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Abstract

A sender chooses ex ante how her information will be disclosed to a privately in-

formed receiver who then takes one of two actions. The sender wishes to maximize

the probability that the receiver takes the desired action. The sender faces an ex

ante quantity-quality tradeoff: sending positive messages more often (in terms of the

sender’s information) makes it less likely that the receiver will take the desired action

(in terms of the receiver’s information). Interestingly, the sender’s and receiver’s wel-

fare is not monotonic in the precision of the receiver’s private information: the sender

may find it easier to influence a more informed receiver, and the receiver may suffer

from having more precise private information. Necessary and sufficient conditions are

derived for full and no information revelation to be optimal.
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1 Introduction

A decision maker, the receiver, often relies on information obtained from an interested party,

the sender. In contrast to most of the literature on communication, I allow the receiver to

obtain information not only from the sender but also from other sources. The main goal is to

understand economic aspects of optimal information disclosure from a sender to a privately

informed receiver and provide a linear programming approach to this problem.

In my model, the receiver decides whether to act or not to act. The sender’s utility

depends only on the action taken by the receiver, and she prefers the receiver to act. The

receiver’s utility depends both on his action and on information. The receiver takes an action

that maximizes his expected utility, given his private information and information disclosed

by the sender. Before observing her private information, the sender can commit to how

her private information will be disclosed to the receiver. Formally, the sender can choose

any (stochastic) mapping from her information to messages, which I call a mechanism. The

sender chooses the mechanism that maximizes the ex ante probability that the receiver will

act. I impose a single-crossing assumption on the receiver’s preferences and information

requiring that receiver’s types can be ordered according to their willingness to act.

For example, consider a school that chooses a disclosure policy for a student in order to

persuade a potential employer to hire him. The school has a lot of freedom in choosing which

part of available information about the student will appear on his transcript. Moreover, the

school commits to its disclosure policy before it learns anything about the student. The

employer observes the student’s transcript but also obtains private information, for example,

from conducting an employment interview with the student and competing candidates. In

addition, the school uses the same disclosure policy for all students, who apply to different

employers. This also contributes to the receiver’s private information in terms of my model.

Since the receiver has private information, he acts or does not act depending not only

on a message received from the sender but also on his private information. Thus, from

the sender’s perspective, each message generates a probability distribution over receiver’s

actions. Therefore, when the sender chooses a mechanism, she faces an important quantity-

quality tradeoff of messages that she will later send. On the one hand, the sender wants

to send the positive message, corresponding to higher types of the sender, more often. On

the other hand, the sender wants the positive message to persuade a larger set of receiver’s

types. The optimal mechanism balances these two conflicting objectives. For example, when

the school chooses lower standards for getting good grades, more students get good-looking

transcripts, but employers rationally account for this and each student with a good-looking
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transcript will find it harder to get a job. This ex ante tradeoff does not appear in cheap

talk and verifiable message games where the sender chooses a report at the interim stage

when she already has her private information.

Interestingly, under the optimal mechanism, the sender’s and receiver’s expected utilities

are not monotonic in the precision of the receiver’s private information. First, as the receiver

becomes more informed, his expected utility may decrease despite the fact that he is the only

player who takes an action that directly affects his utility. This happens because the optimal

mechanism depends on the structure of the receiver’s private information, and the sender

may prefer to disclose significantly less information if the receiver’s information is more

precise.1 Second, it may be easier for the sender to influence a more informed receiver. This

happens because the sender may optimally choose to target only the receiver with favorable

private information. In this case, it becomes easier for the sender to persuade the receiver

with more precise favorable information, so the sender may be able to persuade the receiver

with a higher total probability.

The sender’s problem of finding an optimal mechanism reduces to a linear program.

Using duality theory, I show how to obtain primitive necessary and sufficient conditions for

a candidate mechanism to be optimal. This is the main technical contribution of the paper,

which can be applied to other models of information disclosure because the sender’s and

receiver’s expected utilities are always linear in probabilities that constitute a mechanism.

In reality, schools choose various disclosure policies and duality theory allows us to find

primitive conditions on the environment that justify each choice. At the one extreme, schools

report all grades and class rank on transcripts. The full revelation mechanism is optimal

if and only if the sender prefers to reveal any two of her types than to pool them. At the

other extreme, schools release no transcripts. The no revelation mechanism is optimal if

and only if the sender prefers to pool any three of her types than to pool two of them and

reveal the third one. Under an additional assumption that the receiver’s utility is linear in

the sender’s and receiver’s types that are independent of each other, I show that the shape

of the optimal mechanism is determined by the convexity properties of the distribution of

the receiver’s type and by the expectation of the sender’s type.

The most related literature is the one in which the sender can commit to an information

disclosure mechanism. Kamenica and Gentzkow (2011) study a much more general model

1Continuing the school-employer application, Arvey and Campion (1982) summarize research on employ-

ment interviews and report low reliability for interview-based assessments, which may actually be beneficial

for employers because it motivates schools to design more informative disclosure policies as shown in my

model.
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but focus on the case of an uninformed receiver. They also show that some results generalize

to the case of a privately informed receiver. In my companion paper Kolotilin (2014), I

derive monotone comparative statics results with respect to the probability distribution of

information for the case of an uninformed receiver. In contrast, in this paper I focus on the

case in which the receiver does have private information, where both the results and analytical

techniques are very different. Similar to this paper, Rayo and Segal (2010) assume that the

receiver has a binary action choice, but they allow the sender’s utility to depend not only

on the action but also on information. To make the analysis tractable, they assume that the

receiver’s type is uniformly distributed. This assumption would make my model trivial in

that the sender’s expected utility would be the same under any mechanism, as follows from

part 1 of Theorem 1 below. Ostrovsky and Schwarz (2010) study information disclosure in

matching markets with private information. The main conceptual difference is that they

study equilibrium rather than optimal information disclosure. Finally, Au (2012), Horner

and Skrzypacz (2012), and Ely et al. (2014) study optimal dynamic information disclosure.

A few papers study cheap talk with a privately informed receiver. In the cheap talk version

of my model, the unique equilibrium outcome involves no information revelation because

the sender’s utility depends only on the receiver’s action and the information structure

satisfies the single-crossing assumption. If either of these two assumptions fails, a fully

revealing equilibrium may exist (Seidmann (1990), Watson (1996), and Olszewski (2004)).

Chen (2009), de Barreda (2013), and Lai (2013) study cheap talk with an informed receiver

under standard Crawford and Sobel (1982)’s assumptions. They all show that the receiver’s

expected utility may be not monotonic in the precision of his private information. The

mechanics of these results, however, is different from that of my non-monotone comparative

statics results: In cheap talk games with an uninformed receiver, the sender’s and receiver’s

expected utilities are non-monotonic even in the precision of the sender’s information (Green

and Stokey (2007) and Ivanov (2010)) and in the precision of public information (Chen

(2012)); but in optimal information disclosure games, the sender’s and receiver’s expected

utilities are monotonic both in the precision of the sender’s information and in the precision of

public information (Blackwell (1953), Bergemann and Morris (2013), and Kolotilin (2014)).

Less related to this paper, Glazer and Rubinstein (2004), Glazer and Rubinstein (2006),

and Sher (2014) study optimal persuasion mechanisms chosen by the receiver, rather than

the sender, when certain exogenous constraints are imposed on the set of feasible reports of

the sender conditional on the state. Similar to this paper, they use a linear programming

approach and duality theory to characterize optimal mechanisms.
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The rest of the paper is organized as follows. Section 2 develops a general model. Sec-

tion 3 presents two examples that illustrate the quantity-quality tradeoff of the sender and

non-monotone comparative statics. Section 4 analyzes the model under a fairly general infor-

mation structure of the sender and receiver. This section partially characterizes the optimal

mechanism and derives primitive necessary and sufficient conditions for optimality of the

full revelation and no revelation mechanisms. Section 5 concludes. All proofs and technical

details are relegated to the appendices.

2 Model

Consider a communication game between a female sender and a male receiver. The receiver

takes a binary action: to act (a = 1) or not to act (a = 0). The sender’s utility depends

only on a, but the receiver’s utility depends both on a and on (r, s) where components r and

s denote the receiver’s and sender’s types, respectively. Specifically, the sender’s utility is a,

and the receiver’s utility is au (r, s) where u is continuous in s and continuously differentiable

in r. (The assumption that the sender’s preferences are state independent is not crucial and

is relaxed in Section 4.) Before s is realized, the sender can commit to a mechanism that

sends a message m to the receiver as a (stochastic) function of her type s; specifically, the

sender can choose any conditional distribution φ (m|s) of m given s. With a slight abuse

of notation, the joint distribution of (m, s) is denoted by φ (m, s). (Appendix B discusses

modelling of information disclosure mechanisms in more detail.)

The set M of messages is R, the set R of receiver’s types is [r, r] ⊂ R, and the set S

of sender’s types is [s, s] ⊂ R. The pair (r, s) has some joint distribution. Except for the

binary-signal examples of Section 3 and Appendix D, I assume that for this joint distribution,

the marginal distribution F (s) of s and the conditional distribution G (r|s) of r given s

admit strictly positive densities f (s) and g (r|s) that are continuous in s and continuously

differentiable in r.

The timing of the communication game is as follows:

1. The sender publicly chooses a mechanism φ (m|s).

2. A triple (m, r, s) is drawn according to φ, F , and G.

3. The receiver observes (m, r) and takes an action a.

4. Utilities of the sender and receiver are realized.
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The solution concept used is Perfect Bayesian Equilibrium. At the third stage, the re-

ceiver forms a belief about s and acts if and only if the conditional expectation Eφ [u (r, s) |m, r]
of u given (m, r) is at least 0. At the first stage, the sender chooses an optimal mechanism

that maximizes her expected utility, the probability that the receiver acts. The main as-

sumption, formally imposed later, is the single-crossing assumption: each message m induces

types r ≥ r∗ (m) to act, for some function r∗.

Hereafter, use the following definitions and conventions. All notions are in the weak sense,

unless stated otherwise. For example, increasing means non-decreasing and higher means

not lower. Two mechanisms are equivalent if they result in the same probability that the

receiver acts. One mechanism dominates another mechanism if the former results in a higher

probability that the receiver acts than the latter. The full revelation mechanism (denoted by

φfull) is a mechanism that sends a different message for each s. The no revelation mechanism

(denoted by φno) is a mechanism that sends the same message regardless of s.

3 Examples

In this section, I discuss two complementary examples. In the first example, the sender’s and

receiver’s types are binary and the receiver’s type is a noisy signal about the state, known

by the sender. In the second example, the sender’s and receiver’s types are continuous and

the receiver’s type is independent of the sender’s type. For these examples, I derive the

optimal mechanism and illustrate the sender’s quantity-quality tradeoff. Further, I show

that the sender’s and receiver’s expected utilities are non-monotonic in information. Finally,

I discuss what determines the form of an optimal mechanism and how much of information

is optimally disclosed.

3.1 Binary Example

In this example, the sender is perfectly informed, but the receiver is partially informed.

That is, the sender knows the receiver’s utility from acting, but the receiver only gets a

signal about his utility. Specifically, the receiver’s utility from acting is equal to the sender’s

type s that takes two values: s = 1 with probability 1/5 and s = −1 with probability 4/5.

The receiver’s type (equivalently signal) r also takes two values r = 1 and r = −1 according

to the following conditional probabilities:

Pr (r = 1|s = 1) = Pr (r = −1|s = −1) = p.
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The parameter p captures the precision of the receiver’s private signal. Without loss of

generality, assume that p ∈ [1/2, 1]. For a given mechanism, the receiver r = 1 assigns a

higher probability that s is 1, than the receiver r = −1. Moreover, the difference in their

assessments of the probability that s is 1 increases with p. Thus, p can be alternatively viewed

as the measure of polarization between the optimistic receiver (r = 1) and the pessimistic

receiver (r = −1).

In the school-employer application, s = 1 and s = −1 correspond to good and bad

students, p to the quality of an employment interview, r = 1 and r = −1 to good and bad

interview outcomes, a to the hiring decision, and φ to the grading system that describes how

students’ performance is measured.

A message m under a mechanism φ generates a posterior probability Prφ (s|m) of s given

m for each value s. Upon receiving m, the receiver r acts if

Pr (r|s = 1) Pr φ (s = 1|m)− Pr (r|s = −1) Pr φ (s = −1|m)

= Pr (r|s = 1) Pr φ (s = 1|m)− Pr (r|s = −1) (1− Pr φ (s = 1|m)) ≥ 0.

Thus, the optimistic receiver acts if Prφ (s = 1|m) ≥ 1− p, and the pessimistic receiver acts

if Prφ (s = 1|m) ≥ p. Clearly, if m induces the pessimistic receiver to act, it also induces

the optimistic receiver to act. Thus, using a similar argument to the revelation principle, we

can restrict attention to mechanisms with three messages: (i) m0 that induces the receiver

not to act regardless of his signal (Prφ (s = 1|m0) ∈ [0, 1− p)), (ii) m1 that induces only the

optimistic receiver to act (Prφ (s = 1|m1) ∈ [1− p, p)), and (iii) m2 that induces the receiver

to act regardless of his signal (Prφ (s = 1|m2) ∈ [p, 1]). Because the sender’s expected utility

is equal to the probability that the receiver acts, she would strictly prefer to send m2 over

m1 and m1 over m0 if there were no constraints on how often she can send various messages.

The prior distribution of s, however, imposes a constraint on how often the sender can

send various messages:

2∑
i=0

Pr φ (s = 1|mi) Pr φ (mi) = Pr (s = 1) =
1

5
, (1)

where Pr φ (mi) denotes the probability that mi is sent under a mechanism φ. Constraint (1)

implies that to maximize the probability of the messagesm2 andm1, the sender should choose

a mechanism that satisfies: Prφ (s = 1|m0) = 0, Prφ (s = 1|m1) = 1−p, and Pr φ (s = 1|m2) =

p.2 That is, m0 gives the maximal possible evidence against acting; m1 gives the minimal

2Formally, the optimal mechanism is derived in Appendix D for a setting that nests this example.
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possible evidence to make the optimistic receiver act; and m2 gives the minimal possible

evidence to make the pessimistic receiver act. These observations imply that the sender’s

expected utility simplifies to:3

2p (1− p) Pr (m1) + Pr (m2) , (2)

and constraint (1) simplifies to:

(1− p) Pr (m1) + pPr (m2) =
1

5
. (3)

The sender’s problem of finding the optimal mechanism can be viewed as a problem of

maximizing the linear utility function (2) over probabilities Pr (m0), Pr (m1), and Pr (m2)

subject to the budget constraint (3). That is, the marginal utilities of the messages m0, m1,

and m2 are 0, 2p (1− p), and 1; and the prices of these messages are 0, 1− p, and p. Thus,

the sender faces a quantity-quality tradeoff: to send m1 with a high probability and persuade

only the optimistic receiver or to send m2 with a small probability and persuade both the

pessimistic and optimistic receivers. This tradeoff is resolved by a choice of a mechanism that

sends messages with the highest marginal utility-price ratio. Before discussing the optimal

mechanism in a greater detail, I highlight non-monotone comparative statics.

Figure 1 shows the sender’s and receiver’s expected utilities under the optimal mechanism.

Naive intuition may suggest that (i) the sender’s expected utility should decrease with p

because it is harder to influence a better informed receiver and (ii) the receiver’s expected

utility should increase with p because a better informed receiver takes a more appropriate

action. This naive intuition, however, does not take into account that the optimal mechanism

changes with p, and the sender may choose to disclose significantly less information if the

receiver is more informed. This effect may overturn the results. In fact, the sender’s expected

utility strictly increases with p for p ∈
(
1/
√

2, 4/5
)
, and the receiver’s expected utility jumps

down to zero as p exceeds 1/
√

2.4 Thus, a more informative employment interview may help

3Equation (2) is obtained using the fact that m2 induces the receiver to act with probability 1, m1 induces

the receiver to act with probability

Pr (r = 1|s = 1) Pr φ (s = 1|m1) + Pr (r = 1|s = −1) Pr φ (s = −1|m1) = p (1− p) + (1− p) p,

and m0 induces the receiver to act with probability 0.
4Consistent with the naive intuition, even in a general model, the sender’s expected utility decreases and

the receiver’s expected utility increases with the precision of the receiver’s information if this precision is

either low or high. Indeed, the sender is best off and the receiver is worst off when the receiver is uniformed;

and the sender is worst off and the receiver is best off when the receiver is perfectly informed.
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Figure 1: The sender’s and receiver’s expected utilities in the binary example.

the school in influencing the employer’s decision and may hurt the employer in making him

hire worse students on average.

I stress that these non-monotone comparative statics results with respect to the precision

of information arise only when the receiver is privately informed. If the receiver’s signal

was public, then the sender’s and receiver’s expected utilities would be monotonic both in

the precision of the sender’s private information and in the precision of public information

(Kolotilin (2014)).

Figure 1 also sheds light on the extent to which information disclosure can affect the

receiver’s action and on the informativeness of the optimal mechanism. As the left panel

shows, for a wide range of p, the probability that the receiver acts is considerably higher

under the optimal mechanism than under the two benchmark mechanisms: the full revelation

and no revelation mechanisms. As the right panel shows, from the receiver’s perspective,

the optimal mechanism is maximally uninformative if p = 1/2 or p ∈
[
1/
√

2, 1
]
, and its

informativeness gradually increases with p for p ∈
(
1/2, 1/

√
2
)
. I now explain the three

forms that the optimal mechanism can take as p increases from 1/2 to 1.

First, if the receiver’s signal is imprecise in that p is close to 1/2, then it is almost as cheap

to persuade the pessimistic receiver to act as it is to persuade the optimistic receiver to act,

because the prices p and 1 − p are close. Thus, the sender prefers to target the pessimistic

receiver, so the optimal mechanism sends the messages m2 and m0. As p increases, it

becomes harder to persuade the pessimistic receiver to act and, thus, sending m2 becomes

more expensive. As a result, the sender’s expected utility decreases with p. Since the optimal

mechanism gives no rent to the pessimistic receiver, the optimistic receiver gets a strictly
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positive rent, which increases with p.

Second, as p exceeds 1/
√

2 (but falls behind 4/5), the polarization between the optimistic

and pessimistic receivers becomes so high that it becomes much more expensive to persuade

the pessimistic receiver to act than to persuade the optimistic receiver to act. Thus, the

sender prefers to target the optimistic receiver, so the optimal mechanism sends the messages

m1 and m0. In other words, the sender switches from the more expensive and more persuasive

message m2 to the less expensive and less persuasive message m1. As p increases, the price

1−p of sending m1 decreases and it becomes easier to persuade the optimistic receiver to act.

As a result, the sender’s expected utility increases with p. The receiver’s expected utility

jumps down to 0 as p exceeds 1/
√

2, and it stays at 0 as p increases, because the optimal

mechanism makes the receiver indifferent to act whenever he acts.

Third, as p exceeds 4/5, the receiver’s signal becomes so precise that the sender can per-

suade the optimistic receiver to act by disclosing no information. Thus, the sender prefers

to target the optimistic receiver with certainty and the pessimistic receiver with some prob-

ability, so the optimal mechanism sends m1 and m2. As p increases further, the sender can

persuade the pessimistic receiver to act more often, so the optimal mechanism sends m2 with

a higher probability. But the probability of the receiver being optimistic decreases, so m1

induces the receiver to act with a lower probability. In this example, the latter effect domi-

nates the former, so the sender’s expected utility decreases with p. The receiver’s expected

utility increases with p because the optimal mechanism gives no rent to the receiver, so a

better informed receiver takes a more appropriate action.

Continuing the school-employer application, when the employment interview is not too

informative (p < 4/5), the optimal grading policy exhibits grade inflation: a good transcript

is given to some good and some bad students whereas a bad transcript is given only to bad

students. Moreover, when the employment interview is not very informative (p < 1/
√

2), the

optimal policy has low grade inflation such that a good transcript impresses all employers; but

when the employment interview is moderately informative (1/
√

2 < p < 4/5), the optimal

policy has high grade inflation such that a good trascript persuades only employers with a

positive interview experience. Finally, when the employment interview is too informative

(p > 4/5), the school optimally uses a noisy grading policy: a good student has a higher

chance of getting a good trascript than a bad student does, but there is a chance that a good

student gets a bad transcript and a bad student gets a good transcript.

The sender’s quantity-quality tradeoff illustrated in this example carries on to a general

version of the model. If the sender’s signal is binary, this tradeoff is resolved by the choice of
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messages with the highest marginal utility-price ratio (Section 4 and Appendix D), otherwise

the tradeoff becomes more intricate because the budget constraint becomes multidimensional

(Sections 3.2 and 4).

3.2 Continuous Example

In this example, the receiver’s utility is additive in sender’s and receiver’s types that are

continuous and independent of each other. Specifically, u(r, s) = s − r where s and r are

independently distributed with distributions F and G. The supports are such that the

receiver r always acts (r < s) and the receiver r never acts (r > s). For example, s may

correspond to the student’s ability privately known by the school, and r to the opportunity

cost from hiring, privately known by the employer. A message m under a mechanism φ

induces the receiver to act if and only if r ≤ Eφ [s|m]; so without affecting the sender’s

expected utility we can merge all messages that have the same Eφ [s|m] into one message

m̃ = Eφ [s|m]. Therefore, without loss of generality, we can focus on mechanisms φ for which

each message m induces the receiver to act if and only if r ≤ m.

Proposition 1 simplifies the sender’s problem of finding an optimal mechanism to a prob-

lem of finding an optimal distribution of messages.

Proposition 1 Let H denote the marginal distribution of m under the optimal mechanism.

Then H
maximizes

∫ r
r
G (m) dH (m)

subject to F is a mean-preserving spread of H.
(4)

The objective function in (4) corresponds to the probability that the receiver acts; the

constraint in (4) describes the set of feasible distributions of m. The intuition for the

constraint is as follows. If F is a mean-preserving spread of H, then F is more informative

about the underlying (hypothetical) state than H (Blackwell (1953)). Since the sender has

full commitment, she can garble her information to achieve any less informative distribution

H than her prior F . If she then fully reveals this garbled information to the receiver, then the

distribution of m will be H. Conversely, because the sender can only garble her information,

F must be a mean-preserving spread of H for any feasible mechanism.

This example is more general than it may seem. First, the example includes the case

in which u (r, s) = b (r) c (s) + d (r) for some functions b, c, and d where b is positive

and all functions satisfy certain regularity conditions. Indeed, the receiver acts whenever

−d (r) /b (r) ≤ Eφ [c (s) |m], so redefining the receiver’s type as −d (r) /b (r) and the sender’s

type as c (s) gives the required result.
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Second, the example includes the special case of Kamenica and Gentzkow (2011) in

which “the sender’s payoff depends only on the expected state”. Specifically, suppose that

the receiver does not have private information and the set of receiver’s actions is R rather

than {0, 1}. Let the receiver’s optimal action r∗ given m depend only on Eφ [s|m], rather

than on the entire distribution of s given m; and let the sender’s utility uS depend only on

the receiver’s action. Again, we can focus on mechanisms for which m = Eφ [s|m]; so the

sender’s expected utility under m is G (m) ≡ uS (r∗ (m)).5 Kamenica and Gentzkow (2011)

note that all feasilbe mechanisms satisfy E [Eφ [s|m]] = E [s] but not all mechanisms that

satisfy the equality are feasible; Proposition 1 gives a complete characterization of the set of

feasible mechansims: a mechanism φ is feasible if and only if the prior distribution of s is a

mean-preserving spread of the distribution of Eφ [s|m].

Third, the example includes the setting of Ostrovsky and Schwarz (2010) who study

information disclosure in matching markets. Specifically, a student with ability s receives

a transcript m according to a distribution φ (m|s) and then he is matched to an employer

of quality G (Eφ [s|m]). The main difference is that in Ostrovsky and Schwarz (2010), the

function G is endogenous rather than exogenous.

Proposition 1 suggests that the sender faces a similar tradeoff to that of the binary

example. The sender’s marginal utility from sending m is G (m). But besides requiring the

expectation of m and s to be the same, the budget constraint also requires the distribution

of m to be less variable than the prior distribution of s. A corollary of this proposition is

that the curvature of G determines the form of the optimal mechanism.

Corollary 1 In this example:

1. All mechanisms are equivalent if and only if G is linear on S.

2. φfull is optimal if and only if G is convex on S.

3. φno is optimal if and only if the concave closure G of G on S is equal to G at rno ≡ EF [s]

in that

G (r)−G (rno) ≤ g (rno) (r − rno) for all r ∈ S.6 (5)

All three parts of Corollary 1 are straightforward because the optimal mechanism is the

solution to problem (4). First, if G is linear, then the sender is risk neutral, so all mechanisms

5G, being a distribution function, is increasing, but all results of this section continue to hold if G is

nonmonotonic; only convexity properties of G matter.
6Intuitively, a concave closure of a function (defined on a convex set) is the smallest concave function

that is everywhere greater than the original function (see Figure 2).
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are equivalent. Second, if G is convex, then the sender is risk loving, so the full revelation

mechanism is optimal. Third, if G is concave, then the sender is risk averse, so the no

revelation mechanism is optimal.7

Note that the optimal mechanism may be very sensitive to primitives of the model. For

example, if G is almost uniform but strictly convex, then φfull is uniquely optimal. However,

if G is almost uniform but concave, then φno is uniquely optimal. This observation gives

an explanation for why many similar-looking schools may choose very different disclosure

policies regarding what information (if any) to report on transcripts (grading scale, class

rank, distinctions).

I now discuss comparative statics in this example. By Proposition 1, as F becomes more

informative in the mean-preserving spread sense, the set of feasible mechanisms expands, so

the sender’s expected utility increases.8 That is, an additional information about a student

can only help a school if the school can commit to a disclosure policy in advance. More-

over, Proposition 1 implies that as the sender’s and receiver’s priors become more favorable

for acting (F increases and G decreases in the first-order stochastic dominance sense), the

sender’s expected utility increases. That is, a school should find it easier to place its students

if their ability is higher and if employment opportunities are abundant. These monotone

comparative statics results are similar in spirit to the results in Kolotilin (2014).

However, similarly to the binary example, the sender’s and receiver’s expected utilities

are not monotonic in the precision of the receiver’s private information. In particular, the

sender’s expected utility may decrease as the receiver’s private information G becomes more

precise in the mean-preserving spread sense. To see this, consider F that puts probability one

on some s and note that the sender’s expected utility G (s) changes ambiguously. Moreover,

the receiver’s expected utility may decrease with the precision of his private information. To

see this, suppose that G1 is almost uniform but convex, and G2 is concave and slightly more

informative than G1. By Corollary 1, φfull is optimal under G1 and φno is optimal under

G2. Thus, from the receiver’s perspective a small gain from having more precise private

information under G2 is outweighed by a large loss from getting less precise information

from the sender.

Finally, I discuss possible forms of an optimal mechanism under the assumption that

7Corollary 1 can alternatively be derived using tools developed in Kamenica and Gentzkow (2011). More-

over, Corollary 1 is similar to the results obtained in Section VIII B of Rayo and Segal (2010).
8In the two extreme cases, if F were to put probability one on some s, then the only feasible H would

put probability one on m = s, but if F were to put strictly positive probabilities only on s and s, then any

H supported on S with EH [m] = EF [s] would be feasible.
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Figure 2: The optimal mechanism in the continuous example.

the distribution G is either unimodal or bimodal (see Appendix C for formal results and

corresponding proofs based on duality theory introduced in Secion 4). A distribution G is

unimodal if its density g has a unique local (and therefore global) maximum at rm ∈ R; the

maximum point rm is called a mode. If the mode rm /∈ S, then G is either convex or concave

on S; so either φfull or φno is optimal by Corollary 1. Similarly, if rm ∈ S and rno ≥ rt (see

Figure 2 (a)); then G(rno) = G (rno); so φno is still optimal.

Consider the remaining case of unimodal G in which rm ∈ S and rno < rt. If F were to

put strictly positive probabilities only on s and s, then the optimal mechanism would send

two messages s and rt and the receiver would act with probability G (rno). This mechanism,

however, is not feasible when F admits a density because s is equal to s with probability 0.

Thus, the optimal mechanism reveals s for s < sc and sends the same message for all s > sc

where the cutoff sc is such that the sender is indifferent between revealing sc or pooling it

with s > sc.
9

I now interpret these results with the school-employer application. Suppose that the

distribution of the employer’s opportunity cost of hiring is unimodal. If the students’ ability is

9In the extreme case when G is a step function with G (r) = 0 for r < rt and G (r) = 1 for r ≥ rt,

the optimal mechanism reveals s for s < sc and sends the same message rt for s > sc where sc solves

E [s|s ≥ sc] = rt. This is the case of uninformed receiver (r = rt with probability 1) studied in Kolotilin

(2014).
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high or the employment opportunities are abundant, then the school should optimally reveal

no information about its students, in which case most students will find a job. Otherwise the

school should fully separate bad students but pool good and very good students together.

Under this disclosure policy, bad students will find it progressively harder to find a job, but

all good students will find it equally easy to find a job. As the students’ ability deteriorates

or the employment opportunities become scarce, the school should optimally reveal more

information about its students by using stricter grading policy (smaller set of good students

should be pooled together).

The distribution G is bimodal if its density g has two local maxima at rm, r
′
m ∈ R. If the

modes rm, r
′
m /∈ S, then g has a unique minimum on S and the analysis is symmetric to that

in the case of a unimodal distribution. For example, in the most interesting case (the only

case with partial information disclosure) of rm < s < rt < rno < s < r′m (see Figure 2 (b)),

the optimal mechanism reveals s for s > sc and sends the same message for all s < sc.

Finally, consider the case in which the modes rm and r′m satisfy rm < s < r′m < s

(see Figure 2 (c)).10 If rno /∈ (rt, r
′
t), then φno is optimal by Corollary 1. If rno ∈ (rt, r

′
t),

then the optimal mechanism takes one of the three forms depending on the distribution F .

Informally, the three cases correspond to the degree of the “variability” of s under F . Recall

that Proposition 1 implies that the sender’s expected utility increases as the distribution F of

s becomes more spread out. First, if the variability of s is high, then the optimal mechanism

sends the two messages rt and r′t and the receiver acts with probability G (rno) (the sender’s

types for which each of the two messages are sent are not uniquely determined). Second,

if the variability of s is medium, then the optimal mechanism sends a message rc > rt for

s < sc and a message r′c < r′t for s > sc, where the cutoff sc is such that the sender is

indifferent between pooling sc with s < sc or with s > sc. Third (this case is not illustrated

on Figure 2 (c)), if the variability of s is low, then the optimal mechanism sends a message

rf > rt for s < sf , reveals s for s ∈
(
sf , s

′
f

)
, and sends a message r′f < r′t for s > s′f , where

the cutoffs sf and s′f are such that the sender is indifferent between pooling and revealing.11

10It is straightforward to characterize the optimal mechanism under other cases of bimodal and multimodal

distributions G, but it involves consideration of many cases and does not generate novel insights.
11A related work of Ginzburg (2013) studies the same continuous example as in this section. He finds that

in the optimal mechanism, the types of the sender that are not completely revealed are pooled into just one

message. Unfortunately, this result is incorrect as this paragraph shows: low types of the sender are pooled

into one message and high types of the sender are pooled into another message.
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4 General Case

This section presents a linear programming approach to general problems of optimal in-

formation disclosure. The key assumption maintained throughout this section is that the

receiver with a higher type is always more willing to act.12 If the sender’s type is binary,

then, similarly to the binary example of Section 3.1, the optimal mechanism maximizes a

linear utility function subject to a linear budget constraint. However, if the sender’s type

is not binary, then the budget constraint becomes multidimensional and it becomes hard to

solve for an optimal mechanism directly. Nevertheless, an optimal mechanism always solves

a linear program; so duality theory applies. Duality theory gives a relatively simple solution

to the reverse problem of finding necessary and sufficient conditions on the primitives of the

model that ensure that a candidate mechanism is optimal. That is, we can derive conditions

of an environment under which an actual disclosure policy chosen by a given school is op-

timal.13 In the continuous example of Section 3.2, I use duality theory to find an optimal

mechanism by a guess and verify method. In Section 4.2, I use duality theory to charac-

terize general necessary and sufficient conditions for optimality of the two most important

mechanisms: the full revelation and no revelation mechanisms.

4.1 Characterization of Optimal Mechanism

Section 4 maintains all assumptions imposed in Section 2 except for the state-independent

preferences for the sender. Instead, I allow the sender’s utility from acting to be any con-

tinuous function w of r and s (the utility from not acting is still normalized to 0). Under

mild regularity conditions, all results of this section could be extended to the case of multi-

dimensional types of the sender in that S can be a closed cube in Rn. But, for simplicity, I

maintain the assumption that S = [s, s]. The key assumption imposed in this section is the

following single-crossing assumption:

Assumption 1 (single-crossing) The function vH (r) ≡
∫
S
ũ (r, s) dH (s) crosses the hor-

izontal axis once and from below for all distributions H on S where ũ (r, s) ≡ u (r, s) g (r|s).

Moreover, the function r∗ (s) is continuous and strictly decreasing in s where r∗ (s) is the

unique r that solves u (r, s) = 0.

12In the binary example, the optimistic receiver is more willing to act. In the continuous example, the

receiver with a lower opportunity cost (a higher type −r) is more willing to act.
13Since all mechanisms are equivalent in the continuous example from Section 3.2 if G is linear, we know

that every disclosure policy is optimal under certain conditions.
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The single-crossing assumption allows us to restrict attention to mechanisms φ in which

a message m induces the receiver to act if and only if r ≥ m (Lemma 1).14 Therefore, the

utility of the sender s from message r is c (r, s) ≡
∫ r
r
w (r̃, s) g (r̃|s) dr̃, where c is continuous

in s and continuously differentiable in r. In particular, if the sender’s preferences are state-

independent as in Section 3, then c (r, s) = 1−G (r|s).

Lemma 1 For each mechanism φ̃, there is a mechanism φ that induces the same mapping

from (r, s) to the receiver’s action a and each message m sent by φ induces the receiver to

act if and only if r ≥ m.

The essence of the single-crossing assumption is that vH (r) crosses the horizontal axis

at most once and in the same direction, the remaining requirements are just technical con-

ditions.15 The continuous example satisfies the single-crossing assumption and the binary

example satisfies this weak version of the single-crossing assumption.16 To illustrate broad

applicability of this assumption, Proposition 2 provides an alternate representation and

primitive sufficient conditions for the weak version of the single-crossing assumption.

Proposition 2 Let all assumptions imposed in Section 2 hold.

1. The function vH (r) crosses the horizontal axis at most once and from below for all

distributions H if and only if for each r2 ≥ r1 there exists a constant b ≥ 0 such that

ũ (r2, s) ≥ bũ (r1, s) for all s.

2. If u (r, s) is increasing in both r and s, and the density g (r|s) has the monotone likeli-

hood ratio property in that g (r2|s2) g (r1|s1)− g (r2|s1) g (r1|s2) ≥ 0 for all s2 ≥ s1 and

r2 ≥ r1, then vH (r) crosses the horizontal axis at most once and from below for all

distributions H.

14Without the single-crossing assumption, a message could induce an arbitrary set of receiver’s types to

act.
15Indeed, extending u (r, s) to R̃ ⊃ R for all s and making g (r|s) infinitesimally small for all s and r /∈ R

yields that vH (r) crosses the horizontal axis exactly once on R̃, not just at most once. Reordering R yields

that vH (r) crosses the horizontal axis from below, not just in the same direction. Considering H that puts

probability one on s yields that u (r, s) crosses the horizontal axis once for all s, so r∗ (s) is well defined.

Finally, reordering S yields that r∗ (s) is decreasing.
16To see this, note that for the continuous example (after replacing r with −r), vH (r) =∫
S

(s + r) g (r) dH (s) ≥ 0 if and only if r ≥ −EH [s] and for the binary example, vH (−1) =

(1− p) PrH (s = 1) − pPrH (s = −1) ≥ 0 implies vH (1) = pPrH (s = 1) − (1− p) PrH (s = −1) ≥ 0 be-

cause p ≥ 1/2. The reader interested in an example that does not satisfy even the weak version of the

single-crossing assumption is referred to Appendix D.
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Before turning to the general problem where both the sender’s and receiver’s types are

continuous, it is instructive to consider the case where the receiver’s type is continuous but

the sender’s type is binary in that G (r|s) admits a density g (r|s) but F is supported on s

and s. For all r ∈ [r∗ (s) , r∗ (s)], let p (r) denote the probability of s at which the receiver r

is indifferent to act. In the optimal mechanism, the distribution H of messages

maximizes

∫ r∗(s)

r∗(s)

E [c (m, s) |m] dH (m)

subject to

∫ r∗(s)

r∗(s)

p (m) dH (m) = Pr (s) .17

The objective function is the sender’s expected utility and the constraint is the feasibility

constraint that requires that posterior probabilities Pr (s|m) average out to the prior prob-

ability Pr (s). Again, the objective function can be interpreted as a linear utility function

and the constraint as a Bayesian budget constraint. As a result, the sender faces the same

quantity-quality tradeoff as in the binary example of Section 3.1. To resolve this tradeoff,

the optimal mechanism sends at most two messages with the highest marginal utility-price

ratio E [c (m, s) |m] /p (m).18

In general (if both the sender’s and receiver’s types are continuous), the optimal mecha-

nism is a distribution φ that

maximizes

∫
R×S

c (r, s) dφ (r, s) (6)

subject to

∫
R×S̃

dφ (r, s) =

∫
S̃

f (s) ds for any measurable set S̃ ⊂ S, (7)∫
R̃×S

ũ (r, s) dφ (r, s) = 0 for any measurable set R̃ ⊂ R. (8)

The objective function is the sender’s expected utility under a mechanism φ. The first con-

straint (7) is the requirement that the marginal distribution of s for φ is F . Intuitively, (7)

is a multidimensional Bayesian budget constraint. The second constraint (8) is the require-

ment that a message r makes the receiver r indifferent to act. Intuitively, (8) determines

multidimensional prices of various messages.

17Explicitly, p (m) = ũ (m, s) / (ũ (m, s)− ũ (m, s)) and E [c (m, s) |m] = p (m) c (m, s) +

(1− p (m)) c (m, s).
18The optimal mechanism is a solution to a linear program, so it is an extreme point of the constraint set.

If s is binary, then the constraint is one dimensional, so the optimal mechanism sends at most two messages.
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A general problem of information disclosure with uninformed receiver studied in Ka-

menica and Gentzkow (2011) can be described by (6)-(8) under mild regularity conditions;

so all results of Section 4 apply to that setting as well. To see this, suppose that the receiver

does not have private information and the set of receiver’s actions is R rather than {0, 1}.
The sender’s utility is c (r, s) and the receiver’s marginal utility of r is −ũ (r, s). The single-

crossing assumption ensures that there is a unique and interior optimal action of the receiver

for any posterior H of s; so we can restrict attention to direct mechanisms φ in which a

message m induces the receiver to take action r = m. Then (6) is the sender’s expected

utility under φ; (7) is the requirement that the marginal distribution of s for φ is F ; and

(8) is the necessary and sufficient first-order condition for the receiver to be willing to follow

any recommendation m of φ.

The problem (6) is called the primal problem. This primal problem is an infinite dimen-

sional linear program, because the objective function and both constraints are linear in a

probability distribution φ.19 The dual problem is to find bounded functions η and ν that

minimize

∫
S

η (s) f (s) ds (9)

subject to η (s) + ũ (r, s) ν (r) ≥ c (r, s) for all (r, s) ∈ R× S. (10)

Intuitively, the variables η (s) and ν (r) are multipliers for constraints (7) and (8).

Say that φ is feasible for (6) if it is a distribution that satisfies (7) and (8). Similarly, say

that η and ν are feasible for (9) if they are bounded functions that satisfy (10). Feasible φ

and (η, ν) that solve their respective problems (6) and (9) are called optimal solutions.

The reader should not be concerned about how the dual problem is derived; what is

important is the linkage between the primal and dual problems stated in Lemmas 2 and 3.

Weak duality gives an easy way to check that candidate feasible solutions φ and (η, ν) are

optimal:

Lemma 2 If φ is feasible for (6), (η, ν) is feasible for (9), and∫
R×S

(η (s) + ũ (r, s) ν (r)− c (r, s)) dφ (r, s) = 0, (11)

then φ and (η, ν) are optimal solutions.

19The primal problem would be a finite dimensional linear program if the sets R and S were finite. I

impose enough smoothness to guarnatee that standard results for finite dimensional linear programs extend

to an infinite dimensional case. If R and S are finite, neither full revelation mechanism nor no revelation

mechanism is generically optimal, because G and F are step functions. For this reason, I assume that the

sets S and R are intervals in which case both full revelation and no revelation mechanisms can be generically

optimal.
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Strong duality establishes the existence of optimal solutions and shows that complemen-

tarity condition (11) is not only sufficient but also necessary for optimality of φ and (η, ν).

Lemma 3 There exists an optimal mechanism φ, an optimal solution to the primal problem

(6). There exists an optimal solution to the dual problem (9) in which η is continuous.

Moreover, (11) holds for these optimal φ and (η, ν).

The key benefit of this linear programming approach to problems of optimal information

disclosure is that duality theory gives an easy way to solve the reverse problem (that is,

to find conditions on the primitives that guarantee that a given mechanism is optimal).

Specifically, by Lemmas 2 and 3, a candidate mechanism φ is optimal if and only if there

exists (η, ν) that satisfies feasibility condition (10) and complementarity condition (11). (11)

holds if and only if the integrand is zero (η (s) = c (r, s) − ũ (r, s) ν (r)) for all (r, s) in the

support of φ. For this η (s), we can find conditions on ũ, c, and F that are equivalent to the

existence of the function ν (r) that satisfies (10) for all (r, s) ∈ R× S (this step is known as

Fourier-Motzkin elimination of ν (r)). Weak (strong) duality implies that these conditions

are sufficient (necessary) for φ to be optimal.

In the continuous example, I use this approach to check optimality of various mecha-

nisms, which include different combinations of pooling and revelation of the sender’s types.

Although this approach can be used to derive necessary and sufficient conditions for opti-

mality of any of these mechanism in a general problem, in the next section, I focus on the

full revelation mechanism φfull and the no revelation mechanism φno.

There are at least two reasons that make mechanisms φno and φfull prominent, besides

their widespread use. First, if the sender did not have commitment power and her preferences

were state-independent, then φno would be the unique equilibrium outcome under unverifiable

information of the sender in the sense of Crawford and Sobel (1982), and φfull would be the

unique equilibrium outcome under verifiable information of the sender in the sense of Milgrom

(1981).20 The second reason is that these two mechanisms are extremal in a strong sense:

Proposition 3 Let the single-crossing assumption hold.

1. The receiver’s expected utility under φno is strictly lower than under any other φ.

20Under unverifiable communication, if the sender sent two different messages r1 and r2 in equilibrium,

then she would strongly prefer to send min {r1, r2} regardless of s, which leads to a contradiction. Under

verifiable communication, if the sender sent the same message r for two or more different s in equilibrium,

then there would exist s̃ such that the sender s̃ sent r but u (r, s̃) > 0, which leads to a contradiction because

the sender s̃ would strongly prefer to reveal s̃ instead.
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2. The receiver’s expected utility under φfull is strictly higher than under any other φ.

A more informed receiver is better at maximizing his expected utility by taking a more

appropriate action, so a weak version of Proposition 3 is immediate. The single-crossing

assumption together with the smoothness assumption guarantees that the strict version of

Proposition 3 holds. Note that the strict version does not hold in the binary example: the

optimal mechanism is different from φno, yet the receiver’s expected utility under the optimal

mechanism is the same as under φno for p = 1/2 and for p ≥ 1/
√

2.

4.2 Optimality of Specific Mechanisms

By definition, a mechanism φ is optimal if and only if it dominates all feasible mechanisms.

This observation gives trivial necessary and sufficient conditions for optimality of φ. However,

to check these conditions, one needs to compare φ with all feasible mechanisms, which

requires a lot of comparisons. It turns out that for the optimality of φ, it is necessary and

sufficient to check that only certain deviations from φ do not increase the probability that

the receiver acts.

I now present the main result of this section, which shows what deviations it is necessary

and sufficient to check for optimality of φfull and φno. Note that φfull sends the message

r∗ (s) for each s ∈ S, and φno sends the same message rno for each s ∈ S, where rno is the

unique r that solves
∫
S
ũ (r, s) f (s) ds = 0.

Theorem 1 Let the single-crossing assumption hold. Then:

1. All mechanisms are equivalent if and only if, for all s1, s2 ∈ S and r ∈ (r∗ (s2) , r
∗ (s1)),

c (r∗ (s2) , s2)− c (r, s2)

ũ (r, s2)
=
c (r∗ (s1) , s1)− c (r, s1)

ũ (r, s1)
. (12)

2. φfull is optimal if and only if, for all s1, s2 ∈ S and r ∈ (r∗ (s2) , r
∗ (s1)),

c (r∗ (s2) , s2)− c (r, s2)

ũ (r, s2)
≥ c (r∗ (s1) , s1)− c (r, s1)

ũ (r, s1)
. (13)

3. φno is optimal if and only if, for all s1, s2 ∈ S and r ∈ (r∗ (s2) , r
∗ (s1)),

c(r,s2)−c(rno,s2)
ũ(r,s2)

+ ũ(rno,s2)
ũ(r,s2)

∂c(rno,sno)/∂r
∂ũ(rno,sno)/∂r

≤ c(r,s1)−c(rno,s1)
ũ(r,s1)

+ ũ(rno,s1)
ũ(r,s1)

∂c(rno,sno)/∂r
∂ũ(rno,sno)/∂r

, (14)

where sno is the unique s that solves u (rno, s) = 0.
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The proof relies on duality theory as explained in the previous section. As discussed in

the proof, an interpretation of Theorem 1 is that (i) all mechanisms are equivalent if and only

if the sender is indifferent to reveal s1 and s2 or to pool them at r for all feasible s1, s2 ∈ S
and r ∈ R; (ii) φfull is optimal if and only if the sender prefers to reveal s1 and s2 than to

pool them at r for all feasible s1, s2 ∈ S and r ∈ R; (iii) and φno is optimal if and only if the

sender prefers to pool s1, s2, s3 at rno than to pool s1, s2 at r and to reveal s3 for all feasible

s1, s2 ∈ S, r ∈ R, and for s3 arbitrarily close to sno.

It is straightforward to see that conditions (12)-(14) are necessary because, for optimality

of a candidate mechanism, we need to check all deviations from the candidate mechanism,

including those described in (12)-(14).

Before discussing the intuition for sufficiency of conditions (12)–(14), I note that these

conditions are more primitive than sufficient conditions based on Kamenica and Gentzkow

(2011). Following their approach, each message m generates the posterior distribution H of

s, which is equal to φ (s|m). Let r∗ (H) be the receiver who is indifferent to act; specifically,

r∗ (H) is the unique solution to
∫
S
ũ (r, s) dH (s) = 0. Then the sender’s expected utility

under H is v̂ (H) ≡
∫
S
c (r∗ (H) , s) dH (s). Kamenica and Gentzkow (2011) show that (i)

all mechanisms are equivalent if v̂ is linear in H, (ii) φfull is optimal if v̂ is convex in H,

and (iii) φno is optimal if the concave closure of v̂ evaluated at the prior F is equal to v̂ (F ).

These conditions can be written as:

v̂ (αH1 + (1− α)H2) = αv̂ (H1) + (1− α) v̂ (H2) for all α ∈ (0, 1) and H1, H2 ∈ ∆S, (i)

v̂ (αH1 + (1− α)H2) ≤ αv̂ (H1) + (1− α) v̂ (H2) for all α ∈ (0, 1) and H1, H2 ∈ ∆S, (ii)∫
S

∇v̂ (F ) d (H (s)− F (s)) ≥ v̂ (H)− v̂ (F ) for all H ∈ ∆S, (iii)

where ∆S denotes the set of distributions on S and ∇v̂ (F ) denotes the gradient of v̂ eval-

uated at F . These conditions can be interpreted as (i) the sender is indifferent to separate

posteriors H1 and H2 or to pool them at αH1 +(1− α)H2, (ii) the sender prefers to separate

H1 and H2 than to pool them at αH1 + (1− α)H2, and (iii) the sender prefers to pool H

and HF at F than to separate them, where HF is aribitrarily close to F . Theorem 1 shows

that it is sufficient to check (i) and (ii) only for degenerate distributions H1 and H2 whose

supports are s1 and s2, respectively, and to check (iii) only for discrete H whose support is

{s1, s2} and degenerate HF whose support is s3 where s3 is arbitrarily close to sno.

The intuition for sufficiency of conditions (12)–(14) relies on Lemma 4. Consider a

message r of a mechanism φ. This message r generates a lottery φ (s|r) that makes the

receiver r indifferent to act. Lemma 4 shows that this lottery can be decomposed into
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simpler lotteries indexed by e in such a way that (i) the support of each lottery e contains

at most two elements, and (ii) each lottery e makes the receiver r indifferent to act.21

Lemma 4 Let the single-crossing assumption hold. For each mechanism φ (r, s), there exists

a mechanism ϕ (m, s) that (i) induces the same mapping from (r, s) to the receiver’s action a

and (ii) has two dimensional messages m = (r, e) ∈ R× [0, 1] such that for each m = (r, e),

the support of ϕ (.|m) contains at most two elements of S and the receiver r is indifferent to

act.

I now discuss each sufficiency condition of Theorem 1 in turn. Suppose that the sender is

indifferent to reveal s1 and s2 or to pool them at r for all feasible s1, s2, and r. By Lemma

4, without loss of generality, consider a mechanism in which each message is sent only by

some two types s1 and s2. Since the sender is indifferent to reveal s1 and s2 or to pool them,

this mechanism is equivalent to the mechanism that differs only in that it reveals s1 and s2.

Sequentially modifying the mechanism for each message gives that this arbitrarily chosen

mechanism is equivalent to φfull; so part 1 follows. Rewriting (12) gives that all mechanisms

are equivalent in the knife-edge case when there exists a function b (r) such that, for all s ∈ S
and r ∈ (r∗ (s) , r∗ (s)),

c (r∗ (s) , s)− c (r, s) = b (r) ũ (r, s) . (15)

The model of this section nests Rayo and Segal (2010). To get tractable results, they

assume that u (r, s) = r + s, where r and s are independent, r is uniformly distributed on

[−1, 0], and the support of s is contained in the interval [0, 1]. They allow the sender’s utility

to depend on a and s. However, if the sender’s utility depends only on a, then all mechanisms

are equivalent by part 1 of Theorem 1, because c (r, s) = 1−G (r) = −r and r∗ (s) = −s so

that (15) holds with b (r) = 1.22

I now turn to part 2 of Theorem 1. Again, without loss of generality, consider a mechanism

in which each message is sent only by two types s1 and s2. Since the sender prefers to reveal

s1 and s2 than to pool them, this mechanism is dominated by the mechanism that differs

only in that it reveals s1 and s2. Sequentially modifying the mechanism for each message,

we get that φfull dominates this arbitrarily chosen mechanism; so part 2 follows.

Finally, I provide the intuition for a weaker version of part 3 of Theorem 1. Namely, if the

sender prefers to pool s1, s
′
1, s2, s

′
2 at rno than to pool s1, s

′
1 at r1 and to pool s2, s

′
2 at r2 for

21Golosov et al. (2014) use a similar result to construct a fully revealing equilibrium in a dynamic cheap

talk game.
22Note that the continuous example of Section 3 has the same functional form of the receiver’s utility

(after replacing r with −r), but it does not assume that r is uniformly distributed.
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all feasible s1, s
′
1, s2, s

′
2, r1, r2, then φno is optimal. Again, without loss of generality, consider

a mechanism in which each message is sent only by two types; say r1 ≤ rno is sent by s1 and

s′1 and r2 ≥ rno is sent by s2 and s′2. This mechanism is dominated by the mechanism that

differs only in that it sends the message rno instead of r1 and r2. Sequentially applying this

argument for pairs of messages, we get that φno dominates this arbitrarily chosen mechanism;

so the weaker version of part 3 follows.

5 Conclusions

In this paper, I have studied optimal information disclosure mechanisms with two-sided

asymmetric information. The receiver bases his action not only on the information disclosed

by the sender but also on his private information. Thus, from the sender’s perspective, each

message results in a stochastic action by the receiver. The analysis reveals an important

quantity-quality tradeoff of messages. The optimal mechanism finds a balance between

quantity and quality. This balance is easiest to explain when the sender’s type is binary. In

this case, the prior distribution of the sender’s information imposes a budget constraint on

the frequencies of various messages, whereas the distribution of the receiver’s information

determines the sender’s expected utility, which is linear in the frequencies of various messages.

The optimal mechanism sends messages with the highest marginal utility-price ratio.

I also derive interesting non-monotone comparative statics results with respect to the

receiver’s private information for the binary-signal example in which the sender is perfectly

informed but the receiver is partially informed. If the receiver’s private information is either

very precise or very imprecise, then the sender’s expected utility decreases and the receiver’s

expected utility increases with the precision of the receiver’s information. However, if the

precision of the receiver’s information is intermediate, then these results can be overturned.

Surprisingly, the receiver may become worse off as his private information becomes more

precise. Thus, if there is an earlier stage when the receiver can publicly choose how informed

he will be, he may not want to be as informed as possible.

The paper also makes several technical contributions, which can be applied to other

models of information disclosure. First, it identifies and characterizes the single-crossing

assumption that is crucial for tractable results and for the quantity-quality tradeoff. Second,

it provides a simple guess and verify method based on duality theory that allows to check

that a candidate mechanism is optimal. Third, it provides primitive necessary and sufficient

conditions for full revelation and no revelation mechanisms to be optimal.
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In this paper, the receiver is not allowed to communicate with the sender. This assump-

tion fits many real-life examples. In particular, the school uses the same grading system

for all students regardless of where they apply for a job and before they get interviewed by

employers. However, this assumption is not without loss of generality because the sender

can potentially increase the probability that the receiver acts by conditioning a mechanism

on receiver’s reports about his private information. I leave the analysis of optimal two-way

communication for future work.

Appendix A: Proofs

Proof of Proposition 1. For any mechanism φ and any message m, m = Eφ [s|m], which

implies that the distribution F of s is a mean-preserving spread of the distribution H of m

generated by φ. Conversely, if F is a mean-preserving spread of H, then s has the same distri-

bution as m+ z for some z such that E [z|m] = 0. Define φ (m̃, s̃) = Pr (m ≤ m̃,m+ z ≤ s̃)

for all (m̃, s̃) ∈ S × S. For this φ, the marginal distribution of s is F and Eφ [s|m] =

Eφ [m+ z|m] = m. Therefore, φ is a feasible mechanism. That is, the set of distributions H

generated by all feasible mechanisms is given by the constraint of (4), whereas the objective

of (4) is simply the probability that the receiver acts under a mechanism that generates H.

Proof of Corollary 1. The proof relies on Theorem 1 from Section 4 and, therefore,

should be read after Section 4. Clearly, this example satisfies the single-crossing assumption

of Section 4 if r is replaced with −r. Thus, all results of Section 4 apply. With this change

of variables, r∗ (s) = s, c (r, s) = G (r), and ũ (r, s) = (s− r) g (r).

By part 1 of Theorem 1, all mechanisms are equivalent if and only if (12):

G (r) =
s2 − r
s2 − s1

G (s1) +
r − s1
s2 − s1

G (s2) for all s1, s2, r ∈ S.

By part 2 of Theorem 1, φfull is optimal if and only if (13):

G (r) ≤ s2 − r
s2 − s1

G (s1) +
r − s1
s2 − s1

G (s2) for all s1, s2, r ∈ S.

By part 3 of Theorem 1, φno is optimal if and only if (14), which simplifies to (5).

Proof of Lemma 1. Let φ̃ (m̃, s) be the joint distribution of the message m̃ and the

sender’s type s under a mechanism φ̃. There exists a version φ̃ (s|m̃) of the conditional

distribution of s given m̃ by Theorem 33.3 of Billingsley (1995). The receiver’s expected
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utility given m̃ and r is given by:

Eφ̃ [u (r, s) |m̃, r] =

∫
S
u (r, s) g (r|s) dφ̃ (s|m̃)∫
S
g (r|s) dφ̃ (s|m̃)

.

Therefore, by the single-crossing assumption, there exists unique r (m̃) such that the receiver

r acts (that is, Eφ̃ [u (r, s) |m̃, r] ≥ 0) if and only if r ≥ r (m̃). Let φ (m, s) be the joint

distribution of m ≡ r (m̃) and s under the mechanism φ̃. Since
∫
S
ũ (r (m̃) , s) dφ̃ (s|m̃) = 0

for all m̃ sent by φ̃, we have that for each measurable set N ⊂M ,∫
N×S

ũ (m, s) dφ (m, s) =

∫
r−1(N)×S

ũ (r (m̃) , s) dφ̃ (m̃, s) = 0,

where r−1 (N) is the preimage of N . Therefore, there exists a version φ (s|m) such that∫
S
ũ (m, s) dφ (s|m) = 0 for all m; so φ is the required mechanism.

Proof of Proposition 2. The function vH (r) crosses the horizontal axis at most once

and from below if and only if vH (r1) ≥ 0 and r2 ≥ r1 imply vH (r2) ≥ 0. Denote ũi (s) as

the function ũ (ri, s) of s. If ũ2 (s) ≥ bũ1 (s) for all s and some constant b ≥ 0, then vH (r)

crosses the horizontal axis at most once and from below for all distributions H because∫
S
ũ1 (s) dH (s) ≥ 0 and r2 ≥ r1 imply:∫

S

ũ2 (s) dH (s) ≥ b

∫
S

ũ1 (s) dH (s) ≥ 0.

Conversely, suppose that vH (r1) ≥ 0 and r2 ≥ r1 imply vH (r2) ≥ 0 and let us show

that there exists b ≥ 0 such that ũ2 (s) ≥ bũ1 (s) for all s. This result is obvious if ũ1 (s) <

0 for all s. Consider now the case in which ũ1 (s) ≥ 0 for some s. Suppose to get a

contradiction that there does not exist the required b ≥ 0. Then the function ũ2 (s) does not

belong to the closed convex cone C defined as the set of functions which can be represented

as dũ1 (s) + v (s) for some constant d ≥ 0 and some continuous positive function v (s).

By the Separating Hyperplane Theorem (Corollary 5.84 of Aliprantis and Border (2006)),

there exists a continuous linear functional ψ satisfying ψ (ũ2) < 0 and ψ (c) ≥ 0 for all

c ∈ C. By the Riesz Representation Theorem (Theorem 6 in Section 36 of Kolmogorov

and Fomin (1975)), ψ can be represented in the form ψ (c) =
∫
S
c (s) dΨ (s), where Ψ is

a function of bounded variation on S. Define the function H as H (s) = Ψ (s) /V (Ψ),

where V (Ψ) > 0 denotes the total variation of Ψ on S. Recall that the set C contains all

positive continuous functions and
∫
S
c (s) dΨ (s) ≥ 0 for all c ∈ C. Applying the Dominated

Convergence Theorem (Theorem 11.21 of Aliprantis and Border (2006)) to an appropriate

sequence of positive continuous functions converging to the indicator function 1[s1,s2] yields
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that Ψ (s2) − Ψ (s1) ≥ 0 for all s2 > s1, which in turn implies that H is a distribution

function on S. Recalling that V (Ψ) > 0, ũ1 ∈ C, ψ (ũ2) < 0 and ψ (c) ≥ 0 for all c ∈ C
yields vH (r1) ≥ 0 and vH (r2) < 0, which is a contradiction.

Suppose that vH (r1) ≥ 0, r2 ≥ r1, and the functions u and g satisfy the suppositions of

the second part. The second part follows from:

vH (r2) =

∫
S

u (r2, s) g (r2|s) dH (s)

≥
∫
S

u (r1, s) g (r2|s) dH (s)

≥
∫
S
g (r2|s) dH (s)∫

S
g (r1|s) dH (s)

∫
S

u (r1, s) g (r1|s) dH (s)

=

∫
S
g (r2|s) dH (s)∫

S
g (r1|s) dH (s)

vH (r1)

≥ 0.

The first inequality holds because u is increasing in r. Since g has the monotone likelihood

ratio, the distribution of s given r2 first-order stochastically dominates the distribution of s

given r1 in that: ∫ s̃
s
g (r2|s) dH (s)∫

S
g (r2|s) dH (s)

≤
∫ s̃
s
g (r1|s) dH (s)∫

S
g (r1|s) dH (s)

for all s̃ ∈ S,

as Milgrom (1981) shows. Thus, the second inequality holds because the function u (r1, s) is

increasing in s.

Proof of Lemma 2. The proof of similar results can be found in Anderson and Nash

(1987). However, to make the paper self-contained, I prove this lemma.

Multiplying (7) by η and integrating over S gives∫
S

η (s) f (s) ds =

∫
R×S

η (s) dφ (r, s) .

Multiplying (8) by ν and integrating over R gives∫
R×S

ũ (r, s) ν (r) dφ (r, s) = 0.

Summing up these two equalities gives∫
S

η (s) f (s) ds =

∫
R×S

(η (s) + ũ (r, s) ν (r)) dφ (r, s) . (16)

Integrating (10) over R× S gives∫
R×S

c (r, s) dφ (r, s) ≤
∫
R×S

(η (s) + ũ (r, s) ν (r)) dφ (r, s) . (17)
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Suppose that (11) holds for some feasible (η, ν) and φ. Then conditions (16) and (17)

yield ∫
R×S

c (r, s) dφ (r, s) =

∫
S

η (s) f (s) ds. (18)

Consider any other feasible φ̃. Conditions (16) and (17) imply∫
R×S

c (r, s) dφ̃ (r, s) ≤
∫
S

η (s) f (s) ds.

Combining this inequality with (18) gives∫
R×S

c (r, s) dφ̃ (r, s) ≤
∫
R×S

c (r, s) dφ (r, s) ,

showing that φ is an optimal solution to the primal problem (6). An analogous argument

proves that (η, ν) is an optimal solution to (9).

Proof of Lemma 3. The proof of this lemma is a generalization of the proof of Theorem

5.2 in Anderson and Nash (1987), whose notation I closely follow.

Conventions. The primal variable φ is in Mr (R× S), the space of finite signed measures

on R×S with the total variation norm. The mechanism φ is chosen from the positive closed

convex cone P of finite positive measures on R × S. The dual constraint function c (r, s)

is in C (R× S), the space of continuous measurable functions on R × S with the uniform

norm. The dual variables (η, ν) are in L∞ (S) × L∞ (R), the space of bounded measurable

functions with the uniform norm. The primal constraint function (f, θ) is in L1 (S)×L1 (R),

the space of absolutely integrable functions with the 1-norm, where θ is a zero function on

the right hand side of (8).

Optimal solution to (6). A mechanism φfull is feasible for the primal problem (6). The

feasible set of the primal problem is bounded because the total variation of any probability

measure φ is equal to one. The constraint map in (7) is continuous because it is a projection;

the constraint map in (8) is continuous because ũ is continuous. The space Mr is the dual

of C by Corollary 14.15 of Aliprantis and Border (2006). Therefore, there exists an optimal

solution φ by Theorem 3.20 in Anderson and Nash (1987).

Optimal solution to (9). Since c is continuous on the compact set R × S, there exist

finite values c = minr,s c (r, s) and c = maxr,s c (r, s). Functions η (s) = c and ν (r) = 0 are

feasible for the dual problem. We can make the set of feasible (η, ν) bounded by adding the

constraints:

− c− c
mins maxr ũ (r, s)

≡ K ≤ ν (r) ≤ K ≡ − c− c
maxs minr ũ (r, s)

for all r,
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c ≤ η (s) ≤ N = c− min
(r,s,ν)∈R×S×[K,K]

ũ (r, s) ν for all s.

To see that the value of the dual problem is not affected, note that K > 0 because ũ (r, s) < 0

for r < r∗ (s) and K < 0 because ũ (r, s) > 0 for r > r∗ (s). If ν (r) > K, then

η (s) ≥ sup r {c (r, s)− ũ (r, s) ν (r)}

> c−K min rũ (r, s)

≥ c−K max s min rũ (r, s) = c;

so the objective in (9) is strictly higher than under η (s) = c and ν (r) = 0. Similarly, if

ν (r) < K, then

η (s) ≥ sup r {c (r, s)− ũ (r, s) ν (r)}

> c−K max rũ (r, s)

≥ c−K min s max rũ (r, s) = c;

so the objective in (9) is strictly higher than under η (s) = c and ν (r) = 0. The constraint

(10) implies:

η (s) ≥ sup r {c (r, s)− ũ (r, s) ν (r)}

≥ c+ sup r {−ũ (r, s) ν (r)} ≥ c.

Finally, take any ν such that ν (r) ∈
[
K,K

]
for all r, then (η, ν) with η (s) ≥ N for all s is

feasible for (9), because c (r, s)− ũ (r, s) ν (r) ≤ N for all r and s. Thus, if (η, ν) is feasible,

then (η∗, ν) with η∗ (s) ≡ min
{
η (s) , N

}
is also feasible and the objective in (9) is smaller

under η∗.

The constraint map in (10) is continuous because ũ is continuous. The space L∞ is the

dual of L1 by Theorem 13.28 of Aliprantis and Border (2006). Therefore, there exists an

optimal solution (η, ν) by Theorem 3.20 in Anderson and Nash (1987).

Equality (11) under optimal solutions. As can be seen from above, the dual problem has

a finite value and functions η (s) = 2c and ν (r) = 0 are in the interior of the constraint set

(10). Therefore, there is no duality gap by Theorem 3.13 in Anderson and Nash (1987).

Continuity of η. Observe that if (η, ν) is optimal, then (η∗, ν) is also optimal, where

η∗ (s) = sup r {c (r, s)− ũ (r, s) ν (r)} .

Indeed, η∗ is feasible and η∗ ≤ η, because η satisfies (10) for all r; so the objective in (9)

is smaller under η∗. We show that η∗ is continuous. Since R × S is compact, c and ũ are
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uniformly continuous. Thus, since ν is bounded, for any ε > 0, there exists δ > 0 such that

|(c (r, s)− ũ (r, s) ν (r))− (c (r, s′)− ũ (r, s′) ν (r))| < ε (19)

for all r ∈ R and s, s′ ∈ S such that |s− s′| < δ. By definition of η∗, for any s there exists r

such that

η∗ (s) < c (r, s)− ũ (r, s) ν (r) + ε. (20)

Thus,

η∗ (s′) ≥ c (r, s′)− ũ (r, s′) ν (r)

> c (r, s)− ũ (r, s) ν (r)− ε

> η∗ (s)− 2ε,

where the first inequality holds by definition of η∗, the second by (19), and the third by (20).

Analogously, η∗ (s) > η∗ (s′) − 2ε; so |η∗ (s)− η∗ (s′)| < 2ε whenever |s− s′| < δ, implying

that η∗ is continuous.

Proof of Proposition 3. Part 1. The receiver’s expected utilities under any mechanism

φ and the no revelation mechanism φno are:

Eφ [u] =

∫
R×S

(∫ r

r

ũ (r̃, s) dr̃

)
dφ (r, s) ,

Eφno [u] =

∫
S

(∫ r

rno

ũ (r̃, s) dr̃

)
f (s) ds

=

∫
R×S

(∫ r

rno

ũ (r̃, s) dr̃

)
dφ (r, s) .

The first two lines hold because a message m induces the receiver r to act if and only if

r ≥ m and φno sends the message rno regardless of s. The third line holds because the

marginal distribution of s for any mechanism φ coincides with the prior distribution of s.

For a mechanism φ, denote the conditional distribution of s given a message r by φ (s|r)
and the marginal distribution of a message r by φ (r). Fubini’s Theorem (Theorem 11.27 of

Aliprantis and Border (2006)) gives

Eφ [u]− Eφno [u] =
∫ rno

r

[∫ rno

r

(∫
S
ũ (r̃, s) dφ (s|r)

)
dr̃
]
dφ (r)

−
∫ r
rno

[∫ r
rno

(∫
S
ũ (r̃, s) dφ (s|r)

)
dr̃
]
dφ (r) .

(21)

By the single-crossing assumption, we have
∫
S
ũ (r̃, s) dφ (s|r) > 0 for r̃ > r. Therefore,∫ rno

r

(∫
S
ũ (r̃, s) dφ (s|r)

)
dr̃ > 0 for r < rno. Since φ (r) of any mechanism φ that differs
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from φno puts strictly positive probability on messages in [r, rno), the first integral in (21) is

strictly positive. The analogous argument shows that the second integral in (21) is strictly

negative; so Eφ [u]− Eφno [u] > 0 for any φ that differs from φno.

Part 2. The receiver’s expected utility under φfull is

Eφfull [u] =

∫
S

(∫ r

r∗(s)

ũ (r̃, s) dr̃

)
f (s) ds

=

∫
R×S

(∫ r

r∗(s)

ũ (r̃, s) dr̃

)
dφ (r, s) .

Fubini’s Theorem together with the condition ũ (r∗ (s) , s) = 0 gives

Eφfull [u]− Eφ [u] =
∫
S

∫
r>r∗(s)

(∫ r
r∗(s)

ũ (r̃, s) dr̃
)
dφ (r, s)

−
∫
S

∫
r<r∗(s)

(∫ r∗(s)
r

ũ (r̃, s) dr̃
)
dφ (r, s) .

(22)

By the single-crossing assumption, we have ũ (r̃, s) > 0 for r̃ > r∗ (s); so
∫ r
r∗(s)

ũ (r̃, s) dr̃ > 0

for r > r∗ (s). Any φ that differs from φfull puts strictly positive probability on the event r >

r∗ (s), otherwise
∫
R×S ũ (r, s) dφ (r, s) would be strictly negative rather than zero. Therefore,

the first integral in (22) is strictly positive. The analogous argument shows that the second

integral in (22) is strictly negative; so Eφfull [u]−Eφ [u] > 0 for any φ that differs from φfull.

Proof of Theorem 1. I prove each part in turn.

Only if part of part 1. Suppose to get a contradiction that there exist s2 > s1, and

r ∈ (r∗ (s2) , r
∗ (s1)) such that

c (r∗ (s2) , s2)− c (r, s2)

ũ (r, s2)
>
c (r∗ (s1) , s1)− c (r, s1)

ũ (r, s1)
. (23)

(The case in which the left hand side of (23) is strictly smaller than the right hand side is

analogous.) Let h1 (x) =
∫ x
s1
ũ (r, s) f (s) ds and h2 (x) =

∫ s2
x
ũ (r, s) f (s) ds. The functions h1

and h2 are continuous, strictly decreasing, and vanishing at x = s1 and x = s2, respectively.

Thus, in a neighborhood of s2, we can define a continuous function s∗1 (x) that satisfies

h1 (s∗1 (x)) + h2 (x) = 0. By the implicit function theorem,

ds∗1 (x)

dx
=

ũ (r, x) f (x)

ũ (r, s∗1 (x)) f (s∗1 (x))
. (24)

By continuity of all functions, there exists x2 such that (23) holds for all (s1, s2) ∈ [s1, s
∗
1 (x2)]×

[x2, s2]. Consider two mechanisms that differ only in that one reveals s for all s ∈ [s1, s
∗
1 (x2)]∪

[x2, s2] and the other sends the same message for these s. That is, the former mechanism
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sends r∗ (s) and the latter sends r, because h1 (s∗1 (x)) +h2 (x) = 0. The two mechanisms are

not equivalent, because the difference in the sender’s payoff between the former and latter

mechanisms is: ∫
[s1,s∗1(x2)]∪[x2,s2]

(c (r∗ (s) , s)− c (r, s)) f (s) ds

>

∫ s∗1(x2)

s1

(c (r∗ (s) , s)− c (r, s)) f (s) ds

+

∫ s2

x2

ũ (r, s)

ũ (r, s∗1 (s))
(c (r∗ (s∗1 (s)) , s∗1 (s))− c (r, s∗1 (s))) f (s) ds = 0,

where the inequality holds by (23) and the equality holds by (24) and the change of variables

formula. This concludes the proof of “only if” part of part 1.

Taking the limit x2 ↑ s2 (and thus s∗1 (x1) ↓ s1), this argument suggests that an interpre-

tation of condition (23) is that the sender strictly prefers to reveal s1 and s2 than to pool

them at r. Similarly, an interpretation of condition (12) is that the sender is indifferent to

reveal s1 and s2 or to pool them at r.

If part of part 1. Consider any mechanism φ. Note that condition (12) is equivalent to

(15). Substituting (15) into (8) gives∫
R×S

c (r, s) dφ (r, s) =

∫
R×S

c (r∗ (s) , s) dφ (r, s) .

Taking into account (7) gives∫
R×S

c (r, s) dφ (r, s) =

∫
S

c (r∗ (s) , s) f (s) ds,

which implies that the probability that the receiver acts is the same for all mechanisms.

Part 2. By Lemmas 2 and 3, φfull is optimal if and only if there exists feasible (η, ν) that

satisfies ∫
R×S

(η (s) + ũ (r, s) ν (r)− c (r, s)) dφfull (r, s) = 0. (25)

By (10), the integrand is nonnegative; so (25) holds if and only if

η (s) + ũ (r∗ (s) , s) ν (r∗ (s)) = c (r∗ (s) , s) almost everywhere.

Since ũ (r∗ (s) , s) = 0, we have η (s) = c (r∗ (s) , s) almost everywhere. Since η is continuous

by Lemma 3 and c and r∗ are continuous by assumption, η (s) = c (r∗ (s) , s) holds for all

s ∈ S. Therefore, φfull is optimal if and only if there exists ν that satisfies (10):

c (r∗ (s) , s) + ũ (r, s) ν (r) ≥ c (r, s) for all (r, s) ∈ R× S, (26)

32



which is equivalent to

c (r, s2)− c (r∗ (s2) , s2)

ũ (r, s2)
≤ ν (r) ≤ c (r∗ (s1) , s1)− c (r, s1)

−ũ (r, s1)

for all r ∈ (r∗ (s) , r∗ (s)) and s1, s2 such that r ∈ (r∗ (s2) , r
∗ (s1)). (For r /∈ (r∗ (s) , r∗ (s)),

the existence of ν is obvious because (26) bounds ν only from one side.) There exists such

ν if and only if (13) holds. Note that (13) is just (23) with the strict inequality replaced by

the weak one; so an interpretation of condition (13) is that the sender (weakly) prefers to

reveal s1 and s2 than to pool them at r.

Part 3. Analogously to part 2, φno is optimal if and only if there exists feasible (η, ν)

that satisfies

η (s) + ũ (rno, s) ν (rno) = c (rno, s) for all s ∈ S. (27)

Therefore, φno is optimal if and only if there exists ν that satisfies (10):

c (rno, s)− ũ (rno, s) ν (rno) + ũ (r, s) ν (r) ≥ c (r, s) for all (r, s) ∈ R× S. (28)

Since ũ is continuous and ν is bounded, inequality (28) holds if and only if:

c (r, s2)− (c (rno, s2)− ũ (rno, s2) ν (rno))

ũ (r, s2)
≤ ν (r) ≤ (c (rno, s1)− ũ (rno, s1) ν (rno))− c (r, s1)

−ũ (r, s1)
(29)

for all r ∈ (r∗ (s) , r∗ (s)), and s1, s2 ∈ S such that r ∈ (r∗ (s2) , r
∗ (s1)). (For r /∈ (r∗ (s) , r∗ (s)),

the existence of ν is obvious because (28) bounds ν only from one side.)

At r = rno, both sides of (29) become ν (rno). Thus, for (29) to be satisfied everywhere,

the derivatives of both sides of (29) with respect to r evaluated at r = rno must coincide,

which gives

ν (rno) =

∂c(rno,s1)/∂r
ũ(rno,s1)

− ∂c(rno,s2)/∂r
ũ(rno,s2)

∂ũ(rno,s1)/∂r
ũ(rno,s1)

− ∂ũ(rno,s2)/∂r
ũ(rno,s2)

. (30)

Taking the limit of (30) as s2 ↓ sno gives

ν (rno) =
∂c (rno, sno) /∂r

∂ũ (rno, sno) /∂r
. (31)

Substituting ν (rno) from (31) into (29) completes the proof of Theorem 1.

We now interpret condition (14). Let s1, s2 ∈ S, r ∈ (r∗ (s2) , r
∗ (s1)) and s3 be such that

there exists the prior distribution that puts positive probabilities p1, p2, p3 only on s1, s2,

s3 such that
∑3

i=1 piũ (rno, si) = 0, and
∑2

i=1 piũ (r, si) = 0. The requirement that for this
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prior distribution the no revelation mechanism, which sends rno for s1, s2, s3, dominates the

mechanism that sends r for s1, s2 and r∗ (s3) for s3 can be written as:

c(r,s2)−c(rno,s2)
ũ(r,s2)

+ ũ(rno,s2)
ũ(rno,s3)

c(rno,s3)−c(r∗(s3),s3)
ũ(r,s2)

≤ c(r,s1)−c(rno,s1)
ũ(r,s1)

+ ũ(rno,s1)
ũ(rno,s3)

c(rno,s3)−c(r∗(s3),s3)
ũ(r,s1)

.

(32)

Taking the limit of (32) as s3 → sno gives (14), because

lim
s3→sno

c (rno, s3)− c (r∗ (s3) , s3)

ũ (rno, s3)
= − ∂c (rno, sno) /∂r

∂ũ (rno, sno) /∂s

dr∗ (sno)

ds
=
∂c (rno, sno) /∂r

∂ũ (rno, sno) /∂r
,

where the first equality holds by L’Hospital’s rule and the second by the implicit function

theorem applied to ũ (r∗ (s) , s) = 0. Thus, an interpretation of condition (14) is that the

sender prefers to pool s1, s2, s3 at rno than to pool s1, s2 at r and to reveal s3 for s3 arbitrarily

close to sno.

Proof of Lemma 4. Consider any r̃ in the support of φ. For a moment assume that φ (s|r̃)
admits a density. Because Eφ [u (r̃, s) |r = r̃] = 0, we can construct a decreasing function

v1 (e) and an increasing function v2 (e) defined on [0, 1] such that Prφ (s ∈ [v1 (e) , v2 (e)] |r = r̃) =

e and Eφ [u (r̃, s) |r = r̃, s ∈ [v1 (e) , v2 (e)]] = 0. If φ (s|r̃) does not admit a density, then a

similar result holds but with possible randomization at the boundaries v1 (e) and v2 (e). For-

mally, there exists a quadruple function (v1, v2, q1, q2) from R× [0, 1] to [mins∈S ũ (r, s) , 0]×
[0,maxs∈S ũ (r, s)]× [0, 1]× [0, 1] such that∫

v1(r̃,e)<ũ(r̃,s)<v2(r̃,e)
ũ (r̃, s) dφ (s|r̃)

+
∑

i=1,2 vi (r̃, e) qi (r̃, e) Pr φ (ũ (r̃, s) = vi (r̃, e) |r = r̃) = 0,

Pr φ (v1 (r̃, e) < ũ (r̃, s) < v2 (r̃, e) |r = r̃)

+
∑

i=1,2 qi (r̃, e) Pr φ (ũ (r̃, s) = vi (r̃, e) |r = r̃) = e

for all (r̃, e) ∈ R×[0, 1]. Define distribution ϕ of (r̃, e, s) as follows. The marginal distribution

of r̃ for ϕ coincides with the marginal distribution of r̃ for φ. The conditional distribution of

e given r̃ is uniform on the unit interval [0, 1]. The conditional distribution of s given r̃ and e

puts probabilities p1 and 1− p1 on s1 and s2, where s1 and s2 satisfy ũ (r̃, s1) = v1 (r̃, e) and

ũ (r̃, s2) = v2 (r̃, e), and p1 solves p1v1 (r̃, e) + (1− p1) v2 (r̃, e) = 0. Clearly, this ϕ satisfies

the required properties of Lemma 4.

Appendix B: Modelling of Information Disclosure

This appendix formalizes my modelling of information disclosure and discusses other possible

alternatives.
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Let all subsets of the real line be equipped with the Borel sigma algebra. Let (Ω,F , P )

be a (sufficiently rich) probability space and let the state v, the receiver’s type r, and the

sender’s type s be random variables on this space. The receiver’s von Neumann-Morgenstern

utility is va; the conditional expectation of v given (r, s) is E [v|r, s] ≡ u (r, s); the conditional

distribution of r given s is G (r|s); and the marginal distribution of s is F .

The sender’s and receiver’s mixed strategies are defined using the distributional approach

of Milgrom and Weber (1985). The sender’s strategy is any random variable m such that

(a version of) the conditional distribution of m given (v, r, s) is independent of (v, r) and

the marginal distribution φ of (m, s) is any element (richness of the probability space is

used) of the set of all probability distributions on M × S whose marginal distribution on

S is F . Similarly, the receiver’s strategy is any random variable a such that (a version of)

the conditional distribution of a given (m, v, r, s) is independent of (v, s) and the marginal

distribution of (a,m, r) is any element of the set of all probability distributions on {0, 1} ×
M × R whose marginal distribution on M × R coincides with the marginal distribution of

(m, r), given by
∫
S×[m,m]

G (r|s) dφ (m̃, s).

To simplify the discussion, in the remainder of this appendix, restrict attention to pure

strategies of the sender and receiver: m (ω) = hm (s (ω)) and a (ω) = ha (m (ω) , r (ω))

for all ω ∈ Ω where hm and ha are measurable functions that take values in M and {0, 1},
respectively. Equivalently, by Theorem 20.1 of Billingsley (1995), a pure strategy m : Ω→M

is Fs-measurable random variable and a pure strategy a : Ω → {0, 1} is Fm,r-measurable

random variable, where Fx1,...,xk denotes the sigma algebra generated by random variables

x1, . . . , xk. In the paper, I restrict attention to pure strategies of the receiver in which he

takes the sender’s preferred action a = 1 whenever he is indifferent to act. Under certain

regularity conditions, it may be possible to restrict attention to pure strategies of the sender

by a purification theorem similar to Dvoretzky et al. (1951) and Ambrosio (2003). But I

do not explore this possibility in the paper; instead, I study a general problem when mixed

strategies are allowed.

Since the outcome of the game can depend only on joint information of the receiver and

sender (r, s), the paper focuses on the reduced form game where the state v is implicit. It

turns out that for any reduced form game we can construct an underlying binary state v;

so the analysis cannot be simplified under the binary state case. To construct this binary

state, it suffices for any utility function u and for any probability measure p of (r, s), to find
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v1, v2, and probability measure q of (v, r, s) that satisfy

p (T ) = q (v1, T ) + q (v2, T ) ,∫
T

u (t) dp = v1q (v1, T ) + v2q (v2, T )

for each measurable set T ⊂ R × S. Take any v1 and v2 that satisfy v1 ≤ u (r, s) ≤ v2 for

all (r, s) ∈ R× S. Then q (v1, T ) =
∫
T
v2−u(r,s)
v2−v1 dp and q (v2, T ) =

∫
T
u(r,s)−v1
v2−v1 dp constitute the

required measure q.

The set of feasible mechanisms essentially corresponds to all garblings of the sender’s

information. For example, in the school-employer application, the school can choose any

grading policy that determines how the student’s performance maps to a transcript; the

employer observes the chosen grading policy, the realized transcript, his private signal (for

example, outside option and inteview results) and forms a Bayesian belief about the value of

hiring the student. One may consider more general mechanisms whose messages conditional

on the sender’s information can be correlated (to some extent) with the receiver’s information

or more restrictive mechanisms in which certain information of the sender cannot be revealed.

For example, in the first situation, the school can issue different transcripts depending on

what kind of jobs the student applies to; in the second situation, the school cannot disclose

information about private life of the student. Both situations can be modelled by allowing

the sender to choose any Fz-measurable random variable, where Fs ⊂ Fz ⊆ Fv,r,s in the first

situation and Fz ⊂ Fs in the second situation. Renaming z as s, we get the same model of

information disclosure.23 At the extreme case of Fz = Fv,r,s, message m can depend on v, r,

and s; so r is akin to public information. Therefore, under certain regularity conditions (see

Kolotilin (2014)), in the optimal mechanism, m = m1 if v ≥ v∗ (r) and m = m0 otherwise,

where v∗ (r) is the unique solution to E [v ≥ v∗ (r) |r] = 0. (Since the optimal mechanism

does not depend on s, the optimal mechanism remains the same if m is Fv,r-measurable

rather than Fv,r,s-measurable.) Similarly, if Fz = Fr,s, then in the optimal mechanism,

m = m1 if u (r, s) ≥ u∗ (r) and m = m0 otherwise, where u∗ (r) is the unique solution to

E [u (r, s) ≥ u∗ (r) |r] = 0.

23If the set Ω is finite, then for any sigma algebra G, there exists a random variable z with Fz = G, but

if the set Ω is infinite, there exist sigma algebras G that are not generated by any random variable z (for

example, Ω = [0, 1], F is the Borel sigma algebra, and G is the sigma algebra consisting of countable sets and

sets with countable compliments). If on top of choosing any Fz-measurable random variable m, the sender

can choose a sigma algebra Fz from some set that contains the finest sigma algebra Fz∗ , which satisfies

Fz ⊆ Fz∗ for all feasibleFz, then it is without loss of generality to assume that the sender chooses Fz∗ -

measurable random variable m. Under the restriction to pure strategies, Gentzkow and Kamenica (2012)’s

model of multi-sender information disclosure can be viewed in this way.
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More generally, one can study my communication game using the existing notions of

correlated equilibrium in games with incomplete information, surveyed in Forges (1993).

Strategic form correlated equilibrium corresponds to Fs-measurable m. Bayesian solution

corresponds to Fr,s-measurable m. Bayes correlated equilibrium of Bergemann and Morris

(2013) corresponds to Fv,r-measurable m. Finally, communication equilibrium corresponds

to Fs,n-measurable m where n is Fr-measurable report rule chosen by the receiver. I leave

the analysis of optimal communication mechanisms for future work.

Appendix C: Results for Continuous Example

This appendix characterizes the optimal mechanism under various distributions G discussed

in Section 3.2. Lemma 2 gives a technique for proving all results in this appendix. Lemma

2 implies that a candidate mechanism is optimal if there exists feasible (η, ν) for (9),

η (s) + (s− r) ν (r) ≥ G (r) for all (r, s) ∈ R× S, (33)

such that the complementarity condition (11) holds,∫
R×S

(η (s) + (s− r) ν (r)−G (r)) dφ (r, s) = 0. (34)

To prove that each of the mechanisms described in Propositions 4 and 5 is optimal, I construct

(η, ν) that satisfies (33) and (34).

Proposition 4 Let G be convex on [s, rm], concave on [rm, s], and G (rno) < G(rno) (see

Figure 2 (a)). Then the optimal mechanism reveals s for s < sc and sends the same message

rc ≡ E [s|s ≥ sc] for s ≥ sc where sc ∈ (s, rm) is uniquely determined by

G (sc) = G (rc) + g (rc) (sc − rc) .

Proof. We can ignore verification of conditions (33) and (34) for (r, s) such that r /∈ S,

because no mechanism can send a message r /∈ S. Technically, condition (33) bounds

ν only from one side for r /∈ S: ν (r) ≥ (G (r)− η (s)) / (s− r) for r < s and ν (r) ≤
(η (s)−G (r)) / (r − s) for r > s. Thus, to satisfy (33), we can set ν (r) = K for r < s and

ν (r) = −K for r > s where K is sufficiently large. The values of ν for r /∈ S do not affect

(34) because the support of φ is included in S × S.
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For (r, s) ∈ S × S, the required (η, ν), which satisfies (33) and (34), is

η(s) =

{
G (s) for s ∈ [s, sc] ,

G (rc) + g (rc) (s− rc) for s ∈ (sc, s] ,

ν(r) =

{
−g (r) for r ∈ [s, sc] ,

−g (rc) for r ∈ (sc, s] .

The pair (η, ν) satisfies (33) for all (r, s) ∈ S × S because:

η (s) ≥ η (r)− ν (r) (s− r) ≥ G (r)− ν (r) (s− r) ,

The first inequality holds because η is convex on S and −ν (r) is a subderivative of η (r) for

all r ∈ S. The second inequality holds because η (r) ≥ G (r) for all r ∈ S. Further, (η, ν)

satisfies (34) because (33) holds with equality for (r, s) in the support of the mechanism.

The case when G has the form illustrated on Figure 2 (b), rather than Figure 2 (a), is

completely analagous; so I omit the formal result and the corresponding proof.

Proposition 5 Let G be concave on [s, rm] and [r′m, s], convex on [rm, ra], and let G (rno) <

G(rno) (see Figure 2 (c)). Let rt, r
′
t ∈ S be uniquely determined by

G (rno) =
r′t − rno
r′t − rt

G (rt) +
rno − rt
r′t − rt

G (r′t)

and let rc ≡ E [s|s < sc] and r′c ≡ E [s|s ≥ sc] where the cutoff sc ∈ S is uniquely determined

by

G (rc) + g (rc) (sc − rc) = G (r′c) + g (r′c) (sc − r′c) .

1. If G (rc)+g (rc) (sc − rc) ≥ G (sc), then an optimal mechanism sends the two messages

rt and r′t (the sets of s for which each of the two messages are sent are not uniquely

determined).

2. If G (rc) ≤ G (rc) + g (rc) (sc − rc) < G (sc), then the optimal mechanism sends the

message rc > rt for s < sc and the message r′c < r′t for s ≥ sc.

3. If G (rc) + g (rc) (sc − rc) > G (rc), then the optimal mechanism sends the message

rf ≡ E [s|s ≤ sf ] > rt for s ≤ sf , reveals s for s ∈
(
sf , s

′
f

)
, and sends the message

r′f ≡ E
[
s|s ≥ s′f

]
< r′t for s ≥ s′f where the cutoffs sf , s

′
f ∈ S are uniquely determined

by

G (sf ) = G (rf ) + g (rf ) (sf − rf ) ,

G
(
s′f
)

= G
(
r′f
)

+ g
(
r′f
) (
s′f − r′f

)
.
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Proof. Similarly to the proof of Proposition 4, the pair (η, ν) satisfies (33) for all (r, s) ∈
S × S if for all r ∈ S, η is convex, −ν (r) is a subderivative of η (r), and η (r) ≥ G (r).

Further, this (η, ν) satisfies (34) if (33) holds with equality for (r, s) in the support of the

proposed mechanism.

Part 1. The required (η, ν), which satisfies (33) and (34), is given by

η (s) = G (rt) + g (rt) (s− rt) for all s ∈ S,

ν (r) = −g (rt) for all r ∈ S.

Finally, I show that there exists a mechanism that sends the two messages rt and r′t.

Note that rc ≤ rt and r′c ≥ r′t because

G (rc) + g (rc) (sc − rc) = G (r′c) + g (r′c) (sc − r′c) ≥ G (sc) .

Thus, there exist st, s
′
t ∈ S such that

F (s′t)− F (st) =
rno − rt
r′t − rt

,

E [s|s ∈ (st, s
′
t)] = r′t;

so one required mechanism sends the message rt for s ∈ [s, st]∪ [s′t, s] and the message r′t for

s ∈ (st, s
′
t).

Part 2. The required (η, ν), which satisfies (33) and (34), is given by

η (s) =

{
G (rc) + g (rc) (s− rc) for s ∈ [s, sc] ,

G (r′c) + g (r′c) (s− r′c) for s ∈ (sc, s] ,

ν(r) =

{
−g (rc) for r ∈ [s, sc] ,

−g (r′c) for r ∈ (sc, s] .

Part 3. The required (η, ν), which satisfies (33) and (34), is given by

η(s) =


G (rf ) + g (rf ) (s− rf ) for s ∈ [s, sf ] ,

G (s) for s ∈
(
sf , s

′
f

)
,

G
(
r′f
)

+ g
(
r′f
) (
s− r′f

)
for s ∈

[
s′f , s

]
,

ν(r) =


−g (rf ) for r ∈ [s, sf ] ,

−g (r) for r ∈
(
sf , s

′
f

)
,

−g
(
r′f
)

for r ∈
[
s′f , s

]
.
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Appendix D: Results for Binary Case

When the receiver has private information, in general, the problem of finding the optimal

mechanism becomes complicated, as Section 4 suggests. This appendix fully characterizes

the optimal mechanism when s and r are binary. More formally, assume that F puts strictly

positive probabilities only on s1 and s2 and that G (.|s1) and G (.|s2) put strictly positive

probabilities only on r1 and r2.

The binary case splits into two subcases. In the first subcase, one sender’s signal is more

favorable for acting than the other, regardless of r. The analysis of this subcase is two-fold.

First, it provides formal proofs for the motivating example of Section 3.1. Second, it shows

that the quantity-quality tradeoff of the motivating example carries on to a more general

setting. In the second subcase, different sender’s signals are favorable for acting depending

on r. In this subcase, the single-crossing assumption does not hold, so the analysis and

results are very different from those in the paper.

Using the revelation principle, for any mechanism, we can find an equivalent mechanism

that sends at most four messages: (i) m∅ that induces the receiver not to act for all r, (ii)

m1 that induces the receiver to act only if r = r1, (iii) m2 that induces the receiver to act

only if r = r2, and (iv) m1,2 that induces the receiver to act for all r.

For notational simplicity, this appendix uses different notation. In particular, denote

pj ≡ Pr (sj), pi|j ≡ Pr (ri|sj), uij ≡ u (ri, sj), ũij ≡ uijpi|j, ki = ũi1/ (ũi1 − ũi2), and φjK ≡
Prφ (m = mK , s = sj) for i, j = 1, 2 and K = {∅} , {1} , {2} , {1, 2}. Indexes i and j are

reserved for r and s, respectively. Note that ki is the cutoff posterior belief Pr φ (s2|m) at

which the receiver ri is indifferent to act because

E [u|ri] =
ũi1 (1− Pr φ (s2|m)) + ũi2 Pr φ (s2|m)

Pr (ri)
= 0.

Aligned Preferences

If one sender’s signal is more favorable for acting than the other for all r, then the analysis

is analogous to that of the binary example in Section 3.1. In particular, the sender faces the

quantity-quality tradeoff of messages, which is resolved by the choice of a mechanism that

sends messages with the highest marginal utility-price ratio.

To make the analysis non-redundant, assume that ui1 < 0 < ui2 for i = 1, 2, k2 < k1, and

p2 < k1. Strict inequalities rule out non-generic cases. Inequalities ui2 > ui1 and k2 < k1 can

be obtained by relabelling elements of S and R, respectively. If ui1 and ui2 had the same

sign for some i, then the receiver ri would take the same action regardless of the mechanism
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and the analysis would be as if the receiver was uninformed (Kolotilin (2014)). Finally, if

p2 ≥ k1, the no revelation mechanism would induce the receiver to act for all r, and, thus,

it would be optimal.

Under these assumptions, the optimal mechanism can take the three forms identified in

Section 3, as follows from:

Proposition 6 If ui1 < 0 < ui2, k2 < k1, and p2 < k1, then the optimal mechanism sends

two messages.

1. If p1|2 + p2|1ũ22/ũ21 ≥ ũ12/ũ11, it sends m1,2 and m∅: m1,2 with certainty if s = s2 and

with a non-trivial probability if s = s1.

2. If p1|2 + p2|1ũ22/ũ21 < ũ12/ũ11 and p2 < k2, it sends m2 and m∅: m2 with certainty if

s = s2 and with a non-trivial probability if s = s1.

3. If p1|2 +p2|1ũ22/ũ21 < ũ12/ũ11 and p2 ≥ k2, it sends m2 and m1,2: m2 with a non-trivial

probability both if s = s2 and if s = s1.

In all cases, m∅ reveals s1 in that Prφ (s2|m∅) = 0; m2 makes the receiver r2 indifferent

to act in that Prφ (s2|m2) = k2; and m1,2 makes the receiver r1 indifferent to act in that

Prφ (s2|m1,2) = k1. The receiver’s expected utility under the optimal mechanism is strictly

greater than that under the no revelation mechanism only in case 1.24

The intuition for Proposition 6 is analogous to that of the binary example in Section 3.1.

The receiver ri acts upon receiving a message m under a mechanism φ if Prφ (s2|m) ≥ ki.

If the message m persuades the receiver r1 to act, it also persuades the receiver r2 to act

because k2 < k1 by assumption. Thus, we can restrict attention to mechanisms with the

three messages m∅, m2, and m1,2. To maximize the probability that the receiver acts, each

message of the optimal mechanism either makes the receiver exactly indifferent to act for

some r (Prφ (s2|m1,2) = k1 and Prφ (s2|m2) = k2) or makes the receiver certain that s = s1

so that it is optimal not to act (Prφ (s2|m∅) = 0).

Thus, the sender’s problem is to maximize the probability that the receiver acts:(
k2p2|2 + (1− k2) p2|1

)
q2 + q1,2

24If s and r are independent, then pi|2 = pi|1 = Pr (ri), so ũij can be replaced with uij for all i, j = 1, 2 in

all expressions.
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over probabilities q∅, q2, and q1,2 of the messages m∅, m2, and m1,2 subject to the constraint

imposed by the prior distribution of s:

k2q2 + k1q1,2 = p2.

Similar to Section 3, we can interpret k2 and k1 as unit prices of sending m2 and m1,2, and

the probabilities
(
k2p2|2 + (1− k2) p2|1

)
and 1 as the marginal utilities of sending m2 and

m1,2. If p1|2 + p2|1ũ22/ũ21 ≥ ũ12/ũ11, then the marginal utility-price ratio is highest for m1,2,

and the sender prefers to send m1,2 than m2, so the optimal mechanism sends m1,2 and m∅.

If p1|2 + p2|1ũ22/ũ21 < ũ12/ũ11, then the ratio is highest for m2, and the sender prefers to

send m2 than m1,2. The optimal mechanism then depends on whether the no revelation

mechanism induces the receiver r2 to act or not. If so (p2 ≥ k2), then it sends the messages

m2 and m1,2, otherwise it sends the messages m2 and m∅.

Proof of Proposition 6. The optimal mechanism φ maximizes

Pr φ (a = 1) = p2|1φ
1
2 + p2|2φ

2
2 + φ1

1,2 + φ2
1,2

subject to

φjK ≥ 0 for j = 1, 2 and K = {∅} , {2} , {1, 2} ,
φj∅ + φj2 + φj1,2 = pj for j = 1, 2,

ũ21φ
1
2 + ũ22φ

2
2 ≥ 0,

ũ11φ
1
1,2 + ũ12φ

2
1,2 ≥ 0,

ũ21φ
1
∅ + ũ22φ

2
∅ < 0 or φ1

∅ = φ2
∅ = 0,

ũ11φ
1
2 + ũ12φ

2
2 < 0 or φ1

2 = φ2
2 = 0.

(35)

Consider the relaxed problem that omits the last two constraints with strict inequalities.

The solution to the relaxed problem satisfies φ2
∅ = 0, ũ21φ

1
2+ũ22φ

2
2 = 0, and ũ11φ

1
1,2+ũ12φ

2
1,2 =

0, otherwise we can increase Prφ (a = 1) by the following changes to the mechanism. If

φ2
∅ 6= 0, change φ̃2

1,2 = φ2
1,2 +φ2

∅ and φ̃2
∅ = 0; if ũ11φ

1
1,2 + ũ12φ

2
1,2 > 0, change φ̃1

1,2 = φ1
1,2 +ε and

either φ̃1
2 = φ1

2− ε or φ̃1
∅ = φ1

∅− ε; if ũ21φ
1
2 + ũ22φ

2
2 > 0, change φ̃2

1,2 = φ2
1,2 + ε and φ̃2

2 = φ2
2− ε

where ε is a small positive number. These observations together with k2 < k1 imply that

the solution to the relaxed problem satisfies the last two constraints and, therefore, it also

solves the original problem. The original problem simplifies to the maximization of

Pr φ (a = 1) =

(
1− ũ12

ũ11

)
p2 −

(
p1|2 +

ũ22
ũ21

p2|1 −
ũ12
ũ11

)
φ2
2

over φ2
2 subject to (

ũ12
ũ11
− ũ22

ũ21

)
φ2
2 ≤ p1 + ũ12

ũ11
p2.

0 ≤ φ2
2 ≤ p2.
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The solution to this problem is:

φ2
2 =


0 if p1|2 + ũ22

ũ21
p2|1 ≥ ũ12

ũ11
;

p2 if p1|2 + ũ22
ũ21
p2|1 <

ũ12
ũ11

and ũ21p1 + ũ22p2 < 0;

ũ21
ũ11p1+ũ12p2
ũ12ũ21−ũ11ũ22 if p1|2 + ũ22

ũ21
p2|1 <

ũ12
ũ11

and ũ21p1 + ũ22p2 ≥ 0.

Finally, φ2
1,2 = p2 − φ2

2, φ
1
2 = −φ2

2ũ22/ũ21, φ
1
1,2 = −φ2

1,2ũ12/ũ11, φ
2
∅ = 0, φ1

∅ = p1 − φ1
2 − φ1

1,2.

Under φno, the receiver’s expected utility is

E
[
max
a

Eφno [au (r, s) |r]
]

= max {0, ũ21p1 + ũ22p2} .

Under φ, the receiver’s expected utility is

E
[
max
a

Eφ [au (r, s) |r,m]
]

=
(
ũ11φ

1
1,2 + ũ12φ

2
1,2

)
+
(
ũ21φ

1
1,2 + ũ22φ

2
1,2

)
+
(
ũ21φ

1
2 + ũ22φ

2
2

)
= ũ21φ

1
1,2 + ũ22φ

2
1,2

=


(
ũ11ũ22−ũ12ũ21

ũ11

)
p2 if p1|2 + ũ22

ũ21
p2|1 ≥ ũ12

ũ11
;

0 if p1|2 + ũ22
ũ21
p2|1 <

ũ12
ũ11

and ũ21p1 + ũ22p2 < 0;

ũ21p1 + ũ22p2 if p1|2 + ũ22
ũ21
p2|1 <

ũ12
ũ11

and ũ21p1 + ũ22p2 ≥ 0.

The second equality holds because ũ11φ
1
1,2 + ũ12φ

2
1,2 = ũ21φ

1
2 + ũ22φ

2
2 = 0. The first case holds

because φ2
1,2 = p2 and φ1

1,2 = −p2ũ12/ũ11. The second case holds because φ1
1,2 = φ2

1,2 = 0. The

third case holds because φ1
1,2 = p1−φ1

2, φ
2
1,2 = p2−φ2

2, and ũ21φ
1
2 + ũ22φ

2
2 = 0. Therefore, the

receiver’s expected utilities under φ and φno differ if and only if p1|2 + p2|1ũ22/ũ21 ≥ ũ12/ũ11.

Misaligned Preferences

The main goal of this section is to illustrate the variety of possible optimal mechanisms

in the case where different sender’s signals are more favorable for acting depending on the

receiver’s type. For example, a school may know whether a student is good at natural

sciences or liberal arts, but it may be unsure which of these two qualities are valued by the

employer. Note that this case violates the single-crossing assumption of Section 4.

All forms that the optimal mechanism can take are characterized by Proposition 7. Sim-

ilar to the previous subcase, to make the analysis non-redundant, I impose certain assump-

tions.

Proposition 7 If u12 < 0 < u11, u21 < 0 < u22, and p2 > k1, then the optimal mechanism

sends at most two messages.
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1. If k2 ≤ k1, it sends m2 and m1,2. The message m2 reveals s2 in that Prφ (s2|m2) = 1

and the message m1,2 makes the receiver r1 indifferent to act in that Prφ (s2|m1,2) = k1.

2. If k2 > k1, then depending on parameters, it sends either only m2 or both m2 and

m1. If it sends both m2 and m1, there are four cases in which each message mi either

reveals si in that Prφ (si|mi) = 1, or makes the receiver ri indifferent to act in that

Prφ (s2|mi) = ki.

I only sketch the intuition for this proposition because it is tedious and involves many

cases. Note that a message m that assigns a higher probability to s2 is more persuasive

for the receiver r2, and less persuasive for the receiver r1. The messages m1 and m2 are

always feasible because revealing s1 induces the receiver r1 to act, and revealing s2 induces

the receiver r2 to act. However, if k2 ≤ k1 (part 1 of Proposition 7), then the message m1,2

is feasible, but the message m∅ is not. In this case, the sender wants to send m1,2 as often as

possible. As a result, the optimal mechanism sends two types of messages: those that give

minimal possible evidence to make the receiver act regardless of his signal, and those that

reveal s. In contrast, if k1 < k2 (part 2 of Proposition 7), then the message m∅ is feasible,

but the message m1,2 is not. In this case, the optimal mechanism can take five different

forms, which, in particular, include the full revelation and no revelation mechanisms.

Proof of Proposition 7. The optimal mechanism φ maximizes

Pr φ (a = 1) = p1|1φ
1
1 + p1|2φ

2
1 + p2|1φ

1
2 + p2|2φ

2
2 + φ1

1,2 + φ2
1,2

subject to

φjK ≥ 0 for j = 1, 2 and K = {∅} , {1} , {2} , {1, 2} ,
φj∅ + φj1 + φj2 + φj1,2 = pj for j = 1, 2,

ũi1φ
1
i + ũi2φ

2
i ≥ 0 for i = 1, 2,

ũi1φ
1
1,2 + ũi2φ

2
1,2 ≥ 0 for i = 1, 2,

ũi1φ
1
3−i + ũi2φ

2
3−i < 0 or φ1

3−i = φ2
3−i = 0 for i = 1, 2,

ũi1φ
1
∅ + ũi2φ

2
∅ < 0 or φ1

∅ = φ2
∅ = 0 for i = 1, 2.

Note that ũ11 Prφ (s1|m) + ũ12 Prφ (s2|m) ≥ 0 is equivalent to Prφ (s2|m) ≤ k1, and

ũ21 Prφ (s1|m) + ũ22 Prφ (s2|m) ≥ 0 is equivalent to Prφ (s2|m) ≥ k2. Therefore, the receiver

r1 acts if Prφ (s2|m) ≤ k1, and the receiver r2 acts if Prφ (s2|m) ≥ k2. If k2 ≤ k1, then no

mechanism can send the message m∅ because Prφ (s2|m) < k2 and Prφ (s2|m) > k1 cannot

both hold. On the contrary, if k2 > k1, then no mechanism can send the message m1,2

because Prφ (s2|m) ≥ k2 and Prφ (s2|m) ≤ k1 cannot both hold. Consider these two cases in

turn.
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Let k2 ≤ k1 and, thus, φ1
∅ = φ2

∅ = 0. Consider the relaxed problem with the constraints

φjK ≥ 0, φj1 + φj2 + φj1,2 = pj, ũ11φ
1
1 + ũ12φ

2
1 ≥ 0, and ũ11φ

1
1,2 + ũ12φ

2
1,2 ≥ 0 for all K and j.

Note that the last two constraints imply ũ11
(
φ1
1 + φ1

1,2

)
+ ũ12

(
φ2
1 + φ2

1,2

)
≥ 0, so the solution

to the relaxed problem satisfies φ1
1 = φ2

1 = 0, otherwise we can increase Prφ (a = 1) by the

following changes to the mechanism: φ̃j1,2 = φj1,2 + φj1 and φ̃j1 = 0 for j = 1, 2. Substituting

φj1,2 = pj − φj2, the relaxed problem simplifies to: φ1
2 and φ2

2 maximize

Pr φ (a = 1) = 1− p1|1φ1
2 − p1|2φ2

2

subject to

φj2 ∈ [0, pj] for j = 1, 2,

ũ11φ
1
2 + ũ12φ

2
2 ≤ ũ11p1 + ũ12p2.

The solution to this problem is (φ1
2, φ

2
2) = (0, (ũ11p1 + ũ12p2) /ũ12). It is also the solution to

the original problem because it satisfies all constraints of the original problem.

Let k2 > k1 and, thus, φ1
1,2 = φ2

1,2 = 0. In the optimal mechanism, φ1
∅ = φ2

∅ = 0, otherwise

we can increase Prφ (a = 1) by the following changes to the mechanism: φ̃ii = φii + φi∅ and

φ̃i∅ = 0 for i = 1, 2. Consider the relaxed problem with the constraints φj1, φ
j
2 ≥ 0, φj1+φ

j
2 = pj,

ũ11φ
1
1 + ũ12φ

2
1 ≥ 0, and ũ21φ

1
2 + ũ22φ

2
2 ≥ 0 for all j = 1, 2. Substituting φj1 = pj − φj2, the

relaxed problem simplifies to: φ1
2 and φ2

2 maximize

Pr φ (a = 1) = p1|1p1 + p1|2p2 +
(
1− 2p1|1

)
φ1
2 +

(
1− 2p1|2

)
φ2
2

subject to

φj2 ∈ [0, pj] for j = 1, 2,

ũ11φ
1
2 + ũ12φ

2
2 ≤ ũ11p1 + ũ12p2,

ũ21φ
1
2 + ũ22φ

2
2 ≥ 0.

The coefficients 1 − 2p1|1 and 1 − 2p1|2 in the objective function can have any sign and,

therefore, any extreme point of the constraints can be a solution to this problem. If p2 ≥ k2,

the extreme points of (φ1
2, φ

2
2) are (0, p2), (0, (ũ11p1 + ũ12p2) /ũ12), and (p1, p2). If p2 < k2, the

extreme points of (φ1
2, φ

2
2) are (0, p2), (0, (ũ11p1 + ũ12p2) /ũ12), (−p2ũ22/ũ21, p2), (ũ22,−ũ21) ·

(ũ11p1 + ũ12p2) / (ũ11ũ22 − ũ12ũ21). All these extreme points can be a solution to the original

problem because they satisfy all constraints of the original problem.
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