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Abstract

Myerson’s 1981 characterization of revenue-optimal auctions for single-dimensional agents
follows from an amortized analysis of the revenue from a single agent. To optimize revenue
in expectation, he maps values to virtual values which account for expected revenue gain but
can be optimized pointwise. For single-dimensional agents the appropriate virtual values are
unique and their closed form can be easily derived from revenue equivalence. A main challenge of
generalizing the Myersonian approach to multi-dimensional agents is that the right amortization
is not pinned down by revenue equivalence.

For multi-dimensional agents, the optimal mechanism may be very complex. Complex mech-
anisms are impractical and rarely employed. We give a framework for reverse mechanism design.
Instead of solving for the optimal mechanism in general, we assume a (natural) specific form
of the mechanism and then identify sufficient conditions for its optimality. As an example of
the framework, for agents with unit-demand preferences, we restrict attention to mechanisms
that sell each agent her favorite item or nothing. From this restricted form, we will derive
multi-dimensional virtual values. These virtual values prove this form of mechanism is optimal
for a large class of distributions over types. As another example of our framework, for bidders
with additive preferences, we derive conditions for the optimality of posting a single price for
the grand bundle.



1 Introduction

Optimal mechanisms for agents with multi-dimensional preferences are generally complex. This
complexity makes them challenging to solve for and impractical to run. In a typical mechanism
design approach, a model is posited and then the optimal mechanism is designed for the model.
Successful mechanism design gives mechanisms that one could at least imagine running. By this
measure, multi-dimensional mechanism design has had only limited success. In this paper we
take the opposite approach, which we term reverse mechanism design. We start by imagining a
restriction on mechanisms that would make them simple and reasonable to run, then we solve
for sufficient conditions for a restricted mechanism to be optimal (among all mechanisms). Our
approach is successful if the conditions under which restricted mechanisms are optimal are broad
and representative of relevant settings.

This paper has two main contributions. The first is in codifying the method of virtual values from
single-dimensional auction theory and extending it to agents with multi-dimensional preferences.
The second is in applying this method to two paradigmatic classes of multi-dimensional preferences.
The first class is unit-demand preferences (e.g., a homebuyer who wishes to buy at most one
house); for this class we give sufficient conditions under which the posting a uniform price for all
items is optimal. This result generalizes one of Alaei et al. (2013) for a consumer with values
uniform on interval [0, 1], and contrasts with an example of Thanassoulis (2004) for a consumer
with values uniform on interval [5, 6] where uniform pricing is not optimal. The second class is
additive preferences, for this class we give sufficient conditions under which the posting a price for
the grand bundle is optimal. This result generalizes a recent result of Hart and Nisan (2013) and
relates to work of Armstrong (1999). Similarly to an approach of Alaei et al. (2013), these results for
single-agent pricing problems described above can be generalized naturally to multi-agent auction
problems.

Myerson’s (1981) characterization of revenue optimal auctions for single-dimensional agents is
the cornerstone of modern auction theory and mechanism design. This characterization is successful
in describing simple and practical mechanisms in simple environments where the agents preferences
are independent and identically distributed according to a well-behaved distribution. In this case,
the optimal auction is reserve price based. Myerson’s characterization is also successful in describing
the complex optimal mechanism for agents with preferences that are non-identically distributed or
distributed according to an ill-behaved distribution. However, due to this complexity, the resulting
mechanism has limited application. The consequence of our work is similar in that we characterize
simple optimal mechanisms for well-behaved preferences; but distinct in that it does not characterize
optimal mechanisms beyond the class of well-behave preferences.

Myerson’s approach is based on mapping agent values to appropriately defined virtual values and
then optimizing the virtual surplus, i.e., the sum of the virtual values of agents served. Importantly,
this approach replaces the global objective optimizing revenue in expectation over the distribution of
agent values to the pointwise objective of optimizing virtual surplus on each profile of agent values.
Furthermore, virtual surplus maximization leads to a simple and practical optimal mechanism in
many environments. The simplicity of analysis by virtual values and of mechanisms resulting from
optimizing virtual values has lead to a rich theory single-dimensional auction theory. Our multi-
dimensional virtual values similarly give a pointwise objective and their optimization results in
simple optimal mechanisms.

In the remainder of this section we review virtual values in mechanism design for single-
dimensional agents, describe the challenges in identifying virtual values for multi-dimensional pref-
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erences, and describe how restricting the form of the optimal mechanism make it possible to solve for
multi-dimensional virtual values. To keep the exposition simple, we focus on designing mechanisms
for a single agent.

Optimal Single-dimensional Mechanisms for Revenue. Revenue is a challenging objective
for mechanism design because, due to the agents’ incentives, it cannot be optimized pointwise. To
illustrate this fact, consider a single agent wishing to buy a single item and whose value for the
item is drawn uniformly from the [0, 1] interval. If we post a take-it-or-leave-it price of 0.3 then
the agent will buy when his value is greater than 0.3 and pay 0.3; if we post a price of 0.5 the
agent will buy when his value is greater than 0.5 and pay 0.5. If our agent has value 0.3 then the
first mechanism has the best possible revenue and the second mechanism has an inferior revenue
of zero. If our agent has value 0.5 then the second mechanism has the best possible revenue of 0.5
and the first mechanism has an inferior revenue of 0.3. While we cannot rank these mechanisms by
revenue pointwise, i.e., for all values the agent might possess, in expectation over the distribution
from which the agent’s value is drawn, the mechanisms can be ranked and revenue tradeoffs across
possible agent values can be optimized. With a uniform value on [0, 1], the agent buys in the first
mechanism at a price of 0.3 with probability 0.7 for an expected revenue of 0.21, and in the second
mechanism at a price of 0.5 with probability 0.5 for an expected revenue of 0.25.

Myerson (1981) solved for revenue optimal auctions for agents with single-dimensional prefer-
ences. He gives a definition of virtual values, claims that optimization of virtual surplus gives the
optimal auction, and proves this claim by utilizing two properties of the virtual values. The follow-
ing two properties collectively imply that the mechanism that optimizes virtual values is indeed the
optimal mechanism.1 A virtual value function maps values pointwise to virtual values satisfying
two properties:

• The pointwise optimization of virtual values gives an allocation rule that is incentive compat-
ible. That is, there exist payments for this allocation rule that induce an agent to truthfully
report his value.

• The virtual values are an amortization of the revenue. That is, the expected sum of the
virtual values of the winners of any incentive compatible mechanism is equal to the expected
revenue of that mechanism.

This definition of virtual value functions gives a roadmap to identifying the optimal mechanism: find
a virtual value function (that satisfies the two conditions) and run the mechanism that maximizes
virtual value pointwise. The identification of a virtual value function reduces the problem of
optimization of the expected revenue (a global quantity) to the optimization of virtual surplus (a
pointwise quantity).

In our single-dimensional example of the uniform distribution above, the appropriate virtual
value function is 2v − 1. Optimizing virtual value pointwise (for a single agent) means serving
the agent if his virtual value is positive and not serving him if his value is negative. For this
virtual value function, the agent will be served if his value is least 0.5. This virtual value function
satisfies the incentive compatibility condition: serving the agent if her value is above 0.5 is incentive

1Subsequently, in Section 3, we will define a more permissive version of the amortization property which corre-
sponds to the ironed virtual values of Myerson (1981). The simpler definition here will, nonetheless, be sufficient for
our introductory discussion.
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compatible and the appropriate payment is 0.5 if the agent is served and zero otherwise. This virtual
value function satisfies the amortization condition: for posting any price p, the expected virtual
value of the agent served and the expected revenue are equal. The former can be calculated by∫ 1
p (2v − 1) dv = p (1− p) and the latter was calculated as above as p (1− p).2

The Challenge of Multi-dimensional Preferences. As described above, if a virtual value
function that satisfies properties the incentive compatibility and amortization conditions can be
identified then the optimal mechanism design problem is solved. For agents with single-dimensional
preferences the function that satisfies the amortization property is unique and can be derived by
a simple exercise. Omitting the details: uniqueness follows because there is only one path on the
line between any value and the origin (and can be found via integration by parts). It then remains
to check the incentive compatibility property, i.e., that pointwise optimization of virtual value is
incentive compatible; by standard characterizations of incentive compatible mechanisms, this is a
simple task as well. Multi-dimensional preferences are challenging because the amortization prop-
erty does not uniquely pin down the virtual value function. Omitting the details: non-uniqueness
follows because from any point in a multi-dimensional space there are many paths between the
point and the origin. This difficulty has prevented the design of mechanisms for multi-dimensional
agents that follows the virtual-value-based approach.

Multi-dimensional Virtual Values. To resolve the non-uniqueness of functions that satisfy
the amortization property we consider additional constraints that the optimality of a restricted
mechanism would place on virtual values.

We walk through this approach for the example of a unit-demand agent and the restriction to
mechanisms that post a uniform price for each item. On one hand, under uniform pricing, the
agent will always choose to buy his favorite item, or no item if all values are below the price. On
the other hand, a mechanism that optimizes a multi-dimensional virtual value (for a unit-demand
agent) would serve the agent the item he has the highest positive virtual value for, or no item if all
virtual values are negative. Synthesizing these constraints, the following conditions are sufficient
for virtual surplus maximization to imply optimality of uniform pricing.

• The virtual value function is a single-dimensional projection if the virtual value for the favorite
item corresponds to the single-dimensional virtual value for the distribution of the value for
the favorite item (the distribution of the maximum value).3

• The virtual value function is consistent with uniform pricing if there is a price such that (a)
when the value for the favorite item exceeds the price the virtual value for the favorite item
is non-negative and at least the virtual value of any other items and (b) when the value for
the favorite item is below the price both virtual values are non-positive.

Any virtual value function that satisfies the consistency-with-uniform-pricing conditions can be
easily seen to satisfy the incentive compatibility requirement. Thus, the identification of a vir-
tual value function becomes one of simultaneously resolving the three conditions of amortization,

2Further discussion omitted, this amortized equivalence continues to hold for randomized mechanisms.
3Rationale: The mechanism has effectively projected the agent’s multi-dimensional preference onto a single di-

mension. In this single dimension the unique function that satisfies the amortization property is the one given by the
single-dimensional virtual values of Myerson (1981)
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single-dimensional projection, and consistency with uniform pricing (which implies incentive com-
patibility). Conditions on the distributions over values for that guarantee the existence of such a
virtual value function are sufficient for the optimality of uniform pricing.

For two-dimensional preferences the amortization and single-dimensional-projection restrictions
pin down a two-dimensional virtual value function uniquely. Specifically, as the virtual value for
the favorite item is fixed by the restriction, only the virtual value for the other item must be
determined. Essentially, we are left with a single-dimensional problem and in a single dimension
the function that satisfies the amortization condition are unique. Our task is then to give sufficient
conditions under which this unique virtual value function is consistent with uniform pricing. For
higher-dimensional preferences, virtual value functions for the non-favorite items are not pinned
down. Instead of deriving a formula for them, we generalize the sufficient condition from the two-
dimensional case and prove that there exists such virtual value function that satisfied all three
constraints.

The restriction of selling a unit-demand agent his favorite item provides our main example of
the framework of reverse mechanism design. We will also apply the framework to agents with
additive preferences and give sufficient conditions for pricing the grand bundle to be optimal. The
techniques we develop can be similarly applied to other environments and appropriate restrictions,
and these extensions are an important topic for future work.

Sufficient Conditions for Optimality of Simple Mechanisms. The opening example of this
introduction of selling one of many houses to a homebuyer with value distributed independently,
identically, and uniformly from [0, 1] satisfies the conditions for optimality of the restriction to
selling him only his favorite item. More generally, our framework identifies sufficient conditions
for the distribution over agent values. Importantly these conditions allow for positive correlation
between the agent’s value for distinct items, a.k.a, affiliation. Such correlation is natural when
values correlate, e.g., with initial wealth. Below we state the sufficient conditions for optimality of
uniform pricing for unit-demand agents and grand-bundle pricing for additive agents for the special
case of two items; the general multi-item statements are deferred to later in the paper.

A single-agent problem with unit-demand preferences is defined with a density function f on a
bounded set of types normalized to T = [0, 1]2, where (t1, t2) is the pair of values for the two items.
We consider only symmetric distributions and therefore only define f on the subset of T satisfying
t1 ≥ t2, that is, where the first item is the favorite item. A uniform posted price mechanism posts a
uniform price for each item, and lets the agent choose one of the two items or nothing based on his
type. It is easiest to state the result in the following max-ratio representation of the distribution.
The max-ratio representation of a density function f is the function f̄ that is defined by

f(t1, t2) = f̄(t1, t2/t1).

The following theorem states that uniform pricing is optimal if f̄ satisfies a supermodularity
condition. Intuitively, this supermodularity implies that a higher value of t1 signals a higher value
of t2/t1 (see Figure 1).

Theorem 1. Posting a uniform price for each item is optimal if the max-ratio representation of
the density function is log-supermodular, that is,

f̄(t1, θ)× f̄(t1, θ
′) ≤ f̄(t1, θ

′)× f̄(t′1, θ), t1 ≤ t′1, θ ≥ θ′.
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Figure 1: a) A distribution satisfying the supermodularity condition of Theorem 1. Dark color
indicates relatively high mass. Roughly speaking, it states that the probability mass shifts upwards
as the value for the favorite item, t1, increases. b) A distribution satisfying the submodularity
condition of Theorem 2. It implies that probability mass shifts downwards as the sum of the values
increases.

As a very simple example, for the two-dimensional case, consider selling two forms of energy, e.g.,
electricity and gas, to a plant. The plant uses electricity, and its value for a unit of electricity, v, is
uniform from interval [0, 1]. The plant is capable of transforming a unit of gas to electricity using a
generator with efficiency θ ∈ [0, 1], drawn independently of v. The value for a unit of gas is therefore
θv where both v and θ are private to the plant. Our theorem states that the optimal auction is to
simply post a price for a unit of electricity. The two dimensional the virtual value function that
satisfies the amortization and single-dimensional-projection constraints is pinned down as 2v − 1
for the favorite item and θ(2v− 1) for the non-favorite item. For θ ∈ [0, 1] as defined, these virtual
values satisfy are consistent with uniform pricing. Therefore, the existence of this virtual value
function proves that uniform pricing is revenue optimal among all mechanisms.

For other i.i.d. distributions, the virtual values that amortization and single-dimensional-projection
pin down do not generally satisfy consistency with uniform pricing (e.g., when values are i.i.d. U [5, 6]
the optimal mechanism does not sell the agent his favorite item); however, we show that consistency
with uniform pricing is satisfied by for multi-dimensional values that are i.i.d. from any distribution
that satisfies a geometric convexity property.

As the second main example of the application of our framework, we provide sufficient condi-
tions for optimality of grand bundle pricing for agents with additive preferences. The sum-ratio
representation of a density function f is the function f̄ that is defined by

f(t1, t2) = f̄(t1 + t2, t2/t1).

Theorem 2. Posting a price for the bundle of items is optimal if the sum-ratio representation of
the density function is log-submodular, that is,

f̄(s, θ)× f̄(s′, θ′) ≥ f̄(s, θ′)× f̄(s′, θ), s ≤ s′, θ ≥ θ′.
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Related Work. The starting point of work in multi-dimensional optimal mechanism design is
the observation that an agent’s utility must be a convex function of his private type (e.g., Rochet,
1985, cf. the envelope theorem). The second step is in writing revenue as the difference between
the surplus of the mechanism and the agent’s utility (e.g., McAfee and McMillan, 1988; Armstrong,
1996). The surplus can be expressed in terms of the gradient of the utility. The third step is in
rewriting the objective in terms of either the utility (e.g., McAfee and McMillan, 1988; Manelli and
Vincent, 2006; Hart and Nisan, 2013; Daskalakis et al., 2013; Wang and Tang, 2014; Giannakopoulos
and Koutsoupias, 2014) or in terms of the gradient of the utility (e.g., Armstrong, 1996; Alaei et al.,
2013; and this paper). This manipulation follows from an integration by parts. The first category of
papers (rewriting objective in terms of utility) performs the integration by parts independently in
each dimension, and the second category (rewriting objective in terms of gradient of utility, except
for ours) does the integration along rays from the origin (see below). In our approach, in contrast,
the integration by parts is performed in general and is dependent on the distribution and the form
of the mechanism we wish to show is optimal.

Closest to our work are Armstrong (1996) and Alaei et al. (2013) which use integration by parts
along paths that connect types with straight lines to the zero type (which has value zero for any
outcome) to define virtual values. For the first work, Armstrong (1996) finds properties on valu-
ation functions (beyond linear ones considered in our paper) and distributions, that when jointly
satisfied, imply that the pointwise optimization of virtual values results in an incentive compatible
mechanism. Armstrong gives some examples of mechanisms that result from this approach but
does not generally interpret the form of the resulting mechanisms. Armstrong suggests general-
izing his approach from rays from the origin to other kinds of paths; our approach, in contrast,
proves the existence of appropriate paths over which to integrate without requiring the form of
the path to be specified in advance. When Armstrong’s condition on the distribution is satisfied
(which we refer to as independence in max-ratio coordinates), our solution is also equivalent to
an integration along rays. For the second work, Alaei et al. (2013) show that optimal multi-agent
mechanism design can be reduced to optimal single-agent mechanism design by the construction of
a single-dimensional virtual value (that satisfies similar properties to ours) when the single-agent
mechanism design problems satisfy a revenue linearity property. They prove that a unit-demand
agent with values for items that are independently, identically, and uniformly distributed on the
[0, 1] interval is revenue linear; our results generalize this one. Moreover, our multi-dimensional
virtual value construction constitutes a proof of revenue linearity; therefore, all of our optimal
single-agent mechanisms automatically generalize to give optimal multi-agent mechanisms in the
service constrained environments of Alaei et al. (2013).

There has been work looking at properties of single-agent mechanism design problems that are
sufficient for optimal mechanisms to make only limited use of randomization. For context, the
optimal single-item mechanism is always deterministic (e.g., Myerson, 1981; Riley and Zeckhauser,
1983), while the optimal multi-item mechanism is sometimes randomized (e.g., Thanassoulis, 2004;
Pycia, 2006). For agents with additive preferences across multiple items, McAfee and McMillan
(1988), Manelli and Vincent (2006), and Giannakopoulos and Koutsoupias (2014) find sufficient
conditions under which deterministic mechanisms, i.e., bundle pricings, are optimal. Pavlov (2011)
considers more general preferences and a more general condition; for unit-demand preferences, this
condition implies that in the optimal mechanism an agent deterministically receives an item or not,
though the item received may be randomized.

A number of papers consider the question of finding closed forms for the optimal mechanism for
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an agent with additive preferences and independent values across the items. One such closed form
is grand-bundle pricing. Our work for additive preferences contrasts in that we restrict to grand-
bundle pricing and a particular family of correlated distributions. For the two item case, Hart and
Nisan (2013) give sufficient conditions for the optimality of grand-bundle pricing; these conditions
are further generalized by Wang and Tang (2014). Their results are not directly comparable to ours
as our results apply to correlated distributions. Daskalakis et al. (2013) and Giannakopoulos and
Koutsoupias (2014) give frameworks, similar to ours, for proving optimality of multi-dimensional
mechanisms. Daskalakis et al. (2013) use their framework to find the close form for the optimal
mechanism for several special cases; Giannakopoulos and Koutsoupias (2014) give a closed form for
the optimal mechanism when values are i.i.d. from the uniform distribution (with up to six items).

2 Preliminaries

2.1 The Setting

An agent is specified by a bounded set of possible types T normalized to be T = [0, 1]m, where
each t = (t1, . . . , tm) ∈ T is an m-dimensional vector of values for m items.4 The type of the agent
is drawn from a known distribution with density f . For the special case that the type space is
single-dimensional (i.e., m = 1), the cumulative distribution function of the type is denoted by F .
We do not require that the values for items be drawn independently. We consider unit-demand
and additive agents. For unit-demand agents the allocation x ∈ [0, 1]m must satisfy

∑
i xi ≤ 1; for

additive agents x must satisfy xi ≤ 1 for all i. The utility of the agent with type t for allocation
x ∈ [0, 1]m and payment p ∈ R is t · x− p.

A single-agent mechanism is a pair of functions, the allocation function x : T → [0, 1]m and the
payment function p : T → R. A mechanism is individually rational if the utility of every type of
the agent is at least zero,

t · x(t)− p(t) ≥ 0, ∀t.

A mechanism is incentive compatible if no type of the agent increases his utility by misreporting,

t · x(t)− p(t) ≥ t · x(t̂)− p(t̂), ∀t, t̂.

2.2 Multivariable Calculus Notation

For a function h : Rk → R, we use ∂jh : Rk → R to denote the partial derivative of function h
with respect to its j’th variable. The gradient of h is a vector field, denoted by ∇h : Rk → Rk,
defined to be ∇h = (∂1h, . . . , ∂kh). The divergence of a vector field α : Rk → Rk is denoted by
∇ ·α : Rk → R and is defined to be

∇ ·α = ∂1α1 + . . .+ ∂kαk.

4Throughout the paper we maintain the convention of denoting a vector v by a bold symbol and each of its
components vi by a non-bold symbol.
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We denote the integral of function h : Rk → R over a subset T of Rk∫
t∈T

h(t) dt.

Let ∂T be the boundary of set T and η(t) be the outward-pointing unit normal vector of T at
point t on ∂T . The multi-variable integration by parts for functions h : Rk → R and α : Rk → Rk
is as follows ∫

t∈T
(∇h ·α)(t) dt =

∫
t∈∂T

h(t)(α · η)(t) dt−
∫
t∈T

h(t)(∇ ·α(t)) dt, (1)

Setting h to be the constant function equal to 1 everywhere gives us the divergence theorem∫
t∈T

(∇ ·α)(t) dt =

∫
t∈∂T

(α · η)(t) dt.

When the dimension k = 1, the integration by parts has the familiar form of∫ b

x=a
h′(x)g(x) dx = h(x)g(x)

∣∣∣b
x=a
−
∫ b

x=a
h(x)g′(x) dx,

and the divergence theorem is the fundamental theorem of calculus.∫ b

x=a
h′(x) dx = h(b)− h(a).

2.3 Problem Formulation

A single agent mechanism (x, p) defines a utility function u(t) = t · x(t) − p(t). The following
lemma connects the utility function of an IC mechanism with its allocation function.

Lemma 3 (Rochet, 1985). Function u is the utility function of an agent in an incentive compatible
mechanism if and only if u is convex, and in that case, the agent’s allocation is x(t) = ∇u(t).

Notice that the payment function can be defined using the utility function and the allocation
function as p(t) = t ·x(t)−u(t). Applying the above lemma, we can write payment to be p(t) = t ·
∇u(t)−u(t). The revenue maximization problem can then be written as the following mathematical
program, which is the starting point for the analysis of this paper.

max
x,u

∫
t
[t · ∇u(t)− u(t)]f(t) dt (2)

x = ∇u;u is convex,

∀t,x(t) is feasible allocation.

Notice that when the dimension of the type space is m = 1, the above program is equivalent to
the following familiar form from Myerson (1981),

max
x

∫
v

[
vx(v)−

∫
z≤v

x(z) dz
]
f(v) dv

x is monotone non-decreasing,

∀v, x(v) ≤ 1.

In Section 6, we extend the above formulation and our results to multi-agent settings.
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3 Amortization of Revenue

This section formalizes our codification of multi-dimensional virtual values for incentive compatible
mechanism design and describes the working pieces of our framework. The main construct is the
definition of multi-dimensional virtual value functions and the accompanying proposition, below.

Definition 1. A vector field φ̄ : [0, 1]m → Rm that maps an an m-dimensional type to an m-
dimensional vector is

• incentive compatible if the virtual surplus maximizer given by selecting the outcome x for
type t that optimizes virtual surplus x · φ̄(t) is incentive compatible;

• a weak amortization of revenue if, in expectation over types drawn from the distribution,
the virtual surplus of any incentive compatible mechanism upper bounds is revenue, i.e.,
E[φ̄(t) · x(t)] ≥ E[p(t)], and with equality for the virtual surplus maximizer;

• a strong amortization of revenue if the inequality (of weak amortization) holds with equality
for all incentive compatible mechanisms; and

• a virtual value function if it is incentive compatible and a weak or strong amortization.

Proposition 4. In any environment for which a virtual value function exists, the virtual surplus
maximizer is incentive compatible and revenue optimal.

Proof. The expected revenue of the virtual surplus maximizer is equal to its expected virtual surplus
(by weak amortization). This expected virtual surplus is at least the virtual surplus of any alternate
mechanism (by definition of virtual surplus maximization). The expected virtual surplus is an upper
bound on the expected revenue of the alternative mechanism (by weak amortization). Thus, the
expected revenue of the virtual surplus maximizer is at least that of the alternative mechanism.
Incentive compatibility follows directly from the definition of a virtual value function.

For a single-dimensional agent (i.e., m = 1), Myerson (1981) showed that the function v− 1−F (v)
f(v)

is a strong amortization, when it is monotone it is incentive compatible, when it is non-monotone an
ironing procedure can be applied to obtain from it a weak amortization function that is monotone
and thus incentive compatible. Our approach will analogously enable the derivation of multi-
dimensional virtual value functions (i.e., satisfying incentive compatibility and weak amortization)
via the construction of a strong amortization function that is not necessarily incentive compatible.

We now give sufficient conditions for a vector field to be a strong amortization of revenue. At
a high level, we derive first a strong amortization of utility and then, using the fact that revenue
is value minus utility, derive a strong amortization of revenue. These strong amortizations will
be building blocks for the derivation of virtual values for unit-demand and additive agents in the
subsequent sections. The following lemma follows from integration by parts as per equation (1),
the definition of strong amortization of utility (Definition 1, generalized to utility), and the fact
that the gradient of utility is the allocation rule of the mechanism (Lemma 3).

Lemma 5. For type space T and distribution f , vector field α/f is a strong amortization of utility,
i.e., E[u(t)] = E[α(t)/f(t) · x(t)] for all incentive compatible allocation rules x, if it satisfies

• divergence density equality, i.e., that ∇ ·α(t) = −f(t) at any point t ∈ T , and
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• boundary orthogonality, i.e., that α(t) · η(t) = 0 for all t 6= 0 on the boundary of type space
∂T with normal vector η(t).

Proof. Write the expectation of E[α(t)/f(t)·x(t)] as the integral
∫
t∈T α(t)·x(t) dt. From Lemma 3,

substitute ∇u for allocation x and apply integration by parts.∫
t∈T

α(t) · ∇u(t) dt =

∫
t∈∂T

u(t)(α · η)(t) dt−
∫
t∈T

u(t) (∇ ·α(t)) dt (3)

= u(t) +

∫
t∈T

u(t) f(t) dt (4)

The second equality is derived from the first equality by employing the assumptions of the lemma
on vector field α as follows.

• By divergence density equality, the second term simplifies by substituting ∇ ·α(t) = −f(t).

• Recall that the divergence theorem is equivalent setting u(t) = 1 in the formula (3), this gives∫
t∈∂T

(α · η)(t) dt =

∫
t∈T

f(t) dt = 1, (5)

the total probability of any type. Boundary orthogonality implies that the integrand in the
boundary integral of equation (5) is identically zero everywhere except t = 0. To integrate
to one on the boundary, the function must be the Dirac delta function at t = 0; thus, the
integral of the first term in equation (3) is u(0).

Without loss of generality for revenue optimal mechanisms u(0) = 0. We can interpret the left-
and right-hand sides of equation (4) as expectations, which gives E[α(t)/f(t) ·x(t)] = E[u(t)], the
definition of strong amortization of utility for α/f .

For a single-dimensional agent with value v in type space T = [0, 1], the only function that

satisfies the conditions of Lemma 5 and gives a strong amortization of utility is α(v)/f(v) = 1−F (v)
f(v) .

For this formula, notice that the divergence of α(v) = 1−F (v) is simply its derivative −f(v). The
boundary ∂T \ {0} is the point v = 1, the upper bound of the distribution, and thus trivially

satisfies orthogonality as α(1) = 0. In classical auction theory the amortization of utility 1−F (v)
f(v) is

often referred to as the agent’s information rent.
The following lemma is immediate from the fact that revenue is the agent’s surplus minus the

agent’s utility. For a single-dimensional agent it implies that φ(v) = v − (1−F (v))
f(v) is the strong

amortization of revenue.

Lemma 6. For type space T and distribution f , vector field φ is a strong amortization of revenue,
i.e., E[p(t)] = E[φ(t) · x(t)] for all incentive compatible allocation rules x, if and only if φ(t) =
t−α(t)/f(t) for all t but a measure zero subset of T and α/f is a strong amortization of utility.

Unlike the case of a single-dimensional agent, for multi-dimensional agents there are many
strong amortizations of utility and, consequentally, many strong amortizations of revenue. As an
example, suppose we wish to show the optimality of a restricted form of mechanism via a strongly
amortized virtual value function for an m = 2 dimensional agent. This virtual value fuction has
two degrees of freedom. We can pin down one degree of freedom by equating virtual surplus to
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expected revenue for mechanisms with this restricted form. The divergence density equality for
strong amortizations that Lemma 6 inherits from Lemma 5 gives a differential equation that then
pins down the other degree of freedom. It remains to find sufficient conditions on the distribution
under which virtual surplus maximization identically gives mechanisms of the restricted form.

The approach above can be generalized to show optimality of mechanisms via a weakly amortized
vitual value function. For example, such a generalization can be used to give proofs of optimality
under more permissive distributional assumptions. To subsitute weak amortization for stong amor-
tization we need a way to relate the differential equations (from divergence density equality) that
govern strong amortizations to any given weak amortization. Such a relationship follows directly
from the definitions of both weak and strong amortization in terms of the expected revenue of any
incentive compatible mechanism (Definition 1) and is summarized below as Lemma 7.

Lemma 7. For type space T and distribution f , vector field φ̄ is a weak amortization of revenue if
and only if there exists a strong amortization of revenue φ such that E[φ̄(t)x(t)] ≥ E[φ(t)x(t)],
for all incentive compatible mechanisms x, with equality for x that pointwise maximizes φ̄.

4 Optimality of Uniform Pricing for Unit Demand Preferences

In this section we study the existence virtual values to prove optimality of uniform pricing for a
single unit-demand agent. To simplify the exposition we focus on the case of two items and on
the type space where item one is the favorite item, i.e., the lower right half of the unit square,
T = {t = (t1, t2) : 0 ≤ t2 ≤ t1 ≤ 1}. Our conclusions extend easily to the [0, 1]2 type space with
symmetric disitributions; other extensions are given at the end of the section. The general case of
m ≥ 2 items is considered in Appendix A.

The single-dimensional projection for the favorite item is given by distribution and density
function for the agent’s favorite item, Fmax(v) and fmax(v). The distribution function is the integral
of f over t with t1 ≥ v. The density function is the integral of f of t with t1 = v, i.e., fmax(v) =∫ v

0 f(v, z) dz. As described in Section 3, the unique strong amortization of revenue for a single-

dimensional agent (and thus for the single-dimensional projection) is φmax(v) = v− 1−Fmax(v)
fmax(v) . The

strong amortization of utility αmax/fmax requires αmax(v) = 1− Fmax(v).

Definition 2. The two-dimensional extension φ of the favorite-item projection φmax (satisfying

φmax(t) = t1 − 1−Fmax(t1)
fmax(t1) ) is constructed as follows:

(a) Set φ1(t) = φmax(t1) for all t ∈ T .

(b) Let α1(t) = (t1 − φ1(t)) f(t) = 1−Fmax(t1)
fmax(t1) f(t).

(c) Let α2(t) = −
∫ t2
y=0

(
f(t1, y) + ∂1α1(t1, y)

)
dy.

(d) Set φ2(t) = t1 − α2(t)/f(t).

In the remainder of this section we will show that for single-agent mechanism design to optimize
revenue minus a fixed non-negative cost for selling either item, that this two-item extension of the
favorite-item projection is a strong amortization of revenue that proves the optimality of uniform
pricing.5

5The extra constraint imposed by a non-negative cost of service will enable this method to be extended to multi-
agent settings, see Section 6. This strong amortization is unique on the portion of type space for which φ1(t) > 0.

11



An informal justification of the steps of the construction is as follows:

(a) First, for fixed t1 and as a function of t2, φ1(t) must be constant (i.e., on a vertical line in T );
otherwise, there is a cost c for which virtual surplus maximization with respect to φ serves one
such type and not other is not the other which is not a uniform pricing. Second, the revenue
of any mechanism that only ever sells the favorite item or nothing has revenue given by the
favorite-item projection and must satisfy φ1(t) = φmax(t1) (given the first point).

(b) We obtain α1 from φ1 by Lemma 6. Orthogonality of the right boundary (t1 = 1) requires that

α · (1, 0) = 0, and therefore α1(1, t2) = 0. By definition, α1(1, t2) = αmax(1)
fmax(1) f(1, t2) = 0 and

follows directly from boundary orthogonality of the favorite-item projection at t1 = 1 which
required αmax(1) = 0 and was satisfied.

(c) The derivatives of α1 (with respect to t1) and α2 (with respect to t2) are related by the
divergence density equality; integrating and employing boundary orthogonality on the bottom
boundary (t2 = 0) of the type space, which requires that α2(t2, 0) = 0, gives the formula; these
constraints are required by Lemma 5.

(d) We obtain φ2 from α2 by Lemma 6.

For φ to prove optimality of uniform pricing, it must be that virtual surplus maximization
would never assign the agent the non-favorite item, i.e., item two. This requirement is simply
φ1(t) ≥ φ2(t) for any type t ∈ T for which either φ1(t) or φ2(t) is positive. A little algebra shows
that this condition is implied by the angle of α(t) being at most the angle of t (with respect to the
horizontal t2 axis; see Lemma 9, below). Importantly, in relation to the prior work of Armstrong
(1996), the direction of α corresponds to the paths on which incentive compatibility constraints
are considered. The approach we are taking does not fix the direction, it allows any direction that
satisfies the above constraint on angles. The condition on angles is equvalant to the dot product
between α and the upward orthogonal vector to t being non-positive. The following lemma is
proved by the divergence theorem.

Lemma 8. Vector field α/f in the definition of the two-dimensional extension of the favorite-item
projection is a strong amortization of utility and satisfies

θ α1(t1, t1θ)− α2(t1, t1θ) = (1− Fmax(t1))
d

dt1

[∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

]
for all t1, θ ∈ [0, 1] (and thus (t1, t1θ) ∈ T ).

Proof. The informal justifications of Steps (b) and (c) show that α satisfies the divergence density
equality and bottom and right boundary orthogonality. This proof starts with these assumption
and derives the identity of the lemma. Notice that for θ = 1 the numerator and the denomenator
in the derivative of the identity are equal for all t1, the right-hand side is zero, and therefore
α1(t1, t1) = α2(t1, t1), and boundary orthogonality holds for the diagonal boundary. Thus, α/f is
a strong amortization of utility.

The strategy for the proof of the identity is as follows. We fix t1 and θ and apply the divergence
theorem to α on the trapezoidal subspace of type space defined by types t′ with t′1 ≥ t1, t′2/t

′
1 ≤ θ,

t′2 ≥ 0, and t′1 ≤ 1 (Figure 2). The divergence theorem equates the the integral of the vector field α
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(t1, t1θ)

INTERIOR(t1, θ)

Figure 2: The trapezoidal set parameterized by t1 and θ, and the four curves that define its
boundary, {TOP, RIGHT, BOTTOM, LEFT}(t1, θ)

on the boundary of the subspace to the integral of its divergence within the subspace. As the upper
boundary of this trapesoidal subspace has slope t2/t1, one term in this equality is the integral
of α(t′) with the upward orthogonal vector to t. Differentiating this integral and evaluating at
t′ = (t1, t1θ) gives the desired quantity.

Appling the divergence theorem to α on the trapezoid and experessing the top boundary as the
interior divergence minus the other three boundaries gives:∫
t′∈TOP(t1,θ)

η(t′) ·α(t′) dt′ =

∫
t′∈INTERIOR(t1,θ)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(t1,θ)

η(t′) ·α(t′) dt′.

Since α/f is a strong amortization of utility, the divergence density equality and boundary orthog-
onality of Lemma 5 imply that the integral over the interior simplifies and the integrals over the
right and bottom boundary are zero, respectively. We have,∫
t′∈TOP(t1,θ)

η(t′) ·α(t′) dt′ = −
∫
t′∈INTERIOR(t1,θ)

f(t′) dt′ −
∫
t′∈LEFT(t1,θ)

η(t′) ·α(t′) dt′.

For the trapezoid at t these integrals are,∫ 1

t′1=t1

(
− θ α1(t′1, t

′
1θ) + α2(t′1, t

′
1θ)
)

dt′1

= −
∫ 1

t′1=t1

∫ t′1θ

t′2=0
f(t′) dt′2 dt′1 +

∫ t1θ

t′2=0
α1(t1, t

′
2) dt′2.

Differentiating with respect to t1 gives,

θ α1(t1, t1θ)− α2(t1, t1θ) =

∫ t1θ

t′2=0
f(t1, t

′
2) dt′2 +

d

dt1

∫ t1θ

t′2=0
α1(t1, t

′
2) dt′2.
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On the right-hand side, multiply first term by fmax(t1)
fmax(t1) = 1 and plug in the strong amortization

of utility for the two-dimensional extension as α(t) = 1−Fmax(t1)
fmax(t1) f(t) to the second term. Notice

that the integral of the second term is only on t′2 therefore we can bring the terms related to t1
outside the integral. These two terms then simplify by the product rule for differentiation to give
the identity of the lemma.

θ α1(t1, t1θ)− α2(t1, t1θ) = fmax(t1)

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)
+

d

dt1

[
(1− Fmax(t1))

∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

]
.

= (1− Fmax(t1))
d

dt1

[∫ t1θ
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

]
.

Lemma 9. For φ and α defined by the two-dimensional extension of the favorite-item projection,
if t2

t1
α1(t1, t2) − α2(t1, t2) is non-positive and φ1(t) is monotone non-decreasing in t, then virtual

surplus maximization with respect to φ and any non-negative service cost c gives a uniform pricing.

Proof. From the assumption t2
t1
α1(t1, t2)− α2(t1, t2) ≤ 0 and Definition 2 we have

t2
t1
φ1(t) =

t2
t1

(
t1 −

α1(t)

f(t)

)
=
t2
t1

(
t1 −

α1(t)

f(t)

)
≥ t2 −

α2(t)

f(t)
= φ2(t).

Thus, for t with φ1(t) ≥ c, φ1(t) ≥ φ2(t) and virtual surplus maximization serves the agent item
one. Since φ1(t) is a function only of t1 (Definition 2), its monotonicity implies that there is a
smallest t1 such that all greater types are served. Also, if φ1(t) ≤ c, again the above calculation
implies that φ2(t) ≤ c and therefore the type is not served. This outcome is one of a uniform
pricing.

We are now ready to state the main theorems of this section. In the next section we will give
an interpretation of the main technical condition as a supermodularity condition on the density
function.

Theorem 10. Uniform pricing is revenue optimal for any service cost c and any distribution for
which the favorite-item projection has monotone non-decreasing strong amortization φ̄max(t1) =

t1 − 1−Fmax(t1)
fmax(t1) and d

dt1

[
1

fmax(t1)

∫ t2
0 f(t1, y) dy

]
is non-positive.

The conditions of Corollary 13 can be further relaxed by constructing a weak amortization
φ̄ from the strong amortization φ, above. The following is a special case of the more general
Lemma 24 given in Section 6.3.

Theorem 11. Uniform pricing is revenue optimal for any service cost c and any distribution for

which d
dt1

[
1

fmax(t1)

∫ t2
0 f(t1, y) dy

]
is non-positive.

In Appendix A we employ using the natural generalization of the condition to extend the above
results to m ≥ 2 items.
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4.1 Max-ratio log-supermodular distributions

Theorem 11 and Theorem 10 in the preceding section require the non-positivity of d
dt1

[
1

fmax(t1)

∫ t2
0 f(t1, y) dy

]
which is not easy to directly check; in this section we give a simpler sufficient condition. To specify
the condition, it is useful to view the distribution in the max-ratio (MR) coordinates. In particular
the max-ratio representation fMR of a density function f is defined to be

fMR(t1, θ) = f(t1, θt1), ∀t1, θ, 0 ≤ t1, θ ≤ 1.

Equivalantly,

f(t1, t2) = fMR(t1, t2/t1) ∀t1, t2, 0 ≤ t1, t2 ≤ 1.

We call a distribution MR-log-supermodular, if its max-ratio representation is log-supermodular,

fMR(t1, θ)× fMR(t′1, θ
′) ≥ fMR(t1, θ

′)× fMR(t′1, θ), ∀t1 ≤ t′1, θ ≤ θ′.

Notice that, for example, MR-independent distributions are MR-log-supermodular. A MR-
independent distribution fMR is such that fMR(t1, θ1) = f1(t1) × fθ(θ) (for arbitrary f1 and fθ),
and is MR-log-supermodular because

fMR(t1, θ)× fMR(t′1, θ
′) = f1(t1) fθ(θ) f1(t′1) fθ(θ

′)

= f1(t1) fθ(θ
′) f1(t′1) fθ(θ)

= fMR(t1, θ
′)× fMR(t′1, θ).

We now prove that d
dt1

[
1

fmax(t1)

∫ t2
0 f(t1, y) dy

]
is non-positive for MR-log-supermodular distri-

butions. This result enables the interpretation of Theorem 10 in terms of MR-log-supermodularity.
Recall that the density function of the favorite-item projection is defined from the two-item density
function as fmax(t1) =

∫ t1
0 f(t1, y) dy.

Lemma 12. If f is a MR-log-supermodular function, then for any t1 and θ,

d

dt1

[∫ t1θ
t′2=0 f(t1, t

′
2) dt′2∫ t1

t′2=0 f(t1, t′2) dt′2

]
≤ 0,

with equality if distribution is MR-independent.

Proof. We prove that for any θ, t1, and t′1 such that t1 < t′1,∫ t1θ
t′2=0 f(t1, t

′
2) dt′2∫ t1

t′2=0 f(t1, t′2) dt′2
≤

∫ t′1θ
t′2=0

f(t′1, t
′
2) dt′2∫ t′1

t′2=0
f(t′1, t

′
2) dt′2

.

The proof first converts the above form into max-ratio coordinates, applies MR-log-supermodularity,
and then transforms back to the standard form. Before applying MR-log-supermodularity, we break
down the integral set into two set, and apply MR-log-supermodularity to only one of the integrals.
More particularly, notice that
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∫ t1θ

t′2=0
f(t1, t

′
2) dt′2 ×

∫ t′1

t′2=0
f(t′1, t

′
2) dt′2

=

∫ θ

θ′=0
fMR(t1, θ

′) t1 dθ′ ×
∫ 1

θ′′=0
fMR(t′1, θ

′′) t′1 dθ′′ (change of variables)

=

∫ θ

θ′=0

∫ θ

θ′′=0
fMR(t1, θ

′) t1 f
MR(t′1, θ

′′) t′1 dθ′′ dθ′

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fMR(t1, θ

′) t1f
MR(t′1, θ

′′) t′1 dθ′′ dθ′ (separate double integral into two sets)

≤
∫ θ

θ′=0

∫ θ

θ′′=0
fMR(t1, θ

′′) t1 f
MR(t′1, θ

′) t′1 dθ′ dθ′′ (rename variables θ′ and θ′′)

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fMR(t1, θ

′′) t1 f
MR(t′1, θ

′) t′1 dθ′′ dθ′ (apply MR-log-supermodularity)

=

∫ 1

θ′′=0
fMR(t1, θ

′′) t1 dθ′′
∫ θ

θ′=0
fMR(t′1, θ

′) t′1 dθ′ (merge integrals)

=

∫ t1

t′2=0
f(t1, t

′
2) dt′2 ×

∫ t′1θ

t′2=0
f(t′1, t

′
2) dt′2.

By combining the above lemma and Corollary 13 we get the following corollary.

Corollary 13. Uniform pricing is revenue optimal for any service cost c and any max-ratio log-
supermodular distribution.

To understand MR-log-supermodular distributions better, we next show properties under which
product distributions are MR-log-supermodular. We call a function g geometric-geometric (GG)
convex if

g(zλ1 z
1−λ
2 ) ≥ g(z1)λg(z2)1−λ, ∀λ ∈ [0, 1], z1, z2.

For example, the function g(x) = xk is GG-convex. More generally, for any convex function h and
constant c, the function g(x) = c · eh(log(x)) is GG-convex. The proof of the following lemma can be
found in Appendix B.

Lemma 14. The product distribution on i.i.d. draws from a distirbution with geometric-geometric
convex density is max-ratio log-supermodular.

4.2 Bundle Pricing for General Distributions

We can use the generality of unit-demand settings and the above result to find conditions under
which bundle pricing is optimal for general distributions. More precisely, notice that any problem
with finite outcome space can be converted to a unit-demand problem with dot-product utility
function by letting t and x be vectors of size equal to the size of the outcome space, with ti being
the value for outcome i. For multi-item settings with m items, the size of the outcome space is equal

16



to 2m. The input to the problem is a density function f(t1, . . . , tk) over vectors of size k = 2m. We
assume that the density function is monotone, meaning that the density of a type is non-zero only
if the valuation for the grand bundle is at least as much as the value for any other subset of items.
The max-ratio representation of the density function is f̄(t1, θ2, . . . , θk), where t1, normalized to be
at most 1, is the value for the grand bundle, and θi ≤ 1 is the ratio of the value for the i-th subset,
over the value of the grand bundle. Now a bundle pricing mechanism corresponds to a mechanism
in the unit demand setting which only sells the favorite outcome, which is the grand bundle. We
therefore have the following theorem.

Theorem 15. Bundle pricing is optimal if the max-ratio representation of the density function is
MR-log-supermodular.

5 Optimality of Bundle Pricing for Additive Preferences

In this section we provide sufficient conditions for optimality of grand bundle pricing for agents
with additive utilities. Similar to Section 4, we only focus on constructing a proof assuming that
item one is the favorite item, as the proof generalizes to symmetric distributions easily by mirroring
the construction for the other half of set of types. It is also easiest to express the results of this
section when the sum of the values for the items are normalized to be at most one. We thus define
the set of types to be T = {(t1, t2)|t1, t2 ≥ 0, t1 ≥ t2, t1 + t2 ≤ 1}.

The single-dimensional projection for the sum of values is given by distribution and density
function for the agent’s favorite item, Fsum(v) and fsum(v). The distribution function is the integral
of f over t with t1 + t2 ≤ v. The density function fsum(v) is the derivative of Fsum(v) with respect
to v. As described in Section 3, the unique strong amortization of revenue for a single-dimensional
agent (and thus for the single-dimensional projection) is φsum(v) = v − 1−Fsum(v)

fsum(v) . The strong

amortization of utility αsum/fsum requires αsum(v) = 1− Fsum(v).
In this section, we prove optimality of grand bundle pricing by constructing a weak amortization

of revenue φ̄ (as opposed to Section 4 in which we directly constructed a strong amortization), which
we call the two-dimensional extension of the sum-of-values projection. We will first define φ̄ such
that the virtual surplus of bundle pricing with respect to φ̄ is equal to its revenue (Lemma 16),
for which grand bundle pricing maximizes virtual surplus (Lemma 17). The rest of the section
proves that φ̄ is indeed a weak amortization of revenue by using Lemma 7 to show existence of a
strong amortization which lower bounds the virtual surplus, with respects to φ̄, of any incentive
compatible mechanism.

Define φ̄1 and φ̄2 as follows

φ̄1(t) =
t1

t1 + t2
φsum(t1 + t2) = t1 −

1− Fsum(t1 + t2)

fsum(t1 + t2)
,

φ̄2(t) =
t2

t1 + t2
φsum(t1 + t2) = t2 −

1− Fsum(t1 + t2)

fsum(t1 + t2)
.

This definition ensures that φ̄ satisfies two important properties. First, the virtual surplus of
bundle pricing is equal to the virtual surplus of the single-dimensional projection for sum of values,
that is, φ̄1(t) + φ̄2(t) = φsum(t1 + t2). As a result of this property, the virtual surplus of grand
bundle pricing can be shown to be equal to its revenue (see the next lemma). Second, the two
components of the virtual value function have the same sign, which together with the monotonicity
of φsum would imply that bundle pricing maximizes virtual surplus (Lemma 17).
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Lemma 16 (single-dimensional projection). The expected revenue of a bundle pricing is equal
to its expected virtual surplus with respect to the two-dimensional extension of the sum-of-values
projection φ̄ satisfying φ̄1(t) + φ̄2(t) = φsum(t1 + t2) where φsum(v) = v − 1−Fsum(v)

fsum(v) is the strong
amortization for agent’s sum-of-values projection.

Functions φ̄1 and φ̄2 have the same sign as φsum, and therefore as long as φsum is a non-
decreasing function of p, there exists a price p∗ such that the allocation corresponding to price p∗

ex-post optimizes φ̄, according to the following lemma.

Lemma 17 (consistency with virtual surplus maximization; incentive compatibility). Virtual sur-
plus maximization according to vector field φ̄ gives a bundle pricing p (and is incentive compatible)
if and only if

• φ̄1(t), φ̄2(t) ≥ 0 when t1 + t2 ≥ p and φ̄1(t), φ̄2(t) ≤ 0 otherwise.

Proof. We need to show that for the uniform price p, the allocation function x of posting a price
p for the bundle optimizes φ pointwise. Pointwise optimization of x · φ̄ will result in x = (1, 1)
whenever φ̄1, φ̄2 ≥ 0, and will result in x = (0, 0) whenever φ1, φ2 ≤ 0.

In order to complete the proof we should ensure that φ̄ is an amortization of revenue. We already
constructed φ̄ such that the expected virtual surplus of the virtual surplus maximizer, bundle
pricing, is equal to its revenue. So we only need to show that the virtual surplus of any incentive
compatible allocation is at least its revenue. We do this by constructing a strong amortization of
revenue φ and invoking Lemma 7. That is, we will show that there exists a strong amortization φ
such that for any incentive compatible allocation x,

∫
t
x(t) · [φ̄(t)− φ(t)]f(t) dt ≥ 0. (6)

To do this, it would be sufficient to ensure that φ̄1 ≥ φ1 and φ̄2 ≥ φ2 for any type. Instead,
in Lemma 18 we suggest a more permissive sufficient condition using integration by parts, and the
properties of incentive compatible allocations. Lemma 20 later defines conditions that would imply
that a strong amortization satisfying the conditions of Lemma 18 can be constructed, using an
approach very similar to the proof of Lemma 8.

For a function h on type space T , define hSR to be its transformation to sum-ratio coordinates,
that is

h(t1, t2) = hSR(t1 + t2,
t2
t1

)

Sum-ratio coordinates are convenient to work with since it allows us to refer to a type using its
value for the bundle, and the ratio of values of item one and item two. The proof of the following
lemma first transforms the expression in inequality (6) to sum-ratio coordinates, and invokes single-
dimensional integration by parts along the lines with constant sum of values to get an expression
in terms of derivative of x times a (weighted) integral of φ̄− φ (see expression (7)). We then use
a property of incentive compatible allocations to verify the sign of the given expression.

Lemma 18. The two-dimensional extension of the sum-of-values projection φ̄ is a weak amortiza-
tion of revenue if there exists a strong amortization φ such that
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1. φ1(t) + φ2(t) = φsum(t1 + t2).

2. φ1(t) t2t1 ≤ φ2(t).

Proof. We invoke Lemma 7 and construct a strong amortization φ that shows that the expected
virtual surplus, with respect to φ̄ of any incentive compatible allocation is at least its revenue.
Thus we need to show that the following expression for all incentive compatible x,∫

t
x(t) · [φ̄(t)− φ(t)]f(t) dt ≥ 0.

By symmetry of the distribution, the optimal mechanism is also symmetric. Therefore, we
prove the lemma only for symmetric incentive compatible allocations (in particular, we assume
that x1(t1, t1) = x2(t1, t1) for all t1). Perform a change of variables s = t1 + t2, and θ = t2/t1 on
the left hand side of the above expression (6)

∫ 1

s=0

∫ 1

θ=0
xSR(s, θ) · [φ̄− φ]SR(s, θ)fSR(s, θ)

s

1 + θ
dθ ds

=

∫ 1

s=0

∫ 1

θ=0
xSR(s, θ) · d

dθ

∫ θ

θ′=0
[φ̄− φ]SR(s, θ′)fSR(s, θ′)

s

1 + θ′
dθ′ dθ ds.

To simplify exposition, let

γ(s, θ) =

∫ θ

θ′=0
[φ̄− φ]SR(s, θ′)fSR(s, θ′) dθ′,

to rewrite the left hand side of inequality (6)

=

∫ 1

s=0

∫ 1

θ=0
xSR(s, θ) · d

dθ
γ(s, θ) dθ ds

=

∫ 1

s=0
xSR(s, θ) · γ(s, θ)

∣∣∣1
θ=0
−
∫ 1

θ=0

d

dθ
xSR(s, θ) · γ(s, θ) dθ ds,

using integration by parts. The first term of the above expression is zero. For θ = 0, we have
γ = 0 since the interval of integration is empty. For θ = 1, x1(s, 1) = x2(s, 1) by symmetry, and
φ̄1 − φ1 + φ̄2 − φ2 = 0 by the assumption of the lemma. Therefore, the left hand side of inequality
(6) simplifies to

= −
∫ 1

s=0

∫ 1

θ=0

d

dθ
xSR(s, θ) · γ(s, θ) dθ ds. (7)

Lemma 19 shows that − d
dθx

SR(s, θ) · (1,−1) ≥ 0, and therefore we can complete the proof by
showing that γ1 = −γ2 and γ1 ≥ 0 everywhere. The first property holds by the first assumption
of the lemma, since φ1 + φ2 = φsum(t1 + t2) = φ̄1 + φ̄2 implies that φ̄1 − φ1 = φ2 − φ̄2. Also,
φ1 + φ2 = φ̄1 + φ̄2 together with φ̄1

t2
t1

= φ̄2 (by definition) and φ1
t2
t1
≤ φ2 (by assumption of the

lemma) implies that φ̄1 ≥ φ1.

19



0 (1, 0)

(.5, .5)

s

θ
( s

1+θ ,
sθ

1+θ)

INTERIOR(s, θ)

Figure 3: The trapezoidal set parameterized by s and θ, and the four curves that define its boundary,
{TOP, RIGHT, BOTTOM, LEFT}(s, θ)

Lemma 19. The allocation of any incentive compatible mechanism satisfies

d

dθ
xSR(s, θ) · (−1, 1) ≥ 0

Proof. Incentive compatibility implies that for any s, θ, and ε,

(xSR(s, θ + ε)− xSR(s, θ)) · (−1, 1)
θε

s
≥ 0.

Letting ε approach zero implies the claim.

So in order to complete the proof that φ̄ is a weak amortization, we should construct strong
amortization φ satisfying conditions of Lemma 18. Recall that α1

t2
t1
≥ α2 implies that φ1

t2
t1
≤ φ2

because

t2
t1
φ1(t) =

t2
t1

(
t1 −

α1(t)

f(t)

)
=
t2
t1

(
t1 −

α1(t)

f(t)

)
≤ t2 −

α2(t)

f(t)
= φ2(t).

So the goal is to construct φ such that α1
t2
t1
≥ α2. Extend the definition of the projection for

the sum of values as follows. Define Fsum(v, θ) to be the probability of the set of types t such that
t1 + t2 ≥ v, and t2/t1 ≤ θ. This implies that Fsum(v) = Fsum(v, 1). Define fsum(v, θ) to be the
density function of the distribution, that is fsum(v, θ) = d

dvFsum(v, θ).

Lemma 20. There exists unique strong amortization φ = tf−α satisfying φ1 +φ2 = φsum(t1 +t2).
This amortization also satisfies

θ αSR1 (s, θ)− αSR2 (s, θ) = −(1 + θ)(1− Fsum(s))
d

ds

[
fsum(s, θ)

fsum(s)

]
.

Proof. We will here sketch the proof of the above lemma, and the complete proof appears in
Appendix B.
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The proof is similar to the proof of Lemma 8, and takes the derivative of the divergence theorem.
We assume φ exists, use the divergence theorem and properties of φ to derive a closed form for it,
and then verify that φ indeed satisfies all the required properties. We apply the divergence theorem
to α on the trapezoidal subspace of type space defined by types t′ with t′1 + t′2 ≥ s, t′2/t

′
1 ≤ θ,

t′2 ≥ 0, and t′1 + t′2 ≤ 1 (Figure 3). The divergence theorem equates the integral of the vector field α
on the boundary of the subspace to the integral of its divergence within the subspace. The integral
of the vector field over right and bottom boundaries equates zero by boundary orthogonality, and
its value over the left boundary will be specified given the equation φ1 + φ2 = φsum(t1 + t2) (the
outward pointing vector is (−1,−1)). As the upper boundary of this trapezoidal subspace has
slope t2/t1, one term in this equality is the integral of α(t′) with the upward orthogonal vector to
t. Differentiating this integral and evaluating at t′ = ( s

1+θ ,
sθ

1+θ ) gives a closed form expression for
t2
t1
α1 − α2. We then verify that the specified φ satisfies all the properties.

A distribution f is SR-log-submodular if it is log-submodular in sum-ratio coordinates, that is,

fSR(s, θ)× fSR(s′, θ′) ≥ fSR(s′, θ)× fSR(s, θ′), ∀s ≤ s′, θ ≤ θ′,

and is SR-independent if the above holds with equality everywhere. Similar to Section 4 we
prove the following lemma (notice that the sign is the opposite of the sign in Section 4, which is
the reason that supermodularity is replaced by sub modularity).

Lemma 21. If f is a SR-log-submodular function, then for any s and θ,

d

ds

[
fsum(s, θ)

fsum(s)

]
≥ 0,

with equality if distribution is SR-independent.

Theorem 22. Bundle pricing is revenue optimal for any SR-log-submodular distribution for which
the sum-of-values projection has monotone strong amortization φsum.

6 Multi Agent Extensions

6.1 The Setting

A multi-agent problem is defined by n agents, each agent κ associated with a distribution fκ,
and a feasibility setting S ⊆ {0, 1}n×m. Types of agents are drawn independent of each other
from corresponding distributions. A multi-agent mechanism is a sequence of allocation functions
(x̄1(t1, . . . , tn), . . . , x̄n(t1, . . . , tm)) ∈ S in which x̄κ(t1, . . . , tn) ∈ Rm is the allocation of agent
κ, together with a sequence of payment function (p1(t1, . . . , tn), . . . , pn(t1, . . . , tn)) ∈ Rn in which
pκ(t1, . . . , tn) ∈ R is the payment of agent κ. A multi-agent mechanism is ex-post individually
rational (EPIR) if the utility of every type of every agent is always positive,

tκ · x̄κ(tκ, t−κ)− pκ(tκ, t−κ) ≥ 0, ∀κ, tκ, t−κ,

where t−κ is the vector of other agents types. A multi-agent mechanism is dominant strategy
incentive compatible (DSIC) if no type of any agent increases his utility by misreporting,
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tκ · x̄κ(tκ, t−κ)− pκ(tκ, t−κ) ≥ tκ · x̄κ(t̂
κ
, t−κ)− pκ(t̂

κ
, t−κ), ∀κ, tκ, t̂κ, t−κ.

The interim mechanism for agent κ is a single-agent mechanism (xκ, pκ) defined to be

xκ(tκ) = Et−κ∼f−κ [x̄κ(tκ, t−κ)],

pκ(tκ) = Et−κ∼f−κ [pκ(tκ, t−κ)],

where t−κ is the vector of other agents types, drawn at random from f−κ := f1 × . . . × fκ−1 ×
fκ+1 × . . . × fn. A mechanism is interim individually rational (IIR) if the interim mechanism of
every agent is individually rational. A mechanism is Bayesian incentive compatible (BIC) if the
interim mechanism of every agent is incentive compatible. Notice that EPIR implies IIR, and
DSIC implies BIC. The goal is to design feasible IIC and IIR mechanisms that maximize expected
payments. We however prove stronger results that the optimal mechanisms are in fact EPIR and
DSIC.

6.2 Problem Formulation

A single agent mechanism (x, p) defines a utility function u(t) = t ·x(t)−p(t). Recall the following
lemma from Section 2.3 which connects the utility function of an IC mechanism with its allocation
function.

Lemma 3 (Rochet (1985)). Function u is the utility function of an agent in an incentive compatible
mechanism if and only if u is convex, and in that case, the agent’s allocation is x(t) = ∇u(t).

The payment function can be defined using the utility function and the allocation function as
p(t) = t · x(t)− u(t). Using the above lemma, we can write payment to be p(t) = t · ∇u(t)− u(t).
This allows us to write the following optimization problem as our revenue maximization problem,
which is the starting point of the analysis of this paper.

max
x̄1,...,x̄n,u1,...,un

∑
κ

∫
t
[t · ∇uκ(t)− uκ(t)]fκ(t) dt (8)

∀κ,xκ = ∇uκ;uκ is convex,

∀t, (x̄1(t1, . . . , tn), . . . , x̄n(t1, . . . , tn)) is feasible allocation.

Notice that when m = 1, the above program is equivalent to the following familiar form of

max
x̄1,...,x̄n

∑
i

∫
v
[vxκ(v)−

∫
z≤v

xκ(z)dz]f(v) dv

∀κ,xκ is monotone non-decreasing,

∀t, (x̄1(t1, . . . , tn), . . . , x̄n(t1, . . . , tn)) is feasible allocation.

Now assume that for each agent κ, we have constructed ακ(t) according to Lemma 5. The
above analysis and Program 8 tells us that we can write revenue as
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∑
κ

∫
tκ
xκ(tκ) · φκ(tκ)fκ(tκ) dtκ =

∑
κ

∫
tκ

[ ∫
t−κ
x̄κ(tκ, t−κ)f−κ(t−κ) dt−κ

]
· φκ(tκ)fκ(tκ) dtκ

=
∑
κ

∫
t
x̄κ(tκ, t−κ) · φκ(tκ)f(t) dt

=

∫
t

[∑
κ

x̄κ(tκ, t−κ) · φκ(tκ)
]
f(t) dt.

We say that a mechanism x̄ optimizes an objective φ ex-post, if for any input t1, . . . , tm it
selects an outcome that maximizes

∑
κ x̄

κ(t1, . . . , tm) · φκ(tκ).
Notice that in a multi-agent problem, the existence of ακ depends only on the distribution fκ.

As a result, in the rest of this section we study construction of ακ for single agents, and drop
the index κ. By showing the existence of proofs for each agent separately, we can apply the meta
theorem to get the structure of the multi-agent optimal solution.

6.3 Ex-post Optimization and Ironing

Having proved that φ is a strong amortization of revenue by proving it satisfies conditions of
Lemma 5, we now study its incentive compatibility in multi-agent settings. First we define service-
constrained settings. A service-constrained environment is characterized by a set system S ⊆ 2n.
An allocation is feasible if {i|

∑
j=m xij = 1} ∈ S. A service-constrained environment is downward-

closed if for any S, S′ ⊆ S such that S ∈ S, we also have S′ ∈ S.
Notice that φ2 ≤ t2

t1
φ1 implies that when φ1 ≥ 0, we have φ2 ≤ φ1, and when φ1 ≤ 0, we also

have φ2 ≤ 0. This implies that in service-constrained settings, an ex-post optimizer of φ will assign
positive probability only to the favorite item. In addition, if φ(t) is a non-decreasing function of
t1, then so will be the allocation probability for the favorite item. This implies that the allocation
rule is incentive compatible because

(x(t)− x(t′)) · (t− t′) = (x1(t)− x1(t′))(t1 − t′1)

≥ 0,

which shows the convexity of the utility function, which in turn proves incentive compatibility (see
Lemma 3). We have therefore proved the following lemma.

Lemma 23. If φ(t) is a non-decreasing function of t1, and φ1 ≥ φ2 whenever φ2 ≥ 0, then φ is
incentive compatible for any multi-agent downward-closed service-constrained environment.

Unfortunately, as it happens in single-dimensional settings, the derivative of revenue is not
necessarily monotone. However, we can fix this problem by ironing the virtual value function in a
similar manner to the single-dimensional problem. An ironing of multi-dimensional virtual values
should be performed carefully in order to keep the properties of virtual values. More precisely, we
would like to maintain the property that φ2 ≤ φ1 when φ2 ≥ 0. In particular, we can prove the
following lemma (proof is in Appendix B).

Lemma 24. There exists an ironed virtual value function φ̄ that is a weak amortization of revenue
and is incentive compatible (by satisfying the conditions of Lemma 23) for MR-log-supermodular
distributions.
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The above lemma directly implies our main theorem.

Theorem 25. In multi-agent downward-closed service-constrained environments with MR-log-supermodular
distributions, the optimal auction selects a feasible set maximizing the sum of virtual values for fa-
vorite items.
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A Extension for m > 2 Items

In this section, we extend the definition of α given in Section 4 from two items to m > 2. The
approach to derive such general α is similar to that of Section 4, and therefore in this section we
only define α and verify its properties. Assume that we are in a partition of the space in which
t1 ≥ ti for all i. Define T (t1, θ2, . . . , θm) = {t′|t′1 ≥ t1, t

′
i ≤ θit1,∀i ≥ 2}. Define C(t1, θ2, . . . , θm) =

{t′|t′1 = t1, t
′
i ≤ t′iθi, ∀i ≥ 2}. Now define

α1(t) = t1 −

∫
t′∈T (t1,1,...,1) f(t′) dt′∫
t′∈C(t1,1,...,1) f(t′) dt′

We also define αi for i ≥ 2 as follows

αi(t)f(t) = tif(t) +
1

m− 1

∫ ti

y=0
f(y, t−i) +

d

dt1
[(t1 − α1(y, t−i))f(y, t−i)] dy

The above definition implies that

d

dti

(
tif(t)− αi(t)f(t)

)
= − 1

m− 1

(
f(t) +

d

dt1
[(t1 − α1(t))f(t)]

)
.

As a result,

∇ · φ =
∑
i

d

dti

(
tif(t)− αi(t)f(t)

)
=

d

dt1
[(t1 − α1(t))f(t)]− (m− 1)× 1

m− 1

(
f(t) +

d

dt1
[(t1 − α1(t))f(t)]

)
= −f

We now verify that φ satisfies the boundary conditions. This holds because when ti = 0,
αi(t) = 0, and also when t1 = 1, α1(t) = f(t).

Finally, we verify that αi(t) ≤ ti
t1
α1(t). This is again done in a manner similar to Section 4. Fix

values of θ3, . . . , θm, let Tθ3,...,θn(t1, θ2) be the projection of type space into set of types such that
each type t′ satisfies t′1 ≥ t1, t′1 ≤ t′2θ, and t′i = t1θi. Now we can invoke the divergence theorem to
conclude that αi(t) ≤ ti

t1
α1(t) if

d

dt1

(∫ t1θ2
y=0 f(t1, y, θ3, . . . , θn) dy∫ t1
y=0 f(t1, y, θ3, . . . , θn) dy

)
≤ 0.

Notice that fixing θ3, . . . , θn, the above property is exactly what was required in two dimensions,
which we showed follows from MR-log-supermodularity. As a result, if the function is MR-log-
supermodular in every pair of variables t1, θi for i ≥ 2, then we αi(t) ≤ ti

t1
α1(t). Notice that this

property is implied by MR-log-supermodularity of the distribution in all its variables, and therefore
is a less demanding condition. We have therefore proved the following lemma.
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Lemma 26. If the distribution is MR-log-supermodular in every pair of variables t1, θi for i ≥ 2,
then the revenue of an allocation can be upper bounded by∫

t
x · (1, t2

t1
, . . . ,

tn
t1

)α(t1)f(t) dt,

where

α1(t) = t1 −

∫
t′∈T (t1,1,...,1) f(t′) dt′∫
t′∈C(t1,1,...,1) f(t′) dt′

.

B Missing Proofs

B.1 Proof from Section 4

Proof of Lemma 14. We need to prove

fMR(t1, θ1)× fMR(t′1, θ
′
1) ≤ fMR(t1, θ

′
1)× fMR(t′1, θ1), ∀t1 ≤ t′1, θ1 ≥ θ′1.

Recall that fMR(t1, θ1) = f(t1, t1θ1). Since the distribution is a product one, this implies that
fMR(t1, θ1) = f1(t1)f2(t1θ1). Notice that pair of values tθ′ and t′θ have the same geometric mean
as the pair tθ, t′θ′. Also given the assumptions, tθ′ ≤ tθ, t′θ′ ≤ t′θ. GG-convexity implies that

f2(tθ)× f2(t′θ′) ≤ f2(tθ′)× f2(t′θ).

Multiplying both sides by f1(t1)× f1(t′1) we get

f1(t1)f2(tθ)× f1(t′1)f2(t′θ′) ≤ f1(t1)f2(tθ′)× f1(t′1)f2(t′θ),

which since the distribution is a product distribution implies that

fMR(t1, θ1)× fMR(t′1, θ
′
1) ≤ fMR(t1, θ

′
1)× fMR(t′1, θ1).

B.2 Proofs from Section 5

Proof of Lemma 16. Let xp be the allocation corresponding to posting price p for the bundle, that
is xp1(t) = xp2(t) = 1 if t1 + t2 ≥ p, and xp1(t) = xp2(t) = 0 otherwise. We will show that the virtual
surplus of xp is equal to the revenue of posting price p, R(p) = p(1−Fsum(p)). The virtual surplus
is

∫
t∈T

(xp · φf)(t) dt =

∫
t∈T

xp(t1, t2) · φ̄(t1, t2)f(t1, t2) dt

=

∫
t∈T,t1+t2≥p

φsum(t1 + t2)f(t1, t2) dt.
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For a function h on T , define hSR to be its transformation to sum-ratio coordinates, that is

h(t1, t2) = hSR(t1 + t2,
t2
t1

)

By performing a change of variables s = t1 + t2, and θ = t2/t1, the virtual surplus of xp can be
written as (the Jacobian of the transformation is s

(1+θ)2
)

∫ 1

s=p

∫ 1

θ=0
φsum(s)fSR(s, θ)

s

(1 + θ)2
dθds =

∫ 1

s=p
φsum(s)

∫ 1

θ=0
fSR(s, θ)

s

(1 + θ)2
dθds

=

∫ 1

s=p
φsum(s)fsum(s)ds

Replacing φsum by its definition,

=

∫
s≥p

t1fsum(s)− (1− Fsum(s)) ds

= −
∫
s≥p

d

ds
(s(1− Fsum(s)) ds

= R(p)−R(1) = R(p).

Proof of Lemma 20. We assume that φ satisfying the requirements of the lemma exists, derive the
closed form suggested in the lemma, and then verify that the derived φ indeed satisfies all the
required properties. We apply the divergence theorem to α on the trapezoidal subspace of type
space defined by types t′ with s ≤ t′1 + t′2 ≤ 1, t′2/t

′
1 ≤ θ, and 0 ≤ t′1, t

′
2 ≤ 1 (Figure 3). The

divergence theorem equates the the integral of the vector field α on the boundary of the subspace
to the integral of its divergence within the subspace. As the upper boundary of this trapezoidal
subspace has slope t2/t1, one term in this equality is the integral of α(t′) with the upward orthogonal
vector to t. Differentiating this integral gives the desired quantity.

Applying the divergence theorem to α on the trapezoid and expressing the top boundary as the
interior divergence minus the other three boundaries gives:∫

t′∈TOP(s,θ)
η(t′) ·α(t′) dt′ =

∫
t′∈INTERIOR(s,θ)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(s,θ)

η(t′) ·α(t′) dt′.

Since α/f is a strong amortization of utility, the divergence density equality and boundary or-
thogonality imply that the integral over the interior simplifies and the integrals over the right and
bottom boundary are zero, respectively. We have,∫

t′∈TOP(s,θ)
η(t′) ·α(t′) dt′ = −

∫
t′∈INTERIOR(s,θ)

f(t′) dt′ −
∫
t′∈LEFT(s,θ)

η(t′) ·α(t′) dt′.

For the trapezoid parameterized by (s, θ) these integrals are (recall that the Jacobian of the trans-
formation from t to (s, θ) is s

(1+θ)2
),∫ 1

s′=s

αSR(s′, θ) · (−θ, 1)

1 + θ
ds′ = −

∫ 1

s′=s

∫ θ

θ′=0

fSR(s′, θ′) · s
(1 + θ′)2

dθ′ ds′ +

∫ θ

θ′=0

αSR(s, θ′) · (−1,−1)s

(1 + θ′)2
dθ′.
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Differentiating with respect to s gives,

αSR(s, θ) · (−θ, 1)

1 + θ
=

∫ θ

θ′=0

fSR(s, θ′) · s
(1 + θ′)2

dθ′ − d

ds

∫ θ

θ′=0

αSR(s, θ′) · (−1,−1)s

(1 + θ′)2
dθ′.

On the right-hand side, multiply first term by fsum(s)
fsum(s) = 1. The assumption that φ1 + φ2 =

φsum(t1 + t2) implies that αSR1 (s, θ) + αSR2 (s, θ) = 1−Fsum(s)
fsum(s) fSR(s, θ) for all s and θ. These two

terms then simplify by the product rule for differentiation to give the identity of the lemma.

αSR(s, θ) · (−θ, 1)

1 + θ
= fsum(s)

∫ θ
θ′=0

fSR(s,θ′)·s
(1+θ′)2 dθ′

fsum(s)
+

d

ds

[
(1− Fmax(s))

∫ θ
θ′=0

fSR(s,θ′)·s
(1+θ′)2 dθ′

fmax(t1)

]
.

By definition and change of variables, F (s, θ) =
∫
t:t1+t2≤s,t2/t1≤θ f(t) dt =

∫
s′≤s

∫
θ′≤θ f

SR(s′, θ′) s′

(1+θ′)2 dθ′ds′.

Therefore, f(s, θ) =
∫
θ′≤θ f

SR(s, θ′) s
(1+θ′)2 dθ′. Plugging this definition into the above equation, we

get

αSR(s, θ) · (−θ, 1)

1 + θ
= fsum(s)

fsum(s, θ)

fsum(s)
+

d

ds

[
(1− Fsum(s))

fsum(s, θ)

fsum(s)

]
.

= (1− Fsum(s))
d

ds

[
fsum(s, θ)

fsum(s)

]
.

As a result,

αSR(s, θ) · (−θ, 1) = (1 + θ)(1− Fsum(s))
d

ds

[
fsum(s, θ)

fsum(s)

]
.

We can now use the above equation, together with αSR1 (s, θ) + αSR2 (s, θ) = 1−Fsum(s)
fsum(s) fSR(s, θ)

to solve for α1.

Proof of Lemma 21. We prove that for any θ, s, and s′ such that s < s′,

fsum(s, θ)

fsum(s, 1)
≤ fsum(s′, θ)

fsum(s′, 1)

The proof first converts the above form into max-ratio coordinates, applies SR-log-submodularity,
and then transforms back to the standard form. Before applying SR-log-submodularity, we break
down the integral set into two set, and apply SR-log-submodularity to only one of the integrals.
More particularly, notice that
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fsum(s, θ)× fsum(s′, 1)

=

∫ θ

θ′=0
fSR(s, θ′)

s

(1 + θ′)2
dθ′ ×

∫ 1

θ′′=0
fSR(s′, θ′′)

s′

(1 + θ′′)2
dθ′′ (change of variables)

=

∫ θ

θ′=0

∫ θ

θ′′=0
fSR(s, θ′)

s

(1 + θ′)2
fSR(s′, θ′′)

s′

(1 + θ′′)2
dθ′′ dθ′

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fSR(s, θ′)

s

(1 + θ′)2
fSR(s′, θ′′)

s′

(1 + θ′′)2
dθ′′ dθ′ (separate double integral into two sets)

≥
∫ θ

θ′=0

∫ θ

θ′′=0
fSR(s, θ′′)

s

(1 + θ′′)2
fSR(s′, θ′)

s′

(1 + θ′)2
dθ′ dθ′′ (rename variables θ′ and θ′′)

+

∫ θ

θ′=0

∫ 1

θ′′=θ
fSR(s, θ′′)

s

(1 + θ′′)2
fSR(s′, θ′)

s′

(1 + θ′)2
dθ′′ dθ′ (apply MR-log-supermodularity)

=

∫ 1

θ′′=0
fSR(s, θ′′)

s

(1 + θ′′)2
dθ′′

∫ θ

θ′=0
fSR(s′, θ′)

s′

(1 + θ′)2
dθ′ (merge integrals)

= fsum(s, 1)× fsum(s′, θ′).

B.3 Proofs from Section 6.3

Proof of Lemma 24. Since φ2(t) ≤ t2
t1
φ1(t), the revenue of an allocation function can be upper

bounded as follows,∫ ∫
x(t) · (φ1(t), φ2(t))f(t) d(t) ≤

∫ ∫
x(t) · (1, t2

t1
)φ1(t)f(t) dt

After a changing variables according to θ = t2
t1

, the upper bound becomes∫
t1

∫ 1

θ=0
xMR(t1, θ) · (1, θ)φMR(t1, θ)f

MR(t1, θ)t1 dθ dt1,

where φMR(t1, θ) = φ(t1, t1θ). For a function h on T , define hQR to be its transformation to
quantile-ratio coordinates, that is

h(t1, t2) = hQR(

∫
T=T (t1,1)

f(t) dt,
t2
t1

)

We perform another change of variables according to q =
∫
T=T (t1,1) f(t) dt, and rewrite the

upper bound as

∫
q

∫
θ
xQR(q, θ) · (1, θ)φQR(q) dθ dq.

Using integration by parts,
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∫
q

∫
θ
xQR(q, θ) · (1, θ)φQR(q) dθ dq =

∫
q

∫
θ

d

dq
xQR(q, θ) · (1, θ)R(q) dθ dq

where R(q) is the revenue of posting a price that is accepted with probability q. Now let R̄ be the
convex hull of function R. In particular, R̄′(q) is non-decreasing and R̄(q) ≥ R(q). We next show
that d

dqx
QR(q, θ) · (1, θ) ≥ 0 for any incentive compatible allocation rule.

Recall that the incentive compatibility condition states that, for all t, t′,

(x(t′)− x(t)) · (t′ − t) ≥ 0.

Setting t′ = t(1 + ε), this becomes

(x(t(1 + ε))− x(t)) · (tε) ≥ 0.

When ε goes to zero, this give us the following property

d

dt1
x(t) · t ≥ 0.

Now notice that q =
∫
T=T (t,1) f(t) dt is a monotone function of t1, which implies the desired

property

d

dq
xQR(q, θ) · (1, θ) ≥ 0.

The facts that d
dqx

QR(q, θ) · (1, θ) ≥ 0 and R̄(q) ≥ R(q) imply that we can upper bound revenue
as follows

∫
q

∫
θ

d

dq
xQR(q, θ)(1, θ)R(q) dθ dq ≤

∫
q

∫
θ

d

dq
xQR(q, θ)(1, θ)R̄(q) dθ dq

We now study the allocation rule that optimizes virtual value function (1, θ)R′(q). Notice that
when R̄(q) > R(q), we have that R̄′(q) is a constant and therefore d

dqx
QR = 0. This implies that

R̂′(q) can be used as an upper bound on revenue, and for the expected virtual value of the optimal
allocation exactly equals revenue.
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