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Abstract

This paper develops a tractable model to analyze information aggregation and

learning in housing markets. In the presence of informational frictions, house-

holds face a realistic problem in learning about the quality of a neighborhood and

housing prices serve as important signals. Our model highlights how the learn-

ing by households interacts with local housing supply and demand characteristics

and a¤ects housing price dynamics. These learning e¤ects are particularly strong

when supply elasticity is in an intermediate range, and can cause short-run price

momentum even when shocks to both housing supply and demand mean-revert

over time.
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People buy a house not just for shelter but also for the neighborhood to which the house

belongs. There are many characteristics that a¤ect the living conditions in a neighborhood,

such as public safety, quality of local schools, and availability of local amenities like restau-

rants and public parks. In wealthier neighborhoods, the greater demand for public safety,

high quality schools, and nice restaurants tends to attract a greater supply of these amenities,

which in turn makes housing in these neighborhoods more desirable. The economic litera-

ture has recognized the importance of neighborhood e¤ects in determining housing demand

(e.g., Ioannides and Zabel (2003)) and a host of other urban issues (e.g., Durlauf (2004); and

Glaeser, Sacerdote, and Scheinkman (2003)).

It is important to recognize that the quality of a neighborhood, which is ultimately driven

by the �nancial health of its residents and the strength of the local economy, is often not

directly observable to potential home buyers. Home buyers also face other unobservable

factors in housing markets, such as local housing supply conditions. In the presence of these

important informational frictions, local housing markets provide a useful platform for ag-

gregating information. This fundamental aspect of housing markets, however, has received

little attention in the academic literature. Furthermore, while the existing literature has

emphasized the importance of accounting for home buyers�expectations (and in particular

extrapolative expectations) in understanding dramatic housing boom and bust cycles (e.g.,

Case and Shiller (2003); Glaeser, Gyourko, and Saiz (2008); and Piazzesi and Schneider

(2009)), much of the analysis and discussions are made in the absence of a systematic frame-

work that anchors home buyers�expectations on their information aggregation and learning

process. In this paper, we aim to �ll this gap by developing a model to analyze information

aggregation and learning in housing markets and its implications for housing cycles.

Our paper integrates the standard framework of Grossman and Stiglitz (1980) and Hell-

wig (1980) for information aggregation in asset markets with a housing market in a local

neighborhood. This setting allows us to extend the insights of market microstructure analysis

to explore the real consequences of informational frictions in housing markets. In particu-

lar, our model allows us to analyze how agents form expectations in housing markets, how

these expectations interact with characteristics endemic to a neighborhood, and how these

expectations feed into housing prices.

We �rst present a static setting to highlight the basic information aggregation mechanism

with perfectly rational households, and then extend the model to a dynamic setting to char-
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acterize the implications of learning about the neighborhood for housing cycles. The model

presented herein features a continuum of households in each generation in a closed neighbor-

hood. Each household specializes in producing a consumption good, which can be broadly

interpreted as local services such as health care, restaurant services, or plumbing, and needs

to trade his good for goods produced by other households in the neighborhood for consump-

tion. The households have a Cobb-Douglas utility function over consumption of their own

good, goods produced by other households, and housing. In choosing their housing demand,

the households face uncertainty regarding the aggregate productivity of other households,

a key aspect of the quality of the neighborhood, which ultimately determines the demand

for each household�s good and its own housing demand. In more desirable neighborhoods,

households are more productive and there is a greater demand for each household�s good,

which in turn makes each household more wealthy and thus have a greater demand for hous-

ing consumption. In this way, the complementarity in the households�goods consumption

leads to a complementarity in their housing demand.

In our model, each household possesses a private signal regarding the aggregate pro-

ductivity of the households in the neighborhood. By aggregating each household�s housing

demand, the housing price aggregates their private signals. The presence of unobservable

housing supply shocks, however, prevents the housing price from perfectly revealing the qual-

ity of the neighborhood and acts as a source of informational noise in the housing price. In

this way, characteristics endemic to local supply and demand determine the informational

content of the housing price and a¤ect households�learning from the housing price.

Despite each household�s housing demand being non-linear, the Law of Large Numbers

allows us to aggregate their housing demand in closed-form and to derive a unique log-linear

equilibrium for the housing market. In this equilibrium, the housing price is a log-linear

function of the unobservable quality of the neighborhood and the housing supply shock, and

each household�s housing demand is a log-linear function of its private signal and the housing

price. In the equilibrium, a higher housing price does not simply represent a larger cost of

housing but also gives a positive signal about the neighborhood. Through this learning

channel, supply shocks have a larger negative impact, and demand shocks a smaller positive

impact, on the equilibrium housing price than they would in an otherwise identical economy

without informational frictions. This is because informational frictions prevent households

from fully separating supply shocks from demand shocks and instead attribute a high housing
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price partially to a strong aggregate household productivity and partially to a weak supply.

This inference in turn ampli�es the price impact of supply shocks and attenuates the impact

of demand shocks.

Our analysis particularly highlights that supply elasticity can play a subtle role in house-

holds�learning� the learning e¤ect is most pronounced in neighborhoods with an interme-

diate supply elasticity. In neighborhoods with very elastic supply, prices are uninformative

about the households� aggregate productivity, while in neighborhoods with very inelastic

supply, they are so revealing that households face little uncertainty about the aggregate

productivity. Netting out these two forces leads to the strongest reaction in housing de-

mand to prices because of learning in neighborhoods with an intermediate supply elasticity.

This non-monotonic e¤ect of supply elasticity on household learning is in sharp contrast

to the common wisdom that supply elasticity monotonically attenuates housing cycles. It

also provides a new insight for explaining a puzzling phenomenon summarized by Glaeser

(2013) and Gao (2013) that, during the recent U.S. housing cycle in the 2000s, areas with

relatively elastic supply like Phoenix and Las Vegas experienced dramatic boom and bust

cycles similar to inelastic areas like New York and Los Angeles.

To characterize the dynamic implications of the learning e¤ect for housing cycles, we also

extend the model into a dynamic setting with overlapping generations of households where

each generation is modeled in a manner that closely resembles the static setting. We are

particularly interested in examining whether the learning e¤ect can help explain the patterns

of short-run momentum and long-run reversals observed in housing prices (e.g., Case and

Shiller (1989); Glaesar and Gyourko (2006)). In our setting, the housing price in each period

is determined by the households�expectation of the current period aggregate productivity

and housing supply. As shocks to both of them tend to mean-revert over time, the mean-

reversion, on one hand, provides a natural explanation to the long-run reversals observed in

housing prices, and, on the other hand, makes it more challenging to explain the short-run

momentum. A commonly held perception is that the housing price momentum is related to

home buyers�extrapolative expectations.

Interestingly, in the presence of informational frictions and persistence in shocks to both

housing supply and demand, households in each generation use not only their private signals

and the current period housing price but also the housing price of the previous period to learn

about the current aggregate household productivity. Despite this more elaborate dynamic
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learning process than in the static model, we manage to maintain the tractable log-linear

equilibrium in the housing market. The households�learning from the previous period�s price

can lead to housing price momentum under certain conditions, even when shocks to both

supply and demand mean-revert over time and household learning is perfectly rational.

To dissect the mechanism, it is useful to discuss how the relative persistence of shocks to

aggregate productivity and housing supply a¤ects the households�learning from the previous

period�s price. If shocks to aggregate productivity are su¢ ciently more persistent than shocks

to supply, a higher price in the previous period signals a stronger aggregate productivity,

which is likely to persist into the current period, and thus cause the households to hold a

higher expectation of the current period aggregate productivity. When this learning e¤ect

is su¢ ciently strong� stronger than the opposing force from the inherent mean reversion of

the shocks� the housing price exhibits short-run momentum. On the other hand, if shocks

to housing supply are su¢ ciently more persistent than shocks to aggregate productivity,

a higher price in the previous period induces learning in the opposite direction. That is,

households perceive the supply in the prior period to be weak and believe the weak supply

is likely to persist into the current period, which, conditional on the current period housing

price, causes the households to have a lower expectation of the current period aggregate

productivity. This inference causes stronger housing price reversals than those caused by the

mean reversion of the shocks.

Besides the relative persistence of the shocks, the households�learning e¤ect also depends

on several other local characteristics. For example, as mentioned already, housing supply

elasticity has a non-monotonic e¤ect on the magnitude of the households�learning from the

housing prices and thus a non-monotonic e¤ect on the price momentum induced by household

learning. Furthermore, a higher degree of complementarity in households�housing demand

causes each household to put a greater weight on the publicly observed housing prices and

a smaller weight on its own private signal. The former tends to strengthen the short-run

price momentum induced by the learning e¤ect, while the latter makes housing prices less

informative and exacerbates the informational frictions faced by the households. Taken

together, our model provides a rich set of patterns in housing price dynamics, which crucially

depends on the interactions of household learning with local characteristics of housing supply

and demand. These patterns are potentially testable in the cross-section of local housing

markets.
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The mechanism for driving housing cycles in our model is di¤erent from the slow infor-

mation di¤usion model of Hong and Stein (1999), which generates momentum and reversals

in asset prices through a slow di¤usion of information among a population of investors. In

their model, investors ignore the information revealed by the prices of traded assets, while in

our model, learning from the current and past housing prices plays a central role in driving

housing price cycles. Neither does our model rely on extrapolative expectations, even though

extrapolative expectations, if incorporated into our learning framework, are likely to induce

even more pronounced and interesting learning e¤ects. As a result of the nature of rational

learning, our model also di¤ers from Burnside, Eichenbaum, and Rebelo (2013), which o¤ers

a model of housing market booms and busts based on the epidemic spreading of optimistic

or pessimistic beliefs among home buyers through their social interactions.

Our paper is related to the growing literature that studies the informational feedback

e¤ects from asset prices to real world activities. The early contribution includes Bray (1981)

and Subrahmanyam and Titman (2001). More recently, Morris and Shin (2002) points out

that such feedback e¤ects are particularly strong in the presence of strategic complementarity

in agents�actions. A series of recent work, e.g., Ozdenoren, and Yuan (2008), Angeletos,

Lorenzoni and Pavan (2010), Goldstein, Ozdenoren, and Yuan (2011, 2012), and Sockin and

Xiong (2013), analyze speci�c feedback e¤ects from stock prices to �rm capital investment

decisions, from exchange rates to policy choices of central banks, and from commodity prices

to commodity demand. In particular, the tractable log-linear equilibrium derived in our

model for housing markets resembles a similar log-linear equilibrium derived by Sockin and

Xiong (2013) for commodity markets.

Finally, by focusing on information aggregation and learning of symmetrically informed

households with dispersed private information, our study di¤ers in emphasis from those that

analyze the presence of information asymmetry between buyers and sellers of homes, such

as Garmaise and Moskowitz (2004) and Kurlat and Stroebel (2014).

The paper is organized as follows. Section 1 presents a static model to highlight the key

mechanism of information aggregation and learning from prices in housing markets. Section

2 extends the model to a dynamic setting with many periods to characterize the e¤ects of

household learning on housing cycles. Finally, we conclude in Section 3. The technical proofs

of propositions are provided in the Appendix.
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Figure 1: Structure of the Static Model

1 A Static Model

In this section we develop a static model with two dates t = 1; 2 to analyze the e¤ects of

informational frictions on the housing market equilibrium in a closed neighborhood. A key

feature of the static model is that the housing market is not only a place for households to

trade housing but also a platform to aggregate private information about the unobservable

quality of the neighborhood. This static model also serves as a basic module in the dynamic

model that we present in the next section to analyze housing cycles.

1.1 Model setting

Figure 1 illustrates the structure of the static model. There are two types of agents in the

economy: households looking to buy housing in a neighborhood and home builders. Suppose

that the neighborhood is new and all households need to purchase housing at the same

time.1 Each household cares about the quality of the neighborhood in which it lives, as it

has to trade produced goods and services, such as health care, restaurants, luxury stores and

schools, with other households in the same neighborhood. For simplicity, we assume that

the neighborhood is closed and that each household is specialized in producing one good and

can trade its good for other goods only with other households in the same neighborhood.

1For simplicity, we do not consider the endogenous decision of households to choose their neighborhood,
and instead take the pool of households in the neighborhood as given. See Van Nieuwerburgh and Weill
(2010) for a systematic treatment of moving decisions by households across neighborhoods.
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The quality of this closed neighborhood is thus re�ected by the aggregate productivity of the

households in the neighborhood. A strong aggregate productivity implies a higher output

for all households, which in turn leads to a stronger demand for each household�s good.

In addition to consuming the produced goods, each household also wishes to consume

housing. Through the trading of produced goods with each other, a strong aggregate pro-

ductivity increases the demand for each household�s good and its income, which in turn

motivates each household to demand more housing consumption. This gives rise to strategic

complementarity in each household�s housing demand.2 In the presence of realistic informa-

tional frictions in gauging the quality of the neighborhood, the housing market provides an

important platform for aggregating information. The resulting housing price, in turn, serves

as a useful signal about the quality of the neighborhood.

At t = 1; households purchase houses from home builders in a centralized market and

decide how much of their goods to produce for trading with other households at t = 2. Each

household will choose to purchase a bigger house in the �rst period if it expects to produce

more goods in the second.

1.1.1 Households

There is a continuum of households, indexed by i 2 [0; 1]. Household i has a Cobb-Douglas
utility function over housing Hi and a continuum of goods fCjgj2[0;1] ; given by

U
�
Hi; fCj (i)gj2[0;1]

�
=

�
Hi

1� �H

�1��H ( 1

�H

�
Ci (i)

1� �c

�1��c  R
[0;1]=i

Cj (i) dj

�c

!�c
)�H

; (1)

where Cj (i) is good j consumed by household i.3 The parameters �H 2 (0; 1) and �c 2 (0; 1)
measure the weights of di¤erent consumption components in the utility function. A higher �H
means a stronger complementarity between housing consumption and goods consumption,

while a higher �c means a stronger complementarity between consumption of the good pro-

duced by household i itself and consumption of the composite good
R
[0;1]=i

Cj (i) dj produced

by the other households in the neighborhood.

The production function of household i is eAili;where li is the household�s labor choice

and Ai is its productivity. Ai is composed of a component A common to all households in

2There are other types of social interactions between households living in a neighborhood, which are
explored, for instance, in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2010).

3Our modeling choice of non-separable preferences for housing and consumption is similar to the CES
speci�cation of Piazzesi, Schneider, and Tuzel (2007).
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the neighborhood and an idiosyncratic component "i:

Ai = A+ "i;

where A s N
�
�A; ��1A

�
and "i s N (0; ��1" ) are both normally distributed. The common

productivity A represents the quality of the neighborhood, as a higher A implies a more

productive neighborhood.

Due to realistic informational frictions, neither A nor Ai is observable to the households.

Instead, each household observes a noisy private signal about A at t = 1. Speci�cally,

household i observes

si = A+ �i

where �i s N (0; ��1s ) is signal noise independent across households.

We assume that each household experiences a disutility for labor l1+ i

1+ 
when producing

its good, and that it maximizes its utility subject to its budget constraint

max
fHi;fCigi2[0;1];lig

E

"
U
�
Hi; fCj (i)gj2[0;1]

�
� l1+ i

1 +  

����� Ii
#

(2)

such that : PHHi +

Z 1

0

PjCj (i) dj = Pie
Aili + wi;

where Pi is the price of the good it produces and wi is the income from building the house.

We assume for simplicity that the home builder for household i is part of the household, so

that wi = PHHi in equilibrium. The choice of goods consumption is made at t = 2; while

the choice of labor and housing is made at t = 1 subject to each household�s information set

Ii = fsi; PHg ; which includes its private signal si and the housing price PH :

1.1.2 Builders

Home builders face a convex labor cost

k

1 + k
e��H

1+k
k

S

in supplying housing, where HS is the quantity of housing supplied, k 2 (0; 1) is a constant
parameter, and � represents a supply shock. We assume that � is observed by builders but

not households, and that from the perspective of households � s N
�
��; ��1�

�
, i.e., a normal

distribution with �� as the mean and ��1� as the variance. In the housing market equilibrium,

the supply shock � acts as information noise for the households when they try to learn about

the common productivity A from the housing price PH .
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Builders at t = 1 maximize their pro�t subject to their noisy supply curve

�(HS) = max
HS

PHHS �
k

1 + k
e��H

1+k
k

S ; (3)

It is easy to determine the builders�optimal supply curve:

HS = P k
He

k�; (4)

where k measures the price elasticity of housing supply.

1.1.3 Equilibrium

Our model features a noisy rational expectations equilibrium, which requires clearing of the

goods and housing markets that are consistent with the optimal behavior of both households

and home builders:

� Household optimization:
n
Hi; fCigi2[0;1] ; li

o
solves each household�s maximization prob-

lem in (2).

� Builder optimization: HS solves the builders�maximization problem in (3).

� At t = 2; the market for each household�s good clears:Z 1

0

Ci (j) dj = eAili; 8 i 2 [0; 1] :

� At t = 1; the housing market clears:Z 1

�1
Hi (si; PH) d� (vi) = P k

He
k�;

where each household�s housing demand Hi (si; PH) depends on its private signal si

and the housing price PH : The demand from the households is integrated over the

idiosyncratic component of their private signals f�igi2[0;1] :

1.2 The equilibrium

1.2.1 Goods market equilibrium

We begin our analysis of the equilibrium with the goods markets at t = 2: Household i

has eAili units of good i for consumption and trading with the other households. It maxi-

mizes its utility function given in (2). The following proposition describes the goods market

equilibrium for each good.
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Proposition 1 Households i�s optimal goods consumption is

Ci (i) = (1� �c) e
Aili; Cj (i) = �ce

Aj lj:

The price of the good produced by household i is

Pi =

�
�H

1� �H
Hi

�1��H �
eAili

�(1��c)�H�1�Z
[0;1]=i

eAj ljdj

��c�H
. (5)

Proposition 1 shows that each household divides its consumption of goods between its

own good and those produced by other households with fractions 1� �c and �c; respectively.
When �c = 1=2; the household consumes its own good and the goods of its neighbors equally.

The price of each good is determined by its choice of housing and its goods output relative to

that of the rest of the neighborhood. One household�s good is more valuable when the rest

of the neighborhood produces more, and thus each household needs to take into account the

labor decisions of the other households in its neighborhood when making its own decision.

1.2.2 Housing market equilibrium

We now turn our attention to the housing market equilibrium at t = 1: We �rst solve

for the optimal labor and housing choices for a household given its utility function and

budget constraint in (2), as well as its optimal choices for consumption of goods at t = 2

characterized in Proposition 1.

Proposition 2 Households i�s optimal labor choice depends on its total housing expenditure

li =

�
�H

1� �H
PHHi

� 1
1+ 

;

and its demand for housing is

Hi =

�
�H

1� �H

��  
 +�c

(
e(�H�1� ) logPHE

�
eAi(1��c)�H

�Z
[0;1]=i

eAjH
1

1+ 

j dj

��c�H ���� Ii�(1+ )
) 1

( +�c)�H

.

(6)

Proposition 2 demonstrates that the labor chosen by a household toward producing its

good is determined by its housing expenditure PHHi; and that its housing demand is deter-

mined by not only its own productivity Ai but also the aggregate productivity of the rest

of the neighborhood. This latter component arises from the social complementarity in the

10



utility function of the household, and captures the key idea that the household cares about

the neighborhood as a result of its need to exchange goods with its neighbors.

By clearing the aggregate housing demand of the households with the supply from the

builders, we derive the housing market equilibrium. Despite the nonlinearity in each house-

hold�s demand and in the supply from builders, we obtain a tractable unique log-linear

equilibrium. The following proposition summarizes the housing price and each household�s

housing demand in this equilibrium.

Proposition 3 At t = 1; the housing market has a unique log-linear equilibrium: 1) The

housing price is a log-linear function of A and �:

logPH = pAA+ p�� + p0; (7)

with the coe¢ cients pA and p� given by

pA =
1 +  

 k + 1+ 
�H
� 1

� ( + �c) kb

 k + 1+ 
�H
� 1

��1s �A > 0; (8)

p� = �  k

 k + 1+ 
�H
� 1

� 1 +  + �ckb

 k + 1+ 
�H
� 1

b� �
�A + � s + b2� �

< 0; (9)

where b 2
h
0; 1+ 

k
�s

( +�c)�A+ �s

i
is the unique positive, real root of equation (36), and p0 is

given in equation (41).

2) The housing demand of household i is a log-linear function of its private signal si and

logPH :

logHi = hssi + hP logPH + h0; (10)

with the coe¢ cients hs and hP given by

hs = kb > 0; (11)

hP = �1� �H +  

 �H
+
b2� �
 pA

(1 +  + �ckb)

(�A + � s + b2� �)
� k; (12)

and h0 given by equation (30).

Proposition 3 establishes that the housing price PH is a log-linear function of the common

productivity of households A and the housing supply shock �; and that each household�s

housing demand is a log-linear function of its private signal si and the log housing price

logPH : Similar to Hellwig (1980), the housing price aggregates the households�dispersed
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private information to partially reveal A: The price does not depend on the idiosyncratic

noise in any individual household�s signal because of the Law of Large Numbers. This last

observation is key to the tractability of our model, and ensures that the housing demand

from the households retains a log-normal distribution after aggregation.

In the presence of informational frictions, the housing supply shock � serves the same

role as noise trading in standard models of asset market trading with dispersed information.

This feature highlights an important channel for supply shocks to a¤ect the expectations of

potential home buyers that is not well-appreciated in the housing literature. Since households

cannot perfectly disentangle changes in housing prices caused by supply shocks from those

brought about by shocks to demand, they partially confuse a housing price change caused

by a supply shock to be a signal about the quality of the neighborhood.

To facilitate our discussion of the impact of learning, it will be useful to introduce a

perfect-information benchmark in which all households perfectly observe the common pro-

ductivity of the neighborhood A: The following proposition characterizes this benchmark

equilibrium.

Proposition 4 Consider a benchmark setting, in which households perfectly observe A (i.e.,

si = A, 8i:) There is also a log-linear equilibrium, in which the housing price is

logPH =
1 +  

 k + 1+ 
�H
� 1

A�  k

 k + 1+ 
�H
� 1

� +
 

k + 1+ 
�H
� 1

log

�
1� �H
�H

�
+

1 +  

2
�
 k + 1+ 

�H
� 1
� ��H (1� �c)

2 + �c
�
��1" ;

and all households have the same housing demand

logH =
1 +  

 
A� 1� �H +  

 �H
logPH + log

�
1� �H
�H

�
+
1 +  

2 

�
�H (1� �c)

2 + �c
�
��1" :

Furthermore, the housing market equilibrium with information frictions characterized in

Proposition 3 converges to this benchmark equilibrium as � s %1:

In this perfect-information benchmark, the housing price is also a log-linear function of

the common productivity A and the supply shock �; and each household�s identical demand

is a log-linear function of its private signal (the perfectly observed A) and the housing price

logPH : Consistent with the standard intuition, a higher common productivity A increases

both the housing price and aggregate housing demand, while a larger supply shock � reduces
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the housing price but increases aggregate housing demand. It is also easy to see that in

this benchmark setting, as the supply elasticity k rises from zero to in�nity, the weight of A

(demand side) in the housing price decreases while the weight of � (supply side) increases.

1.3 Impact of learning

In the presence of informational frictions about the quality of the neighborhood A, each

household needs to use its private signal si and the publicly observed housing price logPH

to learn about A: As the housing price logPH is a linear combination of A and the housing

supply shock �; the supply shock interferes with this learning process. A larger supply shock

�; by depressing the housing price, will have an additional e¤ect of reducing the households�

expectations of A: This, in turn, reduces their housing demand and consequently further

depresses the housing price. Thus the learning e¤ect causes supply shocks to have a larger

negative e¤ect on the equilibrium housing price than they would in the perfect-information

benchmark. Similarly, this learning e¤ect also causes the quality of the neighborhood A

to have a smaller positive e¤ect than in the perfect-information benchmark because infor-

mational frictions cause households to partially discount the value of A. The following

proposition formally establishes this learning e¤ect on the housing price.

Proposition 5 In the presence of informational frictions, coe¢ cients pA > 0 and p� <

0 derived in Proposition 3 are both lower than their corresponding values in the perfect-

information benchmark. Furthermore, pA is monotonically increasing in the precision � s of

each household�s private signal and decreasing in the degree of complementarity in households�

goods consumption �c.

The precision of the households� private information � s determines the informational

frictions they face. Proposition 5 shows that an increase in � s mitigates the informational

frictions and brings coe¢ cient pA closer to its value in the perfect-information benchmark.

In fact, as � s goes to in�nity, the housing market equilibrium converges to the perfect-

information benchmark (Proposition 4).

Each household�s housing demand also reveals how the households learn from the hous-

ing price. In the presence of informational frictions about A, the housing price is not only

the cost of acquiring shelter but also a signal of A. The housing demand of each household

derived in (10) re�ects both of these two e¤ects. Speci�cally, we can decompose the price
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elasticity of each household�s housing demand hP in equation (12) into two components: The

�rst component �1��H+ 
 �H

is negative and represents the standard cost e¤ect (i.e., downward

sloping demand curve) in the perfect-information benchmark in Proposition 4, and the sec-

ond component b2��
 pA

(1+ +�ckb)

(�A+�s+b2��)
is positive and represents the information e¤ect. A higher

housing price raises the household�s expectation of A and induces it to consume more hous-

ing through two related but distinct learning channels. First, a higher A implies a higher

productivity for the household itself. Second, a higher A also implies that other households

are more productive, which in turn leads to greater demand for the household�s good. As

a re�ection of this complementarity e¤ect, the second component in the price elasticity of

housing demand increases with �c, the degree of complementarity in the household�s con-

sumption of its own good and goods produced by other households. Both channels cause the

household to expect a higher wealth at t = 2 and thus to demand more housing consump-

tion at t = 1. As a result, under certain su¢ cient conditions, the price elasticity of housing

demand may even become positive.

As a result of the presence of the complementarity channel, �c also a¤ects the impact

of learning on the housing price. As �c increases, each household puts a greater weight on

the housing price in its learning of A and a smaller weight on its own private signal. This

in turn makes the housing price less informative of A. In this way, a larger �c exacerbates

the informational frictions faced by the households. Indeed, Proposition 5 shows that the

loading of logPH on A is decreasing with �c.

Housing supply elasticity k also plays an important role in determining the informational

frictions faced by the households, in addition to its standard supply e¤ect. To illustrate this

learning e¤ect of supply elasticity, we consider two limiting economies as k goes to 0 and1,
which are characterized in the following proposition.

Proposition 6 As k !1 ; the price and demand for housing converge to

logPH = ��;

and

logHi = (1 +  )

�
 +

�c�A
�A + � "

��1
� "

�A + � "
si �

1

 

�
1 +  

�H
� 1
�
logPH + h0:

As k ! 0; the price and demand for housing converge to

logPH =
1 +  
1+ 
�H
� 1

A+

�
1 +  

�H
� 1
��1�

 log

�
1� �H
�H

�
+
1 +  

2

�
�c + (1� �c)

2 �H
�
��1"

�
;
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and logHi = 0: Furthermore, under the necessary and su¢ cient condition that

� s
 + �c

� 1

 

 
1

4

�
(1 +  ) �H
1 +  � �H

�2
� � � �A

!
; (13)

there exists an intermediate range for k such that hP , the price elasticity of the households�

housing demand, is positive.

As supply elasticity goes to in�nity, the housing price is completely driven by the supply

shock � and contains no information for households about A. As a result, they do not

learn from the price, and the price elasticity of their housing demand hP equals its value in

the perfect-information benchmark. As supply elasticity goes to zero, the housing price is

completely driven by A and fully reveals it. In this case, there is a signi�cant learning e¤ect,

which exactly o¤sets the cost e¤ect in the households�housing demand to make hP zero.

The magnitude of the learning e¤ect for an intermediate supply elasticity depends on

the information frictions faced by the households. Proposition 6 shows that when the infor-

mational frictions are su¢ ciently severe (i.e., � s lower than the critical level given in (13)),

hP can become positive for an intermediate range of supply elasticity. This means that the

learning e¤ect is non-monotonic with respect to k and becomes so strong in the intermediate

range of k that it dominates the cost e¤ect. In this case, a higher housing price induces

households to demand more, rather than less, housing. This non-monotonicity arises from

two o¤setting forces. On one hand, a higher k makes the housing price less informative of

the common productivity A; on the other, households face a greater uncertainty about A

and thus have a greater incentive to learn from the price.

This non-monotonic e¤ect of supply elasticity on the households� learning about the

neighborhood has been largely ignored by the literature. We will further explore this e¤ect

of supply elasticity in the dynamic setting.

The condition given in (13) also sheds some light on how the degree of complementarity

in households�goods consumption �c interacts with informational frictions. All else equal, a

higher �c is equivalent to a lower � s; so that a greater complementarity between households

is indistinguishable from having noisier private information. This is because a greater com-

plementarity causes households to pay less attention to their private signals. The quantity
�s

 +�c
acts as a su¢ cient statistic for � s and �c in a¤ecting housing price and demand in the

equilibrium, with the exceptions of the constants h0 and p0: A similar insight will also appear
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in our discussion of the dynamic model.4

2 A Dynamic Model

We now extend our model to multiple periods with overlapping generations of households to

characterize how learning a¤ects the dynamics of housing prices. In particular, we show that

in the presence of informational frictions, learning can lead to short-run price momentum

despite that shocks to both aggregate productivity and housing supply mean-revert over

time. We also highlight the important roles played by the persistence of the shocks and

supply elasticity in a¤ecting the households�learning, and in determining the price e¤ects

of this learning.

2.1 Model setting

We consider a setting with in�nitely many periods: t = 0; 1; 2; ::: In each period, a generation

of households arrives to the neighborhood. Households of each generation �rst make their

housing and labor decisions to produce their respective goods when they arrive, and then

trade their goods with each other in the same generation and consume in the next period.

To simplify the model, we avoid trading of either housing or goods across generations. Con-

sider households that arrive at � . They acquire housing from home builders of their own

generation at � and then trade goods only with households of their own generation at � +1.

This simpli�cation allows us to keep the same setting in our static model for each gener-

ation of households. The link between di¤erent generations goes through the persistence

in the households�s aggregate productivity and housing supply. Due to such persistence,

housing prices from the past periods contain useful information about the current period ag-

gregate productivity and housing supply. This setting thus allows us to focus on the housing

dynamics driven by the households�learning.5

4This insight is not immediately apparent from the equations in Proposition 3. From equation (36), �s
 +�c

is a su¢ cient statistic for � s and �c for b: Since p� = � 1
bpA; and

�s
 +�c

is a su¢ cient statistic for � s and �c
in pA; it is also for p�: Finally, substitution with equation (39) for hP yields

hP = �
1� �H +  

 �H
+
kb3� �
 pA

�
� s

 + �c

��1
:

5We implicitly assume that housing units last only for the use of one generation. As a result, speculators
cannot accumulate vacant housing units in anticipation of a future demand increase. While such trading is
present in reality, the cost is substantially higher than that in speculation of �nancial assets. In the absence
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Speci�cally, the generation-� households have the same utility function as speci�ed in

equation (1) for consumption of their own good, goods produced by others, and housing.

We denote their aggregate productivity by A� , which follows an AR(1) process:

A� = �AA��1 + ZA
� ;

where ZA
� s N

�
0; ��1A

�
is a random shock to the aggregate productivity in this period, and

�A 2 [0; 1] is a coe¢ cient that determines the persistence of the productivity. When �A = 1,
the aggregate productivity is perfectly persistent (i.e., it follows a random walk). When

�A < 1, the aggregate productivity mean-reverts over time. A� is unobservable, and each

household of this generation observes a private signal about A� :

si� = A� + �i� ;

where �i� s N (0; ��1s ) is independent and identically distributed signal noise.

Households in generation � buy housing from home builders of their own generation, who

have the supply curve derived in (4), HS = P k
H (�) e

k�� ; with k as the supply elasticity and an

unobservable variable �� that determines the housing supply. The supply follows an AR (1)

process:

�� = �����1 + Z�
�

where Z�
� s N

�
0; ��1�

�
is a random shock to the housing supply in this period. The supply

shock is independent of other shocks in the economy. The parameter �� 2 [0; 1] determines
the persistence of the housing supply over time.

To simplify the learning dynamics in this dynamic economy with the persistent aggregate

productivity and housing supply, we suppose that the aggregate productivity and housing

supply are always revealed to the public after two periods. That is, at time � , the values

of A��2 and ���2 become publicly observable to generation-� households. This assumption

avoids the in�nite regress problem highlighted by Townsend (1983) in dynamic models with

dispersed asymmetric information and in�nite horizons, and is commonly employed in the-

oretical modeling, for instance, in Singleton (1987). Thus, at � ; in learning about A� each

of su¢ cient demand from the current households, a housing speculator does not receive any rent in holding
a vacant home and at the same time has to pay �nancing cost and property taxes. In contrast, a stock
speculator receives dividends while holding a stock. As a result, we do not expect housing speculation to
smooth over housing prices across generations as one would expect for prices of �nancial assets. Instead,
housing prices are determined by the current period demand rather than anticipation of future demand.
Similar settings are commonly used in the housing literature (e.g., Glaeser, Gyourko, and Saiz, 2008; Piazzesi
and Schneider, 2009; Glaeser, Gottlieb, and Gyourko, 2010).
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household of generation � observes its private signal si� ; the current period housing price

PH (�), the previous period housing price PH (� � 1) ; and the history of the realized Au and
�u up until � � 2: fAu; �ug

��2
u=1. We summarize this information set as

6

Ii� =
�
fAu; �ug

��2
u=1 ; PH (� � 1) ; PH (�) ; si�

	
:

We denote Âi� = E [A� jIi� ] as the conditional expectation of household i regarding A� .
In the information set Ii� , only the signal si� is private to the individual household, while

the other information is public. We denote the set of public information by

Ic� =
�
fAu; �ug

��2
u=1 ; PH (� � 1) ; PH (�)

	
:

It is useful to note that, by the law of iterated expectations, the average of the households�

conditional expectations
n
Âi�

o
i
is equal to the conditional expectation of A� based on the

public information Ic� :
E
h
Âi� jIc�

i
= E [A� jIc� ] ;

which we denote by Âc� = E [A� jIc� ].

2.2 The equilibrium

To derive the housing market equilibrium, we �rst analyze each household�s learning of the

aggregate productivity based on a conjectured housing price function and then derive the

equilibrium housing price based on each household�s housing demand and housing market

clearing.

At � , the households observe A��2, but face uncertainty in A��1 and A� . The prior belief

of each household regarding A��1 is

A��1
��fAug��2u=1 s N

�
�AA��2; �

�1
A

�
:

Similarly, as

A� = �AA��1 + ZA
� = �2AA��2 + �AZ

A
��1 + ZA

� ;

its prior of A� is

A�
��fAug��2u=1 s N

�
�2AA��2;

�
1 + �2A

�
��1A
�
:

The housing prices at � � 1 and � provide useful information, in addition to the households�
private signals about A� .

6Note that fAu; �ug
��2
u=1 fully replicates the information contained in the past housing prices fPH (u)g

��2
u=1.
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To derive the equilibrium, we start by conjecturing the following log-linear form for the

housing price in each period t:

logPH (t) = pAAt + p��t + pAcÂ
c
t + p0: (14)

In this conjectured form, the log housing price aggregates the information revealed through

the households�housing demand to re�ect the aggregate productivity At (the fundamental

of the demand side), the housing supply �t, and the average expectation of all households Â
c
t

about the aggregate productivity.7 Their coe¢ cients are pA; p�; and pAc, respectively. There

is also a constant term p0. By letting these coe¢ cients be constant, we focus on a stationary

equilibrium.

To facilitate our analysis, we de�ne

q� �
logPH (�)� pAcÂ

c
� � p��

2
����2 � p0

pA

= A� +
p�
pA

�
Z�
� + ��Z

�
��1

�
;

as a summary statistic of the informational content of logPH (�) regarding A� with the

supply shocks Z�
� and Z

�
��1 as the informational noise. Similarly, we de�ne

q��1 � �A
logPH (� � 1)� pAcÂ

c
��1 � p������2 � p0

pA

= �A

�
A��1 +

p�
pA
Z�
��1

�
(15)

as a summary statistic of the informational content of logPH (� � 1).
The following proposition derives the average expectation of the households about A�

based on Ic� and each household�s conditional expectation based on Ii� .

Proposition 7 At time � ; the expectation of A� conditional on the set of public information
7Note that the conjectured price includes the households�average expectation of the aggregate produc-

tivity Âct but not their average expectation of the housing supply (i.e., b�c� = E [�� jIc� ]). This is because
under the conjectured price form, b�c� is replicable by logPH (t) and Âct : by taking the conditional expectation
of the two sides of (14) based on Ic� , we have logPH (t) = (pA + pAc) Â

c
t + p�b�c� + p0, which implies thatb�c� = 1

p�

h
logPH (t)� (pA + pAc) Âct � p0

i
:
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Ic� is given by

Âc� =
�

�̂ cA

�A
1 + �2A

0@2�A + ��A�� p2�p2A ��1� � ��1A

�
2�A � (1 + �2A) ��

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A �AA��2

+
�

�̂ cA

24p2A
p2�
� �q� +

2�A � (1 + �2A) ��
��1A +

�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1

�A
q��1

35 ; (16)

where

� =

0@2 + �� p2�p2A ��1� 2�A � (1 + �2A) ��
��1A +

�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A�1

;

and �̂ cA is the precision of the conditional expectation:

�̂ cA = �

0@p2A
p2�
� � +

2�A
1 + �2A

+
�A + ��

p2�
p2A
��1� �A

1 + �2A

2�A � (1 + �2A) ��
��1A +

�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A :

The expectation of A� conditional on household i�s information set Ii� is given by

Âi� = Âc� +
�̂ cA
�̂ iA

�
si� � Âc�

�
; (17)

where the precision of this conditional expectation is

�̂ iA = �̂ cA + �
2��1A + (1 + �2A)

p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� s:

The expectations derived in Proposition 7 follow directly from the standard Bayes rule.

In particular, in equation (17) each household�s private signal si� a¤ects its expectation

Âi� linearly based on the �surprise� in the signal relative to the average expectation of all

households Âc� :

According to the conjectured housing price in (14), the households�average expectation

Âc� is a key factor. Indeed, its dynamics derived in (16) is central to our later analysis of

housing price momentum. Note that the coe¢ cient of q��1 in (16) can be either positive,

zero, or negative, depending on the sign of 2�A� (1 + �2A) ��. That is, a higher housing price
in the previous period can cause the average expectation of the households about the current

period aggregate productivity to increase, stay �at, or decrease. To clarify the intuition, let

us consider three cases.
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First, suppose that �A = 1 and �� = 0, which imply that the shock to the aggregate

productivity (i.e., demand shock) is perfectly persistent, while the supply shock is perfectly

transitory. In this case, it follows directly from (16) that Âc� is increasing with q��1. Note

from (15) that

q��1 = �A

�
A��2 + ZA

��1 +
p�
pA
Z�
��1

�
(18)

is a noisy signal for the prior period productivity shock ZA
��1 with the prior period supply

shock Z�
��1 as informational noise. As Z

A
��1 persists into the current period while Z

�
��1

does not, a higher housing price in the prior period signals a larger productivity shock in the

previous period and thus a higher aggregate productivity in this period as well. Consequently,

the households�expectation of the current period productivity Âc� increases with q��1. More

generally, according to (16), this intuition holds true if 2�A
1+�2A

> ��.

Next, we consider the opposite case when �A = 0 and �� = 1, which imply that the

productivity shock is perfectly transitory, while the supply shock is perfectly persistent.

Then, it follows from (16) that Âc� is decreasing with q��1. In this case, (18) shows that q��1

is a noisy signal of the prior period supply shock Z�
��1 with the prior period productivity

shock ZA
��1 as the informational noise. As Z

�
��1 persists into the current period while Z

A
��1

does not, a higher housing price in the prior period signals a more negative supply shock.

As a result of the persistence of supply shocks, the current period supply is likely to be tight

as well, which in turn implies that the current period productivity is weaker, conditional on

the current period housing price. Thus, the households�expectation of the current period

productivity A� decreases with q��1. More generally, according to (16), this intuition holds

if 2�A
1+�2A

< ��.

Finally, consider a balanced case that �A = 1 and �� = 1: In this case, shocks to both

aggregate productivity and housing supply are perfectly persistent, and Âc� does not change

with q��1. This is because according to (18), q��1 is a noisy signal for both shocks ZA
��1 and

Z�
��1 in the prior period. As both shocks are perfectly perisistent, the information in q��1

about ZA
��1 exactly o¤sets the information about Z

�
��1 in the households�learning about the

current period demand A� .8

8More precisely, note that in this case q��1�A��2 = ZA��1+
p�
pA
Z���1; and q� �A��2 = ZA��1+

p�
pA
Z���1+

ZA� +
p�
pA
Z�� : Thus, conditional on both q��1 and q� ; the best estimator for A� = A��2 + ZA��1 + ZA� is

A��2 +

p2A
p2
�

��

�A+
p2
A
p2
�

��

(q� �A��2) ; which is independent of q��1.
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Taken together, the relative persistence of the shocks to aggregate productivity and

housing supply plays a critical role in determining the direction of the households�reaction to

the previous period�s housing price. If the productivity shocks are su¢ ciently more persistent

than the supply shocks, the households�average expectation of the current period aggregate

productivity rises with the previous period�s housing price. On the other hand, if supply

shocks are su¢ ciently more persistent than productivity shocks, the households� average

expectation falls with the previous period�s housing price. If the persistence of productivity

shocks balances that of supply shocks, the households�average expectation does not change

with the previous period�s housing price. This intuition is useful in understanding housing

price dynamics in equilibrium.

With the households�learning processes derived, we are now ready to analyze the housing

market equilibrium. It is important to note that the setting for each generation of house-

holds resembles the static model analyzed in the previous section, except that their learning

processes are more elaborate and now depend on the previous period�s housing price. As a

result, the housing and labor choices of each household follow directly from Proposition 2.

By substituting each household�s expectation from Proposition 7 into its housing demand

and equating the aggregate housing demand to home builders� supply, we can derive the

housing market equilibrium in each period as summarized by the following proposition.

Proposition 8 The housing market equilibrium at � is characterized by the following fea-

tures: 1) The housing demand by household i is a log-linear function of its conditional

expectations Âi� and Â
c
� ; and logPH (�):

logHi (�) =
1 +  

 
Âc� +

1 +  

 + �c�̂
c
A=�̂

i
A

�
Âi� � Âc�

�
� 1 +  � �H

 �H
logPH (�) + h0; (19)

where h0 is given by equation (49).

2) The housing price is a log-linear function of A� ; Âc� ; and �� :

logPH (�) =
1 +  

 k + 1+ 
�H
� 1

A� +
1 +  �  kx

 k + 1+ 
�H
� 1

�
Âc� � A�

�
�  k

 k + 1+ 
�H
� 1

�� + p0; (20)

where p0 given by equation (57) and x 2
h
0; 1+ 

 k

i
is a root of equation (60), which always

exists and is unique under a su¢ cient condition given in equation (61).

3) As � s % 1; the housing equilibrium converges to the perfect-information benchmark

characterized in Proposition 4.
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Proposition 8 shows that our dynamic model maintains a tractable log-linear equilib-

rium as in the static model. Note several interesting features of this dynamic equilibrium.

First, as each household�s private signal si� becomes in�nitely precise, the informational

frictions disappear and the housing market equilibrium in each period converges to the

perfect-information benchmark characterized for the static economy.

Second, in the presence of informational frictions, equation (19) shows that the housing

demand of individual households shares two common components, 1+ 
 
Âc� (determined by

the households�average expectation) and �1+ ��H
 �H

logPH (�) + h0 (the common downward

sloping demand curve). Individual demand di¤ers in the term 1+ 

 +�c�̂
c
A=�̂

i
A

�
Âi� � Âc�

�
; which

is determined by the deviation of each household�s expectation from the average expectation

as a result of each household�s private information. Then, it is straightforward to see that

the aggregate housing demand is determined by the households�average expectation.

Finally, equation (20) shows that the housing price di¤ers from that in the perfect-

information benchmark only by the term 1+ � kx
 k+ 1+ 

�H
�1

�
Âc� � A�

�
, which is determined by the

deviation of the households�average expectation from the actual value of A� . That is, the

learning error in the average expectation determines the housing price dynamics. As we

will show, in the presence of informational frictions, several factors such as supply elasticity,

persistence of supply and productivity shocks, and the degree of complementarity in the

households�goods consumption can a¤ect the housing price dynamics, beyond their stan-

dard e¤ects through the supply and demand of housing, by a¤ecting the dynamics of the

households�average expectation.

2.3 Housing cycles

The housing literature, e.g., Case and Shiller (1989) and Glaeser and Gyourko (2006), has

documented a rich pattern of short-run momentum and long-run reversals in housing prices.

More precisely, there are positive auto-correlations of housing price changes at one year

frequencies and mean-reversion over longer periods. The presence of mean-reversion in both

supply and demand shocks makes it easy to explain the long-run mean-reversion in housing

prices, but makes it even more challenging to understand the presence of short-run price

momentum. Indeed, Glaeser and Gyourko (2006) also �nd it di¢ cult to explain housing

price momentum in their calibration of a dynamic model of housing in a spatial equilibrium.

We now examine whether learning can help resolve this challenge. In particular, we focus
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on analyzing whether learning from past housing prices can lead to price momentum.

To facilitate our analysis, we de�ne

RH (t1; t2) = logPH (t2)� logPH (t1)

as the housing return from t1 to t2. We evaluate short-run price momentum by measur-

ing the auto-correlation between housing returns RH (� � 1; �) and RH (� ; � + 1) over two

consecutive periods:


1 =
Cov [RH (� � 1; �) ; RH (� ; � + 1) j Iex,� ]

V ar [RH (� � 1; �) jIex,� ]1=2 V ar [RH (� ; � + 1) jIex,� ]1=2
:

This auto-correlation is computed based on the ex ante information set Iex,� =
�
fAt; �tgt���2

	
;

which includes the revealed aggregate productivity and housing supply up to � � 2 and does
not include any household�s private signal or the housing prices at � � 1 and � . To ex-
amine long-run price reversals, we measure the auto-correlation between housing returns

RH (� � 1; �) and RH (� + 1; � + 3):


3 =
Cov [RH (� � 1; �) ; RH (� + 1; � + 3) j Iex,� ]

V ar [RH (� � 1; �) jIex,� ]1=2 V ar [RH (� + 1; � + 3) jIex,� ]1=2
:

In 
3, we skip the period from � to � + 1, which is right after RH (� � 1; �), to isolate
the longer run auto-correlation from being contaminated by the potential short-run price

momentum in RH (� ; � + 1).9

To evaluate the role of household learning in driving price momentum and reversals, it

is useful to establish two sets of benchmark, one with both housing supply and aggregate

productivity as random walks and the other without any informational frictions.

Random-walk benchmark We �rst present a benchmark, in which both housing supply

and aggregate productivity are random walks (i.e., �A = 1 and �� = 1). By analyzing the

housing price derived in Proposition 8, we prove in the following proposition that the housing

price also follows a random walk even in the presence of informational frictions:

Proposition 9 If �A = 1 and �� = 1, Cov [RH (� � 1; �) ; RH (� ; � + n) j Iex,� ] = 0 for any
n > 0 even if � s <1.

9The choice of the length of the second period from � +1 to � +3 is innocuous. We have also explored a
longer period from � + 1 to � + n with n > 3 and obtained qualitatively similar results as letting n = 3.
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According to (20), the log housing price logPH is a linear combination of A� , �� , and

Âc� . If A� is a random walk, then Âc� = E [A� jIc� ] ; as a conditional expectation of A� ; is
also a random walk and is uncorrelated with the past housing prices (which are in the set of

conditioning information). It then follows that logPH is a random walk too.

This random-walk benchmark shows that housing price momentum cannot arise when

shocks to both housing supply and aggregate productivity are perfectly persistent. Can

price momentum arise when these shocks are transitory? This seems less likely as the mean-

reversion of supply and productivity gives a natural force for the housing price to reverse itself

over time. Next, we illustrate this force for price reversals in another benchmark without

any informational frictions.

Perfect-information benchmark Suppose that in each period � , both A� and �� are

perfectly observable to the households. Then, Proposition 4 gives the log housing price in

each period:

logPH (�) =
1 +  

 k + 1+ 
�H
� 1

A� �
 k

 k + 1+ 
�H
� 1

�� +
 

k + 1+ 
�H
� 1

log

�
1� �H
�H

�
+

1 +  

2
�
 k + 1+ 

�H
� 1
� ��H (1� �c)

2 + �c
�
��1" ;

which is a linear combination of the aggregate productivity and housing supply (i.e., A�

and �� ). As a consequence, the auto-correlations of logPH (�) are directly determined by

the auto-correlations of A� and �� . It is intuitive that if either of these variables displays

mean-reversion, there will be mean-reversion in the housing price across all horizons. That

is, both 
1 < 0 and 
3 < 0 if either �A < 1 or �� < 1. Consistent with the random-walk

benchmark, 
1 = 0 and 
3 = 0 if �A = 1 and �� = 1. In this perfect-information benchmark,

there is no price momentum in any horizon and the mean-reversion of either housing supply

or aggregate productivity leads to housing price reversals across all horizons.

We obtain this perfect-information benchmark as the precision of the households�private

signal � s % 1 (Proposition 8). Thus, by the continuity of the housing market equilibrium

with respect to � s, we expect the properties of the perfect-information benchmark to hold

when � s is su¢ ciently large. In this region, the mean-reversion of both housing supply and

aggregate productivity gives a natural force for housing price reversals. This benchmark

property makes it even more curious whether and how informational frictions can lead to
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Figure 2: Short-run and long-run auto-correlations in housing price versus persistence of supply
shocks. This �gure is based on the following parameter values: �A = :9; k = 0:5; �c = 0:5;
 = �H = 0:5; �A = 10; and � � = 100:

price momentum when shocks to both housing supply and aggregate productivity mean-

revert over time.

To address this issue, we use a series of numerical examples to illustrate whether housing

price momentum can arise in equilibrium and how di¤erent model parameters contribute to

the price momentum, by plotting 
1 and 
3 against several key parameters. We are partic-

ularly interested in the roles played by � s (precision of the households�private information),

�A (the persistence of aggregate productivity), �� (the persistence of housing supply), k

(supply elasticity), and �c (degree of complementarity in households�goods consumption,

which determines complementarity in households�housing demand). In this illustration, we

use the following baseline values for the key parameters: � s = 1; �A = :9; �� = 0:75; k = 0:5;

and �c = 0:5; as well the following value for the other parameters:  = �H = 0:5; �A = 10;

and � � = 100:

Persistence of shocks In Figure 2, we plot 
1 and 
3 against �� (the persistence of

housing supply), which goes from zero to one, for two levels of � s = 1 and 1 (plotted in

solid and dashed lines, respectively). When � s = 1, we obtain the perfect-information
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benchmark. In this benchmark, both 
1 and 
3 are negative due to the mean-reversion

of supply and demand shocks. The short-run auto-correlation 
1 stays around �0:09 and
displays a minimal, increasing relationship with ��. The longer run auto-correlation 
3 stays

around �0:11 and is also insensitive to ��.
When � s = 1, the households face informational frictions in observing the current period

A� and �� . Interestingly, 
1 displays a substantial, decreasing relationship with �� and, in

particular, is positive when �� is below a critical level around 0:8. That is, there is short-run

price momentum. The mechanism for this short-run price momentum follows from our earlier

discussion about the reaction of the households� average expectation Âc� to the previous

period housing price q��1. When the shocks to aggregate productivity are su¢ ciently more

persistent than the shocks to housing supply, a higher housing price in the previous period

signals a strong aggregate productivity in the current period. As a result, the households

demand more housing and bid up the current housing price. This learning e¤ect thus gives

a force for short-run price momentum. When this momentum force is su¢ ciently strong

to o¤set the reversal force from the mean-reversion of supply and productivity shocks, we

observe price momentum. Figure 2 shows that this learning-based momentum mechanism

dominates the reversal force when there is su¢ cient informational frictions (i.e., � s not too

high) and the persistence of supply shocks �� is su¢ ciently lower than the persistence of

aggregate productivity shocks.10

Figure 2 also shows that when � s = 1, the longer run auto-correlation 
3 remains negative,

even though its value is raised to a higher level around �0:02. This increase also re�ects the
force for price momentum induced by households�learning at a longer horizon.

Taken together, Figure 2 not only shows that household learning can lead to short-run

housing price momentum, but also illustrates a critical role played by the relative persistence

of housing supply and aggregate productivity shocks in a¤ecting the households� learning

from the previous period�s housing price and thus generating price momentum. This learning

e¤ect of persistence of productivity and supply shocks is novel and, as far as we know, has

not received much attention in the literature.
10As a smaller �� also increases the mean-reversion of the supply shocks and thus strengthens the force for

price reversals, the short-run price momentum may appear only in an intermediate range of �� under certain
parameter sets di¤erent from the set used in Figure 2.
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Figure 3: Short-run and long-run auto-correlations in housing price versus supply elasticity. This
�gure is based on the following parameter values: �A = :9; �� = 0:75; �c = 0:5;  = �H = 0:5;
�A = 10; and � � = 100:

Supply elasticity In Figure 3, we plot 
1 and 
3 against k (supply elasticity), which goes

from zero to �ve, and again for two levels of � s = 1 and1. The dashed lines show that in the
perfect-information benchmark, both 
1 and 
3 are negative and display a modest, decreasing

relationship with k. Interestingly, in the presence of informational frictions (� s = 1), the

solid line shows that 
1 exhibits a pronounced humped shape with k. Speci�cally, as k

goes from 0 to around 0:5; 
1 initially increases from a negative value of around �0:09 to a
positive value of 0:02, which again illustrates the occurrence of short-run price momentum.

As k goes further up above 0:5; 
1 starts to decline and eventually becomes negative. As

discussed before, the presence of short-run price momentum re�ects the households�learning

from the previous period�s housing price. Thus, this humped shape in the plot of 
1 shows

that the households�learning from the previous period�s price is particularly strong when

supply elasticity is in an intermediate range around 0:5.

This outcome echoes our earlier discussion of the learning e¤ect in the static model.

As shown by Proposition 6, when the informational frictions faced by the households are

su¢ ciently severe, there is a non-monotonic relationship between the learning e¤ect and

supply elasticity k: In particular, the learning e¤ect is particularly strong in an intermediate
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range of k.

Figure 3 also shows that in the presence of informational frictions, while the longer run

auto-correlation 
3 stays negative, it also exhibits a humped shape with supply elasticity

k. This humped shape again re�ects household learning from the previous period�s housing

price, even though this learning e¤ect is not su¢ ciently strong to o¤set the force for price

reversals at this horizon.

Taken together, Figure 3 highlights an intriguing role played by local housing supply

elasticity on household learning. While supply elasticity is widely-regarded in the housing

literature as a critical variable for determining housing prices, the common wisdom is that

it monotonically attenuates housing cycles. In sharp contrast to this common wisdom,

our model shows that in the presence of informational frictions, supply elasticity can have

a non-monotonic e¤ect on the households� learning and thus on housing price dynamics.

Interestingly, in the aftermath of the recent U.S. housing cycle in the 2000s, there is some

evidence emerging to suggest that there might be a non-monotonic relationship between

housing cycles and supply elasticity. In particular, Glaeser (2013) and Gao (2013) show that

during this recent cycle, areas with relatively elastic supply like Las Vegas and Phoenix had

nevertheless experienced dramatic boom and bust cycles similar to those in inelastic areas

like New York and Los Angeles. Our model provides a new insight for understanding this

puzzling phenomenon by highlighting the non-monotonic role played by supply elasticity in

a¤ecting household learning.11

Complementarity in housing demand Figure 4 plots 
1 and 
3 against �c (the degree

of complementarity in the households�goods consumption), which goes from zero to one,

again for two levels of � s = 1 and 1. Note that �c also determines the complementarity
in the households�housing demand. When there is a greater complementarity in housing

demand, each household puts a greater weight on the housing prices in both current and

prior periods in its learning and a smaller weight on its own private signal, because the

publicly observed housing prices also serve to coordinate the households�housing demand.

Interestingly, Figure 4 shows that, in the presence of informational frictions (� s = 1), 
1 is

positive and increases monotonically with �c: This increasing relationship between 
1 and

�c re�ects the greater weight the households assign to the previous period�s price in their

learning.

11Nathanson and Zwick (2013) provide an explanation based on land speculation.
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Figure 4: Short-run and long-run auto-correlations in housing price versus degree of complemen-
tarity of households�goods consumption. This �gure is based on the following parameter values:
�A = :9; �� = 0:75; k = 0:5,  = �H = 0:5; �A = 10; and � � = 100:

At a deeper level, the greater tendency for households to follow the housing prices rather

than their private signals also makes the housing prices less informative and thus indirectly

increases the informational frictions faced by the households. In fact, one can see this e¤ect

directly from the equilibrium housing price derived in Proposition 8. In (20), the housing

price logPH (�) does not directly depend on either �c or � s. Instead, �c and � s a¤ect

the parameter x through equation (60), in which their roles are summarized by their joint

appearance in the form of �s
 +�c

: Through this form, a higher value of �c o¤sets the e¤ect of

a higher value of � s. That is, a greater complementarity in housing demand exacerbates the

e¤ect of informational frictions.

3 Conclusion

This paper develops a tractable model to analyze information aggregation and learning in

housing markets. In the presence of informational frictions regarding aggregate productiv-

ity and housing supply of a neighborhood, households face a realistic problem in learning

about these fundamental variables with housing prices serving as important signals. Our

model highlights how the households�learning interacts with characteristics endemic to local
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housing supply and demand to impact housing price dynamics. In particular, the learning

e¤ects are particularly strong when supply elasticity is in an intermediate range, and can

cause short-run price momentum even when shocks to both housing supply and demand

mean-revert over time.

Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The �rst order conditions of household i�s optimization problem in (2) respect to Ci (i) and

Cj (i) at an interior point are

Ci (i) :
�H (1� �c)

Ci (i)
U
�
Hi; fCk (i)gk2[0;1]

�
= �iPi; (21)

Cj (i) :
�H�c
Cj (i)

U
�
Hi; fCk (i)gk2[0;1]

�
= �iPj; (22)

where �i is the Lagrange multiplier for the budget constraint. Dividing equations (21) and

(22) leads to �c
1��c

Ci(i)
Cj(i)

=
Pj
Pi
, which is equivalent to PjCj (i) =

�c
1��c

PiCi (i) : By substituting

this equation back to the household�s budget constraint in (2), we obtain

Ci (i) = (1� �c) e
Aili:

The market clearing for the household�s good requires that
R 1
0
Ci (j) dj = eAili, which

implies that Cj (i) = �ce
Aili. The symmetric problem of household j implies that Cj (j) =

(1� �c) e
Aj lj, and the market clearing for its good implies Cj (i) = �ce

Aj lj.

The �rst order condition in equation (21) also gives the price of the good produced by

household i: Since the household�s budget constraint in (2) is entirely in nominal terms, the

price system is only identi�ed up to �i, the Lagrange multiplier. We therefore normalize �i
to 1: Given that Ci (i) = (1� �c) e

Aili and Cj (i) = �ce
Aj lj; it follows that

Pi = �H
1� �c
Ci (i)

U
�
Hi; fCj (i)gj2[0;1]

�
=

�
�H

1� �H
Hi

�1��H �
eAili

�(1��c)�H�1�Z
[0;1]=i

eAj ljdj

��c�H
:
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A.2 Proof of Proposition 2

At t = 0; the �rst order conditions for household i�s choices of Hi and li at an interior point

are

Hi :
1� �H
Hi

E
h
U
�
Hi; fCj (i)gj2[0;1]

���� Iii = �iPH ; (23)

li : l i = �iE
�
Pie

Ai
�� Ii� : (24)

Taking expectations of equations (21) and (22) from Proposition 1, and imposing �i = 1 to

equation (23), one arrives at

�H (1� �c)PHHi = (1� �H)E [PiCi (i)j Ii] = (1� �H) (1� �c)E
�
Pie

Aili
�� Ii� ;

and therefore

PHHi =
1� �H
�H

liE
�
eAiPi

�� Ii� :
From equation (24), it follows that

l i = E
�
eAiPi

�� Ii� ;
from which we see that

li =

�
�H

1� �H
PHHi

� 1
1+ 

: (25)

It follows then, from equations (5) and (25), that

�H
1� �H

PHHi =

�
�H

1� �H

�(1��H) 1+ 
1+ ��H

E

�
eAi(1��c)�HH

1��H
i

�
H
� 1
1+ 

i

Z
[0;1]=i

eAjH
1

1+ 

j dj

��c�H ���� Ii�
1+ 

1+ ��H
:

Note that integrating over the continuum of other households�housing decisions is equivalent

to taking an expectation with respect to another household�s housing decision. We then

obtain equation (6).

A.3 Proof of Proposition 3

We �rst conjecture that each household�s housing purchasing and the housing price take the

following log-linear forms:

logHi = hP logPH + hssi + h0; (26)

logPH = pAA+ p�� + p0; (27)

where the coe¢ cients h0; hP ; hs; p0; pA; and p� will be determined by equilibrium conditions.
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Given the conjectured functional form for Hi; we can expand equation (6). It follows

that

E

�
eAi(1��c)�H

�Z
[0;1]=i

eAjH
1

1+ 

j dj

��c�H ���� Ii�
= E

�
eAi(1��c)�H

�Z
[0;1]=i

eAj+
1

1+ 
hssje

1
1+ 

(h0+hP logPH)dj

��c�H ���� Ii�
= e

�c�H
1+ 

(h0+hP logPH)E

�
eAi(1��c)�H

�Z
[0;1]=i

eAj+
1

1+ 
hssjdj

��c�H ���� Ii�
= e

�c�H
1+ 

(h0+hP logPH)e
�c�H
2

�
��1" +( hs

1+ )
2
��1s

�
e
1
2
(1��c)2�2H�

�1
" E

h
eA�H(1+�c

hs
1+ )

��� Iii
where the last step uses the fact that A is independent of "j and the second step exploits

the Law of Large Number for the continuum when integrating over households, which still

holds if we subtract sets of measure 0 from the integral.

De�ne

q � logPH � p0 � p���

pA
= A+

p�
pA

�
� � ��

�
;

which is a su¢ cient statistic of information contained in PH : Then, conditional on observing

its own signal si and the housing price PH ; household i�s expectation of A is

E [A j si; logPH ] = E [A j si; q] =
1

�A + � s +
p2A
p2�
� �

 
�A �A+ � ssi +

p2A
p2�
� �q

!
;

and its conditional variance of A is

V ar [A j si; logPH ] =
 
�A + � s +

p2A
p2�
� �

!�1
:

Therefore,

logE

�
e
A�H

�
1+�c

hA
1+ 

����� Ii� = �H

�
1 + �c

hs
1 +  

� 
�A + � s +

p2A
p2�
� �

!�1 
�A �A+ � ssi +

p2A
p2�
� �q

!

+
1

2
�2H

�
1 + �c

hs
1 +  

�2 
�A + � s +

p2A
p2�
� �

!�1
:
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Then,

E

�
eAi(1��c)�H

�Z
[0;1]=i

eAjH
1

1+ 

j dj

��c�H ���� Ii�

= �H

�
1 + �c

hs
1 +  

� 
�A + � s +

p2A
p2�
� �

!�1 
�A �A+ � ssi +

pA
p2�
� �
�
logPH � p0 � p���

�!

+
�c�H
1 +  

hP logPH +
�c�H
1 +  

h0 +
1

2

 
�c�H

 
��1" +

�
hs
1 +  

�2
��1s

!
+ (1� �c)

2 �2H�
�1
"

!

+
1

2
�2H

�
1 + �c

hs
1 +  

�2 
�A + � s +

p2A
p2�
� �

!�1
:

Substituting this expression into equation (6) and matching coe¢ cients with the conjectured

log-linear form in (26), it follows that

hs =
1

 + �c
(1 +  + �chs)

 
�A + � s +

p2A
p2�
� �

!�1
� s; (28)

hP =
1

 

0@�1 +  � �H
�H

+ (1 +  + �chs)

 
�A + � s +

p2A
p2�
� �

!�1
pA
p2�
� �

1A ; (29)

h0 =
1 +  + �chs

 

 
�A + � s +

p2A
p2�
� �

!�1 
�A �A�

pA
p2�
� �
�
p0 + p���

�!

+ log

�
1� �H
�H

�
+
1

2

1 +  

 

 
�c

 
��1" +

�
hs
1 +  

�2
��1s

!
+ �H (1� �c)

2 ��1"

!

+
1

2

1 +  

 
�H

�
1 + �c

hs
1 +  

�2 
�A + � s +

p2A
p2�
� �

!�1
: (30)

By aggregating households�housing demand and the builders�supply and imposing market

clearing in the housing market, we have

h0 + hP (p0 + pAA+ p��) + hsA+
1

2
h2s�

�1
s = k (� + p0 + pAA+ p��) :

Matching coe¢ cients of the two sides of the equation leads to the following three conditions

h0 + hPp0 +
1

2
h2s�

�1
s = kp0; (31)

hPpA + hs = kpA; (32)

hPp� = k + kp�: (33)

It follows from equation (33) that

p� = �
k

k � hP
; (34)
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and further from equation (32) that

pA =
hs

k � hP
: (35)

Thus, by taking the ratio of equations (35) and (34), we arrive at

pA
p�
= �hA

k
:

Substituting pA
p�
= �hs

k
into equation (28), and de�ning b = �pA

p�
; we arrive at

kb3� � +

�
�A +

 

 + �c
� s

�
kb� 1 +  

 + �c
� s = 0: (36)

We see from equation (36) that b has at most one positive root since the above 3rd order

polynomial has only one sign change, by Descartes�Rule of Signs. By setting b ! �b; we
see that there is no sign change, and therefore b has no negative root. Furthermore, by the

Fundamental Theorem of Algebra, the roots of the polynomial (36) exist. Thus, it follows

that equation (36) has only one real, nonnegative root b � 0 and 2 complex roots.12

Furthermore, by dropping the cubic term from equation (36), one arrives at an upper

bound for b:

b � 1 +  

k

� s
( + �c) �A +  � s

:

Since hs
k
= �pA

p�
= b; we can recover hs = kb > 0 and p� = �1

b
pA < 0. From equation (29)

and b = �pA
p�
; it follows that

hP =
1

 

�
1� 1 +  

�H
+

b2� �
�A + � s + b2� �

(1 +  + �ckb)
1

pA

�
: (37)

From equation (33), one also has that hP = k
�
1 + p�1�

�
: Since p� � 0; it follows that hP < k

whenever k > 0:

From hs = kb and equations (35) and (37), we arrive at

pA =

�
 k +

1 +  

�H
� 1
��1�

 kb+
b2� �

�A + � s + b2� �
(1 +  + �ckb)

�
> 0: (38)

One arrives at p� from recognizing that p� = �1
b
pA: Manipulating equation (36), we �rst we

recognize that

1 +  + �ckb =
�
�A + � s + b2� �

�
( + �c) kb�

�1
s : (39)

12The uniqueness of the positive, real root also follows from the fact that the LHS of the polynomial
equation is monotonically increasing in b:

35



Substituting equation (39) into equation (38), and invoking equation (36) to replace k� �b3;

one arrives at

pA =
1 +  

 k + 1+ 
�H
� 1

� ( + �c) kb

 k + 1+ 
�H
� 1

��1s �A: (40)

From hA = kb; b = �pA
p�
; and equations (37), (31) and (30), one also �nds that

p0 =

�
 k +

1 +  

�H
� 1
��1�

 log

�
1� �H
�H

�
+ (1 +  + �ckb)

�A �A+ b� ���

�A + � s + b2� �
+
 

2
h2s�

�1
s(41)

+
1 +  

2

 
�c

 
��1" +

�
kb

1 +  

�2
��1s

!
+ �H (1� �c)

2 ��1"

!

+
1 +  

2
�H

�
1 +

�ckb

1 +  

�2 �
�A + � s + b2� �

��1!
:

Given p0; pA; and b = �pA
p�
; we can recover h0 from equation (30).

Since we have explicit expressions for all other equilibrium objects as functions of b; and

b exists and is unique, it follows that an equilibrium in the economy exists and is unique.

A.4 Proof of Proposition 4

When all households observe A directly, there are no longer information frictions in the

economy. Since the households� idiosyncratic productivity components are unobservable,

they are now symmetric. Then, it follows that Hj = Hi = H: Imposing this symmetry in

equation (6), we see that each household�s housing demand is then given by

logH =
1 +  

 
A� (1 +  � �H)

 �H
logPH + log

�
1� �H
�H

�
+
1 +  

2 

�
�H (1� �c)

2 + �c
�
��1" :

By market clearing, logH = k (� + logPH) ; it follows that

logPH =
1 +  

 k + 1+ 
�H
� 1

A�  k

 k + 1+ 
�H
� 1

� +
 

 k + 1+ 
�H
� 1

log

�
1� �H
�H

�
+

1 +  

2
�
 k + 1+ 

�H
� 1
� ��H (1� �c)

2 + �c
�
��1" :

This characterizes the economy in the limit as information frictions dissipate.

To see that the economy with information frictions (�nite � s) converges to this perfect-

information limit, we consider a sequence of � s that converges to 1: From equation (36), it

follows that, as � s %1; b! 1+ 
 k
: Since hs = kb; it follows that

hs !
1 +  

 
:
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Taking the limit � s % 1 in equation (38), recognizing that hs = kb remains �nite in the

limit, we see that

pA !
1 +  

 k + 1+ 
�H
� 1

:

Since p� = �1
b
pA; it follows that

p� ! �  k

 k + 1+ 
�H
� 1

In addition, from equation (37), we �nd that as � s %1;

hP !
1

 

�
1� 1 +  

�H

�
Finally, from equations (41) and (30), it follows that

p0 !  

 k + 1+ 
�H
� 1

log

�
1� �H
�H

�
+

1 +  

2
�
 k + 1+ 

�H
� 1
� ��H (1� �c)

2 + �c
�
��1" ;

h0 ! log

�
1� �H
�H

�
+
1 +  

2 

�
�H (1� �c)

2 + �c
�
��1" :

Thus, we see that the economy with information frictions converges to the perfect-information

benchmark as � s %1:

A.5 Proof of Proposition 5

From equation (40), it is clear that

pA =
1 +  

 k + 1+ 
�H
� 1

� ( + �c) kb

 k + 1+ 
�H
� 1

��1s �A <
1 +  

 k + 1+ 
�H
� 1

:

Thus, it follows that pA is always lower than its corresponding values in the perfect-information

benchmark.

Similarly, since p� = �1
b
pA; it follows with equation (38) that we can express p� as

p� = �
 k

 k + 1+ 
�H
� 1

� 1

 k + 1+ 
�H
� 1

�
 k +

b� �
�A + � s + b2� �

(1 +  + �ckb)

�
< �  k

 k + 1+ 
�H
� 1

;

which is the corresponding value of p� in the perfect-information benchmark.

We now prove that pA is increasing with � s and decreasing with �c. Note that b is

determined by the polynomial equation (36). We de�ne the LHS of the equation as G (b).
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Comparative statics of b with respect to �c reveal, by the Implicit Function Theorem and

invoking equation (36), that

@b

@�c
= �@G=@�c

@G=@b
= � 1 +  �  kb

3kb2� � +
�
�A +

 
 +�c

� s

�
k

� s

( + �c)
2 = �

1 +  �  kb

2kb3� � +
1+ 
 +�c

� s

� sb

( + �c)
2

Since, from Proposition 3, 0 � b � 1+ 
k

�s
( +�c)�A+ �s

; it follows that

1 +  �  kb � (1 +  ) ( + �c) �A
( + �c) �A +  � s

> 0;

Thus @b
@�c

< 0: Similarly,

@b

@� s
= �@G=@� s

@G=@b
=

1 +  �  kb

3kb3� � +
�
�A +

 
 +�c

� s

�
kb

1

 + �c
=

1 +  �  kb

2kb3� � +
1+ 
 +�c

� s

b

 + �c
> 0;

since 0 � b � 1+ 
 k
:

From the expression for pA in Proposition 3,

@pA
@�c

= � k��1s �A

 k + 1+ 
�H
� 1

�
b+ ( + �c)

@b

@�c

�
= � k��1s �Ab

 k + 1+ 
�H
� 1

�
2kb3� � ( + �c) +  kb� s

2kb3� � ( + �c) + (1 +  ) � s

�
< 0:

Similarly, with respect to � s; we have

@pA
@� s

= �( + �c) k�A�
�1
s

 k + 1+ 
�H
� 1

�
@b

@� s
� b��1s

�
=
( + �c) k�A�

�2
s b

 k + 1+ 
�H
� 1

 kb� s + 2kb
3� � ( + �c)

2kb3� � ( + �c) + (1 +  ) � s
> 0:

A.6 Proof of Proposition 6

We �rst consider the limiting case for the economy as k ! 1: From equation (36), it is

apparent that as k ! 1, the �rst and third terms dominate and either b = 0 or b =

�i
r
��1�

�
�A +

 
 +�c

� "

�
: Thus, as k ! 1; one has that b ! 0: Therefore, pA ! 0 and the

housing price is completely driven by the supply shock �: Given that b = �pA
p�
; we can rewrite

equation (37) as

hP =
1

 

�
1� 1 +  

�H
� (1 +  + �ckb)

b� �
�A + � " + b2� �

1

p�

�
:

Let us assume that p� is bounded in the limit. Then, as k !1 and b! 0; one has that

hP ! � 1
 

�
1 +  

�H
� 1
�
:

Then, it follows from equation (34) that p� ! �1; since hP remains bounded in the limit.
This con�rms the initial conjecture that p� is bounded as k !1:
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From equation (28), it is straightforward to see that, as k !1;

hs ! (1 +  )

�
 +

�c�A
�A + � "

��1
� "

�A + � "
:

Since hA remains bounded in the limit, it is easy to see from equation (41) that p0 ! 0 as

k !1: It further follows from equation (30) that in the limit

h0 ! log

�
1� �H
�H

�
+
1 +  

2 

 
�c

�
1 +

hA
1 +  

�2
+ (1� �c)

2 �H

!
��1"

+
1 +  

2 
�H

�
1 + �c

hA
1 +  

�2
(�A + � s)

�1 +
1 +  + �chA

 

�A
�A + � s

�A: (42)

To consider the case k ! 0; we �rst rewrite equation (36) as

k� � +

�
�A +

 

 + �c
� s

�
kb�2 � 1 +  

 + �c
� sb

�3 = 0:

We see that, as k ! 0; the last term of the equation dominates and b!1: Thus as k ! 0;

b!1; and therefore p� ! 0 and the demand shock A completely drives the housing price.

From equation (28), it follows that as k ! 0 one has that hs ! 0: Since hA remains bounded

in the limit, and hA = kb; it follows from equation (38) that

pA !
1 +  
1+ 
�H
� 1

:

Since hs ! 0; and hA and pA remain bounded as k ! 0; we also see from equation (32) that

hP ! 0: Since hA remains bounded in the limit, it is easy to see from equation (41) that as

k ! 0:

p0 !
�
1 +  

�H
� 1
��1�

 log

�
1� �H
�H

�
+
1 +  

2

�
�c + �H (1� �c)

2� ��1" � : (43)

It further follows from equation (30) that in the limit h0 ! 0:

To �nd the conditions under which hP � 0; we rewrite hP � 0 with equations (37) and
(38) as

b2� � (1 +  + �ckb)
k�H

1 +  � �H
� k (�A + � s) b+ kb3� �:

Then, substituting for k� �b3 with equation (36), the above condition reduces to

b � b� =

s
1 +  � �H
k ( + �c) �H

��1� � s:
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It follows that, since b� � b and the LHS of equation (36) is monotonically increasing in b;

that the LHS of equation (36) evaluated at b� must be negative. Then,

�p
k
�2
�
 

1 +  

2 (�A ( + �c) +  � s)

s
( + �c) �H
1 +  � �H

� s� �

!
p
k+
1 +  � �H

�H

� s
�A ( + �c) +  � s

� 0:

Thus, it follows that it is necessary and su¢ cient for hP � 0 that

p
k 2

24 maxn 1+ 
2(�A( +�c)+ �s)

q
( +�c)�H
1+ ��H

� s� � � 
�; 0
o
;

1+ 
2(�A( +�c)+ �s)

q
( +�c)�H
1+ ��H

� s� � + 
�

35 ;
where


� =
�
1=2
s

�A ( + �c) +  � s

s
(1 +  )2

( + �c) �H
1 +  � �H

� � � 4
1 +  � �H

�H
(�A ( + �c) +  � s);

provided that

� s �
 + �c
 

 
1

4

�
(1 +  ) �H
1 +  � �H

�2
� � � �A

!
:

Since 
� � 0; the upper bound in the range of
p
k over which hP � 0 is positive, and

therefore a range of k always exists for which hP � 0 when � s is su¢ ciently small.

A.7 Proof of Proposition 7

The vector of household i�s signals is

Qi� =

24 si�
q�
q��1

35 =
2664

A� + �i�

A� +
p�
pA

�
Z�
� + ��Z

�
��1

�
�A

�
A��1 +

p�
pA
Z�
��1

�
3775 :

We can normalize the noise variables in the signals to standard normal distribution:

Qi� =

24 A� +
p
bu1�

A� +
p
c
�
u2� + ��u3�

�
p
�A��1 +

p
�cu3�

35
where � = �2A; b = ��1s ; c =

p2�
p2A
��1� ; and [u1� ; u2� ; u3� ]

0 s N (0; I3) : Since the household

believes that A� = �2AA��2 +
p
�ZA

��1 + ZA
� ; they have a Gaussian prior over A� :

A� s N
�
�2AA��2; (1 + �) a

�
;
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where a = ��1A and ~ZA
��2 is the household�s inference of Z

A
��2 based on the observation of the

history of fAug��2u=1 : Also note that the household also believes that A��1 = �AA��2 + ZA
��1

and thus E
�
A��1

��fAug��2u=1

�
= �AA��2. Thus

E
�
Qi�

��fAug��2u=1

�
=

24 �2AA��2
�2AA��2p
��AA��2

35 :
Then, conditional on observing the vector of signals Qi� ; household i arrives to its conditional

belief Âi� = E [A� j Ii� ]:

Âi� = A��2 + Cov
�
A� ; Qi�

��fAug��2u=1

�0
V ar

�
Qi�

��fAug��2u=1

��1 �
Qi� � E

�
Qi�

��fAug��2u=1

�	
;

where

V ar [Qi� ] =

2664
(1 + �) a+ b (1 + �) a �a

(1 + �) a (1 + �) a+ 2c �
�
a+ ��1=2��c

�
�a �

�
a+ ��1=2��c

�
� (a+ c)

3775 ;
and

Cov [A� ; Qi� ]
0 =
�
(1 + �) a (1 + �) a �a

�
:

The inverse of this matrix can be found using co-factors and the determinant simpli�ed

through a series of row manipulations. Following this approach, one can arrive at

Cov [A� ; Qi� ]
0 V ar [Qi� ]

�1

=

�
�ac (2a+ (1 + �) c) �ab

�
a+

�
1 + � � ��

p
�
�
c
�

abc
�
2� � (1 + �) ��

p
�
� �

�ab
�
a+

�
1 + � � ��

p
�
�
c
�
� �abc��

p
� + 2�ac (a+ b) + �c2 ((1 + �) a+ b)

=
1

1
b

2a+(1+�)c

a+(1+����
p
�)c
+ 1

c
+ 2

(1+�)a
+

�a+��
p
�c

(1+�)a
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

h
1
b

2a+(1+�)c

a+(1+����
p
�)c

1
c

1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

i
:

Substituting this expression into Âi� ; we obtain

Âi� =
2 +

��
� � (1+�)

p
�

�A

�
a+ ��

p
�c
�
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

1
b

2a+(1+�)c

a+(1+����
p
�)c
+ 1

c
+ 2

(1+�)a
+

�a+��
p
�c

(1+�)a
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

�2A
(1 + �) a

A��2

+

h
1
b

2a+(1+�)c

a+(1+����
p
�)c

1
c

1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

i
1
b

2a+(1+�)c

a+(1+����
p
�)c
+ 1

c
+ 2

(1+�)a
+

�a+��
p
�c

(1+�)a
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

Qi� :

Furthermore, the conditional precision of household i0s beliefs �̂ iA is given by

�̂ iA = V ar [A� j Ii� ]�1 =
�
(1 + �) a� Cov [A� ; Qi� ]

0 V ar [Qi� ]
�1Cov [A� ; Qi� ]

��1
;
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from which it is straightforward to see that

�̂ iA =

 
2 + ��c

2
p
� � (1 + �) ��

a+
�
1 + � � ��

p
�
�
c

!�1
� 

1

b

2a+ (1 + �) c

a+
�
1 + � � ��

p
�
�
c
+
1

c
+

2

(1 + �) a
+
�a+ ��

p
�c

(1 + �) a

1

�

2� � (1 + �) ��
p
�

a+
�
1 + � � ��

p
�
�
c

!
:

We can similarly rede�ne the vector of public signals Qc� as

Qc� =

�
q�
q��1

�
=

�
A� +

p
c (u2� + u3� )p

�A��1 +
p
�cu3�

�
:

The average belief of the community Âc� = E [A� j Ic� ] is given by

Âc� = A��2 + Cov [A� ; Qc� ]
0 V ar [Qc� ]

�1 �Qc� � E
�
Qc�

��fAug��2u=1

�	
:

Note that

V ar [Qc� ] =

24 (1 + �) a+ 2c �
�
a+ ��1=2��c

�
�
�
a+ ��1=2��c

�
� (a+ c)

35 ;
and

Cov [A� ; Qc� ]
0 =
�
(1 + �) a �a

�
:

It is straightforward to derive

Cov [A� ; Qc� ]
0 V ar [Qc� ]

�1

=

h
�a
�
a+

�
1 + � � ��

p
�
�
c
�

�ac
h
2� (1 + �) ��1=2

i i
�a
�
a+

�
1 + � � ��

p
�
�
c
�
+ �c

�
c+ 2a� a

p
�
�

=
1

1
c
+ 2

(1+�)a
+

�a+��
p
�c

(1+�)a
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

h
1
c

1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

i
:

Substituting this expression into Âc� ; we see that

Âc� =
2 +

��
� � (1+�)

p
�

�A

�
a+ ��

p
�c
�
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

1
c
+ 2

(1+�)a
+

�a+��
p
�c

(1+�)a
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

�2A
(1 + �) a

A��2

+

h
1
c

1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

i
1
c
+ 2

(1+�)a
+

�a+��
p
�c

(1+�)a
1
�

2��(1+�)��
p
�

a+(1+����
p
�)c

Qc� ;

and similarly the conditional precision of the average community beliefs is

�̂ cA =

 
2 + ��c

2
p
� � (1 + �) ��

a+
�
1 + � � ��

p
�
�
c

!�1 
1

c
+

2

(1 + �) a
+
�a+ ��

p
�c

(1 + �) a

1

�

2� � (1 + �) ��
p
�

a+
�
1 + � � ��

p
�
�
c

!
:

By directly comparing the expressions for Âi� and Â
c
� , one can write Â

i
� as a linear expansion

of Âc� and si� as stated in the proposition.
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A.8 Proof of Proposition 8

We �rst conjecture that logPH (�) and logHi (�) take the following log-linear forms

logPH (�) = pAA� + pAcÂ
c
� + p��� + p0; (44)

logHi (�) = hAiÂ
i
� + hAcÂ

c
� + hP logPH (�) + h0:

Under the conjectured form for Hi� ; equation (6) allows us to expand each generation-�

household�s housing demand. We �rst derive the expectation term in the equation:

logE

�
eAi� (1��c)�H

�Z
[0;1]=i

eAj�H
1

1+ 

j� dj

��c�H ���� Ii��
= logE

�
eAi� (1��c)�H

�Z
[0;1]=i

eAj�+
1

1+ 
hAiÂ

j
� e

1
1+ (h0+hP logPH(�)+hAcÂc�)dj

��c�H ���� Ii��
=

�c�H
1 +  

h
h0 + hP logPH (�) +

�
hAc + hAi�̂

c
A=�̂

i
A

�
Âc�

i

+
�H
2

0B@(1� �c)
2 �H=� " + �c=� " + �c

0@ 1

1 +  

hAi�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A2

� s

1CA
+�H

0@1 + �c 1

1 +  

hAi�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� s

1A Âi�

+
�2H
2

0@1 + �c 1

1 +  

hAi�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� s

1A2

1

�̂ iA
;

In this derivation, we have used Proposition 7 to substitute Âjt by a linear combination of

Âct and sj� : By further substituting this derived expression into equation (6), and matching

coe¢ cients with the conjectured form for logHi (�), it follows that

h0 = log

�
1� �H
�H

�
+
�H
2

1 +  

 

0@1 + �c 1

1 +  

hAi�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� s

1A2

1

�̂ iA
(45)

+
1 +  

2 

0B@��H (1� �c)
2 + �c

�
��1" + �c

0@ 1

1 +  

hAi�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A2

� s

1CA ;
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and

hAi =
1 +  

 + �c
+

�c
 + �c

�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� shAi; (46)

hP = �
�
1 +  � �H

 �H

�
; (47)

hAc =
�c
 

�̂ cA
�̂ iA
hAi: (48)

By invoking Proposition 7, we can rewrite equation (45) as

h0 = log

�
1� �H
�H

�
+
�H
2

1 +  

 

�
1 + �c

hAi
1 +  

�
1� �̂ cA=�̂

i
A

��2 1
�̂ iA

+
1 +  

2 

"�
�H (1� �c)

2 + �c
�
��1" + �c

�
hAi
1 +  

�
1� �̂ cA=�̂

i
A

��2
��1s

#
; (49)

From equation (46), it follows that

hAi =

24 + �c
�

�̂ iA

0@��1�̂ iA � 2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� s

1A35�1 (1 +  ) ;
which, by invoking Proposition 7, reduces to

hAi =
1 +  

 + �c�̂
c
A=�̂

i
A

: (50)

Thus, it is immediate from equations (48) and (46) that

hAc =
1 +  

 
� hAi:

By aggregating household demand, one has that

log

Z
Hi (�) di

= hAcÂ
c
� + hP

�
pAA� + pAcÂ

c
� + p��t + p0

�
+ h0 +

�̂ cA
�̂ iA
hAiÂ

c
�

+
hAi�

�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

� sA� +
1

2

0@hAi�
�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A2

� s;

where we have invoked Proposition 7 to decompose Âjt into Â
c
t and sj� : The market clearing

condition implies that the aggregate household demand log
R
Hi (�) di is equal to builders�

supply

k logPH + k�� = k
�
�� + pAA� + pAcÂ

c
� + p��� + p0

�
:
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Matching coe¢ cients of the related variables in the market clearing condition gives rise to

the following four conditions:

h0 + hPp0 +
1

2

0@hAi�
�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A2

� s = kp0; (51)

hPpA +
hAi�

�̂ iA

2��1A +
�
1 + (�A + �)2

� p2�
p2A
��1�

��1A +
�
1 +

�
�A + �� ��

�
(�A + �)

� p2�
p2A
��1�

� s = kpA; (52)

hAc + hPpAc +
�̂ cA
�̂ iA
hAi = kpAc; (53)

hPp� = k (1 + p�) : (54)

Being able to match the coe¢ cients con�rms the conjectured log-linear form of PH (�) and

each household�s housing demand.

From equations (47) and (54), it immediately follows that

p� = �
 k

 k + 1+ 
�H
� 1

:

From equations (48), (47), and (53), one also has that

pAc =
 + �c

 k + 1+ 
�H
� 1

�̂ cA
�̂ iA
hAi: (55)

In addition, from (51), it is easy to see that

p0 =

�
 k +

1 +  

�H
� 1
��1 264 h0 +  

2

0@hAi�
�̂ iA

2��1A + (1 + �2A)
p2�
p2A
��1�

��1A +
�
1 +

�
�A � ��

�
�A
� p2�
p2A
��1�

1A2

� s

375 : (56)
By invoking Proposition 7, it follows that we can rewrite equation (56) as

p0 =
 

 k + 1+ 
�H
� 1

"
h0 +

1

2
h2Ai

�
1� �̂ cA

�̂ iA

�2
��1s

#
:

Given equation (49), we can further rewrite p0 as

p0 =
 

 k + 1+ 
�H
� 1

log

�
1� �H
�H

�
+

1 +  

2
�
 k + 1+ 

�H
� 1
� ��H (1� �c)

2 + �c
�
��1"

+
�H
2

1 +  

 k + 1+ 
�H
� 1

�
 + �c

 + �c�̂
c
A=�̂

i
A

�2
1

�̂ iA

+
1

2

1 +  

 k + 1+ 
�H
� 1

(�c +  (1 +  ))

�
1� �̂ cA=�̂

i
A

 + �c�̂
c
A=�̂

i
A

�2
��1s : (57)
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Finally, from equations (47) and (52), and by invoking Proposition 7, it follows that

pA =
 

 k + 1+ 
�H
� 1

�
1� �̂ cA

�̂ iA

�
hAi: (58)

Thus, it is immediate from equations (55) and (58) that

pA + pAc =
 + �c�̂

c
A=�̂

i
A

 k + 1+ 
�H
� 1

hAi =
1 +  

 k + 1+ 
�H
� 1

;

and therefore

pAc =
1 +  

 k + 1+ 
�H
� 1

� pA:

De�ning x = �pA
p�
and invoking equations (50) and (58), as well as the de�nitions of � iA and

� cA; it follows that

 
�
2x2��1A +

�
1 + �2A

�
��1�
�
� skx+ ( + �c)�

�1�̂ cA
�
x2��1A +

�
1 +

�
�A � ��

�
�A
�
��1�
�
kx

= (1 +  )
�
2x2��1A +

�
1 + �2A

�
��1�
�
� s (59)

where

��1�̂ cA = x2� � +
2�A
1 + �2A

+
�Ax

2 + ���
�1
� �A

1 + �2A

2�A � (1 + �2A) ��
x2��1A +

�
1 +

�
�A � ��

�
�A
�
��1�

;

which implicitly de�nes x and pA since

pA =
 kx

 k + 1+ 
�h
� 1

:

By substituting �̂ cA into equation (59), one arrives at a 5th-order polynomial

0 = ��1A � �x
5 +

 
2

 

 + �c
��1A � s +

2 +
�
2�A � (1 + �2A) ��

�
�A

1 + �2A
+ 1 +

�
�A � ��

�
�A

!
x3

�2 1 +  
 + �c

k�1��1A � sx
2 � 1 +  

 + �c

�
1 + �2A

�
k�1��1� � s (60)

+

 
2
�
1 +

�
�A � ��

�
�A
�
+ ��

�
2�A � (1 + �2A) ��

�
1 + �2A

�A +
 

 + �c

�
1 + �2A

�
� s

!
��1� x:

As we have explicit expressions for all other equilibrium objects as functions of x; the ex-

istence and uniqueness of the housing market equilibrium follow from the existence and

uniqueness of a real root to equation (60). By Descartes�Rule of Signs, this equation has

at most three positive roots since the 5th order polynomial on the right hand side has three

sign changes. By setting x! �x; we see that there are no sign changes, and therefore x has
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zero negative roots. Furthermore, by the Fundamental Theorem of Algebra, the roots of the

polynomial (60) exist. Thus, it follows that x has at least one and at most 3 real, positive

roots, and at least two complex roots. Since complex roots must occur in pairs, polynomial

(60) has either one or three real solutions.

By taking the limit as � s %1; equation (60) converges to

0 =
1 +  

 + �c

�
2��1A x2 +

�
1 + �2A

�
��1�
��  k

1 +  
x� 1

�
;

from which it is obvious that x = 1+ 
 k

is the only real root. We recognize that 1+ 
 k

is the

value of x in the perfect-information benchmark economy from the static model. Similarly,

it is straightforward to see that �̂ cA=�̂
i
A ! 0 as � s %1. Thus, it follows that Âi� ! A� and,

since hAi remains bounded as � s %1; that the housing price and housing converge to

logPH (�) =
1 +  

 k + 1+ 
�H
� 1

A� �
 k

 k + 1+ 
�H
� 1

�� +
 

 k + 1+ 
�H
� 1

log

�
1� �H
�H

�
+

1 +  

2
�
 k + 1+ 

�H
� 1
� ��H (1� �c)

2 + �c
�
��1" ;

logHi (�) =
1 +  

 
A� �

1 +  � �H
 �H

logPH (�) + log

�
1� �H
�H

�
+
1 +  

2 

�
�H (1� �c)

2 + �c
�
��1" ;

which is the perfect-information benchmark of the static economy characterized in Proposi-

tion 4.

Furthermore, since all the terms that vanish in equation (60) as � s %1 are positive, it

follows that 1+ 
 k

is an upper bound for x. Thus x 2
h
0; 1+ 

 k

i
:

We now provide a su¢ cient condition to ensure that there exists a unique real root to

equation (60). De�ne G (x) to be the RHS of equation (60). Di¤erentiating G (x) with

respect to x; one �nds that

dG (x)

dx
= 5��1A � �x

4 + 3

 
2

 

 + �c
��1A � s +

2 +
�
2�A � (1 + �A)

2 ��
�
�A

1 + �2A
+ 1 +

�
�A � ��

�
�A

!
x2

+

 
2
�
1 +

�
�A � ��

�
�A
�
+ ��

�
2�A � (1 + �A)

2 ��
�

1 + �2A
�A +

 

 + �c

�
1 + �2A

�
� s

!
��1�

�4 1 +  
 + �c

k�1��1A � sx:

To ensure that the real root is unique, it is su¢ cient for dG(x)
dx

> 0 for all x 2
h
0; 1+ 

 k

i
. Since

x is bounded from above by 1+ 
 k
; it is su¢ cient for dG(x)

dx
> 0 that

k � 21 +  
 

vuut ��1A � �� s
2(1+(�A���)�A)+��(2�A�(1+�A)2��)

1+�2A

 +�c
 
�A + (1 + �2A) � s

: (61)
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This is a su¢ cient condition to ensure a unique real root of equation (60). In fact, our

numerical exercises always �nd a unique real root even when k is outside this range.

A.9 Proof of Proposition 9

Recall the functional form of Âc� from Proposition 7 and the expression for q��1 and q� : If

�A = �� = 1; since x = �pA
p�
; we can rewrite Âc� as

Âc� =
�

�̂ cA

�
�A + x2� �

�
A��2 + x

�

�̂ cA
� �
�
xZA

� � Z�
�

�
+ x2

�

�̂ cA
� �Z

A
��1 � x

�

�̂ cA
� �Z

�
��1:

The change in beliefs Âc� � Âc��1 is therefore given by

Âc� � Âc��1 = x
�

�̂ cA
� �
�
xZA

� � Z�
�

�
+

�

�̂ cA

�
�AZ

A
��2 + x� �Z

�
��2

�
:

and consequently housing returns RH (� � 1; �) and RH (� ; � + n) take the form

RH (� � 1; �) = pAZ
A
��1 + p�Z

�
��1 + pAcx

�

�̂ cA
� �
�
xZA

� � Z�
�

�
+ pAc

�

�̂ cA

�
�AZ

A
��2 + x� �Z

�
��2

�
;

RH (� ; � + n) = pA

nX
i=1

ZA
�+i + p�

nX
i=1

Z�
�+i + pAcx

�

�̂ cA
� �

nX
i=1

�
xZA

�+i � Z�
�+i

�
+pAc

�

�̂ cA

nX
i=1

�
�AZ

A
�+i�2 + x� �Z

�
�+i�1

�
:

Since all supply and demand shocks ZA
� and Z

�
� are i.i.d. and x = �pA

p�
; it follows that the

covariance between RH (� � 1; �) and RH (� ; � + n) reduces to

Cov [RH (� � 1; �) ; RH (� ; � + n) j Iex,� ]
= �p�pAc

�

�̂ cA
Cov

h
xZA

��1 � Z�
��1; �AZ

A
��1 + x� �Z

�
��1 j Iex,�

i
+

�
pAc

�

�̂ cA

�2
x� �Cov

�
xZA

� � Z�
� ; �AZ

A
� + x� �Z

�
� j Iex,�

�
:

Since both covariances are zero, it is apparent that for arbitrary n � 1

Cov [RH (� � 1; �) ; RH (� ; � + n) j Iex,� ] = 0:
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