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Abstract

School choice plans in many cities grant students higher priority for some (but not all) seats

at their neighborhood schools. This paper demonstrates how the precedence order, i.e. the order

in which different types of seats are filled by applicants, has quantitative effects on distributional

objectives comparable to priorities in the deferred acceptance algorithm. While Boston’s school

choice plan gives priority to neighborhood applicants for half of each school’s seats, the intended

effect of this policy is lost because of the precedence order. Despite widely held impressions about

the importance of neighborhood priority, the outcome of Boston’s implementation of a 50-50

school split is nearly identical to a system without neighborhood priority. We formally establish

that either increasing the number of neighborhood priority seats or lowering the precedence order

positions of neighborhood seats at a school have the same effect: an increase in the number of

neighborhood students assigned to the school. We then show that in Boston a reversal of

precedence with no change in priorities covers almost three-quarters of the range between 0%

and 100% neighborhood priority. Therefore, decisions about precedence are inseparable from

decisions about priorities. Transparency about these issues—in particular, how precedence

unintentionally undermined neighborhood priority—led to the abandonment of neighborhood

priority in Boston in 2013.
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1 Introduction

School choice programs aspire to weaken the link between the housing market and access to good

schools. In purely residence-based public school systems, families can purchase access by moving

to neighborhoods with desirable schools. Children from families less able to move do not have

the same opportunity. With school choice, children are allowed to attend schools outside their

neighborhoods without having to move homes. This may generate a more equitable distribution of

school access.

Enabling choice requires specifying how school seats will be rationed among students. During the

1970s, court rulings on the appropriate balance of neighborhood and non-neighborhood assignment,

often drawn on racial and ethnic lines, influenced the shape of urban America (Baum-Snow and

Lutz 2011, Boustan 2012). The debate about the appropriate balance continues today throughout

the design of school choice programs.

The initial literature on school choice mechanism design took students’ property rights over

school seats as primitives and focused on how these property rights are interpreted by the assignment

mechanism (Balinski and Sönmez 1999, Abdulkadiroğlu and Sönmez 2003). Efforts in the field also

avoided taking positions on how to endow agents with claims to schools, and instead advocated for

strategy-proof mechanisms, which simplify applicant ranking decisions.1 Now, with the growing use

of mechanisms based on the student-proposing deferred acceptance algorithm (DA), it is possible

to more explicitly consider the role of students’ property rights.2 By setting school priorities, such

as rules giving higher claims to neighborhood applicants, districts using DA can precisely define

applicants’ property rights in a way that is independent of demand for school seats.

Specifying priorities is only one part of determining students’ access to schools. Another compo-

nent involves determining the fraction of seats at which given priorities apply. For the last thirteen

years, Boston Public Schools (BPS) split schools’ priority structures into two equally-sized pieces,

with one half of the seats at each school giving students from that school’s neighborhood priority

over all other students, and half of the seats not giving neighborhood students priority.3 When

students in Boston rank a school in their preference list, they are considered for both types of

seats.4 The order in which the slots are processed, the slots’ precedence order, determines how

the seats are filled by applicants.

BPS’s current 50-50 seat split emerged out of a city-wide discussion following the end of racial

and ethnic criteria for school placement in 1999. Many advocated abandoning choice and returning

1For example, a December 2003 community engagement process in Boston considered six different proposals for

alternative neighborhood zone definitions. However, the only recommendation adopted by the school committee was

to switch the assignment algorithm (Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005).
2Other mechanisms often lack this complete separation. For instance, in the pre-2005 Boston mechanism, appli-

cants’ preference rankings first determined whose claims were justified; priorities were only used to adjudicate claims

among equal-ranking applicants.
3The 50-50 school seat split was not altered when Boston changed their assignment mechanism in 2005 to one

based on the student-proposing deferred acceptance algorithm (Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005,

Abdulkadiroğlu, Pathak, Roth, and Sönmez 2006, Pathak and Sönmez 2008).
4Throughout this paper, we use the terms “slot” and “seat” interchangeably.
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to neighborhood schools at that point, but the school committee chose only to reduce the fraction

of seats where neighborhood, i.e. “walk-zone” priority, applies from 100% to 50% of seats within

each school. The official policy document states (BPS 1999):

Fifty percent walk zone preference means that half of the seats at a given school are subject

to walk zone preference. The remaining seats are open to students outside of the walk zone.

RATIONALE: One hundred percent walk zone preference in a controlled choice plan without

racial guidelines could result in all available seats being assigned to students within the walk

zone. The result would limit choice and access for all students, including those who have

no walk zone school or live in walk zones where there are insufficient seats to serve the

students residing in the walk zone.

Patterns of parent choice clearly establish that many choose schools outside of their walk

zone for many educational and other reasons. [. . . ] One hundred percent walk zone pref-

erence would limit choice and access for too many families to the schools they want their

children to attend. On the other hand, the policy also should and does recognize the

interests of families who want to choose a walk zone school.

Thus, I believe fifty percent walk zone preference provides a fair balance.

The 50-50 slot split was seen as “striking an uneasy compromise between neighborhood school

advocates and those who want choice,” while the Superintendent hoped that the “plan would

satisfy both factions, those who want to send children to schools close by and those who want

choice” (Daley 1999).

In this paper, we illustrate how both priorities and precedence are important for achieving

distributional objectives in matching problems, including those described in BPS’s policy statement.

Although there are multiple possible interpretations, it is clear that the goal of Boston’s school

committee was not to completely eliminate the role of walk-zone status in student assignment.

Indeed, if that were the intention, there would be no need to give any students walk-zone priority.

Using data on students’ choices and assignments in BPS, however, we show that BPS’s policy, as

implemented in practice, led to an outcome almost identical to the outcome that would arise if

walk-zone priority were not used at all. We compare the BPS outcome to two extreme alternatives:

one where none of the seats have walk-zone priority, and one where all seats have walk-zone priority.

Table 1 shows that the outcome of the BPS mechanism is far from being a “compromise” be at the

midpoint of these two extremal policies. Instead, it is nearly the same as if none of the seats had

walk-zone priority.

Despite the perception that walk-zone applicants had been advantaged in the BPS system since

1999, they appear to have had little advantage in practice. Only 3% of Grade K1 (a main elementary

school entry point) applicants obtained a different assignment under Boston’s implementation than

they would under open competition without walk-zone priority, as indicated in the column labeled

0% Walk. The difference is as low as 1% for Grade 6. Furthermore, this pattern is not simply a

feature of student demand. Under the alternative in which all seats have walk-zone priority (labeled
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100% Walk), the number of students assigned to schools in their walk zones increases to 19% and

17% for Grades K1 and K2, respectively. Although motivated as a compromise between the two

factions, BPS’s 50-50 school seat split is significantly closer to open competition than is at first

apparent.

Why does Boston’s assignment mechanism result in an assignment so close to one without

any neighborhood priority, even though half of each school’s seats give priority to neighborhood

students? This paper provides an answer. We develop a theoretical framework for school choice

mechanism design in which both priority and precedence play key roles. We show that the division

of schools into walk-zone and open priority seats reveals little about the proximity of the outcome

to a compromise between extremes without specifying the precedence order, which determines what

happens when a student has claims for both walk-zone and open seats. Building on the work of

Kominers and Sönmez (2012), we establish two new comparative statics:

1. Given a fixed slot precedence order, replacing an open slot at a school with a walk-zone slot

weakly increases the number of walk-zone students assigned to that school.

2. Given a fixed split of slots into walk-zone and open slots, switching the precedence order

position of a walk-zone slot with that of a subsequent open slot weakly increases the number

of walk-zone students assigned to that school.

While the first of these results is intuitive, the second one is more subtle. Moreover, neither

result follows from earlier comparative static approches used in simpler models (e.g., Balinski and

Sönmez (1999)) because they involve simultaneous priority improvements for a large number of

students. As a result, they involve developing a novel formal approaches, which may be useful in

other environments which, like our model, have slot-specific priority structure. In a specialization

of our model to the case of two-schools, our comparative statics can be sharpened to show that

the types of priority and precedence order changes described above in fact increase neighborhood

assignment at all schools. The impact in this case is entirely distributional—both instruments leave

the aggregate number of students obtaining their top-choice schools unchanged.

We empirically examine the extent to which the comparative statics from our simplified model

are relevant under the richer priority structure in Boston’s school choice program. After demon-

strating that BPS’s current implementation of the 50-50 split is far from balancing the concerns of

the neighborhood schooling and school choice proponents, we show that an alternative precedence

order in which open slots are depleted before walk-zone slots results in 8.2% more students attend-

ing walk-zone schools in Grade K1. This represents nearly three-quarters of the maximal achievable

difference between completely eliminating walk-zone priority and having walk-zone priority apply

at all school seats.

We also examine alternative precedence orders that implement policies between the 0% Walk

and 100% Walk extremes. Once a preliminary version of this paper was circulated, it entered the

policy discussion in Boston. When our work clarified the role of the precedence order in undermining

the intended effects of the 50-50 seat split, BPS completely eliminated neighborhood priority.
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This paper contributes to a broader agenda, examined in a number of recent papers, that intro-

duces concerns for diversity into the literature on school choice mechanism design (see, e.g., Bud-

ish, Che, Kojima, and Milgrom (2013), Echenique and Yenmez (2012), Erdil and Kumano (2012),

Hafalir, Yenmez, and Yildirim (2012), Kojima (2012), and Kominers and Sönmez (2012)). When an

applicant ranks a school with many seats, it is similar to expressing indifference among the school’s

seats. Therefore, our work parallels recent papers examining the implications of indifferences in

school choice problems (Erdil and Ergin 2008, Abdulkadiroğlu, Pathak, and Roth 2009, Pathak

and Sethuraman 2011). However, the question of school-side indifferences, the focus of prior

work, is entirely distinct from the issue of indifferences in student preferences. Tools used to

resolve indifferences in schools’s priorities (e.g., random lotteries) do not immediately apply to

the case of student-side indifferences. Our work is related to that of Roth (1985), which shows

how to interpret a (Gale and Shapley 1962) college admissions (many-to-one) matching model

as a marriage (one-to-one) matching model by splitting colleges into individual seats and as-

suming that students rank those seats in a given order. Our results show that implementation

of this seat-split approach without attention to precedence can undermine priority policies. Fi-

nally, this paper builds on the theoretical literature on matching with contracts (Crawford and

Knoer 1981, Kelso and Crawford 1982, Hatfield and Milgrom 2005, Ostrovsky 2008, Hatfield and

Kojima 2010, Echenique 2012) and the applied motivation shares much with recent work on match-

ing in the military (Sönmez and Switzer 2013, Sönmez 2013).

Our paper proceeds as follows. Section 2 introduces the model and illustrates the roles of

precedence and priority. Section 3 reports on our empirical investigation of these issues in the

context of Boston’s school choice plan. Section 4 briefly reviews the debate in Boston and describes

how the present paper affected the debate. Section 5 concludes. All proofs are relegated to the

Appendix.

2 Model

There is a finite set I of students and a finite set A of schools. Each school a has a finite set of

slots Sa. We use the notation a0 to denote a “null school” representing the possibility of being

unmatched; we assume that this option is always available to all students. Let S ≡
⋃

a∈A Sa denote

the set of all slots (excluding those at the null school). We assume that |S| ≥ |I|, so that there are

enough (real) slots for all students. Each student i has a strict preference relation P i over A∪{a0}.

Throughout the paper we fix the set of students I, the set of schools A, the set of schools’ slots S,

and the students’ preferences (P i)i∈I .

For a school a ∈ A, each slot s ∈ Sa has a linear priority order πs over students in I. This

linear priority order captures the “property rights” of the students for this slot in the sense that the

higher a student is ranked under πs, the stronger claims he has for the slot s of school a. Following

the BPS practice, we allow slot priorities to be heterogeneous across slots of a given school. A

subtle consequence of this within-school heterogeneity is that we must determine how slots are

assigned when a student is “qualified” for multiple slots with different priorities at a school. The
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last primitive of the model regulates this selection: For each school a ∈ A, the slots in Sa are

ordered according to a (linear) order of precedence ⊲a. Given a school a ∈ A and two of its slots

s, s′ ∈ Sa, the expression s ⊲a s′ means that slot s is to be filled before slot s′ at school a whenever

possible.

A matching µ : I → A is a function which assigns a school to each student such that no school

is assigned to more students than its total number of slots. Let µi denote the assignment of student

i, and let µa denote the set of students assigned to school a.

Our model generalizes the school choice model of Abdulkadiroğlu and Sönmez (2003) in that

it allows for heterogenous priorities across the slots of a given school. Nevertheless, a mechanism

based on the celebrated student-proposing deferred acceptance algorithm (Gale and Shapley 1962)

easily extends to this model once the choice function of each school is constructed from the slot

priorities and order of precedence.

Given a school a ∈ A with a set of slots Sa, a list of slot priorities (πs)s∈Sa , an order of

precedence ⊲a with

s1a ⊲a s2a ⊲a · · · ⊲a s|S
a|

a ,

and a set of students J ⊆ I, the choice of school a from the set of students J , denoted by

Ca(J), and is obtained as follows: Slots at school a are filled one at a time following the order of

precedence ⊲a. The highest priority student in J under πs1a, say student j1, is chosen for slot s1a of

school a; the highest priority student in J \ {j1} under πs2a is chosen for slot s2a of school a, and so

on.

For a given list of slot priorities (πs)s∈S and an order of precedence ⊲a at each school a ∈ A, the

outcome of the student-proposing deferred acceptance mechanism (DA) can be obtained

as follows:

Step 1: Each student i applies to her top choice school. Each school a with a set of Step 1 applicants

Ja
1 tentatively holds the applicants in Ca(Ja

1 ), and rejects the rest.

Step ℓ: Each student rejected in Step ℓ− 1 applies to her most-preferred school (if any) that has not

yet rejected her. Each school a considers the set Ja
ℓ consisting of the new applicants to a and

the students held by a at the end of Step ℓ − 1, tentatively holds the applicants in Ca(Ja
ℓ ),

and rejects the rest.

The algorithm terminates after the first step in which no students are rejected, assigning

students to the schools holding their applications.

2.1 A Mix of Neighborhood-Based and Open Priority Structures

In this paper we are particularly interested in the slot priority structure used at Boston Public

Schools. There is a master priority order πo that is uniform across all schools. This master priority

order is obtained via an even lottery often referred to as the random tiebreaker. At each school in

Boston, slot priorities depend on students’ walk-zone and sibling statuses and the random tiebreaker
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πo. For our theoretical analysis, we consider a simplified priority structure which only depends on

walk-zone status and the random tiebreaker. Using data from BPS in Section 3, we show that this

is a good approximation for BPS.

For any school a ∈ A, there is a subset Ia ⊂ I of walk-zone students. There are two types of

slots:

1. Walk-zone slots: For each walk-zone slot at a school a, any walk-zone student i ∈ Ia has

priority over any non-walk-zone student j ∈ I \ Ia, and the priority order within these two

groups is determined according to the random tiebreaker πo.

2. Open slots: πs = πo for each open slot s.

For any school a ∈ A, define Sa
w to be the set of walk-zone slots and Sa

o to be the set of open

slots. BPS currently uses a priority structure in which half of the slots at each school are walk-zone

slots, while the remaining half are open slots. As described in the introduction, this structure has

been historically interpreted as a compromise between the proponents of neighborhood assignment

and the proponents of school choice.

An important comparative statics exercise concerns the impact of replacing an open slot with

a walk-zone slot under DA for a given order of precedence. One might naturally expect such a

change to weakly increase the number of students who are assigned to their walk-zone schools.

Surprisingly, this intuition is not correct in general, as we show in the next example.

Example 1. There are four schools A = {k, l,m, n}. Each school has two available slots. There

are eight students I = {i1, i2, i3, i4, i5, i6, i7, i8}. There are two walk-zone students at each school:

Ik = {i1, i2}, Il = {i3, i4}, Im = {i5, i6} and In = {i7, i8}. The random tiebreaker πo orders the

students as:

πo : i1 ≻ i8 ≻ i3 ≻ i4 ≻ i5 ≻ i6 ≻ i7 ≻ i2.

The preference profile is:

P i1 P i2 P i3 P i4 P i5 P i6 P i7 P i8

k k l l m m n k

l l k k k k k l

m m m m l l l m

n n n n n n m n

.

First consider the case where each school has one walk-zone slot and one open slot. Also assume

that the walk-zone slot has higher precedence than the open slot at each school.

The outcome of DA for this case is:

µ =

(

i1 i2 i3 i4 i5 i6 i7 i8

k n l l m m n k

)

. (1)

7



Observe that six students (i.e. students i1, i3, i4, i5, i6, i7) are assigned to their walk-zone schools in

this scenario.

Next we replace the open slot at school k with a walk-zone slot, so that both slots at school

k are walk-zone slots. Each remaining school has one walk-zone slot and one open slot, with the

walk-zone slot having higher precedence than the open slot.

The outcome of DA for the second case is:

µ′ =

(

i1 i2 i3 i4 i5 i6 i7 i8

k k l m m n n l

)

. (2)

Observe that five students (i.e. students i1, i2, i3, i5, i7) are assigned to their walk-zone schools in

the second case—the total number of walk-zone assignments decreases when the open slot at school

k is replaced with a walk-zone slot. �

A small modification of Example 1 illustrates that the difficulty persists even if open slots are

replaced by walk-zone slots at all schools. To see this, suppose school k has one walk-zone slot and

one open slot, with the walk-zone slot’s precedence higher than the open slot’s, and that schools

l, m, and n each have two open slots. The outcome is the same as in (1). If we replace the open

slot at school k, with a walk-zone slot, and replace the higher-precedence open slots at schools l,

m, and n with walk-zone slots, then the outcome is the same as (2).

Despite these negative findings, the following proposition shows that the replacement of an open

slot of school a with a walk-zone slot weakly increases the number of walk-zone students assigned

to school a (even though it may decrease the total number of walk-zone assignments).

Proposition 1. For any given order of precedence of slots, replacing an open slot of school a with

a walk-zone slot weakly increases the number of walk-zone students who are assigned to school a

under DA.

When a school district increases the fraction of walk-zone slots, one objective behind this change

is to increase the fraction of students assigned to walk-zone schools. As Proposition 1 shows,

replacing an open slot with a walk-zone slot serves this goal through its “first-order effect” in the

school directly affected by the change, although the overall effect across all schools might in theory

be in the opposite direction.5 Nevertheless, our empirical analysis in Section 3 suggests that the

first-order effect dominates—the overall effect of an increase in the number of walk-zone slots is in

the expected direction.

While the role of the number of walk-zone slots as a policy tool is quite clear, the role of the

order of precedence is much more subtle. Indeed, the choice of the order of precedence is often

considered a minor technical detail—and, to our knowledge, precedence has never entered policy

discussions until the present work. Nevertheless, precedence significantly affects outcomes.

5A natural question is whether there is a relationship between the set of students who are assigned to school a

when an open slot is changed to a walk-zone slot. Example C1 in the appendix shows that with this change, the set

of students are disjoint. Another question is whether all walk-zone students at school a are weakly better off when

an open slot is changed to a walk-zone slot. Example C2 shows that a walk-zone student can actually be worse off in

this situation.
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Qualitatively, the effect of decreasing the precedence order position of a walk-zone slot is similar

to the effect of replacing an open slot with a walk-zone slot. While this may appear counter-intuitive

at first, the reason is simple: By decreasing the precedence of a walk-zone slot, one increases the

odds that a walk-zone student who has a lottery number high enough to make her eligible for both

open and walk-zone slots is assigned to an open slot. This in turn increases the competition for

the open slots and decreases the competition for walk-zone slots. Our next result formalizes this

observation.

Proposition 2. Fix the set of walk-zone slots and the set of open slots at each school. Then,

switching the precedence order position of a walk-zone slot of school a with the position of a lower-

precedence open slot weakly increases the number of walk-zone students assigned to school a under

DA.

Given Example 1, it is not surprising the aggregate effect of lowering walk-zone slot precedence

may go against the “first order” effect. We now present a modified version of Example 1 that makes

this point.

Example 2. To illustrate the conceptual relation between priority swaps and changes in the order

of precedence, we closely follow Example 1. The only difference is a small modification in the

second case.

There are four schools A = {k, l,m, n}. Each school has two available slots. There are eight

students I = {i1, i2, i3, i4, i5, i6, i7, i8}. There are two walk-zone students at each school: Ik =

{i1, i2}, Il = {i3, i4}, Im = {i5, i6} and In = {i7, i8}. The random tiebreaker πo orders the students

as:

πo : i1 ≻ i8 ≻ i3 ≻ i4 ≻ i5 ≻ i6 ≻ i7 ≻ i2.

The preference profile is:

P i1 P i2 P i3 P i4 P i5 P i6 P i7 P i8

k k l l m m n k

l l k k k k k l

m m m m l l l m

n n n n n n m n

.

First consider the case where each school has one walk-zone slot and one open slot. Also assume

that, at each school, the walk-zone slot has higher precedence than the open slot.

The outcome of DA for this case is:

µ =

(

i1 i2 i3 i4 i5 i6 i7 i8

k n l l m m n k

)

.

Observe that six students (i.e. students i1, i3, i4, i5, i6, i7) are assigned to their walk-zone schools in

this scenario.
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Next, we change the order of precedence at school k so that the open slot has higher precedence

than the walk-zone slot. Each remaining school maintains the original order of precedence with the

walk-zone slot higher precedence than the open slot.

The outcome of DA for the second case is:

µ′ =

(

i1 i2 i3 i4 i5 i6 i7 i8

k k l m m n n l

)

.

Observe that five students (i.e. students i1, i2, i3, i5, i7) are assigned to their walk-zone schools in

the second case. Thus, we see that the total number of walk-zone assignments decreases following

reduction in the precedence of the walk-zone slot of school k. �

2.2 Additional Results for the Case of Two Schools

In this section, we obtain sharper theoretical results for the case of two schools (|A| = 2). This case

is motivated in part by the commonly discussed policy objective of giving students from poorer

neighborhoods access to desirable schools in richer neighborhoods. We assume that each student

belongs to exactly one walk zone and that students rank both schools.

Proposition 3. Suppose that there are two schools, that each student belongs to exactly one walk

zone, and that students rank both schools. Then, replacing an open slot of either school with a

walk-zone slot weakly increases the total number of students assigned to their walk-zone schools

under DA.

An immediate implication of Proposition 3 is the following intuitive result justifying why the

school choice and neighborhood schooling lobbies respectively prefer 0% and 100% walk-zone pri-

ority.

Corollary 1. Suppose that there are two schools, that each student belongs to exactly one walk

zone, and that students rank both schools. Under DA (holding fixed the number of slots at each

school):

• The minimum number of walk-zone assignments across all priority and precedence policies is

obtained when all slots have open slot priority, and

• the maximum number of walk-zone assignments across all priority and precedence policies is

obtained when all slots have walk-zone priority.

Proposition 4. Suppose that there are two schools, that each student belongs to exactly one walk

zone, and that students rank both schools. Fix the set of walk-zone slots and the set of open slots

at each school. Then, switching the order of precedence position of a walk-zone slot at either school

with that of a subsequent open slot at that school weakly increases the total number of students

assigned to their walk-zone schools under DA.
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Our empirical analysis in Section 3 shows that the fraction of students who receive their first

choices, second choices, and so forth show virtually no response to changes in the fraction of walk-

zone slots or the order of precedence. Our final theoretical result provides a basis for this empirical

observation.

Proposition 5. Suppose that there are two schools, that each student belongs to exactly one walk

zone, and that students rank both schools. Then, the number of students assigned to their top-choice

schools is independent of both the number of walk-zone slots and the choice of precedence order.

An important policy implication of our last result is that the division of slots between walk-

zone priority and open priority as well the order of precedence selection has little bearing on

the aggregate number of students who receive their top choices; thus, the impact of these DA

calibrations on student welfare is predominantly distributional.

3 Precedence and Priority in Boston Public Schools

3.1 50-50 vs. No Slot Split

To examine whether our theoretical comparative static predictions capture the main features of

school choice with richer priority structures, we use data on submitted preferences from Boston

Public Schools. Relative to our two-priority-type model, Boston has three additional priority

groups:

1. guaranteed applicants, who are typically continuing on at their current schools,

2. sibling-walk applicants, who have siblings currently attending a school and live in the walk

zone, and

3. sibling applicants, who have siblings attending a school and live outside the walk zone.

Under BPS’s slot priorities, applicants are ordered as follows:

Walk-Zone Slots Open Slots

Guaranteed Guaranteed

Sibling-Walk
Sibling-Walk, Sibling

Sibling

Walk
Walk, No Priority

No Priority

A single random lottery number is used to order students within priority groups, and this

number is the same for both types of slots.

We use data covering four years from 2009–2012, when BPS employed a mechanism based on the

student-proposing deferred acceptance algorithm. Students interested in enrolling in or switching
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schools are asked to list schools each January for the first round. Students entering kindergarten

can either apply for elementary school at Grade K1 or Grade K2 depending on whether they are

four or five years old. Since the mechanism is based on the student-proposing deferred acceptance

algorithm and there is no restriction on the number of schools that can be ranked, the assignment

mechanism is strategy-proof.6 BPS informs families of this property on the application form,

advising:

List your school choice in your true order of preference. If you list a popular school first,

you won’t hurt your chances of getting your second choice school if you don’t get your first

choice (BPS 2012).

Since the BPS mechanism is strategy-proof, we can isolate the effects of changes in priorities

and precedence by holding submitted preferences fixed.7

The puzzle that motivated this paper is shown in Table 1, which reports a comparison of the

assignment produced by BPS, under a 50-50 split of slots, to two extreme alternatives representing

the ideal positions of the school choice and neighborhood school factions: (1) a priority structure

without walk-zone priorities at any slot and (2) a priority structure where walk-zone priority applies

at all slots. We refer to these two extremes as 0% Walk and 100% Walk, and we compute their

outcomes using the same lottery numbers as BPS. Table 1 shows that the BPS assignment is nearly

identical to the former of these two alternatives; it differs for only 3% of Grade K1 students. One

might suspect that this phenomenon is driven by a strong preferences for neighborhood schools

among applicants, which would bring the outcomes of these two assignment policies close together.

However, comparing the 100% Walk outcome to BPS outcome, 19% of Grade K1 students obtain a

different assignment. Therefore, the remarkable proximity of the current BPS outcome to the ideal

of school choice proponents does not suggest (or reflect) negligible stakes in school choice.

For Grades K2 and 6, the BPS assignment is similarly close to the 0% Walk outcome. Just as

with Grade K1, this fact is not entirely driven by applicants’ preferences for neighborhood schools.

The fraction of students who obtain a different assignment under the 100% Walk alternative are

17% and 10%, respectively. The differences are smaller at higher grades because there are more

continuing students who obtain guaranteed priority. On average, 4.5% of Grade K2 applicants have

guaranteed priority at their first choice compared to 13% of Grade 6 students. Hence, despite the

adoption of a seemingly neutral 50-50 split, Table 1 shows that the BPS outcome is closely similar

to the 0% Walk outcome across different grades and years.

6For analysis of the effects of restricting the number of choices which can be submitted, see the work of Haeringer

and Klijn (2009), Calsamiglia, Haeringer, and Kljin (2010), and Pathak and Sönmez (2013).
7As a check on our understanding of the data, we verify that we can re-create the assignments produced by BPS.

Across four years and three applicant grades, we can match 98% of the assignments. Based on discussions with BPS,

we learned that the reason why we do not exactly re-create the BPS assignment is that we do not have access to

BPS’s exact capacity file, and instead must construct it ex-post from the final assignment. There are small differences

between this measure of capacity and the capacity input to the algorithm due to the handling of unassigned students

who are administratively assigned. In this paper, to hold this feature fixed in our counterfactuals, we take our

re-creation as representing the BPS assignment.

12



3.2 The Impact of Precedence

To understand the source of this puzzle, in Table 2 we report the fraction of students who obtain a

slot in a school in their walk zone under different priority and precedence policies. Each year, when a

student is unassigned in BPS, they are administratively assigned via an informal process conducted

by the central enrollment office. These students are reported as unassigned in Table 2, even though

many are likely to be eventually assigned in this administrative aftermarket. Unassigned students

are also the reason why the fraction of students who obtain a walk zone school is less than 50% even

though most applicants at Grades K1 and K2 rank walk-zone schools as their first choices. Among

those who are assigned, the BPS mechanism assigns 62.6% of Grade K1 and 58.2% of Grade K2

students to schools in their walk zones.

Before turning to variations in precedence, we compare the fraction of students assigned to

a walk zone school under the two priority extremes: 0% Walk and 100% Walk. Recall that our

Proposition 3 states that the number of students assigned to a walk zone school increases when the

number of walk-zone slots increases. Table 2 shows this prediction borne out in Grades K1, K2,

and 6, even though BPS’s priority structure is more complicated than that studied in our model.

Corollary 1 suggests that the fraction of students who obtain walk-zone assignments under the 0%

Walk and 100% Walk policies provides a benchmark for what can be obtained under variations

of priority or precedence given student demand. For Grade K1, this range spans from 46.2% to

57.4% walk-zone assignment; the 11.2% interval represents the maximum difference in allocation

attainable through changes in either priorities or precedence for Grade K1.

The first alternative precedence we consider is Walk-Open, under which all walk-zone slots

precede the open slots. (The actual BPS implementation is a slight variation on Walk-Open in

which applicants with sibling priority and outside the walk zone apply to the open slots before

applying to the walk-zone slots.) Focusing on Walk-Open provides useful intuition because as

Table 2 shows the BPS system produces an outcome very close to Walk-Open. Under Walk-Open,

the pool of walk-zone applicants will be depleted by the time the open slots start being filled. For

instance, suppose a school has 100 slots, and there are 100 walk-zone applicants and 100 non-walk-

zone applicants. With the Walk-Open precedence order, 50 of the 100 walk-zone applicants will fill

the 50 walk-zone slots. The remaining competition for open slots is between 50 walk-zone applicants

and 100 non-walk-zone applicants. Since there are twice as many non-walk-zone applicants as walk-

zone applicants in this residual pool, the non-walk-zone students stand to get more of the open

slots. This processing bias partly explains why having walk-zone applicants first apply to walk-zone

slots ends up disadvantaging them.

Next we consider the Open-Walk precedence order in which all applicants fill open slots before

filling walk-zone slots. This represents the other end of precedence policy spectrum. Proposition 4

states that in our model, switching the order of precedence positions of walk-zone slots with those

of subsequent open slots weakly increases the total number of walk-zone assignments. For each

grade, Table 2 shows that this effect appears in the data. 54.8% of Grade K1 students are assigned

to their walk-zone schools under Open-Walk, relative to 46.6% with Walk-Open. The 8.2% range,
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all holding fixed the 50-50 split, represents 73% of the range attainable from going from 0% Walk

to 100% Walk. For Grade K2, the two extreme precedence policies cover 74% of the 9.3% range

between the priority policy extremes. For Grade 6, the two extreme precedence policies cover 67%

of the 5.4% range between the extremes. Thus, we see that decisions about precedence order have

impacts on the assignment of magnitude comparable to decisions about priorities.

The difference between Walk-Open and Open-Walk represents the range of walk zone assign-

ments that can arise from alternative precedence orders all within the 50-50 split. The comparison

of these two policies illustrates that precedence cannot be ignored for achieving distributional ob-

jectives.

We next turn to intermediate precedence policies still holding the 50-50 split fixed. We in-

vestigate several alternatives, each of which may represent a compromise that the Boston School

committee intended in their 1999 statement. Comparisons of these alternatives also provides intu-

itions about how the biases associated with different policies.

The first alternative we examine attempts to mitigate the bias caused processing all of the slots

of a particular type at once. The Rotating precedence order alternates between walk-zone and

open slots. Under Rotating, the fraction of students who are assigned to schools in their walk zones

increases by 2.5% relative to the Walk-Open precedence policy for Grade K1, but is still closer to

Walk-Open than Open-Walk. The reason that Rotating is closer to Walk-Open is that alternating

slots only partly undoes the processing bias, as we describe next.

3.3 The Impact of Lottery Numbers

The other feature that accounts for the effect of precedence policies are the lottery numbers of

applicants. Recall the earlier example where a school has 100 slots, and there are 100 walk-zone

applicants and 100 non-walk-zone applicants. Under the Walk-Open precedence order, the walk-

zone applicants who compete for open slots are out-numbered by non-walk-zone students. They

also come from a pool of applicants with adversely selected lottery numbers. Under Walk-Open, the

walk-zone slots are filled by the 50 walk-zone applicants with the highest lottery numbers among

walk-zone applicants. The competition for open slots is among the 50 walk-zone students with lowest

lottery numbers and the 100 non-walk-zone students. When walk-zone applicants are considered for

slots at the open slots, their adversely selected lottery numbers systematically place them behind

applicants without walk-zone priority, leaving them unlikely to obtain any of the open slots. This

random number bias—created by the precedence order—renders the outcomes under Walk-Open

precedence very similar to the assignment that arises when all slots are open. In our example with

100 slots, with no walk zone priority, on average, 50 slots would be assigned to walk-zone applicants

and 50 would be assigned to non-walk-zone applicants. Hence, in Boston’s implementation of the

50-50 split, there is no difference between a system without walk zone priority and the Walk-Open

precedence. Even though the official BPS policy (following the School Committee’s 1999 policy

declaration) states that there should be open competition for the open slots, walk-zone applicants

are systematically disadvantaged in the competition for those slots.
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Random number bias is also the reason why the Rotating precedence order is much closer

to Walk-Open than Open-Walk in Table 2. With Rotating precedence, the pool of walk-zone

applicants with favorable lottery numbers is depleted after the first few slots are allocated, so the

bias in lottery numbers among the pool of walk-zone applicants re-emerges after a few rounds of

rotation. While Rotating tackles the processing bias, if only one lottery number is used, then it

retains the random number bias.

As we describe in detail in the next section, BPS was hesitant to have a system with more

than one lottery number. Even with such a constraint, it may be possible to combat the random

number bias via the precedence order. The Compromise precedence order first fills half of the

walk-zone slots, then fills all the open slots, and then the fills the second half of the walk-zone

slots. It attempts to even out the treatment of walk-zone applicants through changes in the order

of slots. Initially, when the first few open slots are processed, the walk-zone applicant pool has

adversely selected lottery numbers, but this bias becomes less important by the time the last open

slots are processed. As a result, the fraction of applicants who attend a school for which they

have walk-zone priority is close the midpoint between Walk-Open and Open-Walk. The results of

this policy are shown in column (5) of Table 2. At Grade K1, Compromise assigns 50.7% to a

walk-zone school—exactly the mid-point between the Walk-Open (46.6%) and Open-Walk (54.8%)

assignments. Compromise is therefore a viable solution to achieve the school committee’s policy

aim of obtaining a balance between the pro-neighborhood and pro-choice factions.

When more than one lottery number can be used, there are additional possibilities. Table 3

reports on alternative policies that use two lottery numbers in ordering applicants, one for the

walk-zone slots and one for the open slots. We report on these simulations because they allow

for a quantitative comparison of the processing and random number biases in isolation. Column

(2) reports on the Walk-Open precedence order with two lottery numbers. This deals with the

random number bias, but retains the processing bias, as the pool of applicants from the walk zone

is still depleted by the time the open slots are filled. Walk-Open with two lottery numbers is still

close to the current BPS outcome. It assigns 48.1% of students to walk-zone schools at Grade K1

and is quite close to the 46.6% assigned when Walk-Open is used with only one lottery number.

Walk-Open with two lottery numbers is still closer to 0% Walk than 100% Walk; this suggests

that random number bias accounts for only part of the reason the 50-50 allocation is not midway

between the two extremes.

To deal with both the processing and random number bias, we report on a Rotating treatment

which uses two independent lottery numbers, one for walk-zone slots and the other for open slots.

For Grade K1, 51.7% of students are assigned to walk-zone schools under this treatment; this point

is near the 51.8% midpoint between 0% Walk and 100% Walk. Moreover, the difference between

columns (2) and (3) shows the magnitude of the processing bias. This difference is 3.6%, while the

difference due to random number bias (comparing column (2) in Table 2 and column (3) in Table 3)

is 1.5%. Thus, we see that both biases are substantial. The patterns are similar for Grades K2 and

6.

The remedy of using two lottery numbers, however, has an important drawback. It is well-
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known that using multiple lottery numbers across schools with deferred acceptance may generate

efficiency losses (Abdulkadiroğlu, Pathak, and Roth 2009). Even though the two lottery numbers

are within schools (and not across schools), the same efficiency consequence arises here. Indeed, if

we compare the Unassigned row in Table 2 to Table 3, there are slightly more unassigned students

when two lottery numbers are used. For Grade K1, 25.0% of students are unassigned when using

Rotating two lottery numbers, and this fraction is between 0.2-0.4% higher than any precedence

policy reported in Table 2. The same pattern holds for Grade K2 and Grade 6. Although these are

small numbers, they do suggest that using two lottery numbers could produce real efficiency losses.

If the efficiency cost of multiple lotteries is prohibitive or explaining a system with two lottery

numbers is too challenging, then the Open-Walk precedence order with a single lottery number is

a viable alternative. By removing the statistical bias in the processing for walk-zone applicants,

Open-Walk respects the school committee’s goal of keeping the competition for non-walk-zone seats

open to all applicants. One implication of the Open-Walk treatment, as shown in Table 2, is that

it leads to the highest fraction of students with a walk zone assignment, given the 50-50 split.

The Open-Walk policy makes it easy to understand what policy BPS has been implementing

from 2009-2012. In Table 4, we compare the BPS policy to the two alternatives we’ve proposed:

Open-Walk with one lottery number and Rotating with two lottery numbers. Table 4 reports how

the actual BPS implementation compares to the Open-Walk treatment with a smaller set of walk

zone seats.

From 2009–2012, BPS’s implementation corresponds to Open-Walk with a 5-10% walk-zone pri-

ority depending on the grade. This fact stands in sharp contrast to the advertised 50-50 compromise.

For Grade K1, the actual BPS implementation gives 47.2% of students walk-zone assignments; this

is just above the Open-Walk treatment with 5% walk share, but below the Open-Walk treatment

with 10% walk share. For Grade K2, the actual BPS implementation has 48.5% walk-zone assign-

ment compared to 48.4% with the Open-Walk treatment with a 10% walk share. For Grade 6,

the actual BPS implementation is bracketed by Open-Walk with 5% and 10% walk share. BPS’s

implementation also corresponds to Rotating with two lottery numbers where the fraction of walk

zone seats is just above 10%.

Finally, the last issue we examine empirically is whether priority or precedence changes are

mostly distributional as suggested by Proposition 5. Table 5 reports on how the overall distribution

of choices received varies with precedence order. This table shows that there is almost no difference

in the aggregate distribution of received choice rank across BPS, rotating with two lottery numbers,

and Open-Walk with one lottery number. Consistent with Proposition 5, changes in precedence

are a tool to achieve distributional objectives, having little overall impact on the total number of

students who obtain their top choices.

3.4 Relation to BPS’s Stated Policy Goals

Our simulations have established that both the processing and random number bias have substantial

impact on school choice systems’ ability to achieve distributional objectives. Here, we attempt to
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determine which policies implement the school committee’s objective. This is a difficult question

because the school committee’s policy statement may be subject to multiple interpretations, and

policy choices can be dictated in part by simplicity of implementation or explanation.

The deliberations leading up to the 50-50 policy indicate a goal of achieving some sort of

compromise between pro-choice and pro-neighborhood constituents. By contrast, as implemented,

BPS’s 50-50 split conferred little benefit to walk zone applicants. Our analysis illustrates how

such a surprising finding is possible, with the choice of Walk-Open precedence undermining BPS’s

priority policies.

Our empirical analysis highlights two leading alternatives that can achieve a compromise, be-

tween neighborhood assignment and full choice. With two independent lottery numbers, the Rotat-

ing treatment is near the midpoint between a system with 100% walk zone priority (which according

to BPS’s stated policy, “limits choice and access for students”) and a system with 0% walk-zone

priority (which according to BPS’s stated policy, would not “recognize the interests of families who

want to choose a walk zone school.”) Our simulations indicate that the efficiency costs of multiple

lotteries, in Boston, appear to be relatively small. Thus, Rotating precedence with two independent

lotteries could in principle be an effective policy option for BPS.

However, BPS officials expressed concerns that using two separate lottery numbers could make

the system difficult to explain to participants. With the constraint of having only one lottery

number, the Open-Walk precedence order removes the statistical bias in the processing for walk-

zone applicants, respecting the Boston school committee’s goal of keeping the competition for non-

walk seats open to all applicants. Using Open-Walk would lead to more students being assigned

to their walk zone schools. However, the Open-Walk policy makes it possible to calibrate, in a

transparent way, the fraction of seats reserved for walk-zone students, without adversely impacting

walk-zone applicants’ chances at the open seats.

4 The 2012-2013 Boston School Choice Debate

In Boston Mayor Thomas Menino’s 2012 State of the City Address, Menino (2012) articulated

support for increased neighborhood assignment in school choice:8

“Something stands in the way of taking our [public school] system to the next level: a

student assignment process that ships our kids to schools across our city. Pick any street.

A dozen children probably attend a dozen different schools. Parents might not know each

other; children might not play together. They can’t carpool, or study for the same tests.

[. . . ]

Boston will have a radically different school assignment process—one that puts priority on

children attending schools closer to their homes.”

8For more on this debate, see the materials available at http://bostonschoolchoice.org and press accounts by

Goldstein (2012) and Handy (2012).
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Menino’s remarks initiated a policy debate; a preliminary version of our results played a role in

the deliberations and subsequent re-design of Boston’s school choice program. Here, we recount the

details because they (1) show that the role of precedence was not appreciated until our work and

(2) provide a case study of some political economy issues in school choice. (Readers not interested

in how our analysis interacted with the public policy debate can skip the rest of this section.)

For elementary and middle school admissions, Boston was divided into three zones: North,

West, and East. To respond to Menino’s charge, a natural proposal was to try to increase walk-

zone assignment by increasing the proportion of walk-zone slots at each school. But no one knew

the impact of precedence at the time of Menino’s speech—Boston’s policymakers were unaware that

their system was unintentionally disadvantaging walk-zone students in the competition for open

slots.

In Fall 2012, BPS proposed five different plans which all restricted participant choice by reducing

the number of schools students could rank.9 The idea behind each of these plans was to reduce the

fraction of non-neighborhood applicants in competition for seats at each school. These plans and

other proposals from the community became the center of a year-long, city-wide discussion on school

choice. Critics expressed concerns that with smaller choice menus, families from disadvantaged

neighborhoods would be shut out of good schools if the neighborhood component of assignment

were given more weight. This point was summarized by a community activist (Seelye 2012):

“A plan that limits choice and that is strictly neighborhood-based gets us to a system that

is more segregated than [BPS] is now.”

Underlying the discussion was puzzlement as to how Menino’s concerns could be correct given

that walk-zone applicants were reserved 50% of each school’s seats, while also having a shot at

the open seats. A few proponents of neighborhood assignment were convinced that there had not

been enough neighborhood assignment in recent years, but they could not determine why. After

a preliminary version of our research became available, Pathak and Sönmez interacted with BPS’s

staff. Parts of our research were presented to the Mayor’s twenty-seven-member Executive Advisory

Committee (EAC), explaining that the BPS walk-zone priority was not having its intended impact

because of the chosen precedence order. The EAC meeting minutes summarized the discussion

(EAC 2013):

“A committee member stated that the walk-zone priority in its current application does not

have a significant impact on student assignment. The committee member noted that this

finding was consistent with anecdotal evidence that the committee had heard from parents.”

Following the presentation, BPS immediately recommended that the system switch to the Com-

promise precedence order for the Fall 2013 admissions cycle. The meeting minutes state:

9The initial plans suggested dividing the city into 6, 9, 11, or 23 zones, or doing away with school choice entirely

and reverting assignment based purely on neighborhood.
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“BPS’s recommendation is to utilize the [C]ompromise method in order to ensure that the

walk-zone priority is not causing an unintended consequence that is not in stated policy.”

Part of the reason for recommending the Compromise method is the anticipated difficulty of

describing a system employing two lottery numbers. The switch to the Compromise treatment, as

Table 2 shows, would lead to an increase in the number of students assigned to their walk-zone

schools. This change, together with the proposals to shrink zones or adopt a plan with smaller

choice menus, raised concerns that the equity of access would decrease.

Our discovery about the role of precedence proved so significant that it became part of the fight

between those favoring neighborhood assignment and those favoring increased choice. Proponents

of neighborhood assignment interpreted our findings as showing that (unintentionally) improper

implementation of the 50-50 school split caused hundreds of students to be shut out of their neigh-

borhood schools. They argued that a change in the precedence order would be the only policy

consistent with the School Committee’s 1999 policy goals. Switching to either Rotating with two

lottery numbers or Open-Walk would also coincide with the Mayor’s push towards moving children

closer to home.

School choice proponents seized on our findings for multiple reasons. Some groups, such as the

activist Metropolitan Area Planning Council, fought fiercely to keep the 50-50 seat split with the

current precedence order (MAPC 2013):

“The assignment priority given to walk-zone students has profound impacts on the outcomes

of any new plan. The possible changes that have been proposed or discussed include

increasing the set-aside, decreasing the set-aside, changing the processing order, or even

reducing the allowable distance for walk zone priority to less than a mile. Actions that

provide additional advantage to walk-zone students are likely to have a disproportionate

negative impact on Black and Hispanic students, who are more reliant on out-of-walk-zone

options for the quality schools in their basket.”

The symbolism of the 50-50 split, combined with BPS’s precedence order, resounded with sophis-

ticated choice proponents because it created the impression that they were giving something away

to neighborhood proponents even though they really were not.

Confirming the counterintuitive nature of our results, other parties expressed skepticism on

how walk-zone priority as implemented did not have large implications for student assignment. For

instance, the City Councillor in charge of education publicly testified (Connolly 2013):

“MIT tells us that so many children in the walk zones of high demand schools ‘flood the

pool’ of applicants, and that children in these walk zones get in in higher numbers, so walk

zone priority doesn’t really matter.”

“Maybe, that is true. But if removing the walk zone priority doesn’t change anything, why

change it all?”
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In response to this and similar questions, we argued that moving away from the BPS prior-

ity/precedence structure would improve transparency and thus make it easier for BPS to target

adequate implementation of its policy goals.

Choice proponents also interpreted our findings as an argument for removing walk-zone priority

entirely. Indeed, given that walk-zone priority plays a relatively small role (as currently imple-

mented by BPS relative to 0% Walk), simply eliminating it might increase transparency about how

the system works. Getting rid of walk zone priority altogether avoids the (false) impression that

applicants from the walk zone are receiving a boost under the mechanism. This argument eventu-

ally convinced Boston Superintendent Carol Johnson to eliminate walk zone priority all together.

On March 13, 2013, Superintendent Johnson stated (Johnson 2013):

“After viewing the final MIT and BC presentations on the way the walk zone priority actually

works, it seems to me that it would be unwise to add a second priority to the Home-Based

model by allowing the walk zone priority be carried over.”

. . .

“Leaving the walk zone priority to continue as it currently operates is not a good option.

We know from research that it does not make a significant difference the way it is applied

today: although people may have thought that it did, the walk zone priority does not in fact

actually help students attend schools closer to home. The External Advisory Committee

suggested taking this important issue up in two years, but I believe we are ready to take

this step now. We must ensure the Home-Based system works in an honest and transparent

way from the very beginning.”

In March 2013, the Boston school committee voted to totally eliminate walk-zone priority, so

as to avoid giving the false impression of advantaging walk-zone students. The district also voted

for a Home-Based system which defines the choice menu for applicants based on their address, and

substantially reduces the number of schools applicants can rank. This change affected applicants

for elementary and middle school starting Fall 2013.

5 Conclusion

Those articulating a pro-neighborhood position in the school choice debate often lament how choice

has “destroyed the concept of neighborhood schools” by scattering children across the city by

assigning them to schools far from home (Ravitch 2011). In Boston, Mayor Menino’s claim that

the current system does not put priority on children attending schools closer to their homes seemed

to be at odds with the fact that half of each school’s seats prioritized applicants from the walk-zone.

This paper explains this apparent puzzle by showing the important role played by the precedence

order.

In addition to our new comparative static results, the we have shown how the precedence order

effectively undermined the policy aim of the 50-50 slot split in Boston. Moreover, our empirical
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results show that in Boston, the precedence order (1) is an important lever for achieving distri-

butional objectives, and (2) has quantitative impacts almost as large as changes in neighborhood

priority. The role precedence played was so central in Boston that once its unintended consequences

were made transparent, policymakers decided to abandon walk-zone priority altogether.

Even though explicit discussions of precedence have not been part of prior school choice policy

debates (with the exception of the recent one at BPS), it is clear that they should accompany debates

about priorities. It also seems likely that precedence could play an important role outside of student

assignment, in other priority-based assignment problems where priorities depend on particular slots.

Finally, it is worth noting that our paper uses market design techniques and analysis to show how

to achieve given policy objectives. We have not considered normative questions like whether there

should be walk-zone priority at all, or how to compute the optimal walk-zone set-aside. These

important questions seem worth future investigation.
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Grade K1 Grade K2

# students 0% Walk 100% Walk # students 0% Walk 100% Walk # students 0% Walk 100% Walk
(1) (2) (3) (4) (5) (6) (7) (8) (9)

2009 1770 46 336 1715 28 343 2348 54 205
3% 19% 2% 20% 2% 9%

2010 1977 68 392 1902 62 269 2308 41 171
3% 20% 3% 14% 2% 7%

2011 2071 50 387 1821 90 293 2073 4 225
2% 19% 5% 16% 0% 11%

2012 2515 88 504 2301 101 403 2057 24 247
3% 20% 4% 18% 1% 12%

All 8333 252 1619 7739 281 1308 8786 123 848
3% 19% 4% 17% 1% 10%

Table 1. Difference between the Current Boston Mechanism and Alternative Walk Zone Splits
Grade 6

Difference relative to current BPS Difference relative to current BPS

Notes. Table reports fraction of applicants whose assignments differ between the mechanism currently employed in Boston and two alternative mechanisms:  one with a priority structure without 
walk‐zone priorities at any seats (0% Walk), and the other with a priority structure with walk‐zone priorities at all seats (100% Walk).

Difference relative to current BPS



(1) (2) (3) (4) (5) (6) (7) (8)

Walk Zone 3849 3879 3930 4080 4051 4227 4570 4787
46.2% 46.6% 47.2% 49.0% 48.6% 50.7% 54.8% 57.4%

Outside Walk Zone 2430 2399 2353 2187 2221 2044 1695 1468
29.2% 28.8% 28.2% 26.2% 26.7% 24.5% 20.3% 17.6%

Unassigned 2054 2055 2050 2066 2061 2062 2068 2078
24.6% 24.7% 24.6% 24.8% 24.7% 24.7% 24.8% 24.9%

Walk Zone 3651 3685 3753 3842 3853 3900 4214 4374
47.2% 47.6% 48.5% 49.6% 49.8% 50.4% 54.5% 56.5%

Outside Walk Zone 2799 2764 2694 2601 2600 2538 2214 2036
36.2% 35.7% 34.8% 33.6% 33.6% 32.8% 28.6% 26.3%

Unassigned 1289 1290 1292 1296 1286 1301 1311 1329
16.7% 16.7% 16.7% 16.7% 16.6% 16.8% 16.9% 17.2%

Walk Zone 3439 3476 3484 3542 3555 3657 3797 3907
39.1% 39.6% 39.7% 40.3% 40.5% 41.6% 43.2% 44.5%

Outside Walk Zone 4782 4750 4743 4686 4664 4561 4419 4309
54.4% 54.1% 54.0% 53.3% 53.1% 51.9% 50.3% 49.0%

Unassigned 565 560 559 558 567 568 570 570
6.4% 6.4% 6.4% 6.4% 6.5% 6.5% 6.5% 6.5%

I. Grade K1

II. Grade K2

III. Grade 06

Notes. Table reports fraction of applicants assigned to walk‐zone schools under several alternative assignment procedures.  0% Walk implements the student‐proposing deferred acceptance 
mechanism with no walk zone priority; 100% implements the student‐proposing deferred acceptance mechanism with all slots having walk‐zone priority.  Columns (2)‐(7) hold the 50/50 school 
seat split fixed.  Walk‐Open implements the precedence order in which all walk‐zone slots are ahead of open slots.  Actual BPS implements the current BPS system.  Rotating implements the 
precedence ordering alternating between walk‐zone and open slots.  Compromise implements the precedence order in which exactly half of the walk‐zone slots come before all open slots, which 
are in turn followed by the half of the walk‐zone slots.  Balanced implements Rotating, but uses two random numbers for each student, one for walk‐zone slots and the other for open slots.  Open‐
Walk implements the precedence order in which all open slots are ahead of walk‐zone slots.  

Table 2. Number of Students Assigned to School in Walk Zone (2009‐2012), Single Random Number
Priorities = 50% Walk
Changing Precedence

Priorities = 
0% Walk

Priorities = 
100% Walk

Compromise 
(W25‐O50‐W25)Rotating Open‐WalkWalk‐Open Actual BPS

Compromise    (O25‐
W50‐O25)



Priorities = 10% 

(W‐O‐O‐O‐O‐O‐O‐O‐O‐O) (W‐O‐O‐O) (W25‐O50‐W25) (O25‐W50‐O25) (O‐W‐O‐W‐...)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Walk Zone 3849 3939 4133 4008 4272 4308 4305 4551 4787
46.2% 47.3% 49.6% 48.1% 51.3% 51.7% 51.7% 54.6% 57.4%

Outside Walk Zone 2430 2339 2140 2245 1976 1945 1941 1721 1468
29.2% 28.1% 25.7% 26.9% 23.7% 23.3% 23.3% 20.7% 17.6%

Unassigned 2054 2055 2060 2080 2085 2080 2087 2061 2078
24.6% 24.7% 24.7% 25.0% 25.0% 25.0% 25.0% 24.7% 24.9%

Walk Zone 3651 3711 3872 3831 3982 4023 4037 4202 4374
47.2% 48.0% 50.0% 49.5% 51.5% 52.0% 52.2% 54.3% 56.5%

Outside Walk Zone 2799 2736 2562 2579 2427 2391 2383 2211 2036
36.2% 35.4% 33.1% 33.3% 31.4% 30.9% 30.8% 28.6% 26.3%

Unassigned 1289 1292 1305 1329 1330 1325 1319 1326 1329
16.7% 16.7% 16.9% 17.2% 17.2% 17.1% 17.0% 17.1% 17.2%

Walk Zone 3439 3481 3568 3572 3676 3648 3691 3808 3907
39.1% 39.6% 40.6% 40.7% 41.8% 41.5% 42.0% 43.3% 44.5%

Outside Walk Zone 4782 4726 4631 4608 4504 4535 4507 4397 4309
54.4% 53.8% 52.7% 52.4% 51.3% 51.6% 51.3% 50.0% 49.0%

Unassigned 565 579 587 606 606 603 588 581 570
6.4% 6.6% 6.7% 6.9% 6.9% 6.9% 6.7% 6.6% 6.5%

Table 3. Number of Students Assigned to School in Walk Zone (2009‐2012), Two Random Numbers
Priorities = 
0% Walk

Priorities = 50% Walk Priorities = 
100% WalkChanging Precedence

Rotating: Two 
Random

Rotating: Two 
Random

Compromise: 
Two Random

Compromise: Two 
Random

Priorities = 25% 
Walk

Rotating: Two 
Random

Walk‐Open: 
Two Random

Open‐Walk: 
Two Random

Notes. Table reports fraction of applicants assigned to walk‐zone schools under several alternative assignment procedures.  0% Walk implements the student‐proposing deferred acceptance mechanism with no walk zone 
priority; 100% implements the student‐proposing deferred acceptance mechanism with all slots having walk‐zone priority.  Columns (4)‐(8) hold the 50/50 school seat split fixed.  Walk‐Open implements the precedence order in 
which all walk‐zone slots are ahead of open slots, but uses two different random numbers for walk and open seats.  Rotating implements the precedence ordering alternating between walk‐zone and open slots.  Compromise 
implements the precedence order in which exactly half of the walk‐zone slots come before all open slots, which are in turn followed by the half of the walk‐zone slots.  Open‐Walk implements the precedence order in which all 
open slots are ahead of walk‐zone slots, but uses two different random numbers for walk and open seats.

I. Grade K1

II. Grade K2

III. Grade 06



Choice
Received BPS

 (O‐W‐O‐W‐...)

(1) (2) (3) (4)

1 44.2% 44.3% 44.0% 43.0%
2 13.2% 13.2% 13.1% 13.3%
3 8.4% 8.4% 8.3% 8.7%
4 4.6% 4.6% 4.3% 4.6%
5 2.3% 2.3% 2.5% 2.5%
6 1.0% 1.0% 1.1% 1.2%
7 0.7% 0.7% 0.7% 0.7%
8 0.4% 0.5% 0.5% 0.6%
9 0.3% 0.3% 0.3% 0.3%
10 0.1% 0.2% 0.2% 0.2%

24.6% 24.6% 25.0% 24.9%

1 49.1% 49.2% 48.8% 49.1%
2 16.1% 16.0% 15.8% 15.8%
3 10.2% 9.9% 10.0% 9.7%
4 4.1% 4.2% 4.3% 4.3%
5 2.2% 2.1% 2.2% 2.0%
6 0.7% 0.8% 0.7% 0.8%
7 0.5% 0.5% 0.5% 0.4%
8 0.3% 0.3% 0.3% 0.4%
9 0.1% 0.1% 0.2% 0.2%
10 0.1% 0.1% 0.1% 0.2%

16.7% 16.7% 17.0% 17.2%

1 65.8% 65.8% 65.0% 64.8%
2 17.7% 17.7% 17.5% 18.1%
3 7.1% 7.3% 7.6% 7.5%
4 1.9% 1.9% 2.3% 2.2%
5 0.8% 0.8% 0.7% 0.8%
6 0.1% 0.1% 0.1% 0.1%
7 0.0% 0.0% 0.0% 0.0%
8 0.1% 0.1% 0.0% 0.0%
9 0.0% 0.0% 0.0% 0.0%
10 0.0% 0.0% 0.0% 0.0%

6.4% 6.4% 6.7% 6.5%

Notes. Table reports the distribution of choice ranks arising under different priority and precedence policies.  
Unassigned or Adminstrative Assignment means student is not assigned to any of the listed choices; some students 
will be adminstratively assigned after Round 1.

Table 4. Choices Received by Students (2009‐2012)
Priorities = 
100% Walk

Priorities = 
0% Walk Changing Precedence

Priorities = 50% Walk

III. Grade 6

II. Grade K2

Unassigned or 
Admin. Assigned

Unassigned or 
Admin. Assigned

I. Grade K1

Unassigned or 
Admin. Assigned

Rotating: Two 
Random



at most 1 student at most 1 student

Ia∗ I\Ia∗

Ī

∀Ī ⊆ I,

Da∗(Ī) Ca∗(Ī)

Figure 1: Comparison of Ca∗(Ī) and Da∗(Ī), as described formally in the lemma.

A Appendix

A.1 Preliminaries for Proposition 1

For a school a∗ and a slot s∗ ∈ Sa∗ of school a∗, suppose that s∗ is an open slot under priority

structure π, and is a walk-zone slot under priority structure π̃. Suppose furthermore that πs = π̃s

for all slots s ∈ [Sa∗ \ {s∗}]. Let Ca∗ and Da∗ respectively be the choice functions for a∗ induced

by the priorities π and π̃, under (fixed) precedence order ⊲a
∗
.

Lemma 1. For any set of students Ī ⊆ I, as pictured in Figure 1:

1. All students in the walk-zone of a∗ that are chosen from Ī under choice function Ca∗ are

chosen under choice function Da∗ (i.e. [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(Da∗(Ī)) ∩ Ia∗ ]). Moreover,

|[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1.

2. All students not in the walk-zone of a∗ that are chosen from Ī under choice function Da∗ are

chosen under choice function Ca∗ (i.e. [(Da∗(Ī))∩(I \Ia∗)] ⊆ [(Ca∗(Ī))∩(I \Ia∗)]). Moreover,

|[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1.

Proof. We proceed by induction on the number qa∗ of slots at a∗. The base case qa∗ = 1 is

immediate, as then Sa∗ = {s∗} and Ca∗(Ī) 6= Da∗(Ī) if and only if a walk-zone student of a∗ is

assigned to s∗ under D, but a non-walk-zone student is assigned to s∗ under C, that is, if Da∗(Ī) ⊆
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Ia∗ while Ca∗(Ī) ⊆ I \ Ia∗ . It follows immediately from this observation that [(Ca∗(Ī)) ∩ Ia∗ ] ⊆

[(Da∗(Ī))∩ Ia∗ ], |[(D
a∗(Ī))∩ Ia∗ ]\ [(C

a∗(Ī))∩ Ia∗ ]| ≤ 1, [(Da∗(Ī))∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī))∩ (I \ Ia∗)],

and |[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1.

Now, given the result for the base case qa∗ = 1, we suppose that the result holds for all qa∗ < ℓ

for some ℓ ≥ 1; we show that this implies the result for qa∗ = ℓ. We suppose that qa∗ = ℓ, and let

s̄ ∈ Sa∗ be the slot which is minimal (i.e., processed/filled last) under the precedence order ⊲a
∗
. A

student eligible for one type of slot is also eligible for the other, and hence s̄ is either full in both

cases or empty in both cases. Moreover, the result follows directly from the inductive hypothesis

in the case if no student is assigned to s̄ (under either priority structure); hence, we assume that

|Ca∗(Ī)| = |Da∗(Ī)| = qa∗ = ℓ. (3)

If s̄ = s∗, then the result follows just as in the base case: It is clear from the algorithms defining

Ca∗ and Da∗ that in the computations of Ca∗(Ī) and Da∗(Ī), the same students are assigned to

slots s with higher precedence than s∗ = s̄ (i.e., slots s with s⊲a
∗
s∗ = s̄), as those slots’ priorities

and relative precedence ordering are fixed. Thus, as in the base case, Ca∗(Ī) 6= Da∗(Ī) if and only

if a walk-zone student of a∗ is assigned to s∗ under D, but a non-walk-zone student is assigned to

s∗ under C.

If s̄ 6= s∗, then s∗⊲a
∗
s̄. We let J ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄} in the

computation of Ca∗(Ī), and let K ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄} in the

computation of Da∗(Ī).

The first qa∗ − 1 = ℓ− 1 slots of a∗ can be treated as a school with slot-set Sa∗ \ {s̄} (under the

precedence order induced by ⊲a
∗
). Thus, the inductive hypothesis (in the case ℓ− 1) implies:

[J ∩ Ia∗ ] ⊆ [K ∩ Ia∗ ]; (4)

|[J ∩ Ia∗ ] \ [K ∩ Ia∗ ]| ≤ 1; (5)

[K ∩ (I \ Ia∗)] ⊆ [J ∩ (I \ Ia∗)]; (6)

|[K ∩ (I \ Ia∗)] \ [J ∩ (I \ Ia∗)]| ≤ 1. (7)

If we have equality in (4) and (6),10 then the set of students available to be assigned to s̄ in

the computation of Ca∗(Ī) is the same as in the computation of Da∗(Ī). Thus, as πs̄ = π̃s̄ by

assumption, we have Ca∗(Ī) = Da∗(Ī); hence, the desired result follows immediately.11

If instead the inclusions in (4) and (6) are strict, then by (5) and (7), respectively, we have a

unique student k ∈ [K∩Ia∗ ]\[J ∩Ia∗ ] and a unique student j ∈ [J∩(I \Ia∗)]\[K∩(I \Ia∗)]. Here, k

is in the walk-zone of a∗ and is assigned to a slot s with higher precedence than s̄ (i.e. a slot s with

s⊲a
∗
s̄) in the computation of Da∗(Ī), but is not assigned to such a slot in the computation of Ca∗(Ī).

Likewise, j is not in the walk-zone of a∗, is assigned to a slot s with s⊲a
∗
s̄ in the computation of

Ca∗(Ī), and is not assigned to such a slot in the computation of Da∗(Ī). By construction, k must

10As |J | = |K| by (3), equality holds in one of (4) and (6) if and only if it holds for both inclusions (4) and (6).
11Note that as Ca

∗

(Ī) = Da
∗

(Ī), we have |[(Ca
∗

(Ī)) ∩ Ia∗ ] \ [(Da
∗

(Ī)) ∩ Ia∗ ]| = 0 ≤ 1 and |[(Da
∗

(Ī)) ∩ (I \ Ia∗)] \

[(Ca
∗

(Ī)) ∩ (I \ Ia∗)]| = 0 ≤ 1.
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be the πo-maximal student in [Ī \J ]∩Ia∗ and j must be the πo-maximal student in [Ī \K]∩(I \Ia∗)

(indeed, j is πo-maximal in Ī \K).

Now:

• If s̄ is a walk-zone slot, then k is assigned to s̄ in the computation of Ca∗(Ī); hence, Ca∗(Ī) =

J ∪ {k}. Thus, as k ∈ [K ∩ Ia∗ ], we have [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(Da∗(Ī)) ∩ Ia∗ ] by (4), and

|[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1 by (5). In the computation of Da∗(Ī), meanwhile, if

a walk-zone student is not assigned to s̄, then j must be assigned to s̄, as j is πo-maximal

among students in [Ī \K]∩(I \Ia∗). It follows that [(D
a∗(Ī))∩(I \Ia∗)] ⊆ [(Ca∗(Ī))∩(I \Ia∗)]

(by (6)), and |[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1 (by (7)).

• If s̄ is an open slot, then j is assigned to s̄ in the computation of Da∗(Ī); hence, Da∗(Ī) =

K ∪ {j}. Thus, as j ∈ [J ∩ (I \ Ia∗)], we have [(Da∗(Ī))∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)] by

(6), and |[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1 by (7). Meanwhile, if a walk-zone

student is assigned to s̄ in the computation of Ca∗(Ī), then it must be k, as k is πo-maximal

among students in [Ī \ J ] ∩ Ia∗ . It follows that [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(Da∗(Ī)) ∩ Ia∗ ] (by (4)),

and |[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1 (by (5)).

These observations complete the induction.

A.2 Preliminaries for Proposition 2

For a school a∗, suppose that s∗w ∈ Sa∗ is a walk-zone slot that immediately precedes an open slot

s∗o ∈ Sa∗ under the precedence order ⊲a
∗
. That is, s∗w⊲

a∗s∗o, and there are no slots s /∈ {s∗w, s
∗
o} such

that s∗w⊲
a∗s⊲a

∗
s∗o. Suppose that precedence order ⊲̃ is obtained from ⊲ by swapping the positions of

s∗w and s∗o and leaving the positions of all other slots unchanged.12 Let Ca∗ and Da∗ respectively be

the choice functions for a∗ induced by the precedence orders ⊲ and ⊲̃, under (fixed) slot priorities

πs.

Lemma 2. For any set of students Ī ⊆ I, as pictured in Figure 1:

1. All students in the walk-zone of a∗ that are chosen from Ī under choice function Ca∗ are

chosen under choice function Da∗ (i.e. [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(Da∗(Ī)) ∩ Ia∗ ]). Moreover,

|[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1.

2. All students not in the walk-zone of a∗ that are from Ī chosen under choice function Da∗ are

chosen under choice function Ca∗ (i.e. [(Da∗(Ī))∩(I \Ia∗)] ⊆ [(Ca∗(Ī))∩(I \Ia∗)]). Moreover,

|[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1.

Proof. We proceed by induction on the number qa∗ of slots at a∗.

First, we prove the base case qa∗ = 2.13 We denote by is∗w and is∗o (resp. js∗w and js∗o) the

students respectively assigned to slots s∗w and s∗o in the computation of Ca∗(Ī) (resp. Da∗(Ī)).

12We prove Proposition 2 for the case of adjacent-slot swaps here; the full result follows upon observing that any

precedence-swap can be implemented as a sequence of adjacent-slot swaps.
13Note that the setup requires at least two distinct slots of a∗, so qa∗ = 2 a priori.

24



Now:

• If {is∗w , is∗o} ⊂ Ia∗ , then the ordering under πo must rank is∗w highest among all students i ∈ Ī,

and rank is∗o second-highest among all students i ∈ Ī, as otherwise some student i ∈ Ī with

i 6= is∗w would have higher rank than is∗o under πo, and would thus have higher claim than is∗o
for (open) slot s∗o under precedence order ⊲a

∗
. But then, is∗w is the πo-maximal student in Ī

and is∗o is the πo-maximal walk-zone student in Ī \ {is∗w}; hence, we must have js∗o = is∗w and

js∗w = is∗o , so that Da∗(Ī) = Ca∗(Ī). In this case, |[(Ca∗(Ī))∩(I \Ia∗)]\ [(D
a∗(Ī))∩(I \Ia∗)]| =

0 ≤ 1 and |[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| = 0 ≤ 1.

• If {is∗w , is∗o} ⊂ (I \ Ia∗), then Ī contains no students in the walk-zone of a∗ (i.e. Ī ∩ Ia∗ = ∅)

and is∗w and is∗o are then just the πo-maximal non-walk-zone students in Ī . In this case, we

find that js∗o = is∗w and js∗w = is∗o ; hence, D
a∗(Ī) = Ca∗(Ī). Once again, we have |[(Ca∗(Ī)) ∩

(I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| = 0 ≤ 1 and |[(Da∗(Ī)) ∩ Ia∗ ] \ [(C

a∗(Ī)) ∩ Ia∗ ]| = 0 ≤ 1.

• If is∗w ∈ Ia∗ and is∗o ∈ (I \ Ia∗), then is∗w is the πo-maximal walk-zone student of a∗ in Ī. If is∗w
is also πo-maximal among all students in Ī, then we have js∗o = is∗w . Moreover, in this case

either

1. js∗w ∈ Ia∗ , or

2. is∗w is the only walk-zone student of a∗ in Ī, so that js∗w = is∗o .

Alternatively, if is∗w is not πo-maximal among all students in Ī, then is∗o must be πo-maximal

among all students in Ia∗ , so that js∗o = is∗o and js∗w = is∗w .

We therefore find that

[(Ca∗(Ī)) ∩ Ia∗ ] = {is∗w} ⊆ [(Da∗(Ī)) ∩ Ia∗ ];

hence, |[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1. Additionally, we have

[(Da∗(Ī)) ∩ (I \ Ia∗)] ⊆ {is∗o} = [(Ca∗(Ī)) ∩ (I \ Ia∗)],

so that |[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1.

• We cannot have is∗w ∈ (I \ Ia∗) and is∗o ∈ Ia∗ , as s∗w is a walk-zone slot (and thus gives all

students in Ia∗ higher priority than students in I \ Ia∗) and s∗w⊲
a∗s∗o.

The preceding four cases are exhaustive and the desired result holds in each; thus, we have the base

case for our induction.

Now, given the result for the base case qa∗ = 2, we suppose that the result holds for all qa∗ < ℓ

for some ℓ ≥ 2; we show that this implies the result for qa∗ = ℓ. Thus, we suppose that qa∗ = ℓ. We

let s̄ ∈ Sa∗ be the slot which is minimal under the precedence order ⊲a
∗
. A student eligible for one

type of slot is also eligible for the other, and hence s̄ is either full in both cases or empty in both

25



cases. Moreover, the result follows directly from the inductive hypothesis in the case if no student

is assigned to s̄ (under either priority structure); hence, we assume that

|Ca∗(Ī)| = |Da∗(Ī)| = qa∗ = ℓ. (8)

If s̄ = s∗o, then the result follows just as in the base case, as it is clear from the algorithms

defining Ca∗ and Da∗ that the same students are assigned to slots s with higher precedence than

s∗w (i.e. slots s with s⊲a
∗
s∗w⊲

a∗s∗o = s̄) in the computations of Ca∗(Ī) and Da∗(Ī).

If s̄ 6= s∗o, then s∗w⊲
a∗s∗o⊲

a∗ s̄. We let J ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄}

in the computation of Ca∗(Ī), and let K ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄}

in the computation of Da∗(Ī). The first ℓ − 1 slots of a∗ can be treated as a school with slot-set

Sa∗ \ {s̄} (under the precedence order induced by ⊲a
∗
). Thus, the inductive hypothesis (in the case

qa∗ = ℓ− 1), implies:

[J ∩ Ia∗ ] ⊆ [K ∩ Ia∗ ]; (9)

|[J ∩ Ia∗ ] \ [K ∩ Ia∗ ]| ≤ 1; (10)

[K ∩ (I \ Ia∗)] ⊆ [J ∩ (I \ Ia∗)]; (11)

|[K ∩ (I \ Ia∗)] \ [J ∩ (I \ Ia∗)]| ≤ 1. (12)

If we have equality in (9) and (11),14 then the set of students available to be assigned to s̄ in

the computation of Ca∗(Ī) is the same as in the computation of Da∗(Ī). Thus, as πs̄ = π̃s̄ by

assumption, we have Ca∗(Ī) = Da∗(Ī); hence, the desired result follows immediately.15

If instead the inclusions in (9) and (11) are strict, then by (10) and (12), respectively, we have

a unique student k ∈ [K ∩ Ia∗ ] \ [J ∩ Ia∗ ] and a unique student j ∈ [J ∩ (I \ Ia∗)] \ [K ∩ (I \ Ia∗)].

Here, k is in the walk-zone of a∗ and is assigned to a slot s with higher precedence than s̄ (i.e. a slot

s with s⊲a
∗
s̄) in the computation of Da∗(Ī) but is not assigned to such a slot in the computation

of Ca∗(Ī). Likewise, j is not in the walk-zone of a∗, is assigned to a slot s with higher precedence

than s̄ (i.e. a slot s with s⊲a
∗
s̄) in the computation of Ca∗(Ī), and is not assigned to such a slot

in the computation of Da∗(Ī). By construction, k must be the πo-maximal student in [Ī \ J ] ∩ Ia∗

and j must be the πo-maximal student in [Ī \K] ∩ (I \ Ia∗) (indeed, j is πo-maximal in Ī \K).

Now:

• If s̄ is a walk-zone slot, then k is assigned to s̄ in the computation of Ca∗(Ī); hence, Ca∗(Ī) =

J ∪ {k}. Thus, as k ∈ [K ∩ Ia∗ ], we have [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(Da∗(Ī)) ∩ Ia∗ ] by (9), and

|[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1 by (10). In the computation of Da∗(Ī), meanwhile, if

a walk-zone student is not assigned to s̄, then j must be assigned to s̄, as j is πo-maximal

among students in [Ī \K]∩(I \Ia∗). It follows that [(D
a∗(Ī))∩(I \Ia∗)] ⊆ [(Ca∗(Ī))∩(I \Ia∗)]

(by (11)), and |[(Ca∗(Ī)) ∩ (I \ Ia∗)] \ [(D
a∗(Ī)) ∩ (I \ Ia∗)]| ≤ 1 (by (12)).

14As |J | = |K| by (8), equality holds in one of (9) or (11) if and only if it holds for both (9) and (11).
15Note that as Ca

∗

(Ī) = Da
∗

(Ī), we have |[J ∩ Ia∗ ] \ [K ∩ Ia∗ ]| = 0 ≤ 1 and |[K ∩ (I \ Ia∗)] \ [J ∩ (I \ Ia∗)]| = 0 ≤ 1.
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• If s̄ is an open slot, then j is assigned to s̄ in the computation of Da∗(Ī); hence, Da∗(Ī) =

K ∪ {j}. Thus, as j ∈ [J ∩ (I \ Ia∗)], we have [(Da∗(Ī))∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)] by

(11), and |[(Ca∗(Ī))∩ (I \ Ia∗)] \ [(D
a∗(Ī))∩ (I \ Ia∗)]| ≤ 1 by (12). Meanwhile, if a walk-zone

student is assigned to s̄ in the computation of Ca∗(Ī), then it must be k, as k is πo-maximal

among students in [Ī \ J ] ∩ Ia∗ . It follows that [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(Da∗(Ī)) ∩ Ia∗ ] (by (9)),

and |[(Da∗(Ī)) ∩ Ia∗ ] \ [(C
a∗(Ī)) ∩ Ia∗ ]| ≤ 1 (by (10)).

These observations complete the induction.

A.3 Proof of Propositions 1 and 2

In this section, we prove Propositions 1 and 2 using a completely parallel argument for the two

results. Our proof makes use two technical machinery components. The first, which is well-known

in the matching literature, is the cumulative offer process (Kelso and Crawford 1982, Hatfield and

Milgrom 2005, Hatfield and Kojima 2010), a stable matching algorithm which is outcome-equivalent

to DA but easier to analyze in our framework. The second, which to the best of our knowledge

is completely novel, is construction of a copy economy, a setting in which each student i who are

rejected by school a∗ are replaced by two “copies”—a top copy it who takes the role of i in applying

to schools i weakly prefers to a∗, and a bottom copy ib who takes the role of i in applying to schools

i likes less than a∗.

Because bottom copies ib can act independently of top copies it and the cumulative offer process

is independent of proposal order, constructing copies enables us to track how the market responds

to rejection of students i by a∗ before i (or rather, it) applies to a∗.

A.3.1 The Cumulative Offer Process

Definition. In the cumulative offer process under choice functions C̄, students propose to schools

in a sequence of steps ℓ = 1, 2, . . .:

Step 1. Some student i1 ∈ I proposes to his favorite school a1. Set Ā2
a1

= {i1}, and set

Ā2
a = ∅ for each a 6= a1; these are the sets of students available to schools at the

beginning of Step 2. Each school a ∈ A holds C̄a(Ā2
a) and rejects all other students

in Ā2
a.

Step ℓ. Some student iℓ ∈ I not currently held by any school proposes to his most-preferred

school that has not yet rejected him, aℓ. Set Āℓ+1
aℓ

= Āℓ
aℓ
∪{iℓ}, and set Āℓ+1

a = Āℓ
a

for each a 6= aℓ. Each school a ∈ A holds C̄a(Āℓ+1
a ) and rejects all other students

in Āℓ+1
a .

If at any Step ℓ + 1 no student is able to propose—that is, if all students not on hold

have proposed to all schools they find acceptable—then the process terminates. The

outcome of the cumulative offer process is the match µ̄ that assigns each school a ∈ A

the students it holds at the end of the last step before termination: µ̄a = C̄a(Āℓ+1
a ).
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I \ R̂a∗ R̂a∗

⋃

i∈R̂
a
∗
{it, ib}

IǏ

Figure 2: Relationship between the set Ǐ of students in the copy economy and the set I of students

in the original economy.

In our context, the cumulative offer process outcome is independent of the proposal order and

is equal to the outcome of the student-optimal stable mechanism (see Hatfield and Kojima (2010)

and Kominers and Sönmez (2012)).16

A.3.2 Copy Economies

We denote by µ̄ the outcome of cumulative offer process under choice functions C̄ (associated to

priorities π̄). For a fixed school a∗ ∈ A, we let Ra∗ ⊆ I be the set of students rejected by a∗ during

the cumulative offer process under choice functions C̄a.17 Formally, we have Ra∗ = {i ∈ I : a∗P iµ̄i}.

We fix some R̂a∗ ⊆ Ra∗ and construct a copy economy with set of schools A, set of slots S , and

precedence order profile ⊲. The set of students in the copy economy, denoted Ǐ , is obtained by

replacing each student i ∈ R̂a∗ with a top copy it and a bottom copy ib:

Ǐ = (I \ R̂a∗)
⋃(

∪
i∈R̂a∗

{it, ib}
)

.

The relationship between the set Ǐ of students in the copy economy and the set I of students in

the original economy is pictured in Figure 2. Note that we suppress the dependence of Ǐ on R̂a∗ ,

as the set R̂a∗ under consideration is clearly identified whenever we undertake a copy economy

construction. For a copy ic of agent i (where c ∈ {t, b}), we say that i is the agent underlying ic.

Copies’ preferences correspond to specific (post- and pre-)truncations of their underlying agents’

preferences, as pictured in Figure 3. The preference relation P it of the top copy of i is defined so

that

16This observation follows from the facts—proven respectively in Proposition 3 and Lemma D.1 of (Kominers and

Sönmez 2012)—that the choice functions in our setting satisfy both the substitutability condition of (Hatfield and

Milgrom 2005) and the irrelevance of rejected contracts condition of (Aygün and Sönmez 2013).
17Here, a∗ need not be as defined in Sections A.1 and A.2, although it will be in Section A.3.3.
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P i : a1 ≻ · · · ≻ aℓ ≻ a∗
︸ ︷︷ ︸

P it

≻ aℓ+1 ≻ · · ·
︸ ︷︷ ︸

P ib

Figure 3: Construction of copies’ preference relations: P it is the “top part” of P i that ranks all

the schools which i (weakly) prefers to a∗, while P ib is the “bottom part” of P i that ranks all the

schools which i likes (strictly) less than a∗. (Note that we must insert a0 at the end of P it .)

· · · πs i
︸︷︷︸

itπ̌sib

πs ī
︸︷︷︸

ītπ̌s īb

πs · · ·

Figure 4: Construction of priorities in the copy economy: π̌s is constructed so that each instance

of an agent i ∈ R̂a∗ in priority order πs is replaced with the “subrelation” itπ̌sib.

• aP ita′ ⇐⇒ aP ia′ for all a, a′ ∈ A \ {a0}, and

• a0P
ita ⇐⇒ a∗P ia for all a ∈ A.

That is, P it is the “top part” of P i that ranks all the schools which i (weakly) prefers to a∗.18 The

preference relation P ib of the bottom copy of i is defined similarly, with

• aRia∗ =⇒ a0P
iba for all a ∈ A.

• a∗P iaP ia′ =⇒ aP iba′ for all a, a′ ∈ A.

That is, P ib is the “bottom part” of P i that ranks all the schools which i likes (strictly) less than

a∗.19

The priorities π̌s in the copy economy (for each s ∈ S) are constructed by replacing agents in

R̂a∗ with their copies as follows:

• itπ̌sib for all i ∈ R̂a∗ ;

• iπ̄sī =⇒ iπ̌sī for all i, ī ∈ I \ R̂a∗ ;

• iπ̄sī =⇒ iπ̌sītπ̌sīb for all i ∈ I \ R̂a∗ and ī ∈ R̂a∗ ;

• īπ̄si =⇒ ītπ̌sībπ̌si for all i ∈ I \ R̂a∗ and ī ∈ R̂a∗ ; and

• iπ̄sī =⇒ itπ̌sibπ̌sītπ̌sīb for all i, ī ∈ R̂a∗ .

This construction is illustrated in Figure 4. We write Č for the choice functions induced by these

priorities.

18Note that P i
t

could be empty, in the case that a∗ is the first choice of student i.
19Note that P i

t

could be empty, in the case that a∗ is least-preferred acceptable school of i.
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We say that a set of students Ī ⊆ I is equivalent up to copies to a set of students ˇ̄I ⊆ Ǐ if Ī

and ˇ̄I share the same set of students in I \ R̂a∗ , and the set of students underlying the set of copy

students in ˇ̄I exactly equals Ī ∩ R̂a∗ . That is, Ī ⊆ I is equivalent to ˇ̄I ⊆ Ǐ up to copies if

• [Ī ∩ (I \ R̂a∗)] = [ ˇ̄I ∩ (I \ R̂a∗)] and

• [Ī ∩ R̂a∗ ] =
{

i ∈ R̂a∗ ⊆ I : ic ∈ ˇ̄I for some c ∈ {t, b}
}

.

In this case, we write Ī
cp
= ˇ̄I.

Because the priorities π̌s are constructed so that each instance of an agent i ∈ R̂a∗ in priority

order πs is replaced with the “subrelation” itπ̌sib, the following lemma is immediate.

Lemma 3. Suppose that Ī
cp
= ˇ̄I, and suppose moreover that for each i ∈ R̂a∗ , there is at most one

copy of i in ˇ̄I. Then, for each school a ∈ A, we have C̄a(Ī)
cp
= Ča( ˇ̄I).

We let µ̌ be the outcome of the cumulative offer process in the copy economy. We now show that

µ̌ in a certain sense corresponds to µ̄ under copy equivalence. Specifically, we show that under µ̌

(in the copy economy):

• students in i ∈ I \ R̂a∗ have the same assignments under µ̄;

• all the top copies of students in R̂a∗ are assigned to a0; and

• all the bottom copies of students i ∈ R̂a∗ receive the assignment received by i under µ̄.

Lemma 4. We have:

• µ̌i = µ̄i for any i ∈ (I \ R̂a∗);

• µ̌it = a0 for any i ∈ R̂a∗; and

• µ̌ib = µ̄i for any i ∈ R̂a∗ .

Consequently, for each a ∈ A, we have µ̄a
cp
= µ̌a.

Proof. We let Σ̄ =
〈
(i1 → a1), (i2 → a2), . . . , (iL → aL)

〉
be a (full) proposal sequence that can arise

in the cumulative offer process under choice functions C̄ (i.e. in the original economy).20 Now, for

each ℓ for which iℓ ∈ R̂a∗ , we let

ǐℓ =







iℓ
t

aℓRiℓa∗

iℓ
b

a∗P iℓaℓ;

that is, ǐℓ is the copy of iℓ who finds school aℓ acceptable. For each ℓ for which iℓ ∈ (I \ R̂a∗), we

let ǐℓ = iℓ.

20Since the cumulative offer process outcome is independent of the proposal order, we can analyze an arbitrary

proposal sequence for the original economy.

30



Claim. The proposal sequence

Σ̌ =
〈

(̌i1 → a1), (̌i2 → a2), . . . , (̌iℓ → aℓ), . . . , (̌iL → aL)
〉

⊕
〈

(it → a0) : i ∈ R̂a∗

〉

(13)

is a valid sequence of proposals for the cumulative offer process under choice functions Č (in the

copy economy).21

Proof. For each ℓ and a ∈ A, we let Āℓ
a denote the sets of available students arising in the cumulative

offer process (in the original economy) under proposal order Σ̄, and let Ǎℓ
a denote the sets of available

students arising in the cumulative offer process (in the copy economy) under proposal order Σ̌.22

We proceed by induction, showing that

1. (̌iℓ → aℓ) is a valid proposal in step ℓ of the cumulative offer process (in the copy economy),

and

2. for each ℓ ≤ L and a ∈ (A \ {a0}), we have

Āℓ+1
a

cp
= Ǎℓ+1

a . (14)

Both hypotheses are clearly true in the base case ℓ = 1, so we assume that the hold up to ℓ, and

show that this implies them in the case ℓ+ 1.

The proposal (i → a) occurs in the sequence Σ̄ at most once, as no student ever proposes to

the same school twice in the cumulative offer process. Thus, by our construction of Σ̌, we see that

there is no student i for whom two distinct copies propose to some (nonnull) school a ∈ [A \ {a0}].

It follows that for each i ∈ R̂a∗ , there is at most one copy of i in Ǎℓ+1
a . Thus, the conclusion of

Lemma 3 applies:

C̄a(Āℓ+1
a )

cp
= Ča(Ǎℓ+1

a ) (15)

for each school a ∈ (A \ {a0}).

Now, if iℓ+1 ∈ (I \ R̂a∗), then iℓ+1 is not held by any school a ∈ A at the end of step ℓ of the

cumulative offer process in the original economy, i.e. iℓ+1 /∈ (∪a∈(A\{a0})C̄
a(Āℓ+1

a )), and iℓ+1 has

not proposed to school aℓ+1 by the end of step ℓ of that process. We then see immediately from

(15) that (̌iℓ+1 → aℓ+1) = (iℓ+1 → aℓ+1) is a valid proposal at step ℓ + 1 of the cumulative offer

process in the copy economy. Moreover, it follows from (14) that

Āℓ+2
a = (Āℓ+1

a ∪ {iℓ+1})
cp
= (Ǎℓ+1

a ∪ {iℓ+1})
cp
= (Ǎℓ+1

a ∪ {̌iℓ+1}) = Ǎℓ+2
a

for each a ∈ (A \ {a0}), as desired.

If instead iℓ+1 ∈ R̂a∗ , then iℓ+1 is not held by any school a ∈ A at the end of step ℓ of the

cumulative offer process in the original economy, i.e. iℓ+1 /∈ (∪a∈(A\{a0})C̄
a(Āℓ+1

a )), and iℓ+1 has

21Here, ⊕ denotes the concatenation of sequences. Note that the ordering of the proposals in the appended

subsequence
〈

(it → a0) : i ∈ R̂a∗

〉

can be arbitrary.
22Formally, the sets Āℓ

a are given, and we construct the sets Ǎℓ
a inductively, as we show by induction that Σ̌ is a

valid cumulative offer process proposal order.
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not proposed to school aℓ+1 by the end of step ℓ of that process. From (15), then, we see that no

copy of iℓ+1 is held by any school a ∈ (A \{a0}) at the end of step ℓ of the cumulative offer process

in the copy economy. Noting that no top copy it proposes to a0 until after proposal (̌iL → aL), we

see that both the top and bottom copies of iℓ+1 are available to propose at the beginning of step

ℓ + 1 of the cumulative offer process in the copy economy; hence, ǐℓ+1 is available to propose at

step ℓ+1 irrespective of which copy of iℓ+1 he or she is. Combining the preceding observations, we

see that (̌iℓ+1 → aℓ+1) is a valid proposal at step ℓ+ 1 of the cumulative offer process in the copy

economy. As in the prior case, we then have from (14) that

Āℓ+2
a = (Āℓ+1

a ∪ {iℓ+1})
cp
= (Ǎℓ+1

a ∪ {iℓ+1}) = (Ǎℓ+1
a ∪ {̌iℓ+1}) = Ǎℓ+2

a .

The preceding observations show that
〈

(̌i1 → a1), (̌i2 → a2), . . . , (̌iℓ → aℓ), . . . , (̌iL → aL)
〉

(16)

is a valid sequence of proposals for the cumulative offer process in the copy economy. Now, we note

that following these proposals, all students in (I \ R̂a∗) ∪ {ib : i ∈ R̂a∗} are held by (possibly null)

schools, and all students in {it : i ∈ R̂a∗} are available to propose again.

The final proposal of each top copy īt ∈ {it : i ∈ R̂a∗} is (̄it → a∗), by construction of (16). As

only the top copies īt ∈ {it : i ∈ R̂a∗} are available to propose in step L + 1 and those students’

preference relations terminate after ranking a∗, the cumulative offer process in the copy economy

is completed by running the sequence of proposals
〈

(it → a0) : i ∈ R̂a∗

〉

(in any order).

Now, we observe that under proposal sequence Σ̌ as defined by (13):

O1. The last school each student i ∈ (I \ R̂a∗) proposes to is the school that i proposes to last in

the cumulative offer process in the original economy (under proposal sequence Σ̄).

O2. For each i ∈ R̂a∗ , the last school it proposes to is a0.

O3. For each i ∈ R̂a∗ , the last school ib proposes to is the school that i proposes to last in the

cumulative offer process in the original economy (under proposal sequence Σ̄).

Now, any valid cumulative offer process proposal sequence in the copy economy yields the

outcome µ̌. Thus, in particular, we see that µ̌ is the outcome of the cumulative offer process in

the copy economy under proposal sequence Σ̌. The desired result then follows from observations

O1–O3.

A.3.3 Main Argument

In the sequel, we assume the setup of either Section A.1 or Section A.2, let Ca = Da for all schools

a 6= a∗, and let µ and ν respectively denote the cumulative offer process outcomes under the choice

functions C and D. We make use of an Adjustment Lemma, which is Lemma 1 for the case of

Proposition 1 and Lemma 2 for the case of Proposition 2. We denote by na(µ̄) ≡ |µ̄a ∩ Ia| the

number of walk-zone students (of a) assigned to a in matching µ̄.

First, we note the following immediate corollary of the Adjustment Lemma.
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Lemma 5. For Ī ⊆ I, if |Ī | > qa∗, then |[Ī \ (Ca∗(Ī))] ∩ [Ī \ (Da∗(Ī))]| ≥ |Ī| − qa∗ − 1.23

Now, we let R̂a∗ ⊆ I be the set of students who are rejected from a∗ in both the cumulative

offer process under choice functions C and the cumulative offer process under choice functions D.

As the students in R̂a∗ are rejected in the cumulative offer process under both choice functions C

and D, we may consider the copy economy associated to the original economy by the construction

introduced in Section A.3.2, for both choice function profiles. We denote by Ǐ the set of students

in this economy, and denote by Č and Ď the copy economy choice functions associated to C and

D, respectively.

We denote by µ and ν the cumulative offer process outcomes under choice functions C and

D, respectively. Analogously, we denote by µ̌ and ν̌ the cumulative offer process outcomes under

choice functions Č and Ď. By Lemma 4, we have

• µ̌i = µi and ν̌i = νi for any i ∈ (I \ R̂a∗);

• µ̌it = a0 and ν̌it = a0 for any i ∈ R̂a∗ ; and

• µ̌i = µib and ν̌i = νib for any i ∈ R̂a∗ .

As every student in R̂a∗ is rejected from a∗ in the cumulative offer process under choice func-

tions C, we have

[µa∗ ∩ Ia∗ ] = [(µa∗ ∩ Ia∗) \ R̂a∗ ] = [µa∗ ∩ (Ia∗ \ R̂a∗)] = [µ̌a∗ ∩ (Ia∗ \ R̂a∗)] = [µ̌a∗ ∩ Ia∗ ], (17)

where the second-to-last equality follows from the fact that µ̌i = µi for each i ∈ (Ia∗ \ R̂a∗), and

the last equality follows because [µ̌a∗ ∩ R̂a∗ ] = ∅. It follows that

na∗(µ) = |µa∗ ∩ Ia∗ | = |µ̌a∗ ∩ Ia∗ |. (18)

Analogously, we find that

na∗(ν) = |ν̌a∗ ∩ Ia∗ |. (19)

Thus, to show our proposition it suffices to prove that weakly more walk-zone students of a∗ are

assigned to a∗ under ν̌ than under µ̌. To show this, we recall that cumulative offer processes

are always independent of proposal order, and consider particular orders for the cumulative offer

processes under choice functions Č and Ď.

Under each process, we first execute as many proposals (̌i → a) as possible with ǐ ∈ Ǐ and

aP ǐa∗. Since Č and Ď differ only with respect to Ča∗ and Ďa∗ , we can use the exact same order

of proposals in each cumulative offer processes, in the initial sequence of proposals. Once such

proposals are completed, each student in Ǐ either

• is on hold at some (possibly null) school a 6= a∗, or

23Formally, this is also true in the case that |Ī | < qa∗ +1, as then |[Ī \ (Ca
∗

(Ī))]∩ [Ī \ (Da
∗

(Ī))]| < qa∗ +1, so that

|Ī | − qa∗ − 1 < 0.
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• has proposed to all schools he prefers to a∗ and is available to propose to a∗;

we let J̌ be the set of students in the latter of these two categories. By construction, at this stage,

the sets of students on hold at schools a 6= a∗ are the same in both processes. Also, J̌ contains no

bottom copies of any agent i ∈ R̂a∗ , as bottom copies do not find a∗ acceptable.

We continue the cumulative offer processes by having the students in J̌ propose to a∗ in unin-

terrupted sequence. Following these proposals, the set of students available to a∗ is exactly J̌ .

If |J̌ | ≤ qa∗ , then all students in J̌ are held by a∗, and both processes terminate after all the

students in J̌ have proposed to a∗. In this case, we have µ̌a∗ = ν̌a∗ ; hence (18) and (19) together

show that na∗(µ) = na∗(ν).

If instead |J̌ | > qa∗ , then we examine the set

Ǩ ≡ [(J̌ \ Ča∗(J̌)) ∩ (J̌ \ Ďa∗(J̌))]

of students rejected under both Ča∗ and Ďa∗ when (exactly) the set of students J̌ is available. By

construction, Ǩ is copy-equivalent to a subset of R̂a∗ . Thus, we see that Ǩ must consist entirely of

top copies of students in R̂a∗ , as represented in the exterior box of Figure 5. All such copies rank

a0 directly below a∗. Hence, we may continue the cumulative offer processes by having all of these

students propose to a0; we execute all such proposals.

Recall that up to this point, we have executed the cumulative offer processes under choice

functions Č and Ď in complete, step-by-step parallel. The sets of students held by at each school

a 6= a∗ (including a0) are exactly the same; meanwhile, a∗ holds Ča∗(J̌) in the process under choice

functions Č and holds Ďa∗(J̌) in the process under choice functions Ď.

Using the fact that a∗ fills all its slots when possible and Lemma 5, we can bound the size of

Ǩ: we have

|J̌ | − qa∗ ≥ |Ǩ| ≥ |J̌ | − qa∗ − 1,

as pictured in the interior of Figure 5.

• If |J̌ | − qa∗ = |Ǩ|, then (again because a∗ fills all its slots when possible) we must have

Ča∗(J̌) = Ďa∗(J̌), as pictured in Figure 6. In this case, the cumulative offer process terminates

after the final proposals of students in Ǩ (which can be processed in the same order under

choice functions Č and Ď; we then have µ̌a∗ = ν̌a∗ , which again shows that na∗(µ) = na∗(ν).

• If instead |Ǩ| = |J̌ | − qa∗ − 1, then Ča∗(J̌) 6= Ďa∗(J̌). By the Adjustment Lemma, we see

that

|(Ďa∗(J̌)) ∩ Ia∗ ]| > |(Ča∗(J̌)) ∩ Ia∗ ]|. (20)

Moreover, the Adjustment Lemma shows that there is a unique student ǐ ∈ [[(Ča∗(J̌)) ∩ (I \

Ia∗)] \ [(Ď
a∗(J̌))∩ (I \ Ia∗)]] and a unique student ǰ ∈ [[(Ďa∗(J̌))∩ Ia∗ ]] \ [(Č

a∗(J̌))∩ Ia∗ ]], as

pictured in Figure 7.
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J̌

Ďa∗(J̌) Ča∗(J̌)

Ǩ ⊆
⋃

i∈R̂a∗{i
t}

At most |J̌ |−qa∗

At least |J̌ |−qa∗ − 1

at most one student
at most one student

Figure 5: The structure of the choices of a∗ from J̌ under choice functions Ďa∗ and Ča∗ , as implied

by the Adjustment Lemma.

J̌

Ďa∗(J̌)=Ča∗(J̌)

|Ǩ |=|J̌ |−qa∗

Ǩ ⊆
⋃

i∈R̂a∗{i
t}

Figure 6: Case 1: |Ǩ| = |J̌ | − qa∗ and Ča∗(J̌) = Ďa∗(J̌).
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J̌

Ďa∗(J̌) Ča∗(J̌)

|Ǩ |=|J̌ |−qa∗ − 1
ǐǰ

Ǩ ⊆
⋃

i∈R̂a∗{i
t}

Figure 7: Case 2: |Ǩ| = |J̌ | − qa∗ − 1 and Ča∗(J̌) 6= Ďa∗(J̌).

– First, we suppose that J̌ \ Ǩ contains no copies of students in R̂a∗ . Then, in particular,

neither ǐ nor ǰ is a copy of a student in R̂a∗ . In this case, we know that ǐ, ǰ ∈ (Ǐ \ R̂a∗) =

(I \ R̂a∗).

As ǐ is rejected by a∗ in the cumulative offer process under choice functions Ď, we know

that a∗P ǐν̌ǐ = νǐ; it follows that ǐ is rejected in the cumulative offer process under choice

functions D. But ǐ /∈ R̂a∗ , so we know that ǐ is not rejected in the cumulative offer

process under choice functions C. Thus, µǐR
ǐa∗. As µ̌ǐ = µǐ and ǐ proposes to a∗ in the

cumulative offer process under choice functions Č, we find that we must have µ̌ǐ = a∗,

that is, ǐ is not rejected by a∗ in the remainder of the cumulative offer process under

choice functions Č. By our choice of ǐ, however, we know that ǐ ∈ (I \ Ia∗) and that

ǐ has the lowest rank under πo among all non-walk-zone students in Ča∗(J̌). It follows

that the number of non-walk-zone students assigned to a∗ weakly increases throughout

the remainder of the cumulative offer process under choice functions Č, that is,

|µ̌a∗ ∩ (I \ Ia∗)| ≥ |(Ča∗(J̌)) ∩ (I \ Ia∗)|.

This implies that

|µ̌a∗ ∩ Ia∗ | ≤ |(Ča∗(J̌)) ∩ Ia∗ |. (21)

Analogously, we find that ν̌ǰ = a∗, which implies that

|ν̌a∗ ∩ Ia∗ | ≥ |(Ďa∗(J̌)) ∩ Ia∗ |. (22)
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Now, we find that

na∗(ν) = |ν̌a∗ ∩ Ia∗ | (23)

≥ |(Ďa∗(J̌)) ∩ Ia∗ | (24)

> |(Ča∗(J̌)) ∩ Ia∗ | (25)

≥ |µ̌a∗ ∩ Ia∗ | (26)

= na∗(µ), (27)

where (23) follows from (19), (24) follows from (22), (25) follows from (21), (26) follows

from (20), and (27) follows from (18).

– Finally, we consider the case in which J̌ \ Ǩ contains at least one copy of a student in

R̂a∗ . By construction, any such copy must be a top copy.

Claim. If some copy it /∈ {̌i, ǰ} is in J̌ \ Ǩ for some i ∈ R̂a∗ , then at least one of ǐ, ǰ

must be a copy, as well.

Proof. We suppose first that the agent i underlying it is in the walk-zone of a∗, i.e. i ∈ Ia∗ ,

but that ǰ is not a copy. Then, since it ∈ [(J̌ \Ǩ)\{̌i, ǰ}], we know that it ∈ (Ča∗(J̌)); in

particular, i has higher rank under πo than ǰ. As i ∈ R̂a∗ , we know that i is rejected in

the cumulative offer processes under both choice functions C and D. It follows that the

lower-πo-ranked student ǰ must also be rejected in the cumulative offer processes under

both choice functions C and D, as he proposes to a∗ in each of those processes; hence,

we must have ǰ ∈ R̂a∗ . This is impossible, since we assumed that ǰ is not a copy, and all

students in R̂a∗ are represented by copies in the copy economy. An analogous argument

shows that if the agent i underlying it is not in the walk-zone of a∗, then ǐ must be a

(top) copy.

Claim. There is at most one (top) copy in J̌ \ Ǩ.

Proof. We suppose there are at least two (top) copies in J̌ \ Ǩ. By the preceding claim,

either ǐ of ǰ is a (top) copy. We assume the former case (̌i is a copy); the argument in

the latter case is analogous. We let it be a (top) copy in J̌ \ Ǩ with it 6= ǐ.

As ǐ /∈ Ďa∗(J̌), we may continue the cumulative offer process under choice functions

Ď (after having all students in Ǩ propose to a0) by having ǐ apply to his next-most-

preferred school after a∗—since ǐ is a top copy, this school is a0. At this point, ǐ is held

by a0. At the end of this cumulative offer process step, a∗ must hold all the students

in (J̌ \ Ǩ) \ {̌i}, or else a∗ holds fewer than qa∗ students. But this means that the

process terminates, as all students are held by schools. We therefore have ν̌it = a∗. This

contradicts the fact that we must have ν̌it = a0 (by Lemma 4), as it is a top copy.

The preceding claims show that there is exactly one (top) copy in J̌ \Ǩ , and that it is either ǐ

or ǰ. We assume the former case (̌i is a copy); the argument in the latter case is analogous. We
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may continue the cumulative offer process under choice functions Ď (after having all students

in Ǩ propose to a0) by having ǐ propose to his next-most-preferred school after a∗—since ǐ is

a top copy, this school is a0, and the process terminates after the (̌i → a0) proposal. Then,

we have ν̌a∗ = Ďa∗(J̌), so

|ν̌a∗ ∩ (I \ Ia∗)| = |(Ďa∗(J̌)) ∩ (I \ Ia∗)| = |(Ča∗(J̌)) ∩ (I \ Ia∗)| − 1. (28)

Meanwhile, the student underlying ǐ has lower rank under πo than any non-walk-zone student

in J̌ \ Ǩ. It follows that ǐ will be the first student in (J̌ \ Ǩ) \ Ia∗ rejected from a∗ in the

remainder of the cumulative offer process under choice functions Č. After such a rejection

occurs, we may have ǐ propose to his next-most-preferred school after a∗—as above, since ǐ

is a top copy, this school is a0 and the process terminates after the (̌i → a0) proposal. Thus,

we see that

|µ̌a∗ ∩ (I \ Ia∗)| ≥ |[(Ča∗(J̌)) \ {̌i}] ∩ (I \ Ia∗)| = |(Ča∗(J̌)) ∩ (I \ Ia∗)| − 1. (29)

Combining (28) and (29), we see that

|ν̌a∗ ∩ (I \ Ia∗)| = |(Ča∗(J̌)) ∩ (I \ Ia∗)| − 1 ≤ |µ̌a∗ ∩ (I \ Ia∗)|;

it follows that

|ν̌a∗ ∩ Ia∗ | ≥ |µ̌a∗ ∩ Ia∗ |. (30)

Combining (30) with (18) and (19), we find that na∗(ν) ≥ na∗(µ).

B The Two-School Model

B.1 Preliminaries

Matchings µ and ν are obtained as in Appendix A.3: Either one of the open slots is replaced with a

walk-zone slot, or the precedence position of a walk-zone slot is switched with that of a subsequent

open slot to obtain D from C, and ν and µ are, respectively, the associated cumulative offer process

outcomes.

Lemma 6. We have |νa| = |µa| and |νb| = |µb|. That is, the number of slots filled at each school

is the same under µ as under ν.

Proof. If both of the schools a and b have an empty slot under either matching, stability implies

that all students get their first choices under each matching; hence ν = µ and the result holds

immediately. Likewise, if neither school has an empty slot under either matching, the result holds

immediately since then |νa| = |µa| = |Sa| and |νb| = |µb| = |Sb|. Hence the only non-trivial case is

when, under one of the matchings, one school is full but the other is not.

Without loss of generality, we suppose that under matching µ, school a has an empty slot

whereas school b has all its slots full. Then not only does each student who is assigned a slot at
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school b under matching µ prefer school b to school a, but also there are at least as many students

with a first choice of school b as the number of slots at school b. Thus by stability school b must

fill all its slots under matching ν as well; hence, |νb| = |µb| = |Sb|. By assumption,

• there are at least as many slots as students, and

• all students find both schools acceptable;

therefore, we see that

|νa| = |I| − |νb| = |I| − |µb| = |µa|.

This observation completes the proof.

Proof of Propositions 3 and 4

We prove Propositions 3 and 4 using a completely parallel argument for the two results. We make

use of an Adjustment Proposition, which is is Proposition 1 for the case of Proposition 3, and

Proposition 2 for the case of Proposition 4.

Proposition 6. There is weakly more neighborhood assignment under ν than under µ, that is,

na(ν) + nb(ν) ≥ na(µ) + nb(µ).

Proof. Without loss of generality, we assume the priority structure of school a has changed (i.e. that

a = a∗ in the setup of Appendix A.3).

If νa = µa, then we have

νb = I \ νa = I \ µa = µb,

as by assumption

• there are at least as many slots as students, and

• all students find both schools acceptable.

Thus, in this case the result is immediate.

If νa 6= µa,

|νa ∩ Ia| = na(ν) > na(µ) = |µa ∩ Ia|

by the Adjustment Proposition. Therefore Lemma 6 implies that

|νa ∩ (I \ Ia)| = |νa| − |νa ∩ Ia| < |µa| − |µa ∩ Ia| = |µa ∩ (I \ Ia)|,

which in turn implies that

|νa ∩ Ib| < |µa ∩ Ib|

as I \ Ia = Ib by assumption. Thus, we see that

nb(ν) = |νb ∩ Ib| = |Ib| − |νa ∩ Ib| > |Ib| − |µa ∩ Ib| = |µb ∩ Ib| = nb(µ)
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as all students (and in particular all students in Ib) are matched under both µ and ν. Hence in this

case

na(ν) + nb(ν) > na(µ) + nb(µ);

this completes the proof.

Proof of Proposition 5

Let r1a denote the number of students who rank school a as first choice, and let r1b denote the

number of students who rank school b as first choice.

We can obtain the outcome of the SOSM by either the student proposing deferred acceptance

algorithm or the cumulative offer process. We utilize the former in this proof.

By assumption, |Sa|+ |Sb| ≥ |I|. Thus, as each student has a first choice,

|Sa|+ |Sb| ≥ r1a + r1b .

Hence, either:

1. |Sa| ≥ r1a and |Sb| ≥ r1b , or

2. |Sa| > r1a and |Sb| < r1b , or

3. |Sa| < r1a and |Sb| > r1b .

In the first case, the student proposing deferred acceptance algorithm terminates in one step and

all students receive their first choices under both µ and ν. Thus, the result is immediate in this

case.

The analyses of the second and third cases are analogous, so it suffices to consider the case that

|Sa| > r1a and |Sb| < r1b .

Claim. For this case, under both µ and ν,

• the number of students receiving their first choices is equal to |Sb|+ r1a, and

• the number of students receiving their second choices is equal to r1b − |Sb|.

Proof. We consider the construction of either µ or ν through the student proposing deferred accep-

tance algorithm, and observe that school b receives r1b > |Sb| offers in Step 1, holding |Sb| of these

while rejecting r1b − |Sb|. School a, meanwhile, receives r1a < |Sa| offers and holds all of them. In

Step 2, all students rejected by school b apply to school a, bringing the total number of applicants

at school a to r1a + (r1b − |Sb|). As r1a + (r1b − |Sb|) ≤ |Sa| by assumption, no student is rejected by

school a, and the algorithm terminates in Step 2. Hence, under both µ and ν,

• |Sb| students are assigned to school b as their first choice,

• r1a students are assigned to school a as their first choice, and
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• r1b − |Sb| students are assigned to school a as their second choice.

These observations show the claim.

The preceding claim shows the result for the second case; since an analogous argument shows

the result for the third case, this completes the proof.
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C Examples

The first example shows that there is no general relationship between the set of walk-zone students

assigned to a school when an open slot is changed to a walk-zone slot. The second example shows

that some walk-zone students at a school can be worse off when an open slot is changed to a

walk-zone slot.

Example C1. There are three schools A = {k, l,m}. Each school has one available slot. There

are 4 students I = {i1, i2, i3, i4}. There are two walk-zone students at k and one walk-zone student

at l and m: Ik = {i1, i2}, Il = {i3} and Im = {i4}. The random tiebreaker πo orders the students

as:

πo : i1 ≻ i4 ≻ i2 ≻ i3.

The preference profile is:

P i1 P i2 P i3 P i4

l k m k

k m l a0

m l k l

a0 a0 a0 m

First consider the case where k and m’s slots are open slot and l’s slot is walk-zone. The

outcome of DA for this case is:

µ =

(

i1 i2 i3 i4

k m l a0

)

.

Next we replace the open slot at school k with a walk-zone slot.

The outcome of DA for the second case is:

µ′ =

(

i1 i2 i3 i4

l k m a0

)

.

Example C2. There are three schools A = {k, l,m}. Each school has one available slot. There

are 3 students I = {i1, i2, i3}. There are two walk-zone students at k and one walk-zone student at

l: Ik = {i1, i2} and Il = {i3}. The random tiebreaker πo orders the students as:

πo : i3 ≻ i2 ≻ i1.

The preference profile is:

P i1 P i2 P i3

k l k

m k l

l m m

a0 a0 a0
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First consider the case where all slots are open slots. The outcome of DA for this case is:

µ =

(

i1 i2 i3

m l k

)

.

Next we replace the open slot at school k with a walk-zone slot.

The outcome of DA for the second case is:

µ′ =

(

i1 i2 i3

m k l

)

.

Here, i2 is worse off.
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