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1 Introduction

Several public school districts in the United States and abroad implement formal school

choice mechanisms that solicit rank-order lists to assign students to schools (Abdulkadiroglu

and Sonmez, 2003; Pathak and Sonmez, 2008). Admissions are typically based on student

priorities, a lottery, and importantly, a reported ranking of various school options. These

data therefore provide a promising opportunity to estimate student preferences to evaluate

economic questions. Recent empirical studies have used estimates of student preferences

to evaluate student welfare under alternative matching mechanisms (Abdulkadiroglu et al.,

2014), implications for student achievement (Hastings et al., 2009), and school competition

(Nielson, 2013). However, with rare exceptions, mechanisms used in the real world are

susceptible to gaming (Pathak and Sonmez, 2008), making it difficult to directly interpret

reported lists in as true preference orderings. Table 1 presents a partial list of mechanisms

in use at school districts around the world. To our knowlege, only Boston and New Orleans

currently employ mechanisms that are not manipulable.1

This paper proposes a general method for empirically analyzing preferences for schools

using data from manipulable mechanisms. Previous empirical work has typically assumed

that observed rank order lists are truthful representation of the students’ preferences (Hast-

ings et al., 2009; Abdulkadiroglu et al., 2014; Ayaji, 2013), allowing a direct extension of

discrete choice demand methods with such data (c.f. McFadden, 1973; Beggs et al., 1981;

Berry et al., 1995, 2004).2 The assumption is usually motivated by properties of the mech-

anism or by arguing that strategic behavior may be limited under a sudden change in the

choice environment. This standard approach may not be valid if students have a strategic

incentives to manipulate their reports. Anecdotal evidence from Boston suggests that parent

groups and forums for exchanging information about the competitiveness of various schools

and discussing ranking strategies are fairly active (Pathak and Sonmez, 2008).

Our approach is based on interpreting a student’s choice of a report as a choice of a proba-

bility distribution over assignments. Intuitively, each rank-order list results can be associated

with a probability of getting assigned to each of the schools on that list. The probability of

assignment associated with each report depends on the student’s priority type, the reports

of the other students and a random lottery in the mechanism, if there is one. If agents have

1The student proposing deferred acceptance mechanism is a commonly used mechanism that is strategy-
proof if students are not restricted to list fewer schools than are available. However, with the exception of
Boston since 2005, all implementations of the mechanism known to us, severely restrict the length of the
rank-order list. Abdulkadiroglu et al. (2009) and Haeringer and Klijn (2009) show that with this restriction,
the mechanism provides incentives for students to drop competitive schools from their rank-order list.

2He (2012) is a notable exception that allows for agents to be strategic. We compare our results with this
paper in further detail below.
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Table 1: School Choice Mechanisms

Mechanism Manipulable Examples
Boston Mechanism Y Barcelona1, Beijing2, Boston (pre 2005),

Charlotte-Macklenberg3, Chicago (pre 2009),
Denver, Miami-Dade, Minneapolis,
Seattle (pre 1999 and post 2009),
Tampa-St. Petersburg.

Deferred Acceptance
w/ Truncated Lists Y New York City4, Ghanian Schools,

various districts in England (since mid ‘00s)
w/ Unrestricted Lists N Boston (post 2005), Seattle (1999-2008)

Serial Dictatorships
w/ Truncated Lists Y Chicago (2009 onwards)

First Priority First Y various districts in England (before mid ‘00s)
Chinese Parallel Y Shanghai and several other Chinese provinces5

Cambridge Y Cambridge6

Pan London Admissions Y London7

Top Trading Cycles N New Orleans8

Notes: Source Table 1, Pathak and Sonmez (2008) unless otherwise stated. See several references therein

for details. Other sources: 1 Calsamiglia and Guell (2014); 2He (2012); 3Hastings et al. (2009);
4Abdulkadiroglu et al. (2009); 5Chen and Kesten (2013); 6 “Controlled Choice Plan” CPS, December 18,

2001; 7Pennell et al. (2006);
8http://www.nola.com/education/index.ssf/2012/05/new orleans schools say new pu.html

accessed May 20, 2014.

correct beliefs about this probability and are expected utility maximizers, then the chosen

report then reveals comparisons of expected utilities with other reports the agent could have

chosen. Formally, we require that student behaviour is described by a limit Bayesian Nash

Equilibrium. This equilibrium is an approximate equilibrium in a large matching mechanism.

We show that this maintained assumption is testable without first estimating the preference

distribution. This promises a chance to verify the primary maintained assumption, but also

posits potential barriers to using our equilibrium assumption as a basis for estimation in

empirical settings. We show, however, that if the mechanism uses rank-order lists from

agents and satisfies a stict monotonicity condition in probability of assignments with respect

to upgrading a school in the ranks, then any rank-order list with positive probability of

assignment to each of the options is consistent with equilibrium play. While negative on the

ability to test the equilibrium assumption, the result suggests that our method can be used

in many empirical settings for estimating preferences in an internally consistent manner.

In order to learn about preferences from the reports made by an agent, we first estimate
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the probabilities of assignments associated with each report and student priority type. We

present a general convergence condition on the mechanism under which data from a large

market can be used to consistently estimate these probabilities without directly estimating

preferences or solving for an equilibrium. The ability to do this circumvents difficulties that

may arise due to computational difficulties in solving for an equilibrium or multiplicity of

equilibria. We describe a new class of mechanisms, called report-specific priority + cutoff

mechanisms for which this condition is satisfied. We can show that all mechanisms in Table

1, except the Top Trading Cycles mechanism, are elements of this class.

Since the assignment probabilities as a function of reports and priority types can be

consistently estimated, we study identification of preferences treating these probabilities as

known to the econometrician. The problem is equivalent to identifying the distribution

over preferences over discrete objects with choice data on lotteries over these objects. We

follow the discrete choice literature in specifying preferences with a random utility model

that allows for student and school unobservables (see Block and Marshak, 1960; McFadden,

1973; Manski, 1977). Using this model, we show conditions under which the distribution of

preferences is non-parametrically identified.

We exploit two types of variation to identify the distribution of preferences. First, we use

variation in choice environments (as defined by the lotteries available to the agents). Such

variation may arise from differences in agent priorities that are excludable from preferences,

or if the researcher observed data from two identical populations of agents facing different

mechanisms or availability of seats. We characterize the identified set of preference distribu-

tions under such variation. Although sufficient variation in choice environments can point

identify the preference distribution, we should typically expect set identification. Our second

set of identification results relies on the availability of a special regressor that is additively

separable in the indirect utility function (Lewbel, 2000). The assumption is commonly made

to identify preferences in discrete choice models (Berry and Haile, 2010, 2014, for example).

We show that local variation in this regressor can be used to identify the density of distribu-

tion of utility in a corresponding region. A special regressor with full support can be used

to identify the full distribution of preferences.

Finally, we apply our methods to data from the controlled choice plan for admission

into elementary schools in Cambridge, MA. The school district uses a variant of the Boston

Mechanism, that is highly manipulable.

Related Literature

Our approach to studying large sample properties of our estimator and defining a limit

mechanism is motivated by recent theoretical work studying matching markets by Kojima
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and Pathak (2009); Azevedo and Leshno (2013). Some of our proposed results rely on and

extend results in Azevedo and Leshno (2013). While one may conjecture that in a large

market, agents act as price-takers and cannot manipulate outcomes, Azevedo and Budish

(2012) show that many mechanisms retain strategic incentives in a large market. Indeed, we

borrow the concept a limit-equilibrium used in Azevedo and Budish (2012).

The empirical approach of assuming that agent behaviour is described by a Bayesian

Nash Equilibrium is similar to He (2012). The paper studies strategic behavior in the

Boston mechanism in Beijing, and estimates preferences under the assumption that agents’

reports are undominated. The set of undominated reports is derived using a limited number

of restrictions implied by rationality, the specific number of schools and ranks that can be

submitted in Beijing, and that the mechanism treats all agents symmetrically. The approach

fully-specifies the likelihood of reporting each of the undominated stategies.

Compared to He (2012), our approach allows for a more general class of mechanisms that

includes mechanisms with student priority groups and considers a broad range of restrictions

implied by rationality. The proposed method does not require the researcher to analytically

derive implications of rationality for use in estimation. Further, our aim is to characterize

the identified set or show point identification under the restrictions imposed on the data and

directly study the properties of an appropriate estimator, aspects which are not studied in

He (2012).

Previous research has questioned the extent to which agents are sophisticated. For exam-

ple, Abdulkadiroglu et al. (2006) use particulars of the Boston mechanism to deduce reports

that are clearly suboptimal and tabulate the fraction of agents that make one these reports.

Recent evidence in Calsamiglia and Guell (2014) suggests that students in Barcelona respon-

des to a change in strategic incentives when the system of assigning neighborhood priorities

was administratively changed. We present a sharp condition for an agent’s report to be

consistent with equilibrium behaviour that does not depend on details of the mechanism.

This allows us to estimate the fraction of agents with reports that are not consistent with

equilbrium behaviour. It also shows that the equilibrium restriction we use in our approach

is testable in the data. Extensions to relax this assumption are left for future research.

We use techniques and build on insights from the identification of discrete choice demand

(Matzkin, 1992, 1993; Lewbel, 2000; Berry and Haile, 2010). While the primitives are similar,

unlike discrete choice demand, each report is a risky prospect that determines a probability

of assignment to the schools on the list. Since choices over lotteries depend on expected

utilities, our data contain direct information on cardinal utilities when the lotteries are not

degenerate. In this sense, our paper is similar to Chiappori et al. (2012), although their

paper focuses on risk attitudes rather than the value of underlying prizes.
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This paper is related to the large, primarily theoretical, literature that has taken a

mechanism design approach to the student assignment problem (Gale and Shapley, 1962;

Shapley and Scarf, 1974; Abdulkadiroglu and Sonmez, 2003). Theoretical results from this

literature has been use to guide redesigns of matching markets (Roth and Peranson, 1999;

Abdulkadiroglu et al., 2006, 2009). While preferences are fundamental primitives that influ-

ence mechanism comparisons, prospective analysis of a proposed change in the school choice

mechanism is rare (see Pathak and Shi, 2013, for an exception). A significant barrier is that

the fundamental primitives are difficult to estimate since a large number of school choice

mechanisms are susceptible to manipulation (Pathak and Sonmez, 2008, 2013). Results in

this paper may be useful to allow such analysis in some cases. For instance, our techniques

will allow comparing the welfare effects of a change to the Deferred Acceptance mechanism

for a school district that uses the Boston mechanism. The relative benefits of these two

mechanisms has been debated in the theoretical literature using stylized theoretical models

with an assumed distribution of preferences (Miralles, 2009; Abdulkadiroglu et al., 2011;

Featherstone and Niederle, 2011).

Our methods may also be useful in extending recent work on measuring the effects of

school assignment on student achievement that jointly specifies the preferences for schools

and test-score gains (Hastings et al., 2009; Walters, 2013; Nielson, 2013). This work has

been motivated by the fact that without data from a randomized assignment of students

to schools, a researcher must confront the possibility that students differentially sort into

schools that result in idiosyncratic achievement gains. Additionally, estimates of preferences

may be useful in extrapolating lottery based achievement designs if there is selection on the

types of students that participate in the lottery (Walters, 2013). Methods for estimating

preferences in a broader class of data-environments may expand our ability to study the

effects of school assignment on student achievement.

This paper also contributes to the growing literature on methods for analyzing preferences

in matching markets. Many recent advances have been made in using pairwise stability as

an equilibrium assumption on the final matches to recover preference parameters (Choo and

Siow, 2006; Fox, 2010b,a; Chiappori et al., 2011; Agarwal, 2013; Agarwal and Diamond,

2014). The data environment considered here is significantly different and pairwise stability

need not be a good approximation for assignments from manipulable mechanisms.

The proposed two-step estimator leverages insights from the industrial organization lit-

erature, specifically the estimation of empirical auctions (Guerre et al., 2000; Cassola et al.,

2013) and dynamic games (Bajari et al., 2007). As in the methods used in those contexts,

we use a two-step estimation procedure where the distribution of actions from other agents

is used to construct probabilities of particular outcome as a function of the agents’ own
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action and a second step is used to recover the primitives of interest. However, the nature

of primitives, reports, the mechanism and economic environment are significantly different

than in our context.
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Overview

Section 2 sets up the notation for describing mechanisms and presents the main convergence

condition needed for our analysis. It then presents the class of report-specific priority +

cutoff mechanisms and describes the equilibrium concept. Section 3 sets up the preference

model, interprets agent choices as a choice over lotteries, and studies identification under

varying choice environments and the availability of a special regressor. Section 4 shows a

basic consistency theorem for the preference parameters. Section 5 describes the Cambridge

data, the Cambridge mechanism and shows that our main convergence condition holds for

the Cambridge mechanism. Section 6 concludes.

2 Mechanisms and Limit Behaviour

2.1 Mechanisms and Their Limits

Consider a single-unit assignment mechanism with students indexed by i ∈ {1, . . . , n} and

schools indexed by j ∈ {0, 1, . . . , J} = S. School 0 denotes being unmatched. Each school

has qj seats, with q0 = ∞. Each student has a priority type ti ∈ T , where T is a finite set.

For instance, students in the Cambridge school system and many others are prioritized based

on whether live in the school walk-zone or if they have an older sibling in the school. The

students participate in a mechanism by submitting a report Ri ∈ Ri, which is a rank-order

list over the schools S = {0, . . . , J}. As is the convention in the school choice literature,

write jRij
′ to indicate that j is ranked above j′. The set Ri may depend on the student’s

priority type ti, and may be constrained. For example, students in Cambridge can rank up

to three schools, and programs are distinguished by paid-lunch status of the student. The

rank order lists of all students is denoted R ∈ R1× . . .×Rn = Rn, and the vector of priority

types is denoted t ∈ T n. At a minimum, we require the dataset to contain the reported rank

order lists and the student’s priority types.

A mechanism is often described as an outcome of an algorithm that takes these rank-order

lists as inputs. To study properties of a mechanism and our methods, it will be convenient

to define this as a function that depends on the number of students n instead of the outcome

of an algorithm.

Definition 1. Fix a set of schools S and a sequence of capacities qnj . A mechanism {Φn}
is a collection of functions (Φ1, . . . ,Φn) where

Φn : Rn × T n → (∆S)n
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such that for all R ∈ Rn, and t ∈ T n,

n∑
i=1

Φn
ij(R, t) ≤ qnj .

In this notation, the i− j component of Φn(R), denoted Φn
ij(R, t) is the probability that

student i is assigned to school j. Hence, the outcome for each student is in the J-simplex

∆S. In the Cambridge school system, there is a lottery that breaks ties between students.

Such lotteries are a common source of uncertainty faced by students.

We restrict attention to mechanisms that treat students with the same priority types

symmetrically.

Definition 2. A mechanism is semi-anonymous with priorities T if

1. for all t, Ri, R−i and i, i′ such that ti = ti′, we have that Φn
i ((Ri, R−i), t) = Φn

i′((Ri, R−i), t).

2. for all Ri, R−i and permutations π of −i = {1, . . . , i − 1, i + 1, . . . , n}, we have that

Φn
i ((Ri, ti), R−i, t−i) = Φn

i ((Ri, ti), Rπ(−i), tπ(−i)).

The restriction to semi-anonymous mechanisms with finitely many priority types rule out

admissions systems where a fine metric such as a test score is used to order students.

It is useful to consider the mechanism from an individual student’s perspective. In a

semi-anonymous mechanism, the student receives a probabilistic assignment as a function

of her report and the joint distribution of priorities and reports of the other agents. The

following remark highlights that this perspective is without further loss of generality.

Remark 1. Let m(R−i, t−i) = 1
n−1

∑
i′∈−i δ(Ri′ ,ti′ )

be the empirical measure of reports of

students other than i. If Φn is semi-anonymous, there exists a function φn : (R × T ) ×
∆(R× T )→ ∆S, such that

φn((Ri, ti),m(R−i, t−i)) = Φn
i ((Ri, ti), R−i, t−i).

Note that Φn
i only restricts φn((Ri, ti),m(R−i, t−i)) at a subset of probability measures

m, namely, probability measures of the form 1
n

∑
i δRi,ti . We are free to choose φn at other

values. Henceforth, we refer to a specific choice of φn when discussing a semi-anonymous

mechanism.

With this formulation, it becomes natural to consider the limit of a mechanism as follows:

Definition 3. The function φ∞ : (R × T ) × ∆(R × T ) → ∆S is a limit mechanism of
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the sequence of semi-anonymous mechanisms {φn} if for all Ri, ti and m ∈ ∆(R× T ),

φ∞((Ri, ti),m) = lim
n→∞

φn((Ri, ti),m)

Our identification and estimation results will be based on properties of this limit mecha-

nism and agent behavior. The route to econometric analysis relies on understanding whether

the properties of a limit mechanism evaluted at m can be approximated by large finite mech-

anisms. The key property that will allow us to proceed with the analysis for a mechanism

is that outcomes of the mechanism evaluated at the empirical distribution of the reports

converge in probability to the limiting values as the market grows in size.

Condition 1 (Convergence). Suppose the sequence of empirical measures mn−1 on R × T
converges in probability to the population measure m ∈M, then for each (R, t),

φn((R, t),mn−1)
p→ φ∞((R, t),m).

Verifying Condition 1 for a mechanism may not be straightforward because matching

mechanisms are often described using algorithms instead of functions that take a measure

of reports as inputs. A representation of the mechanism as a function may be necessary

before proceeding. The next subsection describes a large class of mechanisms in which the

condition is satisfied. Researchers interested in applying our results will need to either verify

that their mechanism belongs to this class or will need to verify Condition 1 directly.

2.2 Report-Specific Priority and Cutoff Mechanisms

This section introduces a class of mechanisms called report-specific priorities + cutoff mech-

anisms and shows that all mechanisms that belong to this class satisfy Condition 1. This

representation extends the characterization of stable matchings by Azevedo and Leshno

(2013) in terms of demand-supply and market clearing to discuss mechanisms. Particularly,

we can use the framework to consider mechanisms that produce matchings that are not

stable.

Let ei ∈ [0, 1]J be a vector of student eligibility score that encodes the student priority

type ti and a randomly generated lottery. Here, eij > ei′j implies that student i has higher

eligibility at school j than student i′. Let p ∈ [0, 1]J denote a cutoff vector that determines

the minimum eligibility score student that a school will accept. Given an eligibilty score ei
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and a cutoff vector p, we say that student i’s report Ri expresses individual demand

D
(Ri,ei)
j = 1{eij ≥ pj, jRi0}

∏
j′ 6=j

1{jRij
′ or eij′ < pj′}.

We can now write the aggregate demand by integrating over the measure of student priorities

and reports η. For a cutoff vector p ∈ [0, 1]J , the measure of students demanding j ∈ S is

given by

Dj(p) = η

(
{(ei, Ri) : eij ≥ pj, jRi0}

⋂
j′ 6=j

({(ei, Ri) : jRij
′} ∪ {(ei, Ri) : eij′ < pj′})

)

and the measure of student demanding no school is given by

D0(p) = η

(⋂
j

({(ei, Ri) : 0Rij} ∪ {(ei, Ri) : eij′ < pj′})

)
.

We make the following assumption on η in the limit continuum economy:

Assumption 1 (Non-degenerate lotteries). For each p, p′ ∈ [0, 1]J and R, η({(e, R) : p∧p′ ≤
e ≤ p ∨ p′}) ≤ κ‖p− p′‖∞.

Non-degenerate lotteries is a strengthening of strict preferences in Azevedo and Leshno

(2013). The assumption is straightforward to verify with knowledge of the mechanism. For

example, it is satisfied if a lottery is used to break ties between multiple students with the

same priority type. It also allows for a siutation in which a single tie-breaking lottery that

is used by all schools to break ties as well as cases when each school uses an independent

lottery. This assumption, however, is not satisfied if the school destrict uses an exam with

finitely many possible scores to determine eligibility and does not use a lottery to break ties

between students with identical exam scores.

Given an aggregate demand implied by η and school capacities q, we can consider the set

of cutoffs that clear the market as follows:

Definition 4 (Market Clearing Cutoff). The vector of cutoffs p is a market clearing cutoff

for economy (η, q) if for all j ∈ S, zj(p|η, q) = Dj(p|η)− qj ≤ 0, with equality if pj > 0.

We require that the limit economy has a unique market clearing cutoff.

Assumption 2 (Unique Cutoff). (η, q) admits a unique market clearing cutoff, p∗.

The assumption resticts the joint distribution of reports and priorities, and the school

capacities. Existence of a market clearing cutoff is guaranteed by Corollary A1 of Azevedo
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and Leshno (2013) for any η. Uniqueness is a restriction on an equilibrium object. Although

the assumption is not made on primitives, it is a restriction on features that are observed in

the data. Sufficient conditions that imply this assumption are therefore testable in principle.

Further, as our next example illustrates, violations of this assumption are knife-edge cases.

We refer the reader to Appendix A.2 for a more formal discussion of sufficient conditions

for Assumption 2 and conditions under which violations are non-generic. This discussion

borrows from results in Azevedo and Leshno (2013) and Berry et al. (2013).

Example 1. Consider an economy with two schools, a and b, with capacities qa = qb = 1
2
.

There are two types of students α and β, each with mass 1
2
. Students of type α have priority

at school a and types β have priority at school b. Student reports are oppositing so that

α-types report school b as preferred to a while students of type β report the reverse. Assume

that there is a single a uniformly distributed lottery that is used to break ties.

Figure 1 illustrates the measure η. Types α have priorities uniformly distributed on the

bottom-right diagonal and β have priorities uniformly distributed on the top-left square.

pa

pb

1

1

0 1
2

1
2

aRβb

bRαa

Figure 1: A non-generic example with non-unique cutoffs
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The aggregate demand in this economy is given by

Dj(pj, p−j) =


1− pj if p−j ≥ 1

2
1
2
− pj + p−j if p−j ≤ 1

2
, pj ≤ 1

2
+ p−j

0 if p−j ≤ 1
2
, pj >

1
2

+ p−j

D0(pa, pb) = 1−
∑

j∈{a,b}

Dj(pa, pb)

It is easy to show that (0, 0) and (1
2
, 1

2
) are the market clearing cutoffs in this economy.

First, observe that this multiplicity is non-generic in q. If qa, qb 6= 1
2
, then the market

clearing cutoffs are unique and given by

(p∗j , p
∗
−j) =


(0, 0) if qj, q−j >

1
2

(1− qj, 1− q−j) if qj, q−j <
1
2

(1
2
− qj, 0) if qj <

1
2
, qj + q−j > 1

(1− qj − q−j + 1
2
, 1− q−j) if qj <

1
2
, qj + q−j < 1

Second, the demand function in this example is also pathological. This is because the

demand for the outside good is 0 for all prices pj, p−j ≤ 1
2
. Hence, the demand for the

outside good does not respond to small increases in pa or pb from the cutoff (0, 0). Consider

a perturbed economy in which ε weight is (uniformly) placed on priority types along the dashed

line where the 1
2
ε list only school a as acceptable and 1

2
ε list only school b as acceptable. With

this modification, the demand function is given by

Dε
j(pj, p−j) = (1− ε)Dj(pj, p−j) +

1

2
ε(1− pj)

It is straightforward to show that if qa = qb = 1
2
, then for any ε ∈ (0, 1), the only market

clearing cutoffs are (0, 0).

Both, the perturbations of capacities and the demand function described above show

that the cases in which the market cutoffs are not unique are ones in which the aggregate

demand is not-responsive to local changes in the cutoffs. Therefore, ruling out multiplicity

of cutoffs is similar to ruling out singularities at the market clearing cutoffs.

We now show that if the the limit economy satisfies Assumptions 1 and 2, then the cutoff

is approximated by the market clearing cuttofs of finite economies.

Lemma 1. Suppose (η, q) satisfies Assumption 2. If pn is a sequence of market clearing cut-

offs for (ηn, qn), where ηn are a sequence of empirical measures that converges in probability

to η and qn → q, then ‖pn − p∗‖ p→ 0.
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Proof. See Appendix A.2

The proof is based on first showing uniform convergence in probability of the aggregate

demand as a function of p using empirical process methods. This result is a straightforward

consequence of the observation that the set of student-types that express demand for a school

j form a VC-class (indexed by the price p and the school j). Combined with a unique cutoff

in the limit, a basic consistency theorem can be used to show uniform convergence of pn to

p∗.

We are now ready to present the main definition and results in this section.

Definition 5. A mechanism φn is a report-specific priorities + cutoff mechanism a

there exists a function f : R××[0, 1]J → [0, 1]J such that

(i) f strictly increasing in the last J arguments

(ii) φnj ((Ri, ti),m(R−i, t−i)) is given by∫
. . .

∫
D(Ri,f(Ri,ei))(pn)dηR1,e1|t1(R1, ·) . . . dηRn,en|tn(Rn·)

(iii) pn are market clearing cutoffs for each profile of reports and lotteries

{(R1, f(R1, e1)), . . . , ((Rn, tn, f(Rn, en))}

This class of mechanisms use a market clearing cutoffs for an associated economy in

which every agent’s priority score is modified through f as a function of their report. The

agent is then assigned to her most preferred program for which her modified priority score

exceeds the cutoff. The representation highlights two ways in which these mechanisms can

be manipulable. First, the report of an agent modifies can modify her eligibility. Fixing

a cutoff, agents may have the direct incentive to make reports that may not be truthful.

Second, even if eligibility does not depend on the report, an agent may (correctly) believe

that the cutoff for a school will be high, making it unlikely that she will be eligible. If the

rank-order list is constrained in length, she may choose to omit certain competitive schools.

Our main results show that this class of mechanism satisfy the key convergence condi-

tion needed to proceed with the rest of our analysis, and that this class contains the most

commonly used mechanisms.

Theorem 1. Assume that ηf (R, {e : e ≤ p}) = η(R, {e : f(R, e) ≤ p}) satisfies Assumption

1 and 2. If φn is a report-specific priority + cutoff mechanism, then φn satisfies Condition 1
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Proof. See Appendix A.3.

The proof is a straightforward consequence of Lemma 1. Given that ηf satisfies Assump-

tion 2, the market clearing cutoffs of the finite economy converges to the limit. Assumption

1 is used to ensure that probability that a student with priority ti and report Ri is assigned

to a given choice is a continuous function of the cutoff in the limit economy. Together, these

claims imply the result.

We conclude this section by showing that most commonly used mechanisms can be ex-

pressed as report-specific lottery + cutoff mechanisms. The main text focusses on the two

most commonly used mechanisms:

The Student Proposing Deferred Acceptance Mechanism: For reports R1, . . . , RN

and priorities t1, . . . , tN ,

Step 1: Students apply to their first listed choice and their applications are tentatively held

in order of priority and a lottery number until the capacity has been reached. Schools

reject the remaining students.

Step k: Students that are rejected in the previous round apply to their highest choice that

has not rejected them, and applications are help in order of priority and a lottery

number until the capacity has been reached. The remaining students are rejected.

Continue if any rejected student has not been considered at all their listed schools.

This mechanism is strategy-proof for the students if the students can rank all J schools

(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if

students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer

and Klijn, 2009, for details).

The Boston Mechanism: For reports R1, . . . , RN and priorities t1, . . . , tN , each school

Step 1: Assign students to their first choice in order of priority and a lottery number until

the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order

of priority and a lottery number until the capacity has been reached. Schools reject

the remaining students. Continue if any rejected student has not been considered at

all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students

(Abdulkadiroglu et al., 2006).

Proposition 1. The Deferred Acceptance Mechanism and the Boston Mechanism with lot-

teries are report-specific priority + cutoffs mechanisms.
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Proof. See Appendix A.4. We use f(R, e) = e for deferred acceptance and fj(R, e) =
ej −#{k : kRj}

J
+
J − 1

J
for the Boston Mechanism. This choice of f for Boston upgrades

the priority of the student at her first choice relative to all students that list that school

lower.

Remark 2. The Serial Dictatorship, First Priority First, Chinese Parallel Mechanism and

the Pan London Admissions scheme are also report-specific priority + cutoff mechanisms.

For completeness, we discuss these mechanisms in Appendix A.4.

The function f used for the Boston Mechanism is intuitive. A student gains priority at

a school relative to all students that rank that school lower on their list.

2.3 Limit Equilibrium

Our approach assumes that the students submit rank-ordered lists according to a Bayesian-

Nash Equilibrium (of the limit mechanism). We will present a test of this assumption in the

next section. Also note that the previous results including the limit properties of assignment

probabilities do not rely on having a distribution of reports that is generated by the limit

equilibrium.

A (mixed) strategy is a function σi : (RJ × T )→ ∆Ri, where the domain is the vector

(indirect) utilities for each school and the student’s priority type. Denote the weight on

the profile R as a function of vi = (vi1, . . . , viJ) and t as σi(vi, ti;R). We will only consider

symmetric equilibria, i.e. σ∗i (vi, ti;R) = σ∗(vi, ti;R) for all i and R.

Student i’s payoff from a particular report is based on the distribution of reports of the

other students since that distribution affects the probability of assignment to the various

schools. For the game implied by φn, the ex-ante payoff from report Ri is given by

V n
i ((Ri, ti),mσ) = E

[∑
j

φnij((Ri, ti),m
n−1
σ )vij

]
. (1)

where mn−1
σ is an empirical measure of n − 1 iid draws from mσ, with mσ(R, t) = fT (t) ×∫

σ(v, t;R)dFV |T , FV,T is the joint distribution of player utilities and priority type. The

expectation is taken with respect to uncertainty in the empirical draw, mn−1
σ .

We will consider a limit Bayesian-Nash Equilibrium (BNE) and the set of approximate

equilibria in the finite mechanisms.

Definition 6. The strategy σ∗ is a limit equilibrium if for all i, σ∗(vi, ti;Ri) > 0 implies
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that

Ri ∈ arg maxR′i∈Ri

∑
j

φ∞ij ((Ri, ti),mσ)vij.

The strategy σ∗ is an ε-equilibrium of the n-th game if σ∗(vi, ti;Ri) > 0 implies that for

all R′i ∈ Ri

V n
i (R′i,mσ∗)− V n

i (Ri,mσ∗) ≤ ε‖vi‖∞.

In an ε-equilibrium, no agent can expect a gain of more than a small fraction of her

maximum payoff. The notion formalizes the idea that agents do not have a large incentive

to deviate from the prescribed limit equilibrium strategy. Our next result shows that if the

mechanism satisfied Condition 1, then the limit equilibria are approximate equilibria of a

large mechanism.

Proposition 2. Let σ∗ be a symmetric equilibrium of φ∞((Ri, ti),m). If Condition 1 holds,

then there exists an n0 such that for all n > n0, σ∗ is an ε-equilibrium of φn.

Proof. See Appendix A.1.

This result justifies our focus on the limit-BNE as an approximation to large-sample

play. The main advantage is that the limiting equilibria are more tractable for econometric

analysis because, unlike the equilibria of finite market mechanisms, the limit-equilibrium

does not depend on n. Without this simplification, a technical challenge is to show that

reports sampled from equilibria that depend on n converge in an appropriate sense (see

Menzel, 2012, for example).

The focus on equilibrium play implies that students submit the report that maximizes

their expected utility with correct notions of the distribution of play by other students.

This approach is a natural starting point for analyzing mechanisms that are not dominant-

strategy and is commonly taken in the empirical analysis of auction mechanisms (Guerre

et al., 2000; Cassola et al., 2013, among others). Anecdotal evidence suggests that parent

groups and forums discussing ranking strategies are active (Pathak and Sonmez, 2008).

While direct evidence showing that agents play equilibrium stategies is limited, Calsamiglia

and Guell (2014) observe a strategic response in the distribution of reports to a change in

the allocation of neighborhood priorities. However, the assumption implies a strong degree

of rationality and knowledge, particularly if parents vary in their level of sophistication as

postulated by Pathak and Sonmez (2008, 2013).

16



3 Identification and Testable Restrictions

3.1 Preference Model and Choice Over Lotteries

We follow the treatment in Berry and Haile (2010) for describing student preferences. For

simplicity, we do not consider endogeneous characteristics.

Student i in market b picks a report Ri ∈ Rb,i when faced with the limit-mechanism φ∞b .

This mechanism assigns her to a school in Sb = {0, 1, . . . , Jb} where 0 denotes remaining

unassigned. Each school-student pair has observable characteristics zijb, some of which may

vary only at the school level, and may include the student priority types ti. Additionally,

we allow for school unobservables ξb(zib) that can depend on the vector of observables zijb =

(zi1b, . . . , ziJbb).

We use a random utility model to represent student preferences. Let χ denote the support

of (ξjb, zijb). Each student has an indirect utility function vi : χ→ R. This formulation allows

for heterogeneous preferences conditional on observables. Let

vi = (vi1, . . . , viJb)

be the random vector of indirect utilities for student i and denote its joint distribution with

FV (vi1, . . . , viJb|ξb, zib). We normalize the utility of not being assigned, vi0, to zero and make

the following assumption of FV :

Assumption 3. FV (vi1, . . . , viJb|ξb, zib) admits a density fV (vi1, . . . , viJb|ξb, zib).

The assumption implies that the probability that any two lotteries over assignments to Sb

yield the same expected utility is zero. Our objective will be to identify FV (vi1, . . . , viJb|ξb, zib)
using data from either a single or multiple large markets. Formally, a market is defined by

the tuple

Γib = (ξb, zib, tib,mb, φ
∞
b )

wheremb is the joint measure on the space of priority and reports of the other students. In our

notation, a market conditions on students on with the same observables z. This treatment

may be somewhat counterintuitive as it treats two students with different observables in

the same year of the data as parts of separate markets. However, the notation allows for an

explicity discussion of what must be held fixed, particularly when pooling data from different

markets. Conditioning on the observable quantities z, t,m and φ∞ is without loss because

a researcher may always do so, but holding ξ fixed may require us to assume that school

unobservables are fixed across various contexts.
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We will cast the student’s choice of report R ∈ Rb as a choice over these lotteries. For

simplicity of notation, let

LΓ = {LR = φ∞b ((R, t),mb) : R ∈ Rt,b}

be the set of lotteries that an agent with priority type t chooses from in market Γ. We

assume that the probability that lottery L is chosen in market Γ, denoted P (L ∈ LΓ|Γ), is

observed. In what follows, we will often be considering choices of agents in a single market

Γ, and when clear from the context, we omit the subscript Γ.

3.2 Equilibrium Behavior and Testable Restrictions

Our empirical methods will be based on the assumption that agent behavior is described by

equilibrium play. This section discusses whether this assumption is testable in principle and

types of mechanisms for which it may be rejected.

Assumption 4. The map σi(vi, ti) → ∆Ri that generates the data is a symmetric limit

Bayesian Nash Equilibrium.

This assumption implies that students have consistent beliefs of the probability that they

are assigned to each school in Sb as a function of their report R ∈ R. Further, condition 1

implies that φ∞b ((R, t),mb) is identified and can be consistently estimated with knowledge

of the mechanism and the measure mb. Therefore, a student’s choice set can be treated as

known to the econometrician. This reformulation therefore transforms the problem of an

student playing against a distribution of other students to a single agent problem choosing

from a known set of options.

A student with utility vector v maximizes expected utility by picking lottery LR if and

only if LR · v ≥ L · v for all L ∈ L. The set of students that choose lottery LR therefore have

utilities that belong to the normal cone to L at LR:

NL (LR) =
{
v ∈ RJ : ∀L ∈ L, 〈v, LR − L〉 ≥ 0

}
.

This observation immediately yields the result that agents maximize their utility by picking

lotteries that are extremal in the set of lotteries.

Proposition 3. Let the distribution of indirect utilities satisfy Assumption 3. If L is not

an extreme point of the convex hull of L, the set of utilities v such that v · L ≥ v · L′ for all

L′ ∈ L has measure zero.
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Proof. If L is not an extreme point of the convex hull of L, then NL(L) has Lebesgue-measure

zero. Assumption 3 implies therefore implies that
∫

1{v ∈ NL(L)}dFV = 0.

Since ties are non-generic, agents who’s behavior is consistent with limit-BNE play (typ-

ically) pick extremal lotteries. Figure 2 presents an example with 2 schools and 8 lotteries.

The lotteries can be represented by elements of the 2-simplex. Lotteries in the interior of

the convex hull are suboptimal, i.e., almost all students will find another lottery that yields

higher expected utility. The normal cone to a lottery in the boundary is set of utility vectors

for which the lottery is optimal.

Proposition 3 also indicates that the fraction of students with behaviour that is not

consistent with equilibrium play can be identified. This suggests that Assumption 4 is

testable. This ability promises a chance to validate this strong restriction on agent behavior

as well as answer a question of independent interest. However, we have not yet exploited the

structure of assignment probabilities that result from typical assignment mechanisms. We

now present a general sufficient condition under which observed behavior can be rationalized

as equilibrium play.

Consider a ranking mechanism in which reports correspond to rank-orders over the

available options. Therefore, a report is a function R : {1, . . . , K} → S ∪ {0} such that (i)

for all k, k′ ∈ {1, . . . , K}, R(k) = R(k′) 6= 0 ⇒ k = k′ and (ii) R(k) = 0 =⇒ R(k′) = 0 if

k′ > k. Let R be the space of such functions.

Definition 7. The ranking mechanism φ∞ is rank-monotonic for t at m if

(i) For all R ∈ R and j ∈ S, φ∞j ((R, t) ,m) = 0 if j 6∈ Im (R)

(ii) For all k ∈ {1, . . . , K}, if R(k′) = R′(k′) for all k′ < k then

φ∞R(k)((R, t),m) ≥ φ∞R(k)((R
′, t),m).

Further, φ∞ is strictly rank-monotonic for t at m if the last inequality is strict iff R(k) 6=
R′(k) and φ∞R(k)((R, t),m) > 0.

Rank-monotonicity is a natural condition that is often satisfied by single-unit assignment

mechanism. Part (i) requires that a student is not assigned to a school which she did not

rank, a condition that is satisfied by all mechanisms that we know of. Part (ii) requires the

mechanism to obey certain intuitive properties in how rankings correspond to assignment

probabilities. Specifically, it requires that assignment at the k-th ranked school does not

depend on schools ranked below it, and that ranking a school higher increases a student’s

chances of getting assigned to it.
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(a) The shaded area is the convex hull of L. There
are 3 lotteries that are suboptimal for all students.
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(b) The tangent cone to L at L is spanned by
the two long directed arrows. The normal cone
is spanned by two short directed arrows. These
vectors are orthogonal to the tangent vectors.

Figure 2: In this example, J = 2 and L has 8 elements.
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We now show that in all strictly rank-monotonic ranking mechanisms, all agents that

pick a report that gives them a positive probability of assignment at each of their options

are behaving in a manner consistent with a limit equilibrium.

Theorem 2. Assume that the ranking mechanism φ∞ is strictly rank-monotonic at m for

priority type t. The report R ∈ R corresponds to an extremal lottery LR ∈ {φ∞((R, t),m) :

R ∈ R} if φ∞j ((R, t) ,m) > 0 for all j ∈ Im (R).

Proof. See Appendix B.1.

There are two ways to interpret this result. On the one hand, it indicates that our ability

to test Assumption 4 is restricted to special cases where we have degenerate mechanisms or

when agents rank schools where they have zero chances of getting accepted. On the other

hand, this result also indicates that it is quite likely that we can rationalize the behavior

of most agents as optimal. While negative on our ability to test equilibrium behavior, the

result is positive from an applied perspective that is interested in a method for estimating

preferences while viewing the equilibrium assumption as an approximation. An inability

to rationalize agent behavior as consistent with Assumption 4 would result in barriers to

proceeding with using the assumption as a basis for estimation.

In what follows, we assume that agent behavior is consistent with Assumption 4. For

simplicity of exposition, we assume that all lotteries in L are extremal. With the notation

developed in this section, the probability of choosing lottery L from set LΓ is given by:

P (L ∈ L|Γ) = hNL(L)(z, ξ)

= P(v ∈ NL(L)|ξ, z)

=

∫
1{v ∈ NL(L)}dFV (v|ξ, z).

3.3 Identification Under Varying Choice Environments

In some cases, a researcher is willing to exclude certain elements of the priority structure t

from preferences, or may observe data from multiple years in which the set of schools are

the same, but either the mechanism is different or schools have different number of seats

offered. Such variation can result in variation in the lotteries that a student picks from that

is independent of preferences. More formally, consider the collection of markets

T (ξ, z) = {Γib = (ξb, zib, tib,mb, φ
∞
b ) : (ξb, zib) = (ξ, z)}.

In this section, we will consider results that fix (ξ, z) and therefore drop this from the

notation. As a reminder, conditioning on z is without loss since it is observed, but this
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implies that the researcher assumes that the variation considered holds school unobservables

ξ fixed.

The next result characterizes what can be learned about FV (v) from observing data from

several large markets in T . LetN = {int(NLΓ
(L))}Γ∈T ,L∈LΓ

be the collection of (the interiors

of) normal cones to lotteries faced by agents in the markets T . For a collection of sets N ,

let D(N ) be the smallest collection of subsets of RJ such that

1. RJ ∈ D(N ) and N ⊂ D(N )

2. For all N ∈ D(N ), N c ∈ D(N )

3. For all countable sequences of sets Nk ∈ D(N ) such that Nk1∩Nk2 = ∅,
⋃
kNk ∈ D(N )

The collection D(N ) is sometimes called the minimal Dynkin system containing N .

Lemma 2. Given P (L ∈ LΓ|Γ) for each Γ ∈ T and L ∈ LΓ, the quantity

hD =

∫
1{v ∈ D}dFV (v)

is identifed for each D ∈ D(N ).

Proof. See Appendix B.2.

v1

v2

Figure 3: Variation in Choice Environments

The result follows from basic measure theory and characterizes the features of FV (v) that

are identified under such variation in choice environments without any further restrictions. In
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particular, with the free normalization ‖vi‖ = 1, the result implies that the mass accumulated

on the projection of the sets in D(N ) on the J − 1 dimensional sphere, SJ , is identified.

Typically, this implies only partial identification of FV (v), but extensive variation in the

lotteries could result in point identification.3

One way to interpret this result is that enough variations in the set of lotteries faced by

an individual can be used to identify preferences. Figure 3 illustrates this visually by that

variation in lottery sets sweep out an arc along utilities (normalized to be) on the circle.

Of course, we do not expect that typical variation in the data will be rich enough to use

non-parametric estimation methods based on such variation.

3.4 Identification With Preference Shifters

In this section we assume that the indirect utilities are given by

v(ξjb, zijb, εi) = ν(ξjb, z
2
ijb, εi)− z1

ijb (2)

where εi ⊥ z1
ijb. In the school choice context, this independence assumption may be made

on a characteristic that varies by student and school.4 The term z1
ijb is sometimes referred

to as a special regressor (Lewbel, 2000; Berry and Haile, 2010, 2014). Let ζ(ξ, z2) be the

support of z1 conditional on (ξ, z2). For simplicity of notation, we will drop ξ, z2 with the

reminder that these are variables that the researcher needs to condition on. Since fV (v|z1)

is a location family, this implies that fV (v|z1) = g(v + z1) where g is the density of ν.

Before proceeding, we introduce two definitions:

Definition 8. A convex cone C is simplicial if it is spanned by J linearly independent

vectors {v1, v2, ..., vJ} = V so that C =
{
v ∈ RJ : v = V a for some a ≥ 0

}
.

A cone C is salient if v ∈ C =⇒ −v 6∈ C for all v 6= 0.

The first identification result holds for lotteries whose normal cone to L is simplicial, or

equivalently, their tangent cone to the set L is simplicial.5 This identification result exploits

local variation of d.

Theorem 3. Let C be a convex simplicial cone. If hC(z1) is known on an open set containing

z1, then g(z1) is identified. Hence, fV (v|z1) is identified everywhere if ζ = RJ .

3Specifically, the π − λ theorem implies that FV (v) is identified if and only if the Dynkin-system D(N )
contains a π-system that generates the Borel σ-algebra.

4For instance, Abdulkadiroglu et al. (2014) assume that distance to school is independent of student
preferences. The assumption is violated if unobserved determinants of student preferences simultaneously
detemine residential choices.

5The normal cone to the set L at point L is simplicial if and only if the tangent cone to the set L at point
L is simplicial.
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In particular, the result holds if C = NLΓ
(L) for some Γ and L ∈ LΓ or if C ∈ D(N ).

Proof. See Appendix B.3.

The result follows by using local variation around z1 to identify the density of ν evaluated

at z1. Intuitively, we can use local changes in z1 to shift the distribution of cardinal utilities to

favor certain lotteries over others. Since simplicial cones are spanned by linearly independent

vectors, we can decompose the change in how often a lottery is chosen into the principle

directions to identify the density.

Also note that the local nature of this identification result articulates precisely, the fact

that identification of the density at a point does not rely on observing extreme values of z1.

Of course, identification of the tails of the distribution of ν will rely on support on extreme

values of z1. Doing this only requires one convex cone generated by a lottery, and therefore,

observing additional lotteries with simplicial cones generates testable restrictions.

It turns out that if J = 2 and L is extremal, then the normal cone NL(L) is simplicial.

For J ≥ 3, this need not be the case. In particular, it may be that D(N ) does not contain

a simplicial convex cone. Fortunately, we can still identify g if z1 has full support on RJ as

long as the tails of g are exponentially decreasing. Formally, assume that the density of ν

belongs to the set

G ≡
{
g ∈ L1

(
RJ
)

: ec|x|g (x) ∈ L1
(
RJ
)

for some c > 0
}
.

Theorem 4. Assume that g ∈ G and there is a lottery L such that NL (L) is a salient convex

cone with a non-empty interior. If ζ = RJ , then g is identified from

hNL(L)

(
z1
)

= P (L ∈ L|z1).

Proof. See Appendix B.4.

The proof is based on Fourier-deconvolution techniques since the distribution of v if

given by a location family parametrized by z1. The key insight is that fourier tranform of an

exponential density restricted to any salient cone is non-zero on any open set. This allows us

to learn about g from observing how choices over lotteries change with z1. However, because

the result is based on deconvolution techniques, it requires stronger support restrictions

than in Theorem 3. Nonetheless, the conditions on G are quite weak, and are satisfied for

commonly used distributions with additive errors such as normal distributions, or generalized

extreme value distributions. It is also satisfied if ν has bounded support.6

6When ν has bounded support, the support conditions on ζ can also be relaxed. In this case, we can
allow for ζ to be a corresponding bounded set.
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4 Estimation

Non-parametric estimation of random utility models can be computationally prohibitive

and imprecise in finite samples, particularly if there are several choices. Following the dis-

crete choice literature, we parametrize the distribution of indirect utilities FV (v|z, ξ) with

FV ;θ(v|z, ξ) where θ belongs to a compact set Θ ∈ RK . The identification results in the

previous section can therefore be interpreted as articulating the fact that the parametric

assumptions are made for tractability rather than essential maintained assumptions.

We consider a two-step estimator where in the first step we replace φ∞((R, t),m) with

a consistent estimate φ̂(R, t). For example, φ̂(R, t) = φn((R, t),mn−1) where mn−1 is the

empirical measure on the reports and priority types of n−1 agents in the sample. Condition

1 implies that φ̂(R, t)
p→ φ∞((R, t),m). Our second step is defined as an extremum estimator:

θ̂ = inf
θ∈Θ

Qn(θ, φ̂)

Theorem 5 (Consistency). Suppose there exists a function Q0 such that

1. θ are elements of a compact set

2. ‖φ̂(R, t)− φ∞((R, t),m)‖∞
p→ 0

3. supθ,φ |Qn(θ, φ)−Q0(θ, φ)| p→ 0

4. Q0(θ, φ) is jointly continuous in θ and φ

5. Q0(θ, φ0) is uniquely minimized at θ0

then θ̂
p→ θ0.

Proof. Hypotheses 1-4 and the continuous mapping theorem imply that supθ∈Θ |Qn(θ, φ̂) −
Q0(θ, φ0)| p→ 0. The conclusion follows by 1, 5, and Newey and McFadden (1994), Theorem

2.1.

The objective function Qn could be based on a likelihood or a method of moments.

5 Elementary School Admissions in Cambridge

This section describes the application. For now, we only describe the Cambridge Elementary

School admissions system and the data avialable for our study.
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5.1 Data

We have obtained data from the Cambridge Public School’s (CPS) Controlled Choice Plan

for the academic years 2004-2005 to 2008-2009. The CPS system has 12 schools and about

400 students participating in it each year. Two schools are divided into bilingual and regular

programs in which bilingual eligible students are are considered only for the bilingual pro-

gram. The other 10 schools are divided into paid lunch and free/reduced lunch programs.

Student eligible for federal free or reduced lunch are only considered for the corresponding

program. A goal of the Controlled Choice Plan is to maintain a ratio of paid lunch students

in each school to be close to the district wide average. It implements this by setting an

overall number of seats in a school and a maximum for each of the programs categorized

by paidlunch. The sum of the program seats may exceed the total number of seats. Our

dataset contains both the total number of seats available in the lottery as well as the seats

available in each of the programs.

Elementary schools in the CPS system assign about 41% of the seats through a partner-

ships with pre-schools (junior kindergarten or montessori) or an appeals process for special

needs students. The remaining seats are assigned through a “lottery process.” We now

describe this process.

5.2 The Cambridge Controlled Choice Mechanism

The process prioritizes students at a given school based on two criteria:

1. Students with siblings that are attending that school get the highest priority

2. Students receive priority at the two schools closest to their residents

Students can submit a ranking of up to three school programs that they are eligible at. A

variant of the Boston Mechanism assigns students as follows:

Step 0: Generate a single lottery for each student

Step 1: Each school considers all students that listed it first and arranges the students in

order of priority, breaking ties using the lottery.

1. The top student that has not been considered in this round is assigned to the

paid lunch program if she is not eligible for a federal lunch subsidy and there

is an open seat in the paid lunch program. If she is eligible for a federal lunch

subsidy, then she is assigned to the free/subsidized lunch program as long as seats

are remaining.
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2. This step is iterated until all students are considered.

Step k: Students not assigned to their k − 1-st choice are assigned as in Step 1.

We observe these submitted rank-order lists, seats available and the student priorities.

Strictly speaking, even though this mechanism is very similar to the Boston Mechanism, it is

not a report-specific priority + cutoff mechanism as defined in this paper because there are

two cutoffs, one for each type of program, in a school. The school cutoffs may bind even if

both individual program cutoffs do not since the capacity at a school is typically lower than

the sum of the capacity at each of the programs. The following result shows that Condition

1 is still satisfied by the Cambridge mechanism.

Proposition 4. For any m, the Cambridge mechansim satisfies Condition 1 generically in

q.

Proof. See Appendix C.

Our proof explicitly considers the three rounds of the Cambridge mechanism from the

perspective of a single student and keeps track of the set of students that are rejected in

each round. It constructs the set of lottery draws for which a student is rejected or assigned

in any given round. Holding fixed the draws of the other students, the assignment indicator

discretely jumps at certain lottery draws. We integrate over the lottery draws to smooth

these jumps.

Fixing the limit measure m, this technique fails for knife-edge cases of q because students

with certain report-priority combination may be pivotal due to finite-sample noise, but have

measure 0 in the limit. For example, it may be that at the limit m, a school capacity is

exactly exhausted by students with sibling priorities reporting the school first. Assume that

no students with only proximity priority report this school. However, due to finite sample

noise, some realizations of mn−1 may result in positive probabilities that additional students

are assigned to this school. If the measure of students with proximity priority in this school

is small enough, this uncertainty does not vanish in the limit. Constructing consistent

estimated of the counterfactual assignment probabilities of an agent of this priority-type

deviating to this report would not be possible. However, this problem is solved by perturbing

q so that in the limit, a very small fraction of students with sibling priority are rejected or

if a small fraction of seats remain after assigning these students.
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6 Conclusion

We develop a general method for analyzing preferences from reports made to a single unit

assignment mechanism that may not be truthfully implementable. We view the choice of

report as a choice from available assignment probabilities. The available probabilities can

be consistently estimated under a weak condition on the convergence of a sequence of mech-

anism to a limit. The condition is verified for a broad class of school choice mechanisms

including the Boston mechanism or the Deferred Acceptance mechanism. We then charac-

terize the identified set of preference distributions under the assumption that agents play

a (limit) Bayesian Nash Equilibirum. The set of preference distributions are typically not

point identified, but may be with sufficient variation in the lottery set. We then obtain point

identification if a special regressor is available.

The methods in this paper rely on sophisticated agents participating in the mechanism.

We discuss some extensions but leave a formal treatment of estimation and identification

issues for future research.
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A Proofs: Mechanisms

A.1 Proof of Proposition 2

Proof. For a strategy σ∗, a particular realization of the reports of the other agents given

by the empirical measure mn−1 from n − 1 iid draws from mσ∗ where mσ∗(R, t) = fT (t) ×∫
σ∗(u, t;R)dFU |T . Condition 1 implies that φn((Ri, ti),m

n−1)
p→ φ∞((Ri, ti),mσ∗). Fix

ε > 0 and pick n0 such that for all n > n0 and (R, t) ∈ R× T ,

P

(
‖φn((R, t), m̂)− φ∞((R, t),m)‖∞ >

ε

8|S|

)
<

ε

16|S|
.

Since ‖φn((R, t), m̂)− φ∞((R, t),m)‖∞ is bounded by 2, we have that

E [‖φn((R, t), m̂)− φ∞((R, t),m)‖∞] <
ε

4|S|
.

Note that the choice of n0 did not depend on ui or ti.

Now, we show that no agent of type ti and utility ui can expect a gain of more than

ε‖ui‖∞ by deviating from σ∗. For n > n0 and each (Ri, ti),

|V n
i (Ri,mσ)− V ∞i (Ri,mσ)| ≤ E

∣∣∣∣∣∑
j

φnj ((Ri, ti), m̂)uij −
∑
j

φ∞j ((Ri, ti),m)uij

∣∣∣∣∣
≤ 2|S|‖ui‖∞ E [‖φn((Ri, ti), m̂)− φ∞((Ri, ti),m)‖∞]

≤ ε

2
‖ui‖∞

Since σ∗ is a limit equilibrium, σ∗(ui, ti;Ri) > 0 implies that for all R′i,

V ∞i (Ri,m
∗
σ) ≥ V ∞i (R′i,m

∗
σ)

⇒ V n
i (Ri,m

∗
σ) ≥ V n

i (R′i,m
∗
σ)− ε‖ui‖∞

for all n > n0.

A.2 Lemma 1

Existence and Uniqueness of Cutoffs

We introduce two definitions before discussing existence and uniqueness. The first definition

is a notion of substitutes in a neighborhood around the market clearing price. This borrows

from the notion of connected substitutes introduced in Berry et al. (2013); Berry and Haile

(2010) to show conditions when demand is invertible.
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Definition 9. The aggregate demand function satisfies local connected substitutes at

p∗ ∈ [0, 1]J if there exists an ε > 0, such that for all p ∈ [0, 1]J with ‖p − p∗‖ < ε, we have

that

1. for all j ∈ {1, . . . , J} and k 6= j, Dj(p) is nondecreasing in pk

2. for all non-empty subsets K ⊂ {1, . . . , J}, there exist k ∈ K and l 6∈ K such that Dl(p)

is strictly increasing in pk

Definition 10 (Azevedo and Leshno (2013)). The demand function D(p|η) is regular if

the image D(P̄ |η), where

P = {p ∈ [0, 1]J : D(·|η) is not continuously differentiable at p}

has Lebesgue measure 0.

We now observe that Assumption 2 is satisfied (generically satisfied) if the demand func-

tion satisfies connected substitutes (regular).

Proposition 5. Every economy (η, q) admits at least one market clearing cutoff.

Further, for a fixed η, let Q be the set of capacities such that for (η, q) has multiple market

clearing cutoffs.

1. Q ∩ {q :
∑

j qj < η(R× T × [0, 1]J)} has Lebesgue measure zero if η is regular

2. Q is empty if D(p|η) satisfies local connected substitutes for any market clearing cutoff

p∗. In particular, Q is empty if D(p|η) satisfies local connected substitutes at every

cutoff p.

Proof. Existence of cutoffs follows from Corollary A1 of Azevedo and Leshno (2013).

Uniqueness of the cutoff result is a generalization of Theorem 1 of Azevedo and Leshno

(2013). Statement 1 is a consequence of Azevedo and Leshno (2013), Theorem 1(2).

Statement 2 is a strengthening of Azevedo and Leshno (2013), Theorem 1(1). By the

Lattice Theorem (Azevedo and Leshno, 2013), there exists minimum and maximum market

clearing cutoffs p− ≤ p+. Note that the measure of students matched with program j at

cutoff p is given by Dj(p|η), and the measure of students unmatched is given by D0(p|η).

Hence, by the Rural Hospitals theorem (Azevedo and Leshno, 2013), for all C ⊆ S ∪ {0},∑
j∈C

Dj(p
+|η) =

∑
j∈C

Dj(p
−|η).
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Let p∗ be the market clearing cutoff such that D(p|η) satisfies local connected substitutes at

p∗. Let C+ = {j ∈ S : p∗j < p+
j } and C− = {j ∈ S : p∗j > p−j }. We will show that C+ = ∅

i.e. p+ = p∗. The proof to show that C− = ∅ is symmetric and together, these claims imply

that p+ = p− = p∗.

Towards a contradiction, assume that C+ 6= ∅. Since D(p|η) satisfies local connected

substitutes at p∗ (Definition 9), there exists ε ∈ (0, 1), k ∈ C and l 6∈ C such that,

Dl(p
∗|η) > Dl(p

ε|η),

where pεk = (1− ε)p+
k + εp∗k and pεj = p∗j if j 6= k. Hence, we have that∑
j∈S\C+

Dj(p
∗|η) >

∑
j∈S\C+

Dj(p
ε|η) ≥

∑
j∈S\C+

Dj(p
+|η),

where the implication on the summation and the second inequality are implied by the defi-

nition of aggregate demand. Since this inequality contradicts the Rural Hosptals Theorem,

it must be that C+ = ∅.

Remark 3. The condition that D(p|η) satisfies local connected substitutes for all p ∈ [0, 1]

is testable. Note that connected substitutes is implied by strict gross substitutes.

Finally, we prove Lemma 1. The result is similar in spirit to Azevedo and Leshno (2013),

Theorem 2. It differs from their results in that we are considering a random sequence of

economies.

Proof of Lemma 1

Define the class B = {{(ei, Ri) : eij ≥ pj, Ri = R} : p, j, R}. Note that B is a VC class since

it is collection of half-spaces, which are VC classes. Hence, the class of sets

V =

{
vpj = {(ei, Ri) : eij ≥ pj, jRii}

⋂
j′ 6=j

({(ei, Ri) : jRij
′} ∪ {(ei, Ri) : eij′ < pj′}) : p, j

}

is a VC-class since it is a subset of finite unions and intersections of B. Hence,

sup
P
‖D(p|η)−D(p|ηn)‖∞ = sup

V ∈V
|ηn(V )− η(V )| p→ 0.

Since Dj(p|η) = η(vpj), D(p|ηn)− qn p→ D(p|η)− q uniformly in p.

Let the unique market clearing cutoff for (η, q) be p∗. Define

Qn(p) =

∥∥∥∥∥
[

max{z(p|ηn, qn), 0}
p� z(p|ηn, qn)

]∥∥∥∥∥ ,
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where � represents element-wise multiplication. Note that pn is a market clearing cutoff

iff Qn(p) = 0. Let Q0 be the limit. By the continuous mapping theorem, supp |Qn(p) −
Q0(p)| p→ 0. Also, Q0(p) is continuous since Assumption 1 implies that D(p|η) is continuous.

Assumption 2 implies that Q0(p) is uniquely minimized at p∗. By Theorem 2.1 of Newey

and McFadden (1994), ‖pn − p∗‖ p→ 0.

A.3 Proof of Theorem 1

We first introduce a simpler class of mechanisms and prove a lemma.

Definition 11. A mechanism φn is a lottery + cutoff mechanism if for each profile of

reports and scores (R, e) = ((R1, e1), . . . , (Rn, en)) ∈ Rn×([0, 1]J)n, there are market clearing

cutoffs pn : Rn × ([0, 1]J)N → [0, 1]J , such that

φn((Ri, ti),m(R−i, t−i)) =

∫
. . .

∫
D(Ri,ei)(pn) dηR1,e1|t1(R1, ·) . . . dηRn,en|tn(Rn, ·)

where η satisfies Assumption 1.

Lemma 3. Suppose η satisfies Assumption 1. If φn is a lottery + cutoff mechanism, then

φn satisfies Condition 1.

Proof. Since φn is a lottery + cutoff mechanism, φn((Ri, ti),m
n−1) = E[D(Ri,ei)(pn)|Ri, ti,m

n−1]

where expectation is taken with respect to the lottery draws conditional on t. Lemma 1 im-

plies that the market clearing cutoffs pn
p→ p since mn−1 converges in probability to m and

consequently, ηn−1 on reports and lotteries converges in probability to η.

Note that E[D(Ri,ei)(p)|Ri, ti,m] = E[D(Ri,ei)(p)|Ri, ti, p] since the distribution of reports

mn−1 only affects an agent’s demand through pn. Hence, if g(p) = E[D(Ri,ei)(p)|Ri, ti, p] is

continuous in p,

‖φn(R,mn−1)− φ∞(R,m)‖∞ = ‖E[D(Ri,ei)(pn)|Ri, ti,m
n−1]− E[D(Ri,ei)(p)|Ri, ti,m]‖∞

p→ 0

by the continuous mapping theorem since pn
p→ p.

To show that E[D(Ri,ei)(p)|Ri, ti, p] is continuous in p, for ε > 0, pick δ such that for all p′

with ‖p′− p‖ < δ implies η(Ri, {ei ∈ Eti : p∧ p′ ≤ ei ≤ p∨ p′}) < ε where Eti ⊆ [0, 1]J is the

set of priority scores consistent with ti. Assumption 1(i) implies that such a δ exists. We now

s that for all p′ such that ‖p′−p‖ < δ, ‖E[D(Ri,ei)(p)|Ri, ti, p]−E[D(Ri,ei)(p′)|Ri, ti, p
′]‖∞ < ε.

‖E[D(Ri,ei)(p)|Ri, ti, p]− E[D(Ri,ei)(p′)|Ri, ti, p
′]‖∞

= sup
j

∣∣∣∣∫ D
(Ri,ei)
j (p)dηRi,ei|ti(Ri, ·)−

∫
D

(Ri,ei)
j (p)dηRi,ei|ti(Ri, ·)

∣∣∣∣
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For each j, we have∣∣∣∣∫ D
(Ri,ei)
j (p)dηRi,ei|ti(Ri, ·)−

∫
D

(Ri,ei)
j (p)dηRi,ei|ti(Ri, ·)

∣∣∣∣
= 1{jRii}

∣∣∣∣∣∣
∫ 1{eij > pj}

∏
k∈{k:kRij}

1{eik < pk} − 1{eij > p′j}
∏

k∈{k:kRij}

1{eik < p′k}

 dηRi,ei|ti(Ri, ·)

∣∣∣∣∣∣
≤ ηRi,ei|ti(Ri, {ei ∈ Eti : p ∧ p′ ≤ e ≤ p ∨ p′}) < ε

We now show that Theorem 1 is a Corollary to Lemma 3 by observing that φn is a lottery

+ cutoff mechanism. To see this, note that pn is a market clearing cutoff for the economy

((R1, f(R1, e1)), . . . , (Rn, f(Rn, en))) and that

φnj ((Ri, ti),m(R−i, t−i)) =

∫
. . .

∫
D(Ri,f(Ri,ei))(pn)dηR1,e1|t1(R1, ·) . . . dηRn,en|tn(Rn, ·)

=

∫
. . .

∫
D(Ri,ei)(pn)dηfR1,e1|t1(R1, ·) . . . dηfRn,en|tn(Rn, ·)

A.4 Proof of Proposition 1

Deferred Acceptance:

Let ej be supremum of the priority scores of the rejected students. We claim that pn = e are

the cutoffs with the desired properties (if a school does not reject any students, set pj = 0).

Let erj be the supremum the priority scores of students that were rejected in round r.

Observe that for each school, erj ≤ er+1
j . If the algorithm terminates in round k, then ekj = ej.

Assume that student i is assigned to school j′ and consider any school j with jRjj
′. Let

r be round in which student i was rejected by j. By definition, it must be that eij < erj .

Therefore, eij < ej and we have that each student is assigned to D(Ri,,ei)(pn).

Finally, the aggregate demand must not exceed qj by construction of pn.

Boston Mechanism:

We show that the Boston Mechanism is report-specific priority + cutoff mechanims for

fj(R, e) =
ej −#{k : kRij}

J
+
J − 1

J

by constructing market cutoffs pn for each profile ((R1, e1), . . . , (RN , eN)) such that (i) the

assignment of each agent is given by D(Ri,f(Ri,ei))(pn) and (ii) pn clears the market for the

economy ((R1, f(R1, e1)), . . . , (RN , f(RN , eN))).
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Note that if a school rejects a student in round k, then it rejects students in all further

rounds since it is full at the end of that round. Let kj denote that round, and let ej

be supremum of the lotteries of the rejected students in round kj. We claim that pnj =
ej − kj
J

+
J − 1

J
are the cutoffs with the desired properties (if a school does not reject any

students, set kj = J and pj = 0).

We first show that the assignment of each student in the Boston mechanism is given by

D(Ri,f(Ri,ei))(pn). Assume that student i is assigned to school j′ and consider any school j with

jRij
′. Since jRij

′, it must be that the student was rejected at j, and could not have applied

to j before round kj. If student applied to kj after round j, then eij −#{k : kRij} < ej − kj
since |eij − ej| ≤ 1. If #{k : kRij} = kj, then eij < ej. In either case, fj(Ri, ei) < pj.

Therefore, the student is assigned to D(Ri,f(Ri,ei))(pn).

Next, we show that pn clears the market for economy ((R1, f(R1, e1)), . . . , (RN , f(RN , eN))).

As noted earlier, each agent is assigned to D(Ri,f(Ri,ei))(pn). By construction of pn, the ag-

gregate demand must be less than qj, and pnj = 0 if aggregate demand is strictly less than

qj.

Serial Dictatorship:

The Serial Dictatorship Mechanism orders the students according to a single priority and

then assigns the top student to her top ranked choice. The k-th student is then assigned

to her top ranked choice that has remaining seats. It is straightforward to show that this

mechanism is equivalent to a Deferred Acceptance mechanism in which all students have

identical priorities at all schools. Hence, it is a report-specific priority + cutoff mechanism.

First Priority First:

The First Priority First mechanism assigns students to their top ranked choice if seats

are available, with tie-breaking according to priorities and lotteries. Rejected students are

then processed for the remaining seats according to the Deferred Acceptance mechanism.

Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

fj(R, e) =
ej + 1{jRj′ ∀j′ 6= j}

2
.

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in t rounds, each with tc-subchoices. In each

round, rejected students apply with the next tc highest choices that have not yet rejected

her. Within each round, the algorithm implements a deferred acceptance procedure in which
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applications are held tentatively until no new proposals are made. Assignments are finalized

after all tc choices have been considered. It is straightforward to show that the Chinese

Parallel mechanism is a report-specific priority + cutoff mechanism for

fj(R, e) =

ej −
⌊

#{k : kRij}
tc

⌋
⌊
J

tc

⌋ +

⌊
J − 1

tc

⌋
⌊
J

tc

⌋ .

Pan London Admissions (Pennell et al., 2006):

The Pan London Admissions system uses the Student Proposing Deferred Acceptance Mech-

anism except that a subset of schools upgrade the priority of students that rank the school

highly. Suppose school j upgrades students that rank it first. For such schools, we set

fj(R, e) =
ej + 1{jRj′ ∀j′ 6= j}

2
,

and fj(R, e) = e otherwise. With this modification, the Pan London Admissions scheme is

a report-specific priority + cutoff mechanism.

B Proofs: Identification

B.1 Proof of Theorem 2

We show that if φ∞j ((R∗, t),m) > 0 for all j ∈ Im(R∗) then φ∞j ((R∗, t),m) is extremal.

Towards a contradiction, assume that there exist λR for R ∈ R such that

λR ≥ 0∑
λR = 1

φ∞ ((R∗, t) ,m) =
∑

λRφ
∞ ((R, t) ,m) .

We show that λR = 0 if R (k) 6= R∗ (k) by induction on k ∈ {1, . . . , K}. For the base case,

set k = 1. Part (ii) of Definition 7 implies that for all R ∈ R,

φ∞R∗(1) ((R∗, t) ,m) ≥ φ∞R∗(1) ((R, t) ,m) .
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Assume that this inequality is strict for some R̃. Since

φ∞R∗(1) ((R, t) ,m) =
∑

λRφ
∞
R∗(1) ((R, t) ,m) > 0

and λR ≥ 0 with
∑
λR = 1, it must be that λR̃ = 0. Therefore, if λR > 0, then R (1) =

R∗ (1).

Assume that, λR = 0 if R (k′) 6= R∗ (k′) for all k′ < k. Note that part (ii) of Definition 7

implies that for all R with λR > 0,

φ∞R∗(k) ((R∗, t) ,m) ≥ φ∞R∗(k) ((R, t) ,m) .

If this inequality is strict, then

φ∞R∗(k) ((R∗, t) ,m) =
∑

λRφ
∞
R∗(k) ((R, t) ,m) ,

λR ≥ 0 and
∑
λR = 1 imply that that λR̃ = 0 unless R̃ (k) = R∗ (k) or φ∞R∗(k) ((R∗, t) ,m) = 0

and φ∞R∗(k) ((R, t) ,m) = 0. The second possibility is ruled out by the hypothesis of the

theorem.

By strong induction, we have proved the result.

B.2 Proof of Lemma 2

The identified set of conditional distributions FV (v) is given by

FI =

{
FV ∈ F : ∀L ∈ LΓ and Γ ∈ T , P (L ∈ LΓ|Γ) =

∫
1{v ∈ NLΓ

(L)}dFV (v)

}
.

Note that for any two distributions FV and F̃V in F , the collection of sets

L (FV , F̃V ) =

{
A ∈ F :

∫
1{v ∈ A}dFV (v) =

∫
1{v ∈ A}dF̃V (v)

}
is a Dynkin system. Since D(N ) is the minimal Dynkin system where all elements of FI

agree, D(N ) ⊆ L (FV , F̃V ) for any two elements FV and F̃V . Hence, for all D ∈ D(N ), we

have that

hD =

∫
1{v ∈ D}dFV (v) =

∫
1{v ∈ D}dF̃V (v)

is identified.
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B.3 Proof of Theorem 3

Let V be a matrix of linearly independent vectors such that (the closure of)

C = {v : v = V a for some a ≤ 0}

and |detV | = 1. Evaluating hC at V x:

hC (V x) =

∫
RJ

1{ε− V x ∈ C}g (ε) dε.

After the change of variables ε = V a:

hL,L(V x) =

∫
RJ

1{V (a− x) ∈ NL(L)}g(V a)da

=

∫ x1

−∞
...

∫ xJ

−∞
g (V a) da

where the second inequality follows because 1{V (a− x) ∈ NL(L)} = 1{a− x} ≤ 0. Then:

∂JhL,L (V x)

∂x1...∂xJ
= g (V x)

and g (ε) is identified by
∂JhL,L(V x)

∂x1...∂xJ
evaluated at x = V −1ε.

B.4 Proof of Theorem 4

Define the linear operator A:

A ◦ g(z) =

∫
NL(L)

g (v + z) dv.

We need to show that A in injective on G. The proof is by contradiction. Suppose that there

are g′, g′′ ∈ G such that Ag′ = Ag′′ but g′ − g′′ 6= 0.

Since the cone NL (L) is salient, its dual TL (L) has a nonempty interior. Let ε ∈
int(TL(L)), with |ε| sufficiently small so that gε (z) = g (z) e2π〈ε,z〉 ∈ L1. Note that 1{z ∈
NL(L)}e−2π〈ε,z〉 ∈ L1 for every ε ∈ int(TL) because 〈ε, z〉 > 0.

Let g = g′ − g′′. Since A ◦ (g′ − g′′) = 0 and ζ = RJ , we have that for all z ∈ RJ ,

A ◦ g(z) = e−2π〈ε,z〉
∫

1 (v ∈ NL (L)) e−2π〈ε,v〉e2π〈ε,v+z〉g(v + z)dv = 0.
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Since e−2π〈ε,z〉 > 0 for all z, A ◦ g = 0 ⇐⇒ f̂ε,NL(L)(ξ) · ĝε(ξ) = 0, where f̂ε,NL(L) is the

Fourier Transform of fε,NL(L) (x) = 1{x ∈ NL(L)}e−2π〈ε,x〉 and ĝε is the conjugate of the

Fourier Transform of gε (x), both continuous functions in L1. Since ĝε is continuous, the

set where ĝε 6= 0 is open. Further, since g 6= 0, the support of ĝε is non-empty. It follows

that there is an open Zε where ĝε is different from zero, and therefore, f̂ε,NL(L)(ξ) = 0 for all

ξ ∈ Zε. This contradicts the fact that f̂ε,NL(L) is an entire function, as shown in Lemma 4

below.

Lemma 4. Let fε,Γ (x) = χΓ (x) e−2π〈ε,x〉 for some polygonal, full-dimensional, salient, con-

vex cone Γ and ε ∈ int(Γo), and let f̂ε,Γ (α) be its Fourier Transform. f̂ε,Γ is an entire

function. There is no open subset of RJ where f̂ε,Γ is zero.

Proof. Let K be a full-dimensional simplicial convex cone such that Γ ⊂ K; and {Γ1...ΓQ} a

simplicial triangulation of Γ. K exists because Γ is salient. Let Vq be a matrix [vq1, vq2 , ..., vqn]

with the linear independent vectors that span cone Γq arranged as column vectors. x ∈
Γq ⇐⇒ x = Vqα for some 0 ≤ α ∈ RJ ⇐⇒ V −1

q x ≥ 0. Normalize Vq so that det |Vq| = 1.

Let fε,Γ (x) = χΓ (x) e−2π〈ε,x〉. This is an integrable function (if ε is in the dual of the cone

Γ).

f̂ε,Γ (ξ) =

∫
Γ

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
Γq

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

χ[x:V −1
q x≥0] exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

+

exp (−2πi 〈ξ − iε, Vqa〉) da

=
∑
Q

∫
RJ

+

exp
(
−2πi

〈
V ′q ξ − iV ′qε, a

〉)
da

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−2πi

(
v′qjξ − iv′qjε

)
a
)
da

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−a
[
2π
(
v′qjε

)
+ 2πi

(
v′qjξ

)])
da

=
∑
q=1..Q

∏
j=1..J

1

2π

1[(
v′qjε

)
+ i
(
v′qjξ

)]
Let VK be the corresponding matrix for K. κqj = V −1

K vqj ≥ 0 for all q ∈ {1..Q} and

42



j ∈ {1..J}. Consider ξ =
(
V −1
K

)′
α,

f̂ε,Γ

((
V −1
K

)′
α
)

=

(
1

2πi

)J ∑
q=1..Q

∏
j=1..J

1[(
κ′qjα

)
− i
(
v′qjε

)]
=

(
1

2πi

)J ∑
q=1..Q

∏
j=1..J

(
κ′qjα

)
+
(
v′qjε

)
i[(

κ′qjα
)2

+
(
v′qjε

)2
]

This is an entire function for every ε ∈ Γo/ {0}. Therefore, if it is zero in an open subset

of RJ is zero everywhere. Each term in the summation has a positive denominator and a

numerator that is a polynomial function of α with positive coefficients. It follows that there

is no open subset of RJ where f̂ε,Γ is zero.

C Verifying Condition 1 for the Cambridge Mecha-

nism

We first find a representation of the Cambridge Mechanism as a function

φn : (R× T )×∆ (R× T )→ ∆S

We first find a representation of the Cambridge Mechanism as a function

φn : (R× T )×∆ (R× T )→ ∆S

C.1 Representation

C.1.1 Priorities and Lotteries

Each student receives an independent priority draw νi from a uniform [0, 1] distribution. We

modify this random priority by the sibling and proximity priority ti. Let f : [0, 1] × T →
[0, 1]J , such that for each j = 1, ..., J :

eij = fj (νi, ti) =
νi + tij
T

∈ [0, 1]

where T is the maximum priority points a student can have. In Cambridge, tij = 1 if student

i has only proximity priority at program j, tij = 2 if student i has only sibling priority at

program j, and tij = 3 if student i has both proximity and sibling priority at program j.
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C.1.2 Economy

Let Π be a partition of the programs in Cambridge into a set of schools in Cambridge and

let q ∈ RJ+|Π|
+ be a vector of program and school capacities. Typically, for any π ∈ Π,∑

j∈π qj < qπ.

Consider a n-student economy where the vacancies are represented by qn ∈ RJ+|Π|
+ , the

measure of report-priority shares of all but the focal student is given by

mn−1 =
1

n− 1

n−1∑
i=1

δRi,ti

and ηn−1 includes the realization of random priority draws of the n− 1 students

ηn−1 =
1

n− 1

n−1∑
i=1

δRi,ti,ei

where ηn−1 agrees with mn−1 on the marginals on R and t.

C.1.3 Sub-Economies in Rounds k ∈ {1, 2, 3}

With a slight abuse of notation, let R[k] be program in position k in report R. We will use a

map s(η, q|k) 7→ (η′, q′) that takes a measure over reports, priority types, random priorites,

and a capacity in each round and maps it to a measure over remaining reports, priority-types

and random priorities in the next round.

To define s(η, q|k), we introduce some additional notation. LetDj,k (p|η) = η
({

(R, e) : R[k] = j, ej ≥ p
})

be the measure of types that ranked school j in the k-th round and have eligbility at least p

in that round. Note that Dj,k (p|η) is nonincreasing. Define the excess capacity at elegibility

p as:

z̃j (p; η, q|k) = qj −Dj,k (p| η)

z̃πj (p; η, q|k) = qπ − qj −
∑

l∈πj/{j}

min {ql, Dl,k (p| η)} .

zj (p; η, q|k) = z̃j (p; η, q|k) + min
(
0, z̃πj (p; η, q|k)

)
zj is nondecreasing in p.

A student is not assigned to a school if the measure of students that have (weakly) higher

eligbility exceeds the school or the program’s capacity. Therefore, the set of students that
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are not assigned in step k can be written as

r (η, q|k) =
{

(R, e) : zR[k]
(e; η, q|k) < 0

}
.

Define η′ as the restriction of η to r (η, q|k).

The capacities that remain after step k, are given by:

q′j = max {qj −Dj,k (0|η) , 0}

since all students, i.e. measure Dj,k (0|η), are assigned if there are seats available.

C.1.4 Cambridge Mechanism

Let (η1, q1) = (η, q) and (ηk, qk) = s (ηk−1, qk−1|k). Define the following function:

ϕ(R,t) (ν; η, q, k) = 1

[(
R,

ν + t

T

)
∈ r (ηk, qk|k)c ∩k′<k r (ηk′ , qk′|k′)

]
.

This function returns 1 if a student that reports R and has priority (ν, t) is assigned to

program R[k] when the measure over reports and priorities is given by η and the vector of

capacities is q.

For a fixed student priority-type, report and lottery-draw, (R, t, e) define

ηn =
1

n

[
(n− 1) ηn−1 + δR,t,e

]
.

Note that the finite economy and limit economy mechanisms are given by

φnR[k]

(
(R, t) ,mn−1, qn

)
=

∫
E
[
ϕ(R,t) (ν; ηn, qn, k)

∣∣mn−1, ν
]
dν

φ∞R[k]
((R, t) ,m, q) =

∫
ϕ(R,t) (ν; η, q, k) dν

where the limit measure η if given by

η (R, e < p) =
T∑
t=0

m (R, t) min
j

(pjT − tj) . (3)

C.2 Main Results

We make the following assumption about the genericity of vacancies:
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Assumption 5 (Generic Vacancies). For k = 1, 2, 3, let

mk (R, t) = ηk ({(R′, e′) : R′ = R, t ≤ Te′ ≤ 1 + t})

where (ηk, qk) = s(ηk−1, qk−1|k − 1) and (η1, q1) = (η, q). If m (R, t) = 0 then for each k,

min

 qk,R[k]
−
∑
mk (R′, t′) 1

(
R′[k] = R[k], t

′
R[k]

> tR[k]

)
,

qk,πR[k]
−
∑

l∈π
R[k]

min
{
qk,l,

∑
mk (R′, t′) 1

(
R′[k] = l, t′R[k]

> tR[k]

)}  6= 0

For each (R, t), there is no open set in RJ+|Π|
+ such that every q in that set violates

Assumption 5. Fix a q such that this assumption is satisfied. We restate Proposition 4.

Proposition 6. Assume that (m, q) satisfies Assumption 5 above. If mn−1, qn are empirical

sequences such that mn−1 p→ m, and qn
p→ q, then for each k ∈ {1, 2, 3} and (R, t)

φnR[k]

(
(R, t) ,mn−1, qn

) p→ φ∞R[k]
((R1, t1) ,m, q) .

C.3 Proof of Proposition 6

We first state some preliminary results:

Let 4 be the symmetric difference operator. Consider the VC class of sets

V = {V : ∃ (R, p, k) ∈ R× [0, 1]× {1, 2, 3} , V = v (R, p, k)} ,

where v (R, p, k) =
{

(R, e) : eR[k] < p
}

.

Lemma 5. If supV ∈V |ηn (V )− η (V )| p→ 0, supj
∣∣qnj − qj∣∣ p→ 0 and Dj,k(p|η) is continuous in

p for all j and k, then (i) supp,j,k |Dj,k(p|ηn)−Dj,k(p|η)| p→ 0, (ii) supν,j,k |zj (ν; t, ηn, qn|k)− zj (ν; t, η, q|k)| p→
0 where each zj (ν; t, η, q|k) is continuous and nondecreasing in ν, (iii) r(η, q|k) =

⋃
R∈R VR

where each VR ∈ V, (iv) ηn (r(ηn, qn|k)4 r(η, q|k))
p→ 0, and (v) if η′ as the restriction of η

to r (η, q|k) then Dj,k(p|η′) is continuous in p for all j and k.

Proof. Parts (i - iii): For every p ∈ [0, 1],

Dj,k (p|η) = η
({

(R, e) : R[k] = j, ej ≥ p
})

=
∑

R:R[k]=j

η (v (R, 1, k))− η (v (R, p, k)) .

Hence, part (i) follows from uniform convergence of ηn over sets in V . Part (ii) follows

from the continuous mapping theorem: zj (·; t, η, q|k) is continuous with respect to func-
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tions Dl,k ( ·| η), where both types of functions are vectors in vector spaces endowed with the

sup-norm. Continuity of zj (ν; t, η, q|k) follows directly continuity of the min function and of

Dl,k ( ·| η) for every l. Part (iii) is easily verified noting that r(η, q|k) =
⋃
j

⋃
R:R[k]=j

v (R, pj, k)

where pj = 0 if zj (0; η, q|k) ≥ 0 and otherwise,

pj = sup {e ∈ [0, 1] : zj (e; η, q|k) < 0} .

Part (iv): The definitions of r(η, q|k) and r(ηn, qn|k) imply:

ηn (r(ηn, qn|k)4 r(η, q|k))

=
∑
j

ηn
({

(R, e) : R[k] = j, (ej < pj ∨ zj (e; ηn, qn|k) ≥ 0) ∧ (ej ≥ pj ∨ zj (e; ηn, qn|k) < 0)
})
,(4)

where ∨ and ∧ are logical AND and OR respectively. It is enough to show convergence in

probability for each term in the summation.

Pick an N such that for all n > N with probability greater than 1− ε,

sup
k,e
|zj (e; η, q|k)− zj (e; ηn, qn|k)| ≤ ε

2
(5)

and

sup
p1≤p2,R′

ηn ({(R, e) : R = R′, p1 ≤ ej ≤ p2}) ≤ |p1 − p2|+
ε

8
. (6)

Existence of such an N is guaranteed by part (ii) of the Lemma above and since

sup
p1≤p2,R′

η ({(R, e) : R = R′, p1 ≤ ej ≤ p2}) ≤ |p1 − p| .

We first show that equation (6) implies that

ηn
({

(R, e) : R[k] = j, zj (e; ηn, q|k) ∈ [a, b]
})
≤ ε

4
+ b− a. (7)
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Let en = inf {e : zj (e; ηn, q|k) > a}, en = sup {e : zj (e; ηn, q|k) < b}. We have that

ηn
(
(R, e) : R[k] = j, zj (e; ηn, qn|k) ∈ [a, b]

)
≤ ηn

(
(R, e) : R[k] = j, e ∈ [en, en]

)
= ηn

(
(R, e) : R[k] = j, e ∈ (en, en)

)
+ ηn

(
(R, e) : R[k] = j, e ∈ {en, en}

)
≤ lim

e↓en
Dj,k (e|ηn)− lim

e↑ēn
Dj,k (e|ηn) + ηn

(
(R, e) : R[k] = j, e ∈ {en, en}

)
≤ lim

e↓en
Dj,k (e|ηn)− lim

e↑ēn
Dj,k (e|ηn) +

ε

4

= lim
e↑ēn

z̃j (e; ηn, qn|k)− lim
e↓en

z̃j (e|; ηn, qn|k) +
ε

4

≤ lim
e↑ēn

zj (e; ηn, qn|k)− lim
e↓en

zj (e|; ηn, qn|k) +
ε

4

≤ b− a+
ε

4

where the first inequality follows by the definition of en and en; the second inequality follows

from the definition of Dj,k (e|ηn) and because it is decreasing; the third inequality follows

from equation (6); the last inequality follows from the definition of z̃j and the final inquality

follows from the fact that for all e ∈ (en, en), zj (e; ηn, qn|k) ∈ (a, b) and that zj (e; ηn, qn|k)

is monotonically increasing.

Now consider a term in the summation in equation (4). If zj (pj; η
n, qn|k) < 0, this term

is bounded by

ηn ({(R, e) : ej ≥ pj, zj (ej; η
n, qn|k) ∈ [zj (pj; η

n, qn|k) , 0]}) .

If zj (pj; η
n, qn|k) ≥ 0, the term is bounded by

ηn ({(R, e) : ej < pj, zj (e; ηn, qn|k) ∈ [0, zj (pj; η
n, qn|k)]}) .

Hence, equations (7) and (5) imply that

ηn
({

(R, e) : R[k] = j, (ej < pj ∨ zj (e; ηn, qn|k) ≥ 0) ∧ (ej ≥ pj ∨ zj (e; ηn, qn|k) < 0)
})

≤ |zj (pj; η, q|k)− zj (pj; η
n, qn|k)|+ 2× ε

4
≤ ε.

Since equations (5) and (6) (consequently, equation (7)), hold for all n > N with probability

at least 1− ε, we have the desired result.
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Part (v): Follows because

Dj,k(p|η′) = η′
({

(R, e) : R[k] = j, ej ≥ p
})

= η
({

(R, e) : R[k] = j, ej ≥ p
}
∩ r(η, q|k)

)
= η

({
(R, e) : R[k] = j, pj > ej ≥ p

})
=

{
Dj,k(p|η)−Dj,k(pj|η) if pj < p

0 if pj ≥ p

and continuity of Dj,k(p|η).

Define the function

ζ(R,t) (ν; η, q, k) = min

{
zR[k]

(
ν + tR[k]

T
; ηk, qk

∣∣∣∣ k) ,−max
k′<k

zR[k′]

(
ν + tR[k′]

T
; ηk′ , qk′

∣∣∣∣∣ k′
)}

.

If ζ(R,t) (ν; η, q, k) > 0 both terms are positive. Program R[k] could enroll every unasigned

student that ranked it in position k and that has a priority score higher than
ν+tR[k]

T
without

exhausting program or school capacity. At the same time, if for some k′ < k, program R[k′]

had enrolled every unasigned student that ranked it in position k′ and had a priority score

higher than
ν+tR[k′]

T
it would have exceeded the total program or school capacity. Therefore

a student with report and priority (R, t, ν) such that ζ(R,t) (ν; η, q, k) > 0 is assigned to

school R[k] in round k. Notice that ζ(R,t) (ν; η, q, k) > 0 implies ϕ(R,t) (ν; η, q, k) = 1 and

ζ(R,t) (ν; η, q, k) < 0 implies ϕ(R,t) (ν; η, q, k) = 0.

Lemma 6. If supV ∈V |ηn (V )− η (V )| p→ 0 and supj
∣∣qnj − qj∣∣ p→ 0 where η is defined as in

(3), then supν,R,t,k ζ(R,t) (ν; ηn, qn, k)
p→ ζ(R,t) (ν; η, q, k).

Proof. We first show that ifDj,k(p|η) is continuous in p for all j and k, ‖s(ηn, qn|k)− s (η, q|k)‖∞
p→

0 where

‖s(ηn, qn|k)− s (η, q|k)‖∞ = max

{
sup
j

∣∣q′nj − q′j∣∣ , sup
V ∈V
|η′n (V )− η′ (V )|

}
.

Since q′j is jointly continuous in qj and Dj,k (0|η), q′,nj
p→ q′j by the continuous mapping
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theorem.

sup
V ∈V
|η′n (V )− η′ (V )|

= sup
V ∈V
|ηn (r(ηn, qn|k) ∩ V )− η (r(η, q|k) ∩ V )|

≤ sup
V ∈V
|ηn (r(η, q|k) ∩ V )− η (r(η, q|k) ∩ V )|

+ sup
V ∈V
|ηn (r(ηn, qn|k) ∩ V )− ηn (r(η, q|k) ∩ V )|

The first term converges in probability to zero because r(ηn, qn|k) ∈ V (Lemma 5, part iii) and

V is closed under finite intersections. The second term is bounded by: ηn (r(ηn, qn|k)4 r(η, q|k)),

which is shown to converge in probability to zero (Lemma 5, part iv). Moreover, for all j

and k, Dj,k(p|η′) is continuous in p (Lemma 5, part v).

Notice thatDj,k(p|η1) is continuous in p for all j and k. By induction, supV ∈V
∣∣ηnk−1 (V )− ηk−1 (V )

∣∣ p→
0 and supj

∣∣qnk−1,j − qk−1,j

∣∣ p→ 0 implies that for all k = 2, 3: supV ∈V |ηnk (V )− ηk (V )| p→ 0,

supj
∣∣qnk,j − qk,j∣∣ p→ 0 and Dj,k(p|ηk) is continuous in p. The result now follows from the the

continuous mapping theorem and Lemma 5, part ii, since ζ(R,t) (·; η, q, k) is continuous in

zj (·; η, q|k) for all t, j, k.

We are now ready for the main result

Proof. For each (R, t), there is no open set in RJ+|Π|
+ such that every q in that set violates

Assumption 5. Fix a q such that this assumption is satisfied. For this q, it is enough to show

the result for fixed (R, t, k) since it belongs to a finite set. ζ(R,t) (ν; η, q, k) for notational

convenience.

Let

Ek =
{
ν : ζ(R,t) (ν; η, q, k) = 0

}
,

where j = R[k]. We first show that |Ek| ≤ 2. Since

ζ(R,t) (ν; η, q, k) = min

{
zR[k]

(
ν + tR[k]

T
; ηk, qk

∣∣∣∣ k) ,−max
k′<k

zR[k′]

(
ν + tR[k′]

T
; ηk′ , qk′

∣∣∣∣∣ k′
)}

,

where both components inside the min are monotonic, continuous functions of ν, it is easy

to show that Ek is the union of at most two convex sets. Further, Ek is closed since

ζ(R,t) (ν; η, q, k) is continuous in ν. Suppose that there is there is a k and an open inter-

val (ν, ν) ⊆ Ek. Then, for all ν ∈ (ν, ν), Dj

(
ν+tj
T

∣∣∣ η) is constant. This only occurs if

m (R, t) = 0, which implies a violation of the generic vacancies condition. Since Ek ⊆ R, we

have that |Ek| ≤ 2 and
∣∣∪k′∈{1,..,k}Ek′∣∣ <∞.
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Fix ε > 0. Construct an open set U that covers ∪k′∈{1,..,k}Ek′ and has Lebesgue measure

less than ε
2
. Consider the difference,∣∣∣φnR[k]

(
(R, t) ,mn−1, qn

)
− φ∞R[k]

((R, t) ,m, q)
∣∣∣

=

∣∣∣∣∫ E
[
ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣mn−1, qn, ν
]
dν

∣∣∣∣
≤

∫
E
[∣∣ϕ(R,t) (e; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
dν

≤ sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
P (ν 6∈ U)

+ sup
ν∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (e; η, q, k)

∣∣∣∣mn−1, qn, ν
]
P (ν ∈ U)

< sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (e; η, q, k)

∣∣∣∣mn−1, qn, ν
]

+
ε

2

where the last inequality follows from the fact that P (ν ∈ U) < ε
2

and

sup
ν∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1qn, , ν
]
≤ 1.

We now show that there exists N such that for all n > N :

P
(

sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
≥ ε

2

)
< ε. (8)

This would complete the proof as it implies that

P
(∣∣∣φnR[k]

(
(R, t) ,mn−1, qn

)
− φ∞R[k]

((R, t) ,m, q)
∣∣∣ > ε

)
< ε.

Let ζε = infν 6∈U
∣∣ζ(R,t) (ν; η, q, k)

∣∣ > 0, since
∣∣ζ(R,t) (ν; η, q, k)

∣∣ > 0 and ζ(R,t) (ν; η, q, k) is

continuous with respect to ν. By Lemma 6, there exists N such that for all n > N ,

P
(

sup
ν 6∈U

∣∣ζ(R,t) (ν; η, q, k)− ζ(R,t) (ν; ηn, qn, k)
∣∣ > ζε

)
<
ε2

2
.

Note that for all ν 6∈ U , |ζ (ν; η, q, k)| > ζε. Therefore for all ν 6∈ U ,

ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k) 6= 0⇒ |ζ (ν; ηn, qn, k)− ζ (ν; η, q, k)| > ζε

since the antecedent requires ζ(R,t) (ν; ηn, qn, k) ≥ 0 and ζ(R,t) (ν; η, q, k) < −ζε or ζ(R,t) (ν; ηn, qn, k) ≤
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0 and ζ(R,t) (ν; η, q, k) > ζε. By set inclusion, for all n > N,

P
(

sup
ν 6∈U

∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)
∣∣ 6= 0

)
<
ε2

2
.

Since supν 6∈U
∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣ ∈ {0, 1}, the above inequality implies

that for all n > N ,

ε2

2
> E

[
sup
ν 6∈U

∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)
∣∣]

= E

(
E

[
sup
ν 6∈U

∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)
∣∣∣∣∣∣mn−1, qn

])
≥ E

(
sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn
])

,

where the equality follows from the law of iterated expectations and the weak inequality

from the additional restriction that the optimal ν cannot depend on the realization of ηn.

Markov inequality implies:

P
(

sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn
]
≥ ε

2

)
< ε

which is exactly equation (8).
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