
1 
 

 

 

 

 

 

 

Socio-demographic and Genetic Aspects  

of Educational Attainment do not Moderate Each Other 

 

 

 

 

 

Dalton Conley, New York University and NBER 

David Cesarini, New York University 

Christopher Dawes, New York University 

Benjamin Domingue, University of Colorado 

Jason Boardman, University of Colorado 

  



2 
 

Abstract 

We exploit the findings from a recent large genome-wide association study of 

educational attainment to construct a genetic score designed to predict educational 

attainment. Using data pooled from two independent samples, we deploy this genetic 

risk score in models for educational attainment in order to test the hypotheses offered 

by prior researchers that social structure constrains genetic expression for low SES 

individuals.  In contrast to this prior, twin-based research, we find that genetic effects 

are not moderated by socio-demographic variables such as parental education, age or 

gender.  In fact, the effect of offspring genotype appears to be moderated by maternal 

genotype, suggesting that prior evidence of gene-by-environment interaction may have 

actually been gene-gene effects. These findings are consistent with the existence of two 

parallel systems of ascription: genetic inheritance and social inheritance.  We caution, 

however, that at the presently attainable levels of explanatory power these results are 

preliminary and may change when better-powered genetic risk scores are developed. 
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Introduction 

Despite the controversy surrounding such estimates, ascertaining the proportion 

of a quantitative trait—such as education or IQ—that is due to genetic variation has long 

been of interest to a wide range of scientists.  (For a wide range of examples, see, e.g. 

Breen, Plomin, & Wardle, 2006; Plomin, Fulker, Corley, & DeFries, 1997; Plomin, Owen, 

& McGuffin, 1994; Plomin & Spinath, 2004; Plomin, 2009; Purcell, 2002; Rodgers, 

Buster, & Rowe, 2001; Rodgers, Rowe, & Buster, 1999.)  Among human populations 

where experimentation is not possible, the workhorse of such analysis has been the twin 

or extended twin design, where the average relatedness of various kin pairs is correlated 

with their phenotypic similarity in order to ascertain the effect of shared genotype on a 

given outcome (Zaitlen et al., 2013).  The reigning critique of this approach is that it is 

difficult to eliminate the possibility that increased similarity between, say, monozygotic 

twins as compared to, for example, dizygotic twins, is due to more similar exogenous 

environments and not just their greater degree of genetic similarity (Goldberger, 1978, 

1979—for a defense, see, Conley, Rauscher, & Dawes, 2013; Scarr & Carter-Saltzman, 

1979). 

A recent meta-analysis that specifically examines the heritability of educational 

attainment across 36 different cohorts finds a heritability of ~40 percent, though there 

is significant variation among the individual studies (Branigan, McCallum, & Freese, 

2013).  For example, a study of Italian twins finds a heritability of ~50 percent 

(Lucchini, Bella, & Pisati, 2013).  However, another recent paper uses U.S. data from the 

National Longitudinal Survey of Adolescent Health and accounts for assortative mating 
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and obtains a genetic component of educational attainment of just under a quarter 

(Nielsen & Roos, 2011).   

In motivating these studies, some sociologists have persuasively argued that we 

should abandon raw or adjusted mobility rates (or, intergenerational earnings 

elasticities) as measures of openness and meritocracy.  Rather, Guo and Stearns and 

Nielsen among others argue that perhaps we should compare the genetic component to 

the common environmental component of social status as determined by twin and other 

kin-based variance decomposition models (Guo & Stearns, 2002; Nielsen, 2006, 2008).  

In this paradigm, it is not the overall correlation between siblings, for instance, that 

measures the relative openness or closure of a stratification system (c.f. Björklund, 

Eriksson, & Jäntti, 2002; Corcoran, Gordon, Laren, & Solon, 1992; Hauser & Sewell, 

1986; Hauser, Sheridan, & Warren, 1999; Kuo & Hauser, 1995; Olneck, 1976; Page & 

Solon, 2003; Warren & Hauser, 1997; Warren, Sheridan, & Hauser, 2002) but rather the 

proportion of that correlation that is due to genetics.  A meritocracy has a high genetic 

component to achieved social position and a low common (read: familial) 

environmental component.  According to this argument, policy should aim to enhance 

sorting on innate characteristics and not the social advantages or disadvantages that 

may be conferred on us by our conditions of birth and upbringing (Heath, Berg, Eaves, 

& Solaas, 1985).1 

                                                            
1 However, this line of argument conflates genetics with merit.  For example, if social 
sorting in the educational system (or labor market) took place based on eye color, it 
would be close to 100 percent heritable/genetic, yet few would argue that this form of 
assignment would be meritocratic, since meritocracy also assumes a legitimacy to the 
characteristics by which we sort individuals into roles—not merely a biological or 
natural basis to those characteristics.  Admitting students to U.C. Berkeley based on 
basketball shots would be fair—in the sense that everyone might know the rules 
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In this vein, knowing whether or not genetic effects for a given outcome interact 

with social position helps direct policy-makers and researchers to a better 

understanding of the efficient levers available to them.  If for certain groups genetic 

effects are muted, changing social structures to allow heritabilities to rise would allow 

for more “equal opportunity” without any costs to efficiency (Heath et al., 1985).  By 

contrast, in a situation where heritabilities were high across the board, more equal 

outcomes could still be achieved, but such an effort would presumably trade off 

efficiency for equity. 

Considering this line of reasoning, it is perhaps useful to revisit an argument 

made over 30 years ago by Christopher Jencks (Jencks, 1980).  Among the points 

Jencks made in this classic article was that social scientists tend to think of something 

that is genetic has having to do with some basic biological process or function that is 

constant across time and place (i.e. invariant to social environment).  But the total 

genetic component of the variance in an outcome may very well work through 

environmental channels.  For example, children with faster neuronal transmission may 

seek out (or have bestowed upon them) more cognitively stimulating environments.  

Indeed, niche construction is a well-studied biological phenomenon whereby individual 

organisms seek to shape the environment and fitness landscape to best fit their 

phenotype (Day, Laland, & Odling-Smee, 2003; Laland & Brown, 2006; Laland, 1999; 

Odling-Smee, Laland, & Feldman, 1996, 2003a, 2003b).  Jencks goes on to point out the 

fact that—as Goldberger had also argued (Goldberger, 1979)—just because something is 
                                                                                                                                                                                                

beforehand and be subject to the same constraints in a task that is easily observable with 
minimal measurement error—but few would agree that this would be meritocratic since 
there would be a mismatch between the institutional raison d’etre of the university as an 
institution and the sorting mechanism. 
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associated with the distribution of genes does not mean that public policy cannot alter 

the distribution of phenotypes by say, changing the assignment mechanism to 

something that is orthogonal or even negatively correlated with the preexisting 

genotype-phenotype covariance.  This is true irrespective of whether the proximal cause 

is biological or social.  

For example, phenylketonuria (PKU) is a recessively inherited genetic disease 

where individuals cannot properly metabolize the amino acid phenylalanine.  If 

phenylalanine is consumed by someone who suffers from PKU, they will suffer cognitive 

impairments.  Jencks points out that knowing this condition is genetic in origin does not 

mean that we should treat it any differently than say, lead poisoning, which is much 

more purely environmental in its origins.  However, the examples here—lead and 

phenylalanine exposure—both critically depend on environmental interactions.  By 

preventing children from ingesting phenylalanine or lead, respectively, policy makers 

would equalize IQ and schooling.  Down’s syndrome, by contrast, is genetic in origin and 

fairly unresponsive to environmental conditions.  Though there someday may be an 

environmental intervention—such as a medication—that mitigates the effects of 

Trisomy-21, at this point in history one does not exist.  Thus, whether or not we believe 

that high heritability is an indicator of an efficient meritocracy, knowing whether the 

genetic component of a quantitative trait like educational attainment (or IQ) works 

through interaction with the environment—under present societal and historical 

conditions—is useful to aid policy makers as to whether there are interventions that 

would mitigate the effects of genetic predisposition without major efficiency costs.  
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By way of example, Turkheimer and Haley find that among low income children 

the heritability of IQ is lower than it is for higher income children (Turkheimer & Haley, 

2003).  Likewise, Guo and Stearns (Guo & Stearns, 2002) show that for blacks, the 

heritability of IQ is lower than for whites.  In both cases, the researchers interpret this to 

mean that environmental disadvantages—such as a lack of parental resources or poor 

schooling conditions or simple racism—prevent the full realization of genetic variation 

in a given population.  In other words, there is an implied GE conditionality such that 

potential intellectual ability is inherited but requires environmental conditions of 

human capital investment to be realized in the form of IQ (or educational attainment or 

income for that matter; c.f. Becker & Tomes, 1994; Behrman, Pollak, & Taubman, 1995; 

Behrman, Rosenzweig, & Taubman, 1996).  If such genotype-by-environment 

interaction effects held true, this would augur policy interventions that target groups 

defined by social categories—SES or race—in order to equalize genetic effects (i.e. level 

the playing field) (Bearman, 2013; Fletcher & Boardman, 2013; Mitchell, 2013). 

However, if we ascertain genetic influence (i.e. heritability) latently through twin 

comparisons (as they do), we can never know if a reduced or enhanced heritability for a 

given group is due to differences in 1. differential effects of prenatal conditions (c.f. 

Conley & Strully, 2012); or 2. differences in the level of variation in genotype 

(numerator) or the denominator (phenotype); or 3. whether, instead, it is truly a 

difference only in the covariance between genotype and phenotype by subgroup.  

However, if we measure genotype directly—as we do here—we can interrogate the 

distribution (i.e. variance) of genotypic propensity toward educational attainment by 

subgroup, the variance in phenotype by subgroup and estimate interaction effects 
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between genotype and subgroup (i.e. test whether the covariance between genotype and 

phenotype differs).  Thus, here we aim to provide a much more direct test as to whether 

the “natural” genetic tendencies of one group—say women or those from low SES 

families—is repressed by social structure.   

That said, an ideal test would be to see if underlying genotype interacts with 

exogenous environmental shocks—such as school or tax policy interventions (Fletcher & 

Conley, 2013).  Such a research design is beyond the scope of the current paper, 

however, since we do not have a natural experiment that we know about to apply to the 

data at hand.  Thus, it remains possible any significant interaction effects we discover 

are not true gene-by-environment effects but rather gene-gene interactions: between 

measured genotype and unmeasured genotype of parents or the offspring.  To mitigate 

against this possibility, we also directly test for interaction effects between parental 

educational genotype and offspring educational genotype.  While this does not 

guarantee that our measured environmental variables are truly environmental (and not 

proxying unmeasured genetic factors), such analysis should give us a sense of whether 

such confounding is likely to be driving our results. 

To preview our findings: We test for interactions between educational genotype 

(described below) and maternal education, sex, age (birth cohort), study cohort and 

maternal genotype.  The interaction with maternal education is meant as a test of the 

Turkheimer hypothesis that low-SES represses the true expression of phenotype.  The 

interaction with sex is a test of whether the differential opportunity structure within the 

educational system for boys and girls is moderated by underlying genetic propensities.  

The interaction with birth cohort tells us whether an expansionary regime of higher 
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education (along with other temporal changes over the same period, such as skill-biased 

technological change [Bekman, Bound, & Machin, 1998; Card & DiNardo, 2002]) affects 

the expression of genotypic tendencies in the educational system.  Finally, the 

interaction effect with maternal genotype is meant as a check to see if any significant 

interaction effects with measured maternal education may be indicative of unmeasured 

GxG interactions within the family (through social interaction) or the individual (by 

virtue of parental bequeathing of unmeasured genetic stock).  We find none of the 

genotype-by-environment interaction effects tested to be significant in across- or 

within-family models.  Rather, the only significant interaction effect we find is between 

child and maternal genotype.  Thus, our approach casts doubt on the interpretations of 

prior twin-based researchers who claimed GxE interactions from their latent 

ascertainment of genetic effects by subgroups of twins. 

 

The Age of Molecular Markers 

Until recently, the study of human genetic variation has consisted mainly of 

behavior genetics studies, where twin and adoption designs were used to identify 

heritable, or genetic, variation in various traits (see, e.g., Björklund, Lindahl, & Plug, 

2006; Plomin, Owen, & McGuffin, 1994; Plomin, 2009; Plug, 2004; Sacerdote, 2007). 

Whether or not one believes the estimates of genetic influence on phenotypes that 

emerge from such studies, the fact remains that they do not directly measure genotypes 

and thus are of limited utility.  Today, however, the costs of comprehensively genotyping 

subjects have fallen to the point where major funding bodies, including those in the 
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social and behavioral sciences, can now begin to incorporate genetic and biological 

markers into major social surveys. 

The recent addition of genetic markers to large datasets has opened up an 

opportunity for researchers to model directly how genetic propensities interact with 

other factors to differentially produce phenotypes.  Indeed, a recent paper conducted a 

genome wide association study of 126,559 individuals from 54 distinct cohorts to search 

for alleles that may be associated with educational attainment (Rietveld, Medland, 

Derringer, & Yang, 2013).  Rietveld et al. (2013) conducted what is called a genome-wide 

association study (GWAS), an atheoretical approach to gene discovery where hundreds 

of thousands of single nucleotide polymorphisms (SNPs) are tested for association with 

an outcome of interest. In what follows, we index SNPs by j and individuals by i. Each 

individual SNP is tested for association by running a regression of the sort:  

ݕ ൌ ߤ  ݔߚ  ܼߛ  ߳,     

 

where ݔ is the number of reference allele individual i is endowed with at SNP j 

and Z is a vector of controls, which include age, sex and the first four principal 

components (PC) of the variance-covariance matrix of the genotypic data. The PCs are 

included to guard against the well-known problem of population stratification; the 

tendency for allele frequencies to covary with unobserved environmental confounds. 

Because the number of hypotheses that were tested is very large, it is common to declare 

a SNP-association to be significant if it reaches a p-value of 5  10-8.   Rietveld et al. 

(2013) identified three SNPs that reached this level of significance, and all three 

replicated in an independent sample. However, the greater significance of this study is 
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that it allows for the construction of a polygenic risk score for educational attainment.  A 

common approach to constructing such a genetic risk score (GRS), which we label ො݃,  is 

to take a weighted sum of SNP, where the weights are given by the estimated ߚ 

coefficients from Equation 1: 

ො݃ ൌ ݔߚఫ


ୀଵ

 

The results from the Rietveld et al. 2013 analysis are reproduced as Figure 1. (For other 

examples of GRS deployment, see, e.g., Belsky et al., 2012; Belsky, Moffitt, et al., 2013; 

Belsky, Sears, et al., 2013; Benjamin et al., 2012; SM Purcell, Wray, & Stone, 2009; 

Visscher, 2010; Yang, Benyamin, & McEvoy, 2010.)  The steep slope of the lines shows 

the polygenicity of educational attainment.  That is, while only three alleles reached 

what geneticists call genome-wide significance (p < 5 x 10-08) and replicated in the 

independent samples, these explained a trivial amount of the total variance in years of 

schooling or college attendance.  Meanwhile, relaxing the threshold continually 

increases the predictive power of the genetic risk score all the way to the point where all 

autosomal SNPs are taken into account regardless of significance level.  This suggests 

that to the extent that it is associated with genotype, educational attainment—as we 

might expect—is driven by many small effects across the entire genome. 

FIGURE ONE ABOUT HERE 

Two percent is a relatively small contribution to our understanding of 

educational outcomes, especially when compared to the published meta-analyses that 

find that genetic factors account for up to 40 percent of the variation (Branigan et al., 

2013). There are several important explanations for the discrepancy. This “missing” 
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heritability (de Los Campos, Vazquez, Fernando, Klimentidis, & Sorensen, 2013)  is due 

to a variety of factors. Most importantly, there is estimation error in the ߚఫ  which ,ݏ

attenuates the score. The genotyping platforms capture common variants and ignore 

rare alleles that may matter; and even these common variants are not necessarily the 

causal loci but only correlated spatially with the “true” causal loci on the genome.  

Further, there may be complex, cross-allele interaction effects that explain part of the 

genetic component of the variability in the trait.  These are not captured by the linear 

and additive functional form that is assumed in Equation 1.  

With these caveats in mind, the approach of the present paper is to take the 

algorithm for this single polygenic educational “risk” score and apply it to data pooled 

from two samples that were not included in the original discovery or replication studies.  

Our study builds on Rietveld et al. (2013) because we examine intergenerational models 

of educational attainment that include genetic endowment in both the parental and 

offspring generations and examine interaction effects between the polygenic risk score 

and socio-demographic factors: namely, parental education, sex and age (i.e. cohort).  

Of course, for the present analysis we only observe two percent of the putatively 

forty percent of educational-genotypic covariance, so the question becomes whether or 

not the two percent explained by our GRS is systematically biased with respect to the 

underlying, ~ 40 percent of educational variance that is associated with genotype on the 

one hand, and parental education, on the other hand.  That is, if the missing 38 percent 

displays the same covariance with parental education, then the fact that we are 

measuring only two percent out of 40 merely implies that as we obtained a better 

measure of genotype, we would increase in a linear fashion the degree to which our 
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observed measure of genotype moderates the parent-offspring educational correlation.  

In this case of random measurement error being the problem behind the missing 

heritability in our sample, our inferences are still asymptotically unbiased, if attenuated, 

in the present specification.   

Finally, it could be the case that alleles are non-randomly distributed across 

social grouping making the genetic effect spurious.  Imagine white ethnic group A has 

higher education on average than white ethnic group B due for historical, cultural, or 

economic reasons.  Meanwhile, white ethnic group A also scores higher on the polygenic 

risk score for education for random reasons of genetic drift.  It could appear that the 

polygenic risk score causes educational attainment when it is really just acting as a 

proxy for socially observable differences (ethnic culture).  This is what geneticists call 

population stratification and is illustrated by the chopsticks problem (Hamer & Sirota, 

2000).  The weights for the alleles that go into calculating the polygenic risk score that 

were calculated by Rietveld et al. (2013) attempted to eliminate population stratification 

by controlling for the first two principle components in the data structure.  This is the 

typical approach in large scale, genome wide analysis.  However, it is certainly possible 

that given the multi-national consortium of cohorts, this is inadequate when the score is 

then transferred to a specific cohort within a given country or region of a country (as our 

datasets are).   

To address this concern, we run family fixed effects models.  By comparing full 

siblings from the same family, concerns about genetic-environmental confounding are 

obviated since the differences in polygenic risk score between siblings stem wholly from 

the random segregation of grandparental alleles during the meiosis that produces the 
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parental gametes.  Sibling differences in genotype, then, represent the result of random 

assignment at conception when a given spermatozoon fertilizes a specific oocyte.  We 

can then multiply sibling differences in genotype with within-family factors gender and 

age to see if there are any significant interaction effects without any concern that they 

may be confounded by population structure.  Finally, we also test for interactions 

between offspring educational genotype and parental educational genotype as a direct 

test of GxG interaction effects that may be spuriously generating any putatively observed 

GxE effects. 

 

Data 

 The data for the present study come from the Framingham Heart Study (FHS) 

second and third generation respondents as well as from the Minnesota Twin Family 

Study (MTFS).    Genotypes for the FHS were assayed using the Affymetrix GeneChip 

Human Mapping 500K Array and the 50K Human Gene Focused Panel. Genotypes were 

determined using the BRLMM algorithm (additional details can be found at [Jaquish, 

2007]). Of the original 500,568 SNPs, 260,469 were left after cleaning (e.g., HWE 

screens and a MAF cut-off of 0.05). The screens were conducted using all available 

individuals with genetic data, not only those that were included in this analysis.  The 

Minnesota Twin Family Study (MTFS) data were genotyped on the Illumina 660W Quad 

array.  Detailed information on the sample (Iacono & McGue, 2002) as well as on 

genotyping and quality control (QC) can be found elsewhere (Miller MB, Basu, S., 

Cunningham, J. M., Eskin, E., Malone, S. M., Oetting, W. S., McGue, 2013).   In brief, 

QC procedures were applied separately to each individual cohort. Individuals with a call 
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rate <0.95 (N=22), estimated inbreeding coefficient > 0.15 (N=2) (Yang et al 2011), and 

individuals showing evidence of non-European descent from multidimensional scaling 

(N=298, mainly individuals with Mexican ancestry) were removed. Individuals were 

considered outlying from European descent if one or more of the first four eigenvectors 

were more than three standard deviations removed from the mean. SNPs with minor 

allele frequency (MAF) < 0.01, call rate < 0.95 or Hardy-Weinberg Equilibrium test p-

value <0.001 were removed.  We show descriptive statistics against the non-Hispanic 

white sample of the 2012 General Social Survey for comparative purposes.  The GSS is 

well-known to social scientists and has been described extensively elsewhere (Davis & 

Smith, 1992).    

We did not focus only on non-Hispanic whites for reasons of political caution.  

Rather, the nature of our samples was that they were predominantly white to begin with.  

Added to this fact is that the polygenic risk score was obtained from a consortium that 

included only respondents of European heritage.  Since there are vastly different allele 

frequencies, haplotype structure and much greater genetic diversity among those of 

African descent (Tishkoff et al., 2009), it was not feasible to apply the polygenic score to 

black (or Latino) U.S. respondents.  It simply would likely fail to explain much variation 

in these populations.  That said, given the association between allele frequencies and 

race, we wanted to make sure the claims we were making would not be attributed to race 

instead of genotype per se.  This has been an issue in past research, especially when 

single, candidate gene approaches have been deployed (see, e.g., Freese & Shostak, 2009 

for a critical examination).  That said, within-family models of full-sibling differences 

obviates any confounding of race (or ethnicity) and genotypic effects.  But we would not 
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have easily been able to draw unbiased inferences from the between-family component 

of the analysis. 

 [TABLE ONE ABOUT HERE] 

 Table 1, above, shows descriptive statistics for these three samples.  The most 

stark difference between the populations is with respect to age.  The GSS shows a mean 

age of almost 50 years (49.05) with considerable variability (standard deviation of 17.10 

years).  The 3rd generation respondents of the Framingham Heart Study who are 

included in our sample (i.e. have valid responses on both the social and genetic variables 

of interest as well as valid data on their parents) are just under a decade younger at 

39.49 years of age on average, with concomitant lower variability as well (SD = 7.67 

years).  Meanwhile, the MTFS sample is much younger, with a mean age of 24.33 years 

and a standard deviation of less than a year (0.85 years) by virtue of its cohort design.  

While the age distribution does vary considerably, the sex ratio is almost the same, 

ranging from 50 to 54 % female across the samples.  Finally, the mean education levels 

also vary between the different studies for a variety of reasons including attrition, 

region, age, and cohort effects.  For example, both the FHS and MTFS display higher 

mean education levels for both the respondents and their parents.  This may be due to 

the fact that Minnesota and Massachusetts are two states with high average education 

levels as compared to the nation writ large.  For example, the mean rate of college 

graduation was highest in Massachusetts of all the states in the U.S. at 38.2 percent in 

2009; Minnesota was ranked 10 with a 31.5 percent rate that same year; meanwhile the 

nation as a whole had a mean bachelor degree rate of 27.9 percent (U.S. Census Bureau, 

2012).  These state differences—along with cohort effects (namely that the GSS sample is 
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older)—probably account for the higher parental education levels in the two state 

samples.  These differences are slightly mitigated in the respondent generation due to 

age effects—i.e. the fact that the offspring, who are younger than those in the GSS, 

probably have not all completed their educational careers.  This would explain why the 

younger sample from Minnesota has a mean education level of one-third year lower 

than the Framingham sample.   

 

Results 

 In column A of Table 2, we show a base model with no interaction effects.  Here 

the two datasets are pooled to increase statistical power.  We show parameter estimates 

for a basic model of educational inheritance that includes controls for sex, age, and for 

sample (i.e. MTFS v. FHS).  (We have also tested a model that interacts the sample 

indicator variable with all the other predictors.  This specification does not change our 

main results and thus for reasons of parsimony is not shown but is available upon 

request of the authors.)  In this base model, the respondent’s own genotype, as 

measured by the polygenic risk score, is standardized within each sample in order to 

make its magnitude interpretable.  It is significant in predicting completed years of 

schooling such that each additional standard deviation in the score yields a 0.16 

additional year of formal education.  The effect of maternal phenotype, meanwhile, is 

not significant net of offspring genotype. 

Next, in models B-D, we test whether measured genotype moderates (or is 

moderated by) the socio-demographic variables sex, age or parental education, 
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respectively.  None of these interaction effects is significant.  In Model E we even test 

whether the effect of genotype varies across the underlying populations.  That is, we 

interact offspring genotype with the sample from which the respondent came.  One 

could think of this as an omnibus test for any sort of unmeasured difference between the 

two populations, including, but not limited to: geography (Minnesota v. Massachusetts 

[and out-migrants from Massachusetts]), cohort (since the Minnesota sample is 

younger), or social class (since the education of the parents of the MTFS is higher on 

average than that of the FHS parents).  Yet, this interaction is not significant either.   

Of course, had we found significant interactions, it could have been the case that 

these putatively environmental measures we are interrogating were actually acting as 

proxies for unmeasured genotype.  This is not a concern for age, which should be 

orthogonal to genotype within the evolutionary window we are examining.  Likewise, 

though alleles on the X or Y chromosomes could have been driving an interaction with 

our measured autosomal alleles for the “sex” variable, this is unlikely, especially since 

we did not find a significant interaction effect.  It is of most concern for parental 

education in this study and in prior studies, since parental education may be driven by 

the very same genotype as we were measuring in the offspring generation.  In an ideal 

world, we would have an exogenous, environmental source of variation in parental 

education and interact offspring genotype with this instrumented measure of parental 

education.  Of course, it is hard to envision what such an instrumental variable would be 

that would not violate the exclusion restriction (i.e. have no direct effect on offspring 

education other than through years of schooling of the parent).  In lieu of this idealized 

study design, we control for maternal genotype in our models and do not find a 
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significant offspring genotype-parental phenotype interaction.  If we had found a 

significant interaction effect, endogeneity concerns would warrant caution in 

interpreting this as a true GxE effect.  Given our finding is null, such concerns are 

secondary. 

That said, in Model F, we estimate a parental genotype-offspring genotype 

interaction effect directly.  Parental genotype is the latent, lurking variable in prior 

studies that claim GxE interaction effects between genotype and social class 

(Turkheimer & Haley, 2003), so this is important test in conjunction with our null result 

in Column D.  And indeed, here we find the only significant interaction effect in all the 

models: between maternal genotype and offspring genotype.  This suggests that growing 

up with a genetically advantaged or disadvantaged mother enhances the effects of one’s 

own standing in the genetic lottery. The coefficient is positive such that a child born to a 

genetically average mother who by the luck of recombination has a genotype that is one 

standard deviation above the mean for the offspring generation will complete, on 

average 0.16 more years of schooling than the kid at the mean of the genotype 

distribution.  However, if that same child was born to a mother who herself was also one 

standard deviation above the mean in the genetic lottery, the child’s advantage would be 

almost a quarter year of schooling.  Note that this is net of how many years of schooling 

the mother actually completed—i.e. it is likely an interaction with her native cognitive or 

non-cognitive ability (that itself predicts education), not her achieved educational 

(social) status.   

We take the combination of non-significant results for plausibly environmental 

interactions in conjunction with the significant genotype-genotype interaction as 
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suggestive that prior work that has claimed GxE interaction effects by parental class or 

education level may have actually been picking up GxG interaction effects, given the 

endogeneity of parental SES/education to parental genotype.  

 [TABLE TWO ABOUT HERE] 

One concern might be that though the original parameters that went into the risk 

score calculation were based on a pooled analysis of 36 cohorts across a wide range of 

countries and controlled for principle components to address concerns of population 

stratification (Rietveld et al., 2013), the genetic score here could be acting as a proxy for 

unmeasured environment, in which case both its main effect and the interaction effects 

with other variables could be biased.  To address this possibility, in Table 3, below, we 

show results from sibling fixed effects regressions.  This design insures that genotype is 

a randomly assigned variable at conception since the only portion of it that varies is that 

which differs between siblings from the same parents.  That is, conducting within-family 

analysis breaks all potential rGE and population structure.  (Of course, there are 

environmental differences within families, but to the extent that these are correlated 

with genotype, they form part of the genetic effect as “endogenous environment” or 

niche formation [c.f. Jencks, 1980].)  In the base model, A, we find that indeed, a 

respondent’s genotype predicts her education even in this stricter test.  However, under 

this approach, none of the interaction effects are significant—even the interaction 

between mother’s genotype and offspring genotype that was significant in the OLS 

models of Table 2. 

[TABLE THREE ABOUT HERE] 
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 To further interrogate the maternal-offspring genotype interaction effect that was 

significant in OLS models, we bring fathers into the picture in Table 4, below.  Any 

significant parent-offspring GxG interaction effect is, of course, likely working through 

the family environment, but in a way that is endogenous to family genotype and thus 

will play out differently with respect to educational or policy interventions than an 

interaction with parental exogenous phenotype.  Namely, in the true G by exogenous E 

scenario, improving parental education would have a benefit of improving the returns of 

offspring genotype as well.  However, in the GxG situation, improving parental 

education would not have such dynastic effects.  Rather, an environmental intervention 

would need to be apply directly to the children to mimic higher innate ability of 

mothers. 

In a random mating situation, maternal genotype would be orthogonal to 

paternal genotype.  In our sample, the maternal and paternal scores are correlated at 

0.09, implying some slight positive assortative mating on educational genotype.  Thus, it 

could be that maternal genotype is acting as a proxy for paternal genotype.  To address 

this concern, in Table 4, below we rerun the analysis controlling for paternal phenotype 

and paternal genotype (since more data are missing for fathers, this analysis suffers 

from a reduced N).  The critical model is B, where even controlling for paternal 

variables, we find that the interaction effect of maternal and offspring genotype is still 

significant.  Meanwhile, in Model C, a paternal-offspring genotype interaction is not 

significant.  Given the prior that mothers are more critical to shaping the household 

learning environment for children than are fathers, this suggests that maternal genotype 

is not merely acting as a proxy for additional genetic influences in the offspring herself 
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(since father’s genotype should have had the same proxy effect if this were true), but 

rather, is picking up a true interaction between maternal and offspring genetically-

influenced ability.2  Finally, Model D shows interactions between both paternal and 

maternal genotype, on the one hand, and offspring genotype, on the other.  In this 

model, multicolinearity leads to null results for both coefficients.  (Likewise, higher 

order interactions—not shown—are also insignificant.) 

[TABLE FOUR ABOUT HERE] 

Discussion 

  The move from twin based models to studying SNPs and other genetic 

polymorphisms (such as Copy Number Variants) has opened up a particularly 

promising research program on genetic-(social) environmental (GxE) interactions in 

human populations. The estimation of such interaction effects has long been a goal of 

social scientists fond of expressing the dependence of genetic expression on social 

structure. However, how do we get from the sociological adage that “a gene for 

aggression lands you in prison if you’re from the ghetto, but in the boardroom if you’re 

to the manor born” to a serious empirical research program on the study of GxE 

interactions? Since at least the publication in Science (Caspi et al. 2002, 2003) of 

empirical evidence of gene-environment interaction (GxE), there has been growing 

interesting in integrating biological and social science approaches, data, and models. 

                                                            
2 This is really just a check since we deploy a linear, observed genotype constructed from 
alleles that are pruned for linkage disequilibrium, there is by design not likely to be any 
way that measured offspring genotype could be acting as a proxy for unmeasured 
genotype that varies systematically by parental genotype (and vice versa).  This is yet 
another an advantage of using a genetic risk score constructed out-of-sample rather 
than latent genotype or single SNP approaches. 
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Caspi et al. (2002, 2003) suggested an important, genetic source of heterogeneity in 

responses to adverse early-life events, attempting to partially answer the question of 

why some individuals are resilient to stressors while others suffer deleterious 

psychological sequelae. While these studies created substantial interest in potential 

gene-by-environment interactions, they also required replication and extension by other 

researchers using alternative data. Indeed, there are now competing meta-analyses 

suggesting either that the original results linking differential response to stress by 5-

HTT are reasonably robust (Karg et al. 2011) or lack consistent supporting replication 

(Risch et al. 2009). 

The discussion generated by this line of research in the biological and social 

science communities has been productive because it has led to a greater appreciation of 

the shortcoming of Caspi et al.’s research design - namely that the alleles and the 

proposed environmental modifiers may not be randomly assigned in the population and 

may therefore correlated with unobserved causal factors. For example, it may be the 

case that an observed interaction between a genetic variant and environmental exposure 

actually reflects differential risk of exposure (e.g., “genes selecting environments”) 

rather than the genetic modification of exogenous environmental exposures.  This is 

known as gene-environment correlation (rGE).  Further, measured environments—

particularly when fashioned by parents who also pass on their genes to the 

respondents—may be correlated with unmeasured genetic variation and thus could be 

acting as proxy for a gene-by-gene interaction rather than a true gene-environment 

interaction.   

 While some researchers have attempted to deal with this problem by finding 

exogenous sources of environmental influences such as state cigarette tax policies 
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(Fletcher, 2012), in utero differences in nutrition (Conley & Rauscher, 2013; Cook & 

Fletcher, 2013), legal policies (Guo, Cai, Guo, Wang, & Harris, 2010) or regional 

economic conditions (Lee, 2013), they still interact single SNPs with the given 

environmental stressor.  Since candidate gene studies like these cannot adequately rule 

out the possibility that alleles are not randomly distributed across unmeasured 

environments, it is entirely possible that such studies are detecting ExE interactions 

rather than GxE effects—between, for example, tobacco taxes and state educational 

differences. 

Such potential confounding is known as “population stratification”—a concept 

popularized by Hamer and Sirota (Hamer & Sirota, 2000) who used the example of a 

“chopstick gene” appearing because of data that mixes Asians and Caucasians.  The 

above mentioned studies all limit their samples to whites; however, even within an 

ethnically homogenous population, genotypes may be acting as proxies for different 

places or social environments (Benjamin, Cesarini, Chabris, et al., 2012; Cardon & 

Palmer, 2003).  By moving GxE research to analysis of genome-wide data, we can 

address this concern of population stratification using controls for principle components 

(Price et al., 2006). 

Second, most complex, behavioral phenotypes are highly polygenic in nature as 

we have shown for educational attainment in Figure 1.  Thus, knowing whether the 

“overall” measured genotype for a quantitative trait like educational attainment 

interacts with environmental conditions is arguably of more scientific importance than 

estimating GxE effects at particular locus—whose effects will no doubt be overwhelmed 

by the thousands of main effects (and interactions) at other loci.  
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 Despite the advantages of our approach, in the present study we do not enjoy 

exogenous environmental shocks to parental education (i.e. a natural experiment) that 

we can apply within our data; thus, we cannot be 100 percent sure that we have broken 

the rGE and that our measured environmental variables are indeed not proxying for 

unmeasured genetic influences (GxG).  That said, we take comfort in four facts: First, we 

deployed principle components in the construction of the index to address the potential 

for rGE.  Second, at least two the environmental variables with which we interact 

genotype are putatively orthogonal to genotype: sex and age.  (Sex is uncorrelated with 

our measured genotype since we construct the index only from autosomal genes, though 

any effect of sex could still be reflecting unmeasured X or Y linked genotype.)  Third, sex 

and age, which vary within families, do not interact with genotype (which also varies 

within families) even in sibling fixed effects models.   

 Two much more important limitations to our study should provide grist for 

future researchers:  First, as mentioned before, our measure of genotype, while highly 

robust to population stratification, only explains two percent of the variance in 

education.  This is likely due to a number of factors, not the least of which is a lack of 

statistical power—notwithstanding the risk score’s calculation on 126,559 individuals.   

Rietveld et al. 2013 show that with increased power such attenuation bias in the 

predictive power of the GRS would decline.  A second concern with our 

operationalization of genotype rests in the fact that by design, it is a linear predictor of 

main effects based on meta-analysis across a wide range of environments.  In one way, 

this represents an advantage to our approach in that we are working from well-

established main effects to see if they vary by context.  Such a directed search effectively 
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reduces the number of hypotheses tested from millions (of SNPs) times the number of 

environmental regimes to a handful (i.e. one index score times the number of 

environmental factors tested).  However, a cost to this approach is that it may be the 

case that we are testing only that part of the genetic influence on education that is the 

most robust (i.e. inelastic) to environment.   

 

Conclusion 

 If researchers studying educational attainment merely want to describe the 

extent to which children resemble parents on this dimension, they need not concern 

themselves with the mechanisms by which such an intergenerational correlation is 

obtained.  However, if scholars seek to understand how this social fact comes into being 

and, further, wish to know whether policies that affect the distribution of education in 

one generation will have distributional consequences in the next generation, then 

whether or not the observed parent-child correlation in education varies by genotype 

should be of utmost importance.   

We find absolutely no evidence that the effect of genotype varies by maternal 

education or any of the other variables in our analysis. Besides maternal education, we 

also tested interaction effects with sex, age and study cohort.  All null findings.  

Meanwhile, we did detect a maternal genotype-offspring genotype interaction on 

offspring education.  This provides at least limited circumstantial evidence that there 

are two parallel systems of educational inheritance at work—social and genetic—and the 

two do not articulate.  However, it also suggests that if policymakers wish to counteract 
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the social sorting effects of genetics, they will have to look hard for levers since—at least 

in our observational data—we could not find any environmentally manipuable factor by 

which the effect of the GRS was muted (or enhanced). 

This last point stands in contrast to the findings of Turkheimer and Haley who 

deploy traditional twin models and find that among low income children the heritability 

of IQ is lower than it is for higher income children (Turkheimer & Haley, 2003) as well 

as research by Guo and Stearns (Guo & Stearns, 2002) who show that for blacks, the 

heritability of IQ is lower than for whites.  In both cases, the researchers interpret this to 

mean that environmental conditions—such as a lack of parental resources or poor 

schooling conditions or simple racism—prevent the full realization of genetic variation 

in this population.  In other words, there is an implied GE covariance such that potential 

intellectual ability is inherited but requires environmental conditions of human capital 

investment to be realized in the form of IQ (or educational attainment or income for 

that matter; c.f. Becker & Tomes, 1994; Behrman, Pollak, & Taubman, 1995; Behrman, 

Rosenzweig, & Taubman, 1996).  They obtain this result from traditional ACE twin 

models and not from measured molecular data.  Thus it could be that differences in the 

numerator (i.e. genetic heterogeneity) are driving their results and not differences in the 

denominators (i.e. phenotypic variability).  By contrast, here we know that the 

underlying variance of GRS is not different by population subgroups (see Supplemental 

Table 1 for these figures), and we do not find any evidence that its effect varies by social 

class position (i.e. parental education), or for that matter, age, sex or cohort.3  

                                                            
3 Of course, by definition, when we group respondents by phenotype, the variance 
within those categories difference.  The more critical data point is that the standard 
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Meanwhile the fact that maternal genotype does moderate the effect of offspring 

genotype suggests that perhaps prior researchers claiming to have found parental SES-

genotype GxE interactions are actually picking up GxG interactions. 

An important caveat to mention to all this analysis is that heritability—i.e. genetic 

influence—is, of course, highly contingent on social structure whether measured latently 

through kin correlations or directly by a GRS.  Indeed, heritability is not a fixed 

parameter across time and place but is always a “local perturbation analysis” estimate as 

cogently argued by Feldman and Lewontin 35 years ago (Feldman & Lewontin, 1975: 

1163).   These authors go on to claim that “a complete analysis of the causes of variation 

would involve predicting the changes in the IQ distribution of genotypes and 

environments Φ(G,E).  However, such analysis would require that we know the first 

partial derivatives of the unknown function f(G,E).”  Instead, behavioral geneticists (and 

we here) typically pursue on a strategy that relies a small fluctuation around the 

observed mean values.  So while we cannot reject the null hypothesis that genetic effects 

on education do not depend on social structure, we cannot reject it in perpetuity.  Nor 

can we aver with any certainty that our polygenic risk score will be at all predictive in 

future generations as the social institution of education changes form.  That said, we still 

believe it is useful to understand the relationship between genotype and phenotype even 

in partial equilibrium when it comes to important social outcomes like educational 

attainment.  Our estimates then become the fodder for future analysis of waning or 

waxing articulation between social and genetic reproduction.  

                                                                                                                                                                                                

deviations for our genotypic measure do not systematically vary by grouping.  (See Table 
S1.) 
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. Mean SD Mean SD Mean SD

Education (HGC) 14.25 2.79 15.08 2.06 14.75 2.35
Maternal Education (HGC) 12.29 3.12 13.66 2.26 13.87 1.9
Paternal Education (HGC) 12.23 3.74 14.41 3.04 14.24 2.35
Female Sex 0.54 0.5 0.5 0.5 0.54 0.5
Age 49.05 17.1 39.49 7.67 24.33 0.85
Polygenic Risk Score -- -- -0.00000971 7.21E-06 9.65E-07 9.65E-07
Maternal Polygenic Risk Score* -- -- -9.89E-06 7.51E-06 1.14E-06 8.44E-06
Paternal Polygenic Risk Score* -- -- -9.65E-06 7.12E-06 6.28E-07 8.49E-06
N 1052 1256 1291
Families 1052 361 727

*N for FHS for this variable is 741 individuals from 241 familie

Table 1
Descriptives by Sample

GSS FHS MTFS



Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE
Female Sex 0.4232836 0.0822 0.4247446 0.08223 0.4254049 0.0821 0.425081 0.08209 0.4257097 0.0821 0.4255738 0.08199
Age 0.016606 0.0093 0.0165869 0.00926 0.0163079 0.0092 0.0165013 0.00923 0.0163064 0.0092 0.017037 0.0092
Mother's Education 0.3953004 0.0292 0.3953289 0.02919 0.3987243 0.0288 0.3983944 0.02918 0.3980654 0.029 0.3954789 0.02923
Respondent's Genetic Score 0.1600584 0.0483 0.2514799 0.13361 0.3282805 0.1645 0.2119399 0.08067 0.1079933 0.0683 0.156169 0.04846
Mother's Genetic Score -0.0353382 0.0517 -0.0345381 0.0517 -0.034284 0.0518 -0.0337779 0.05187 -0.0336817 0.0519 -0.041464 0.0513
Sample Indicator (MTFS=1) 3.700511 0.3455 3.698393 0.34601 3.731763 0.342 3.725737 0.34486 3.721953 0.3435 3.717785 0.3455
Respondent Score * X:
Female Sex -0.0609164 0.0812
Age -0.005678 0.0052
Mother's Education -0.0069269 0.00792
Sample Indicator (MTFS=1) 0.0843433 0.0838
Mother's Genetic Score 0.0879634 0.03838
Constant 8.417656 0.5781 8.41689 0.57868 8.376916 0.5724 8.380826 0.5758 8.388687 0.5743 8.341605 0.57893
R2 0.1387 0.139 0.1393 0.1391 0.1392 0.1412
N 2478 2478 2478 2478 2478 2478
Families 1088 1088 1088 1088 1088 1088
*Coefficients in italics are not  significant at p<.05 (one-tailed); bold indicates interaction effect significant
a fully saturated model with interactions between sample indicator and all other variables does not change main results.

Table 2
OLS Regresion Models with Controls for Sample and Standard Errors Robust to Clustering on Family ID*

A B C D E F



Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE
Female Sex 0.4173009 0.0822 0.4095299 0.1165 0.4190047 0.1163 0.4190689 0.11634 0.4185908 0.11631 0.4232678 0.11653
Age -0.0034561 0.0093 -0.0032992 0.0109 -0.002817 0.0109 -0.0041424 0.01093 -0.0034115 0.0109 -0.003946 0.0109
Mother's Education
Respondent's Genetic Score 0.2139994 0.0483 0.3999248 0.1704 -0.050436 0.2654 0.0370288 0.1763 0.2577071 0.07295 0.2129351 0.06493
Mother's Genetic Score
Sample Indicator (MTFS=1)
Respondent Score * X:
Female Sex -0.124644 0.1056
Age 0.007416 0.0072
Mother's Education 0.0152166 0.01409
Sample Indicator (MTFS=1) -0.2093718 0.1597
Mother's Genetic Score 0.0545919 0.06
Constant 14.28969 0.5781 14.29666 0.3791 14.27067 0.3796 14.30508 0.37938 14.2885 0.37904 14.26542 0.3801

R2 0.684 0.6844 0.6843 0.6843 0.6845 0.6842
N 2478 2478 2478 2478 2478 2478
Families 1088 1088 1088 1088 1088 1088
*Coefficients in italics are not  significant at p<.05 (one-tailed); bold indicates interaction effect significant
a fully saturated model with interactions between sample indicator and all other variables does not change main results.

Table 3
Fixed-Effects Regresion Models with Controls for Sample and Standard Errors Robust to Clustering on Family ID*

A B C D E F



Coefficient SE Coefficient SE Coefficient SE Coefficient SE
Female Sex 0.4479851 0.0887 0.4511392 0.08223 0.4529339 0.0887 0.4543166 0.08851
Age 0.0197813 0.0104 0.0203089 0.00926 0.0200848 0.0103 0.0204484 0.0103
Mother's Education 0.286311 0.04 0.2864074 0.02919 0.286009 0.0402 0.2861657 0.04028
Respondent's Genetic Score 0.18227 0.0625 0.1754178 0.13361 0.18421 0.0625 0.1780027 0.06278
Mother's Genetic Score -0.0720091 0.0576 -0.0748196 0.05172 -0.074117 0.0576 -0.07593 0.0575
Sample Indicator (MTFS=1) 4.438245 0.4081 4.463687 0.34601 4.446688 0.4079 4.465786 0.40831
Father's Education 0.1570781 0.0382 0.1579459 0.03827 0.1573671 0.0384 0.1580183 0.03836
Father's Genetic Score -0.0035049 0.0565 -0.00225 0.05642 -0.010108 0.0563 -0.007395 0.0565
Respondent Score * X:
Mother's Genetic Score 0.0789458 0.04184 0.0658736 0.0419
Father's Genetic Score 0.062559 0.0401 0.0467692 0.0405
Constant 7.473592 0.6543 8.41689 0.65549 7.415155 0.653 7.358418 0.65546
R2 0.1509 0.1528 0.1523 0.1535
N 2032 2032 2032 2032
Families 980 980 980 980
*Coefficients in italics are not  significant at p<.05 (one-tailed); bold indicates interaction effect significant
a fully saturated model with interactions between sample indicator and all other variables does not change main results.
higher order interactions (such as between mother's and father's genetic score and between that interaction and child's score
are not significant and not shown.

Table 4
OLS Regresion Models with Controls for Sample and Standard Errors Robust to 

Clustering on Family ID; Father's Characteristics Included*

A B C D



. SD N SD N SD N SD N SD N SD N

Maternal Education <13 7.11E-06 548 7.05E-06 410 6.99E-06 374 2.04839 548 0.96181 548 2.41386 548
Maternal Education 13+ 7.18E-06 708 7.59E-06 558 6.95E-06 519 1.855789 708 1.75959 708 2.780829 708
Female Sex 7.02E-06 671 7.28E-06 522 6.97E-06 466 2.000245 671 2.1298 671 2.984441 671
Male Sex 7.43E-06 585 7.78E-06 446 7.04E-06 427 2.121904 585 2.39459 585 3.099313 585
Age < 40 7.45E-06 647 7.45E-06 549 7.14E-06 515 1.932445 647 2.08129 647 2.866482 647
Age 40 + 6.94E-06 609 7.54E-06 419 6.78E-06 378 2.182196 609 2.38851 609 3.09353 609
All respondents 7.21E-06 1256 7.51E-06 968 7.00E-06 893 2.063438 1256 2.25656 1256 3.039379 1256

. SD N SD N SD N SD N SD N SD N

Maternal Education <13 8.01E-06 714 7.33E-06 796 8.02E-06 611 1.916257 508 0.56615 814 1.734476 654
Maternal Education 13+ 8.03E-06 1653 8.62E-06 1534 8.49E-06 1357 1.800485 1143 1.55932 1566 2.316541 1436
Female Sex 7.84E-06 1286 8.46E-06 1176 8.25E-06 1058 1.806518 868 1.96626 1176 2.437781 1054
Male Sex 8.27E-06 1099 8.12E-06 965 8.54E-06 841 1.933303 783 1.81187 965 2.201467 837
Age < 25 8.15E-06 980 8.12E-06 903 8.37E-06 809 1.839472 935 1.89157 903 2.43601 803
Age 25 + 7.98E-06 1387 8.33E-06 1427 8.35E-06 1159 1.955743 716 1.90677 1477 2.26996 1287
All respondents 8.05E-06 2367 8.25E-06 2330 8.36E-06 1968 1.89106 1651 1.90066 2380 2.334907 2090

Minnesota Twin Family Study Sample

Table S1
Distribution of Key Independent and Dependent Variables by Subgroup

Framingham Heart Study Sample

Mom Score Dad Score Education Mom Education

Dad Education

Dad Education

Score Mom Score Dad Score Mom EducationEducation

Score


