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Abstract

In many countries, fuel-economy standards mandate that vehicles meet a certain fuel economy,
but heavier or larger vehicles are allowed to meet a lower standard. This has the perverse
implication of allowing automakers to meet standards either by improving fuel economy or by
increasing weight, which lowers fuel economy and increases externalities related to accidents.
This is but one example of an attribute-based regulation, in which the regulation imposed on a
product depends on both the externality it creates and some other attribute. Attribute-basing
potentially motivates firms and individuals to strategically alter the attribute, thereby endoge-
nously altering the stringency of the regulation. This paper develops a theory of attribute-basing
to demonstrate the costs and benefits of its use. The paper then empirically examines the con-
sequences of attribute-based fuel-economy standards in Japan, where fuel-economy standards
are a notched attribute-based function of vehicle weight. We use cross-sectional and panel tech-
niques to demonstrate that attribute-based regulation has significantly altered the distribution
of vehicle weight in Japan, where 10% of vehicles bunch at weight notches. For cars whose weight
is altered in response to the policy, we estimate that the alteration generates a welfare loss from
the exacerbation of weight-related externalities of $1,500 per unit sold, which translates into a
$700 million annual loss across the Japanese auto market.
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1 Introduction

The goal of this paper is to advance economists’ understanding of attribute-basing. Attribute-

basing is a feature of many policies aimed at correcting externalities, but it appears to be at

odds with the basic logic of Pigouvian taxation. Attribute-based policies are policies in which

the corrective policy—which could be a regulation, a tax or a subsidy—imposed on a product is

not simply a function of how much externality the product creates, but instead depends on how

much externality the product creates relative to some benchmark, which itself depends on some

other attribute of the product. Attribute-basing is common to corrective policies, in particular

policies aimed at improving the energy efficiency of energy consuming durable goods, but there is

no academic literature that explores the optimality, merits and problems with such policies.

Attribute-basing is perhaps best explained by example. Corporate Average Fuel Economy

(CAFE) standards in the United States became attribute-based as of 2012. Prior to 2012, every

automaker had to sell vehicles that met or exceeded a fleet-average fuel economy of some particular

level, which was common to all producers. Since 2012, CAFE specifies a schedule of fuel economy

targets for each vehicle that is a declining function of the vehicle’s “footprint”—the rectangular

area inside of the vehicle’s tires. Each automaker has to meet a standard equal to the average target

of the vehicles that it sells, so that automakers who sell larger vehicles on average are permitted to

have a less efficient fleet. Automakers who exceed their standard are permitted to sell their excess

credits to other automakers, so that the policy ultimately imposes a single minimum on the entire

market that depends on the entire market’s average footprint.

Figure 1 illustrates this schedule for 2012 and shows the large difference in targets across vehicles

and automakers. The Honda Fit (a compact car) has a target fuel economy of 36.2 miles per gallon,

whereas the Chrysler 300 (a full-size sedan) has a target of 29.4. The steepness of this schedule

creates notable differences in the fuel economy required of different automakers who produce cars

of different average size. Ford and Toyota, whose targets differ by 1.4 miles-per-gallon in 2012, are

labeled in the figure. Vehicle footprint is not immutable, however, so the footprint-based standard

not only creates dispersion in requirements across automakers, but also creates an incentive for

automakers to enlarge footprint, which runs counter to the goals of the policy by endorsing larger

(and hence less energy efficient) vehicles.
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Figure 1: Example of an attribute-based standard: 2012 U.S. new car CAFE
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2012 Car Standard
Estimated Flat Equivalent

As of 2012, the CAFE target fuel economy for a vehicle depends on its footprint. Three

footprint values are labeled with example vehicles that have that footprint. The flat equivalent

is the EPA’s estimate based on the distribution of footprint in current fleet. Prior to 2011,

the new car CAFE standard was a flat standard at 27.5 mpg. The firm specific target values

for Ford and Toyota based on model year 2011 average footprint is labeled. Data taken from

the Federal Register, 40 CFR Part 85.

Such attribute-basing is ubiquitous in the realm of energy efficiency policies. Appliance stan-

dards are typically a function of the size or features of the appliance. The same is true for the

cutoff value to qualify an appliance for Energy Star certification, which is frequently also used as

the criteria for appliance rebate programs meant to conserve energy. The hybrid vehicle tax credit

in the U.S. was attribute-based because the subsidy amount was based on each hybrid’s gasoline

conservation relative to a benchmark vehicle, determined by its market segment. The U.S. is not

alone in having attribute-based standards for automobiles. The EU is currently phasing in its

first legally binding fuel-economy standards, which has a similar attribute scheme that uses weight

rather than footprint. Japan does the same. Chinese fuel economy standards are an attributed-

based function of engine displacement. Label ratings, which identify a vehicle on a scale of most to
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least polluting in various places, including Europe and Korea, depend on vehicle size. All of these

policies provide a lower standard for products that are larger and more polluting, which generates

perverse incentives.1

A common feature of attribute-based policies is that the slopes of the target function are

drawn to fit data. In the U.S., to determine the footprint-target function in the reformed CAFE,

government officials used engineering information to estimate the footprint and fuel economy of

a fleet of vehicles that used a suite of technological improvements deemed to be feasible in the

near future. They then fit a line to the data to determine how quickly fuel economy declined as

footprint rose and used this estimated slope as the slope of the attribute-based target. In Japan, the

formulation is somewhat different, but it has similar implications. When considering a tightening

of fuel economy standards, the Japanese government defines weight categories. Within each weight

category it identifies the vehicle with the highest fuel economy. It then determines the required

fuel economy rating for vehicles in that weight category in some future target year by multiplying

the fuel economy of this “front runner” by some factor, requiring a percentage improvement over

the leader in the current period.

In spite of the frequent appearance of attribute-basing in actual policies, the academic literature

has provided little scrutiny of its potential costs and benefits. To the extent that these policies

are aimed at correcting externalities related to energy consumption, attribute-basing would seem

to have no role in an optimal policy because the first-best Pigouvian tax on energy consumption

does not depend on anything other than marginal damages. Thus, on its face, attribute-based

regulation appears to be superfluous in terms of achieving efficient changes in energy consumption,

and it creates an undesirable byproduct via the distortion of the choice of the attribute itself.

Might there be additional considerations that make attribute-basing a good idea? If so, what

would characterize the optimal design of an attribute-based policy? If not, so that attribute-

basing is inefficient, what distortions does it create and what determines the size of any associated

deadweight loss? Is there empirical evidence that these distortions exist? Are they large?

This paper aims to make an important first step in the analysis of attribute-basing by proposing

answers to these questions and generally evolving our understanding of this class of public policy.

1Counterexamples include circulation and registration taxes for vehicles in Europe. In several countries, these
taxes are an increasing function of vehicle characteristics, like cylinders or weight, that are positively correlated with
pollution.
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We begin in section 2 by establishing an analytical framework that considers two distinct cases,

which differ in whether or not the attribute-based regulation allows compliance trading. For policies

that allow compliance trading—that is, firms that exceed their standard can sell their excess com-

pliance to other firms who fall short—a regulation imposes a uniform shadow price on all market

actors. An example of such a policy is CAFE. In this case, attribute-based regulation is identical

to a uniform corrective tax, and the logic of Pigou prevails: attribute-basing is unnecessary and

distortionary.

The use of attribute-based regulation in this case creates several distortions. First, it creates a

direct distortion analogous to a Harberger triangle in the choice of the attribute. It may also induce

an indirect distortion in the choice of energy efficiency. The existence of an attribute-based target

causes the second-best tax rate on energy consumption to be below the first-best Pigouvian rate,

with the difference between the first and second-best taxes depending on the proportion of com-

pliance that comes from raising the attribute versus improving energy efficiency. Attribute-basing

creates additional distortions when the attribute itself is associated with an unpriced externality.

This applies to the case of automobiles when the attribute is weight or footprint because those

characteristics are correlated with safety externalities (Anderson and Auffhammer Forthcoming).

In the second case, when compliance trading is not allowed, all of the same distortions exist,

but there are potential benefits from attribute-basing. If trading is not allowed, then a uniform reg-

ulation that forces all products to meet the same energy efficiency minima will generate dispersion

in marginal costs of compliance, which is inefficient. Attribute-basing can reduce this dispersion

to the extent that marginal costs are correlated with the attribute. The second-best attribute

slope will generally be less steep than the observed relationship between the attribute and the

externality, however, because it represents a compromise between equalizing marginal costs of com-

pliance (which calls for a steeper slope) and distortions in the choice of the attribute induced by

the implicit subsidy (which calls for a flatter slope). Real world slopes that were drawn to fit data

are the second-best solution only when the attribute is exogenous and is not therefore distorted

by the implicit subsidy. Even in this case, however, attribute-basing is less efficient than trad-

ing because attribute-basing cannot fully equalize marginal compliance costs unless the attribute

perfectly predicts compliance costs.

The paper then focuses on empirical evidence from Japanese fuel-economy standards, which
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are particularly amenable for analysis, in section 3. Japanese fuel economy standards require that

automakers meet a minimum fuel economy standard, but the standard depends on each vehicle’s

weight, with heavier vehicles needing to meet laxer standards. Moreover, the minima are discrete

functions of weight class, so that vehicles on either side of a weight threshold are required to meet

discretely different standards. These “notches” provide a straightforward way to identify distortions

in the attribute in response to policy.

Cross-sectional data provide clear evidence of bunching in the weight distribution. We estimate

that around 10% of Japanese vehicles increase their weight in response to the policy, with the

average weight increase being about 100 kilograms for the effected vehicles. We corroborate these

estimates with panel data, and we also estimate an elasticity of the change in weight with respect

to the fuel economy standard’s stringency and conclude that a one percent increase in the strin-

gency of the standard leads to a .16 percent increase in vehicle weight. Relating these estimates to

our theoretical results, we conclude that the second-best subsidy on fuel economy in Japan is 40%

lower than the first-best subsidy due to these weight distortions. We also estimate a lower bound

on the welfare distortions from the existing policy by quantifying the first-order distortion due to

exacerbation of unpriced safety externalities. Based on recent estimates of the value of externali-

ties related to vehicle weight, we estimate that the attribute-basing in the Japanese fuel-economy

standards creates welfare losses on the order of $1525 per effected car sold, which aggregates to

roughly $686 million annually across the new car market in Japan.

To the best of our knowledge, we are the first paper to take an analytical approach to assessing

the merits and distortions caused by attribute-basing in policies aimed at correcting externali-

ties. Our work is nevertheless related to several strands of literature. The literature on the move to

footprint-based CAFE rules in the U.S. includes Whitefoot and Skerlos (2012), which uses engineer-

ing estimates of design costs and a discrete-choice economic model to predict how much automakers

will manipulate footprint in response to a tightening of CAFE standards. That study concludes

that an increase in footprint will be a major source of adjustment, which is broadly consistent with

our findings of considerable manipulation of weight in the Japanese car market. Gillingham (2013)

discusses the implicit incentive for the expansion of footprint in a broader discussion of CAFE

policies. Jacobsen (2013) addresses the safety impacts of footprint-based standards in the U.S.,

which our work will also touch on. Our consideration of notched attributed-based policies relates
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to the literature on notched corrective taxation, which began with Blinder and Rosen (1985), and

includes prior analysis of automobile fuel economy in Sallee and Slemrod (2012).

Our focus in this paper is on attribute-basing in regulations aimed at the energy efficiency of

durable goods. Attribute-basing is, however, found in many areas of policy. Perhaps the most

prominent is related to firm size. Firms below a certain size are exempted from some policies,

including provisions as diverse as the Clean Air Act, the Affordable Care Act, livestock regulations,

and securities regulations. The strength of other policies, such as liability for worker safety and

unemployment insurance tax rates, depend on firm size.2 To the extent that these and other policies

are intended to correct for an externality, our framework may prove useful in understanding the

welfare properties of these types of policies as well.

2 Theory

Our theoretical model treats attribute-based regulation as a problem that is very closely related to

standard optimal policy problems for correcting externalities. We suppose that durable goods have

a characteristic that generates an externality, e, and another characteristic, a, which is correlated

with e but does not itself directly cause an externality. Attribute-basing is said to exist when policy

treatment depends on a as well as e. Each of the durable products in the market is assumed to

produce a different level of the externality in the absence of policy, and each is allowed to have

different costs of abatement.

In this setting, the logic of Pigou suggests that efficient abatement will occur when each source

of the externality (each product) faces the same marginal incentive to abate. This is indeed what

we find in our model. Proposition 1 states that the first-best abatement can be achieved by placing

a tax (or, equivalently, a single standard with compliance trading) equal to marginal damages on

e with no attribute-basing. We go on to show that, when such an instrument is available, the use

2Sneeringer and Key (2011) find evidence that firms downsize livestock operations in order to stay under a size
threshold that leads to milder federal regulation. The Clean Air Act, which restricts economic activity within counties
that have exceeded pollution limits, exempts sufficiently small firms. Becker and Henderson (2000) find that firms
locate in unregulated counties, but they do not find evidence that firms manipulate size to avoid the regulation. Gao,
Wu, and Zimmerman (2009) find suggestive evidence that firms reduced size in order to avoid security regulations
imposed by the Sarbanes-Oxley bill. A number of theoretical models have been developed to explain when exempting
small firms for taxation or regulation might be optimal. These results are driven either by the existence of per-firm
administrative costs, as in Dharmapala, Slemrod, and Wilson (2011), or by the inability of the planner to directly tax
externalities, as in Brock and Evans (1985) and Kaplow (2013). These conditions differ critically from our setting,
which is free of administrative costs and allows the planner to directly tax the externality.
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of attribute-basing creates distortions—attribute-basing creates an implicit subsidy for a and leads

to choices of a in excess of the social optimum. In proposition 2 we characterize the second-best

attribute-slope when the tax rate is fixed exogenously to some level other than marginal damages.

In some cases, the efficient policy may be unavailable because, perhaps due to political con-

straints, the policy is required to be a minimum efficiency standard (rather than a tax) and compli-

ance trading is disallowed or infeasible.3 When there is no compliance trading, there is an efficiency

role for attribute-basing. If every product is required to meet the same minimum efficiency stan-

dard, and there is no compliance trading, then marginal costs of abatement will vary. To the extent

that a is correlated with e, making the regulatory minimum a function of a can help to equalize

marginal compliance costs, which improves efficiency. The steeper is the attribute-slope, however,

the greater will be distortions in the choice of a. As a result, the optimal attribute-based policy in

this setting will be an “interior solution” that does not fully equalize marginal abatement costs, but

instead trades-off cost equalization with minimizing distortions in a. This is our proposition 5. We

emphasize that, in this setting, attribute-basing is never able to recover the first-best allocation,

and as such is always inferior to the introduction of compliance trading.

2.1 Model setup

We begin by describing our model. After presenting results, we return to a discussion of our

substantive assumptions. Our model is made up of a demand side, a simple supply side, and a

planner who is able to choose either a tax or a regulatory policy that can target both e and a

directly.

For demand, we model N discrete types of consumers, denoted n = 1, ..., N , who differ in their

tastes. Each consumer is assumed to buy one unit of a durable good that has two characteristics,

one that is related to an externality (e.g., energy efficiency), denoted e, and some other attribute

(e.g., footprint), denoted a. The consumer pays price P (a, e) for one unit of the durable and spends

the remainder of his/her exogenous income I on an outside numeraire good x, the price of which

3If e itself were unobservable to the policy-maker, it is easy to imagine that designing a regulatory policy based
on a would be second-best if a and e are correlated. For example, Fullerton and West (2002) consider how well a
tax on cars and fuel can mimic an unavailable direct tax on emissions. More generally, a variety of theories have
been developed showing how apparently inefficient policies can be optimal when direct targeting of an externality
is unavailable. Our model presumes that e is observable, however, which is consistent with all of the examples of
attribute-basing cited above.
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we normalize to 1. There are measure 1 consumers.

Consumer utility is determined by a flow utility from the durable Un(a, e)—which varies across

types, the utility from consumption of all other goods, denoted h(x), and an externality φ(E), where

E is the sum of e over all consumers. We are not particularly interested in complementarities of

consumption between the energy-consuming durable and the remainder of the consumer’s consump-

tion bundle (or the externality), so we assume that utility is separable in the three components.

Consumer welfare is thus Wn = Un(a, e) + h(x) + φ(E).4

Given our assumption of quasilinearity, the marginal utility of income will be the consumption

value of the numeraire h′. To simplify notation, we assume that there is a constant marginal utility

of income and we scale utility by this value. Likewise, for notational convenience, we assume that

the externality has a constant marginal damage, so that φ(E) = φ · E. We then rewrite consumer

welfare as W = Un(a, e) + x+ φ · E.

For policy, we consider both tax and regulatory instruments.5 In the case of taxation, the

government can levy a tax or subsidy on the durable that is a function of both attributes, denoted

t(a, e). For energy efficiency policies, we have in mind that e is a positive externality, so we write

t(a, e) as a subsidy, and the optimal policy will involve increasing the consumption of e. Our

model will focus on the case with a linear tax on e and an attribute-based target function, which

implies that t(·) will have the form t(e− σ(a)), where σ(a) is the attribute target function, which

is normalized so that σ(0) = 0.6

In our model, all revenue is recycled through a lump-sum demogrant G. In all cases we assume

that there are many individual consumers and each therefore ignores their own role in creating the

externality—i.e., they take E as fixed. The consumer’s optimization problem is then:

max
a,e,x

Wn =Un(a, e) + x+ φ · E

s.t. I +G ≥ P (a, e)− t(a, e) + x.

4Note that it is reasonable to model energy efficiency as affecting utility only through cost savings that enable
greater consumption of the numeraire. We use the more general form here in the hopes that our model be useful
beyond the case when e denotes energy efficiency.

5We do not include any uncertainty in our model. In the presence of uncertainty, tax and regulatory policies will
differ in the ways established by the prices versus quantity literature, as in Weitzman (1974).

6Under quasi-linearity, any constant term in the σ(·) function will simply pass through into the demogrant and
have no influence on the final allocation.
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Note that this differs from a standard consumer choice problem over the three goods a, e and x

only in that the price and tax paid for a and e are possibly related to each other and are therefore

nonlinear. This is the complete representation of the demand side of the market with a tax policy.

In the case of regulation, the government has no tax policy and collects no revenue, but it can

impose a regulatory constraint on a product that e ≥ σ(a) + κ where we impose that σ(0) = 0 for

the same reasons as in the tax case. We write the Lagrangean of the consumer’s problem in this

case as:

max
a,e,x
Ln = Un(a, e) + [I − P (a, e)] + φ · E + λn[e− σ(a)− κ],

where λn is the (endogenous) shadow price of the constraint. In all cases, we assume that the

planner solves a utilitarian social welfare function that sums the utilities of all consumers, giving

equal weight to each consumer.

On the supply side, we assume perfect competition. Specifically, we assume that there is a

constant marginal cost of the quantity produced of a good with attribute bundle (a, e), which we

denote as C(a, e), and that there are no fixed costs or barriers to entry. This means that (in

the absence of policy) a consumer will be able to purchase any bundle of attributes (a, e) and

pay P (a, e) = C(a, e). Furthermore, because there are no profits in equilibrium due to free entry

and the lack of fixed costs, firms will make no profits and consumer surplus, net of all taxes and

subsidies, will be a sufficient welfare statistic. We assume that C(a, e) is rising and convex in both

attributes. In all real world policies that we know of, the attribute a—when written as a good

as opposed to a bad—is negatively related to energy efficiency e. (For cars, a is either footprint

or weight, both of which correlate negatively with fuel economy; for appliances, a is a measure of

size, which is also negatively correlated.) Thus, we assume that ∂2C/∂a∂e ≥ 0. This ensures the

convexity of the budget set.7

For the policies we have in mind, the derivative of σ(a), denoted σ′, will be negative—as a

increases, the target falls and, holding e constant, the subsidy will rise. In this case, attribute-

basing will implicitly subsidize a, at a rate of −tσ′. Figure 1 illustrates the target function for

the case of CAFE. In that policy, the target for the Honda Fit is 36.2 mpg. Suppose that the

7Empirical estimates in Knittel (2011) indicate that the log of fuel economy is concave down in the log of weight,
which is the specific application we have in mind.
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subsidy rate were $1000 per mpg. If the Fit was rated at 38.2 mpg, it would get a subsidy of

t(e − σ(a)) = $1000(38.2 − 36.2). If the Fit was rated at 36.2 mpg, it would get a zero subsidy,

and if it were rated at 35.2, it would get a $1000 tax. Regardless of its starting fuel economy, an

increase in fuel economy of 1 mpg would increase the subsidy by $1000, and an increase of one

unit in its footprint would raise the subsidy by an amount equal to the slope of the target function

times $1000.

The incentives created by attribute-basing can be illustrated by looking at the first-order con-

ditions of a consumer from the problems above. We write here the first-order conditions for both

a and e under a tax or standard:

Tax Standard

FOC for a
∂U(a, e)

∂a
− ∂P (a, e)

∂a
= σ′t

∂U(a, e)

∂a
− ∂P (a, e)

∂a
= σ′λ

FOC for e
∂U(a, e)

∂e
− ∂P (a, e)

∂e
= −t ∂U(a, e)

∂e
− ∂P (a, e)

∂e
= −λ

Attribute-basing creates a pair of subsidies for a and e, the relative sizes of which are determined

by σ′. The wedge between private benefits and private costs for e will be t. The wedge for a will

be σ′t. The magnitude of σ′ thus determines the relative size of the wedges in the two “markets”,

and to foreshadow our first result, when the planner wishes to create a wedge equal to external

damages in the choice of e but has no desire to distort choices of e, the only way to do this is to

set σ′ = 0 (which is to have no attribute basing).

2.2 Policies with compliance trading

With a tax, it is straightforward to achieve the first-best allocation by setting a Pigouvian tax and

having no attribute-basing.

Proposition 1. The first-best allocation can be achieved for a tax by setting σ′ = 0 and t = φ.

The proof of Proposition 1 (along with all other proofs) is in the appendix, but we summarize

it here. The proof is simple. We derive the first-order conditions for the planner and for individual

consumers. When t = φ and σ′ = 0, the consumer’s optimality conditions match the planner’s

10



exactly.

This result is not surprising, but it cuts to the heart of an evaluation of attribute-basing. It says

that the subsidy to e should equal marginal benefits, just as in Pigou, and that the attribute-slope

should be zero—which is to say that there should be no attribute-basing. The fact that the planner

has the ability to differentiate products according to a is irrelevant when the planner is able to place

a direct tax on e. When there is no attribute-basing (σ′ = 0), then the problem is the standard

externality problem and Pigou’s result that the subsidy should be set equal to marginal external

benefits holds.

This proposition regards a tax, which provides a uniform subsidy per unit of e on all types. If

the policy-maker instead has a regulatory instrument, marginal incentives may differ across types.

If there is compliance trading, however, then trading will ensure that the shadow price of regulation

is common across all types, and there will be a correspondence between taxes and regulation such

that, for any tax policy, there is a regulatory policy that achieves the same allocation as the tax

policy. This leads to a corollary to Proposition 1 that provides the same result for a standard,

rather than a tax:

Corollary 1. When compliance trading is allowed, the first-best allocation can be achieved for a

standard by setting σ′ = 0 and choosing κ such that λ = φ.

2.2.1 Second-best policies

Proposition 1 and Corollary 1 show that there is no attribute-basing when the first-best policy

is achievable. But, what if either t or σ′ are set exogenously to a rate that is not the first-best?

That is, might attribute-basing play a role when the marginal incentive on e is constrained? To

explore this further, the next Proposition derives the optimal attribute-slope for the case when the

attribute function itself is linear, allowing that t 6= φ.

Proposition 2. When σ(a) is linear, so that σ(a) = σ′ · a, the second-best attribute slope is:

σ′∗ =
t− φ
t

(
∑

n
∂e
∂σ′ )/n

(
∑

n
∂a
∂σ′ )/n

.
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Proposition 2 shows the second-best attribute-slope in the event that t is constrained. If t = φ,

then the expression equals zero, which delivers the same result as Proposition 1.

We think the most likely situation is one in which the policy is constrained, perhaps by political

considerations, to be “too weak”; in the case of a subsidy this means that t < φ. In this case, the

first term in the expression for σ′∗ will be negative. Under quasi-linearity, ∂a/∂σ′ is negative—

increasing σ′ decreases the subsidy to a (which is −tσ′)—but, the sign of ∂e/∂σ′ is ambiguous.

Changing σ′ while holding t constant has no direct effect on the price of e; instead it changes the

price, and thus presumably the quantity, of a, which can lead to a change in the choice of e. The

direction of this change is ambiguous, and may in fact be zero. As we discuss further below, it is

natural to suppose that ∂e/∂σ′ < 0 because an increase in a raises the marginal price of e, but it is

not obvious that the marginal utility of e will change at all. In this case, σ′∗ will be positive, which

is the opposite of policy. It is possible that ∂e/∂σ′ = 0, in which case the second-best attribute

slope will be zero, or that ∂e/∂σ′ is negative, in which case the slope will be negative. Even in this

case, however, the second-best slope will bear no relationship to real world slopes that are chosen

by fitting data, as described in the introduction. In short, a tax rate that is too small is unlikely

to rationalize the attribute-basing that we observe in the world.

There are many real world policies in which it appears that policymakers are constrained by

political factors from setting regulations or taxes at the right level. It is tempting to think that

the introduction of attribute-basing into regulations would give the policymakers greater flexibility

and therefore help circumvent constraints on setting the right level. This is unlikely to be the case,

however, because attribute-basing is a very unwieldy tool for affecting the choice of the product

characteristic that creates the externality; it primarily acts as an implicit subsidy for the attribute

itself, not the externality generating characteristic.

Proposition 3 describes the corresponding second-best tax rate when the attribute slope σ′ is

taken as fixed:

Proposition 3. When σ(a) is linear, so that σ(a) = σ′ · a, the second-best tax rate is:

t∗ =
φ

1− σ′
(

(
∑

n
∂a
∂t

)/n

(
∑

n
∂e
∂t

)/n

) =
φ

1− εσa
εat
εet

,
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where εxy denotes the elasticity of x with respect to y for each pair of variables.

Increasing t directly subsidizes both e and a (assuming that σ′ < 0). Thus, we expect both

∂a/∂t and ∂e/∂t to be positive. If so, then the denominator will be greater than one, and the

second-best subsidy rate t∗ will be below φ, which is the first-best Pigouvian subsidy that equals

marginal damages. The second-best subsidy will equal the Pigouvian benchmark if σ′ = 0 or if a is

perfectly inelastic, so that ∂a/∂σ′ = 0. Otherwise, the second-best subsidy will be below marginal

damages, and it will be further below this benchmark as the attribute slope is steeper (the larger

is |σ′|) and as the responsiveness of a, relative to the responsiveness of e, is greater.

The market can respond to policy by changing both a and e. Proposition 3 shows that when

the market response is tilted more heavily towards a (when the elasticity of a is large relative to

the elasticity of e), this will drive the second-best tax rate towards zero because the response in a

is distortionary. This highlights the importance of determining the responsiveness of a to policy,

which the empirical portion of our paper does for the case of Japanese fuel-economy standards.

2.2.2 A graphical depiction of attribute-basing

The deadweight loss caused by attribute-basing is depicted graphically in Figure 2, which plots

the “markets” for a and e. In the choice of each attribute, there is a marginal cost curve and a

marginal benefit curve that takes the level of the other attribute as fixed.8 These curves are just

the derivatives of the cost (price) and flow utility functions respectively. The solid black lines in

Figure 2 plot these curves at the first-best values, denoted a∗ and e∗.

The policy shifts the marginal benefit curves for e and a by t and −σ′t, respectively. The effect

in the e market is shown in Figure 2a, where the initial curve is shifted out by t. When a = a∗,

a shift of t = φ in the e benefit curve leads to a choice of the socially efficient value of e∗. Note,

however, that if a is equal to some other value the initial benefit and cost curves will be shifted, so

a tax shift of φ may or may not result in the choice of a∗.

We are focused on the case when σ′ < 0, and the choice of a induced by policy, denoted by

a′, exceeds the first-best a∗. The impact on the e market depends on the cross-partial derivatives

of U and C: for a small deviation, the marginal cost curve will shift up by ≈ (a′ − a∗)∂
2P (a∗,e∗)
∂a∂e ,

8We do not need to condition on the numeraire x because of our assumption of quasilinearity.
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Figure 2: Distortions in the choice of a and e from attribute-basing

(a) Choice of e

e

Pe

e*e'

MC(a*)

MC(a')

WTP(a*)

WTP(a*)+t
WTP(a')+t

(b) Choice of a

a

Pa

a* a'

MC(e*)

MC(e')

WTP(e*)

WTP(e*)-t𝜎'

WTP(e')-t𝜎'

and the willingness to pay curve will shift by ≈ (a′ − a∗)∂
2U(a∗,e∗)
∂a∂e . If ∂2P (a∗,e∗)

∂a∂e = ∂2U(a∗,e∗)
∂a∂e (which

would occur only by coincidence) then e∗ = e′ and attribute-basing would cause no change in the

allocation of e. Physics suggests that the cross-partial is positive for the cost function, but the sign

of the cross-partial for utility is ambiguous. If it is positive, then the two effects will be offsetting. If

it is negative or zero, then the general equilibrium effect on e will unambiguously lead to a decrease

in e. In sum, even when the tax on e is at the first-best level, there can be distortions in the choice

of e from attribute-basing, but they are “general equilibrium” in nature.

The distortion in the choice of a, on the other hand, is directly analogous to a Harberger

triangle in standard partial equilibrium tax analysis. When σ′ 6= 0, attribute-basing introduces

a wedge between the marginal benefit and marginal cost functions for a, as shown in Figure 2b.

The deadweight loss due to the price wedge will be ≈ 1/2 · (a′ − a∗)σ′t. This approximated loss is

“second-order” in the same sense that the canonical Harberger triangle is; it is a function of (σ′t)2

because a′ − a∗ is locally linear in σ′t.

These graphs provide additional intuition for Proposition 3, which shows that the second-best

tax rate will be smaller when the planner takes the attribute-slope as given. In choosing this

second-best rate, the planner will reduce t below φ in order to reduce the deadweight loss triangle

in the a market, trading-off for that a decrease in the externality reduction in the e market. This

reduction in t will be greater as the elasticity of a with respect to t rises, because a more elastic a

implies a bigger deadweight loss triangle for a given tax wedge.
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The difference between e∗ and e′ will also cause a change in the choice of a. This will again be

a “general equilibrium” effect, of magnitude ≈ (e′ − e∗)
(
∂2P (a∗,e∗)

∂a∂e − ∂2U(a∗,e∗)
∂a∂e

)
. The direct effect

of attribute-based standards is in creating the wedge tσ′, which equals φσ′ when t is set at the

Pigouvian level. This wedge will cause the consumer to choose too high of a value of a, and the

distortion will be rising as σ gets steeper (σ′ gets more negative).

2.2.3 The case when a generates a second externality

In some real world attribute-based policies, the attribute upon which the target is based itself

generates externalities. Take the example of Japanese fuel economy standards, in which case e is

fuel economy and a is vehicle weight. Heavier vehicles pose greater risk to drivers of other vehicles

in the case of a collision (Anderson and Auffhammer Forthcoming). This risk is unpriced (whereas

the increased safety of those in the heavier car itself is a private benefit and therefore should be

priced in the market) and represents a negative externality associated with weight.9

The model can accommodate this possibility by adding a second externality to the welfare

function equal to ω · a, so W = U(a, e) + x + φe − ωa, with ω > 0. It is straightforward to show

that the first-best policy in this case is to set t = φ and σ′ = φ/ω > 0: the planner wishes to

place an ω-sized tax on a and a φ-sized subsidy on e; the wedge in a is equal to σ′t; so the optimal

policy is to set σ′ = φ/ω, which implies that σ′t = ω. Attribute-basing gives the planner a second

price instrument that can be used to correct a second externality. When a generates a negative

externality, this will imply a positive attribute slope, which is the opposite of what we observe in

all policies.

If instead, as seems likely, policy is designed ignoring the externality related to a, then its ex-

istence implies that attribute-basing, by implicitly subsidizing a, also has welfare losses associated

with the exacerbation of a-related externalities—i.e., by making cars bigger, attribute-based fuel

economy policy increases harmful safety externalities. This is illustrated in Figure 3, which shows

the additional welfare loss from exacerbating the pre-existing distortion in a related to the exter-

nality as a purple “externality rectangle.” In that figure, the efficient choice of a, accounting for

9In principle, the externality risk may be partly priced through insurance or legal liability. White (2004), however,
argues that neither tort liability nor mandatory liability insurance prices safety externalities. In brief, tort liability
requires negligence, not just that one be driving a dangerous vehicle. Liability insurance generally coves the cost of
damages to a vehicle, but it is but a small fraction of the value of a life. In addition, rate differences across vehicles
are very coarse and reflect average driver characteristics in concert with vehicle attributes.
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Figure 3: Welfare in a market when a generates a second externality
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Starting at a∗, the private optimum, increases in a driven by an attribute-based subsidy of

−σ′t creates a Harberger triangle (in yellow) and an externality rectangle (purple). The external-

ity rectangle is first-order (locally linear) in the tax wedge −σ′t, whereas the Harberger triangle

is second-order (locally quadratic). This implies a result common to tax analysis; when the dis-

tortionary tax wedge is small, the welfare losses from the tax are dominated by the exacerbation

of pre-existing distortions (in this case safety externalities). Below, we argue that the dominant

welfare impact of the Japanese fuel economy standards was likely the safety impact of weight in-

creases, though we argue this for different reasons than emphasized here. This will generally be

true when the attribute has its own unpriced externality and the attribute slope is small, but the

other distortions can dominate when the policy is further from the optimum.

2.3 Policies without compliance trading

The preceding results focus on the case when either a tax is available, or when the regulatory policy

allows compliance trading, so that a uniform regulation can be made to mimic a tax. That model

characterizes a number of regulations, including CAFE in the US or feebates for automobiles. Some

attribute-based regulations, however, apply to each and every product in a market, or they apply

to each firm separately and trading is disallowed. Key examples are appliance product standards,

which specify a minimum energy efficiency that all products are required to meet. Refrigerators

in the U.S., for example, must meet a minimum energy efficiency that is a continuous function of
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its “adjusted volume” (equal to fresh volume plus 1.63 times freezer volume) and a discontinuous

function of features, including door type (french or not), location of freezer (top, bottom or side)

and whether there is through the door ice.

When trading is not allowed, products will face different shadow prices if each product is

required to meet the same minimum, denoted by λn. This is equivalent to a tax policy that

imposes different tax rates on e across different products. This will cause the marginal costs of

compliance to be different across goods, thereby implying inefficient provision of e. In this setting,

attribute-based regulation may provide a benefit by (partially) equalizing shadow prices. This

benefit must, however, be weighed against the costs stemming from distortions in the choice of a.

As discussed in the introduction, a common feature of real world attribute-based regulations is

that the attribute-slope is drawn to fit observed correlations between e and a. We build additional

intuition by first considering a very special case, which is the problem for which these actual

attribute-based policies are the solution. That case is one with a linear standard (e ≥ σ′ · a+κ), in

which a is assumed to be exogenous and therefore cannot be distorted, and λn = 2(σ′an + κ− eon),

where eon denotes the value of e that type n would choose in the absence of policy.10 The latter

assumption implies that the cost of compliance for type n is equal to the square of the amount by

which they have to change their choice of e in order to meet the standard; the shadow price is the

derivative of that quadratic cost function.

In this special case, the planner’s optimization problem can be written as:

max
σ′,κ

∑
n

φ(σ′an + κ− eon)− (σ′an + κ− eon)2,

which has the planner choose σ′ and κ in order to maximize the difference in externality gains

minus the compliance costs of raising e. This problem is identical to the residual minimization

problem in the Ordinary Least Squares problem for a bivariate regression, with the exception that

the first term will shift the intercept so that the “residuals” (the differences between the starting

value of eon and the ending, or “predicted”, value of e) will not be minimized to zero but will be set

as a function of marginal damages.

The solutions of this problem, which are derived following the same steps as the solution to the

10We also assume that the policy binds for all n, so that σ′an + κ− eon is always positive.
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Figure 4: The second-best attribute slope
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OLS problem, are that κ = φ/2+ ē−σ′ā and σ′ = cov(eon, an)/var(an). This is illustrated in Figure

4a, which plots a set of hypothetical data points for the privately optimal values of a and e, labeled

ao and eo. OLS would fit a line to the data, as illustrated. If ao were fixed, then the optimal linear

attribute-based target function, denoted simply as σ(a) in the figure, would be a line parallel to the

OLS fitted line but shifted up by amount φ/2. The optimal solution fits the data like OLS because,

when the adjustment cost function has the quadratic shape assumed and is common across all n,

the way to come closest to equalizing marginal costs is to make the attribute-slope equal to the

OLS line.

Returning to the more general situation, we show two results regarding the case without trading

for the case of a linear standard (e ≥ σ′ · a + κ). First, the lack of compliance trading causes a

reduction in the second-best tax (shadow price) on e relative to the Pigouvian benchmark. This

result, which is stated in Proposition 4, is due to the fact that in the absence of compliance

trading, the second-best policy will feature some attribute-basing, which means that higher tax

rates (shadow prices) will generate larger distortions in the choice of a, and the externality from e

will not be completely internalized.
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Proposition 4. When trading is not allowed, the optimal standard will set κ such that:

∑
n λn
n

= φ

(
1 + σ′

∑
n
∂an
∂κ

n

)
< φ.

Proposition 4 says that, at the planner’s optimum, the average shadow price (n−1
∑

n λn) is

equal to the marginal externality φ times a factor. The factor is one plus the attribute slope times

the average responsiveness of a to a tightening of the standard. We expect that ∂an/∂κ is positive,

so that, with σ′ < 0, the presence of the attribute slope makes the average optimal shadow price

less than the Pigouvian benchmark that would have λ = φ. This result is directly analogous to

Proposition 3. The steeper the attribute slope and the more responsive is a (on average) to a

tightening of the standard, the weaker will be the second-best standard, relative to the Pigouvian

benchmark.

When there is no compliance trading, some attribute-basing will be optimal. The benefit

of doing so is an equalization of marginal compliance costs. If marginal costs were completely

equalized, then the policy would be characterized by a zero correlation between shadow prices and

the attribute a. Instead, the policy is characterized by a positive correlation between shadow costs

and the attribute, as stated in Proposition 5:

Proposition 5. When trading is not allowed, the optimal covariance between shadow prices and

the attribute will be:

∑
n(λn − λ̄)(an − ā)

n
= φσ′

(∑
n
∂an
∂σ′

n
− ān

∑
n
∂an
∂κ

n

)
> 0.

This result expresses the covariance of the marginal shadow price λn with the attribute an. If

a is not responsive to policy, so that ∂an/∂σ
′ = ∂an/∂κ = 0, then the optimal policy will produce

a zero covariance between shadow prices and the attribute. This contrasts to the special case

discussed above, in which the optimal shadow prices will be uncorrelated with the attribute a when

a is endogenous.
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As long as a is endogenous, optimal policy will induce a correlation between shadow prices and

the attribute, which can be signed. Typically ∂an/∂σ
′ will be negative (a more positive attribute

slope leads to less a) and ∂a/∂κ will be positive (a tighter standard leads to more a). Thus, when

σ′ < 0, as in our reference policies, the optimal covariance will be positive. (Because theory does

not tell us the sign or magnitude of these derivatives, estimating them is a key part of our empirical

section.) This means that products with a larger a will have larger shadow prices, on average. The

intuition for this is that the steepness of the attribute slope is chosen to minimize dispersion in

shadow prices, which is achieved when shadow prices are uncorrelated with the attribute. But, a

steeper attribute slope causes greater distortion in the choice of a. Trading off these distortions

is what causes the optimum to feature a correlation between λ and a. This correlation is greater

as the responsiveness of a to policy is greater, which parallels our result regarding the second-best

policies in the trading case.

This is illustrated in figure 4b, which denotes the second-best attribute function as σ′∗(a) when

a is endogenous, alongside the optimum when a is fixed, denoted σ(a). The endogeneity of a lowers

the intercept and flattens the slope, as compared to the case with exogenous a. That is, the optimal

attribute slope is a compromise between the OLS slope, which seeks to minimize the adjustment

costs across all products, and the fact that steeper slopes lead to greater distortions in a. When a

responds very little, the optimal slope will be close to that of OLS. The empirical portion of this

paper shows that a is highly responsive for the case of Japanese fuel-economy standards, suggesting

that, at least for that case, the optimal slope will deviate substantially from the OLS fitted line.

2.3.1 Attribute-basing is inefficient compared to trading

The preceding analysis helps to clarify the several reasons why attribute-basing is an inefficient

substitute for compliance trading. First and foremost, to the extent that a is endogenous, the use

of attribute-basing to equalize marginal costs of compliance will create distortions in the choice of

a.11 The empirical portion of our paper demonstrates that a (weight) is endogenous and highly

responsive to attribute-based automobile policies in Japan, suggesting that this is a real concern.

Second, attribute-basing can equalize marginal costs of compliance only to the extent that

these costs are perfectly correlated with the attribute. Variation in marginal compliance costs

11To counteract this, a policy could be designed that had an attribute-based subsidy for e and a separate tax on a.
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for products with the same level of a can arise for two distinct reasons. First, conditional on a,

some types may have different privately optimal levels of e, such that the same standard requires

different levels of adjustment. In the special case for which an OLS sloped line is the solution,

this variation is summarized by the standard error of the regression, and the R2 thus provides an

intuitive interpretation of what fraction of the variation is captured by attribute-basing; when the

R2 is high, it implies that attribute-basing can capture most of the variation in compliance costs

across observations.

There is a second source of variation, however, which is that the adjustment cost functions—

which depend on the curvature of Un and the curvature of C for different starting values—will vary.

When the planner knows the distribution of these cost differences, they can be incorporated into

the second-best solution, but the efficiency gains of equalizing marginal costs can only be realized

to the extent that they are correlated with the attribute. Compliance trading (or taxation) will

capture the efficiency gains of harmonizing marginal compliance costs across all of these margins,

but attribute-basing does not.

2.4 Assumptions and robustness

Before moving to our empirical analysis, we highlight here some of the most important assumptions

used in the analysis above. First, our model assumes that the externality is directly (and linearly)

related to e, which will often be a measure of energy efficiency. Externalities depend on energy

consumption, not energy efficiency, and improving energy efficiency will often spur increases in

consumption by lowering the cost of “energy services”. This induces what is commonly referred to

as a rebound effect.12 Moreover, policies that target only the new product market induce offsetting

effects in the used durable market.13 For these reasons, it is well understood that energy efficiency

policies—whether they are regulatory policies like CAFE or equivalent taxes on the products—

represent significant departures from a first-best Pigouvian tax on the externality itself.14 Our focus

is on the marginal efficiency impacts of attribute-basing, as compared to energy efficiency policy

without attribute-basing. For that reason, we believe that abstracting from these considerable

12The margin of adjustment described here is sometimes called the “direct rebound” effect. There are also other
effects that work through income. See Borenstein (2013) for a recent discussion.

13See Jacobsen and van Benthem (2013) for an exploration of this effect for the case of automobiles.
14See Anderson, Parry, Sallee, and Fischer (2011) for a recent review of CAFE that describes related evidence. For

the equivalence of vehicle taxes and CAFE, see Sallee (2011) and Gillingham (2013).
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concerns is warranted in our case.

Second, our assumption of perfectly competitive supply abstracts from potentially interesting

questions regarding how the presence of attribute-based incentives influences welfare through its im-

pact on mark-ups, product differentiation and competition among firms. Despite these limitations,

we assume perfect competition to facilitate the comparison between attribute-basing and Pigou-

vian taxation and to make the welfare analysis transparent and tractable. At least since Buchanan

(1969), economists have known that the optimal Pigouvian tax depends on market structures.

Barnett (1980) provided basic intuition about how the existence of monopoly power changes the

result—since a monopolist already restricts output to be below the social optimum, the optimal

corrective tax is muted, and the muting is greater as the markup is larger. Subsequent work has

demonstrated that this basic intuition carries through into more general models of oligopolies, with

attention to entry and exit (Katsoulacos and Xepapadeas 1995).

We conjecture that the same intuition would hold in our setting. If markups were uncorrelated

with a, then we would expect market power to dampen the optimal tax rate t, but to do so uniformly

across values of a and thereby give no new explanation for attribute-basing. If a is correlated with

markups, attribute-basing could be a useful tool for tailoring the tax on e to better fit prescriptions

of a tax on e that depends both on the externality and on the markup. In the car market, industry

wisdom holds that profits are positively correlated with vehicle size (and price), so we do expect that

accounting for markups would lead towards a negative attribute slope. Nevertheless, our belief is

that the key insights of our competitive model are not already widely understood, so that we think

an emphasis on the competitive case is warranted in this paper, but we believe that our approach

will provide a useful foundation upon which to build a subsequent study of attribute-basing that

focuses on imperfect competition.

Third, many of our examples regard regulations that, like CAFE, apply to an average across

multiple products sold by the same firm. The standard way of modeling firms with multiple products

under imperfect competition implies that firms must worry about how increasing some attribute

of one of their products will affect the demand for all of their other products. Our assumption

about perfect competition abstracts from those concerns because when firms make zero profits and

consumers can purchase any bundle of attributes there will be no lost profits from cannibalization.

Thus, under perfect competition, nothing is lost by assuming that firms produce a single product,
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which is the viewpoint we adopt.

2.5 What explains the use of attribute-basing?

Given the arguments made above, one might ask why attribute-basing exists. One possibility is

that policymakers do not fully understand the perverse incentives and inefficiencies of these policies

because they had not been previously modeled. A second possibility is that policymakers are forced

to design the best possible regulatory policy without trading, due to some political economy forces

that constrain the available policy instruments. In that case, our results describe and estimate the

costs of operating under those constraints when making policy.

A third possibility regards distribution. If policymakers wish to transfer surplus from the

consumers and producers of goods with low a towards those with high a, an attribute-based reg-

ulation will achieve that to some degree. For the case of the U.S., it is widely believed that the

Detroit Three pushed heavily for attribute-basing because on average they produce heavier, less

fuel-efficient vehicles than their competitors, particular Toyota, Honda and Nissan. It is clear that

CAFE’s attribute-basing makes compliance relatively easier for the U.S. companies. If this was

a desired policy goal, then the costs that we document here from distortionary responses and in-

efficiencies represent the costs of achieving this transfer. Note that heavier vehicles tend to be

more expensive (particularly given that cars and light-trucks are regulated separately) and thus

are generally purchased by wealthier consumers. As a result, it is likely that wealthier consumers,

on average, benefit from the attributing-basing. A distributional justification for attribute-basing

is thus more likely to be made on the producer side than the consumer.

A fourth possibility is that policymakers may believe that attribute-basing is necessary to spur

innovation. A firm can comply with a tightened regulation by downsizing their products (reduce

a so that it is easier to raise e) or by investing in technology (to raise e holding a constant). In a

static model, efficiency requires that all margins of adjustment be used until their marginal costs

are equalized, but if the technology margin lowers production costs in the future period, then a

dynamic model might suggest otherwise. In particular, if there are spillovers from technology, a

policymaker might wish to increase the share of the adjustment due to technology beyond that

which the market will choose on its own.

In appendix C we explore the possibility that attribute-basing is motivated by a belief that there
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are spillovers from technological advancement. In this case, the optimal choice of a policy instrument

t(e − σ(a)) will involve attribute-basing, but this is an artifact of a setup that assumes that both

e and a have positive externalities attached to them, due to their relationship with technology. In

that setting, attribute-basing provides a second instrument that can affect a Pigouvian tax on a.

The optimal slope of the attribute function in this case does not resemble the attribute functions

chosen by actual policymakers. Thus, while technological innovation is a plausible reason why some

attribute-basing could be desirable, it does not appear to rationalize the policies that we actually

see.

3 Empirical Analysis and Results

In this section, we investigate how the market responds to attributed-based regulation by analyzing

the automobile market in Japan. The Japanese context provides several key advantages. First,

the Japanese government has been using attribute-based fuel economy regulation since the 1970’s.

This gives us a long window for analysis and allows us to observe changes in policy that aid

identification. Second, the Japanese fuel economy regulations feature notches in the attribute

(weight) that determines the fuel economy target. These notches provide substantial variation in

regulatory incentives and allow us to use empirical methods similar to those recently developed in

the literature on bunching in nonlinear income tax schedules (Saez 1999 2010; Chetty, Friedman,

Olsen, and Pistaferri 2011; Kleven and Waseem 2013). In contrast, the U.S. instituted attribute-

based regulation for automobiles only in 2012, which leaves us little data for analysis, and its

attribute-based target function is smooth, making identification more challenging.

3.1 Fuel Economy Standards in Japan

The Japanese government introduced its first attribute-based fuel economy standard in 1979. Since

then, there have been four different schedules. Our data, which start in 2001, come from years

spanning the two most recent regimes. We summarize those two policies in Figure 5, which plots

the fuel economy target for vehicles as a function of their weight. The downward slope in the

figure shows that the fuel economy required of each vehicle is a decreasing function of its weight, so

that heavier vehicles face a less stringent regulation. Furthermore, the regulation is notched. The
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Figure 5: Fuel Economy Standard in Japan
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Note: The dashed line shows the fuel economy standard in Japan until 2010. The solid line

shows the new fuel economy standards whose target year is 2015.

declining function is not smooth, but rather is discontinuous at many weight cutoff points. Thus,

for vehicles that have a weight near a cutoff point, marginal changes in weight lead to discrete

changes in the fuel economy standard. This attribute-basing implicitly subsidizes vehicle weight,

which we expect will lead to a distortion by leading to an increase in weight among firms attempting

to meet the standard.

Automakers have two incentives to meet these fuel economy standards. First, they are obligated

to have their sales-weighted average fuel economy exceed the minimum standard.15 Second, in some

years there are subsidies and tax exemptions that apply to individual cars if their fuel economy

exceeds the standard for their weight class by a certain percentage. In 2009, the government

introduced these subsidies as part of an economic stimulus package. Since then, the government

has changed the eligibility requirements and the size of the subsidies.

15Technically, this obligation extends to each weight segment separately, but firms are allowed to apply excess
credits from one weight category to offset a deficit in another. Thus, in the end, the policy is functionally similar
to the U.S. CAFE program, where there is one fleetwide requirement. Automakers have to pay fines if they cannot
meet the standard by the target year of the regulation.
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An important difference between the fuel economy regulation and the subsidy policy is that the

later provides an incentive for an individual car to meet the fuel economy standard (as opposed to

the fleet), and it thus creates a subsidy system that is notched in both fuel economy and weight.

By contrast, the fuel economy regulation does not provide a direct incentive for an individual car

to meet the target because what automakers have to do is to meet the target at the sales-weighted

average. In the current version of this paper, we recognize that automakers have only the first

incentive before 2009 and that they have both incentives in 2009 and 2012, but we do not currently

exploit the notches in the fuel economy dimension.

3.2 Data

We analyze data from the Japanese Ministry of Land, Infrastructure, Transportation, and Tourism

(MLIT) that records fuel economy data for all new vehicles sold in Japan for each year between

2001 and 2013. The record includes each vehicle’s model year, model name, manufacturer, engine

type, displacement, transmission type, weight, fuel economy, fuel economy target, estimated carbon

dioxide emissions, number of passengers, wheel drive type, and devices used for improving fuel

economy. The Ministry data does not include sales volumes. Table 6 presents summary statistics of

these data. There are between 1,100 and 1,700 different vehicle configurations sold in the Japanese

automobile market each year. This includes both domestic and imported cars. There is a positive

trend in weight and displacement over time.

Although most of our analysis uses cross-sectional data, we do conduct panel data analysis in

Section 3.5. To do so, we match data between different years in the following way. In our data set,

each observation has a product identifier (ID). The product ID is a narrower definition than model

name. For example, a Honda Civic may have several product IDs in the same year because there are

Civics with different transmissions, displacements and drive types. We first match on product ID

across years, which is often, but not always, constant over time. If automakers change the product

ID between years, we match by using model name, displacement, drive type (e.g. four-wheel drive),

and transmission (manual or automatic). That is, we consider two cars sold in two different years

to be the same if they have matching IDs, or if they have the same model name, displacement, drive

type, and transmission. We have experimented with matching on differing sets of characteristics

and found that our key results are robust to several alternative criteria.
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Figure 6: Summary Statistics

Year N

2001 1441 13.53 (4.58) 1241.15 (356.63) 1.84 (0.98) 195.40 (66.72)
2002 1375 13.35 (4.33) 1263.52 (347.00) 1.86 (0.97) 196.72 (66.26)
2003 1178 13.78 (4.53) 1257.15 (356.28) 1.85 (1.03) 191.88 (68.08)
2004 1558 14.20 (4.78) 1255.37 (364.69) 1.82 (1.03) 184.33 (66.67)
2005 1224 13.30 (4.66) 1324.81 (380.62) 2.00 (1.13) 198.14 (71.62)
2006 1286 13.08 (4.59) 1356.56 (391.13) 2.08 (1.17) 201.78 (72.67)
2007 1298 13.24 (4.78) 1369.41 (399.45) 2.09 (1.22) 200.35 (75.07)
2008 1169 13.38 (4.82) 1390.09 (405.77) 2.14 (1.29) 198.58 (76.27)
2009 1264 13.49 (4.93) 1396.40 (413.76) 2.15 (1.30) 197.73 (76.67)
2010 1300 13.50 (5.04) 1428.27 (438.06) 2.21 (1.30) 198.32 (77.34)
2011 1391 13.95 (5.06) 1437.21 (426.23) 2.19 (1.28) 190.15 (71.60)
2012 1541 14.50 (5.21) 1446.50 (411.87) 2.16 (1.24) 182.05 (67.26)
2013 1706 14.43 (5.40) 1476.79 (400.31) 2.24 (1.24) 183.67 (67.37)

 (km/liter)  (kg) (liter) (g-CO2/km)
Fuel Economy Vehicle weight Displacement CO2

Note: This table shows the number of observations, means and standard deviations of variables by year. Data are

not sales weighted.

3.3 Excess Bunching at Notches in Fuel Economy Standard

Our theoretical model emphasize that, in many circumstances, the key empirical statistic that de-

termines the welfare properties of attribute-based standards is the degree to which attribute-basing

causes distortions in the choice of the attribute (e.g., weight). For notched policies, distortions

in weight should be limited to those vehicles that bunch at a weight notch (see Appendix B for

details). We thus begin our analysis by looking at the distribution of the raw data to look for

evidence of bunching. Figure 7 plots the fuel economy schedule for 2006, along with a scatter plot

of each vehicle’s fuel economy and weight in that year. We use 2006 as an example; the pictures

for all other years reveal similar patterns.

The diagram reveals three things. First, as expected, there is a negative relationship between

fuel economy and vehicle weight. Second, we observe “hugging” of many observations on the fuel

economy standard schedule. That is, many vehicles have exactly the same fuel economy as the

fuel economy standard, or just slightly higher fuel economy than the standard. Finally, and most

prominently, there are excess numbers of observations at the notch points in vehicle weight, which
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Figure 7: Scatter Plot of Vehicle Weight (kg) against Fuel Economy (km/liter) in 2006
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Note: This figure plots each vehicle’s fuel economy (km per liter) in 2006 against the vehicle’s

weight. Each dot represents one observation.

occur at 710, 830, 1020, 1270, 1520, 1770, 2020, and 2270 kg.

To see the excess numbers of observations at the weight notches more clearly, we next provide

histograms of vehicle weight superimposed on the notched schedules. Panel A of Figure 8 is the

histogram of vehicles sold between 2001 and 2008. The bin size of the histogram is 10 kg. That is,

each bar represents the density of the number of observations for each 10 kg bin. In this period, all

vehicles had an old fuel economy standard schedule, which is presented in the same figure. There is

visually clear excess bunching at each notch of the fuel economy standard schedule. The magnitude

of the bunching is substantial; there are more than double the number of observations at each notch

point, as compared to the surrounding weight categories.

Panel B of Figure 8 shows the corresponding figure for data taken from years when the new

standard was in effect. By comparing Panel A and B, one can see that the mass points shifted

precisely in accordance with the change in the locations of the notch points. In Figure 9 we present

analogous results for “kei-cars”, which are very small vehicles that are required to have engine
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Figure 8: Fuel Economy Standard and Histogram of Vehicles

Panel A. Years 2001 to 2008 (Old Fuel Economy Standard Schedule)
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Note: Panel A shows the histogram of vehicles from 2001 to 2008, where all vehicles had the

old fuel economy standard. Panel B shows the histogram of vehicles from 2009 to 2013, in

which the new fuel economy standard was introduced.

displacements below 660 cc (.66 L).16 Although kei-cars must comply with the same fuel economy

16For comparison, no car sold in the U.S. in 2010 would qualify as a kei-car. The two-seat Smart Car has the
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Figure 9: Fuel Economy Standard and Histogram of Vehicles: Kei-Cars (small cars)

Panel A. Years 2001 to 2008 (Old Fuel Economy Standard Schedule)
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Note: “Kei-car” is is a Japanese category of small vehicles; the displacement of kei-cars have

to be less than 660 cc. Most kei-cars are not exported to other countries. Panel A shows the

histogram of vehicles from 2001 to 2008, where all vehicles had the old fuel economy standard.

Panel B shows the histogram of vehicles from 2009 to 2013, in which the new fuel economy

standard was introduced.

smallest displacement of any car in the U.S. that year, at 100 cc.
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regulations as all other cars, we present our results for them separately because they occupy a

unique market segment, have different tax and insurance regulations, and are generally viewed as

a distinct product category by Japanese consumers. The figure shows that the weight distribution

of kei-cars also demonstrates bunching at notch points and appears responsive to changes in the

location of notches.

In sum, the raw data show strong evidence that the market responded to the attribute-based

regulation by changing vehicle weight. Our theory suggests that, on its face, this is evidence of

distortion. In the next section, we use an econometric methods to estimate the magnitude of this

excess bunching and discuss its implications for welfare.

3.4 Estimation of Excess Bunching at Notches

Econometric estimation of excess bunching in kinked or notched schedules is relatively new in the

economics literature. Saez (1999) and Saez (2010) estimate the income elasticity of taxpayers in the

U.S. with respect to income tax rates and EITC schedules by examining excess bunching around

kinks in the U.S. personal income tax schedule. Similarly, Chetty, Friedman, Olsen, and Pistaferri

(2011) estimate the income elasticity of taxpayers in Denmark with respect to income tax rates

by examining the excess bunching in the kinked tax schedules there. In Pakistan, the income

tax schedule has notches instead of kinks. That is, the average income tax rate is piecewise linear.

Kleven and Waseem (2013) uses a method similar to Chetty, Friedman, Olsen, and Pistaferri (2011)

to estimate the elasticity of income with respect to income tax rates using bunching around these

notches. Our approach is closely related to these papers, although our application is a fuel economy

regulation, not an income tax.

To estimate the magnitude of the excess bunching, our first step is to estimate the counterfactual

distribution as if there were no bunching at the notch points, which parallels the procedure in

Chetty, Friedman, Olsen, and Pistaferri (2011). We start by grouping vehicles into small weight

bins (10 kg bins in the application below). For bin j, we denote the number of vehicles in that bin

by cj and the vehicle weight by wj . For notches k = 1, ...,K, we create dummy variables dk that

equal one if j is at notch k. We then fit a polynomial of order S to the bin counts in the empirical
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distribution, excluding the data at the notches, by estimating a regression:17

cj =
S∑
s=0

β0
s · (wj)s +

K∑
k=1

γ0
k · dk + εj , (1)

where β0
s is an initial estimate for the polynomial fit, and γ0

k is an initial estimate for a bin fixed

effect for notch k. (We refer to these as initial estimates because we will adjust them in a subsequent

step.) By including a dummy for each notch, the polynomial is estimated without considering the

data at the notches. We define an initial estimate of the counterfactual distribution as the predicted

values from this regression omitting the contribution of the notch dummies: ĉ0
j =

q∑
s=0

β̂0
s · (wj)s.

The excess number of vehicles that locate at the notch relative to this counterfactual density is

B̂0
k = ck − ĉ0

k = d̂0
k.

This simple calculation overestimates Bk because it does not account for the fact that the

additional vehicles at the notch come from elsewhere in the distribution. That is, this measure

does not satisfy the constraint that the area under the counterfactual distribution must equal the

area under the empirical distribution. To account for this problem, we must shift the counterfactual

distribution upward until it satisfies this integration constraint.

The appropriate way to shift the counterfactual distribution depends on where the excess bunch-

ing comes from. Our theory indicates that attribute-based fuel economy regulation provides incen-

tives to increase vehicle weight—that is, excess bunching should come from the “left”. We assume

that this is the case. We also make the conservative assumption that the bunching observed at

a given notch comes only from the adjacent weight bin, which limits the maximum increase in

weight.18 That is, the bunching at notch k comes from bins j ∈ (k− 1, k).19 In practice, automak-

ers may increase the weight of a vehicle so that it moves more than one weight category. In that

case, our procedure will underestimate weight distortions. In this sense, our procedure provides a

lower bound on weight manipulation.

17We use S = 7 for our empirical estimation below. Our estimates are not sensitive to the choice of S for the range
in S ∈ [3, 11].

18This restriction is consistent with panel data estimates of weight changes in response to the policy change that
we derive below.

19For notch k = 1 (the first notch point), we use the lowest weight in the data as the minimum weight for this range.
Note that this approach may underestimate the change in weight, because the minimum weight in the counterfactual
distribution can be lower than the minimum weight in the observed distribution if the attribute-based regulation
shifted the minimum weight upward. We want to use this approach to keep our estimate of the change in weight
conservative.
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In addition, estimation requires that we make some parametric assumption about the distri-

bution of bunching. We make two such assumptions, the first of which follows Chetty, Friedman,

Olsen, and Pistaferri (2011), who shift the affected part of the counterfactual distribution uniformly

to satisfy the integration constraint. In this approach, we assume that the bunching comes uni-

formly from the range of j ∈ (k−1, k). We define the counterfactual distribution ĉj =
q∑
s=0

β̂s · (wj)s

as the fitted values from the regression:

cj +

K∑
k=1

αkj · B̂k =

S∑
s=0

βs · (wj)s +

K∑
k=1

γk · dk + εj , (2)

where B̂k = ck−ĉk = d̂k is the excess number of vehicles at the notch implied by this counterfactual.

The left hand side of this equation implies that we shift cj by
K∑
k=1

αkj · B̂k to satisfy the integration

constraint. The uniform assumption implies that we assign αkj =
cj∑

j∈(k−1,k)

cj
for j ∈ (k − 1, k) and

= 0 for j /∈ (k − 1, k). Because B̂k is a function of β̃s, the dependent variable in this regression

depends on the estimates of β̃s. We therefore estimate this regression by iteration, recomputing

B̂k using the estimated β̃s until we reach a fixed point. The bootstrapped standard errors that we

describe below adjust for this iterative estimation procedure.

Note that this approach with the uniform assumption may underestimate or overestimate ∆w

if the bunching comes disproportionally from the range of j ∈ (k − 1, k). For example, if most

bunching comes from the bins near k rather than the bins near k − 1, the uniform assumption

approach overestimates ∆w. This may not be a substantial issue for our estimation, because the

empirical distribution in Figure 8 suggests that there are no clear holes in the distribution. There

should be clear holes if the origins of the excess bunching are substantially disproportional to the

distribution. However, we prefer an approach that does not impose the uniform assumption. To

do that, we propose an approach that defines αj based on the empirical distribution of vehicles

relative to the counterfactual distribution. We define the ratio between the counterfactual and

observed distributions by θj = ĉj/cj for j ∈ (k − 1, k) and = 0 for j /∈ (k − 1, k). Then, we

define αkj =
θj∑

j∈(k−1,k)

θj
. By this approach, αkj is obtained from the relative ratio between the

counterfactual and observed distributions. We use this approach for our main estimate and also

report estimates from the uniform assumption approach as well.

In addition to B̂k (the excess number of vehicles at notch k), we provide two more estimates
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that are relevant to our welfare calculation. The first estimate is the proportional excess bunching,

which is defined by b̂ = ck/ĉk. This estimate shows the proportional size of the bunching relative

to the height of the counterfactual distribution at k. The second estimate is the average changes

in weight (kg) for vehicles at notch k, defined by the weighted average of the estimated change in

weight: E[∆wk] =

∑
j∈(k−1,k)

(wk−wj)·(ĉj−cj)∑
j∈(k−1,k)

(ĉj−cj) .

We calculate standard errors using a parametric bootstrap procedure used by Chetty, Friedman,

Olsen, and Pistaferri (2011) and Kleven and Waseem (2013). We draw from the estimated vector of

errors εj in (2) with replacement to generate a new set of counts and apply the technique above to

calculate new estimates. We define the standard errors as the standard deviation of the distribution

of these estimates. Since we observe the exact population distribution of vehicles in the Japanese

automobile market, this standard error reflects error due to misspecification of the polynomial for

the counterfactual distribution rather than sampling error.

Figure 10 shows our estimation procedure graphically for two notch points. In Panel A, we

plot the actual distribution and estimated counterfactual distribution at the 1520 kg notch point.

Graphically, our estimate of excess bunching is the difference in height between the actual and

counterfactual distribution at the notch point. The estimate and standard error of the excess

number of vehicles B is 285.27 (3.75). That is, there are 285 excess vehicles at this notch compared

to the counterfactual distribution. The proportional bunching b = 3.75 (0.21), which means that

the observed distribution has 3.75 times more observations than the counterfactual distribution

at the notch. Finally, the average weight increase E[∆w] is 114.97 (0.22) kg for affected cars.

Similarly, we illustrate our estimation result at the 2020 kg notch point. At this notch, B = 127.07

(9.04), b = 8.51 (1.55), and E[∆w] =120.77 (0.15).

Table 1 presents our estimation results for all notches for the data between 2001 and 2008 (the

old fuel economy standard). To see the automakers’ incentives at each notch, column 2 shows the

stringency of the fuel economy standard (km/liter) below and above the notch (higher km/liter

numbers imply more stringent standards). Columns 3 to 5 report our main estimates based on

the approach described above. First, we find statistically significant excess bunching at all notches

except for the 1020 kg notch for kei-cars, where the estimate is noisy because there is not a large

number of kei-cars in this weight range. Second, we find substantial heterogeneity in the estimates
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Figure 10: Graphical Illustration of Estimation of Excess Bunching at Each Notch Point

Panel A. Notch at 1520 kg
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Panel B. Notch at 2020 kg

B = 127.07 (9.04), b = 8.51 (1.55), E[∆w] =120.77 (0.15)
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Note: This figure graphically shows the estimation in equation (2). The figure also lists the

estimates of B (excess bunching), b (proportional excess bunching), and E[∆w] (the average

weight increase). See the main text for details on these estimates.
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Table 1: Excess Bunching and Weight Increases at Each Notch: Old Fuel Economy Standard

Fuel Economy
Notch Standard Excess Excess E[Δweight] Excess Excess E[Δweight]
Point below & above Bunching Bunching (kg) Bunching Bunching (kg)

the Notch (km/liter) (# of cars) (ratio) (# of cars) (ratio)
(1) (2) (3) (4) (5) (6) (7) (8)

830 kg 18.8 16.46 2.13 51.57 16.73 2.17 55.00
17.9 (7.91) (0.49) (3.21) (7.28) (0.44) N.A.

1020 kg 17.9 87.18 2.41 103.77 87.02 2.40 95.00
16 (8.05) (0.16) (0.49) (7.48) (0.13) N.A.

1270 kg 16 163.48 2.47 146.89 163.33 2.46 125.00
13 (7.92) (0.11) (0.62) (7.33) (0.08) N.A.

1520 kg 13 285.27 3.75 114.97 285.41 3.76 125.00
10.5 (8.21) (0.21) (0.22) (7.52) (0.15) N.A.

1770 kg 10.5 143.93 3.52 129.44 144.25 3.54 125.00
8.9 (8.93) (0.30) (0.57) (8.13) (0.24) N.A.

2020 kg 8.9 127.07 8.51 120.77 127.24 8.59 125.00
7.8 (9.04) (1.55) (0.15) (8.28) (1.43) N.A.

2270 kg 7.8 15.67 2.52 137.86 15.52 2.48 125.00
6.4 (6.40) (0.66) (4.48) (5.95) (0.64) N.A.

Kei-Cars

710 kg 21.2 60.53 2.33 72.57 59.44 2.28 75.00
18.8 (15.54) (0.30) (0.57) (13.37) (0.25) N.A.

830 kg 18.8 118.36 2.06 39.79 120.15 2.09 60.00
17.9 (15.99) (0.14) (0.09) (12.77) (0.11) N.A.

1020 kg 17.9 21.15 2.33 92.63 19.30 2.09 95.00
16 (9.48) (2.30) (1.08) (7.51) (2.08) N.A.

Main Estimates Uniform Assumption

Note: This table shows the regression result in equation 2. Bootstrapped standard errors are in the parentheses.

between the notches. The proportional excess bunching b ranges between 2.1 to 8.5, depending

on the notches. The estimated weight increases E[∆w] range between 40 kg to 93 kg for kei-cars

and 52 kg to 147 kg for other cars. For most cars, this is around 10% increases in weight, which

is substantial. Third, our estimates based on the uniform assumption provide similar estimates

for the excess number of vehicles B and the proportional excess bunching b. Our estimates for B
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Table 2: Excess Bunching and Weight Increases at Each Notch: New Fuel Economy Standard

Fuel Economy
Notch Standard Excess Excess E[Δweight] Excess Excess E[Δweight]
Point below & above Bunching Bunching (kg) Bunching Bunching (kg)

the Notch (km/liter) (# of cars) (ratio) (# of cars) (ratio)
(1) (2) (3) (4) (5) (6) (7) (8)

980 kg 20.8 5.37 1.60 50.13 5.35 1.60 40.00
20.5 (5.98) (0.50) (1.25) (5.17) (0.44) N.A.

1090 kg 20.5 14.34 2.05 51.58 14.33 2.05 55.00
18.7 (5.47) (0.34) (1.31) (4.73) (0.31) N.A.

1200 kg 18.7 26.56 2.44 61.40 26.58 2.44 55.00
17.2 (4.85) (0.24) (0.26) (4.19) (0.24) N.A.

1320 kg 17.2 20.20 1.89 64.38 20.24 1.89 60.00
15.8 (4.37) (0.16) (0.45) (3.78) (0.16) N.A.

1430 kg 15.8 28.54 2.12 52.18 28.57 2.12 55.00
14.4 (4.26) (0.15) (0.28) (3.68) (0.16) N.A.

1540 kg 14.4 44.44 2.67 61.76 44.45 2.67 55.00
13.2 (4.45) (0.18) (0.10) (3.84) (0.21) N.A.

1660 kg 13.2 81.08 4.13 65.17 81.07 4.13 60.00
12.2 (4.93) (0.33) (0.28) (4.24) (0.39) N.A.

1770 kg 12.2 43.24 2.82 53.86 43.19 2.81 55.00
11.1 (5.44) (0.25) (0.58) (4.68) (0.26) N.A.

1880 kg 11.1 36.60 2.79 52.56 36.52 2.78 55.00
10.2 (5.86) (0.29) (0.49) (5.04) (0.30) N.A.

2000 kg 10.2 33.16 3.09 68.93 33.08 3.08 60.00
9.4 (5.99) (0.38) (0.26) (5.16) (0.39) N.A.

2110 kg 9.4 20.62 2.81 58.08 20.56 2.80 55.00
8.7 (5.66) (0.44) (0.60) (4.89) (0.42) N.A.

2280 kg 8.7 6.66 2.25 91.89 6.65 2.24 88.00
7.4 (4.09) (1.13) (2.21) (3.57) (0.87) N.A.

Kei-Cars
860 kg 21 18.72 1.66 46.93 18.66 1.66 55.00

20.8 (4.52) (0.14) (0.77) (4.04) (0.13) N.A.

980 kg 20.8 44.82 3.47 55.80 45.04 3.51 60.00
20.5 (2.31) (0.40) (0.97) (1.80) (0.54) N.A.

Main Estimates Uniform Assumption

Note: This table shows the regression result in equation 2. Bootstrapped standard errors are in the parentheses.

and b are not sensitive to this assumption because the excess bunching is so substantial compared

to the counterfactual distribution that the way to reach the integration constraint between the
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observed and counterfactual distributions do not matter much to these estimates. However, we

find slight differences in E[∆w] between our two methods. With the uniform assumption, E[∆w]

equals half the length of the immediate left weight category by assumption and therefore we have no

standard errors for them. In contrast, our main estimates do not impose the uniform assumption.

Our results show that the uniform assumption provides slightly underestimated or overestimated

E[∆w], depending on the notches. However, the differences are not that large.

Likewise, Table 2 presents our estimation results for all notches for the data between 2009 and

2013 (the new fuel economy standard). Note that the new fuel economy standard has a larger

numbers of notches and the length of each weight category is smaller than the ones in the old

standard. It means that we expect lower estimates for E[∆w], because our conservative estimates

assume that automakers may increase their vehicle weight but not by more than the amount to

reach the immediate upper weight category. First, we find statistical significant excess bunching at

all notches except for the 980 kg notch and 2280 kg notch for normal cars. At these two notches, the

estimates indicate that there is positive excess bunching, but the estimates are noisy because there

are not a large number of vehicles in this weight range. Second, similar to the estimates in the old

standard, we find substantial heterogeneity in the estimates between the notches. The proportional

excess bunching b ranges between 2.1 and 4.1 for normal cars and 1.7 and 3.5 for kei-cars, depending

on the notches. The estimated weight increases E[∆w] range between 50 kg to 92 kg for normal

cars and 47 kg to 56 kg for kei-cars. Finally, similar to our results for the old standard, the method

with the uniform assumption provides similar estimates to our main estimates.

Overall, the results in this section provide evidence that automakers significantly respond to

the attribute-based fuel economy regulation by changing their vehicle weight. By using the bunch-

ing estimation method based on the substantial cross-sectional variation, we show that given the

assumption that bunching comes from the left (lower weight) of each notch, our estimates of excess

bunching imply that automakers increase vehicle weight between 50 kg and 147 kg to reach less

stringent fuel economy regulations. In addition to the cross-sectional variation, the Japanese policy

change provides useful panel variation in the regulation. In the next section, we exploit our panel

data and a policy change in fuel economy regulation.
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3.5 Panel Data Analysis: Exploiting the Policy Change

The previous section provided visually clear and statistically significant evidence of bunching at

the notch points in the weight dimension using cross-sectional data. In this section, we exploit

the policy change in the Japanese fuel economy standard that changed the location of the notched

schedules to verify our results using panel techniques.

The two policy regimes are shown in Figure 5. Before 2008, automakers faced the old fuel

economy standard represented by the dashed line. In 2009, the new standard was introduced. The

years between 2009 and 2012 were a transition period, during which time automakers were allowed

to choose which schedule they wished to use. In 2013, all automakers were required to be on the

new standard. We focus our comparison on 2008 and 2013 because the automakers did not have a

choice about the schedule in those years. For these two years, we use our panel data, which links

the same car type over time, to see how vehicle weight and fuel economy changed.

Focusing on the comparison between 2008 and 2013 makes the analysis cleaner, although it

comes at a cost. In five years, automakers often change their model names completely, introduce

new models, and terminate the production of others. As a result, We are able to match only about

half of the vehicles between 2008 and 2013. All results below are based on this matched sample.

We first use our panel data to verify that vehicles that bunch at notches do so by increasing

their weight, as suggested by theory, rather than decreasing it. Panel B of Figure 8 shows that

many cars had weights within 10 kg of the notches under the 2013 standard. In Figure 11, we take

the sample of those vehicles and plot their change in weight between 2008 and 2013 against their

final weight in 2013. The horizontal axis shows the vehicle weight in 2013, the vertical axis shows

the change in weight from 2008 to 2013, and the dashed vertical lines show where there are weight

notches. For most vehicles in the diagram, the change in weight is positive, which suggests that

bunching comes from weight increases.

The weight increase in Figure 11 could reflect a secular trend in weight. To account for this,

we use the vehicles that do not bunch in 2013 as a control group.20 Figure 12 shows the kernel

density of the changes in weight from 2008 to 2013 for the vehicles that bunched in 2013 and the

20We focus on vehicles that have a weight between 960 and 2020 kg, which represents a significant majority of the
market, as a control group because light vehicles (those weighing less than 800 kg) appear to have had a significantly
different weight trend. Adding the excluded light cars does not change results in our regression analysis, below, in
which we include a polynomial that allows the trend to differ vehicles of different weights.
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Figure 11: Changes in Vehicle Weight from 2008 to 2013 for Samples that Bunch in 2013
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Note: This figure plots the raw data of individual vehicles that bunch in the notch points

in the fuel economy standard in 2013. The horizontal axis shows the vehicle weight in

2013, the vertical axis shows the change in weight from 2008 to 2013, and the dashed

vertical lines present the notch points.

same density for those that did not. The sample of those who bunched is pushed towards the right

relative to the control group of non-bunchers. In particular, the distribution indicates that there

are many vehicles who bunched at a weight notch after increasing weight by 50 to 150 kg.

To estimate the difference in the change in weight between the bunching and non-bunching

vehicles, we estimate the following equation by OLS:

∆weighti = α+ β · 1{bunchingi}+ f(weighti,2013) + εi, (3)

where ∆weighti is the change in weight (kg) from 2008 to 2013 for vehicle i and 1{bunchingi}

equals one if vehicle i is located within 10 kg of a weight notch in 2013. Regressing ∆weighti on

1{bunchingi} estimates a difference in mean weight between the two groups. This simple regression

potentially produces a bias if the change in weight is systematically larger for lighter or heavier

vehicles. In our case, any such bias is likely to be small because the notch points are spread
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Figure 12: Kernel Density of Changes in Vehicle Weight from 2008 to 2013
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Note: This figure shows the kernel density of the changes in weight from 2008 to 2013 for the

bunching samples and other samples in 2013.

throughout the weight distribution, which means that the bunching and non-bunching samples

have fairly similar weight on average. Nevertheless, we add a polynomial in weighti,2013 to reduce

this potential bias.

Table 3 presents regression results. Column 1 shows that the simple mean difference in the

change in weight between the bunching samples and others is 13.79 kg. That is, vehicles that

bunched increased their weight by 13.79 kg more than other vehicles. In column 2, we control for

any linear relationship between the change in weight and final weight by adding a linear control for

weight in 2013. As expected, this yields a positive coefficient on weight, which means that heavier

vehicles had slightly larger increases in weight, but this has very little impact on our coefficient

of interest, as expected. We include the second- and third-order polynomials in columns 3 and 4,

which has no significant impact on our coefficient of interest.

This evidence confirms our theoretical prediction that automakers increase their vehicle weight

in response to the attribute-based regulation notches. We estimate that the mean of this weight
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Table 3: Changes in Vehicle Weight from 2008 to 2013: Does Bunching Come from Left or Right?

(1) (2) (3) (4)
∆Weight ∆Weight ∆Weight ∆Weight

1{Bunching in 2013} 13.79∗∗∗ 13.23∗∗∗ 13.62∗∗∗ 12.48∗∗

(5.25) (5.04) (4.98) (5.07)

(Weight in 2013)/1000 46.14∗∗∗ 261.34∗∗∗ -131.18
(6.83) (54.79) (346.21)

(Weight in 2013)/1000)2 -71.47∗∗∗ 185.45
(18.06) (224.48)

((Weight in 2013)/1000)3 -54.03
(47.05)

Constant 24.56∗∗∗ -42.32∗∗∗ -196.26∗∗∗ -4.05
(2.81) (10.26) (40.19) (172.16)

Observations 531 531 531 531
R2 0.013 0.091 0.118 0.120

Note: This table shows the regression result in equation 3. The dependent variable is the change in vehicle weight (kg)

from 2008 to 2011. 1{Bunching in 2013} is a dummy variable or samples that bunch in the fuel economy standard

schedule in 2013. Standard errors are in the parentheses. ***, **, and * show 1, 5, and 10% levels of statistical

significance from zero.

increase due to the change in the policy is about 13 kg. This estimate is smaller than our estimate

in the previous section, which uses cross-sectional variation at the notches. This is not surprising

because the two identification strategies use different sizes of variation in fuel economy standards.

The cross-sectional variation at the notches is much larger than the panel-variation that we use in

this section, because the panel-variation exploits the changes in fuel economy standard between

the old and new fuel economy standards. We go further in the next section by using the panel

variation in incentives created by the policy change to estimate a weight response elasticity.

3.6 Panel Data Analysis: Elasticity of Attributes with Respect to Regulation

Our theory indicates that if a planner were to choose the second-best tax rate on fuel economy,

taking as given the slope of the attribute-based target, that the deviation between the second-best

tax rate and the Pigouvian benchmark would be a function of the relative elasticities of weight and

fuel economy when the policy was tightened. In this section we use panel variation to estimate

those elasticities and provide a back of the envelope calculation as to how much the attribute-basing
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would lower the optimal (second-best) stringency of the policy.

Figure 5 shows that the new regulation increased the fuel economy requirement for vehicles

in all weight classes, but the increase was of a different magnitude for vehicles in different weight

classes. For example, compare a vehicle that weighed 1420 kg in 2008 to one that weighed 1430

kg in that year. The former vehicle faced an increase in its fuel economy standard from 13 to 15.8

km/liter (a 22% increase), while the latter vehicle faced an increase in its fuel economy standard

from 13 to 14.3 km/liter (an 11% increase).21 In this section, we exploit the discontinuities in the

variation in the changes in fuel economy standards to estimate the elasticity of attributes with

respect to fuel economy regulation.

We use a regression discontinuity design (RDD) that is similar to the identification strategy in

Saez (2003). Saez uses discontinuous variation in income tax rates created by “bracket creep” in

the U.S. income tax schedule. In his study, there is no policy change in the income tax schedule

in nominal terms. However, inflation is high enough to shift the income tax schedule towards the

right in real terms, causing taxpayers to face differing real income tax schedules. In our context,

we have changes in 1) the locations of the kink points and 2) the stringency of the fuel economy

regulation, which provides powerful variation enabling us to estimate how variation in the stringency

of regulation affects attribute changes.

Our estimation is based on the following OLS regression:

∆weighti = α+ β ·∆standardi + γ ·Xi + εi, (4)

where ∆weighti is the change in weight (kg) from 2008 to 2013 for vehicle i, ∆standardi is the

change in the fuel economy standard (km/liter) for i, and Xi is a vector of control variables. OLS

estimates will be biased because standardit is a function of weightit for t ∈ (2008, 2013). If there

are unobservable shocks in εi, they will affect ∆standardi as well as ∆weighti. Because the fuel

economy standard is a decreasing step function of weight, we expect that OLS estimation produces

a downward bias for β.

To address the endogeneity, we use a policy-induced change in the standard as an instru-

ment, as in Saez (2003); Saez, Slemrod, and Giertz (2012); Ito (Forthcoming). Specifically, we use

21Note that this variation is driven by the front-runner in each category, which we treat as plausibly random
variation.
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Table 4: Elasticity of Attributes (weight) with Respect to Fuel Economy Standards

∆Weight(kg) ∆ln(Weight)

(1) (2) (3) (4) (5)

∆Fuel Economy Standard -8.67∗∗∗ 18.70∗∗ 18.86∗∗∗

(1.69) (7.37) (7.26)

∆ln(Fuel Economy Standard) 0.16∗∗∗ 0.16∗∗∗

(0.05) (0.05)

(Weight in 2008)/1000 479.58∗∗∗ 313.30 0.24∗∗∗ 0.18
(76.40) (434.38) (0.04) (0.26)

(Weight in 2008)/1000)2 -146.39∗∗∗ -36.23 -0.08∗∗∗ -0.04
(24.04) (278.79) (0.01) (0.17)

((Weight in 2008)/1000)3 -23.40 -0.01
(58.19) (0.04)

Constant 42.00∗∗∗ -371.45∗∗∗ -291.45 -0.18∗∗∗ -0.14
(3.51) (66.05) (224.59) (0.03) (0.13)

Observations 531 531 531 531 531
Estimation OLS RD(2SLS) RD(2SLS) RD(2SLS) RD(2SLS)

Note: This table shows the regression result in equation 4. The dependent variable is the change in vehicle weight

(kg) from 2008 to 2011 or log of the change in weight. ∆ Fuel Economy Standard is the change in fuel economy

standard. Standard errors are in the parentheses. ***, **, and * show 1, 5, and 10% levels of statistical significance

from zero.

∆standardPIi = standardi,2013(weighti,2008)−standardi,2008(weighti,2008). This instrument, which

is sometimes called a simulated instrument, computes the predicted change in the standard at a

weight level weighti,2008. The instrument thus captures the change induced by the policy change

for the weight level weighti,2008. To be a valid instrument, weighti,2008 has to be uncorrelated with

εi, because the instrument is a function of weighti,2008. This condition can be violated if lighter

cars and heavier cars in 2008 have different underlying changes in weight. The advantage of our

identification strategy is that we can include any smooth controls for weighti,2008 in Xi to account

for such concerns. Because the instrument’s variation in the change in standard is discontinuous in

weight, including any smooth controls for weighti,2008 does not eliminate our ability to identify the

coefficient. In our estimation, we use ∆standardPIi as an instrument for ∆standardi and include

a third-order polynomial of weighti,2008 in Xi.
22

22Including yet higher orders of the polynomial does not change our results.
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Table 5: Elasticity of Attributes (fuel economy) with Respect to Fuel Economy Standards

∆Fuel Economy (km/liter) ∆ln(Fuel Economy)

(1) (2) (3) (4) (5)

∆Fuel Economy Standard -0.00 0.22 0.20
(0.06) (0.21) (0.21)

∆ln(Fuel Economy Standard) 0.22 0.21
(0.16) (0.16)

(Weight in 2008)/1000 7.80∗∗∗ 23.07∗ 0.56∗∗∗ 1.25
(2.18) (12.34) (0.13) (0.79)

(Weight in 2008)/1000)2 -2.61∗∗∗ -12.73 -0.19∗∗∗ -0.65
(0.69) (7.92) (0.04) (0.51)

((Weight in 2008)/1000)3 2.15 0.10
(1.65) (0.11)

Constant 0.26∗∗ -5.61∗∗∗ -12.95∗∗ -0.40∗∗∗ -0.73∗

(0.12) (1.89) (6.38) (0.10) (0.39)

Observations 531 531 531 531 531
Estimation OLS RD(2SLS) RD(2SLS) RD(2SLS) RD(2SLS)

Note: This table shows the regression result in equation 4 but uses ∆FuelEconomyi as the left-hand side variable.

∆FuelEconomyi is the change in fuel economy (km/liter) for vehicle i from 2008 to 2013. Standard errors are in the

parentheses. ***, **, and * show 1, 5, and 10% levels of statistical significance from zero.

Table 4 presents estimation results. As expected, the OLS estimate in column 1 is lower than

our RD estimates in columns 2 and 3. This is likely due to the downward bias stemming from the

endogeneity of ∆standardi. In columns 2 and 3, we show our RD estimates. The first stages are

very strong because the policy-induced change in fuel economy standard strongly affects the actual

change in standard. After we include the first- and second-order of polynomials in weighti,2008, our

estimates are not sensitive to the inclusion of higher-orders of polynomials. The estimates imply

that a one unit increase in the fuel economy standard (km/liter) results in an increase in vehicle

weight of 19 kg. In columns 4 and 5, we use a log-log RD specification to estimate a constant

elasticity. The estimate implies that a 1% increase in the fuel economy standard results in a 0.16%

increase in vehicle weight. These results provide empirical evidence that automakers change their

vehicle weight in response to the change in the stringency of fuel economy regulation.

In Table 5, we estimate equation 4 but use ∆FuelEconomyi as the left-hand side variable.

∆FuelEconomyi is the change in fuel economy (km/liter) for vehicle i from 2008 to 2013. In this
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estimation, we test whether increases in the fuel economy standard cause an increase in the fuel

economy of vehicles. The estimates indicate that more stringent fuel economy standards result in

increases in fuel economy, but the estimates are not statistically significantly different from zero.

We can use proposition 3 to translate these elasticity estimates into a policy implication. The

formula relates the second-best tax rate (or shadow price) t to the externality φ and the elasticities

of a and e with respect to the policy, and the elasticity of the target fuel economy rating with

respect to weight:

t∗ =
φ

1− εσa
εat
εet

=
φ

1− (−.89) .16
.21

= .60φ.

We estimate the elasticity of the policy function by regressing the log of the fuel economy values

for each step on the log of the weight, measured at the midpoint, of the steps for the 2008 policy

and get an elasticity of -.89. We then plug in our estimates of the elasticities of weight and fuel

economy with respect to a tightening of the policy from tables 4 and 5. Together, these estimates

imply that the second-best tax rate would be equal to marginal damages divided by 1.68, which is

equivalent to saying that the second-best tax rate is 60% of the Pigouvian tax. That is, because

weight responses strongly to increases in the standard, the policy-maker would choose a tax rate

significantly below marginal damages from the externality in order to balance the distortions from

the choice of a against the externality improvement.23

In summary, our empirical analysis provides three findings: 1) there is compelling evidence that

vehicles bunch at the attribute (weight) notch points in the Japanese fuel economy standard; 2)

given the assumption (backed by theory) that bunching comes from the left (i.e., bunching comes

from increases in weight), the excess bunching in our cross-sectional variation implies that the

average increase in vehicle weight for each notch point is between 40 kg and 147 kg; and 3) our

panel data analysis provides supporting evidence for this assumption, as we find that a one unit

increase in the fuel economy standard results in an increase in vehicle weight of 19 kg and a one

percent increase in fuel economy standard results in an increase in vehicle weight by 0.16%.

23Note that our estimate of the fuel economy elasticity is imprecise, so that the standard error around this statistic
is large, though even the largest values of the fuel economy elasticity still imply significant deviations from Pigou. For
example, if we take the upper value of the elasticity’s 95% confidence interval, but continue to use the point estimate
for the weight elasticity, the reduction in the second-best tax relative to the Pigouvian benchmark would be 21%.
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3.7 Welfare implications of weight manipulation

As emphasized in the theory section, the main welfare loss from the response to attribute based

standards in the situation where the attribute itself has an unpriced externality will be the ineffi-

ciency from an increase in the attribute. An approximation of the distortion from the policy can

therefore be calculated by multiplying the change in the attribute by the externality. Our cross-

sectional estimates suggest that the increase in weight caused by attribute-basing in the Japanese

car policy is between 40 and 147 kg. The weighted average increase across all cars that bunch at

the notches in table 1 is 109.62 kg.

To estimate the externality associated with increased weight, we use estimates from Anderson

and Auffhammer (Forthcoming), which concludes that an increase in vehicle weight of 1000 pounds

(454 kg) is associated with a 0.09 percentage point increase in the probability that the vehicle is

associated with a fatality, on a mean probability of 0.19%. We use a standard estimate of the value

of a statistical life (VSL) of $7 million. Both of these estimates come from the U.S., which is an

obvious weakness of the calculation, but we do not know of similar estimates for Japan.

We thus calculate the welfare loss, per car sold, for a 110 kg weight increase as: 110 * 0.0009 *

(2.2/1,000) * $7 million = $1525 per car that changes weight in response to the policy. Our data

suggest that 9% of cars increase weight and bunch at a notch point. The Japanese car market sells

around 5 million new cars per year, so we estimate our aggregate annual welfare distortion to be

9% of 5,000,000 times $1525, which is $686 million.

Our theory showed that there are several distortions caused by attribute-basing. One is the

exacerbation of weight-based externalities, which we showed will be “first-order” and thus is ex-

pected to dominate the welfare calculation when actual policies are “small” deviations from the

first-best. There is also a “Harberger triangle” distortion in the choice of vehicle weight and a

distortion due to “general equilibrium” changes in the choice of fuel economy. The existence of

these other distortions means that the welfare loss due to accident externalities is a lower bound

on the total welfare loss from attribute-basing, because it does not count these other distortions.

In our particular context, the Harberger triangle due to the misallocation of weight may be small.

The reason is that consumers presumably do not value vehicle weight directly. Rather, weight is

a proxy for other features of a vehicle, as heavier vehicles are larger and have more equipment
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installed. If an automaker wished to increase the weight of a vehicle holding all else constant, they

could presumably do so by adding superfluous materials to the vehicle at relatively low cost (e.g.,

they could put a lead bar in the trunk). If automakers in fact use this “cheap weight”, then the

distortionary costs to weight allocation may be as small as the cost of the cheapest available metal,

and there would in fact be no Harberger triangle from weight misallocation. Note that “cheap

weight” has the same safety implication as “real weight”, so that this compliance strategy has no

bearing on the weight externality consequences derived above.

Furthermore, in this scenario, we can put an upper bound on the utility lost due to externalities

associated with the “general equilibrium” distortion to fuel economy that results from having cars

that are heavier than is optimal. In the “cheap weight” scenario, there is no reason to think that

consumer utility over fuel economy is affected by the change in weight. There is, however, a direct

effect of increased weight on fuel economy, so that the marginal cost curve of providing fuel economy

to a vehicle is shifted out when that vehicle becomes heavier. This shift out in the cost schedule

will result in a change in private benefits and a change in social benefits due to a change in the

amount of externality reduction achieved by the policy. We can bound the latter by assuming that

all other features of the car are unaffected, so that the change in fuel economy that results from an

increase in weight is due to the mechanical relationship between weight and efficiency.

In particular, the deadweight loss relative to the first-best from reduced fuel economy related

externalities per car is equal to the change in fuel economy induced by the change in weight times

the change in gallons of gasoline consumed as a result of the change in fuel economy times the

externality per gallon. That is, DWL ≈ εmpgkg ∗
∆kg
k̄g
∗ eg ∗ g(m̄pg), where eg is the externality per

gallon and g(m̄pg) is the mean gallons of gasoline consumed per car.

To calculate this we interpret the estimates in Knittel (2011) as reflecting the engineering

relationship. He finds a fuel economy elasticity of -.4 with respect to weight. The mean vehicle

weight in our data is around 1400 kg, and our estimated change in weight is 110 kg. At the mean

fuel economy in Japan of 14 km/liter (33 mpg), a vehicle that drives 170,000 miles in its lifetime

will consumer 5,500 gallons of fuel. We use an aggressive measure of the eternality per gallon of

$2 per gallon, which comes from combining canonical estimates in Harrington, Parry, and Walls

(2007) and the accident-related externalities per gallon consumer from Anderson and Auffhammer

(Forthcoming). Plugging in these values yields DWL ≈ −.4 ∗ 0.08 ∗ $2 ∗ 5, 500 = $346. This is
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an upper bound in the sense that it assumes no adjustment in technology or other attributes is

made in response to the increase in fuel economy and in that it uses an aggressive estimate of

the externality per gallon. But, even so, we see that this estimate, while substantial, is less than

a quarter of the estimate we get from our weight externality estimate. This suggests that, while

the weight externality component that we emphasize is an underestimate of the full welfare costs

of attribute-basing, in our case, it likely captures the lion’s share of the welfare impacts. This is

noteworthy in that we suspect many analysts would intuitively expect the main welfare impacts of

attribute-basing to be tied to changes in the externality reduction related to fuel economy.

4 Conclusion

This paper explores the economic implications of attribute-based regulation. We develop a the-

oretical framework that highlights conditions under which attribute basing is inefficient, and we

show that, under those conditions, the use of attribute-based regulation leads to distortions that

are concentrated in the provision of the attribute upon which targets are based. The model also

explores cases where attribute-basing may play a role, but emphasizes that, even in those cases,

the attribute-basing function deviates fundamentally from those observed in real world policies.

Empirically, the paper demonstrates that distortions in response to attribute-based fuel economy

standards in Japan are clearly present. We use both established cross-sectional tools based on the

notch literature, as well as novel panel techniques, to demonstrate that the Japanese car market

has experienced a notable increase in weight in response to attribute-basing.

The theoretical framework makes a number of simplifying assumptions that could be relaxed

in future work. In particular, it is possible that attribute-based regulation, particularly when it

features notches, impacts firm pricing strategies for certain types of products. Further exploration

of the cases in which attribute-basing may be justified is also warranted. On the empirical side,

evidence of the responsiveness of attributes other than vehicle weight, which may be particularly

easy to manipulate, would be a valuable object of study for future research.
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A Proofs of propositions

Proposition 1. The first-best allocation can be achieved for a tax by setting t = φ and σ′ = 0.

We show that the consumer’s and planner’s first-order conditions are identical when t = φ and

σ′ = 0 for a tax policy. Consumer of type n solves:

max
an,en

Wn =Un(an, en) + [In +G− P (an, en) + t · (en − σ(an))] + φ · E.

The first-order conditions are:

∂Wn

∂an
=
∂U

∂an
− ∂P

∂an
− tσ′ = 0 (5)

∂Wn

∂en
=
∂U

∂en
− ∂P

∂en
+ t = 0. (6)

The planner’s problem (where we assume a utilitarian social welfare function) is as follows,

where we assume the planner can choose the allocation directly:

max
an,en

SWF =
∑
n

Un(an, en) + [In − C(an, en)] + φ
∑
n

en.

This differs from the consumer’s problem in directly inserting the cost function in place of prices

(though these will be equal under perfect competition) and taxes, and in recognizing how the choice

of e affects the total externality. The first-best optimization conditions are found by differentiation:

∂SWF

∂an
=
∂Un
∂an

− ∂C

∂an
= 0 (7)

∂SWF

∂en
=
∂Un
∂en

− ∂C

∂en
+ φ = 0. (8)

Under perfect competition, prices equal marginal costs. Then, it is apparent that the planner’s and

consumers’ first-order conditions are identical if and only if σ′ = 0 and t = φ.

Corollary 1. When compliance trading is allowed, the first-best allocation can be achieved for a

standard by setting σ′ = 0 and choosing κ such that λ = φ.

In the presence of compliance trading, a single shadow price, denoted λ will exist. The con-
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sumer’s problem is then:

max
an,en

Wn =Un(an, en) + [In +G− P (an, en)] + λ(en − σ(an)− κ) + φ · E.

The first-order conditions are:

∂Wn

∂an
=
∂U

∂an
− ∂P

∂an
− λσ′ = 0 (9)

∂Wn

∂en
=
∂U

∂en
− ∂P

∂en
+ λ = 0. (10)

The endogenous λ will be an increasing function of κ because of the convexity of the cost function.

Thus, some value of κ exists for which λ = φ. Choosing that value of κ and σ′ = 0 makes the

consumers’ first-order conditions identical to the planner’s first-best written above.

Proposition 2. When σ(a) is linear, so that σ(a) = σ′ · a, the second-best attribute slope is:

σ′∗ =
t− φ
t

(
∑

n
∂e
∂σ′ )/n

(
∑

n
∂a
∂σ′ )/n

.

Taking t as fixed, the planner’s second-best choice of σ′ solves:

max
σ′

∑
n

U(an, en) + In − C(an, en) + φen.

The first-order condition of this problem is:

∑
n

(
∂Un
∂en

− ∂C

∂en
+ φ

)
∂en
∂σ′

+

(
∂Un
∂an

− ∂C

∂an

)
∂an
∂σ′

= 0.

We substitute the optimality conditions from the consumer’s problem:

(−t+ φ)
∑
n

∂en
∂σ′

+
(
σ′t
)∑

n

∂an
∂σ′

= 0.

Dividing by n (to express the summations as averages) and rearranging yields the result.
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Proposition 3. When σ(a) is linear, so that σ(a) = σ′ · a, the second-best tax rate is:

t∗ =
φ

1− σ′
(

(
∑

n
∂a
∂t

)/n

(
∑

n
∂e
∂t

)/n

) =
φ

1− εσa
εat
εet

,

where εxy denotes the elasticity of x with respect to y for each pair of variables.

Taking σ′ as fixed, the planner’s second-best choice of t solves:

max
t

∑
n

U(an, en) + In − C(an, en) + φen.

The first-order condition of this problem is:

∑
n

(
∂Un
∂en

− ∂C

∂en
+ φ

)
∂en
∂t

+

(
∂Un
∂an

− ∂C

∂an

)
∂an
∂t

= 0.

We substitute the optimality conditions from the consumer’s problem, just as above, and rearrange.

To get the second equivalence, we substitute the definition of an elasticity and use the fact that,

when the standard binds, en = σ(an).

Proposition 4. When trading is not allowed, the optimal standard will set κ such that:

∑
n λn
n

= φ

(
1 + σ′

∑
n
∂an
∂κ

n

)
< φ.

The planner solves:

max
σ′,κ

SWF =
∑
n

(Un(an, en) + [I +G− P (an, en)] + φ · en) .

Note that in the case of a standard, the planner does not choose directly a shadow price (tax rate),

but rather chooses one implicitly by setting the stringency of the standard. It is useful to think of

κ as determining the overall level of the standard, while σ′ determines how large is the concession

to products with a larger a.
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The first-order condition with respect to κ is:

∑
n

(
∂Un
∂an

− ∂P

∂an

)
∂an
∂κ

+

(
∂Un
∂en

− ∂P

∂en
+ φ

)
∂en
∂κ

= 0.

Using the optimality conditions from the consumer’s problem, this can be rewritten as:

∑
n

λnσ
′∂an
∂κ

+ (φ− λn)
∂en
∂κ

= 0. (11)

When the constraint is binding, en = σ′an + κ. Total differentiation of this constraint yields

a relationship between ∂an/∂κ and ∂en/∂κ, namely that ∂en/∂κ = σ′∂an/∂κ + 1. Using this

substitution and rearranging equation 11 yields:

∑
n λn
n

= φ

1 + σ′
∑

n
∂an
∂κ

n︸ ︷︷ ︸
+

 , (12)

Proposition 5. When trading is not allowed, the optimal covariance between shadow prices and

the attribute will be:

∑
n(λn − λ̄)(an − ā)

n
= φσ′

(∑
n
∂an
∂σ′

n
− ān

∑
n
∂an
∂κ

n

)
> 0.

The first-order condition for σ′ is:

∑
n

(
∂Un
∂an

− ∂P

∂an

)
∂an
∂σ′

+

(
∂Un
∂en

− ∂P

∂en
+ φ

)
∂en
∂σ′

= 0.

Total differentiation of the constraint yields ∂e/∂σ′ = σ′∂a/∂σ′ + a. Using this substitution and

rearranging yields:

∑
n λnan
n

= φ

(
ān + σ′

∑
n
∂an
∂σ′

n

)
, (13)

where ān denotes the mean of an. We then use the definition of the sample covariance of λn and an

to rewrite
∑

n λnan as
∑

n(λn− λ̄)(an− ā)+n−1
∑

n an
∑
λn, substitute equation 12 and rearrange

55



to get the following result regarding this covariance:

∑
n(λn − λ̄)(an − ā)

n
= φσ′


∑

n
∂an
∂σ′

n︸ ︷︷ ︸
−

− ān
∑

n
∂an
∂κ

n︸ ︷︷ ︸
+

 . (14)

B Notched policies have similar welfare properties

Many of the attribute-based regulations that we consider feature notches. That is, the function

relating the fuel economy target to the attribute, σ(a), is a step function with discrete jumps. Sallee

and Slemrod (2012) study notched fuel economy policies and conclude that the use of notches in

place of a smooth Pigouvian tax is welfare decreasing because it provides overly large incentives

for fuel economy improvements for some agents and too small incentives for others. Our context is

different in that we have two dimensions, and either could have notches.

We first consider the case where the notches exist only in the attribute function σ, but the tax

on e is smooth. That is, conditional on e, the tax policy function t(a, e) takes discrete jumps at

certain values of a. How would such a policy function affect consumer choice? We can get some

initial intuition graphically. Figure 13 shows an isocost curve, that is, the set of values for which

a consumer spends a constant amount on the durable, P (a, e) + t(a, e). The figure is drawn with

several notches, at a′, a′′ and a′′′. The solid blue line (drawn to be linear for the sake of illustration)

shows the isocost curve before any policy intervention; and the dashed red line shows the modified

isocost curve for the same expenditure on the good when there is a Pigouvian subsidy on e that

has no attribute slope.

Next, the dashed grey line represents the isocost curve that would exist under a smooth attribute

policy. In the diagram, the grey line is drawn parallel to the original blue line, which represents

the case when policy makers draw the attribute slope to match existing isocost curves, thereby

preserving the original relative prices of a and e. This grey dashed line is not the final isocost

curve, however, when σ(a) is notched. In that case, the solid black lines represent the isocost curve

for the consumer.

Importantly, the line segments on the final isocost curve are parallel to the red dashed line

representing the Pigouvian tax. As in the smooth case, the existence of the attribute function does
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Figure 13: Isocost curve with notched attribute-based tax

a

e
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not distort the price of a relative to x, which means that the distortion in the choice of e will be

only the indirect change due to a—it will be driven only by the utility and cost interactions of

the optimal choice of e and the distorted choice of a. Furthermore, because the line segments are

parallel in slope to the original Pigouvian line (and because we assume quasi-linearity) the choice of

a will not be distorted if the consumer is choosing an interior point along one of the line segments.

All of the distortion is due to cases where a consumer chooses a′. That is, all of the distortion is

evident from those who “bunch” at the notch points. This guides our empirical work below.

We now provide algebraic analysis to flesh out the graphical intuition. For notational ease, we

focus on the case with only one notch, at a′, above which the tax subsidy jumps by amount τ > 0.

Then, the tax function can be written as:

t(a, e) =


t · e if a < a′

t · e+ τ if a ≥ a′.
(15)

As above, denote by (a∗, e∗) the bundle chosen by a consumer facing a Pigouvian tax of t · e. If the

consumer’s choice under the smooth attribute policy had a∗ > a′, then the addition of the notch τ

is purely an income effect. It has not changed the marginal price of a or e relative to each other or

relative to x. Given quasi-linearity, this means that the durable choice of a consumer with a∗ > a′

is unaffected by the introduction of a notched attribute policy.
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When a∗ < a′, the consumer will face a discrete choice of maintaining their original allocation

or switching to a′ exactly. They will not choose a > a′. To see why, suppose that they chose a value

under the notched policy, call it ã strictly greater than a′. Then their optimization problem can be

written L = U(a, e)+[I+G−P (a, e)+t ·e+τ ]+µ[a−a′], where there is a budget constraint as well

as an inequality constraint that a ≥ a′. If ã > a′, then the shadow price on the latter constraint,

µ, is zero. In that case, the first-order conditions of the problem will be exactly the same as in

the benchmark case with no attribute notch, which by construction featured an optimal choice of

a∗ < a′.

Thus, the consumer with a∗ < a′ will either choose ã = a∗ (and not receive τ) or will choose

ã = a′ exactly. This has the empirical implication that all bunching should come “from the left”—

changes in a in response to the notched incentives should always be increases in a.

If a consumer chooses a′, then their choice of e will solve:

max
e

= U(a′, e) + [I +G− P (a′, e)− t · e− τ ], (16)

which has the first order condition ∂U(a′,e)
∂e = ∂P (a′,e)

∂e + t. This compares to ∂U(a∗,e)
∂e = ∂P (a∗,e)

∂e + t

for the Pigouvian case, where a′ > a∗. Thus, just as in the smooth case, the distortion in e depends

only the relative second-order curvature of P and U , which will be working in offsetting directions.

If they offset perfectly, then ẽ = e∗, but this would owe to a coincidence regarding the shape of P

and U . More generally, the consumer’s choice of e could rise or fall relative to the first-best choice.

The distortion in a will be analogous to a traditional Harberger triangle and thus rising in τ2.

The consumer will choose ã = a′ if and only if:

−τ > P (a′, ẽ)− P (a∗, e∗)− (U(a′, ẽ)− U(a∗, e∗)), (17)

that is, whenever the tax benefit is larger than the cost increase from moving from (a∗, e∗) to

(a′, ẽ) minus the increase in utility from that change. The welfare loss can be written as a Taylor

expansion, which again has the same intuition as a traditional Harberger triangle.

For our purposes, the main point of this analysis is that, even when the attribute function is

notched, the focus of welfare analysis should be on how the policy distorts the choice of a relative
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to the Pigouvian baseline, and that we should expect the distortion to result in bunching at exactly

the notch points in a. For empirical purposes, notched policies are useful in revealing the distortion

because it is generally easier to detect bunching at specific notch points than shifts over time in

an entire schedule. For that reason, the Japanese fuel economy standards are an especially fruitful

context for study.

All of this applies to situations where the (implicit or explicit) tax on e is smooth, but the

attribute-basing function is notched. This describes fuel economy regulations in Japan. It is also

possible, however, that both the tax on e and the attribute function σ have notches. That is, t(a, e)

is discontinuous in both a and e. This case describes the Japanese tax subsidy programs.

The simplest version of this policy is one with a single cutoff for a, call it a′ and a pair of cutoffs

for e, call them e′ and e′′. The tax for such a system can be described algebraically as:

t(a, e) =


τ1 if e > e′′

τ2 if e′′ > e > e′ and a > a′

0 otherwise.

(18)

An isocost curve for this case is shown in Figure 14. The unsubsidized budget constraint is drawn

as a faint line. The final budget constraint is represented by the bold black line segments, which

overlap in parts with the unsubsidized line. Allocations in the yellow shaded area receive some

subsidy. The subsidy is equal to τ1 for any allocation above e′′. Note that there are large regions

of dominance in this diagram, where a subsidized point that has more of a and more of e has the

same cost to the consumer as an unsubsidized bundle.

In the diagram, the red dashed line represents the simple Pigouvian tax. The values of τ1 and

τ2 are chosen in this case to match the average Pigouvian subsidy for the relevant line segments,

but this need not be the case. Note that, if it is the case, then τ1 6= τ2. In many policy examples,

τ1 = τ2, which may be suboptimal.

When there are notches in both dimensions, there can be bunching in the distribution of e, at e′

and e′′. Above we argued that any change in a caused by attribute-basing relative to the Pigouvian

optimum would come from increases in a. But, in cases with notches in both dimensions, it is

possible that responses to the policy will lower a by inducing bunching at e′ or e′′. This would
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Figure 14: Isocost curve with notches for both a and e
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occur for cases like those represented by the sample utility curve in Figure 14, where a consumer’s

response to the notched subsidy is to bunch at e′′. In that example, the indifference curve that

is tangent to the unsubsidized budget constraint features a higher initial choice of a than at the

bunch point.

C Technology spillovers create a role for attribute-basing, but not

the one given to it by policymakers

Attribute based standards eliminate (or at least limit) the ability of producers to improve energy

efficiency by downsizing in a, instead requiring them to make improvements in the products by

dialing down attributes other than a that are correlated with e, or by adding technology that

improves e while holding a constant. This approach could be appealing if there are positive exter-

nalities related to technological advancement. If firms cannot fully appropriate the value of their

technological improvements, then technological improvements may represent a spillover benefit to

other firms. In this case, there will be too little technological innovation in the absence of policy,

and attribute standards might be beneficial in spurring innovation (instead of downsizing).

A direct way to model technological spillovers is to allow some secondary externality to directly

enter the welfare function. We develop here a very reduced form model of these spillovers by
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simply specifying that costs incurred over some reference level, meant to represent the current

state of the art or the current production possibility frontier, induce a positive external benefit.

We are developing a more complete model of this spillover process, but we strongly suspect that

the basic insights of the simplistic model represented here will carry forward in a more rigorous

framework.

Denote the frontier cost function (some reference cost level) as C(ā, ē) ≡ C̄. When the firm

chooses a bundle inside of the frontier, that is C(a, e) ≤ C(ā, ē), then the firm creates no technology

spillover. The idea in this case is that the good is being produced with already established tech-

niques. If the firm must push costs beyond the current frontier to make a product with a “higher”

bundle of a and e, this requires some additional investment that costs ρ(C(a, e)−C(ā, ē)). We make

the functional form assumption that this extra cost is linear and increasing in its argument, so that

the extra cost can be written as ρ(a, e) = ρ ·max{C(a, e)−C(ā, ē), 0} and ρ > 0. Conversely, there

is some externality that benefits all of society from the technological advancement, which we write

as γ(a, e) = γ ·max{C(a, e)− C(ā, ē), 0)}

The consumer’s and planner’s problems can be written to include this spillover. There will be

first-order conditions for each of two cases, where C(a, e) > C(ā, ē) and where C(a, e) ≤ C(ā, ē). In

either case, the consumer will fail to recognize the externality γ and will recognize only the costs.

The only difference in this problem from the baseline model is that there will be a kink in the cost

function at C(ā, ē) which will induce “bunching”—not at a particular level of a or e, but along a

particular isocost curve of a and e.

When the first-best choice involves values of a and e below C̄, then the consumer’s and planner’s

problems will be identical to the baseline. It is only when the first best allocation lies above C̄

that this problem yields different conditions, so we focus on that here. In this case, the planner’s

problem becomes:

max
a,e

W =U(a, e) + [I − C(a, e)− ρ · (C(a, e)− C(ā, ē))] + φ · e+ γ · (C(a, e)− C(ā, ē)).
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The planner’s first-order conditions of this problem are:

∂W

∂a
=
∂U

∂a
− (1 + ρ− γ)

∂C

∂a
= 0

∂W

∂e
=
∂U

∂e
− (1 + ρ− γ)

∂C

∂a
+ φ = 0.

The consumer’s first-order conditions are:

∂W

∂a
=
∂U

∂a
− (1 + ρ)

∂C

∂a
+ tσ′ = 0

∂W

∂e
=
∂U

∂e
− (1 + ρ)

∂C

∂e
− t = 0.

To make the consumer’s first-order condition for e equal to the planner’s, the tax on e must be set

at t = −(φ+ γ ∂C∂e ). This again is directly consistent with the Pigouvian tax result, where now the

total externality related to e includes both the energy externality φ and the spillover externality γ.

If t = −(φ+ γ ∂C∂e ), then to make the consumer’s first-order condition for a equal to the planner’s,

the attribute slope must be:

σ′ = −
γ ∂C∂a

φ+ γ ∂C∂e
. (19)

This result indicates that attribute-basing does have a potential role in the first-best solution when

their are technology spillovers. Specifically, at the first-best, the slope of the attribute function

should be equal to the ratio of the externalities associated with a and the externalities associated

with e.

As we argued in section ??, policymakers appear to commonly choose attribute-based schedules

that follow the production frontier. That is, they choose a slope of ∂C
∂a /

∂C
∂e . This is optimal only if

there is no externality related to e, and instead there is only a technological spillover, in which case

φ = 0 and equation 19 collapses to be only the ratio of marginal costs of the two attributes. More

generally, the larger is the technology spillover γ relative to the energy externality φ, the closer

will be the attribute slope to the production ratio. In contrast, as the energy externality is greater

relative to the technology spillover (φ >> γ), the attribute slope will approach zero.

Importantly, this result does not imply that attribute-basing is essential. Instead, attribute-
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basing provides a second instrument in addition to the tax on e. With two instruments and two

externalities (one for e and one for a) it is possible to achieve the first best. That the two instruments

are related via attribute-basing is not at all essential. The first best could equally well be achieved

by subsidizing e at rate φ+ γ ∂C∂e and subsidizing a at rate γ ∂C∂a .
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