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Abstract 
 

U.S. labor and total-factor productivity growth slowed several years prior to the Great Recession.  The 
timing rules out stories related to disruptions from the Great Recession, and industry and state data rule out 
“bubble economy” stories related to housing or finance.  In industry and state data, the slowdown is 
especially pronounced for industries that use information technology (IT) intensively as well as for IT 
producers.  These results are consistent with a return to more normal productivity growth after nearly a 
decade of extraordinary gains associated with IT.  A calibrated growth model suggests trend productivity 
growth is similar to its 1973-1995 trend.  Slower underlying productivity growth also has implications for 
current assessments of economic slack.  As of 2013, two alternatives to the benchmark CBO measure imply 
lower potential output and smaller output gaps. About ¾ of the shortfall of actual output from (overly 
optimistic) pre-recession estimates of trend reflects a reduction in the level of potential. 
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1. Introduction 

When we look back at the 1990s from the perspective of say 2010,…[w]e may conceivably 
conclude…that, at the turn of the millennium, the American economy was experiencing a once-in-a-
century acceleration of innovation….Alternatively, that 2010 retrospective might well conclude that 
a good deal of what we are currently experiencing was just one of the many euphoric speculative 
bubbles that have dotted human history. 
 

Federal Reserve Chairman Alan Greenspan (2000) 
 

Disappointing productivity growth…must be added to the list of reasons that economic growth has 
been slower than hoped….The reasons for weak productivity growth are not entirely clear…It may 
be a result of the severity of the financial crisis...[or] reflect longer-term trends… 
 

Federal Reserve Chairman Ben Bernanke (2014).   
 

In 2000, productivity growth was robust and strong.  By 2014, it was not.  This paper argues that the 

slowdown in labor and total-factor-productivity (TFP) growth predated the Great Recession.  It marked a 

retreat from the exceptional, but temporary, information-technology (IT)-fueled pace from the mid-1990s to 

the early 2000s.  This retreat implies slower output growth in the medium run as well as a narrower output 

gap than currently estimated by the Congressional Budget Office (CBO, 2014a) for the recent past. 

The early- to mid-2000s retreat from exceptional productivity growth is apparent in aggregate, 

industry, and state data.  Industry and state data show that the slowdown is particularly pronounced in sectors 

that produce information technology (IT) or that use IT intensively.  In contrast, sectors that were obviously 

unusual (“euphoric,” even, in Chairman Greenspan’s phrasing) in the mid-2000s—namely, construction, 

finance, and natural resources—were not the source of the slowdown.   

Figure 1 illustrates a key takeaway from this paper, namely, that labor productivity and TFP slowed 

prior to the Great Recession, ending the spike that began in the mid-1990s.  The 1990s surge in labor 

productivity growth, shown by the height of the bars, came after several decades of slower growth.  

However, in the decade that ended in 2013:Q4, growth has been close to its 1973-95 pace.  The decade is 

broken into the four years prior to the onset of the Great Recession and the six years since.  Growth in labor 

productivity and TFP have been similar over these sub-periods, and only modestly faster than the 1973-95 
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period.1  Hence, three out of the past four decades have shown this slower pace of growth—suggesting this is 

the normal pace, not the exceptional 1995-2003 pace. 

That the slowdown predated the Great Recession largely rules out causal stories from the recession 

itself.  Previous theoretical and empirical literature (discussed in Section 2.4) provides only limited support 

for the view that the Great Recession itself should have subsequently changed the underlying path of TFP.  

And Figure 1 suggests no evidence that productivity was slower (or much faster) from 2007-2013 than in the 

several years before that.  The evidence here complements Kahn and Rich’s (2013) finding in a regime-

switching model that, by early 2005—i.e., well before the Great Recession—the probability reached nearly 

unity that the economy was in a low-growth regime.  

A natural hypothesis is that the slowdown is simply the flip side of the speedup in the mid-1990s.  

Considerable evidence, discussed in Section 3.1, ties that speedup to the exceptional contribution of 

information technology— computers, communications equipment, software, and the Internet.  IT appeared to 

have a broad-based and pervasive effect on measured total factor productivity (TFP) through its role as a 

general purpose technology (GPT) that fostered complementary innovations, such as business 

reorganization.  The GPT story is essentially one of a drawn-out level effect on measured productivity.  Ex 

ante, the question was simply how large the ultimate effect would be. 

Industry TFP data provide evidence on the IT hypothesis versus alternatives.  One is that the 

slowdown is explained by housing, finance, and natural resources.  These sectors behaved anomalously in 

the mid-2000s, and their productivity did slow.  But the remaining ¾ of the economy slowed even more.  So 

those “bubble sectors” do not explain the slowdown.  In the broader economy, the slowdown is particularly 

pronounced in IT-producing sectors and sectors that intensively use IT, supporting the IT story. 

State data on GDP per worker provide evidence on indirect channels through which the housing 

bubble and bust might matter.  States differ in the magnitude of house-price movements (both up and down), 

which could influence innovation through net-worth channels.  But there turns out to be limited evidence that 

such factors contribute in an important way to the dynamics of the productivity slowdown.  Rather, it is the 

common cross-state slowdown in IT-intensive industries that predominates. 

                                                      

1 Then Appendix discusses data sources for the figure and the rest of the paper.  Section 2.2 defines and 
discusses the growth-accounting decomposition. 
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I then turn to two implications of the mid-2000s productivity slowdown.  The first involves longer-

run growth.  With reasonable estimates of underlying technology trends, a multi-sector neoclassical growth 

model implies steady-state business-sector labor-productivity growth of about 1.9 percent, as shown at the 

far right of Figure 1.  Prior to the Great Recession, typical estimates were notably higher (see Jorgenson, et 

al., 2008).  Incorporating demographic estimates from the Congressional Budget Office (2014a), my 

benchmark estimate for productivity performance implies longer-term growth in GDP about 2.1 percent.  

A second implication is that, by 2013, the output gap, defined as the difference between actual and a 

production-function measure of potential output, is narrower than estimated by CBO (2014a).2  I decompose 

CBO’s gap into a “utilization gap” that reflects cyclical mismeasurement of TFP as well as an “hours gap.”  

CBO estimates that the utilization gap in 2013 was as deep as any time in history other than 1982 and 2009, 

and was comparable to its level in 1975.  In contrast, empirical estimates from Fernald (2014, following 

Basu, Fernald, Fisher, and Kimball, BFFK, 2013) suggest that the utilization gap was small. 

Figure 2 shows two alternative estimates of the path of potential output, based on alternative 

estimates of the utilization gap but using the CBO labor gap.  One uses actual TFP, which imposes that the 

utilization gap is always zero.  When utilization eventually returns to normal—as it plausibly did prior to 

2013—this measure is appropriate.  The second, labeled ‘Fernald,’ uses my estimated utilization measure.  

By 2013, the two alternatives are similar, and lie well below the CBO (2014a) which, in turn, is notably 

lower than the pre-recession CBO trend.   

Relative to my measure, the CBO incorporates a much smoother underlying path of TFP.  In contrast 

to the evidence in this paper, they have no mid-1990s pickup in productivity and much less of a mid-2000s 

slowdown.  In addition to these low frequency shifts, empirical estimates imply a much more variable rate of 

(random walk) technological progress from year-to-year.  My estimates of long-run trends going forward are 

not much different than the CBO’s, but my analysis of the recent period differs noticeably, in that I have a 

much less persistent utilization gap.  In my own estimates, about ¾ of the 2013 shortfall of actual output 

from the pre-crisis trend reflects a decline in potential output.   

                                                      

2 Section 5.1 discusses alternative definitions of potential output and output gaps.   
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Of course, production-function measures of potential output inherently have an important cyclical 

element because capacity growth has a cyclical element.  Slow growth in the recovery (with slow closing of 

output gaps) has contributed to cyclically weak investment.  Capital input in recent years grew at the slowest 

pace since World War II.  This slow growth in capital does not directly affect output gaps—since, in the 

CBO definition (as well as the usual DSGE definition), it affects both actual and potential output.  But it 

does imply slower recent growth in the full-employment level of output.  Capacity should rebound (raising 

potential growth above its steady-state rate) as the economy returns towards its steady-state path.3 

 Section 2 discusses “facts” about the slowdown in measured labor and total-factor productivity, and 

compares the experience during and since the Great Recession to previous recessions and recoveries, finding 

that productivity experience was comparable.  Section 3 assesses explanations for the productivity 

slowdown, using industry data and (maybe) regional data.  Section 4 uses a multi-sector growth model to 

project medium- to long-run potential output growth.  Section 5 then draws on the preceding analysis to 

discuss current potential output and slack, in the context of the general methodology followed by the 

Congressional Budget Office.   

2. Productivity Growth before the Great Recession 

Trend productivity growth slowed several years before the Great Recession.   

2.1. The mid-2000s Slowdown in Labor Productivity Growth 

Figure 3 shows the log-level of labor productivity for the business sector.4  The speedup in growth 

during the mid-1990s is clear.  Considerable literature discussed in Section 3.1.1 links that speedup to 

information technology (IT).  The slowdown in the early to mid-2000s is also clear. 

Figure 3 rationalizes the subsamples shown above in Figure 1.  The mid-1990s acceleration in labor 

productivity ended in the early- to mid-2000s.  The dates of the vertical bars are suggested by Bai-Perron test 

for multiple structural change in mean growth rates for the period since 1973.  For the new regimes, I have 

                                                      

3 Reifschneider, Wascher, and Wilcox (2013) and Hall (2014) discuss this channel. 
4 As discussed in the data appendix, “output” combines expenditure- and income-side data, so labor 

productivity differs slightly from the BLS productivity and cost release (which uses expenditure-side data).  
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shown the “traditional” new-economy 1995:Q4 start date along with a slowdown date of 2003:Q4.  The 

breaks are statistically significant.5  

The Bai-Perron results that show a slowdown in the early to mid-2000s are reinforced by the 

findings of Kahn and Rich (2011, 2013).  They estimate a regime-switching model, using data on labor 

productivity, labor compensation, and consumption.  They find that the productivity switched from a high-

growth to a low-growth regime around 2004.  By early 2005, the probability that the economy was in a low-

growth regime was close to unity. 

2.2. Growth Accounting Identities 

Growth accounting provides further perspective on the forces underpinning the slowdown.  Suppose 

there is a constant returns aggregate production function for output, Y: 

    1 2 1 2( , ,... , , ,... )Y A F W K K K E L H H     (1) 

A is technology.  K and L are observed capital and labor input.  W is the workweek of capital and E is 

effort—i.e., unobserved variation in the utilization of capital and labor.  Ki is input of a particular type of 

capital—computers, say, or office buildings. Similarly, Hi  is hours of work by a particular type of worker, 

differentiated by skills, education, age, and so forth.  Time subscripts are omitted for notational simplicity. 

The first-order conditions for cost-minimization imply that output elasticities for a given type of 

input are proportional to shares in cost.  Let α be total payments to capital as a share in total costs and 

, ,j
ic j K L , be the shares in the total costs of capital and labor, so that 1, ,j

ii
c j K L  .  Then the output 

                                                      

5 I test whether mean growth (the drift term for a random walk) has breaks.  Estimated break dates differ 
slightly for (real) income- and expenditure side estimates of labor productivity but the significance levels are not much 
different.  For the usual expenditure-side measure, the point estimate for the speedup is 1997:Q2; for the income side, it 
is 1995:Q3.  I stuck with the traditional 1995:Q4 dating in the literature.  Turning to the slowdown, with expenditure the 
estimated date is 2003:Q4, as shown in the figure; with income, it is 2006:Q1.  For utilization-adjusted TFP, described 
in the next section, it is 2005:Q1.  Because most people focus on expenditure-side labor productivity, I have taken 
2003:Q4 as the slowdown date.  Despite uncertainty on exact dates, it clearly predates the Great Recession.  In terms of 
statistical significance, looking at expenditure-side labor productivity from 1973:Q2 through 2013:Q4, the Bai-Perron 
WDmax test of the null of no breaks against an alternative of an unknown number of breaks rejects the null at the 2-1/2 
percent level.  The UDmax version of the same test rejects the null at the 5 percent level.  The highest significance level 
is for the null of no breaks against the alternative of 2 breaks, which is significant at the 5 percent level.  In the full 
sample from 1947:Q1 on, there appears to be an additional break at 1973:Q2, as expected.    
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elasticity for a given type of capital, say, is K
ic .  Differentiating logarithmically (where hats are log-

changes), imposing the first-order conditions, and omitting time subscripts yields: 
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Various input aggregates on the right-hand-side are defined as: : 
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Growth in capital services, K̂ , is share-weighted growth in the different types of capital goods. 

Similarly, growth in labor services, L̂ , is share-weighted growth in hours classified by observable 

characteristics such as age and education, which assumes relative wages reflect relative marginal products.  

Total hours growth, Ĥ , is the simple sum of hours worked by all types of labor.  Labor quality growth, LQ

, tells how much changing worker characteristics contribute to labor services growth beyond raw hours. 

Finally, Util represents variations in capital’s workweek and labor effort. 

TFP growth, or the Solow residual, is output growth not explained by growth in observed inputs:  

 



ˆ ˆ ˆ(1 )

ˆ

TFP Y K L

Util A

    

 
 (4) 

The second line follows from equation (2).  I will always take TFP growth to be this Solow residual, defined 

by the first line in (4), and refer to Â  as utilization-adjusted TFP.  

A large literature discusses why short-term fluctuations in measured TFP might reflect factors other 

than technology.6  Over the business cycle, a key reason, is unobserved variations in the intensity with which 

factors are used, Util .  Basu, Fernald, and Kimball (BFK, 2006) and Basu, Fernald, Fisher, and Kimball 

                                                      

6 See Basu and Fernald (2002) for discussion and references.  They also discuss how to interpret measured 
TFP when constant returns and perfect competition do not apply and an aggregate production function does not exist.   
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(2013) implement a theoretically based measure of utilization. Their method essentially involves rescaling 

variations in an observable intensity margin of (detrended) hours per worker.  I return to this measure below.   

From (2) and (4), labor productivity growth, defined as growth in output per hour, is then: 

 
  

  

ˆˆ ˆ ˆ ˆ( )

ˆ ˆ( )

Y H K H LQ LQ Util A

K H LQ LQ TFP





      

    
 (5) 

Loosely speaking, labor productivity rises if workers have more capital; if their quality improves; or 

if innovation raises technology.  In the short  run, cyclical variations in utilization also matter.  

2.3. Aggregate Data and Growth-Accounting Results 

Slower growth in both TFP and capital deepening led to the mid-2000s labor productivity slowdown.  

Figure 4 shows components of equation (5) using the quarterly growth-accounting dataset described 

in the appendix.  These data provide quarterly business-sector growth accounting variables through 2013.  

Variables shown are in log-levels (i.e., cumulated log-changes).  The utilization measure applies BFFK 

(2013) to quarterly data.  BFFK and BFK consider a more general framework than in Section I.B to allow for 

non-constant returns, imperfect competition, and cyclical reallocation effects.  Because of the limitations of 

quarterly data, however, the measure used here controls only for utilization. 

The figure shows that both TFP and capital deepening contributed to the mid-2000s slowdown in 

labor productivity growth.  Panel A shows TFP and utilization-adjusted TFP.  The eye clearly identifies the 

pre-Great-Recession slowdown, and a Bai-Perron test confirms its significance for utilization-adjusted TFP.7  

Panel B shows capital-deepening, / ( )K H LQ . In the early 2000s, capital deepening growth slowed.  Panel 

C shows labor quality, which accelerated in the Great Recession as low-skilled workers disproportionately 

lost jobs.  Finally, Panel D shows utilization itself.  This series is clearly highly cyclical.  By early 2011, this 

measure had recovered to a level close to its pre-recesssion peaks.  (A caveat, of course, is that there’s a 

potential end-point problem because the underlying data on industry hours per worker need to be detrended.)  

By mid-2012, labor productivity (Figure 3) or TFP (Figure 4A) appear to lie more or less on the 

slow trend line from the mid-2000s. 

                                                      

7 The UDMax and WDMax tests for the null of no breaks against the null of an unknown number of breaks in 
utilization-adjusted TFP is significant at about the 5 percent level.  
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2.4. Productivity Growth during the Great Recession 

That the slowdown predated the Great Recession suggests it was not a result of the recession itself.  

In 2007 and 2008, a few commentators noted that productivity might be slowing (e.g., Fernald, 

Thipphavong, and Trehan, 2007, and Jorgenson, Ho, and Stiroh, 2008).  But productivity is volatile, even 

over three or four years.  With hindsight, the pre-recession origins are now clearer. 

Of course, if productivity during the Great Recession were particularly unusual, that might suggest a 

need to reconsider whether the recession contributed substantially to the slowdown.  For example, a few 

years of bad productivity luck before the recession could have been followed by the greater, and more 

persistent, bad luck of a severe recession.  In fact, much of the informal commentary during the Great 

Recession, argued something quite different—that labor productivity, at least, seemed unusually strong (e.g., 

Daly and Hobijn, 2010).  This section takes the middle ground that during and immediately after the Great 

Recession, productivity behaved similarly to previous deep recessions: TFP and utilization fell very sharply, 

but recovered strongly once the recession ended.8 

Figure 5 shows “spider charts” comparing the Great Recession to the nine previous recessions 

(1953-2001).  In each panel, the horizontal axis shows the number of quarters from the peak.  In the Great 

Recession, for example, quarter 0 corresponds to 2007:Q4.  The vertical axis is the percent change since the 

peak.  I remove a local trend from all data.9   

Panel A shows how unusual output and hours were, with steep declines in both.   For the first three 

quarters (through 2008:Q3), the declines in output and hours worked relative to trend were modest—at the 

top of the range of historical experience.  After Lehman and AIG (late in 2008:Q3), output and employment 

fell precipitously.  The trough in detrended output is about as deep as previous deep recessions (i.e., at the 

bottom of the shaded range) but is reached later.  (In unfiltered data, the decline is deeper than previous 

                                                      

8 Gali, Smets, and Wouters (2012) focus on the recovery and, as I do, argue that, following the Great 
Recession, productivity performance was in line with historical experience.  That is, they argue that during the 
recovery, the problem was slow output growth, not unusual productivity growth.  Daly et al (2013a) discuss the cyclical 
behavior of labor productivity and TFP (and the degree to which it has changed) using the same dataset as here. 

9 Conclusions are not affected by the detrending.  Following a Jim Stock recommendation, I removed local 
trends using a biweight kernel with bandwidth 48 quarters.  An HP filter does more violence to the data, but is similar 
though choppier. The local means for both output and labor productivity growth decline from about 2-1/4 percent in 
2007:Q4 to under 2 percent by 2013:Q4.  The local mean for TFP growth declines from 1.0 percent to 0.9 percent.  
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recessions.  But trend output growth was about 3-1/2 percent during the 1973-75 recession, compared with 2 

to 2-1/4 percent in 2007-2009).  Hours fell well outside historical experience. 

Panel C shows that labor productivity was solidly inside the range of historical experience—indeed, 

not much different from the average (the white line).  Relative to trend, labor productivity fell less than 

during the 1973 or 1981 recessions.  That relative strength is consistent with informal commentary. 

But of course, labor productivity includes endogenous capital-deepening and labor quality, both of 

which were very strong during the recession (see Figure 4B and C).  Controlling for those, Panel D shows 

that TFP was right at the bottom of historical experience.  TFP plunged about 5 percent during the recession 

and then quickly bounced back in the early phases of the recovery (quarters 6-8, especially). 

Factor utilization in Panel E explains the plunge and rebound in TFP.  Based on observed hours per 

worker, it shows that the intensity of factor use fell sharply during the recession.  This measure of utilization 

falls below the range of historical experience.  Utilization then recovered rapidly during the recovery.  These 

estimates suggest that firms made very substantial use of the intensive as well as extensive margin.  

Finally, Panel F shows utilization-adjusted TFP, which is TFP less utilization.  That series bounces 

around in the middle of historical experience, with a spike from quarter 4 (2008:Q4) to quarter 6 (2009:Q2).  

Petrosky-Nadeau (2013) argues that it could reflect a temporary breakdown in financial intermediation, if the 

least productive firms lost financing.  It could also be “panic and normalization.”  Panicked firms during the 

Great Recession could have cut workers exceptionally fast and found new, if temporary, efficiency gains; if 

those gains were unsustainable, it could have reversed as the economy began growing.  Lazear, Shaw, and 

Stanton (2013) focus on fear-induced effort on the part of workers.  Specifically, they look at how long it 

takes a given worker to complete a well-defined task at a single large firm from 2006 to 2010.  They argue 

that their task-level data are separate from “usual” labor-and capital-hoarding effects.  Task-level 

productivity began to rise as soon as the Great Recession began and rose faster in areas where 

unemployment rose more quickly.  When the Great Recession ended, task-level productivity declined (even 

though unemployment was still high), much like utilization-adjusted TFP. 

The counterfactual is unknown, and some recession effects might show up as random-walk level 

shocks, even if the growth path were largely unaffected.  Still, the figures do not obviously suggest a major 

influence of the Great Recession on underlying TFP growth, consistent with the earlier Figure 1.   
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Theory is ambiguous about the effects of severe recessions (including financial ones) on the longer 

run path of TFP (utilization-adjusted or otherwise), but the cross-country evidence is not strong. In some 

models, reduced innovation during and after a crisis could lead to a persistently lower level of TFP (e.g., 

Comin and Gertler 2006).  Decker et al (2013) find that the Great Recession has substantially reduced 

"dynamism" of the economy, which could reduce the efficiency of resource allocation.  Liu and Wang 

(2013) model how a financial accelerator could lead to procyclical reallocation and procyclical productivity.  

That said, the reallocation effect in some models goes the other way, raising measured aggregate TFP in 

response to a credit crisis (e.g., Petrosky-Nadeu, 2013, or the “cleansing effects” of Caballero and Hammour, 

1994).  And Bloom (2013) points out that high uncertainty can stimulate longer-run innovation.10   

Overall, the empirical evidence for developed countries that business cycles (whether financially 

related or otherwise) permanently harm the level or growth rate of TFP is weak.  The Great Depression 

appears to have been an extraordinarily innovative period (Field, 2003, Alexopoulos and Cohen, 2009).  

Fatas (2002) finds that, for the richest countries (but not overall), higher volatility is, if anything, associated 

with faster growth in GDP per capita.  Oulton and Sebastiá-Barriel (2014) focus on financial crises, and 

break out growth-accounting variables.  They find that, for developed countries, the long-run level of TFP is 

not significantly changed by a financial crisis; indeed, the point estimate is positive. 

As a final observation on the Great Recession, real-time data obscured the slowdown in trend, and 

overstated productivity’s strength early in the recession.  Figure 6 shows labor productivity by vintage.  The 

dates correspond to the annual (or, in 2009 and 2013, comprehensive) NIPA revisions; these revisions 

incorporate additional source data for previous years.  Almost every revision since 2005 has lowered the path 

of labor productivity, with most revision to output (the numerator).  These revisions made the slowdown 

more apparent.  Real-time data also overstated the strength of labor productivity growth early in the 

recession.  Until the 2010 revision, productivity appeared to have risen sharply and steadily throughout the 

recession.  The sizeable downward revisions suggest some of the challenges of doing analysis in real time.11   

                                                      

10 Basu and Fernald (2009) discuss additional channels.  Reifschneider, Wascher, and Wilcox (2013) discuss a 
broader range of possible supply-side effects from recessions, including on labor markets.   

11 Daly et al (2014) discuss how data revisions helped resolve apparent deviations from Okun’s Law. 
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3. Why Did TFP Growth Productivity Slow?   

The data suggest that TFP slowed in the mid-2000s primarily because of the waning of the 

exceptional growth effects of information technology as a general purpose technology (GPT).  

3.1. Hypotheses 

This section discusses several hypotheses for the slowdown.  I focus on implications for industry and 

state data, which I use in the subsections that follow to help differentiate the stories. 

3.1.1. Waning of the IT-induced surge 

Below, I find evidence that the slowdown in the mid-2000s is the flip side of the IT-induced surge in 

the mid-1990s.  Under this hypothesis, the general-purpose-technology (GPT) benefits of IT raised the 

measured level of TFP, which showed up for almost a decade as faster growth.  Ex ante, it was hard to know 

how long the transition would last, but the low-hanging fruit may have been plucked by the mid-2000s.  For 

example, once you do a fundamental reorganization of retail, the gains become more incremental.12  

Studies with aggregate, industry, and plant data link the mid-1990s surge in U.S. productivity to the 

direct and indirect effects of IT.  As Jorgenson, Ho, and Stiroh (JHS, 2008) and others emphasized, 

technological progress in producing a capital good like IT has two direct effects on labor productivity.  First, 

if the IT goods are domestically produced, it boosts TFP growth.  Second, a falling user cost induces greater 

capital-deepening by IT users.  But empirically, measured TFP growth increased broadly—in IT-using, as 

well as IT-producing, sectors (see, e.g., Basu, Fernald, Oulton, and Srinivasan, BFOS, 2003 and JHS).   

GPT stories explain the broad effects.  There could be some pure spillovers of knowledge across 

firms.  But firms also invest in intangible organizational capital to benefit from faster information 

processing.13  The story is essentially about measurement:  Intangible investment and capital aren’t observed.  

BFOS map GPT stories to conventional growth accounting (see appendix XX), with observed IT capital 

proxying for unobserved intangible capital.  The model proxy, ICT

ICT
tK

s k , involves both the weight ( ICTK
s , 

                                                      

12 Foster, Haltiwanger, and Krizan (2006) discuss the reorganization of retailing and its link with productivity. 
13  See, e.g., Greenwood and Yorokoglu, 1997, Brynjolfsson and Hitt, 2000, and BFOS.  Van Reenen et al 

(2010) report substantial evidence for the IT-linked-intangibles story in micro data.  Corrado, Hulten, and Sichel (2006) 
suggest ways to measure intangible investment more directly. 
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i.e., the share of payments to IT capital in total production cost) and the IT growth rate,  ICT
tk .  The link to 

IT growth draws on evidence that expansions of IT capital are associated with intangible investments to 

reorganize production.  The share weight accounts for the scale or magnitude of intangible capital.  For 

example, if firms use little IT capital, then, for any given growth rate of IT capital, unobserved IT-related 

reorganizations are less likely to be quantitatively important.14 

The GPT story suggests interesting dynamics for measured productivity growth.  Loosely, the story 

implies that IT-using firms—who invested heavily in IT in the late 1990s—should have seen a temporary, 

but lagged, surge in measured productivity growth.  The reason is that, when firms are investing in intangible 

organizational capital, measured productivity actually declines relative to true technology, as firms divert 

resources to producing unobserved intangible investment.  With a lag, firms benefit from the accumulated 

intangible capital and measured productivity rises relative to true technology.  Oliner, Sichel, and Stiroh 

(OSS, 2007) note that the BFOS proxy peaks around 2000 and then falls off.  That should imply a surge in 

measured TFP in IT-using industries in the early 2000s, since firms were no longer diverting as many 

resources to intangible investment.  Indeed, when OSS compare aggregate TFP (excluding IT production) in 

1995-2000 with 2000-06, they find that swings in IT-related intangibles accounts for almost 2/3 of the surge 

(0.50 out of 0.81 percent per year).  Their estimates imply reduced intangibles investment in the early 2000s 

and lower measured productivity gains thereafter (consistent with the evidence). 

In the industry data, the IT hypothesis suggests that the slowdown should be larger in IT-intensive 

industries.  That is, regardless of specifics of timing, the measurement effects are associated with the use of 

IT.  Appendix B provides further discussion of possible tests of this hypothesis. 

3.1.2. Housing and finance in a bubble economy 

The IT story emphasizes unusual aspects of the U.S. economy that began in the 1990s and before.  

But there were unusual features in the 2000s—the housing boom and bust, the explosion of often-dodgy 

financial products and services, and large movements in commodity prices.  Industry and state data allow me 

                                                      

14 Oliner, Sichel, and Stiroh (2007) estimate that the nominal share of IT-linked intangible investments in 
(true) output averaged about 5 percent 1973-2000; the intangible capital’s share of income was a little higher.  They 
estimate that intangible investment and capital services rose about 7 percent per year over this period. 
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to assess their direct and indirect roles.  In terms of direct channels, I can simply throw out those industries.  

But indirect channels are more subtle. 

For example, indirect effects could work through home equity and net worth channels.  Changes in 

entrepreneurial net worth associated with the housing boom and bust could affect the ability of firms to start 

or expand, which might influence productivity (possibly with a lag).  A priori, though, it’s not clear that the 

timing works for a 2004-2007 slowdown.  Household net worth relative to disposable income surged in the 

1990s (peaking at 614 percent in 1999); after retreating in the early 2000s it then surged again to a new high 

in the 2005-2007 period (averaging almost 650 percent).  So net worth was highest just when productivity 

growth was slowing. Still, the housing boom could have mattered through some (perhaps unspecified) 

channel, and state data can provide insight into whether it might be quantitatively important.   

In addition, the state data provide another way to look at whether the Great Recession itself 

contributed to the slowdown.  Fort, Haltiwanger, Jarmin, and Miranda (2013) report that young and small 

firms are particularly sensitive to fluctuations in housing prices—which took a big hit during the Great 

Recession—through a range of potential credit channels.  Not surprisingly, they find that startups and job 

churning have been hit very hard during and since the Great Recession.15  Even if the 2004-2007 slowdown 

is hard to explain with this story, reduced dynamism related to the Great Recession could have contributed 

further.  Regional home price differences are clearly linked to the intensity of the recession across states 

(Mian and Sufi, 2012).  So I explore the degree to which state (labor) productivity is reacting to state-specific 

variation in home prices during the recession and (through 2012) recovery.  

Finally, a very different channel is that the output of financial services are poorly measured.  One 

concern raised in the literature (e.g., Wang, Basu, and Fernald, 2009) is that there could be mismeasurement 

of value added between producers and users of financial services.  I explore that hypothesis by seeing 

whether the magnitude of the slowdown depends on the intensity of use of financial services.   

                                                      

15 Decker, Haltiwanger, Jarmin, and Miranda (2013) make a more general point, that the U.S. economy has 
become less dynamic over time in terms of firm and job creation and destruction.  Such dynamism appears to improve 
allocations and foster the spread of new ideas, and appears linked to aggregated productivity.  This reduced dynamism 
appears to be a longer-term secular trend, and per se seems unlikely to explain the abrupt slowdown in the mid-2000s. 
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3.1.3. Other sources of mismeasurement, cyclical or otherwise 

A particularly simple hypothesis is that productivity growth didn’t actually slow, it’s just that 

measurement was worse.  Simple stories of cyclical mismeasurement (utilization and non-constant returns) 

do not work, but more complex measurement stories are hard to rule out a priori. 

Variations in factor utilization go the wrong way to explain the slowdown in productivity from 

2000-04 to 2004-07.  In the early 2000s, utilization was flat to down (measured in my quarterly dataset, or 

with the Federal Reserve’s capacity utilization series). In contrast, during the 2004-07 boom, utilization rose. 

Hence, the “true” slowdown after controlling for utilization was even larger than measured. 

What about non-constant returns to scale and markups?  These factors would imply that TFP is not 

technology, because output elasticities are not equal to factor shares (Hall, 1990).  The timing again does not 

work.  Input growth (share-weighted capital and labor) was relatively rapid (2+ percent per year) in the fast-

productivity-growth late 1990s as well as in the slow-productivity-growth 2004-07 period.  Conversely, 

input growth was relatively slow (¼ to ½ percent per year) in the fast-productivity-growth early 2000s as 

well as in the slow-productivity-growth 2007-2013 period.   

Indeed, the sign goes the wrong way to explain the mid-2000s slowdown.  Share-weighted input 

growth sped up by 2 percentage points from the 2000-04 period to 2004-07.  In industry and aggregate data, 

returns to scale are estimated to be close to or modestly greater than one (e.g., Basu and Fernald, 1997), 

implying measured TFP growth should, if anything, have sped up a little.  Even large diminishing returns 

(say, 0.8) would imply only a modest slowdown—and would imply, counterfactually, that measured TFP 

growth should have been relatively slow in the late 1990s and relatively fast after 2007.   

Basu, Fernald, and Shapiro (BFS, 2001) and Oliner, Sichel, and Stiroh (2007) assume that installing 

investment goods is costly in terms of measured productivity, because firms divert resources to installing the 

capital.  This story does not explain the slowdown in TFP growth because fixed private non-residential 

investment grew at a very similar pace (5 to 6 percent per year on average) from 1995-2004 and from 2004-

2007.  Using the calibration from BFS, adjustment costs associated with this investment growth subtracted 

about 0.2 percentage points from measured TFP growth in both subperiods.  

Of course, mismeasurement could instead reflect that price indices have gotten markedly worse at 

capturing quality change.  IT itself contributes, by increasing product variety, decreasing search costs, and 
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providing valuable services for free.  For example, producers can readily offer customized, non-standard 

products; there are enormous, poorly measured gains to being able to obtain any book in the world in a few 

days (if not available for instantaneous download) without extensive, time-consuming search; and GPS and 

entertaining cat videos on YouTube increase consumer surplus.  Brynjolfsson (20xx) estimates that free 

Internet goods provide some $300 billion/year in consumer surplus, or about 2 percent of GDP. 

A priori, it is difficult to say whether mismeasurement has become more important in the past 

decade, since measurement challenges are longstanding.  Even if all the $300 billion in unmeasured surplus 

arose in the past decade, that’s only 0.2 pp/year on growth, compared with a slowdown in labor productivity 

growth of around 1-1/2 percentage point.  And earlier estimates suggest considerable missing quality 

improvements last century, whether in capital goods or consumer goods (see Gordon, 1982, 2006).  In terms 

of product variety, Broda and Weinstein (2006) measured a four-fold increase in the variety of U.S. imports 

in the 1970s, 1980s, and 1990s—long before the 2000s slowdown.  

Careful work on quantifying mismeasurement requires detailed, often product-specific analysis, as 

described in Gordon (2006) and Broda and Weinstein (2006).  This work is important, and the need is 

ongoing.  In the industry data, I take a simpler, high-level approach of decomposing the data based on where 

different industries plausibly fall on the “well-measured” continuum.  Griliches (1994) argued that that much 

of the productivity slowdown in the mid-1970s took place in relatively poorly measured industries, such as 

services, and I follow his classification (see appendix).   

Finally, Oliner, Sichel, and Stiroh (2007) discuss other stories why the early 2000s strength might 

have been overstated, consistent with a subsequent slowdown.  I do not assess them explicitly but, to the 

extent they contribute, they reinforce the “return to normal” message of the IT story. 

3.2. Evidence from Industry data 

Industry data support the IT story for the mid-2000s TFP slowdown.  The TFP surge after the mid-

1990s, and its subsequent slowdown, was particularly pronounced in IT-producing and intensive IT-using 

industries.  IT-producing industries saw productivity explode in the 1995-2000 period. After 2000, 

productivity returned close to its pre-1995 pace.  IT-intensive industries saw only a modest pickup in the late 

1990s but a marked burst in 2000-2004.  After 2004, TFP growth receded close to its pre-1995 pace.   
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I use BLS data for 60 manufacturing and non-manufacturing industries from 1987-2011.  I express 

everything in value-added terms, so that they are conceptually identical to TFP in equation (4).16  The data 

do not control for labor quality, LQ, and predate the 2013 NIPA revisions.  Nevertheless, when aggregated to 

a private-business level, year-to-year changes comove closely with the Fernald TFP series (the correlation is 

0.84).  (All growth rates are aggregated using value-added weights.) 

Table 1 shows TFP growth by subperiod for selected industry groupings.  Consistent with the earlier 

results, TFP growth for all business industries sped up in the late 1990s and sped up further (to 2.19 percent 

per year) in the early 2000s.  During 2004-2007, growth slowed markedly to only 0.63 percent.  From 2007-

2011, business TFP growth recovered a touch, to 0.90 percent.  Some of this apparent pickup reflects the 

spike in labor quality during the Great Recession.  Since the 2007-2011 period may still be affected by 

cyclical variations in LQ and utilization, below I focus primarily on the pre-Great-Recession period.17  

Line 2 shows TFP growth for the bubble-economy sectors of natural resources, construction and real 

estate, and finance.  TFP in those industries did decelerate sharply from 2000-04 (-0.28 percent per year) to 

2004-07 (more substantially negative at -1.38 percent).  TFP in natural resources (line 3) and construction 

(line 4a) were sharply negative, partially offset by strong TFP in real estate (line 4b) and finance (line 5) 

Importantly, however, even when you exclude those bubble sectors (line 6), the remaining ¾ of the 

business economy slowed even more than overall private business.  Thus, the slowdown was not merely a 

direct reflection of the unusual features of commodities, housing, and finance.  In this broader economy, 

there was a further slowdown after 2007. 

The lines below show additional summary “cuts” of the narrow business sector. Most importantly, 

these data show that the slowdown was particularly pronounced in IT-producing industries and in intensive 

IT-using industries.  Figure 7 shows these points graphically.  IT-producing sectors saw a burst in TFP 

                                                      

16 Value-added TFP rescales gross-output TFP by dividing by one minus the intermediate-input share.  This is 
equivalent to computing industry value-added as a Tornquist index and then calculating TFP as in equation (4). Apart 
from small approximation error, value-added-weighted growth in industry value-added TFP is equivalent to Domar-
weighted growth in gross-output TFP.  Conceptually, this bottom-up approach differs from a top-down approach to TFP 
measurement because of input-reallocation terms.  Using a consistent dataset, Jorgenson, Ho, and Samuels (2013) find 
these reallocation terms are, on average, small.  

17 For example, annual average utilization growth in 2011 is affected by quarterly changes in utilization from 
the second quarter of 2010 on—and utilization had certainly not returned to normal by then. 
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growth in the late 1990s.  (Table 1 (line 7a) shows that this burst was primarily located in the production of 

computers and semiconductors.)  The pace from 2000-2007 was not much different from its pre-1995 pace.   

Line 8 shows that non-IT-producing industries—the vast share of the (narrow, i.e., excluding natural 

resources, construction, and FIRE) business sector—saw a pickup from the late-1990s to the early 2000s.  

That group of industries slowed sharply in the 2004-07 period, again to a rate modestly below its pre-1995 

pace.  Lines 9 and 10, and Figure 8, show that within this group, all of the interesting action is in the IT-

intensive set of industries.  TFP in that group saw only a modest pickup in the late 1990s but then 

productivity exploded in the early 2000s.  From 2004-07, productivity more or less receded to its pre-1995 

pace.  In contrast, non-IT-intensive industries saw more consistent performance over time.   

Thus, the industry data highlight the importance of intensive IT-using industries as well as IT 

producers in explaining the slowdown in productivity.  As another perspective on IT intensity, Figure 7 

shows the post-2004 slowdown (through 2007) on the vertical axis for industries grouped based on IT 

intensity.  Bin “1” on the x-axis is the least IT-intensive, bin 6 is the most.  The figure shows a general 

pattern that more IT intensive industries (to the right) had more of a slowdown after 2004.  The two least IT-

intensive bins on the left showed little slowdown.  

A second way to cut the data, highlighted by Griliches (1994) and Nordhaus (2002), is well 

measured versus poorly measured.  Well-measured industries are predominately manufacturing and utilities 

(in addition to natural resources, which I exclude from this measure), whereas poorly measured industries are 

predominately services.  As the table shows, both well-measured (line 11) and poorly-measured (line 17) 

industries picked up somewhat in the late 1990s, sped up further in the early 2000s, and then slowed 

markedly (by 1-1/4 to 1-3/4 percentage points) after 2004.  Thus, first-cut measurement issues do not seem 

to be at the heart of the productivity slowdown.18  

As a third cut, I look at finance-intensive versus non-finance-intensive industries.  If the story were 

systematic and growing mismeasurement of intermediate financial services—or, perhaps, growing rent 

extraction by financial firms—one might expect the slowdown to be more pronounced in finance-intensive 

                                                      

18 Of course, quality adjustment could have gotten systematically worse in IT-intensive industries, especially 
previously well-measured ones.  One might have thought this would go along with at least some pickup in share-
weighted IT growth.  But both the IT share, and IT growth, have declined over time. 
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industries.  However, the slowdown turns out to be more pronounced for non-finance-intensive industries.   

These industries have a larger productivity bump in the early 2000s—and, thus, had further to fall.  

Nevertheless, there is no evidence here that the productivity burst was particularly related to finance.  

Thus, the industry data suggest the important role played by the production and use of information 

technology in explaining the TFP slowdown 2000-04 to 2004-07.  Appendix XX considers further evidence 

from the industry details, but reaches a similar conclusion. 

3.3. Evidence from the U.S. States 

State data on GDP per worker provide further insight into factors underpinning the productivity 

slowdown.  Labor productivity slowed broadly in almost all states—especially in IT-intensive industries.  

More importantly, the state data provide insight into indirect financial and housing channels, since states 

differ in housing dynamics during the boom and bust.  In a few cases, house price movements are associated 

with cross-state differences in labor productivity.  However, house-price dynamics explain little of the cross-

state variation in the degree to which productivity slowed. 

The state data are for labor productivity.  Hence, the cross-state differences could reflect innovation, 

but could also reflect cross-state differences in capital deepening or factor utilization.  As discussed in 

Section 3.1, credit-market access by entrepreneurs is likely to be affected by net worth; small, young 

businesses, especially, are dependent on home equity (see Fort, Haltiwanger, Jarmin, and Miranda, 2013).19  

Of course, credit market access could affect capital deepening, as well.  And to the extent aggregate demand 

is affected by house-price fluctuations (see Mian and Sufi, 2011), that could affect relative factor utilization 

across states around the national average.  Since the innovation, capital-deepening, and utilization channels 

are likely to move in the same direction in response to a housing shock, any effects on labor productivity are 

an upper bound on the persistent effect on technology or innovation. 

Table 2 shows that almost all states saw a broad labor-productivity slowdown across various 

subgroupings of industries.  For the entire private economy, 47 out of 51 states (including D.C.) had slower 

                                                      

19 In regressions not shown, I confirm that across states, changes in startup activity are correlated with changes 
in home equity.  In some specifications, startup activity appears to be associated modestly with state labor-productivity 
growth—though the explanatory power was always low.  The state data are probably too coarse to provide substantial 
evidence on this channel, or to identify causation. 
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productivity growth in 2004-07 relative to 1997-2004.  (Extending the slowdown period to 2012, the figure 

rises to 48.)  Natural resources slowed substantially in most states, as did construction and FIRE.   

Still, as we saw with the industry data, IT rather than the bubble sectors are the broad story.   

Consistent with Table 1, IT production (line 7) slowed substantially; and, in line 8, within the category that 

excludes the bubble sectors and IT production, most states slow.  Within that narrow grouping, IT-intensive 

industries (line 9) slowed in 50 out of 51 states (Washington, D.C. was the exception)—and the median 

slowdown was large.  In contrast, only 35 states saw slowdowns in non-IT-intensive industries, and the 

median slowdown was small.  Lines 11 and 12 show wholesale and retail trade—two specific industries 

where substantial research has documented the role of IT in fostering reorganizations.  Labor productivity in 

wholesale trade slowed in all 51 states after 2004. 

What about indirect channels?  The top panel of Table 3 examines whether the productivity changes 

for different industry groupings from 2004-2007 relative to 1997-2004 are related to cross-state home-price 

changes. In all cases, I instrument for home-price changes with the Saiz (2010) housing-supply elasticity 

(based on geographic features of metropolitan areas).  Mian and Sufi (2012) argue that the elasticity is a 

good instrument for home price changes in this period:  When credit standards changed in the early 2000s, 

areas with inelastic land supply saw a larger increase in housing prices.  Conversely, when credit standards 

tightened after 2006, areas with inelastic land supply saw larger housing busts.  In the table, home-price 

movements are expressed in standard deviation units relative to the cross-section of states. 20 

Table 3 shows limited evidence that cross-state productivity slowdowns are related to home-price 

changes during the boom.  Such a relationship, if it existed, could reflect the role of entrepreneurial net 

worth, or differences in capital deepening or utilization; it could also be spurious (e.g., the high-elasticity 

Midwest has more agriculture).  But in any case, home-price movements are not an important part of the 

story.  The only industry groupings where the house-price change is significant are IT-intensive industries 

(column 3) and the aggregate of natural resources, construction, and FIRE (column 4), and natural resources 

(column 8).  In both cases, the sign of the estimates is positive, so that stronger home prices are associated 

with stronger productivity—and thus go the wrong way to explain the productivity slowdown.  

                                                      

20 I do not remove the mean before standardizing by the cross-sectional standard deviation, so that the constant 
term is net of the contribution of the mean change in house prices.   
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For natural resources, a possible channel is that, in areas where home-prices ran up more, marginal 

agricultural land was converted to residential uses—so the quality of land in agricultural production went up.  

(Indeed, not shown, the share of natural resources in the economy fell in areas with greater increases in home 

prices.)  Alternatively, the net worth channel could be particularly important for capital investment in 

agriculture, where farmers are often land rich but liquidity constrained.   

For IT-intensive industries, the significance could reflect net-worth channels that mitigated the 

productivity slowdown.  But it could easily reflect aggregate demand effects, as in Mian and Sufi (2012).  

Aggregate demand was stronger where house-prices ran up more; this could have led to more capital 

investment or higher rates of utilization.  But in any case, the R2 is low and the constant term is a large 

negative.  So even if the housing bubble contributed to productivity dynamics, its effect was swamped by 

other factors—such as IT.  

Of course, home prices peaked in 2006 and then slid down to 2009.  Mian and Sufi (2012) argue 

strongly that the depth of the recession effects across states is related to the magnitude of this decline.  So the 

state data can provide some sense of where the recession itself may have contributed to weak productivity.  

The bottom panel uses a different cut of the data.  Under the hypothesis that there were a couple years of bad 

luck, followed by the Great Recession, it considers the 2005-2012 period relative 1997-2005 period.  The 

right-hand-side variable is the change in home prices from roughly peak to trough (2006 to 2009).   

Here, the effects are generally larger, and in line with the Mian-Sufi story.  For the entire private 

economy (column 1), house-price changes have a strong association with labor productivity.  This appears to 

be mainly a bubble-economy story—construction and FIRE (columns 5 and 6) and, to a lesser degree, 

natural resources (column 7).  Excluding those sectors (column 2), as well as for IT-intensive and not-IT 

intensive sectors, the effect of the housing decline is small and insignificant.  Again, for IT-intensive 

industries, the constant term is where the action is. 

All told, the state data do not suggest that home-price movements are an important part of the 

broader story, though they may matter for some industries.  Rather, the state data are consistent with the IT-

linked story for the slowdown. 
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4. Implications for Medium and Long-Run Growth 

I now turn to implications of the slowdown in TFP growth.  This section projects longer-run growth 

using the steady-state of a neoclassical growth model.  The estimates imply a plausible return to a pre-1995 

growth pace.  From equation (5), steady-state output growth is the sum of growth in labor productivity and 

labor input:  

   * *
* * * *ˆˆ ˆ ˆ ˆY K H LQ A H LQ             

 (6) 

Stars (*) denote potential or steady-state values.   *
*ˆ ˆK H LQ   is steady-state capital deepening. 

What follows generally assumes constant returns and perfect competition and that utilization growth 

is zero in steady-state.  Hence, steady-state growth in technology and measured TFP are equal: * *Â TFP .   

4.1.  Multi-Sector Projections of Labor Productivity Growth 

In the one-sector neoclassical growth model (e.g., the Solow model), capital deepening depends on 

exogenous TFP growth.  In the steady state of that model, the capital-output ratio is constant.  In U.S. data, 

however, business-sector capital input grew about ¾ pp per year faster than output from 1973 through 2007. 

Multi-sector models, where one (or more) sector produces investment goods and other sectors do not 

can generate a rising capital-output ratio.  Capital deepening then depends solely on TFP in the investment 

sector (see the appendix).  If all capital goods are reproducible, potential labor productivity in equation (6) is: 

   *
* *ˆ ˆ / (1 )IY H LQ TFP TFP       . (7) 

In practice, land , T (for Terra), is also an important input.  Adding exogenous (non-reproducible) 

land to the model attenuates the capital-deepening effect, since the weight on reproducible ITFP  depends on 

the share of reproducible capital in output. If R  is the reproducible capital share in output, and if land use 

grows at the same rate as labor, the equation becomes:21  

                                                      

21 See the appendix.  By assuming land and labor grow at the same rate, equation (8) omits an “excess” land-

growth term:  *
* *ˆ ˆ( ) / (1 )T TT H LQ     , where T

Tc   is the share of land in total cost.  That term adds about 2 

basis points over the entire sample period and 0 basis points from 1995 through 2007, so I henceforth ignore it.  
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  *

* *ˆ ˆ / (1 )R R
IY H LQ TFP TFP        (8) 

To implement this equation, I draw on the following theoretical and empirical observations:   

 Theory tells us that investment TFP determines capital-deepening 
 The price of equipment—especially but not solely information-technology related—has 

fallen rapidly relative to the prices of other goods.  In contrast, the relative price of structures 
has risen steadily over time. 

 Land is a sizeable non-reproduced capital input that can be pulled into the business sector 
from other uses.  I take it as exogenous.   
 

Hence, I assume there are three final-use sectors that produce using capital and (exogenously growing) labor: 
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 (9) 

The Durable sector produces equipment and consumer durables.  The Building sector produces structures.  

The Consumption sector produces non-durables and services.  The production functions are identical apart 

from building-specific and consumption-specific technology shocks, BQ and CQ . 

Some durable goods, D, are invested and become equipment capital; some are used as inventories (a 

form of capital input).  All new buildings become structures.  Both equipment and structures accumulate 

according to the standard perpetual inventory formula.  Land grows exogenously.  All three sectors use the 

same capital aggregate, which uses equipment E, structures S, and land T 22 

 1E E T Tc c c c
D B CK E S T K K K      

                                                      

22 The appendix discusses the general properties of this model.  In the empirical implementation, I add 
inventories as a durable output, which effectively increases the equipment weight in capital, cE .   

The model abstracts from potentially important issues.  First, production functions and the capital aggregate 
are equal across sectors, but actual sectoral factor shares are not (see BFFK, 2014); second, all functions are taken to be 
Cobb-Douglas.  These first two assumptions simplify steady-state calculations, which are best interpreted as a local 
approximation when shares do not change too much.  Third, the model assumes a closed economy.  If, say, the ability to 
import computer components reduces the relative price of computers, the model interprets the lower price as faster 
relative TFP.  The lower relative price, in the closed-economy model or in a comparable open-economy model, 
encourages capital deepening.  Hence, for the incentives to purchase computers, the closed-economy assumption seems 
fine.  Fourth, considerable recent literature, including the papers discussed in Section 3.1.1, focuses on intangible 
capital.  Conceptually, this is an additional capital good that the economy produces and uses.  However, we do not 
observe the investment (production) or the stock of intangibles that yields a flow of services (the uses).  At different 
times, the investment versus service flow may dominate measurement.  Corrado and Hulten (2013) find that, over the 
1980-2011 period, accounting for intangibles as an investment good makes only a few basis points of difference to 
“adjusted” GDP per hour, though the split between capital deepening and TFP is affected.   

Despite  these caveats, the model fits historical experience well. 
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I use relative output prices to identify relative technology growth.  The output price in each sector is 

a markup,  , over marginal cost, MC.  So the relative price of, say, consumption to durable equipment is: 

        C D C C D DP P MC MC       (10) 

With identical production functions and factor prices, marginal cost depends solely on relative 

technologies.  With perfect competition, the markups both equal one and, hence:  

   
C D CP P Q    (11) 

This approach follows the literature on investment-specific technical change (ISTC, e.g., 

Greenwood, Hercowitz, and Krusell, 1997).  It relies on strong assumptions that hold imperfectly in practice; 

see Basu, Fernald, Fisher, and Kimball, BFFK 2013, for an alternative identification.  But in the long-run, 

BFFK find that relative prices do primarily reflect relative technologies.   

Figure 9 shows the resulting final-use TFPs, where overall TFP is decomposed using equation (11) 

and then cumulated into log-levels.  The final-use TFP measures do not control for utilization, but in the 

longer-run should provide reasonable indicators of technology trends.  According to this decomposition, all 

three sectors move roughly together until the mid-1960s.  The level of TFP for buildings then begins to drift 

steadily downward.  By the early 1970s, consumption TFP largely levels off.  In contrast, durables TFP 

continues to rise steadily until the 1990s.  

The difference between the durable and consumption lines is what the literature calls ISTC.  In 

contrast to the implicit interpretation in the ISTC literature, the faster apparent pace of ISTC in the 1970s 

arises from slower growth in consumption TFP, not from faster growth in durables (equipment) TFP. 

In the mid-1990s, durables TFP does, in fact, accelerate, reflecting IT production.  Given the scale of 

the figure, it’s difficult to see, but consumption TFP also grew more quickly.  Buildings TFP continues to 

trend down.  In the mid-2000s, prior to the Great Recession, all three series show a reversal in their post-

1995 growth pace.  Durables TFP grows more slowly; consumption TFP dips a bit; and buildings TFP 

plunges.  In the Great Recession itself, all three series fall somewhat and then bounce back.   

Table 4 compares steady-state implications of the model to labor productivity data.  Despite its 

simplifications, the model matches overall and subsample growth closely.  The model with land has a lower 

effective capital share, which better captures the magnitude of the pickup after 1995.  Relative to a one-
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sector model, the multisector version more closely matches subsample variation.  The one-sector model 

especially underpredicts capital deepening after 1973.  Equivalently, because it assumes the capital-output 

ratio is constant in steady state, it misses the trend increase in the capital-output ratio in the data. 

To use this model for steady-state projections, we need to plug in estimates of final-use TFP growth.  

Pesaran, Pick, and Pranovich (PPP, 2013) argue that, although break-analysis of the sort done in Sections 2 

and 3 is important for understanding history, it is not necessarily helpful for forecasting.  In general, there is 

uncertainty about the exact magnitude and dates of breaks, and post-break samples may well be short.  In the 

current problem, for example, each series may break at different times and provide only a short window of 

(volatile) post-break data.  PPP show that focusing on estimated break dates is suboptimal in terms of mean-

squared forecast errors (MSFE).  They argue for making forecasts looking at all the available data but then 

adjusting the weights on different observations to account for the fact that the world is changing over time.   

My benchmark projection uses a simple approach they call AveW, where one forms forecasts for a 

range of historical windows and then averages. They find that AveW works well in both Monte Carlo 

simulations and actual applications. It deals with uncertainty about the precise timing and magnitude of 

breaks by averaging across them.  It is similar to exponential smoothing in that it puts more weight on recent 

observations, since those observations appear in all of the windows.23   

I include all possible windows since 1973:Q2 of 24 quarters or longer.  Then, for each of the 139 

starting dates s  [1973:Q2-2007:Q4], I calculate average TFP growth from s through 2013:Q4 for durables, 

buildings, and consumption and use those growth rates to forecast labor productivity growth, LPf(s), with 

equation (8).  I then average the forecasts.  Hence, 
2007:4

1973:2
(1 /139) ( )AveW f

s
LP LP s


  .  

The model requires values for (reproducible) capital’s share, αR, and for , ( , , , )Jc J E S V T .  I focus 

on average values prior to the Great Recession, averaged from 2001:Q4 through 2007:Q4. The reproducible 

capital’s share, αR, averaged 31 percent, and capital share overall averaged 35 percent.  As an alternative, I 

use the 2012 reproducible capital share of 35 percent (the overall share had risen to 38 percent).  Other things 

equal, a higher capital share implies faster growth from equation (8).  

                                                      

23 The implicit weights in the AveW measure may not be optimal.  PPP derive what they call “robust optimal 
weights,” which are less intuitive.  However, they find the AveW approach usually performs well.  Given the many 
sources of uncertainty in long-term projections, the AveW measure gives a reasonable benchmark. 
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The first column of Table 5 shows my benchmark inputs, and projections, for steady-state labor-

productivity growth, using the AveWLP measure.  My benchmark, in row (6), is 1.9 percent per year.  Row (8) 

shows that, with the 2012 value of capital’s share, the projection is about 0.2 pp per year faster.  

The columns to the right show particular windows.  For example, row (6) of the “Since 1973:Q2” 

column shows LP(1973:Q2), i.e., the prediction for labor productivity using data since 1973:Q2.  That 

particular forecast puts equal weights on the slow 1970s and 1980s as the fast growing 1995-03 period.  

Focusing on the past decade, LP(2003:Q3), implies a forecast of only 1.62 percent, very close to the forecast 

using data since 1973:1.  Finally, the benchmark AveW forecast turns out to be similar to LP(1986:Q4). 

Not surprisingly, the standard error around any long-run projection is large.  Mueller and Watson 

(2013) estimate that the 80 percent confidence interval for 10-year projections of non-farm business output 

per hour range from 1.0 to 3.0 percent per year; for overall TFP, it ranges from -0.1 to 2.1 percent.   

More interestingly, the model and discussion highlight some of the key issues that will influence 

future growth.  An important question is whether the IT revolution might return after a pause?  Syverson 

(2013) points out that labor-productivity during the early-20th-century electrification period showed multiple 

decades-long waves of slowdown and acceleration.  Pessimists (e.g., Gordon, 2014) think a renewed wave of 

strong growth is unlikely; optimists (e.g., Brynjolfsson and MacAfee, 2014) think it’s on its way.   

Another issue is that model’s steady-state assumption might not be correct.  Fernald and Jones 

(2014) discuss a model in which relatively steady historical growth of GDP per hour of close to 2 percent 

reflects transition dynamics of rising educational attainment and an increasing share of the labor force 

devoted to research.  The steady-state of that model suggests much lower TFP and labor productivity growth 

(about ½ percent per year) than I project here.  But transition dynamics could continue to play out for a long 

time to come, or even intensify.  For example, the rise of “frontier” research in China, India and elsewhere—

as well as machine learning and robots—could lead to faster growth in the next few decades, even if the 

eventual path is much lower.  (Fernald and Jones interpret steady-state projections of the sort done here as a 

local approximation, albeit one that might be reasonable over the span of a few decades but not forever.) 
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4.2. From labor productivity to GDP growth 

For some purposes, GDP rather than the labor-productivity projection is more natural.  I use 

projections for potential labor input and non-business output from the CBO (2014a) for that estimate.  

The CBO expects relatively slow labor-force growth in the long-term:  Potential non-farm business 

hours in 2024 will grow at 0.64 percent per year, compared with growth of 1.4 percent per year from 1949 

through 2007.  Jorgenson et al (2013) estimate that by the end of this decade, labor quality will plateau, since 

new labor-market cohorts have no more educational attainment than retiring cohorts.  I therefore assume zero 

labor-quality growth.  These estimates imply that longer-run business output in the benchmark case will 

grow at the sum of growth in productivity (1.91 percent) and hours (0.64 percent) = 2.55 percent per year.  

For non-business sector output—mainly  general government and the service flow from owner-

occupied housing—CBO forecasts 0.85 percent per year growth at the end of 10 years (in 2024). Together, 

the business and non-business projections imply relatively anemic long-run GDP growth of about 2.1 percent 

per year.  In terms of total GDP per hour, this corresponds to growth of only about 1.6 percent per year.  This 

projection lies below the average from 1950-2007 of 2.0 percent per year.  

Prior to the Great Recession, a typical long-run projection was 2-1/2 percent or higher.  For example, 

in early 2007, the CBO projected growth 10 years out of 2.5 percent per year, and GDP per hour of 2.0 

percent per year—close to its long-run trend.  Since 2009, Federal Open Market Committee participants 

publish “longer run” projections for GDP growth four times a year.  In January 2009, more than 60 percent 

of participants (10 out of 16) reported a longer-run projection of 2-1/2 percent, with the remaining 

participants higher than that. 24  

When the first versions of this paper were written, in late 2011 and early 2012, the projections in this 

paper were at the very low end of what I could find.25  Typical projections from the CBO or the FOMC had 

changed only modestly since the beginning of the recession.  In contrast, by early 2014, the numbers 

reported here are in line with, or above, most other projections.  The CBO (2014a) itself projects growth of 

                                                      

24 Numbers are reported in the minutes at http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm. 
There are at most 19 FOMC participants, and often fewer, depending on whether there are unfilled governor positions.  
Projection data are presented in bins.  I have rounded the “2.4 to 2.5 percent” bin to 2-1/2 percent.  Estimates are for 
total GDP, and so it is not possible to decompose FOMC projections into productivity or demographics.    

25 The earliest public working paper version of this paper was in September 2012, and projected long-run 
growth of 2.1 percent per year.   
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potential GDP (in 2024) of 2 percent and GDP per hour of 1.5 percent.  Jorgenson et al (2013) and Gordon 

(2014) project GDP per hour growth approximately 10 years out of 1.3 percent.  Byrne, Oliner, and Sichel 

(2013) project GDP per hour of about 1-1/2 percent. 

5. Implications for Recent Measures of Slack 

The pre-Great-Recession productivity slowdown implies that, as of 2013, economic “slack” using a 

production-function definition may be narrower than CBO (2014a) estimates.  The CBO does, in fact, build 

in slower TFP growth after 2004.  But the slowdown is more modest than the data suggest is needed.  If 

potential is lower than the CBO estimates, then the gap between actual and potential output is smaller.   

5.1. Alternative Definitions of Potential 

The CBO’s defines potential as “the maximum sustainable amount of real (inflation-adjusted) output 

that the economy can produce” (CBO, 2014b, page 1).  The dynamic stochastic equilibrium (DSGE) 

literature offers an appealing, theoretically coherent, alternative to this production-function definition:  

Potential (or natural) output is its value when nominal frictions (sticky prices and wages) and, often, markup 

shocks are absent.26  Technology shocks directly affect the natural rate of output.  But other shocks—say, to 

the labor-leisure choice or the rate of time preference—may also cause changes in hours worked or factor 

intensity even in the absence of nominal frictions.  These changes are ruled out by the CBO method.  

Nevertheless, the DSGE approach is challenging in the present context.  First, its estimates are 

model-specific.  Different models may interpret the same data quite differently.  Second, most models 

assume that growth in technology has a constant mean, which is inconsistent with the interpretation in this 

paper.  A fully-specified regime-switching (or more general) model is complicated.  The need to specify how 

the underlying trends evolve is an example of the model-specificity of the natural-rate estimates.   

Still, Kiley (2013) finds that, in the context of the Federal Reserve Board’s EDO model, the natural-

rate measure of the output gap comoves reasonably closely with a production-function-based measure.  

Indeed, technology fluctuations affect potential output in DSGE models as well in the production-function 

(CBO) approach; and demand shocks that lead to inefficient fluctuations in labor and factor utilization would 

                                                      

26  See, Basu and Fernald (2009) or Kiley (2013) for an extended discussion and references. 
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be captured in both approaches.  Finally, the CBO estimates provide a widely cited benchmark supported by 

careful of comprehensive analysis of many features of the economy.  

5.2. Alternative Estimates of Slack in the CBO Approach 

Conceptually, the GDP gap can be expressed in terms of gaps in the business (or non-farm business) 

sectors, and in the non-business sectors.  Historically, the CBO attributes almost all movements in the overall 

output gap to the (non-farm) business sector, so I assume the overall gap is simply a rescaled version of the 

business-sector gap.27  In the Cobb-Douglas case, if ω is the business share of the economy: 

 
* ,*
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For the business sector, suppose the production function is Cobb-Douglas: 

  1 1Bus
t t t t t tY K H LQ Util A     (13) 

The CBO does not explicitly consider labor quality, so the term in brackets on the right side is 

measured TFP gross of LQ.  The production-function measure of potential output is defined as what the 

economy could produce given current technology and capacity, assuming that labor and capital are utilized at 

“normal” (steady-state) levels.  Setting * 1Util  , potential output is: 
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Taking the ratio, the output gap for the business sector is:28   
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The CBO publishes annual estimates of the business-sector output and hours gaps.  The hours gap draws on 

analysis of demographics, trend labor-force participation, mismatch, and other factors.  This equation 

implicitly defines a CBO “utilization gap” (inclusive of LQ) as: 

      , ,* *ln ln (1 ) lnCBO LQ Bus Bus
t t t t tUtil Y Y H H    (16) 

                                                      

27 The gap from equation (12) has a correlation with the actual CBO GDP gap of 0.998.   
28 This decomposition follows Kiley (2010), who uses it (minus the labor-quality piece) to derive a “CBO gap” 

in the context of a DSGE model.  CBO (2014b) discusses some of their underlying assumptions.  Note that any cyclical 
deviations from “potential TFP,” regardless of source, will be labeled as utilization. 
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Figure 10A plots this utilization gap, using the 2001-2007 average capital share of 0.34.  It also shows the 

cumulated Fernald utilization series (annual, normalized to match the CBO as of 1987) and the Federal 

Reserve (FRB) manufacturing capacity-utilization series (relative to its 1981-2007 mean).  Over the full 

sample, the correlation of the CBO and Fernald series is 0.78, which matches the correlation of the CBO and 

FRB series.  But the Fernald and FRB series are even more highly correlated (0.82), especially since the 

early 1990s.  The Fernald and FRB measures both suggest a smaller utilization gap in 2012 and 2013 than 

does the CBO.  Indeed, the only times in history that the CBO gap has been more negative than in 2013 were 

at the troughs of deep recessions:  2009, 1982, and (barely) 1975.29 

CBO’s (2014a) large utilization gap reflects its assumptions about potential TFP.  Figure 10B shows 

that smooth series along with Fernald TFP and utilization-adjusted TFP.30  The CBO shows faster trend TFP 

growth starting in the early- to mid-1980s, with no mid-90s acceleration.  There is an upward level effect in 

the early 2000s, then a smooth path through the end of the sample.   

But the Great Recession is a particularly striking anomaly, with no evidence of convergence of 

actual and “potential” TFP.  Since the CBO assumes underlying technology is stronger than my estimates 

imply, they correspondingly have a larger utilization gap to fill in the difference.  

Arnold (2009) and CBO (2014b) discuss how the CBO typically imposes a smooth linear trend for 

potential TFP (inclusive of LQ) between business-cycle peaks.  The advantage of the peak-to-peak 

methodology is that it is not particularly model-specific.  The disadvantage is that the CBO’s assumed 

(largely linear) trend is potentially subject to large and ongoing ex-post revisions, especially after a new 

business cycle peak is reached.31  Since 2004, for example, the CBO’s views about TFP growth in the 1990s 

                                                      

29 FRB capacity utilization has a downward trend prior to the Great Recession, which is not accounted for here.  
The labor-quality gap—which is included with the CBO gap but not with the others—makes the CBO measure even 
more out of line.  The reason is that the LQ gap tends to rise in recessions (when utilization is low), since lower-
educated workers disproportionately lose jobs.  The effect is probably not too large.  Estimating trend labor quality as 
discussed below, the standard deviation of the LQ gap is only ½ percent per year, compared with a business-sector 
output gap standard deviation of nearly 4 percent per year. 

30 The CBO measure has been adjusted for trend labor quality and for differences between the CBO and 
Fernald measures of capital’s growth contribution, which makes the measures more conceptually similar.  These 
adjustments add little volatility to the CBO estimates.  The Fernald series in the figure has been converted to a non-farm 
business basis using the gap between the BLS estimates of business and non-farm business MFP. 

31 CBO (2014b, p.5) says:  “Particularly significant changes in CBO’s estimates of potential output can occur 
after the economy reaches a new business cycle peak, an event that usually leads CBO to change the period over which 
it estimates…trends.”  Arnold notes that the CBO may wait for years to implement all revisions to the historical path. 
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and 2000s have changed nearly every year.  The 2001-2004 bump up in potential TFP growth became much 

pronounced in the 2009 release; only in 2014 did the CBO first estimate that TFP growth after 2004 was 

(modestly) slower than TFP growth in the 1990s.  CBO staff are careful and knowledgeable, and need to 

consider and balance a range of issues.  Still, the slowdown in potential TFP growth appears small given the 

analysis in this paper. 

Historically, labor gaps and utilization gaps are strongly positively correlated.  When there is a labor 

gap—and CBO (2014a) estimates that as of 2013, / * 5.4H H   percent—there is typically a utilization gap 

in the same direction.  (Interestingly, prior to the Great Recession the correlation of the CBO hours gap with 

the utilization gap is a bit higher with the Fernald utilization measure (0.70) than with the CBO utilization 

measure (0.61).)  However, the persistence of the utilization gap, six years after the Great Recession began, 

is out of line with other evidence that utilization substantially bounced back.  

Two alternative identifying assumptions therefore suggest themselves.  The first is to use a model-

based measure of utilization, such as the Fernald (updated Basu-Fernald-Kimball) measure plotted in Figure 

10A.  That provides the benchmark “Fernald” estimate of the output gap in Figure 1. It is also necessary to 

take a stand on the labor-quality gap in equation (15).  I use a biweight kernel with bandwidth of 10 years to 

estimate “trend” labor quality growth.  That estimate implies relatively fast trend labor-quality growth in the 

Great Recession (around 0.4 percent per year).  Actual labor-quality rose even faster, as low-skilled workers 

lost disproportionately lost jobs, opening up a labor-quality gap during and following the Great Recession 

that peaks at about a 1 percentage point (positive) contribution to the overall output gap.  

A second approach simply assumes no utilization or LQ gaps, and uses actual measured TFP.  For 

this approach, the “output gap” is simply a rescaled version of the hours gap.  Of course, since actual factor 

utilization is cyclical, this measure of the output gap will not move enough—and, correspondingly, will 

imply a measure of potential output that moves too much with actual output.  However, once utilization and 

(labor quality) can safely be assumed to have returned to normal levels, it will correctly measure the gap. 

Figure 11 compares the resulting output gaps to the CBO estimate.  Even using actual TFP, and 

assuming utilization does not vary, there was a sizeable gap at the peak of the Great Recession.  The reason 

is that the hours gap is, historically the main driver of the output gap.  By 2013, however, the hours gap 

contributed only about 2-1/2 percent to the output gap.  The Fernald (utilization-adjusted TFP) measure 
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moves much more closely with the CBO measure but, by 2013, had narrowed much more.  With this 

measure, slack shows up primarily in the people who aren’t working, rather than in the intensity of use of 

factors that are working.  The Bank of England (2014) takes a similar view of the U.K. economy, where (p.6) 

it states: “The Committee judges that there remains spare capacity, concentrated in the labour market....” 

The two alternatives in Figure 11 are illustrative and make strong assumptions.  But they are robust 

to measurement error in growth in capital or in underlying technology.  The reason is that TFP is measured 

as a residual.  Hence, ceteris paribus, anything that affects actual output affects measured TFP as well.  And 

actual output depends on true capital and technology.  This is why capital and technology do not appear in 

the “output gap” ratio (15).32  

Together, these output gap assumptions imply the “Fernald” path of potential shown in Figure 2.  

The annual growth rates are model-specific and so could be too volatile.  But the broad point is that, over 6 

years, they embody a much lower growth rate of potential because utilization gaps have substantially or 

completely closed.  The “Fernald” estimate here decomposes about 3/4 of the shortfall relative to the 2007 

trend into a downgrade of potential, and about half into an output gap (output below potential).   

Of course, these potential-output paths are not exogenous, since a cyclical shortfall of investment 

lowers the capital stock.  The role of capital is obscured by the focus on gaps (where capital doesn’t appear 

explicitly).  But once business-cycle dynamics play out, standard models imply that the marginal product of 

capital will be high relative to steady state, encouraging capital formation.  Hence, potential growth will 

temporarily “overshoot” on its return to steady-state.  Hall (2014) discusses capital dynamics extensively. 

My focus has been on TFP, where the effects of the Great Recession seem less important than trends 

related to IT that predated the Great Recession.  Nevertheless, there are other channels through which the 

persistence of a labor gap persistently lower potential output.  These include the possibility that workers lose 

skills and, potentially, drop out of the labor force permanently.  Reifschneider et al (2013) discuss the 

implications of this view for monetary policy. 

                                                      

32 In contrast, assuming an exogenous technology process is sensitive to mismeasurement of capital or 
technology.  For example, suppose capital was scrapped at unusual rates during the Great Recession, e.g., because the 
economy had too many back hoes.  Then growth in true capacity would be lower than measured, and potential would be 
overestimated.  Since actual TFP will be low, the observer would incorrectly infer (from equation (16) ) that utilization 
was low.  Of course, firms might instead have deferred scrappage of old but still serviceable capital. 
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Finally, consider the period prior to the crisis, say in 2006.  The growth-accounting approach in this 

paper is inherently about growth rates, rather than levels.  To benchmark levels, I used the CBO labor gap 

and I set the level of utilization to match the CBO’s utilization-gap as of 1987 (and set the LQ gap to zero as 

well).  Given these CBO assumptions, output did not appear to be much different than potential leading up to 

the Great Recession.  If actual output were, in fact, further above potential prior to the crisis, then today’s 

output gap would be correspondingly less negative.  Still, the 2013 average unemployment rate of 7.4 

percent is well above most natural-rate estimates (the CBO was at 5.9 percent), consistent with substantial 

remaining labor-market slack.  That constrains how much of a pre-crisis adjustment one could make.   

Certainly, aspects of the economy were unsustainable in the mid-2000s.  The economy produced too 

many houses, and U.S. households borrowed excessively to finance consumption. But these do not 

necessarily imply that the level of output was unsustainable—as opposed to its composition.  There is ex post 

misallocation, since construction workers should have produced other things—but they were producing.  

And the excessive consumption in part showed up as imports, not (necessarily) overproducing domestically. 

Finally, the fundamental difference in perspective relative to the CBO is that the CBO assumes a 

smooth process for technology, whereas empirical estimates are much more volatile.  This volatility is 

inherent in modern macro models, whether flex-price RBC models in which technology shocks drive 

business cycles; or in sticky price/wage New Keynesian models such as EDO (see Kiley 2013).  The Fernald 

utilization-adjusted TFP series are only slightly less volatile (in annual data) than raw Solow residuals, and 

are about equally volatile to the shocks estimated in DSGE models.33  Alternative indicators, such as 

technology book publications, are also highly volatile (e.g., Alexopoulos and Cohen, 2009).  Understanding 

why year-to-year technology is so volatile remains a challenge. 

6. Conclusions 

The past two decades has seen the rise and fall of exceptional U.S. productivity growth.  In the 

quotation that opened this paper, Alan Greenspan in 2000 suggested that the economy was in the midst of a 

"once-in-a-century acceleration of innovation." That hope has, so far, fallen short.  At its peak from the mid-

1990s to early 2000s, TFP growth was similar to its pace from the 1940s to early 1970s (and probably since 

                                                      

33 I thank Hess Chung for sending me the EDO shocks. 
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the 1920s).  But from 2004 to 2013, the IT-induced burst in TFP growth faded.  For three of the past four 

decades, productivity growth has proceeded more slowly, suggesting that this slower pace is a better 

benchmark for normal growth. 

Writing near the stock-market peak, Greenspan noted, in passing, the possibility of a “euphoric 

speculative bubble.” With hindsight, the past two decades have seen speculative booms and busts in stock- 

and housing-markets, and the worst financial crisis since the Great Depression.  It is tempting to point to 

these factors, including the Great Recession, to explain the swings in productivity growth.  But the 

productivity retreat predated the Great Recession and is not limited to the “bubble sectors.”  Nor was it more 

pronounced in states that saw bigger housing-price swings (a proxy for indirect effects).  Rather, the end of 

exceptional growth can be traced to industries that use information technology intensively or that produce IT.  

Thus, the easing of productivity growth is the flip side of the productivity burst.  For now, the IT 

revolution appears as a level effect on measured productivity that showed up for a time as exceptional 

growth.  Productivity growth similar to its 1973-95 pace is a reasonable expectation. 

Uncertainty about any such forecast is inherently high.  Jones (2002) argues that 20th century U.S. 

growth was built on rising education and research intensity, which will not persist in steady state.  But, of 

course, before we reach that point, there could well be another wave of the IT revolution—as Brynjolfsson 

and McAffee (2014), Baily, Manyika, and Gupta (2013), and Syverson (2013) suggest—or some other, 

unexpected productivity breakthrough.  In addition, as Fernald and Jones (2014) suggest, the future growth 

model might look substantially different from the past—perhaps reflecting the innovative potential of robots 

and machine learning, or the rise of China, India, and other countries as centers of frontier research. 

The 2000s slowdown has a parallel with the earlier slowdown of the 1970s.  The massive oil-price 

shocks around the same time made them an obvious suspect.  But theoretical models had difficulty 

generating persistent productivity-growth effects from oil; and, when oil prices retraced their increases in the 

mid-1980s, productivity growth did not recover.  Similarly, the Great Recession is a suspect for the 

productivity slowdown in the 2000s, but my analysis exonerates it.  

More broadly, it is the exceptional growth that appears unusual—prior to 1973, or from 1995-2004.  

Historians of technology (e.g., David and Wright, 2003; Field, 2003; and Gordon, 2000) argue that a broad 

wave of technological breakthroughs led to a surge in productivity growth after World War I that finally 
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played out around 1970s.  For example, Gordon (2000) highlights (i) electricity, (ii) the internal combustion 

engine, (iii) “rearranging molecules” (petrochemicals, plastics, and pharmaceuticals), and (iv) entertainment, 

information, and communication (e.g., telephone, radio, movies, TV).  Fernald (1999) and Field (2007) point 

especially to the role of infrastructure.  The GPT literature suggests that these constellations, like information 

technology, promoted a range of complementary innovations that propelled exceptional growth for a time, 

but not, perhaps, forever.    
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Appendix A:  Data 

Fernald (2012) Quarterly Growth-Accounting Data 

These data are available at http://www.frbsf.org/economics/economists/jfernald/quarterly_tfp.xls.  
They include quarterly growth-accounting measures for the business-sector, including output, hours worked, 
labor quality (or composition), capital input, and total factor productivity from 1947:Q2 on.  In addition, they 
include a measure of factor utilization that follows Basu, Fernald, and Kimball.  They are typically updated 
several months after the end of the quarter.  Once aggregated to an annual frequency, they are fairly close to 
the annual BLS multifactor productivity estimates, despite some differences in coverage and 
implementation.34 The data are described in greater detail in Fernald (2012). 

 
Key data sources for estimating (unadjusted) quarterly TFP for the U.S. business sector are: 

(i) Business output:  A geometric average of output as measured from the income and 
expenditures sides, as recommended by Nalewaik (2011),  The expenditure (gross domestic 
product) side is reported in NIPA tables 1.3.5 and 1.3.6 (gross value added by sector).  
Nominal business income (the counterpart of gross domestic income) is GDI less nominal 
non-business output from table 1.3.5.  Real business income uses the expenditure-side 
deflators.   

(ii) Hours:  From the quarterly BLS productivity and cost release.  
(iii) Capital input:  Weighted growth in 15 types of disaggregated quarterly capital (5 types of 

non-residential equipment, 5 types of structures, 3 types of intellectual property, plus 
inventories and land.)  Estimated user costs are used to generate weights in capital input.  
For equipment, structures, intellectual property, and inventories, the underlying source is the 
BEA.  For land, I interpolate and extrapolate from BLS estimates of land input into the 
business sector.   

(iv) Factor shares:  Based on NIPA data on corporate business total business factor costs and 
payments to labor and capital.  Following Jorgenson, Gollop, and Fraumeni (1987) and the 
BLS, cost equals revenue net of taxes on production and imports (TOPI), plus subsidies, 
plus the portion of TOPI that is properly allocated to capital (property and motor vehicle 
taxes).  I implicitly allocate proprietors’ income between labor and capital so that labor’s 
share of non-corporate, non-government businesses matches the share for non-financial 
corporations.  

(v) Labor composition:  From 1979:1 on, I use estimates that follow Aaronson and Sullivan 
(2001), as updated by Bart Hobijn and Joyce Kwok.  Prior to 1979, I interpolate and 
extrapolate annual data from BLS multifactor productivity data.  

(vi) Investment versus consumption technology:  To decompose aggregate TFP along final 
demand lines, I create three Tornquist price indices from NIPA data.  The first is the price of 
“equipment,” defined as equipment, software, and consumer durables.  The second is the 
price of structures, defined as residential and non-residential structures.  The third is the 
price of non-durable “consumption,” defined as everything else—i.e., the price of business 
output less equipment and structures.  I assume the relative price of equipment investment 

                                                      

34 To name six minor differences:  (i) BLS covers private business, Fernald covers total business.  (ii) BLS 
uses expenditure-side measures of output, whereas Fernald combines income and expenditure-side measures of output.  
(iii) BLS assumes hyperbolic (rather than geometric) depreciation for capital. (iv) BLS uses more investment 
categories, available only at an annual frequency.  (v) Fernald does not include rental residential capital.  (vi) The labor-
quality methods are slightly different.  Some of these differences reflect what can be done quarterly versus annually.  
For a review of the methodology and history of the BLS measures, see Dean and Harper (2001).  
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corresponds, quarter-by-quarter, to TFP in consumption relative to equipment investment.  
(This measure of relative TFP is not, of course, necessarily equal to technology change 
period by period.) 

 
To estimate a quarterly series on aggregate utilization, the key data source is the following: 
 

(vii) Hours-per-worker ( / )i iH N by industry from the monthly employment report of the BLS.  

These are used to estimate a series on industry utilization ln iU  = ln( / )i i
i H N  , where 

i  is a coefficient estimated by Basu, Fernald, Fisher, and Kimball (BFFK, 2013).  I then 

calculate an aggregate utilization adjustment as ln lni ii
U w U   , where iw is the 

industry weight from BFK (taken as the average value over the full sample). 
 

The resulting utilization-adjusted series differs conceptually from the BFFK purified technology 
series along several dimensions.  BFFK use detailed industry data to construct estimates of industry 
technology change that control for variable factor utilization and deviations from constant returns and perfect 
competition.  They then aggregate these residuals to estimate aggregate technology change.  Thus, they do 
not assume the existence of a constant-returns aggregate production function.  The industry data needed to 
undertake the BFFK estimates are available only annually, not quarterly.  As a result, the quarterly series 
estimated here does not control for deviations from constant returns and perfect competition.35   

 

BLS Industry Data 

Multifactor productivity (MFP) data by industry cover 60 manufacturing and non-manufacturing 
industries. MFP is synonymous with TFP.  The industry data do not control for labor quality.  These 
data are available at http://www.bls.gov/mfp/mprdload.htm (downloaded January 16, 2014).  For 
more discussion of the data, see http://www.bls.gov/opub/mlr/2010/06/art2full.pdf.  For the 
methodology used in estimating KLEMS multifactor productivity  measures, see Michael J. Harper, 
Bhavani Khandrika, Randal Kinoshita, and Steven Rosenthal in "Nonmanufacturing industry  
contributions to multifactor productivity, 1987-2006," Monthly Labor Review,  June 2010, pp. 16-31 
(see http://www.bls.gov/opub/mlr/2010/06/art2full.pdf) and William Gullickson  "Measurement of 
Productivity Growth in U.S. Manufacturing," Monthly Labor  Review, July 1995, pp. 13-27 (see 
http://www.bls.gov/mfp/mprgul95.pdf). 
 
IT intensity: To differentiate IT-intensive from non-IT intensive industries, I ranked industries based 
on the estimated payments for IT as a share of income (that is, the portion of capital’s share of 
income that is attributable to IT, averaged over the full sample period—though using 1987-90 
average makes little if any difference).  Starting with the most IT-intensive industry, I selected 
industries until I reached 50 percent of the value-added weight (averaged 1987-2011) for the non-IT-
producing “narrow business” economy.  See Table A-1. 
 
Finance intensity:  The BLS produces annual I-O tables at the level of 195 industries/commodities, 
available at http://www.bls.gov/emp/ep_data_input_output_matrix.htm (accessed January 14, 2014).  
I aggregated industries 169 private business input-output industries to 60 BLS MFP industries 

                                                      

35 The output data also differ, both in vintage and data source, from the annual data used by BFK.  
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according to NAICS codes.  I then measure the finance share for each industry as nominal purchases 
of intermediate finance and insurance services (there are five such commodities in the underlying I-
O tables) relative to total output of the industry.  Finance usage was nominal purchases of various 
financial services as a share of industry gross output.  “Finance intensive” is set of industries with 
the highest shares that constitute 50 percent of the value-added weight of narrow business excluding 
IT production. 
 

IT Producing: As noted in Appendix Table 1, I define IT-producing industries to be (i) computer and 
electronic product manufacturing; (ii) publishing (including software); and (iii) computer systems 
integration and design. These three account for the vast majority of final expenditure on computers, 
communications, and software.  Note that I exclude “information and data processing services” (e.g., 
cloud storage), since that provides intermediate services rather than final investment in hardware.  
That is, it is a substitute for direct ownership of IT hardware. 
 

Well-measured industries:  Griliches (1994) imagines “a ‘degrees of measurability’ scale, with 
wheat production at one end and lawyer services at the other. One can draw a rough dividing line on 
this scale between what I shall call ‘reasonably measurable’ sectors and the rest….”  Griliches and 
Nordhaus draw the dividing line slightly differently.  For Table 1, I largely follow Nordhaus, except 
that (as noted already) I exclude (well-measured) agriculture and mining and (poorly measured) 
construction and FIRE.  I also exclude IT-producing industries.  Well-measured thus comprises 
manufacturing (ex. computers and semiconductors), utilities, transportation, trade, and selected 
services (broadcasting and telecommunications, and accommodations).  Switching trade and the 
selected services from well-measured to poorly-measured would make the slowdown in well-
measured a bit less pronounced.  Nevertheless, both well-measured and poorly-measured show a 
deceleration of more than a percentage point after 2004, so the main takeaway is unaffected by this 
choice.   
 

State productivity 

 BEA GDP by industry and persons engaged in production by industry were downloaded 
(February xx, 2014) from ____.    

 These data are prior to the 2013 benchmark revision, so numbers differ slightly from 
reported elsewhere. 

 Chain addition and subtraction were used to construct subgroup aggregates along the lines of 
the industry breakdown in Appendix Table 1. 
 

Other state data 

 Home prices are from Core Logic, and housing elasticity measures are from Saiz (2011).  
The Saiz metropolitan-area elasticities were aggregated to a state level using population 
weights.  (I thank John Krainer and Fred Furlong for providing me with these data).  

 From Business Dynamics Statistics database, I measure the creation of firms with 1-5, 5-9, 
and 10-19 people over the year.  I then divide by population to generate small job births per 
capita by state.  (I thank Liz Laderman for providing me with these data). 

 

How I use the CBO data 



42 

 

- CBO publishes projections for GDP and for (non-farm) business GDP.  To estimate 
output of nonprofits and government (i.e., the “non-non-farm” sector) I assume farms 
grow with other businesses, and ignore the difference between non-farm and total 
business.  Using the NIPA nominal business weights in GDP (0.76, averaged 1995-
2007), I can back out an estimated non-business output.   

- CBO publishes projections for labor-force growth and for non-farm business hours.  In 
2024, the potential labor force in CBO (2014a) grows at 0.5 percent, whereas NFB hours 
grows 0.64 percent.  According to CBO staff, the difference primarily reflects 
continuing decline in government hours (i.e., a shift towards the business sector).  So for 
the total economy, I use the growth in the potential labor force. 

- The non-farm-business labor gap is from comparing unpublished BLS data on hours 
worked in non-farm business relative to CBO’s published potential non-farm business 
hours.  The unpublished BLS productivity-and-cost hours data match the published 
index values perfectly.36  

- To convert the CBO NFB TFP projections into figures more comparable to Fernald 
(2014) or the BLS, I need an estimate of trend labor quality (which is included in the 
CBO figures but not in the others)..  
 

  

                                                      

36 I thank Bob Arnold at the CBO and John Glaser at BLS for help in understanding the data. 
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Appendix Figure A-1 
 

 
  

NAICS IT‐prod.

Bus, excl. 

Nat Res, 

Con, FIRE

IT‐int. 

(in (2))

Not‐IT‐int. 

(in (2))

Fin‐int.

(in (2))

Not fin. Int

(in (2))

Well

(in (2))

Poor

(in (2))

(1) (2) (3) (4) (5) (6) (7) (8)

1     Manufacturing MN

2     Nondurable goods ND

3       Food, beverage and tobacco product manufacturing 311,312 x x x x

4       Textile and textile product mills 313,314 x x x x

5       Apparel, leather, and allied product manufacturing 315,316 x x x x

6       Paper manufacturing 322 x x x x

7       Printing and related support activities 323 x x x x

8       Petroleum and coal products manufacturing 324 x x x x

9       Chemical manufacturing 325 x x x x

10       Plastics and rubber products manufacturing 326 x x x x

11     Durable goods DM

12       Wood product manufacturing 321 x x x x

13       Nonmetallic mineral product manufacturing 327 x x x x

14       Primary metal manufacturing 331 x x x x

15       Fabricated metal product manufacturing 332 x x x x

16       Machinery manufacturing 333 x x x x

17       Computer and electronic product manufacturing 334 x x

18       Electrical equipment, appliance, and component manufacturing335 x x x x

19       Transportation equipment manufacturing 336 x x x x

20       Furniture and related product manufacturing 337 x x x x

21       Miscellaneous manufacturing 339 x x x x

22     Agriculture, forestry, fishing, and hunting 11

23       Farms 111,112

24       Forestry, fishing, hunting, and related activities 113-115

25     Mining 21

26       Oil and gas extraction 211

27       Mining, except oil and gas 212

28       Support activities for mining 213

29     Utilities 22 x x x x

30       Construction 23

31     Trade 42,44-45

32       Wholesale trade 42 x x x x

33       Retail trade 44,45 x x x x

34     Transportation and warehousing 48-49

35       Air transportation 481 x x x x

36       Rail transportation 482 x x x x

37       Water transportation 483 x x x x

38       Truck transportation 484 x x x x

39       Transit and ground passenger transportation 485 x x x x

40       Pipeline transportation 486 x x x x

41       Other transportation and support activities 487,488,492 x x x x

42       Warehousing and storage 493 x x x x

43     Information 51

44       Publishing (incl. software) 511,516 x x

45       Motion picture and sound recording industries 512 x x x x

46     Broadcasting and telecommunications 515,517 x x x x

47       Information and Data Processing Services  518,519 x x x x

48     Finance, Insurance, and Real Estate  52-53

49       Credit intermed. and related activities 521,522

50       Securities, commods, and other fin. invest. activities 523

51       Insurance carriers and related activities 524

52       Funds, trusts, and other financial vehicles 525

53       Real estate 531

54       Rental and leasing services and lessors of intangible assets 532,533

55     Services 54-81

56       Legal services 5411 x x x x

57       Computer systems design 5415 x x

58       Miscellaneous professional, scientific, and technical services 5412-5414,5416-5419 x x x x

59       Management of companies and enterprises 55 x x x x

60       Administrative and support services 561 x x x x

61       Waste management and remediation services 562 x x x x

62       Education services 61 x x x x

63       Ambulatory health care services 621 x x x x

64       Hospitals and nursing and residential care facilities 622,623 x x x x

65       Social assistance 624 x x x x

66       Performing arts, spectator sports, museums, and related indus711,712 x x x x

67       Amusement, gambling, and recreation industries 713 x x x x

68       Accommodation 721 x x x x

69       Food services and drinking places 722 x x x x

70       Other services 81 x x x x
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Appendix B.  Overview of BFOS (2003) estimating equation37 

Formally, BFOS assume an IT user produces market output Y and (unobserved) intangible 
investment A, (where the market output can be transformed one-to-one into intangible investment) with a 
production function: 

  ( , ), , ,    = 1...ICT NT
it it it it it it it itQ Y A F Z G K C K L i N    

A accumulates to intangible/organizational capital C that, together with IT capital, KIT, produces 
services.  The separability assumption on G captures the link between reorganization and IT.   

Differentiating, one can show that measured growth in TFP (in terms of observed market output and 
observed inputs) is: 

 C ZF C F ZA
TFP c a z

Y Y Y
              

 

Measured TFP misses the investment in intangibles as well as the service flow from those 

intangibles.  Other things equal, measured TFP falls when growth in unobserved investment, a , is faster.  It 

rises when growth in complementary/organizational capital, c , is faster. 

BFOS use the separability assumption for G to express the output elasticity /CF C Y , and the growth 

rates c and a , in terms of IT observables and a small number of parameters.  Note that, with perfect 

competition, the first-order conditions imply ,/ /C K CF C Y P C PY .  Suppose G is a CES function and 

, , { , }K jp j ICT C  be the user cost of the two types of capital.  With the separability assumption, the first-

order conditions for C and K imply that IT-intensive firms—those with a high share of IT in observed market 
output—are complementary intensive: 
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Separability also implies a link between c  and ICTk :  

 , ,( )ICT
t t K ICT K C tc k p p        

The remaining challenge is to measure unobserved investment.  From the perpetual inventory 

formula   11it it C itC A C    , we can express ta in terms of tc and 1tc  : 
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37 See BFOS and Basu and Fernald (2008) for further details and derivations. 
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In this expression, the current and lagged growth rate of (suitably transformed) IT capital reflects its 
assumed link with growth of C and A.  The share-weighting reflects the fact that, to have an important effect 
on measurement, this intangible capital must be sufficiently important.  If IT capital has a high share then, 
other things equal, the model interprets it as implying that intangible capital also has a high share. 

Contemporaneously, the coefficient on tk is negative (since 1C CF r    ).  That reflects that, 

other things equal, if current IT-capital is growing, the model assumes that that A is also growing fast, which 

reduces measured TFP.  The coefficient on lagged 1tk 
 is positive, since (for given tc ), higher 1tk 

 implies 

fewer diverted resources a  today. 

BFOS used equation (A1) as a cross-sectional estimating equation.  For that purpose, they ignored 

the relative price terms in operationalizing tk .  That is, they took ICT

ICT
t tK

k s k  .  This is probably not a 

major problem for the cross-sectional implications, where the relative-price effects are largely common 
across sectors, so the important cross-industry differences show up in the IT share and IT growth.  The 
relative-price terms are largely soaked up in the coefficients.   

In contrast, Oliner, Sichel, and Stiroh (2007) focus on the time-series dimension of this model.  For 
those purposes, the relative-price trends are likely to be much more important.  They relate the model to the 

broader literature on measuring intangible investment to calibrate 1.25   and to measure the trends in 

relative user costs (in all periods, the user cost of IT falls sharply, so the relative user costs rise at 7-10 
percent per year).   

The model above suggests some cross-sectional implications, which I explore in the text: 

1. In the model, the proxy for IT use should be the IT income share multiplied by IT growth, not 
merely the IT income share.  That said, the latter is more common in the literature, and the two ways 
of identifying IT-intensive industries turn out to identify almost the same industries and yield the 
same results.  

2. In the context of the mid-2000s slowdown, the model implies that the major slowdown should have 
been in IT-intensive industries (however measured), since that’s where the interesting intangible 
“action” is. 

3. The model says that measured TFP growth depends negatively on current share-weighted IT growth 
but positively on its lagged value.  Note that since the current and lagged values are likely to be 
correlated, if we omit the lagged term, omitted-variable considerations imply that the sign of the 
relationship is ambiguous.   

4. Taking literally as an estimating equation, (A1) implies that current tk should be negative (as the 

diverted resources/investment effect dominates) whereas lagged 1tk 
 should be positive.  The lags 

involved are unclear in the stylized model, which omits dynamic considerations such as adjustment 
costs and time-to-build for reorganization. 

5. Suppose the early 2000s strength in measured TFP in part reflected that firms were cutting back on 
intangible investments.  That is, those industries stopped diverting resources to unobserved 
investment and measured TFP spiked.  If that’s the story, then the subsequent slowdown in the mid-
2000s (2004-2007 relative to 2000-2004) should have been largest for the industries that saw the 
largest deceleration in share-weighted IT in the early 2000s. A  

To be added:  Discussion of results from BFOS regression.  



46 

 

Appendix C:  Projecting Labor Productivity in Neoclassical Growth Models  
 
This appendix discusses how to estimate steady-state labor productivity growth from estimates of 

underlying technology growth.  It uses a neoclassical model to derive the implications for capital deepening. 
Section A summarizes the familiar one-sector Solow model.  Section B develops a two-sector Solow model, 
which highlights the key takeaways and intuition for the multi-sector model.  Section C derives the 
(straightforward, but somewhat tedious) extension to the case with consumer durables, land, and inventories.   

A few equations will be useful as preliminaries.  Let hats over a variable represent log changes.  As 

an identity, output growth, Ŷ , is labor-productivity growth plus growth in hours worked, Ĥ : 
 ˆ ˆ ˆ ˆ( )Y Y H H   . 

We focus here on full-employment labor productivity, so we abstract from utilization.  
Growth in total factor productivity, or the Solow residual, is defined as  

 
 ˆ ˆ ˆ(1 )TFP Y K L      (18) 

where  is capital’s share of income and (1- ) is labor’s share.  Defining ˆ ˆL H LQ  , where LQ  is labor 
“quality” (composition) growth38, output per hour growth is: 

  ˆ ˆ ˆ ˆ( ) ( )Y H TFP K L LQ     . (19) 
Growth in output per hour worked reflects TFP growth; the contribution of capital deepening, 

defined as ˆ ˆ( )K L  ; and increases in labor quality.  Economic models suggest mappings between 
fundamentals and the terms in this identity. 

It is sometimes useful to rearrange (19) to yield: 

  ˆ ˆ ˆ ˆ( ) / (1 ) ( )Y H TFP K Y LQ        (20) 
We now show how a one-sector and two-sector model map to these equations.  Then we allow for a 

third sector, and for inventories, and land. 
 

A. The one-sector Solow model 
The Solow model provides a particularly simple model that maps exogenous growth in technological 

progress and the labor force to endogenous capital deepening.   

Consider an aggregate production function 1( )Y K AN  , where labor-augmenting technology A 
grows at rate g, and labor input N (which captures both raw hours H and labor quality LQ—henceforth, I do 
not generally differentiate between the two) grows at rate n.  Expressing all variables in terms of “effective 
labor” AN yields: 

 y k , where /y Y AN  and /k K AN . (21) 

Capital accumulation takes place according to the perpetual-inventory formula, K I K  .  Let s 
is the saving rate, so that sy is investment per effective worker.  In steady-state:  

 ( )sy n g k    (22) 
Because of diminishing returns to capital, the economy converges to a steady state where y and k are 

constant.  At that point, investment per effective worker is just enough to offset the effects of depreciation, 
population growth, and technological change on capital per effective worker.  In steady state, the unscaled 

                                                      

38 In the BLS multifactor productivity dataset, from 1948 through 2012, hours grew 1.10 percent per year, and 
labor quality/composition grew 0.32 percent per year.  Hence, more than a quarter of labor input growth in the MFP 
data reflects labor quality.  As discussed in the text, labor quality, in turn, reflects the mix of hours across workers with 
different levels of education, experience, and so forth.  
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levels of Y and K grow at the same rate g+n; capital-deepening, K/N, grows at rate g.  Labor productivity 
Y/N, i.e., output per unit of labor input, also grows at rate g.  

From the production function, measured TFP growth is related to labor-augmenting technology 
growth by: 

  ˆ ˆ ˆ(1 ) (1 )TFP Y K L g        . 

The model maps directly to equations (19) and (20) above.  In steady state, ˆ ˆK Y , and, as in 
equation(20), output per unit of labor grows at  (1 )g TFP   .  Alternatively, in terms of equation(19), the 
endogenous contribution of capital deepening to labor-productivity growth is 

ˆ ˆ( ) / (1 )K L g TFP        .  Thus, we can write growth in output per hour in a form that 
corresponds closely with the two-sector version below: 

  ˆ / (1 )Y n TFP TFP       (23) 

Growth in output per unit of labor depends on standard TFP growth and induced capital deepening.  
 

B. The two-sector Solow model 
In contrast to the predictions of the one-sector model, the capital-output ratio in the data rises 

steadily after the early 1970s.  The literature on investment specific technical change suggests a 
straightforward fix for this model failure:  Capital-deepening doesn’t depend on overall TFP, but on TFP in 
the investment sector.  A key motivation for this literature is the declining price of business investment 
goods, especially equipment and software, relative to the price of other goods (such as consumption).  The 
most natural interpretation of the declining relative price is faster technical change in producing investment 
goods (especially high-tech equipment).39 

Consider a simple two-sector Solow-type model, where s is the share of nominal output that is 
invested each period.40  One sector produces investment goods that are used to create capital; the other 
produces consumption goods.  The two sectors use the same Cobb-Douglas production function, but with 
potentially different technology levels:    

 

1

1

( )

( )

I I I

C I C

I K A L

C QK A L

 

 







  
 

In the consumption equation, we have implicitly defined labor-augmenting technological change as 
1 /(1 )

C IA Q A  in order to decompose consumption technology into the product of investment technology 

AI and a “consumption specific” piece, 1/(1 )Q  .  Let investment technology AI grow at rate gI and the 
consumption-specific piece Q grow at rate q.  Perfect competition and cost-minimization imply that price 
equals marginal cost.  If the sectors face the same factor prices (and the same rate of indirect business taxes), 
then relative marginal costs depend solely on relative technology: 

 
C

I
I

C

P MC
Q

P MC
   

The sectors also choose to produce with the same capital-labor ratios, implying that 

I I I C I C IK A L K A L K A L  .  We can then write the production functions as: 

                                                      

39 On the growth accounting side, see, for example, Jorgenson (2001) or Oliner and Sichel (2000); see also 
Greenwood, Hercowitz, and Krusell (1997). 

40 This model is a fixed-saving rate version of the two-sector neoclassical growth model in Whelan (2003) and 
is isomorphic to the one in Greenwood, Hercowitz, and Krusell (1997).  Greenwood et al. choose a different 
normalization of the two technology shocks in their model. 
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I I I

I C I

I A L K A L

C QA L K A L








 (24)

 

We can now write the economy’s budget constraint in a simple manner: 

  Inv. Units [ / ] ( )I I C IY I C Q A L L K A L
    , or 

 Inv. Unitsy k , where Inv. Units Inv. Units / Iy Y A L  and / Ik K A L .  (25) 
Output here is expressed in investment units, and “effective labor” is in terms of technology in the 

investment sector.  The economy mechanically invests a share s of nominal investment, which implies that 

investment per effective unit of labor is Inv. Unitsi s y  .41   
Capital accumulation turns out to take the same form as in the one-sector model, except that it is 

only growth in investment technology, gI, that matters.  In particular, in steady state:42   
 Inv. Units ( )Isy n g k    (26) 
The production function (25) and capital-accumulation equation (26) correspond exactly to their 

one-sector counterparts.  Hence, the dynamics of capital in this model reflect technology in the investment 
sector alone.  In steady state, capital per unit of labor, K/L, grows at rate gI, so the contribution of capital 
deepening to labor-productivity growth from equation (19) is 

 ˆ ˆ( ) / (1 )I IK L g TFP         (27) 

Consumption technology in this model is “neutral,” in that it does not affect investment or capital 
accumulation; the same result generally carries over to the Ramsey version of this model, with or without 
variable labor supply.  (Basu, Fernald, Fisher, and Kimball, 2011, discuss the idea of consumption-
technology neutrality in greater detail.) 

In the data, output is not expressed in investment units but as chained units.  Chain GDP growth is 
defined as share-weighted growth in final expenditure categories:  

 ˆˆ ˆ (1 )Y sI s C    

From equation (25), in steady state, when / Ik K A L  is constant, Î grows at rate (n+gI) and Ĉ

grows at rate ( ˆIn g q  ).  Hence, ˆ ˆ(1 )IY n g s q     and the capital-output ratio grows at 

  Since consumption TFP growth is generally lower than 

investment TFP growth, q̂ is negative in the data, and the model predicts that the measured capital-output 
ratio is increasing.  Note that overall TFP growth in chain-units is: 

 

 ˆ ˆ ˆ(1 )

ˆ(1 ) ( ) (1 )

ˆ(1 ) (1 )
I I

I

TFP Y K L

n g s q n g n

g s q

 
 



   
       
   

  (28) 

Hence, using (19) and ??, growth in output per unit of labor can be written: 

  
ˆ ˆ(1 )

(1 )
I

I

TFP
Y n g s q TFP 


     


 (28) 

                                                      

41    Inv. Units ( ) / /I I C C I I Is y P I P I P C I P C P A L I A L         

42  The time-derivative ( ) ( )( )Ik d dt K AL K AL K K n g     .  Substituting the capital accumulation 

equation, / /K K I K   , yields ( )Ik i n g k    .  In steady-state, 0k  .  Substituting for i yields (26). 

ˆ ˆ ˆ ˆ( ) ( (1 ) ) (1 )I IK Y n g n g s q s q         
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This equation takes the same form as (23), except that capital deepening is solely in terms of 
investment-sector TFP growth.   

To take this model to the data, we need to decompose aggregate TFP growth (calculated from 
chained output) into its consumption and investment components.  Given the conditions so far, the following 
two equations hold: 

 
  

   
(1 )I C

C IC I

TFP s TFP s TFP

P P TFP TFP

   

  
 

Prices, investment shares, and aggregate TFP are known.  Hence, these are two equations in two 

unknowns—
ITFP  and CTFP .43   

 
 

C.  Three sector model  
In practice, there are multiple types of capital.  The most important distinction is between fast-

growing equipment and more slowly growing structures.  The argument would naturally extend to more 
types of capital, as well.  Suppose that there’s a Durable sector that produces equipment, a Building sector 
that produces structure, and a Consumption sector: 44 

 

1

1

1

( ) ( )

( ) ( )

( ) ( )

D E

B B B

C C C

D K AL

B Q K AL

C Q K AL

 

 

 













 (29) 

Some durable goods are consumed as durables.  Other durable goods are invested and become 
equipment capital according to the usual perpetual inventory equation.  Similarly, new buildings become 
gross investment in structures.  All three sectors use the same capital aggregate, which uses equipment E and 
structures S.  

 1E Ec c
D B CK E S K K K     (30) 

To solve for steady state growth rates, I follow Whelan (2003).  In steady state, growth of equipment 
and structures must be the same in all uses, and labor growth (at rate n) is the same in all uses.  Let Xg  be 
steady-state growth in variable X.   In steady-state, the perpetual-inventory formula implies that growth of 
investment in durables or buildings is equal to growth in the capital stocks of equipment and structures, 
respectively. 45  That is, E Dg g  and S Bg g .  In growth rates, then: 

 

ˆ( (1 ) ) (1 )( )

ˆ ˆ ˆ( (1 ) ) (1 )( )

ˆ ˆ ˆ( (1 ) ) (1 )( )

D E D E B

B E D E B S D B

C E D E B C D C

g c g c g a n

g c g c g a n q g q

g c g c g a n q g q

 
 
 

     
        

        
 (31) 

                                                      

43 The calculations in the text use the official price deflators from the national accounts.  Gordon (1990) argues 
that many equipment deflators are not sufficiently adjusted for quality improvements over time.  Much of the 
macroeconomic literature since then has used the Gordon deflators.  Of course, as Whelan (2003) points out, much of 
the discussion of biases in the CPI involve service prices, which also miss a lot of quality improvements, making the 
overall effect uncertain.  Hobijn and McKay (2007) also question these hedonic adjustments.  

44 The mnemomics—Durables rather than Equipment, for example—is to clearly differentiate the flow output 
of producing sectors from the accumulated stock of equipment and structures. 

45 In steady-state, /I K g   .  Since the right-hand-side is constant, I must grow at the same rate as K. 
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This is a straightforward system of simultaneous equations that yields: 

 

(1 )
ˆ ˆ( )

1
ˆ

ˆ

E
D B

B D B

C D C

c
g a n q

g g q

g g q





  


 
 

 (32) 

Chain GDP growth is share-weighted growth in final expenditure categories.  If sD is the final-
expenditure-share of durables and sB is the final-expenditure-share of buildings, then: 

 

(1 )

ˆ ˆ(1 )

(1 )
ˆ ˆ ˆ( ) (1 )

1

D D B B D B C

D B B D B C

E
B B D B C

g s g s g s s g

g s q s s q

c
a n s q s s q




    

    

         

 (33) 

Growth in output per unit of labor is then: 

 
(1 )

ˆ ˆ ˆ(1 )
1

E
B B D B C

c
g n a s q s s q



         

 (34) 

Standard TFP growth for each sector is not in labor-augmenting form, so it equals: 

 



 

 

ˆ(1 )

ˆ ˆ ˆ(1 )

ˆ ˆ ˆ(1 )

D

B B D B

C C D C

TFP a

TFP a q TFP q

TFP a q TFP q







 

    

    

 (35) 

Overall TFP growth in this economy is output growth less share-weighted input growth: 

  ( (1 ) ) (1 )E D E BTFP g c g c g n        (36) 

Using the second line of (33) and then substituting from (32), we find: 




ˆ ˆ ˆ[ (1 ) ] ( (1 ) ) (1 )

ˆ ˆ ˆ(1 ) (1 ) (1 ) (1 )

ˆ ˆ ˆ ˆ ˆ(1 )( ) (1 ) (1 ) (1 ) (1 )

ˆ ˆ(1 )

D B B D B C D E B

D E B S B D B C

E B E B B B D B C

D B B D B C

TFP g s q s s q g c q n

g c q s q s s q n

a n c q c q s q s s q n

TFP s q s s q

 
  
   

         
         

            

    

(37) 

Note that aggregate TFP growth is also equal to share-weighted sectoral TFP growth using (35).. 

Define investment TFP growth, ITFP , in terms of user cost (factor share) weights (rather than 

expenditure weights): 

 
  


(1 )

ˆ(1 )

I E D E B

D E B

TFP c TFP c TFP

TFP c q

  

  
 (38) 

We can now write growth in output per unit of labor from (34) in terms of overall and investment-
sector TFP growth: 
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(1 ) (1 )
ˆ ˆ ˆ(1 )

1

(1 ) (1 )
ˆ ˆ ˆ ˆ ˆ(1 ) (1 )

1

(1 )
ˆ ˆ

1

1

B E
B D B C

B E
B B D B C B B

E
B

I

s c
g n a q s s q

s c
a s q s s q a s q

c
TFP a q

TFP TFP

 


  








          
             

         

 


 (39) 

Although the derivation is somewhat involved, this is exactly the same equation as for the two-sector 
model.  

Finally, note that the existence of consumer durables (produced by the durable sector) does not affect 
this calculation.  The weight on durables in final expenditure, sD, already includes all final uses of durable 
output (whether for investment or for durable consumption).  However, the user cost weight of equipment 
includes only the portion used for equipment investment.  

 
D. Adding inventories, consumer durables, and land 

In practice, there are not only multiple types of capital goods, but land.  We can derive more general 
steady-state predictions using the same approach as with the three-sector model above.46   

Specifically, we assume the same production structure as in (29), above:   

 

1

1

1

( ) ( )

( ) ( )

( ) ( )

D E

B B B

C C C

D K AL

B Q K AL

C Q K AL

 

 

 













 (40) 

Now, some durable goods are used for consumption (which raises the weight of durables in final 
output).  We also have inventories in capital.  Inventories are goods (in the data, roughly half are durable and 
half are non-durable), but their relative price movements are less pronounced than for equipment.  For 
generality in derivations, we’ll allow both the durable and the non-durable sectors to produce inventories.   

The capital aggregate now includes inventories, V, and land, T (for Terra), as well as equipment and 
structures:  

  1 1 V
E V TE T

cc c cc c
D C D B CK E S V V T K K K         (41)  

Using (40) and (41), we can proceed in the same way as in the three-sector model: 
ˆ ˆ( (1 ) (1 ) ) (1 )( )

ˆ

ˆ

D E D E V T B V D V C T

B D B

C D C

g c g c c c g c g c g c T a n

g g q

g g q

              
 
 

(42) 

                                                      

46 This analysis takes land as exogenous, though not fixed—it can be pulled from other uses, and in the BLS 
dataset, business use of land grows at about 1-1/2 percent per year.  An alternative modeling strategy would be to tie it 
to the use of structures in some way. That said, the correlation in the BLS dataset between annual changes in structures 
and land is far from perfect (about 0.4). 
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TFP growth in each sector is related to the “fundamental shocks” as shown in equation (35).  TFP 

growth for “reproducible investment,” ITFP , with user cost (factor share) weights, is then: 

 

   



(1 ) (1 )

1 1 1

(1 ) (1 )
ˆ ˆ

1 1

E V E V T V
I D B C

T T T

E V T V
D B C

T T

c c c c c c
TFP TFP TFP TFP

c c c

c c c c
TFP q q

c c

 



     
      

   
  

 

 (43) 

Solving the system of equations in (42) yields 

(1 ) (1 )1 ˆˆ ˆ ˆ( )
1 (1 ) 1 (1 ) 1 (1 ) 1 (1 )

V E V T T
D C B

T T T T

c c c c c
g a n q q T

c c c c

   
   

      
                 

 

 (44) 

Adding and subtracting DTFP , rearranging, and substituting from (43), yields: 

 

 

(1 ) (1 )1 1ˆˆ ˆ1
1 (1 ) 1 (1 ) 1 (1 ) 1 (1 ) 1 (1 )

(1 ) (1 )(1 )
ˆ ˆ

1 (1 ) 1 1 1 (1

V E V T T
D D D C B

T T T T T

E V T VT T
D D B C

T T T

c c c c c
g TFP TFP q q T n

c c c c c

c c c cc c
TFP TFP q q

c c c

    
    

 
 

         
                        

      
              

 

1ˆ
) 1 (1 )

(1 ) 1ˆ
1 (1 ) 1 (1 ) 1 (1 )

T T

T T
D I

T T T

T n
c c

c c
TFP TFP T n

c c c




  
  

   
        

      
                 

 

  (45) 

Growth in reproducible capital per worker can be expressed as: 

 

 R 1ˆ ( ) (1 ) (1 )
1

(1 ) 1
ˆ ˆ

1 1

E V D E V T S V S
T

V E V T
D C B

T T

K n c c g c c c g c g n
c

c c c c
g q q n

c c

 



 
           

      
          

 

If we substitute for gD from (44), define (1 )R
Tc   ,  and rearrange, we find: 

R 1ˆ ˆ( )
1 1 )

T
IR R

c
K n TFP T n


 

           
 (46) 

Overall capital deepening is  

 

   


Rˆ ˆ ˆ(1 ) ( )

ˆ( )
1 1

T T

R
T

IR R

K n c K n c T n

c
TFP T n

  


 

     

          

 (47) 

From (19), output per worker is: 
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ˆ

ˆ( )
1 1

R
T

IR R

g n TFP K n

c
TFP TFP T n




 

   

           

 (48) 

This equation is a natural extension of the one- and two-sector models.  If land’s share, Tc , is zero, 

then this equation exactly matches (28) and (39).  If  
ITFP TFP , then the equation matches (23).  

In terms of comparing model projections, land is a complicating factor.  Some comparisons are 
easier, however, since land affects the predictions equally.  First, the predictions of the one-sector model 

with land are the case where  
ITFP TFP , so the difference in predictions is just: 

       Multi-Sector One Sector

1

R

IR
g n g n TFP TFP




 
      

. 

Second, recall from the second line of equation ?? that, by the definition of chained GDP, that 
ˆ ˆ(1 )D B B D B Cg g s q s s q     .  It follows that components of the capital-output ratio are: 

 
ˆ ˆ(1 )

ˆ ˆ ˆ( ) (1 ) (1 )
D B B D B C

B D B B B D B C

g g s q s s q

g g g q g s q s s q

    
        

. 

Third, from equation ?? for growth in reproducible capital, and from the chain-GDP equation, it 
follows that the growth rate of the reproducible-capital-to-output ratio is: 

 R 1 (1 )ˆ ˆ ˆ
1 1
E V T V

B B C C
T T

c c c c
K g s q s q

c c

      
           

 

Note that the inventory share of non-land capital payments is under 10 percent, whereas sC is about 

75 percent.  Since ˆCq is negative in the data, the second piece tends to push growth in the reproducible-

capital to output ratio positive.  On the other side, the weight on building-specific TFP growth is the 
difference between structure’s weight in reproducible capital (which averages about 45 percent), and 

building’s share of GDP (which averages 5 percent).  Since ˆBq is negative in the data, the building 

component tends to push this piece negative.  
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Table 1 
 Industry Data on Productivity 

 

 

Notes:  Entries are percent change per year, except for value-added weight, which is average percentage 
share from 1988-2011.  

  

Pre-1995
1995-
2000

2000-
2004

2004-
2007

2007-
2011

Chng after 2004 
((4)-(3), i.e., 04-
07 less 00-04)

VA Weight 
(Avg., 1988-

2011)
(1) (2) (3) (4) (5) (6) (7)

(1) Private business 0.83 1.58 2.19 0.63 0.90 -1.55 100.0
(2)   Nat. resources (NR), constr., FIRE (NR-C-F) 0.09 0.71 -0.28 -1.38 0.76 -1.11 26.1
(3)     Natural resources (NR, i.e., ag. and mining) 0.86 2.46 2.54 -3.88 -0.41 -6.42 3.7
(4)     Construction and real estate -0.11 -1.62 -1.16 -2.57 1.26 -1.41 13.0
   (4a)       Construction 0.41 -0.78 -2.16 -6.69 1.62 -4.54 6.2
   (4b)       Real estate and leasing -0.58 -2.40 -0.18 1.70 0.90 1.89 6.7
(5)     Finance and Insurance -0.02 3.27 0.07 0.90 0.64 0.83 9.5

(6) Business (ex NR-C-F) 1.08 1.87 3.10 1.42 0.95 -1.68 73.9
(7)   IT producing 10.49 16.54 11.82 9.03 5.44 -2.79 4.9
   (7a)       Computer and el. product manuf. 18.53 34.64 21.17 18.99 11.02 -2.18 2.2
   (7b)       Publishing (incl. software) 1.53 1.88 8.08 1.39 -0.25 -6.69 1.4
   (7c)       Computer systems design 1.73 0.47 4.61 4.31 3.96 -0.30 1.3
(8)   Non-IT prod. (ex NR-C-F) 0.49 0.77 2.48 0.85 0.60 -1.63 69.0

(9)   IT-intensive (ex NR-C-F AND IT-prod) 0.30 0.45 3.92 0.42 1.11 -3.50 34.3
(10)   Non-IT intensive (ex NR-C-F and IT-prod) 0.66 1.08 1.03 1.32 -0.03 0.29 34.6

(11)   Well measured (ex NR-C-F and IT-prod) 1.19 1.33 3.45 1.59 0.60 -1.86 42.7
(12)     Nondurable goods 0.59 -0.79 4.02 0.23 -0.05 -3.80 8.5
   (12a)       Durables (ex. comp. and semicond.) -0.94 -0.16 2.70 2.78 -0.39 0.08 9.3
   (12b)       Equipment, exc comp. and semicond -1.29 -0.22 2.84 4.39 -0.13 1.55 7.6
   (12c)       non-equip dur. (metal, mineral, wood) 0.52 0.07 2.05 -4.14 -2.32 -6.19 1.7
(13)     Utilities 1.89 -6.75 9.05 -0.57 4.26 -9.61 2.7
(14)     Trade 2.41 5.17 2.96 0.45 -0.19 -2.51 14.7
   (14a)       Wholesale trade 1.99 6.44 5.08 0.43 -1.33 -4.65 6.7
   (14b)       Retail trade 2.74 4.10 1.23 0.44 0.85 -0.79 8.0
(15)     Broadcasting and telecommunications 3.02 -2.41 3.94 10.06 4.30 6.12 2.6
(16)     Transportation and warehousing 2.37 2.08 3.23 2.61 1.99 -0.62 4.1

(17)   Poorly measured (ex NR-C-F  and IT-prod) -0.87 -0.20 1.11 -0.19 0.63 -1.29 26.3
(18)       Other informat. (not publ., broadcast.) -3.77 -11.14 16.27 -1.90 0.33 -18.17 1.2
(19)     Services -0.59 0.30 0.59 0.03 0.75 -0.55 27.2
   (19a)       Professional, technical, and support -0.15 0.51 1.59 -0.14 1.07 -1.73 14.9
   (19b)       Educ, health, and soc assist -2.27 -1.68 0.21 0.11 0.79 -0.10 5.9
   (19c)       Entertainment, accomm., and other 0.04 1.65 -1.44 0.41 -0.12 1.85 6.5

(20)   Finance intensive (ex NR-C-F and IT-prod) 0.53 1.27 0.60 0.02 0.64 -0.58 33.9
(21)   Non-fin. intensive (ex NR-C-F and IT-prod) 0.47 0.31 4.53 1.75 0.56 -2.78 35.0



55 

 

 

Table 2 
Number of states with slowdowns in labor productivity growth 

 

Notes: Table compares growth in GDP per worker before and after 2004 for various industry groupings.  For 
example, column (1) shows the number of states (out of 51, including Washington, D.C.) where average 
productivity growth from 2004-2007 was slower than from 1997-2004.  Industry groupings generally follow 
Table 1.  Columns (2) and (4) show the median slowdown across states, in percentage points at annual rate. 

  

# Slowing 
2004-07 fr. 
1997-04

Median 
04-07 
change

# Slowing 
2004-12 fr 
1997-04

Median 
04-12 
change

(1) (2) (3) (4)

(1) Private business 47 -1.84 48 -1.44
(2)   Nat. res. (NR), constr., FIRE (NR-C-F) 48 -2.72 43 -0.99
(3)      Nat. res. (NR, i.e., ag. and mining) 49 -9.45 49 -6.96
(4)      Construction 46 -4.63 12 1.33
(5)      FIRE 43 -1.64 46 -1.52

(6) Private business (ex NR-C-F) 47 -1.36 50 -1.65
(7)   IT Production 45 -4.94 51 -7.09

(8) Private business (ex NR-C-F and IT prod) 46 -1.11 47 -1.18

(9)   IT intensive 50 -1.84 50 -2.12
(10)   Not-IT intensive 35 -0.56 36 -0.30

(11) Wholesale trade 51 -5.19 51 -5.73
(12) Retail trade 49 -2.02 48 -1.33
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Table 3 
Home Prices and State Labor Productivity Slowdowns 

 

 

Panel A:  ΔLP2004-07 -ΔLP1997-04   

Private 

Excl. 
NR-F-
C+IT 
Prod 

IT 
intensive 

Not IT 
intensive Constr FIRE NR 

  (1) (2) (3) (4) (5) (6) (7) 
constant -2.06 -1.36 -2.66 -0.61 -4.89 -1.66 -14.50 

(0.27) (0.28) (0.33) (0.40) (0.69) (0.53) (2.32) 
  

 

-0.19 0.10 0.36 -0.024 0.08 -0.12 3.16 
(0.15) (0.13) (0.13) (0.19) (0.30) (0.28) (1.06) 

  
R2 0.02 0.01 0.05 0.01 0.01 0.02 0.01 

 

 

Panel B: ΔLP2005-12 -ΔLP1997-05   

Private 

Excl. 
NR-F-
C+IT 
Prod 

IT 
intensive 

Not IT 
intensive Constr FIRE NR 

  (1) (2) (3) (4) (5) (6) (7) 
constant -0.71 -1.00 -1.88 -0.28 3.67 -1.18 -1.95 

(0.22) (0.20) (0.34) (0.32) (0.54) (0.57) (2.31) 
 

  

 

0.60 0.15 0.11 0.13 1.38 0.79 2.63 
(0.13) (0.11) (0.21) (0.20) (0.33) (0.36) (2.02) 

  

R2 0.14 0.04 0.01 0.18 0.15 0.03 0.01 
Notes:  Cross-section, population-weighted, IV regressions on 49 U.S. states, including Washington, DC; 
Hawaii and Alaska are omitted because of missing data.  Dependent variable is the change in average 
productivity for the industry aggregate shown; the top panel looks at 2004-07 from 1997-04; the bottom 
panel 2005-12 from 1997-05.  NR is natural resources, C is construction, F or FIRE is finance, insurance, 
and real estate.  ΔHPI (2001-06) is the change in state home-price indices from 2001Q1 through 2006Q1; 
ΔHPI (2006-09) is change from 2006:Q1-2009:Q2.  ΔHPI is normalized by the cross-sectional standard 
deviation.  The Saiz (2010) housing-supply elasticity instruments for the housing-price change.   

 Indep.  
 var.

Dep 
 var.

 ΔHPI (2001‐06) 

 Indep.  
 var.

Dep 
 var.

 ΔHPI (2006‐09) 
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Table 4  
Historical Predictions of Growth Models 

A. No Land 

 
 
 

B. Adding Land as a Factor of Production 

 
 

Notes: Column (3) shows predictions of one-sector growth model for output per unit of (quality-adjusted) 
labor. In panel A, that prediction depends on column (1) according to  / (1 )TFP   .  Column (4) shows 
predictions of multi-sector growth model.  In top panel, that depends on columns (1) and (2) according to 
  / (1 )ITFP TFP    .See text for how land is incorporated as a factor of production in bottom panel.   The 

predictions are compared with actual output per unit of quality-adjusted labor in Column (5).  The more 
typical output per hour is shown in Column (7).  All calculations take capital’s share α=0.33, which is the 
full-sample average in the Fernald dataset.  Investment TFP averages equipment TFP and structures TFP, 
where the weight on equipment includes the weight of inventories. 
  

Overall 

TFP

Invest. 

TFP

One‐Sector 

Predicted 

Y/L

Multi‐Sector 

Predicted 

Y/L

Actual 

Output per 

Unit Labor  

Memo: 

Labor 

Quality

Memo: 

Actual 

Output/Hour  

(5)+(6)

(1) (2) (3) (4) (5) (6) (7)

Full Sample 1.3 1.8 1.9 2.2 2.0 0.4 2.4

pre‐1973Q2 2.1 2.2 3.2 3.2 2.9 0.3 3.2

1973Q2‐1995Q4 0.4 1.0 0.7 0.9 1.0 0.4 1.4

1995:Q4‐2007:Q4 1.4 2.9 2.1 2.8 2.4 0.4 2.4

Overall 

TFP

Invest. 

TFP

One‐Sector 

Predicted 

Y/L

Multi‐Sector 

Predicted 

Y/L

Actual 

Output per 

Unit Labor  

Memo: 

Labor 

Quality

Memo: 

Actual 

Output/Hour  

(5)+(6)

(1) (2) (3) (4) (5) (6) (7)

Full Sample 1.3 1.8 1.9 2.1 2.0 0.4 2.4
pre‐1973Q2 2.1 2.2 3.1 3.1 2.9 0.3 3.2

1973Q2‐1995Q4 0.4 1.0 0.6 0.8 1.0 0.4 1.4

1995:Q4‐2007:Q4 1.4 2.9 2.0 2.6 2.4 0.4 2.8
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Table 5 
 Projections for labor productivity (output per quality-adjusted hour) 

(Percent per year) 

 

 

Notes:  Each column shows inputs into projecting business-sector labor productivity (rows 6 and 8) as well 
as overall GDP growth (rows 7 and 9).  Rows (1) to (5) show inputs into those projections under different 
assumptions.  AveW is the arithmetic average of projections based on all windows that end in 2013:Q4, with 
starting quarters for the windows that range from 1973:Q2 through 2007:Q4.  The remaining columns show 
selected windows.  Labor productivity projections in rows (6) and (8) assume that capital’s share in 
“reproducible” (non-land) capital as well as the weight on durables and buildings in total “investment” TFP 
is its average from 2001:Q4 through 2007:Q4.  Line (8) assumes that (reproducible) capital’s share remains 
at its estimated 2013:Q4 level.   
.  

Variable AveW
Since 
1973:Q1

Since 
1986:Q4

Since 
1995:Q4

Since 
2003:Q4

(1) Durables TFP 3.21 2.72 3.23 3.89 3.02
(2) Buildings TFP -0.38 -0.45 -0.37 -0.58 -0.63
(3) Consumption TFP 0.35 0.37 0.36 0.50 0.22

(4) Overall TFP 0.94 0.83 0.96 1.19 0.75
(5) Investment TFP 2.19 1.82 2.20 2.61 1.98

 

(6) Labor prod. projection 1.91 1.63 1.93 2.35 1.62

(7) GDP projection 2.14 1.93 2.16 2.48 1.92
 

(8)
Lab. prod. proj.,  
2012 cap. share 2.08 1.78 2.11 2.56 1.78

(9)
GDP proj., 
2012 cap. share 2.27 2.04 2.29 2.64 2.04
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Figure 1  
Productivity growth by sub-period 

 

 

Source:  BLS and Fernald (2012) 
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Figure 2  
Potential output and its pre-crisis trend 

 
 

 

 

Notes:  Figure compares actual real GDP to the CBO’s projections for potential prior to the Great Recession 
(the 2007 line) to CBO’s February 2014 projection, as well as the author’s calculation of potential following 
the CBO methodology but with different assumptions.  “Actual TFP” assumes utilization is constant, so that 
actual TFP measures technology, but uses CBO’s estimated hours gap.  “Fernald” uses estimated utilization 
and labor-quality gaps along with CBO hours gap.  The “2007” CBO estimates are from January 2008, but 
are based on data through 2007:Q3.  Those estimates have been rescaled to 2009$ so that the 2007 value 
equals the level in CBO (2014a).   
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Figure 3  
Labor productivity since 1973 

 

 

Source:  BLS and Fernald (2012) 

.  
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Figure 4 
Evolution of Key Growth-Accounting Variables 

 

 

 
 

 
Notes: Level of utilization is set to zero in 1987:Q4, roughly consistent with the CBO’s estimate that the 
output gap was close to zero at that point.   
 
Source:  Fernald (2012).  
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Figure 5 
Comparing recessions (indexed to peak) 

 

 

Note:  For each plot, quarter 0 is the NBER business-cycle peak which, for the Great Recession, corresponds 
to 2007:Q4.  The shaded regions show the range of previous recessions since 1953.  Local means are 
removed from all growth rates prior to cumulating, using a biweight kernel with bandwidth of 48 quarters.  
Source is Fernald (2012).  
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Figure 6 
Labor productivity revisions 

 

 
  

Source:  BLS Productivity and Cost releases, and Haver.  Output in these series correspond to the 
expenditure side of the national accounts rather than the average of the expenditure and income sides. 
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Figure 7  
Industry TFP Growth by Subgroup 

 

 
Source: BLS and author’s calculations.   
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Figure 8  

Slowdown in TFP Growth and IT Intensity 
 

 
 

Notes:  Figure shows slowdown in TFP growth after 2004 (2000-2004 average relative to 2004-2007 
average, vertical axis) plotted against “bins” based on IT intensity (so bin 1 is the least IT-intensive, bin 6 is 
the most IT-intensive).   
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Figure 9 
TFP by final use sector 

 
 

 
 
 
Source: Fernald (2012), BEA (for relative prices), and author’s calculations. 
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Figure 10 
A. Alternative Utilization Measures 

 
 

 

B. CBO and Fernald estimates of TFP 

 

  

‐25

‐15

‐5

5

15

25

35

1963 1968 1973 1978 1983 1988 1993 1998 2003 2008 2013
Note:  CBO "adjusted" removes trend labor quality  and (small) trend differences in capital growth.  The Fernald measure 
has been rescaled from a business to a non‐farm‐business  basis assuming all utilization variations are non-farm.

Log deviation from 1987, times 100
Non-Farm Business TFP

Percent

Fernald 

Fernald 
Util-Adj

CBO 
Adjusted



69 

 

 

Figure 11 
Output Gaps under Different Assumptions 

 

 

 

Notes:  “Actual TFP” uses the CBO’s (2014a) hours gap but sets the utilization gap to zero. “Fernald” uses 
the utilization gap estimated in Fernald (2012).  
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