) leads to expression (17).

18The vector E
c,(x)
x,τp,xp

gives the response of the income vector x to a change in the marginal tax rate in the
direction xp only, i.e., ∂x/∂τp,xp .
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Proof. See Appendix.

Proposition 3 has three parts. First, equation (16) formalizes the intuition that the baseline

tax system is optimal (resp., optimal within a class) if no tax reform (resp., no tax reform that

leaves the tax system within the corresponding class) induces a non-zero welfare gain. It is a

standard first-order condition which should be satisfied by any perturbation (possibly within a

restricted class), and thus provides a general characterization of the optimality of any tax system.

The second and third parts of Proposition 3 show two examples of application. Equation (17)

characterizes the optimal separable linear tax system, that is the set {τxs}1≤s≤2S of constant

marginal tax rates on each income xs. Note that the optimal linear tax system is such that

the total mechanical (net of the welfare loss) and behavioral (elasticitiy and income) effects,

averaged over the whole population of individuals x ∈ X, must sum to zero. This is because

in a linear tax system, all the individuals face the same marginal tax rate, so that the feasible

tax reforms increase the tax rates by the same amount for every individual in order to leave the

perturbed tax system within this class.

Equation (18) characterizes the fully optimal (in particular, non-linear and non-separable)

tax system. We obtain this expression by imposing that every perturbation hp yields a zero

welfare effect, so that the integrand in equation (14) must be equal to zero pointwise. Integrating

the resulting equation over any volume V ⊂ X with closed boundary S = ∂V must therefore

have a zero effect. We then obtain formula (18) as a consequence of the divergence theorem,

which separates the total behavioral effect of the tax reform into its components in the interior

and on the surface of the volume V. To understand the intuition underlying this formula,

suppose that the government wants to raise revenue by increasing uniformly and in a lump-

sum way the tax liability of individuals with income in the region x ∈ V. This mechanically

increases the government’s revenue, since all the individuals in the region V now pay higher

taxes; summing the individual mechanical effects (net of the welfare losses) over the region V

yields the first integral in equation (18). Moreover, these individuals respond to the lump-sum

increase in their tax liability by adjusting their incomes, as captured by the vector of income

effect parameters I
(x)
x,Rp

; summing these behavioral effects over all the individuals in the region

V yields the second integral in (18). Finally, the government can only raise the lump-sum tax

liability in the region V by increasing the marginal tax rates of the individuals located on the

boundary of V, that is those with income x on the surface S = ∂V. These individuals respond

to this higher distortion by adjusting their incomes, as captured by the matrix of compensated

elasticities E
c,(x)
x,τp ; summing these behavioral effects over all the individuals on the boundary

S = ∂V yields the third integral in (18). Formula (18) thus shows that the optimal tax system

is such that, for any region V of the space X ⊂ RS+ × RS , the elasticity effect induced by the

additional distortion on the boundary ∂V exactly compensates the mechanical and the income

effects due to the lump-sum tax increase inside the region V.

To show an example of application, consider the static Mirrlees model with a single income
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dimension y ≥ 0, and apply formula (18) to the volume V = [ŷ,∞), for some income level ŷ.19

The boundary of V is the singleton ∂V = {ŷ}; its inward pointing unit normal −→n (x) is the real

number 1. We obtain

0 =

ˆ ∞
ŷ

(1− g (y)) fy (y) dy −
ˆ ∞
ŷ

T ′ (y)
1

1 + y
1−T ′(y)ζ

c,(y)
y,1−τyT

′′ (y)

η
(y)
y,R

1− T ′ (y)
fy (y) dy

−

T ′ (ŷ)
1

1 + ŷ
1−T ′(ŷ)ζ

c,(ŷ)
y,1−τyT

′′ (ŷ)

ŷζ
c,(ŷ)
y,1−τy

1− T ′ (ŷ)
fy (ŷ)

 .
(19)

This equation is the analogue of (18) for the static model, derived in Saez (2001).20 In particular,

the third term of (19) (in the square brackets) is the analogue of the third term in (18), i.e.,

the integral over the boundary ∂V. Intuitively, in order to raise the lump-sum tax liability of

individuals with income y ∈ [ŷ,∞) (the region V, which generates a mechanical effect and an

income effect given by the first two terms of (19)), the government must increase the marginal

tax rate at the income level y = ŷ (the surface ∂V, which generates an elasticity effect given by

the third term of formula (19)).21 We discuss the economic intuition further in more detail in

Section 5.3.

Equations (17) and (18) highlight the source of the gains that arise from using more sophis-

ticated tax systems. In the case of the optimal separable linear tax system (17), the mechanical

and behavioral effects of any feasible perturbation must cancel out on average over the whole

population x ∈ X. On the other hand, in the case of the fully optimal tax system, these oppos-

ing forces must cancel out pointwise, that is over every region x ∈ V. Using more sophisticated

tax instruments allows the government to “fine-tune” optimally the distribution of distortions

within the population, whereas a linear tax system is constrained to imposing the same tax rate

on every individual, and hence to balance the increase in tax revenue against a measure of the

average distortion in the economy. The unrestricted government can thus choose appropriately

the volume V so that the distortions induced by the higher marginal tax rates on the boundary

∂V are small relative to the benefits of higher lump-sum taxes in the interior of V, because either

the fraction of individuals fx (x) dS (x) or the behavioral responses to distortions D−1 (x)E
c,(x)
x,τp

on the boundary ∂V are relatively small. We discuss this general principle in greater detail in

Sections 5 and 6 below.

19Rigorously, to apply formula (18), we need to work with a compact volume [ŷ, ŷ′], with an additional boundary
{y = ŷ′}, on which the inward pointing normal is the real number −1, and let ŷ′ →∞, using limy→∞ fy (y) = 0.

The matrix D (x) is equal to the real number 1 + y
1−T ′(y)ζ

c,(y)
y,1−τyT

′′ (y) in the static setting, the vector T ′ (x) is

T ′ (y), the matrix E
c,(x)
x,τp is − y

1−T ′(y)ζ
c,(y)
y,1−τy and the vector I

(x)
x,Rp

is 1
1−T ′(y)η

(y)
y,R.

20Saez (2001) then integrates this differential equation in T ′(y)
1−T ′(y) to obtain a formula for the optimal marginal

tax rates.
21Heuristically, this tax reform can be expressed as the limit, as dτ, dŷ → 0, of a sequence of perturbations

that increase the marginal tax rate by dτ on the interval y ∈ [ŷ, ŷ + dŷ], and increase the total tax liability in a
lump-sum way by dτdŷ on the interval y ≥ ŷ + dŷ. (Working on compact volumes would require an offsetting
decrease in the marginal tax rate at point y = ŷ′.) See Saez (2001) and our Section 5.3 below for details.
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Equating the integrand of (14) to zero at each point x yields a partial differential equation

system which, along with the individual’s first-order conditions (4), characterizes the optimal tax

system in terms of the endogenous distribution fx of incomes x ∈ X. We can change variables to

rewrite these conditions using the exogenous density fθ of types θ ∈ Θ instead.22 Assume that

individuals have 2S dimensions of characteristics, so that their vectors of types and incomes

have the same dimension. We show in the Appendix that the optimal tax system is the solution

to the partial differential equation:

0 = (1− gp (x (θ)))
fθ (θ)

det (Jx (θ))
+ T ′ (x (θ))

Jx (θ)

det (Jx (θ))

[
J−1
F (θ) JF (Tp)

]
fθ (θ)

−
2S∑
j=1

2S∑
i=1

[(
J ′x (θ)

)−1
]
i,j

∂

∂θi

{
T ′ (x (θ))

Jx (θ)

det (Jx (θ))

[
J−1
F (θ) JF (τ p)

]
fθ (θ)

}
j

,

(20)

where Jx (θ) = [∂xθ,i/∂θj ]1≤i,j≤2S is the Jacobian matrix of the income function x (θ), det (Jx (θ))

is its determinant, and JF (τ p) , JF (Tp) , JF (θ) are defined by JF (τ p) =
[
∂Fi/∂τp,xj

]
i,j

, JF (Tp) =

[∂Fi/∂Tp]i,j , and JF (θ) = [∂Fi/∂θj ]i,j , for the function F defined by (4).

In order to calculate these latter three matrices, we need to work with a specific model of

heterogeneity, and write explicitly the system of first-order conditions in the form of (4). In

the Appendix, we do so for a dynamic model in which the 2S sources of heterogeneity (i.e., the

idiosyncratic vector θ) are the productivity of labor supply and the interest rate on the capital

stock in each period. In particular, in the static Mirrlees model, we can easily compute the

matrices J−1
F (θ), JF (τ p), JF (Tp) by differentiating the individual’s first order conditions, so

that we obtain the following formula:

0 = (1− g (θ)) fθ (θ)− T ′ (yθ)

1− T ′ (yθ)
ẏθ
yθ

ηy,R
1 + ζuy,w

θfθ (θ)

+
d

dθ

{
T ′ (yθ)

1− T ′ (yθ)
ζcy,w

1 + ζuy,w
θfθ (θ)

}
.

(21)

Integrating this differential equation yields the characterization of the optimal marginal income

tax rates T ′ (yθ) / (1− T ′ (yθ)) derived by Mirrlees (1971). If in addition the utility function has

no income effects on labor supply, so that ηy,R = 0, we obtain the formula derived by Diamond

(1998). An advantage of writing the formula for the optimal tax schedule in the form (21)

rather than in the original form of Mirrlees (1971) is that the explicit notation for the income

and the substitution effects makes transparent the underlying economic effects that determine

the optimal marginal taxes.

22Changing variables from x to θ to characterize the fully optimal tax system is useful because the resulting
partial differential equation does not feature the deformation matrix D (x), so that we can solve directly for the
marginal tax rates T ′ (x (θ)). On the other hand, it is more useful to work with the distribution of incomes when
deriving the welfare effects of local tax reforms of suboptimal tax systems, because it is observed given the current
tax code.
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5 Applications to Optimal Taxation

In this section we discuss applications of our general analysis to optimal taxation. We first show

how our results reproduce two canonical benchmarks in public finance: the optimal Ramsey

tax formula of Diamond (1975), and the optimal non-linear income tax formula in a static

economy due to Mirrlees (1971). We then apply our analysis to several environments to obtain

novel insights about non-linear labor income taxation and capital income taxation in dynamic

economies.

In Sections 5.1 to 5.4, we focus on separable tax systems. The tax function in period s depends

on labor income ys and capital income zs as Ts,y (ys)+Ts,z (zs). To simplify the notations, we let

x̄s ≡ E [xs] denote the average value of income xs ∈ {ys, zs} in period s in the economy. In latter

applications we take expectations conditional on vector x lying in a set V , in which case we

denote x̄Vs ≡ E [xs|x ∈ V ]. Similarly, let ζ̄cxs,qxp , ζ̄uxs,qxp , η̄xs,Rp be the average compensated price

elasticity, uncompensated price elasticity and income effect parameter of income xs ∈ {ys, zs}
in period s with respect to decreases in the prices qxp ∈ {wp, rp} and income Rp in period p,

with additional superscript V notation if the elasticities are averages over x ∈ V . Formally, qxp
denotes the net-of-tax rate 1 − τp,xp on income xp period p, and Rp is the virtual income in

period p. We thus define:

ζ̄(V)
xi,qxj

≡
ˆ
x∈V

xi

x̄Vj
ζ(x)
xi,qxj

fx (x |x ∈ V) dx,

η̄
(V)
xs,Rp

≡
ˆ
x∈V

qxs
q̂xs

η
(x)
xs,Rp

fx (x |x ∈ V) dx.

(22)

where q̂xs = 1− τs,xs if p = s, and 1 otherwise.23 Finally, we define the hazard rate of factor xs

in period s at point x̂ as Hxs(x̂) = x̂fxs(x̂)/(1− Fxs(x̂)).

5.1 Optimal Commodity Taxation

As a first application of our theory, consider the analysis of Ramsey (1927) and Diamond (1975),

who restrict the tax system to be separable and linear in each income, so that in each period

s a consumer pays a proportional tax Ts,x (x) = τs,xx on income x. Applying formula (17) we

obtain that for all p, the optimal tax rates τp,xp are determined as functions of the own- and

23Thus, we have q̂xs = τ̂p,xs , where τ̂p,xs is defined in (6), so that 1
q̂xs

ηxs,Rp = ∂xs
∂Rp

.
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cross-price uncompensated elasticities by:24

S∑
s=1

∑
x∈{y,z}

βs−p
τs,xs

1− τp,xp
ζ̄uxs,qxp =1− E

[
xp
x̄p
gp

]
. (23)

Define the net social marginal utility of income for individual x as

bp (x) ≡ gp (x)−
S∑
s=1

∑
x∈{y,z}

βs−p
τs,xs

1− τs,xs
η

(x)
xs,Rp

,

and let b̄p ≡ E [bp (x)]. Using the Slutsky equations and rearranging the previous equation, we

obtain, for all p, x,

S∑
s=1

∑
x∈{y,z}

βs−p
τs,xs

1− τp,xp
ζ̄cxs,qxp = 1− b̄p − b̄p · cov

(
bp

b̄p
,
xp
x̄p

)
.

This is Ramsey’s formula with several consumers, first obtained by Diamond (1975).

5.2 Optimal Age-Independent Capital Income Tax Rates

In this section we study capital income taxes that are restricted to be linear and constant over

many periods. Such taxes arise naturally in several cases. First, many applications impose an a

priori assumption that capital taxes do not depend on the time period, e.g., Conesa, Kitao and

Krueger (2009). Second, the optimal asymptotic capital tax rate in infinite horizon economies,

analyzed by Chamley (1986) and Judd (1985), is equivalent to a tax that is constant across time

after the economy reaches the steady-state.

For our analysis we abstract from income effects on labor supply and assume that preferences

are of the form:

U =
S∑
s=1

βs−1u

(
cs − v

(
zs
θs

))
. (24)

When labor supply has no income effects, the form of labor income taxes (linear, separable

non-linear, or even history-dependent) is irrelevant for our main result.

First, note that when capital taxes can be chosen freely in each period, the optimal tax rate

in period p satisfies Ramsey formula (23), where the cross-partial elasticities ζ̄uzs,rp between labor

income and the capital income tax rates are equal to zero. If instead we exogenously restrict the

tax rates to be constant across time, we can apply the general formulas (13) and (16) to obtain

24In formula (17), we can use the Slutsky equations to express the sth component of the vectorE
c,(x)
x,τp,xp

−xpI(x)x,Rp

(for s = 1, . . . , 2S) as ∂xs/∂τp,xp = − xs
1−τp,xp

ζ
u,(xθ)
xs,1−τp,xp

. The row vector T ′ (x) has component βs−1τs,xs in

column s. Equation (23) then follows from (17) after dividing both sides of the equation by βp−1x̄p (recall that
the average elasticity ζ̄uxs,qxp

is normalized by x̄p, see (22)).
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the following characterization of the optimal age-independent capital income tax rate τz:

Proposition 4. Suppose that the utility function has no income effects on labor supply as defined

in (24). The optimal age-independent capital income tax rate τz is then given by:

τz
1− τz

=

1−
S∑
p=2

γp,z̄E
[
zp
zp
gp

] 1∑S
p=2 γp,z̄ ζ̊

u
p

, (25)

where the weights γp,z̄ and the compounded uncompensated elasticity ζ̊up are equal to

γp,z̄ =
βp−1zp∑S
s=2 β

s−1zs
, and ζ̊up =

S∑
s=2

βs−pζ̄uzs,rp .

Proof. See Appendix.

The weight γp,z̄ is the ratio between the mechanical effect of a linear perturbation of the

capital income tax rate in period p only (the tax revenue generated in period p is proportional

to the average capital income zp in the economy in period p), and the total mechanical effect

of the age-independent perturbation (which raises revenue in every period s ≥ 2). Intuitively,

the behavioral effect of the period-p increase in the capital income tax rate, measured by the

uncompensated elasticity parameter ζ̊up , contributes to the total effect of the age-independent

perturbation proportionally to the amount of capital income distorted in period p, zp. Proposi-

tion 4 shows that the optimal tax rate, when restricted to be constant over time, is determined

by the compounded uncompensated elasticity of savings, that is the sum of the per-period elastic-

ities. Specifically, the capital income elasticities ζ̄uzs,rp are summed both over periods s, because

the tax rate in any given period p affects the savings choices in all periods s, and over periods p

(weighted by the size of the aggregate capital income in that period), because the tax is imple-

mented in every period p. Note that the elasticity ζ̊up (i.e., a summation over s only) would be

the relevant parameter to characterize the optimal age-dependent period-p tax rate, as described

in formula (23).

Assume for simplicity that the capital income distribution is age-independent, so that γp,z̄ =

βp−1/
∑S

s=2 β
s−1 is simply equal to a (normalized) discount factor. We now compare this com-

pounded elasticity with the behavioral response of capital income to a one-period change in the

tax rate, that is a perturbation of the capital income tax rate in period two, r2. We show that

compounding the elasticities over a longer horizon can either increase or lower the elasticity

that is relevant for the optimal tax rate, depending on the the magnitude of the elasticity of

intertemporal substitution. First, observe that the compounded uncompensated elasticity can

be written, using the Slutsky equation, as the sum of the compounded compensated elasticity
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and the compounded income effect parameter:

S∑
p=2

S∑
s=2

γp,z̄β
s−pζ̄uzs,rp =

S∑
p=2

S∑
s=2

γp,z̄β
s−p
[
ζ̄czs,rp + η̄zs,Rp

]
.

The compenstated elasticies of capital income are always positive, while the income effect pa-

rameter η̄zs,Rp is negative for s ≤ p and positive otherwise. The size of the compounded uncom-

pensated elasticity thus depends on whether the substitution effect dominates the net income

effect of a tax change. The analysis is the most stark if we follow Judd (1985) and assume

that capital is being held only by the agents who have no labor income, and whose utility is

then u(c) = c1−σ/(1 − σ). To simplify calculations, assume further that S = ∞, and that the

average capital income zp in the economy is independent of the period p. Computing directly

the compensated elasticities ζ̄czs,rp and income effect parameters η̄zs,Rp when after-tax interest

rates are equal to β−1, we can compare the compounded elasticity to the elasticity of one-time

tax change in period two. We obtain:

Proposition 5. Assume that all the assumptions of this section are satisfied. Then the elasticity

of capital income with respect to a change in the capital income tax rate in period two only,

satisfies

∞∑
p=2

∞∑
s=2

βs−1ζ̄uzs,rp ≥
∞∑
s=2

βs−1ζ̄uzs,r2 , if σ ≤ 1,

∞∑
p=2

∞∑
s=2

βs−1ζ̄uzs,rp <
∞∑
s=2

βs−1ζ̄uzs,r2 , if σ is sufficiently large. (26)

Proof. See Appendix.

Proposition 5 shows that compounding the elasticities may either increase or decrease the

effective behavioral effect of capital income depending on the value of the intertemporal elasticity

of substitution σ. Note that with our preferences, we have η̄zs,Rp = −σζ̄czs,rp if s ≤ p. The

intuition thus becomes particularly transparent when we allow taxes to change only after some

period P and take the limit as P →∞. In this case the positive income effects become negligible

and we obtain the following result proved by Straub and Werning (2014),

lim
P→∞

β−(P−1)
∞∑
p=P

∞∑
s=2

βs−1ζ̄uzs,rp =

∞, if σ < 1,

−∞, if σ > 1.
(27)

Straub and Werning (2014) then use this insight to provide an intuition for their results that

the optimal capital taxes converge to zero in the long run steady state only if σ < 1 and that

they remain positive and may even converge to infinity for σ ≥ 1. Proposition 5 shows that
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the mechanisms they emphasize continue to operate for age-independent taxes even in the short

run.

5.3 Optimal Non-Linear Labor Income Taxation

As a third application of our theory, consider the static model of optimal income taxation

analyzed by Mirrlees (1971). Suppose that S = 1, there is no capital income and the individual

utility is given by u(c, y/θ). We derived in equation (19) the optimal non-linear labor income

tax schedule T (y). We can rewrite this formula as:

0 =Ey≥ŷ [1− g]− Ey≥ŷ

[
T ′ (y)

1− T ′ (y) + yζ
c,(y)
y,w T ′′ (y)

η
(y)
y,R

]

− T ′ (ŷ)

1− T ′ (ŷ) + ŷζ
c,(ŷ)
y,w T ′′ (ŷ)

ζc,(ŷ)
y,w Hy (ŷ) .

(28)

Equation (28) is the formula obtained by Saez (2001). It formalizes his heuristic arguments that

the optimal marginal tax rate on labor income ŷ is driven by three forces: (i) the compensated

elasticity of labor income ζcy,w and the hazard rate Hy (ŷ), which measure the distortions induced

by the marginal tax rate at the income level ŷ; (ii) the average income effect parameter ηy,R

for incomes above ŷ, which measure the behavioral effects of increased average taxes on those

incomes; and (iii) the value of redistributing income away from individuals above ŷ, captured

by Ey≥ŷ (1− g).

We now discuss the connection between the formula obtained by Diamond (1975) in the

Ramsey setting and that obtained by Saez (2001) in the Mirrlees setting. Formula (17) implies

that the optimal linear tax schedule in the static model satisfies

0 =Ey≥0

[
1− y

ȳ
g

]
− τy

1− τy
ζ̄uy,w

=Ey≥0

[
1− y

ȳ
g

]
− τy

1− τy
η̄y,R −

τy
1− τy

ζ̄cy,w,

(29)

where τy ≡ T ′ (y), and where the second line follows from the Slutsky equations ζ
u,(y)
y,w = ζ

c,(y)
y,w +

η
(y)
y,R for all y ≥ 0. (Recall that ζ

c,(y)
y,w > 0 and η

(y)
y,R < 0, so that the substitution effect of

taxes tends to decrease tax revenue, while the income effects tends to increase it.) Formula (29)

closely resembles the full optimum (28), with one key difference. The linear optimum cannot do

better than balancing the mechanical effect of the perturbation with an average measure ζ̄uy,w of

uncompensated elasticities ζ
u,(y)
y,w over the entire population y ≥ 0, while the non-linear optimum

(28) is able to disentangle the competing income and substitution components ζ
c,(y)
y,w , η

(y)
y,R of the

individual elasticity, and to allocate both effects to different segments of the population (cf.

the discussion in Section 4 following Proposition 3). Specifically, a planner that can use non-

linear tax instruments is able to better fine-tune the distortions in the population, by imposing a
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higher marginal tax rate to the incomes y = ŷ where there is either a small fraction of individuals

relative to those who pay the additional lump-sum tax (the hazard rateHy (ŷ) is small), or where

the behavioral response ζ
c,(ŷ)
y,w (resp., η

(y)
y,R) to the increase in the marginal tax rate (resp., the

lump-sum liability) is small (resp., large). We make this general principle of taxation more

precise in the context of tax reforms in Section 6, where we show the tight connection between

the linear and non-linear tax reforms when the baseline tax system is linear.

Diamond (1998) and Saez (2001) further quantify these formulas and show in particular that

for realistic preference parameters and hazard rates, they imply U-shaped optimal marginal tax

rates.

Equation (28) finally allows us to obtain asymptotic tax rates. Suppose that Ey≥ŷg, ζ
c,(ŷ)
y,w ,

η
(ŷ)
y,R, and Hy (ŷ) converge to the respective limits g(∞), ζ

c,(∞)
y,w , η

(∞)
y,R , and H(∞)

y as ŷ → ∞, and

suppose moreover that ŷT ′′(ŷ)→ 0 as ŷ →∞. We then obtain the top marginal tax rates as:

lim
ŷ→∞

T ′ (ŷ)

1− T ′ (ŷ)
=

1− g(∞)

ζ
c,(∞)
y,w Hy(∞) + η

(∞)
y,R

. (30)

This expression is derived formally by Saez (2001b).

5.4 Optimal Non-linear Labor and Capital Income Taxation

The previous sections showed a close connection between classic results in optimal taxation

with heterogeneous agents, e.g., Diamond (1975) and Saez (2001), namely that the benefits

of increasing the sophistication of the tax instruments come from the ability to spread the

distortions within the population. We now show that the same general principle carries over

to more general environments, and derive novel results. We start by applying our theoretical

results of Section 4 to the analysis of non-linear labor and capital taxation.

We consider an environment that is similar in spirit to that considered by Conesa, Kitao

and Krueger (2009). These authors additionally impose parametric restrictions on tax functions

and numerically optimize over those parameters in a sophisticated computational model. One

limitation of this approach is that it is difficult to know a priori whether a given parametric

restriction is a good approximation of the fully optimal tax rates. For instance, we showed in the

previous section that the optimal non-linear income tax schedule in the static model is driven

by the properties of the hazard function Hy (ŷ), which for many realistic parameters implies

that the optimal marginal tax rates are U-shaped. Such taxes are not allowed by conventional

parametrizations of tax functions. On the other hand, the problem that we consider in this

section restricts the set of available tax systems to be possibly non-linear and age-dependent, but

separable between labor and capital incomes, and between incomes across ages; the mechanism

design approach is thus not helpful either to address this question. Therefore this section

highlights an advantage of our approach, as it allows us to analyze a model that would be

difficult to tackle using standard techniques.
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Suppose that S = 2 and the utility function has no income effects, as defined in (24). We

are interested in deriving properties of the optimal taxes that are separable, age-dependent, and

non-linear, so that the tax system consists of a non-linear labor income tax schedule T1,y (y1)

in period one, and of separable non-linear labor and capital tax schedules T2,y (y2) + T2,z (z2) in

period two.

We start by applying our general formulas (13) and (16) to the tax schedule on labor income

in period s ∈ {1, 2}, restricting the tax system to be separable between the various incomes. We

obtain that the optimal labor income tax rate in period s at the income level ŷs is given by

0 =Eys≥ŷs [1− gs]−
T ′s,z (ŷs)

1− T ′s,y (ŷs)− ŷsζc,(ŷs)ys,ws T
′′
s,y (ŷs)

ζ̄c,(ŷs)ys,wsHys (ŷs)

− β2−sEys≥ŷs

[
T ′2,z (z)

1− T ′2,z (z)− zζcz2,r2T
′′
2,z (z)

η̂z2,Rs

]
,

(31)

where η̂z2,Rs = ηz2,R2 if s = 2, and η̂z2,Rs = (1− τ2,z2) ηz2,R1 if s = 1. Since we assume that there

are no income effects on labor supply, the first line of this expression is simply a dynamic version

of (28). Note that only the own-price elasticities of labor income play a role: the cross-price

elasticities of labor income and the compensated elasticities of capital income with respect to the

labor income tax rate are equal to zero because there are no income effects and the baseline tax

system is separable. However, the second line of (31) shows that in the dynamic environment,

additional considerations play a role in the determination of the optimal labor income tax rates

in either period, namely the effects that the labor income taxes induce on the capital income

decisions of individuals with period-s labor income ys ≥ ŷs: there is an income effect on savings

in reaction to the perturbation in the labor income tax schedule in either period s ∈ {1, 2},
captured by the parameter ηz2,Rs . Specifically, an increase in labor income taxes in period

one leads to a reduction in savings, and hence capital income in period two. If the optimal

marginal tax rate on capital income is positive, this reduces government revenue and creates a

force to lower the labor income taxes in period one, relative to the static model. The opposite

effect holds for labor income taxes in period two. Therefore, formula (31) describes benefits of

age-dependent labor income taxation.

Next, we apply formulas (13) and (16) to the tax schedule on capital income in period two.

We obtain that the optimal capital income tax rate at the income level ẑ is characterized by

0 =Ez≥ẑ [1− g2]− Ez=ẑ

[
T ′2,z (ẑ)

1− T ′2,z (ẑ)− ẑζcz2,r2T
′′
2,z (ẑ)

ζ̄cz2,r2
ẑfx (y1, y2, ẑ)

1− Fz2 (ẑ)

]

− Ez≥ẑ

[
T ′2,z (z)

1− T ′2,z (z)− zζcz2,r2T
′′
2,z (z)

ηz2,R2

] (32)

The expectation operator in the second term of equation (32) appears because the elasticity

ζ̄cz2,r2 may be different for agents with a given value of capital income z2 = ẑ, if they have
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different labor incomes y1 and y2. If the utility function is CARA, then the elasticities in the

integrals do not depend on labor income and (32) is then conceptually identical to (28), since

Ez=ẑ
[
ẑfx(y1,y2,ẑ)

1−Fz2 (ẑ)

]
is equal to the hazard rate Hz2 (ẑ2); the only differences are that the relevant

elasticity and income distribution are those of capital income (there are no effects on labor

income because of the functional form of the utility function and the separability of the tax

system). Therefore, formula (32) illustrates that the same general mechanisms that determine

optimal labor income taxation also determine optimal capital income taxation. As in the case of

labor income taxes, the size and the shape of the capital income tax schedule are determined by

the hazard rates of the capital income distribution, and by the income and substitution effects

of capital income in response to changes in the capital income tax rates.

The asymptotic marginal tax rate on capital income is given by the analogue of (30),

lim
ẑ→∞

T
′
2,z(ẑ)

1− T ′2,z(ẑ)
=

1− g(∞)
2

ζ
c,(∞)
z2,r2 Hz2(∞)− η(∞)

z2,R2

.

It can be futher shown (see Appendix) that if mobility at the top of the capital income distri-

bution converges to zero, the same formula continues to apply for the top marginal tax rates in

arbitrary S period economies. If, in addition, the capital income tax schedule Tz is restricted

to be age-independent, all the parameters are replaced with their compounded analogues along

the lines of the analysis in Section 5.2.

5.5 Optimal Joint Taxation

We now apply our theory to the analysis of the optimal non-separable, non-linear tax system.

We illustrate this approach in a simple static framework of optimal taxation of couples. We

assume that the household maximizes the total surplus, i.e., the total consumption minus the

sum of disutilities of labor. Both individuals choose their labor supply on the intensive margin.25

The couple’s preferences over consumption and labor income are given by

max
c1,c2,y1,y2

u

(
c1 + c2 −

1

1 + 1/ζ

(
y1

θ1

)1+1/ζ

− 1

1 + 1/ζ

(
y2

θ2

)1+1/ζ
)
,

and its budget constraint is

c1 + c2 = y1 + y2 − T (y1, y2) .

25Saez, Kleven, and Kreiner (2009) characterize the optimal joint tax system in the case where the secondary
earner chooses labor supply on the participation margin only.
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In the Appendix, we show by applying formula (20) to this environment that the optimal tax

system is characterized by the following partial differential equation: for all θ = (θ1, θ2) ∈ R2
+,

0 = (1− g (θ)) fθ (θ) +
ζ

1 + ζ

2∑
i=1

2∑
j=1

∂y−i
∂θ−j

∂

∂θj

{
τ1

1−τi
∂yθ,1
∂θi

+ τ2
1−τi

∂yθ,2
∂θi

∂yθ,1
∂θ1

∂yθ,2
∂θ2
− ∂yθ,1

∂θ2

∂yθ,2
∂θ1

θifθ (θ)

}
, (33)

where the components of the Jacobian matrix
∂yθ,i
∂θj

evaluated at the type θ can be easily ex-

pressed explicitly as a function of the tax rates (see Appendix for details), so that (33) gives

a complete characterization of the optimal tax rates given the exogenous distribution of types

(θ1, θ2). Formula (33) is useful because it allows us to reduce the problem of finding the optimal

joint tax system in the economy as the solution to a PDE which can be computed numerically,

without the need to solve for a complicated individual optimization problem. Note finally that

this PDE generalizes to the two-dimensional environment the differential equation obtained in

the static model of individual-based taxation of Mirrlees (1971), that is

0 = (1− g (θ)) fθ (θ) +
d

dθ

{
τ

1− τ
ζ

1 + ζ
θfθ (θ)

}
which can be easily solved analytically to obtain the optimal tax rates of Diamond (1998).

6 Applications to Tax Reforms

In the previous Section 5, we characterized the optimal taxes in various settings, within given

classes of tax functions. We showed that this approach requires solving a partial differential

equation (20). Moreover, its solution depends on the elasticities evaluated endogenously at the

optimum tax system. The values of these elasticities can be computed either by restricting

attention to a specific functional form for the utility function (as done, for example, by Mirrlees

1971), or by inferring through some alternative methods what the values of those elasticites

are at the optimum (as is often implicitly assumed in the “sufficient statistics” approach, e.g.,

Chetty 2009).

In the present Section 6, we use the tools developed in Section 4 to analyze the welfare

gains of small reforms of the existing tax system. The approach used to answer this question

is closely related to that involved in designing the optimal tax system, since the welfare effects

of local reforms are determined by the same underlying economic forces as the optimal tax

system. However, evaluating the effects of local tax reforms is substantially simpler. These

gains depend on the labor and capital income elasticties that can be readily estimated empirically

under the current, rather than the optimal, tax system. Once these elasticities are known, the

welfare effects of tax reforms can be computed directly using Proposition 2 without solving the

differential equations. The sources of welfare gains can be expressed in easily interpretable and

empirically measurable terms.
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Throughout this section we illustrate this approach by considering a simple version of a

lifecycle model. We assume that individuals live for S periods and have Greenwood, Hercowitz

and Huffman (1988) preferences

1

1− σ

S∑
s=1

βs−1

(
cs −

1

1 + 1/ζ
l1+1/ζ
s

)
1−σ.

We assume that the baseline tax system does not depend on the age of the individual, is separable

between labor and capital incomes within and across time periods, and is linear in capital income:

Ts (x) = Ty (ys) + τz (zs) , for all s = 1, ..., S. (34)

We let the tax schedule on labor income, Ty (·), be either linear or non-linear. We further

assume that all agents face the same after-tax interest rate equal to β−1. We choose this speci-

fication both because it allows us to illustrate the main effects transparently, and because these

assumptions on preferences and taxes are often used in applied work on optimal taxation. It

is straightforward to use our method to compute the welfare effects of tax reforms for alter-

native specifications of baseline taxes. Finally, to evaluate the effects of our reforms, we can

directly plug into our formulas the empirical estimates of the relevant elasticities and income

distributions.

In the sections that follow, we sequentially add more sophisticated elements to our stylized

version of the U.S. tax system, namely age-dependence (Section 6.1), non-linear capital taxes

(Section 6.2), history-dependence and joint taxation of labor and capital incomes (Section 6.3).

Our goal is to use the general perturbation method described in Section 4 to show qualitatively

and quantitatively the effects that each additional element of the more sophisticated tax system

has on government revenue and social welfare.

6.1 Labor Income Taxation

We start by analyzing reforms of the marginal labor income tax rates. First, we derive the

gains of age-independent tax reforms, i.e., perturbations of the tax rates that implemented in

every period. Specifically, we increase the marginal tax rates, in every period p ∈ {1, . . . , S},
on a small interval around some labor income level ŷ. We choose the numbers ŷ > 0, ŷ′ > ŷ

and define the period-p perturbation hp as hp (y) = (y − ŷ) on [ŷ, ŷ′], and hp (y) = (ŷ′ − ŷ)

on [ŷ′,∞). As described in Section 2 (details in the Appendix), we appropriately smooth out

the kinks that this perturbation generates at the points ŷ and ŷ′. We finally define a sequence{
hnp
}
n∈N of such perturbations, with (ŷ′ − ŷ) → 0. At each point in the sequence, we compute

the Gateaux differential of social welfare in that direction and focus on the limit as n→∞ and

hence
∥∥hnp∥∥→ 0.

To report the welfare effects of this (limiting) perturbation, it is convenient to normalize the
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gains per dollar of statutory tax change, which we define as:

Γŷ =
limn→∞

∑S
p=1

∥∥hnp∥∥−1
δW

(
T , hnp

)∑S
p=1 β

p−1 (1− Fy,p (ŷ))
.

The denominator is the present value of the statutory increase in tax revenue due to the tax

reform (as every individual with income above ŷ pays an additional unit of their income in taxes,

and there are (1− Fy,p (ŷ)) such individuals), which is equal to the pure mechanical effect of

the perturbation; the numerator is the total (normalized) social welfare effect of the reform, as

defined in (13).

The total effect of this age-independent perturbation can be thought of as a sum of S age-

dependent reforms, each of which increases marginal taxes at income ŷ only for inviduals of a

given age p ∈ {1, . . . , S}. Applying Proposition 2, we obtain the (normalized) welfare effect of

this reform as:

Γŷ =

S∑
p=1

γp,ŷ

{
Eyp≥ŷ [1− gp]−

T ′y (ŷ) ζ

1− T ′y (ŷ) + ŷζT ′′y (ŷ)
Hy,p (ŷ)− τz

1− τz
η̊p

}
, (35)

where the weight γp,ŷ is the ratio between the mechanical effect of the age-dependent perturba-

tion in period p and the total mechanical effect of the age-independent perturbation,

γp,ŷ =
βp−1 (1− Fy,p (ŷ))∑S
s=1 β

s−1 (1− Fy,s (ŷ))
,

and where η̊p is the compounded income effect due to an increase in the period-p virtual income,

defined as

η̊p =

S∑
s=2

βs−pη̄zs,Rp .

The expression in the curly brackets of formula (35) is the welfare effect of a tax reform that

affects the marginal labor income tax rates in period p only. (Note that it is conceptually similar

to the right hand side of the optimal tax formula (31).) The welfare effect of the age-independent

tax reform is thus a weighted sum of these age-dependent reforms. The weights γp,ŷ depend

on the time period p (through the discount factor βp which accounts for the time period in

which the tax revenue is collected) and on the fraction of individuals of age p who are affected

by the reform, (1− Fy,p (ŷ)). This is because if a relatively large number of individuals have

income above ŷ in period p, the reform implemented in that period yields a higher revenue gain.

Therefore, the periods p that occur later in life (which yield a smaller discounted revenue), and

those where there are relatively few individuals with income above the threshold ŷ (which affect

fewer individuals and hence yield a smaller revenue), receive smaller weights γp,ŷ.

We make several observations about formula (35). First, suppose that the distribution of

labor income is independent of age. Then the hazard rate Hy,p (ŷ) is independent of the time
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period p. Moreover, we show in the Appendix that the last term of (35) which captures the be-

havioral effects of the tax reform on savings, proportional to the discounted sum of income effect

parameters in response to a perturbation implemented in every period p,
∑S

p=1

∑S
s=2 β

s−1η̄zs,Rp ,

is equal to zero. In this case, equation (35) therefore reduces to the formula derived in the static

framework by Saez (2001) (see equation (28) with no income effects on labor supply):

Γŷ = Eyp≥ŷ

1−
S∑
p=1

β̃p−1gp

− T ′y (ŷ) ζ

1− T ′y (ŷ) + ŷζT ′′y (ŷ)
Hy (ŷ) ,

where β̃p−1 = βp−1/
∑S

s=1 β
s−1. Under these assumptions, the static model therefore yields the

correct welfare effects of a change in the labor income tax rate.

When the distribution of labor income varies with age, however, for example because earnings

earlier in life are more compressed relative to the earnings later in life, the hazard rates Hy,p (ŷ)

depend on age p. Moreover, the weights γp,ŷ depend directly on these distributions, and therefore

the sum of the behavioral effects on capital income is non-zero. For example, we show in the

Appendix that for S = 2, this term reduces to

− τz
1− τz

2∑
p=1

γp,ŷβ
2−pη̄z1,Rp ∝

{
F̄y2 (ŷ)− F̄y1 (ŷ)

} βr

1 + β
, (36)

so that the sign of the behavioral response of capital income depends on whether there are more

individuals above the ŷ threshold in period one or in period two. Intuitively, if the number of

individuals above ŷ in period one is smaller than in period two, then the decrease in aggregate

savings due to the tax reform in the first period is small (because relatively few people are

affected), while the increase in aggregate savings due to the reform in the second period is large.

The net effect is therefore an increase in capital income (F̄y2 (ŷ)− F̄y1 (ŷ) is positive), which in

turn increases government revenue if the tax rate τz the baseline tax system is positive.

We now argue that formula (35) highlights the benefits of using sophisticated tax instruments,

namely age-dependent and non-linear taxes. We show the close connection that exists between

simple (age-independent, linear) and complex tax reforms. We discussed in the previous sections

the general principle according to which using sophisticated tax instruments allows the planner

to fine-tune the distortions toward the segments of the population that respond relatively little to

higher tax rates, either because there is a small number of individuals, or because the elasticities

that dictate their behavior are small. In the present context, the planner can use age-dependent

taxes, or non-linear taxes, to target the distortions toward the ages or the income levels which

respond less to additional taxes. We now make precise this intuition, and generalize it further

in the next sections (history-dependent or income-dependent taxation).

Let us first discuss the sources of welfare gains from allowing taxes to depend on age. Formula

(35) indicates that the magnitude of the gains age-independent tax reforms is determined by
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weighted average of the age-dependent hazard rates Hy,p and the income effects η̊p. Since these

variables generally depend on the individual’s age, the gains of the age-independent reform are

an average of the low and high values of Hy,p and η̊p, corresponding to the periods where the

behavioral responses to taxes are weak (so that the per-period welfare gains are large) and

strong, respectively. Age-dependent taxes give the government some flexibility to “fine-tune”

the tax rates so that the distortions are the largest for the ages in which the behavioral responses

to taxes are the smallest.26 The larger the age variation in these behavioral responses to taxes,

the higher the gains from age-dependent taxation. Moreover, if the elasticities and income effect

parameters ζ, η̊p also depend on age, the planner has an additional reason to impose different

taxes to individuals of different ages. Kremer (1999) and Weinzierl (2011) exploit these variations

to highlight the welfare gains of using age-dependent tax systems.

Second, let us discuss the sources of welfare gains from allowing taxes to be non-linear

rather than linear. As a special case of equation (35), suppose that the baseline labor income

tax schedule is linear, i.e., T ′y (y) = τy for all y. Then the term ŷζT ′′y (ŷ) in (35) is equal to

zero. Suppose in particular that the baseline tax system is the optimal linear age-independent

tax code, as we studied in Section 5.1. This restricted optimal tax system is given by (same

reasoning as for formula (25))

τy
1− τy

=
1

ζ

S∑
p=1

γp,ȳ

(
E
yp
ȳp

(1− gp)−
τz

1− τz
η̊p

)
,

where the weights are defined as γp,ȳ = βp−1yp/
∑S

s=2 β
s−1ys. By construction, the effect on

social welfare of a linear tax reform hL (uniform increase in the marginal tax rate τy) around

this baseline tax system is equal to zero. In the Appendix, we show moreover that for a linear

baseline tax system, the welfare effect of the linear perturbation hL is equal to the sum of the

welfare effects of the non-linear perturbations hŷ (defined above) at each income level ŷ, that is

δW (T , hL) =

ˆ ∞
0

δW (T , hŷ) dŷ = 0. (37)

Therefore, the linear tax system is constrained to maximizing an average of the distortionary

effects of higher marginal tax rates at each income level. On the other hand, a non-linear tax

system can set the tax rates so that the welfare effects δW (T , hŷ) are equal to zero pointwise,

i.e., at each income level ŷ. Using a non-linear schedule, the government can thus “fine-tune”

the distortions by increasing the tax rates by more in the regions of the income distribution

where, e.g., the hazard rate is high. Similarly, allowing the behavioral responses to depend on

income would make it beneficial to shift the distortions toward the regions where the elasticity

is relatively small. In particular, the gains from non-linear perturbations are the largest if the

26There is an additional source of benefits of age-dependence, which comes from being able to target redistri-
bution. This effect depends on the Pareto weights that society assigns to different agents.
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redistributive objective Eyp≥ŷ [1− gp] and the hazard rate Hy,p(ŷ) vary highly with income ŷ.

The amount of this variation depends on the higher moments of the income distribution. To

illustrate this point, we plot in Figure 2 the hazard rates of a log-normal distribution and of a

distribution generated from a mixture of log-normals,27 chosen in such a way that the first three

moments of these two distributions (mean, variance and skewness) are equal. The mixture of

log-normals has a higher kurtosis. The hazard rate of the high kurtosis distribution varies much

more with income than that of the log-normal distribution, indicating higher welfare gains from

non-linear taxation in the former case. This also provides an intuition for the small welfare

gains from non-linear taxation found in the literature when shocks are log-normally distributed

(Mirrlees 1971, Farhi and Werning 2013) and the much larger gains obtained when the shocks

are drawn from distributions with larger higher moments or fatter tails (Saez 2001, Golosov,

Troshkin and Tsyvinski 2013). Since the analysis in Section 5 shows that the shape of the

optimal taxes is driven in part by the inverse hazard rates, the second panel of 2 plots the

inverse hazards in these two cases. Note finally that for more general preferences, the elasticities

and income effect parameters ζ, η̊p would also depend on income, which constitutes an additional

force in favor of imposing different taxes to different individuals.

Figure 2: Hazard Rates and Inverse Hazard Rates
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Solid lines: hazard and inverse hazard of log-normal distribution. Dotted line: hazard and inverse

hazard of a mixture of log-normal distribution. The parameters are chosen so that the mean, variance

and skewness of both distributions are the same. The excess kurtosis is equal to 18 for the mixture of

log-normal distributions, and to 0 for the log-normal distribution.

With our specific functional form for the individual preferences, we can directly compute

income effects of savings. We show in the Appendix that

1

1− τz
η̊p = βr

(
1

1− β
− βS

1− βS
S − p

)
.

27See Guvenen et al. (2014) for evidence that the mixture of lognormal distributions with high kurtosis provides
a good approxiation for the empirical income distributions.
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Therefore this effect is positive early in life, and negative later in life. Suppose that the capital

income tax rate is positive in the baseline tax system, τz > 0. This implies that, all things being

equal, the welfare gains from increasing marginal tax rates on labor income are higher for older

individuals. To give a sense of the magnitude of these numbers, take S = 40 and β = 0.97, we

get:

− 1

1− τz
η̊p =


−0.75 if p = 1 (age 21),

0.17 if p = 20 (age 40),

1.14 if p = 40 (age 60).

Therefore, the behavioral effects on savings from higher labor income taxes at age p increase

revenue by τz η̊p. This indicates that, all else being equal, the gains from higher taxes are the

highest later in the lifetime. Note that these numbers are substantial, reaching an additional

benefit of 1.14× τz per dollar increase in the statutory tax liability.

The welfare effect of labor income tax reforms also depend on how the hazard rate Hy,p
varies with age, which is straighforward to compute from admistrative income tax data that as

in, e.g., Guvenen et al 2014, Chetty 2012). We can conduct a back-of-the-envelope excercise to

evaluate the behavioral response to tax changes. Saez (2001) documents that in the cross-section

of US taxpayers the wage income hazard rate is around 2,28 which suggests that at least in some

periods p we have Hy,p ≈ 2 for high income levels. At the high levels of the income distribution,

the effective marginal labor income tax rates are flat and equal to about 50% (Prante and John

2012).29 The behavioral labor income response to tax changes of top incomes is ζ ×Hy,p. There

is substantial controversy in the literature about the value of the compensated labor income

elasticity; the micro literature typically finds values around 0.3 and lower, while the macro

literature and some structural estimates find it to be closer to 1 (see Chetty 2012, and Keane

and Rogerson 2012, for an overview of the two strands). If the hazard ratio Hy,p is about 2, the

behavioral response of labor income fully offsets the statutory tax reform if ζ > 0.5, so that the

revenue gains of the tax reform are then mostly driven by the dynamic effects on savings. The

revenues from this tax reform, ignoring the redistributive effect, are given at age p by

1− ζHy,p + τz

(
− 1

1− τz
η̊p

)
for a tax rate of 50%. Note that this formula provides an upper bound for the welfare effects of

the tax reform when we take into account its redistributive effect.

28Saez (2001) estimates a ≡ Ey≥ŷy/ŷ ≈ 2 for high ŷ, which implies that the cross-sectional hazard rate
Hcsy (ŷ) = a/(a− 1) ≈ 2.

29In particular, Prante and John (2013) document that the sum of top federal and state taxes on wages is on
average 47.9% across all states in 2013. For our purposes these numbers understate effective labor income tax
rates since they do not include consumption taxes.
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6.2 Non-Linear Capital Income Taxation

We next apply our theory to the analysis of tax reforms of the baseline capital income tax

schedule. Specifically, we characterize the welfare effects of introducing non-linearities into the

baseline linear tax schedule, keeping it age-independent. We consider the effect of separable non-

linear perturbations in all periods p at the capital income level ẑ, analogous to the perturbations

of the labor income tax schedule that we defined in Section 6.1. Applying our general formula

(13) yields the following welfare effect:

Γẑ =
S∑
p=1

γp,ẑΓp,ẑ ≡
S∑
p=1

γp,ẑ

{
Ezp≥ẑ [1− gp]−

τz
1− τz

ζ̊c,(ẑ)p Hz,p (ẑ)− τz
1− τz

η̊p

}
, (38)

where

γp,ẑ =
βp−1 (1− Fp,z (ẑ))∑S
s=1 β

s−1 (1− Fz,s (ẑ))
, and ζ̊cp =

S∑
s=2

βs−pζ̄
c,(zp=ẑ)
zs,rp .

The first difference between formula (38), which gives the welfare effects of age-independent

capital income tax reforms, and formula (35), which gives the welfare effects of age-independent

labor income tax reforms, is the effect of compounding the relevant compensated income elas-

ticities. In the case of equation (35), the relevant elasticity is ζ, which captures the change in

labor income in the current period in response to a higher marginal labor income tax rate in

period p. In the case of equation (38), the relevant elastticity is ζ̊cp, which captures the change

in capital income in every period s in response to a higher marginal capital income tax rate in

period p. As in our discussion of Proposition 5 the compounding effect may increase or decrease

the effective behavioral response depending on the intertemporal elasticity of substitution. Sec-

ond, the relevant hazard rates Hz,p (ẑ) and the weights γp,ẑ on the age-dependent perturbations

are different in formulas (38) and (35), to reflect the fact that it is the distribution of capital

income, Fp,z(z), rather than that of labor income, Fp,y(y), which determines the welfare effects

of reforming the capital income tax schedule.

To get a sense about the magnitude of the welfare effect of capital income tax reforms in

formula (38), assume that the capital income distribution Fp,z(z) does not depend on age. In this

case, we saw earlier that
∑S

p=1 γp,ẑ η̊p = 0, and Fp,z(z) is equal to the cross-sectional distribution

of capital income. In the data this distribution has thicker tails than that of labor income. For

example, Nirei and Souma (2007) use the cross-section of tax returns in the US to estimate

the hazard rate Hz,p (ẑ) to be equal to 1.5 at the top of the distribution. There are relatively

few empirical estimates of the compounded capital income elasticity ζ̊cp. Theoretically, if labor

income is a small fraction of total consumption and the horizon S is large, then ζ̊cp ≈ σ−1, so

that ζ̊cp is approximately equal to the coefficient of the intertemporal substitution. Supposing

that the marginal capital income tax rate is 50%,30 the revenue effect (per dollar of statutory

30In the U.S. the effective marginal tax rates on capital income vary by the source of income. The top marginal
tax rate on interest income is about 50 percent (see Prante and John, 2013). The top tax rates on capital gains
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increase in taxes) of an age-independent tax reform of the capital income tax rate at the top of

the distribution is given by 1− 1.5× σ−1. This is an upper bound for the welfare gains, which

also include the redistributive effect.

Finally, formula (38) also emphasizes the sources of gains coming from more sophisticated

reforms of the capital income tax rates. If we restrict attention to linear perturbations hL of the

capital tax schedule, the same reasoning as in Section 6.1 shows that the welfare effect equal to

δW (T , hL) =

ˆ
R
δW (T , hẑ) dẑ,

where hẑ is the non-linear perturbation at the point ẑ analyzed in this section. Unless the

baseline tax rate τz is far from the optimum, this integral generally sums both positive and

negative terms, depending on the income level ẑ. As we discussed in Section 6.1, the non-linear

reform further improves welfare by increasing the marginal taxes for those values of ẑ where

δW (T , hẑ) > 0, and decreasing them where δW (T , hẑ) < 0. The shape of the redistributive

objective
(
1− Ezp≥ẑgp

)
, of the hazard rate Hz,p (ẑ), and of the income and substitution effects

ζ̊
c,(ẑ)
p , η̊p as a function of income, determine the regions in which introducing non-linear capital

income tax rates brings the largest improvements in welfare.

6.3 Joint Income Taxation

The baseline tax system (34) is initially separable between incomes, both across periods (there is

no history-dependence) and within periods (labor and capital incomes are not jointly taxed). In

this section, we characterize the welfare gains from introducing joint taxation. That is, we allow

taxes on income xi to depend not only on the level of xi, but also on the levels of other incomes

xj . Such taxes arise in several different contexts. In the U.S., many social insurance programs

and the Social Security system condition their payments both on current labor earnings and

on the history of past earnings. Some programs are also often asset-tested, i.e., individuals are

eligible to participate if their labor earnings are low and their assets are below a certain treshold.

Finally, the individual tax bill depends jointly on income from labor and capital.

The non-separable tax reforms that we consider consist of increasing the marginal tax rate

on income xi at the level x̂i (hence the average tax rates increase on xi ≥ x̂i) conditional on

earning more than the threshold x̂j of income xj , i.e., xj ≥ x̂j . Since we consider perturbations

that leave the tax function continuous, this reform also raises marginal tax rates on income xj

at level x̂j , conditional on xi ≥ x̂i. This joint pertubation is shown in Figure 3, where the dark

(resp., light) surface represents the baseline (resp., perturbed) tax function.

We showed in the previous sections that the welfare effects of separable perturbations are

determined by the fraction of individuals above the base of the perturbation relative to the

fraction at the base, summarized by the hazard rate Hxi of the distribution of income xi. The

or qualified dividends are lower (around 30%), but for our purposes the effective rate on capital saved in a form
of corporate equity should also include the corporate taxation.
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Figure 3: Joint Perturbations

generalization of the hazard rate to two dimensions of income (xi, xj) is captured by

Hxi,xj (x̂i |x̂j ) ≡
x̂i
´∞
x̂j
f (x̂i, xj) dxj´∞

x̂i

´∞
x̂j
f (xi, xj) dxidxj

.

The denominator is the fraction of agents who face an increase in their average tax liability. The

numerator is the fraction of agents who face an increase in their marginal tax rate on income

xi, scaled by the income threshold x̂i.

We first consider introducing joint taxation of labor income across periods, i.e., history-

dependence. That is, we increase the marginal tax rate on labor income ŷp in period p conditional

on yp−1 ≥ ŷp−1. The welfare gain of this tax reform is given by

Γŷp,ŷp−1 =Eyp−1≥ŷp−1

yp≥ŷp
[1− gp]−

τz
1− τz

η̊p

− T ′ (ŷp) ζ

1− T ′ (ŷp) + ŷpζT ′′ (ŷp)
Hyp−1,yp (ŷp |ŷp−1 )

− T ′ (ŷp−1) ζ

1− T ′ (ŷp−1) + ŷp−1βζT ′′ (ŷp−1)
Hyp−1,yp (ŷp−1 |ŷp ) .

(39)

The first three terms of expression (39) are the analogue of the period-p age-dependent pertur-

bation of the labor income tax rates discussed in Section 6.1, the main difference being that now

the region over which the individual effects of the perturbation are summed is further restricted

to the households earning more than ŷp−1 in period (p− 1). The last term is a novel term that

appears because this perturbation distorts the labor supply decisions around the ŷp−1 treshold

in period (p− 1).

The benefits of the joint pertubation come from two sources. First, by conditioning redistri-
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bution on past income, the government can better target its redistributive effort, as summarized

in the term Eyp−1≥ŷp−1,yp≥ŷp [1− gp]. Conditional on a given level of earnings yp in period p,

society generally values differently the welfare of households who have a different history of

labor earnings in the previous periods. History-dependence in taxation allows the government

to tailor taxes to those social preferences. Second, conditioning taxes on past earnings allows

the government to raise more tax revenue with less distortions.

To illustrate the latter effect, suppose that for all p, the marginal distribution of income yp

has a Pareto tail with coefficient ap, so that for high ŷp we have

P (yp ≥ ŷp) = cp · (ŷp)−ap .

Furthermore, assume that joint distribution of yp−1 and yp at the tails can be summarized by

the (survival) Clayton copula31

P (yp−1 ≥ ŷp−1, yp ≥ ŷp) =
(
[P (yp−1 ≥ ŷp−1)]−ρ + [P (yp ≥ ŷp)]−ρ − 1

)−ρ
(40)

for ρ > 0. The limit as ρ → 0 represents the case where yp and yp−1 are comonotone (in

particular, perfectly correlated), that is, all the agents with a given income in period p− 1 also

earn the same income in period p. The limit as ρ→∞ represents the case where labor earnings

in the two periods are drawn independently from each other. In this case the conditional hazard

rates are given by

Hyp−1,yp (ŷp|ŷp−1) =
ap [P (yp ≥ ŷp)]−1/ρ

[P (yp ≥ ŷp)]−1/ρ + [P (yp−1 ≥ ŷp−1)]−1/ρ − 1
.

Suppose that the Pareto coefficient ap is independent of age p, that there are no savings (or that

τz = 0), and that the baseline labor income taxes are chosen to maximize tax revenue collected

from the agents with sufficiently high earnings. Under these assumptions, using the analysis of

Section 5, the marginal tax rates on high incomes are constant and satisfy T ′ (y) / (1− T ′ (y)) =

(aζ)−1. In this case the joint perturbation for sufficiently high labor incomes in both periods

yields a revenue effect equal to

Γŷp,ŷp−1 = 1− (aζ)−1 [P (yp−1 ≥ ŷp−1)]−1/ρ + [P (yp ≥ ŷp)]−1/ρ

[P (yp−1 ≥ ŷp−1)]−1/ρ + [P (yp ≥ ŷp)]−1/ρ − 1
.

This expression implies that Γŷp,ŷp−1 < 0 for all ρ, which implies that the separable tax system is

not optimal. Specifically, a joint perturbation that decreases the marginal tax rates on incomes

ŷp−1 and ŷp, and hence reduces the average tax rates for individuals with incomes yp−1 ≥ ŷp−1

in period p− 1 and yp ≥ ŷp in period p, jointly allows to raise additional revenue, starting from

the optimal separable tax schedule. Note also that Γŷp,ŷp−1 → 0 and as ρ→ 0, so that the gains

31This joint distribution is a generalization of the bivariate Pareto distribution, obtained for ap = ap−1 = ρ.
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from history-dependence disappear if each agent’s income is the same in both periods.

The arguments above can be generalized to other forms of joint taxation. For example, the

welfare effects of jointly taxing labor and capital incomes within period p at the joint income

threshold (ŷp, ẑp) are given by

Γŷp,ẑp =Eyp≥ŷp
zp≥ẑp

[1− gp]−
τz

1− τz
η̊p

− T ′ (ŷp) ζ

1− T ′ (ŷp) + ŷpζT ′′ (ŷp)
Hyp−1,yp (ŷp |ẑp )

− τz
1− τz

{
S∑
s=2

βs−pζ̄
c,(zp=ẑp,yp≥ŷp)
zs,rp

}
Hyp−1,yp (ẑp |ŷp ) .

(41)

Formula (41) is formally similar to equation (39), the relevant conditional hazard rates in this

case being those of the joint distribution of labor and capital incomes, and the relevant elasticities

being those of capital income with the usual compounding effect discussed in Sections 5.2 and

6.2. Note that these elasticities are in general different for individuals with different labor

and capital incomes, and are therefore averaged over the region where the capital income tax

rate is perturbed. More generally, for different preferences or a non-separable baseline income

tax system, the elasticity parameters ζ̄cys,wp , ζ̄
c
zs,rp , ηzs,Rp would all depend on the individuals’

earnings histories, implying an additional source of benefits from using a non-separable tax

system: the government can impose higher distortions in the regions where these elasticities are

smaller, with an additional degree of “fine-tuning” relative to the separable case.

To conclude this section, note that we can easily estimate empirically the welfare gains of

joint tax reforms using the formulas (39) and (41). Using an approach based on copulas to

estimate the joint income distributions in the data (see, e.g., Bonhomme and Robin 2003, and

Dearden, Fitzsimons, Goodman and Kaplan 2006), we can compute the conditional hazard

rates and plug them into the formulas along with the elasticities and income effect parameters

estimated at the current tax system. The size of the welfare gains from tax reforms will depend

on the points (ŷp−1, ŷp) or (ŷp, ẑp) at which they are evaluated.

7 Overview of the Stochastic Model

In this section we briefly discuss the derivation of some of the results in the stochastic model.

We only give an outline of the derivation here, the details are collected in our companion paper

(Golosov, Tsyvinski, and Werquin 2014). For the clarity of the exposition, we consider the case

where the horizon is T = 2 periods, but our results generalize to the case T ≤ ∞. In period one,

an individual knows his first-period type, or productivity, θ1 ∈ [0,∞), and his initial capital

stock k0 ∈ R. He then chooses his first-period consumption c1 ≥ 0, labor income y1 ≥ 0, and

savings or borrowings k1 ∈ R to carry over to period two (yielding capital income z2 ∈ R in

period two). For simplicity assume that the interest rate is the same for all individuals, so that
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capital income z2 is known with certainty in period one given savings k1. In period two, he draws

his second-period productivity θ2 ∈ [0,∞). For all θ1 ∈ R+, the second-period type θ2 is drawn

from an exogenous distribution Fθ2|θ1 (·) whose density fθ2|θ1 (·) is strictly positive on R+. The

individual then chooses his second-period consumption c2 ≥ 0 and labor income y2 ≥ 0. Given

his initial draw (k0, θ1), he thus chooses his first-period labor income and savings y1 (k0, θ1),

k1 (k0, θ1), and a set of second-period incomes contingent on the second-period productivity

{y2 (k0, θ1, θ2) : θ2 ∈ R+} in order to maximize the expected discounted value of his utility. The

income vector x of an individual with initial capital and productivity (k0, θ1) thus has a two

plus a continuum of rows, corresponding to the continuum of possible draws of θ2 in period two.

In each period s = 1, 2, the government levies a tax Ts. The first-period tax function T1 is

a function of the individual’s first-period labor income y1 and capital k1 only. (The government

cannot tax second-period labor income y2 in period one, as y2 depends on the value of θ2 that the

individual will draw in period two, and hence is not known in period one.) The second-period

tax function T2 is a function of the individual’s entire history of labor incomes {y1, y2} and

capital income z2. The assumptions about the tax functions are identical to those we made in

the deterministic model. Social welfare is then a weighted sum of individuals’ expected indirect

utilities U (k0, θ1).

It is important to note that there are many more marginal tax rates and virtual incomes

that are relevant for the individual than in the deterministic model. Since θ2, and hence y2 and

T2 (·, ·, ·), are unknown when y1 and k1 are chosen, the two decision variables (y1, k1) depend

on the set of all possible marginal tax rates and virtual incomes that the individual may end

up facing in period two, depending on his type θ2. Thus, y1 and k1 depend on the whole set{(
τ2

(
y1,x

2
2, z2

)
, R2

(
y1,x

2
2, z2

))
: x2

2 ∈ R+

}
, parametrized by the possible values x2

2 of second-

period incomes that the individual may end up choosing in period two. Moreover, even though

y2 is chosen after a value of θ2 has been drawn (say θ∗2), y2 (θ∗2) does not depend only on the

marginal tax rate and virtual income that he ends up actually facing (i.e., τ2 (y1, y2 (θ∗2) , z2)),

unless the utility function has no income effects. This is because y1 and k1, which have been

chosen before the draw (taking into account the probabilities of all possible draws of θ2), are not

in general the optimal values given this particular draw θ∗2, and this in turn affects the choice

of y2 (θ∗2). We thus obtain that for all θ∗2 ∈ R+, y2 (θ∗2) depends on the entire set of marginal

tax rates and virtual incomes
{(
τ2

(
y1,x

2
2, z2

)
, R2

(
y1,x

2
2, z2

))
: x2

2 ∈ R+

}
. In particular, when

we perturb the tax function in the second period, T2 (·, ·, ·), at a given point x2 =
(
y1,x

2
2, z2

)
,

all the choice variables, (y1, {y2 (θ2) : θ2 ∈ R+} , z2), adjust, even if the individual turns out not

to be affected at all by the perturbation (i.e., even if y2 (θ∗2) 6= x2
2). This is the main conceptual

difficulty that needs to be addressed in the stochastic model.

We first define the elasticities of labor incomes y1, {y2 (θ2) : θ2 ∈ R+} and savings k1 with

respect to the marginal tax rates on y1 and k1 that the individual actually faces in period one:

τ1,y1 , τ1,k1 . We then define the elasticities of y1, {y2 (θ2) : θ2 ∈ R+} and k1 with respect to all

the marginal tax rates
{
τ2,y1

(
x2
)
, τ2,y2

(
x2
)
, τ2,z2

(
x2
)

: x2 =
(
y1,x

2
2, z2

)
∈ R2

+ × R
}

that the
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individual can possibly face in period two, depending on the possible values x2
2 of second-period

incomes that the individual may end up choosing in period two. Similarly we first define the

income effect parameters of y1, {y2 (θ2) : θ2 ∈ R+} and k1 with respect to the individual’s virtual

income in period one, R1. We then define the income effect parameters of y1, {y2 (θ2) : θ2 ∈ R+}
and k1 with respect to all the virtual incomes that the individual can possibly face in period

two,
{
R2

(
x2
)

: x2 =
(
y1,x

2
2, z2

)
∈ R2

+ × R
}

. We thus need to consider many more elasticities

and income effect parameters than in the deterministic setting. These elasticities (e.g., of labor

income y2 with respect to the marginal tax rate at level y′2 6= y2) are new to the literature

on taxation. We derive explicit analytical expressions for all these elasticities, as we did in

the deterministic setting. They resemble those in the deterministic setting, except that they

are weighted by the probabilities of earning the second-period income where the tax rate is

perturbed.

We then go on to derive the behavioral responses to perturbations. The results are proved

in the same way as in the deterministic setting, but the added degree of complexity we just

described makes the derivations more involved both theoretically and conceptually. The formulas

we obtain are accordingly more complex. Remarkably, however, we show that we can define the

elasticity matrices, as well as the gradients and Hessians of the tax functions, in a way that

allows to write the formula in a similar compact way as (10) in the deterministic model (details

are in the Appendix). The proof and intuition of this formula follows the same steps as those

of (10). We show that the change dx in the income vector x following a general perturbation(
dτ1, dR1, dτ2

(
x2
)
dR2

(
x2
))

of the baseline tax system is given by:

dx =

{
i−Ec,(x)

x,τ1

(
D2T1 (x1)

)
−
ˆ ∞

0
E
c,(x)
x,τ2(x2′)

(
D2T2

(
x2′)) dx2′

2

}−1

×
[(
E
c,(x)
x,τ1 dτ1 + I

(x)
x,R1

dR1

)
+
(
E
c,(x)
x,τ2(x2)

dτ2

(
x2
)

+ I
(x)
x,R2(x2)

dR2

(
x2
))]

.

(42)

As an illustration of these results, we show how the revenue effects of reforming the baseline

tax system of Section 6 write in the stochastic model, when the utility function has no income

effects and is CRRA. A non-linear separable perturbation of the first-period labor income tax

schedule at point ŷ1 yields the following change in government revenue:

Γ1,y (ŷ1) =1− T ′1 (ŷ1)

1− T ′1 (ŷ1) + ŷ1ζT ′′1 (ŷ1)
ζH1,y (ŷ1)− β τz

1− τz
η̄

(y1≥ŷ1)
z2,R1

. (43)

Formula (43) shows that the revenue effect of perturbing the first-period labor income tax rate

in the stochastic model is formally similar to the effect in the deterministic model. However, we

show that uncertainty about second-period productivity implies that the income effect parameter

on savings in the stochastic model is equal to ∂k1
∂R1

∣∣∣
S

=
(
u′′1 + βR2E [u′′2 |θ1 ]

)−1
u′′1, and hence is

smaller than in the deterministic model, ∂k1
∂R1

∣∣∣
D

=
(
1 + β−1/σR1−1/σ

)−1
. This implies that

the gain from decreasing the labor income tax rate in period one is smaller in the stochastic
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model than in the deterministic model; the latter thus provides an upper bound for the gains of

age-dependence.

A non-linear separable perturbation of the second-period labor income tax schedule at point

ŷ2 yields the following change in government revenue:

Γ2,y (ŷ2) =1−
T ′2,y (ŷ2)

1− T ′2,y (ŷ2) + ŷ2ζT ′′2,y (ŷ2)
ζH2,y (ŷ2)− τz

1− τz
η̄z2,R2(y2≥ŷ2), (44)

where η̄z2,R2(y2≥ŷ2) is the aggregate change in capital income in the economy when an additional

dollar is distributed lump-sum in period two, uniformly among all the individuals whose labor

income in period two is above ŷ2, that is

η̄z2,R2(y2≥ŷ2) ≡
ˆ
R+

ˆ ∞
ŷ2

ˆ
R
η

(x1)

z2,R2(x2
2)
fx1 (y1, k1)

1− F2,y (ŷ2)
dy1dx

2
2dk1.

Note that every individual (with choice vector x1 = (y1, k1) in period one) reacts to this change

by adjusting their savings, i.e. η
(x1)

z2,R2(x1,x2
2)
6= 0, because they have positive probability of

earning more that ŷ2 in the second period. However, only those with second-period income ŷ2

under the baseline tax system change their second-period income. Formula (44) shows that the

revenue effect of perturbing the second-period labor income tax rate in the stochastic model is

formally similar to the effect in the deterministic model. However, we show that the savings

effect in the stochastic setting, η̄z2,R2(y2≥ŷ2), is strictly larger than in the deterministic setting,

η̄
(y2≥ŷ2)
z2,R2

. Hence the revenue gains from increasing the labor income tax rates in period two are

smaller in the stochastic model than in the deterministic model.

A non-linear separable perturbation of the capital income tax schedule at point ẑ2 yields the

following change in government revenue:

Γ2,z (ẑ2) =1− τz
1− τz

ζ̄c,(ẑ2)
z2,r2 H2,z (ẑ2)− τz

1− τz
η̄

(z2≥ẑ2)
z2,R2

, (45)

where η̄
(z2≥ẑ2)
z2,R2

is the average income effect parameter of capital income with respect to a certain

increase in period-two virtual income, among individuals with capital income z2 ≥ ẑ2, that is,

η̄
(z2≥ẑ2)
z2,R2

≡
ˆ
R+

ˆ ∞
ẑ2

η
(x1)
z2,R2

fx1 (y1, k1)

1− F2,z (ẑ2)
dy1dk1.

Formula (44) shows that the revenue effect of perturbing the second-period labor income tax

rate in the stochastic model is formally similar to the effect in the deterministic model. However,

we show that the savings effect in the stochastic setting, η̄z2,R2(y2≥ŷ2), is strictly larger than in

the deterministic setting, η̄
(y2≥ŷ2)
z2,R2

. Hence the revenue gains from increasing the labor income

tax rates in period two are smaller in the stochastic model than in the deterministic model.

However, we show that the average compensated capital income elasticity in the stochastic

model, ζ̄
c,(ẑ2)
z2,r2 , is positive but smaller than its counterpart in the deterministic model. Similarly,
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the average income effect parameters in the stochastic model, η̄
(z2)
z2,R2

, are negative and smaller

than their counterparts in the deterministic model. Thus, on the one hand, the increase in the

tax rate induces a smaller decrease in capital income (in the stochastic model) for individuals

with z2 = ẑ2; on the other hand, the increase in the lump-sum tax liability induces a larger

increase in capital income (in the stochastic model) for individuals with z2 ≥ ẑ2. Therefore the

revenue gains from increasing the capital income tax rates in period two in the stochastic model

are larger than in the deterministic model.

8 Conclusion

We identify a condition on individual demand under which the effects of taxation on individual

behavior, tax revenue, and social welfare of can be expressed in terms of empirically observ-

able and easily interpretable parameters, namely the labor and capital income elasticities, the

multivariate hazard rates of the income distributions, and the marginal social welfare weights.

Applying these formulas to various settings, we show that optimal taxes and the effects of tax

reforms obey common general principles, and that the benefits of using sophisticated tax instru-

ments come from the ability to fine-tune the distortions to the segments of the population who

respond relatively little to taxes.

We leave two important extensions for future research. First, our numerical applications were

meant to provide rough orders of magnitude of the forces at play in a few examples. It would

be valuable to do more extensive numerical welfare calculations, estimating the fundamental

parameters that enter our tax formulas using micro data. Second, we believe our approach

is useful to analyze problems which may be difficult to tackle directly, e.g., multidimensional

mechanism design models. However, an open question is to find a condition on the primitives

of the model such that our assumption on individual demand is satisfied.
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A Proofs of Sections 3 and 4

In this section, we provide the proofs of the results of Sections 3 and 4 from the main text. We

first derive analytical expressions for all the elasticities and income effect parameters (7,6) in

the general model, as well as under the assumptions of Section 6. We then prove the results of

Propositions 1, 2 and 3, and provide details for the derivation of various results in the text.

A.1 Elasticities and Income Effect Parameters

We start by providing analytical expressions for the elasticities and income effect parameters in

the general model of Sections 4 to 2. To derive these expressions, we differentiate the system

of first-order conditions (4) of the individual’s problem with respect to the marginal tax rates{
τ̂s,xj

}
1≤s,j≤S and the virtual incomes {Rs}1≤s≤S . For a given individual, define rs+1 as the

exogenous interest rate that he faces on his capital ks, so that his capital income in period s+ 1

is equal to zs+1 = rs+1ks. We can write the individual’s first-order conditions as

Uxj

{− 2S∑
i=1

τ̃t,xixθ,i +Rt

}
1≤t≤S

, {yθ,t}1≤t≤S , {zθ,t+1}1≤t≤S ,θ


=

S∑
s=1

τ̃s,xjUcs

{− 2S∑
i=1

τ̃t,xixθ,i +Rt

}
1≤t≤S

, {yθ,t}1≤t≤S , {zθ,t+1}1≤t≤S ,θ

 ,

(46)

where τ̃s,ys = − (1− τs,ys) and τ̃s,yt = τs,yt if t 6= s, and where τ̃s,zs = −
(
r−1
s + 1− τs,zs

)
,

τ̃s,zs+1 = r−1
s+1 + τs,zs+1 , and τ̃s,zt+1 = τs,zt+1 if t 6= s− 1, s. We then use the Slutsky equations to

obtain the compensated elasticities from the uncompensated elasticities and the income effect

parameters. Define the 2S × 2S matrix A by:

[A]s,j ≡ −Uxs,xj −
S∑
t=1

S∑
q=1

τ̃t,xs τ̃q,xjUct,cq +

S∑
t=1

τ̃t,xsUct,xj +

S∑
q=1

τ̃q,xjUxs,cq .

Define also the 2S-vectors Bτp,xi , BRp , and Bc
τp,xi

, for any 1 ≤ p ≤ S and 1 ≤ i ≤ 2S, by

[
Bu
τp,xi

]
s
≡

S∑
t=1

τ̃t,xsUct,cpxi − Uxs,cpxi − Ucp1{i=s}, ∀s ∈ {1, . . . , 2S} ,

[
BRp

]
s

= −
S∑
t=1

τ̃t,xsUct,cp + Uxs,cp , ∀s ∈ {1, . . . , 2S} ,[
Bc
τp,xi

]
s
≡ −Ucp1{i=s}, ∀s ∈ {1, . . . , 2S} .

Letting τ̂s,xj denote the period-s marginal or net-of-tax rate in the direction of income xj , we can

then write the the uncompensated and compensated income elasticities and the income effect
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parameters as

ζu,cxj ,τ̂s,xt
= ± τ̂s,xt

xj

[
A−1Bu,c

τs,xt

]
j
, and ηxj ,Rs = τ̂s,xj

[
A−1 ×BRs

]
j
, (47)

where ± = + if xt ∈ {zs, rsks−1}, and ± = − otherwise. Note that the components of the elas-

ticity matrices and the income effect vectors (8) are the partial derivatives of the (compensated

or uncompensated) demands, and not directly the elasticities and income effect parameters we

just derived.

For concreteness we show how to apply these formulas to the static model (S = 1). Differ-

entiating the first-order conditions

Uy ((1− τ) y +R, y, θ) = − (1− τ)Uc ((1− τ) y +R, y, θ)

implies the following expressions for the elasticities (47):

ζuy,1−τ =
Uy/y − (Uy/Uc)

2 Ucc + (Uy/Uc)Ucy

Uyy + (Uy/Uc)
2 Ucc − 2 (Uy/Uc)Ucy

, ηy,R =
− (Uy/Uc)

2 Ucc + (Uy/Uc)Ucy

Uyy + (Uy/Uc)
2 Ucc − 2 (Uy/Uc)Ucy

.

In this case, the matrix A defined above is minus the denominator of these two expressions, and

the vectors Bu
τ , BR are respectively (1− τ) y and − (1− τ)−1 times the numerators of these two

expressions.

We now show how these expressions simplify under the assumptions of Section 6. That is,

we assume that the utility function is time-separable, has no income effects on labor supply,

and that the baseline tax system is separable and linear in capital income. In this case, the

S×S upper-left submatrix of E
c,(xθ)
x,τs is diagonal, and its upper-right and lower-left submatrices

are zero. Moreover, the first S components of the income effect vector I
(xθ)
x,Rs

are equal to zero.

Thus, for every period p ∈ {1, . . . , S} where the tax system is perturbed, the only non-zero

compensated elasticities and income effect parameters are: (i) the compensated elasticities of

labor incomes ys with respect to the labor income tax rates in the current period τs,ys , i.e., the

S parameters ζcys,1−τs,ys ; (ii) the compensated elasticities of capital incomes zs with respect to

all of the capital income tax rates τp,zt , i.e., the S2 parameters ζczs,1−τp,zt
; (iii) the income effect

parameters on capital incomes zs, i.e., the S parameters ηzs,Rp . The formulas above show that

the labor income elasticities are given by:

ζcys,1−τs,ys =
v′ (ys/θs)

(ys/θs) v′′ (ys/θs)
.

Suppose either that the utility function is CRRA, i.e. u (x) = x1−σ/ (1− σ), and let α ≡
β−1/σR1−1/σ, or that the utility function is CARA, i.e. u (x) = −γ−1 exp (−γx), and let α = R.
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We obtain that the only non-zero compensated capital income elasticities are given by

∂zcs
∂
(
1− τp,zp

) =

(−u′p
u′′p

)
r2Rs−p−2∑S−1

i=0 α
i


(∑S−p

i=0 α
i
)(∑p−1

i=p−s+1 α
i
)
, if s ≤ p,(∑S−s

i=0 α
i
)(∑p−1

i=1 α
i
)
, if s ≥ p+ 1,

(48)

and the only non-zero income effect parameters are given by

∂zs
∂Rp

=
rRs−p−1∑S−1
i=0 α

i

−
(∑S−1

i=S−s+1 α
i
)
, if s ≤ p,(∑S−s

i=0 α
i
)
, if s ≥ p+ 1.

(49)

Note that in the CARA case,
−u′p
u′′p

is simply equal to γ−1.

A.2 Proofs of Propositions 1 to 3

We first prove the existence of the Gateaux differential of the income functional and show

Proposition 1.

Proof of Proposition 1. We first show that the income functional xθ (·) is Gateaux differentiable

around the initial tax system Tp. Denote by xθ ≡ xθ (Tp), resp. x̃θ ≡ xθ (Tp + µh), the income

vector chosen by an individual θ given the baseline tax system Tp, resp. the perturbed tax system

in the direction h, Tp + µh. The vectors xθ and x̃θ are the solution to the respective systems

of the first-order conditions (4), where the map F : R2S × R2S × R → R2S is continuously

differentiable. For any j ∈ {1, . . . , 2S}, let Fj denote the jth component of F . Writing the

first-oder conditions both at the baseline and the perturbed tax system yields, for all j,

0 = Fj

(
x̃θ,

{
τp,xt (x̃θ) + µ

∂h

∂xt
(x̃θ)

}
1≤t≤2S

, Tp (x̃θ) + µh (x̃θ)

)
− Fj

(
xθ, {τp,xt (xθ)}1≤t≤2S , Tp (xθ)

)
, ∀j = 1, . . . , 2S.

(50)

Define the matrix M = (mj,s)1≤j,s≤2S as

mj,s =
∂Fj
∂xθ,s

+

2S∑
t=1

∂Fj
∂τp,xt

∂τp,xt (xθ)

∂xθ,s
+
∂Fj
∂Tp

∂Tp (xθ)

∂xθ,s
,

the vectors Nxt = (nj,xt)1≤j≤2S for all t ∈ {1, . . . , 2S} as nj,xt =
∂Fj
∂τp,xt

, and the vector NT =

(nj,T )1≤j≤2S as nj,T =
∂Fj
∂Tp

. Assumption 2 implies that ‖x̃θ − xθ‖ = O (µ) as µ→ 0. Moreover,

we have ‖µh (x̃θ)− µh (xθ)‖ = o (µ) as µ→ 0. A first-order Taylor expansion of (50) as µ→ 0,
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i.e., of the perturbed system of first-order conditions around the initial system, thus writes:

1

µ
(x̃θ − xθ) = −

2S∑
t=1

{
M−1Nxt

} ∂h (xθ)

∂xt
−
{
M−1NT

}
h (xθ) + oµ→0 (1) .

This shows the existence of the Gateaux differential δxθ (Tp, h) ∈ R2S of the income functional

xθ (·) at Tp with increment h. We then express the Gateaux differential of the income functional

as a function of the elasticity matrices and vectors of income effect parameters. To do so, we

derive the change x̃θ − xθ in the individual’s choice vector by writing the first-order Taylor

approximation of the post-perturbation system of first order conditions (46) around the solution

xθ to the initial system. Using the explicit expressions for the elasticities and income effect

parameters derived in (47), we obtain

(x̃θ − xθ) =

[
i2S −

S∑
s=1

E
c,(xθ)
x,τs

(
D2Ts (xθ)

)]−1 {
E
c,(xθ)
x,τp ∇h (xθ) + I

(xθ)
x,Rp

h (xθ)
}
.

This concludes the proof of Proposition 1.

We then show Proposition 2, which gives expressions for the Gateaux differentials of the tax

revenue and social welfare functionals.

Proof of Proposition 2. Consider an admissible perturbation hp of the baseline tax function

Tp, so that the perturbed tax function is Tp + µhp. For any θ, letting xθ ≡ xθ (Tp) and

x̃θ ≡ xθ (Tp + µhp), a Taylor approximation yields

[Tp + µhp] (x̃θ)− Tp (xθ)

=µ 〈∇Tp (xθ) , δxθ (Tp, hp)〉+ µhp (xθ (Tp)) + o (µ) .

Similarly, using the envelope theorem and the local Lipschitz continuity of the income function

(Assumption 2), we get

G (Uθ (Tp + µhp))− G (Uθ (Tp)) =

(
− λ

1− α
βp−1gp (xθ)hp (xθ)

)
µ+ o (µ) .

Using the compactness of the set X and assuming that the integrand is twice continuously

differentiable, we thus obtain that the change in social welfare is equal to

W (Tp + µhp)−W (Tp)

=µλ

ˆ
X

{
βp−1 (1− gp (x))hp (x) +

〈
S∑
s=1

βs−1∇Ts (xθ) , δx (Tp, hp)

〉}
fx (x) dx + o (µ) .

This proves formula (13). Letting T̃
′
(x) ≡ T ′ (x)D−1 (x) and using the fact that the density of
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incomes is equal to zero on the boundary ∂X of the set X, we can integrate by parts the integral

involving ∇hp (x) in this expression to get

ˆ
X

[
T̃
′
(x)E

c,(x)
x,τp fx (x)

]
∇hp (x) dx = −

ˆ
X
∇ ·
[
T̃
′
(x)E

c,(x)
x,τp fx (x)

]
hp (x) dx.

This proves formula (14).

Next we prove Proposition 3.

Proof of Proposition 3. A necessary condition for the social welfare functional W (·) to have an

extremum at Tp is δW (Tp, h) = 0, for all h (see, e.g., Luenberger 1969). From equation (14),

this implies that the integrand must be equal to zero pointwise, that is for all x ∈ X,(
βp−1 (1− gp (x))− T ′ (x)D−1 (x) I

(x)
x,Rp

)
fx (x)−∇ ·

(
T ′ (x)D−1 (x)E

c,(x)
x,τp fx (x)

)
= 0.

Integrating this equation on the volume V with closed boundary S = ∂V and using the divergence

theorem, we obtain formula (18). Finally, we obtain formula (17) by using the separable linear

perturbations hp (x) = xp and equation (13).

We finally prove the formulas which express the optimal tax system as a function of the

distribution of types θ.

Proof of formula (20). Differentiating the ith first-order condition (4) with respect to θj for

j ∈ {1, . . . , 2S} yields

2S∑
s=1

mi,s
∂xθ,s
∂θj

= −∂Fi
∂θj
⇒ Jx (θ) = −M−1JF (θ) ,

where the matrix M is the same as in the proof of Proposition 1, and Jx (θ) , JF (θ) are the

matrices [∂xθ,i/∂θj ]1≤i,j≤2S and [∂Fi/∂θj ]1≤i,j≤2S respectively. Similarly, differentiating the

first-order conditions (4) with respect to the variables
{
τp,xj

}
1≤j≤2S

and Tp yields:

Jx (τ p) = −M−1JF (τ p) , and Jx (Tp) = −M−1JF (Tp) ,

where Jx (τ p) , JF (τ p) are the matrices
[
∂xθ,i/∂τp,xj

]
1≤i,j≤2S

and
[
∂Fi/∂τp,xj

]
1≤i,j≤2S

respec-

tively, and JF (Tp) is the vector [∂Fi/∂Tp]1≤i≤2S . But from Proposition , we have Jx (τ p) =

D−1 (x)E
c,(x)
x,τp and Jx (Tp) = D−1 (x) I

(x)
x,Rp

. We use these expressions to write the deformation

matrix D (x) as a function of the Jacobian matrix Jx (θ), and JF (θ) , JF (τ p) , JF (Tp). Using

the change of variables formula fθ (θ) = det (Jx (θ)) fx (x (θ)) in the equation

0 =βp−1 (1− gp (x)) fx (x)− T ′ (x)D−1 (x) I
(x)
x,Rp

fx (x)

−∇x ·
(
T ′ (x)D−1 (x)E

c,(x)
x,τp fx (x)

) (51)
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and the chain rule, we obtain (20).

Now, consider the model with idiosyncratic productivities {θ1, . . . , θS} and interest rates

{θS+1, . . . , θ2S−1}. Let lθ denote the vector of labor supplies yθ,s/θs and capital stocks kθ,s. We

can write the first-order conditions of the individual problem as

xθ = θ ◦ lθ
({

θj τ̂s,yj
}

1≤j≤2S
1≤s≤S

,
{
θS+j−1τ̂s,zj

}
2≤j≤S
1≤s≤S

, {Rs}1≤s≤S
)
,

where τ̂s,xj is the marginal tax rate on income xj (if xj ∈ {ys, zs}) or the next-of-tax rate

otherwise, and ◦ is the element-wise multiplication. Differentiating this system of equations

with respect to θj for 1 ≤ j ≤ 2S yields the Jacobian matrix

Jx (θ) =D−1 (x)

[
x

θ
◦

(
i2S +

S∑
s=1

ζ
u,(x)
x,τ̃s

)]
,

where (x/θ) denotes the matrix [xθ,i/θj ]1≤i,j≤2S , ζ
u,(x)
x,τ̂s

is the matrix of uncompensated elastic-

ities with respect to the marginal and net-of-tax rates defined in (6), and ◦ is the element-wise

multiplication of matrices. Changing variables as before yields

J−1
F (θ) JF (Tp) =−

[
x

θ
◦

(
i2S +

S∑
s=1

ζ
u,(x)
x,τ̂s

)]−1

I
(θ)
x,Rp

,

J−1
F (θ) JF (τ p) =

[
x

θ
◦

(
i2S +

S∑
s=1

ζ
u,(x)
x,τ̂s

)]−1

E
c,(θ)
x,τp .

In particular, in the static Mirrlees model, the first-order condition (4) writes F
[
xθ
θ , θ (1− T ′ (xθ)) , R (xθ)

]
≡

F [l, τ, R] = 0 with F [l, τ, R] = τuc (τ l +R, l) +ul (τ l +R, l). It is then straightforward to com-

pute ∂F
∂l , ∂F

∂τ , and ∂F
∂R . Note moreover that Jx (θ) = det (Jx (θ)) = ẋ (θ). Differentiating the

first-order-condition with respect to θ then yields

ẋθ
xθ

=

1
θ2
∂F
∂l −

1
xθ

(1− T ′ (xθ)) ∂F∂τ
1
θ
∂F
∂l +

(
−θ ∂F∂τ + ∂F

∂Rxθ
)
T ′′ (xθ)

⇒ ẋ−1
θ

1

1 +
xθζ

c
x,1−τ

1−T ′(xθ)T
′′ (xθ)

=
1

xθ
θ

(
1 + ζux,1−τ

) .
This expression is identical to that in Lemma 1 in Saez (2001).

B Proofs of Sections 5 and 6

B.1 Proofs of Section 5

We start by deriving the formulas for the known results in the literature: optimal commodity

taxes and non-linear labor income taxes.
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Proofs of Sections 5.3 and 5.1. Formula (23) follows from using the Slutsky equation and re-

arranging the terms in equation (23). Formula (28) follows from (18) applied to the region

[ŷ,∞), or directly from rearranging equation (19). Formula (30) follows from (28) under the

assumptions made in the text.

We now characterize the optimum linear capital income tax schedule.

Proof of Propositions 4 and 5. Consider a separable linear perturbation hp (x) = zp of the

capital income tax rate in every period p ≥ 2. The welfare effect of these perturbations,

δW
(
τz, {hp}p≥2

)
, is given by the sum (for p = 2, . . . , S) of the effects of each of the period-p

perturbations hp, δW (τz, hp). Applying Proposition 2, we obtain that the welfare effect of this

perturbation is given by

δW
(
τz, {hp}p≥2

)
=

S∑
p=2

{ˆ
RS+×RS

βp−1 (1− gp (x)) zpfx (x) dx +

ˆ
RS+×RS

S∑
s=2

βs−1τz [δx (τz, hp)]S+s−1 fx (x) dx

}

=

S∑
p=2

{
βp−1z̄p

(
1− E

[
gp (x)

zp
z̄p

])
−
ˆ
RS+×RS

S∑
s=2

βs−1 τz
1− τz

zsζ
u,(x)
zs,rp fx (x) dx

}

=

(
S∑
s=2

βs−1z̄s

)
×

S∑
p=2

βp−1z̄p∑S
s=2 β

s−1z̄s

{
1− E

[
gp
zp
z̄p

]
− τz

1− τz

S∑
s=2

βs−pζ̄uzs,rp

}
.

Equating this expression to zero leads the optimal capital income tax rate (25). (Note that it

would be straightforward to characterize the optimal affine tax schedule, by considering revenue-

neutral perturbations of the capital income tax rate τz and the virtual income R (uniform lump-

sum rebate of the tax revenue generated by the increase in the tax rate), and equating their

effect to zero.)

Now consider the case where the perturbation is implemented in every period p = p1, . . . , p2.

Under the assumptions of Proposition 5, the expressions (48) and (49) imply:

ζ̄czs,rp =σ−1 (R− 1)

Rs−p−1 −R−p, if s ≤ p,

R−1 −R−p, if s ≥ p+ 1,

η̄zs,Rp = (R− 1)

R−p −Rs−p−1, if s ≤ p,

R−p, if s ≥ p+ 1.
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Hence, the compounded uncompensated elasticities are equal to:

∞∑
s=2

βs−1ζ̄uzs,r2 =σ−1 (1− β)β + (2β − 1)β,

∞∑
p=2

∞∑
s=2

βs−1∑∞
p=2 β

p−1
ζ̄uzs,rp =σ−1 + β − 1.

Result (26) follows. Moreover, we obtain

β−(P−1)
∞∑
p=P

∞∑
s=2

βs−1ζ̄uzs,rp =
β

1− β
σ−1 +

(
σ−1 − 1

)
(P − 1) ,

from which (27) follows. Finally, for S <∞ (still assuming βR = 1), we have

∂zs
∂Rp

=
r

1−RS

RS+s−p−1 −RS−p, if s ≤ p,

Rs−p−1 −RS−p, if s ≥ p+ 1,

which implies
∑S

p=1

∑S
s=1 β

s−1 ∂zs
∂Rp

= 0.

We now prove the results of Section 5.4, i.e., the optimal non-linear, age-dependent, separable

tax system in a two-period economy.

Proofs of formulas (31) and (32). Under the assumptions of this section, we have

T ′ (x)D−1 (x)E
c,(x)
x,τp =



T ′1 (y1)
− y1

1−τp,y1
ζ
c,(xθ)
y1,w1

1+
y1

1−τ1,y1
ζ
c,(xθ)
y1,w1

T ′′1 (y1)

βT ′2,y (y2)
− y2

1−τp,y2
ζ
c,(xθ)
y2,w2

1+
y2

1−τ2,y2
ζ
c,(xθ)
y2,w2

T ′′2,y(y2)

βT ′2,z (z2)
− z2

1−τp,z2
ζ
c,(xθ)
z2,r2

1+
z2

1−τ2,z2
ζ
c,(xθ)
z2,r2

T ′′2,z(z2)


,

T ′ (x)D−1 (x) I
(x)
x,Rp

=βT ′2,z (z2)
1

1 + z2
1−τ2,z2

ζ
c,(xθ)
z2,r2 T

′′
2,z (z2)

η
(xθ)
z2,Rp

1− τp,z2
,

and −→n (x) is the 3-vector whose only non-zero component is equal to 1 and is in the first

(resp., second, third) row if x̂ = ŷ1 (resp., ŷ2, ẑ). Application of formula (18) to the region

V = [x̂,∞) × R2, for x̂ ∈ {ŷ1, ŷ2, ẑ2} and p = 1, 2, 2 respectively, and dividing by 1 − Fp,x (x̂),

yields formulas (31) and (32).

Next, we derive the optimal asymptotic capital income tax rate in a non-linear tax system.
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Optimal Asymptotic Capital Income Tax Rate. Assume that the baseline tax system is separa-

ble and age-independent, but non-linear in capital income. For simplicity, we also assume that

the distribution of capital income is stationary, and that it is Pareto distributed at the tail with

coefficient az. Here we let the utility function have income effects on labor supply, and assume

that the labor income tax rate τy is constant and age-independent. Next, we assume the conver-

gence toward constants of the (average) marginal social welfare weights, Ezp≥ẑ
[
gp

zp
ẑ

]
−−−→
ẑ→∞

ḡ
(∞)
p ,

of the elasticities, ζ̄
u,(zp≥ẑ)
zs,rp −−−→

ẑ→∞
ζ̄
u,(∞)
zs,rp and η̄

(zp≥ẑ)
zs,Rp

−−−→
ẑ→∞

η̄
(∞)
zs,Rp

, and of the marginal tax rates

at the top of the capital income distribution, T ′z (z) −−−→
z→∞

τ∞z . Moreover, we assume that T ′′z (·)
converges to zero fast enough, i.e., for all p ≥ 2,

sup
{x:zp≥ẑ}

∣∣∣zsζc,(x)
zs,rpT

′′
z (zp)

∣∣∣ −−−→
ẑ→∞

0.

Finally, we assume that there is “no mobility at the top”: as the threshold capital income level

ẑ → ∞, individuals with capital income zs ≥ ẑ in a given period s have capital income zp ≥ ẑ

in all periods p ≥ 2. Intuitively, individuals at the top of the capital income distribution in a

given period stay there forever. This ensures that as zp → ∞ for any p, all the components of

the matrix F z (x) (defined below) converge to zero, and that all the marginal tax rates T ′z (zs)

converge to τ∞z .

Consider a sequence, indexed by ẑ > 0, of separable perturbations of the capital income tax

rate in every period p ≥ 2, that are linear above the threshold ẑ. That is, for all p we define

hp (x) = max {zp − ẑ, 0}. The Gateaux differential of social welfare writes:

δW
(
T , {hp}p≥2

)
=

S∑
p=2

βp−1

{ˆ ∞
ẑ

(1− gp (x)) (zp − ẑ) fx (x) dx

}

+
S∑
p=2

{ˆ ∞
ẑ

ˆ
RS+×RS−2

[
T ′z (x)

]
[iS−1 + F z (x)]−1

[
E
c,(x)
x,τp,zp − (zp − ẑ) I(x)

x,Rp

]
fx (x) dx

}

+
S∑
p=2


ˆ ∞
ẑ

ˆ
RS+×RS−2

τy S∑
s=2

βs−1

− ysζ
c,(x)
ys,rp

1− τp,zp
−

η
(x)
ys,Rp

1− τp,ys
(zp − ẑ)

 fx (x) dx

 ,

where [T ′z (x)] is the (S − 1)-row vector with components βs−1T ′z (zs) and [F z (x)] is the (S − 1)×
(S − 1)-matrix with components T ′′z (zj)

∂zci
∂τj,zj

for i, j ≥ 2. Thus, letting ẑ → ∞ and imposing

lim
δW (T,{hp}p≥2)

(1−F (ẑ))ẑ = 0, we obtain the following characterization of the optimal asymptotic capital
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income tax rate:

τ∞z
1− τ∞z

=

(
az
az−1 − 1

)(
1−

∑S
p=2 γp,z ḡ

(∞)
p,NL

)
ark
ark−1

∑S
p,s=2 γp,z ζ̄

u,(∞)
zs,rp −

∑S
p,s=2 γp,z η̄

(∞)
zs,Rp

− τy
1− τ∞z

az
az−1

∑S
p,s=2 γp,z ζ̄

u,(∞)
ys,rp −

∑S
p,s=2 γp,z η̄

(∞)
ys,Rp

az
az−1

∑S
p,s=2 γp,z ζ̄

u,(∞)
zs,rp −

∑S
p,s=2 γp,z η̄

(∞)
zs,Rp

,

where γp,z = βp−1/
∑S

s=2 β
s−1. Note that in the case where the utility function has no income

effects on labor supply, the second line of this expression is equal to zero.

We now prove the result of Section 5.5, i.e., the joint taxation of couples.

Proof of formula (33). We follow the same steps as in the derivation of formula (20). Let-

ting τi ≡ ∂T
∂yi

and τij ≡ ∂2T
∂yi∂yj

, the Gateaux differential of individual income in a direction h,

δyθ (T, h), writes

δyθ (T, h) =
1

(1− τ1 + y1ζτ11) (1− τ2 + y2ζτ22)− y1y2ζ2τ2
12

×

(
− (1− τ2 + y2ζτ22) y1ζ (y1ζτ12) y2ζ

(y2ζτ12) y1ζ − (1− τ1 + y1ζτ11) y2ζ

)(
∂h(yθ)
∂y1

∂h(yθ)
∂y2

)
.

Applying formula (51), we obtain that the revenue-maximizing tax function satisfies the following

PDE:

fy (y1, y2) =
∂

∂y1

{
− (τ1y1ζ) (1− τ2 + y2ζτ22) + (τ12y1ζ) (τ2y2ζ)

(1− τ1 + y1ζτ11) (1− τ2 + y2ζτ22)− (τ12y1ζ) (τ12y2ζ)
fy (y1, y2)

}
+

∂

∂y2

{
− (1− τ1 + y1ζτ11) (τ2y2ζ) + (τ1y1ζ) (τ12y2ζ)

(1− τ1 + y1ζτ11) (1− τ2 + y2ζτ22)− (τ12y1ζ) (τ12y2ζ)
fy (y1, y2)

}
.

To rewrite the PDE in terms of the distribution of types, first notice that in this model, the

incomes as functions of types are given by:

y1 =θ1+ζ
1 (1− τ1)ζ ,

y2 =θ1+ζ
2 (1− τ2)ζ .

(52)

and the Jacobian matrix Jy (θ) writes:(
∂y1
∂θ1

∂y1
∂θ2

∂y2
∂θ1

∂y2
∂θ2

)
=

1

(1− τ1 + ζy1τ11) (1− τ2 + ζy2τ22)− (ζy1τ12) (ζy2τ12)

×

 (1− τ1)
(

1− τ2 +
(

1+ζ
θ1
y1

)
(ζy2τ22)

)
− (1− τ2) (ζy1τ12)

(
1+ζ
θ2
y2

)
− (1− τ1) (ζy2τ12)

(
1+ζ
θ1
y1

)
(1− τ2)

(
1− τ1 + (ζy1τ11)

(
1+ζ
θ2
y2

))  ,

(53)
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Therefore, we have

δyθ (T, h) =

(
− θ1

1−τ1
ζ

1+ζ
∂y1
∂θ1

− θ2
1−τ2

ζ
1+ζ

∂y1
∂θ2

−∂y2
∂θ1

θ1
1−τ1

ζ
1+ζ − θ2

1−τ2
ζ

1+ζ
∂y2
∂θ2

)(
∂h(yθ)
∂y1

∂h(yθ)
∂y2

)
.

The optimal tax system is thus characterized by:

0 = (1− g (y)) fy (y)−∇y ·

 {
− τ1

1−τ1
ζ

1+ζ θ1
∂y1
∂θ1
− τ2

1−τ1
ζ

1+ζ θ1
∂y2
∂θ1

}
fy (y){

− τ1
1−τ2

ζ
1+ζ θ2

∂y1
∂θ2
− τ2

1−τ2
ζ

1+ζ θ2
∂y2
∂θ2

}
fy (y)

′

= (1− g (θ)) fθ (θ) +
ζ

1 + ζ

2∑
i=1

2∑
j=1

∂y−i
∂θ−j

∂

∂θj

{
τ1

1−τi
∂y1
∂θi

+ τ2
1−τi

∂y2
∂θi

∂y1
∂θ1

∂y2
∂θ2
− ∂y1

∂θ2
∂y2
∂θ1

θifθ (θ)

}
,

(54)

where the second equality follows from the change of variables from y to θ. Equations (52),

(53), and (54) form a PDE system whose solution is the optimal tax system.

B.2 Proofs of Section 6

We now provide the proofs of the results of Sections 6.1, 6.2, and 6.3. We first characterize the

welfare effects of reforming the labor income tax system.

Proofs of formulas (35) and (37). Consider first the effects of reforming the marginal labor in-

come tax rate at point ŷ in period p. The perturbation we consider is as follows. We choose the

numbers ŷ > 0, , and define for every p a perturbation h̃p ∈ C2 (R+), with h̃p (y) = 0 on [0, ŷ],

h̃p (y) = (y − ŷ) on [ŷ, ŷ′], and h̃p (y) = (ŷ′ − ŷ) on [ŷ′,∞). We obtain a smooth perturbation

hp from h̃p by letting hp = h̃p except on the intervals
[
ŷ − u

2 , ŷ + u
2

]
and

[
ŷ′ − u

2 , ŷ
′ + u

2

]
, for

some small u > 0, where we take hp monotonic. We then consider a sequence
{
hnp
}
n∈N of such

perturbations, with (ŷ′ − ŷ) → 0, u → 0, and u = o (ŷ′ − ŷ). Applying formula (9), we obtain

that the effect of this perturbation hp on the individual income choices is given by

δy
(x)
θ,p

(
Tp, h

n
p

)
=−

ypζ
c,(x)
yp,wp

1− T ′y (yp) + ypζ
c,(x)
yp,wpT

′′
y (yp)

, for all yp ∈
[
ŷ +

u

2
, ŷ′ − u

2

]
,

δz
(x)
θ,s

(
Tp, h

n
p

)
=−

(
ŷ′ − ŷ

) η
(x)
zs,Rp

1− τp,zs
, for all s, for all yp ≥ ŷ′ +

u

2
.

Applying formula (13) and taking the limit of the Gateaux differentials of social welfare as
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(ŷ′ − ŷ) ,∆τ → 0, we get

1

1− Fy,p (ŷ)

δW
(
Tp, h

n
p

)
(ŷ′ − ŷ)

−−−→
n→∞

βp−1

ˆ ∞
ŷ

(1− gp (y))
fy,p (y)

1− Fy,p (ŷ)
dy

− βp−1

ˆ
RS−1
+ ×RS−1

T ′y (ŷ)
ŷζ

c,(ŷ,x−p)
yp,wp

1− T ′y (ŷ) + ŷζ
c,(ŷ,x−p)
yp,wp T ′′y (ŷ)

fx (ŷ,x−p)

1− Fy,p (ŷ)
dx−p

−
S∑
s=2

βs−1

ˆ ∞
ŷ

ˆ
RS−1
+ ×RS−1

τz
η

(x)
zs,Rp

1− τp,zs
fx (x)

1− Fy,p (ŷ)
dx.

Noting that ζ
c,(ŷ,x−p)
yp,wp = ζ, that η

(x)
zs,Rp

is independent of x since the utility function is CRRA

and the baseline tax system is separable, and using the definition of η̄zs,Rp , we obtain

1

1− Fy,p (ŷ)

δW
(
Tp, h

n
p

)
(ŷ′ − ŷ)

−−−→
n→∞

βp−1 (1− Ey≥ŷ [gp])−
τz

1− τz

S∑
s=2

βs−1η̄zs,Rp

− βp−1
T ′y (ŷ) ζ

1− T ′y (ŷ) + ŷζT ′′y (ŷ)

ŷfy,p (ŷ)

1− Fy,p (ŷ)
.

Summing over periods p and normalizing by
∑

p≥1 β
p−1 (1− Fy,p (ŷ)) yields (37). Note that in

a two period model, we have ∂z1
∂R1

= ∂z1
∂R2

= r
1+R , which implies (36). Finally, to obtain the

gains of age-dependence assuming that the income distribution is stationary, define the “savings

effect” as Sp ≡ − τz
1−τz

∑S
s=2 β

s−1η̄zs,Rp . Since ∂zs/∂Rp < 0 for all s ≤ p and ∂zs/∂Rp > 0

for all s ≥ p + 1, we obtain that the sequence
{
β−(p−1)Sp : p = 1, . . . , S

}
is increasing, with

S1 < 0 and SS > 0. Hence there exists p∗ such that the revenue gains of the period-p separable

perturbation are strictly smaller (resp., larger) in the dynamic model than in the static model

for p ≤ p∗ (resp., p > p∗). Moreover, the revenue gains of the separable perturbation that

increases lump-sum the tax liability above ŷ by $1 in period p are smaller than the gains from

the perturbation that increases the tax liability above β by $β−(p′−p) in period p′ > p, yielding

gains from age-dependent taxes.)

Suppose that the baseline marginal labor income tax rate is constant, i.e., T ′y (ŷ) = τy for all
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ŷ. Then we obtain the following relationship between the linear and the non-linear tax reforms:

ˆ ∞
0

δW (T , hŷ) dŷ

=

ˆ ∞
0

{
S∑
p=1

βp−1

(
(1− Fy,p (ŷ))−

ˆ ∞
ŷ

gp (y) fy,p (y) dy

− τy
1− τy

ζŷfy,p (ŷ)− τz
1− τp,zs

S∑
s=2

βs−1ηzs,Rp (1− Fy,p (ŷ))

)}
dŷ

=
S∑
p=1

βp−1

(ˆ ∞
0

ŷfy,p (ŷ) dŷ

)(
1−
´∞

0 ŷgp (ŷ) fy,p (ŷ) dŷ´∞
0 ŷfy,p (ŷ) dŷ

− τy
1− τy

ζ − τz
1− τp,zs

S∑
s=2

βs−1ηzs,Rp

)
=δW (T , hL) ,

which proves (37).

We next characterize the welfare effects of reforming the capital income tax schedule.

Proof of formula (38). A reasoning identical to that leading to formula (35), noting that the

elasticities ζ
c,(x)
ys,rp are all equal to zero, shows that the welfare effect of a non-linear perturbation

hp,ẑ implemented at point ẑ in period p is equal to

1

1− Fz,p (ẑ)
δW (T , hp,ẑ) = βp−1

ˆ ∞
ẑ

(1− gp (z))
fz,p (z)

1− Fz,p (ẑ)
dz

−
S∑
s=2

βs−1

ˆ
RS−1
+ ×RS−1

τz
1− τz

ẑζ
c,(ẑ,x−(S+p−1))
zs,rp

fx (ẑ,x−p)

1− Fz,p (ẑ)
dx−p

−
S∑
s=2

βs−1

ˆ ∞
ẑ

ˆ
RS−1
+ ×RS−1

τz
1− τp,zs

η
(x)
zs,Rp

fx (x)

1− Fz,p (ẑ)
dx.

Formula (38) follows.

We now characterize the welfare effects of joint tax reforms.

Proof of formulas (41) and (39). Fix d ≥ 2 directions (x1, . . . , xd) of the space RS+ × RS and

the income threshold x̄d = (x̂1, . . . , x̂d). We define the d-multilinear perturbation hp of the

baseline tax function Tp as hp (x) = 0 if xj ≤ x̂j for all j ∈ {1, . . . , d}, hp (x) = (xi − x̂i) dτ
if xi ∈ [x̂i, x̂i + dx̂] for some i ∈ {1, . . . , d} and xj ≥ x̂j + dx̂ for all j ∈ {1, . . . , d} \ {i}, and

hp (x) = dτdx̂ if xj ≥ x̂j+dx̂ for all j ∈ {1, . . . , d}. We complete this definition on the remaining

regions of the space (hypercubes of size dx̂) by making hp continuous and multilinear on each of

these regions, e.g., for d = 2, hp (x1, x2) is of the form c12 (x1 − x̂1) (x2 − x̂2). (More precisely,

we consider a smooth approximation of these perturbations, as in Section 6.1.) For simplicity,

we let d = 2 and consider a joint perturbation in period two in the directions (y1, y2), at point
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(ŷ1, ŷ2). Note that

ζy1,τ21 |τ21=0 = − ζ

1 + (1− τz) r
= −βζ.

Let F̄y1,y2 (ŷ1, ŷ2) denote the measure of individuals above (ŷ1, ŷ2). Applying our general formula

yields:

δW
(
T , h2,(ŷ1,ŷ2)

)
βF̄y1,y2 (ŷ1, ŷ2)

=1−
ˆ ∞
ŷ1

ˆ ∞
ŷ2

g2 (y1, y2)
fy1,y2 (y1, y2)

F̄y1,y2 (ŷ1, ŷ2)
dy1dy2

−
S∑
s=2

βs−2

ˆ ∞
ŷ1

ˆ ∞
ŷ2

τz
ηzs,R2

1− τ2,zs

fy1,y2 (y1, y2)

F̄y1,y2 (ŷ1, ŷ2)
dy1dy2

−
ˆ ∞
ŷ2

β−1T ′1 (ŷ1)
ŷ1βζ

1− T ′1 (ŷ1) + ŷ1βζT ′′1 (ŷ1)

fy1,y2 (ŷ1, y2)

F̄y1,y2 (ŷ1, ŷ2)
dy2

−
ˆ ∞
ŷ1

T ′2 (ŷ2)
ŷ2ζ

1− T ′2 (ŷ2) + ŷ2ζT ′′2 (ŷ2)

fy1,y2 (y1, ŷ2)

F̄y1,y2 (ŷ1, ŷ2)
dy1.

Using the definitions of the conditional hazard rates, we obtain formula (39). We similarly obtain

the expression for
δW (T ,h2,(ŷ2,ẑ2))
βF̄y2,z2 (ŷ2,ẑ2)

, i.e., formula (39), the only difference being the compounding

of the capital income elasticities.

We finally show some results about the Clayton copula, used in equation (40).

Generalized Clayton copula. The generalized Clayton copula with correlation parameters (d, ρ),

with d ≥ 1 and ρ ∈ (0,∞), is defined as

C (u, v) =

{[(
u−1/ρ − 1

)d
+
(
v−1/ρ − 1

)d]1/d

+ 1

}−ρ
.

Kendall’s tau32 and the coefficients of lower and upper tail dependence are given by:

ρτ = 1− 2(
2 + 1

ρ

)
d
, λl = lim

q→0

C (q, q)

q
= 2−ρ/d, λu = 2 + lim

q→0

C (1− q, 1− q)− 1

q
= 2− 21/d.

If the marginal distributions are Pareto distributed, F̄xj (xj) = αj

(
xj
cj

)−aj
, the log-survival

c.d.f. obtained from the generalized Clayton copula writes

ln F̄x1,x2 (x1, x2) = −ρ ln

1 +

(α−1/ρ
1

(
x1

c1

)a1/ρ
− 1

)d
+

(
α
−1/ρ
2

(
x2

c2

)a2/ρ
− 1

)d1/d
 .

In the case where d = 1, the ith component of multivariate hazard ratio vector (for i = 1, 2) is

32Kendall’s tau is defined as follows. Consider two random variables x̃1, x̃2, independent of x1, x2, but with the
same joint distribution. Then ρτ (x1, x2) ≡ E [sign ((x1 − x̃1) · (x2 − x̃2))].
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equal to:

−ŷi
∂ ln F̄y1,y2 (ŷ1, ŷ2)

∂yi
=
ŷi
´∞
ŷ−i

fy1,y2 (ŷi, y−i) dy−i

F̄y1,y2 (ŷ1, ŷ2)
=

ai
[
F̄yi (ŷi)

]−1/ρ[
F̄y1 (ŷ1)

]−1/ρ
+
[
F̄y2 (ŷ2)

]−1/ρ − 1
.

C Notations for the Stochastic Model

In the stochastic model outlined in Section 7 (see Golosov, Tsyvinski, and Werquin 2014), we

define the marginal tax rates and virtual incomes in period one as

τ1,xj ≡
∂T1 (y1, k1)

∂xj
, ∀xj ∈ {y1, k1} ,

R1 ≡τ1,y1y1 + τ1,k1k1 + k0 − T1 (y1, k1) ,

and in period two as

τ2,xj

(
y1,x

2
2, z2

)
≡
∂T2

(
y1,x

2
2, z2

)
∂xj

, ∀xj ∈ {y1, y2, z2} ,

R2

(
y1,x

2
2, z2

)
≡τ2,y1y1 + τ2,y2x

2
2 + τ2,z2z2 − T2

(
y1,x

2
2, z2

)
.

We define the choice vector x of an individual with type (k0, θ1) in period one as:

x(k0,θ1) =



y1 (k0, θ1)

y2 (k0, θ1, θ2)
...

y2 (k0, θ1, θ2)
...

y2

(
k0, θ1, θ̄2

)
k1 (k0, θ1)


.

Note that this vector has a continuum of interior rows, corresponding to all the possible values

for θ2 ∈
[
θ2, θ̄2

]
. It will also be the case for the matrices that we define below. However, we

show that all the usual operations on vectors and matrices generalize naturally to this case.
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We define the vector of income effect parameters as

I
(x)
x,R1

=



∂y1/∂R1

∂y2 (θ2) /∂R1

...

∂y2

(
θ̄2

)
/∂R1

∂z2/∂R1


, I

(x)
x,R2(x2)

=



∂y1/∂R2

(
x2
)

∂y2 (θ2) /∂R2

(
x2
)

...

∂y2

(
θ̄2

)
/∂R2

(
x2
)

∂z2/∂R2

(
x2
)


.

We define the matrix of compensated elasticities with respect to the first-period marginal tax

rates τ1,y1 , τ1,k1 as

E
c,(x)
x,τ1 =



∂y1/∂τ1,y1 0 · · · 0 ∂y1/∂τ1,k1

∂y2 (θ2) /∂τ1,y1 0 · · · 0 ∂y2 (θ2) /∂τ1,k1
...

...
. . .

...
...

∂y2

(
θ̄2

)
/∂τ1,y1 0 · · · 0 ∂y2

(
θ̄2

)
/∂τ1,k1

∂z2/∂τ1,y1 0 · · · 0 ∂z2/∂τ1,k1


,

and the matrix of compensated elasticities with respect to the second-period marginal tax rates

τ2,y1

(
x2
)
, τ2,y2

(
x2
)
, τ2,z2

(
x2
)
, at point x2 =

(
x2

1,x
2
2,x

2
3

)
=
(
y1,x

2
2, z2

)
, as

E
c,(x)
x,τ2(x2)

=



∂y1
∂τ2,y1 (x2)

0 · · · 0 ∂y1
∂τ2,y2 (x2)

0 · · · 0 ∂y1
∂τ2,z2 (x2)

∂y2(θ2)
∂τ2,y1 (x2)

0 · · · 0
∂y2(θ2)
∂τ2,y2 (x2)

0 · · · 0
∂y2(θ2)
∂τ2,z2 (x2)

...
...

. . .
...

...
...

. . .
...

...
∂y2(θ̄2)
∂τ2,y1 (x2)

0 · · · 0
∂y2(θ̄2)
∂τ2,y2 (x2)

0 · · · 0
∂y2(θ̄2)
∂τ2,z2 (x2)

∂z2
∂τ2,y1 (x2)

0 · · · 0 ∂z2
∂τ2,y2 (x2)

0 · · · 0 ∂z2
∂τ2,z2 (x2)


,

where the only non-zero interior column of E
c,(x)
x,τ2(x2)

is the one indexed by θ∗2, where θ∗2 is such

that y2 (k0, θ1, θ
∗
2) = x2

2.

Next, we define the gradient vectors of the tax functions as

DT1 (y1, k1) =



∂T1
∂y1

(y1, k1)

0
...

0
∂T1
∂k1

(y1, k1)


, DT2

(
y1,x

2
2, z2

)
=



∂T2
∂y1

(
y1,x

2
2, z2

)
0
...

0
∂T2
∂y2

(
y1,x

2
2, z2

)
0
...

0
∂T2
∂z2

(
y1,x

2
2, z2

)



,
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where the only non-zero element in the (continuum of) interior rows of DT2

(
y1,x

2
2, z2

)
is in the

row indexed by θ∗2, where θ∗2 is such that y2 (k0, θ1, θ
∗
2) = x2

2.

We finally define the Hessian matrices as

D2T1 (y1, k1) =



∂2T1
∂y21

(y1, k1) 0 · · · 0 ∂2T1
∂y1∂k1

(y1, k1)

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
∂2T1
∂y1∂k1

(y1, k1) 0 · · · 0 ∂2T1
∂k21

(y1, k1)


,

and

D2T2

(
x2
)

=



∂2T2
∂y21

(
x2
)

0 · · · 0 ∂2T2
∂y1∂y2

(
x2
)

0 · · · 0 ∂2T2
∂y1∂z2

(
x2
)

0 0 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 0 0
∂2T2
∂y1∂y2

(
x2
)

0 · · · 0 ∂2T2
∂y22

(
x2
)

0 · · · 0 ∂2T2
∂y2∂z2

(
x2
)

0 0 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 0 0
∂2T2
∂y1∂z2

(
x2
)

0 · · · 0 ∂2T2
∂y2∂z2

(
x2
)

0 · · · 0 ∂2T2
∂z22

(
x2
)



,

where the only non-zero elements in the (continuum of) interior rows (resp., columns) of

D2T2

(
x2
)

are in the row (resp., column) indexed by θ∗2, where θ∗2 is such that y2 (k0, θ1, θ
∗
2) = x2

2.

The perturbations
(
dτ1, dτ2

(
x2
))

of the marginal tax rates faced by an individual
(
y1,x

2, k1

)
that we condider in formula (42) are defined as the changes in the gradient vectors defined above,

that is

dτ1 =
(
dτ1,y1 0 . . . 0 dτ1,k1

)′
,

dτ2

(
x2
)

=
(
dτ2,y1 0 . . . 0 dτ2,y2 0 . . . 0 dτ2,z2

)′
,

where the only non-zero element of dτ2

(
x2
)

is indexed by θ∗2, that is the second period type

such that z2 (k0, θ1, θ
∗
2) = x2

2.
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