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Abstract

We present a signalling theory of quantitative easing in which open market operations that change the

duration of outstanding nominal government debt affect the incentives of the central bank in determining

the real interest rate. In a time consistent (Markov-perfect) equilibrium of a sticky-price model with

coordinated monetary and fiscal policy, we show that shortening the duration of outstanding government

debt provides an incentive to the central bank to keep short-term real interest rates low in future in order

to avoid capital losses. In a liquidity trap situation then, where the current short-term nominal interest

rate is up against the zero lower bound, quantitative easing can be effective to fight deflation and a

negative output gap as it leads to lower real long-term interest rates by lowering future expected real

short-term interest rates. We show illustrative numerical examples that suggest that the benefits of

quantitative easing in a liquidity trap can be large in a way that is not fully captured by some recent

empirical studies.
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1 Introduction

During the recent global financial crisis, central banks in many advanced economies such as the United

States engaged in various forms of “unconventional” monetary policy actions as the short-term interest

rate, the traditional policy instrument, was up against the zero lower bound. One form of such policy

actions involved changes in the size and/or composition of the central bank’s balance sheet. In particular,

the Federal Reserve in the United States carried out several large scale purchases of assets in recent years,

a program often referred to collectively as Large Scale Asset Purchases (LSAPs). A considerable part of

LSAPs involved buying long term government bonds, or “quantitative easing,”a naming convention we use

here.

What is quantitative easing? It is when the government buys long-term government debt with money.

Since the nominal interest rate was zero in recent years when this policy was implemented in the United

States, it makes no difference if this was done by printing money (or more precisely bank reserves) or by

issuing short-term government debt: both are government issued papers that yield a zero interest rate. From

the perspective of the government as a whole, at least, quantitative easing at zero nominal interest rates can

then simply be thought of as shortening the maturity of outstanding government debt.1 The government is

simply exchanging longer term liabilities in the hands of the public with shorter term ones.

The main goal of quantitative easing in the United States was to reduce long-term interest rates, even

when the short-term nominal interest rate could not be reduced further, and thereby, stimulate the economy.

Indeed, several empirical studies find evidence of reduction in long-term interest rates following these policy

interventions by the Federal Reserve. For example, Gagnon et al (2011) estimate that the 2009 program

that involved buying various types of debt worth $1.75 trillion reduced long-term interest rates by 58 basis

points while Krishnamurthy and Vissing-Jorgensen (2011) estimate that the 2010 program that involved

buying long-term government debt worth $600 billion reduced long-term interest rates by 33 basis points.

In addition, Hamilton and Wu (2012), Swanson and Williams (2013), and Bauer and Rudebusch (2013) also

find similar effects on long-term interest rates.2

From a theoretical perspective however, the effect of such policy is not obvious since open market oper-

ations of this kind are neutral (or irrelevant) in standard macroeconomic models. This was pointed out first

in a well-known contribution by Wallace (1981) and further extended by Eggertsson and Woodford (2003)

to a model with sticky prices and an explicit zero lower bound on nominal interest rates. These papers

showed how absent some restrictions in asset trade that prevent arbitrage, a change in the relative supplies

of various assets in the hands of the private sector has no effect on equilibrium quantities and asset prices

in prototypical macroeconomic models.

For this reason, some papers have recently incorporated frictions such as participation constraints due

to “preferred habitat”motives in order to make assets of different maturities imperfect substitutes. This

in turn negates the neutrality of open market operations as in such an environment, quantitative easing

can reduce long-term interest rates because it decreases the risk-premium. For example, Chen, Curdia, and

Ferrero (2012) augment a quantitative sticky price model with such segmented market frictions and show

that purchases of long-term bonds by the central bank can reduce long-term interest rates by decreasing

the risk-premium. They nevertheless find the effects to be fairly modest: based on their estimated model,

1 Indeed our model will be one where we will consider a consolidated government budget constraint and joint conduct of
optimal monetary and tax policy.

2Note however that empirical studies typically measure nominal interest rates, while theoretically, it is the ability to influence
real interest rates that matter. This issue is quite important and we emphasize it in detail later.
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they find that a $600 billion reduction in outstanding long-term debt, along with a commitment to keep

short-term interest rates at zero for 4 quarters, increases inflation by 3 basis points (annualized) and GDP

growth by 0.13% (annualized).

As Woodford (2012) argues however (building on Eggertsson and Woodford (2003)), quantitative easing

need not be effective only because it reduces risk premiums. It can also reduce long-term interest rates if

such policy intervention signals to the private sector that the central bank will keep the short-term interest

rates low once the zero lower bound is no longer a constraint in the future. In fact, arguably, much of the

findings of the empirical literature on reduction of long-term interest rates due to quantitative easing can

be attributed to expectations of low future short-term interest rates. Indeed, Krishnamurthy and Vissing-

Jorgensen (2011) and Bauer and Rudebusch (2013) find evidence in support of this channel in their study

of the various quantitative easing programs.3

Our contribution is to provide a formal theoretical model of such a “signalling” role of quantitative

easing in a standard general equilibrium sticky price model.4 In particular, we consider coordinated optimal

monetary and fiscal policy under discretion and show that in a Markov-perfect (time-consistent) equilibrium,

shortening the duration of outstanding government debt provides an incentive to the central bank to keep

the short-term real interest rate low in the future. This constitutes optimal policy under discretion because

it avoids capital losses on the government’s balance sheet, which if realized, would entail raising taxes that

are costly in the model. The key intuition for this result is that if the government holds larger amount of

short-term debt then current real short term rate directly affects the cost of rolling the debt over period by

period, while the cost of rolling over long-term debt is not affected as strongly period by period (since the

interest rate on that debt is predetermined at the time the policy is set). This implies that shortening the

maturity of outstanding debt increases the incentive of the government to keep real rates low.

In a liquidity trap situation, where the current short-term nominal interest rate is up against the zero

lower bound and the economy suffers from deflation and a large negative output gap, it is well known that

signalling about future policy can be very effective. For example, Krugman (1998) emphasizes the importance

of raising inflation expectations and Eggertsson and Woodford (2003) emphasize the commitment to lower

future short-term nominal interest rate and allowing output to overshoot its steady state level. But are

these type of commitments credible? In fact, it is well-understood that commitment to future expansionary

policy at the zero lower bound is diffi cult due to time-inconsistency problems. While the public understands

the benefits today of committing to lower future real interest rates, it also appreciates the government’s

incentive in the future to renege on these promises once the economy has recovered (this leads to the so

called “deflation bias”developed in Eggertsson (2006)). Our main result, then, is that quantitative easing,

or shortening the duration of government debt, makes promises of expansionary future policy “credible”

because it provides an incentive to the central bank to keep short-term real interest rates low in future to

avoid balance sheet losses. This mitigates the extent of deflation and negative output gap that would occur

otherwise in the Markov-perfect equilibrium.5

3Woodford (2012) makes a similar argument regarding empirical evidence on most recent balance sheet policies by the
Federal Reserve.

4Gagnon et al (2011) label this role played by the expected path of future short-term interest rates as a “signalling”role for
quantitative easing. In the literature on central bank intervention in foreign exchange markets, this term has been used often
and appears to have been first coined by Mussa (1981) to discuss how foreign exchange interventions might be used to signal
future changes in monetary policy.

5Jeanne and Svensson (2007) assume net worth concerns on the part of the central bank directly and show how buying
foreign exchange is useful during a liquidity trap as it commits the central bank to not appreciating the exchange rate in
future (since doing so would entail capital losses on the central bank’s balance sheet). Berriel, Bhattarai, and Mendes (2013)
show that buying long-term bonds acts as a commitment device for the same reason. The main difference in this paper is the
consideration of joint conduct of monetary and fiscal policy along with a welfare-theoretic loss function for the government.
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In our calibrated model, we show numerical experiments in which these effects of quantitative easing

can be very large. For example, with government debt maturity of 16 quarters, we calibrate the size of

the negative demand shock (that makes the zero lower bound binding) such that output drops by 10% and

(annualized) inflation by 2%. In such a case, reducing the duration of government debt by 7 months decreases

(annualized) deflation and the negative effect on output by 95.4 and 140 basis points respectively.6 This

suggests that the signalling channel may explain all the effects of quantitative easing found in the empirical

literature. In addition, we show that if the duration were to be reduced by 20.6 months, that is triple the

size of our baseline experiment for quantitative easing, the negative output gap at the zero lower bound

would be completely eliminated.

Before presenting the model we want to clarify an important element of our analysis. A key to un-

derstanding optimal policy in the New Keynesian model at the zero bound is that it involves committing

to lower future short-term real interest rates.7 The short term real interest rate is the difference between

future short-term nominal interest rate and expected inflation. A lower short-term real interest rate can be

achieved by either a lower future short-term nominal interest rate or higher future expected inflation. A

commitment of this kind will under some parameterization of the model be achieved via higher expected

inflation and higher future short-term nominal interest rates —even if the difference between the two (the

real rate) is going down. An implication of this is that a successful policy of quantitative easing aimed at

lowering long-term real interest rate may involve an increase in expected future nominal interest rates and

therefore, an increase in long-term nominal rates at the zero lower bound. This is relevant because some

empirical analyses of the effect of quantitative easing focus only on long-term nominal interest rates, which

our analysis suggests is not a suffi cient statistic. Even if long-term nominal interest rate decline very little

in response to quantitative easing, or even if they increase, this does not by itself suggest that the policy is

ineffective, as long as the real interest rate is declining.

Finally, while the paper connects with work related to the zero lower bound in models with nominal

rigidities, it also is related to the theoretical literature on how the maturity structure of debt can be manip-

ulated to eliminate the dynamic inconsistency found in many monetary models (in particular the “inflation

bias”) such as Lucas and Stokey (1983), Persson, Persson, and Svensson (1987 and 2006), and Alvarez,

Kehoe, and Neumeyer (2004). While the focus of these papers is generally on policies that eliminates the

incentive to inflate, the inflation bias, (and thus generally imply a lengthening of the duration of government

debt relative to one-period debt), our application can be thought of as precisely the opposite, that is, the

maturity structure of debt is made shorter to solve the “deflation bias.”

2 The Model

2.1 Private sector

The model is a standard general equilibrium sticky-price closed economy set-up with an output cost of

taxation, along the lines of Eggertsson (2006). The government conducts coordinated monetary and fiscal

policy under discretion. While it may seem like a distraction to write out the fully non-linear model and

define the equilibrium in that context, as we will later on analyze a linear quadratic version of this model,

6We use these numbers for illustration based on estimates in Chadha, Turner, and Zampoli (2013), which suggest that the
average maturity of treasury debt held outside the Federal Reserve was around 4 years in the last 10 years and that recent
Federal Reserve balance sheet policies reduced the maturity by around 7 months.

7Werning (2012) makes a related point regarding the ultimate goal of optimal policy as one of generating an output boom
once the trap is over.
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this is useful for two reasons. First, we will formally show that the linearized first-order conditions of the

government’s original non-linear problem are the same as in our linear quadratic model (and this in general

need not be the case, see e.g. Eggertsson (2006)). Second, the non-linear version of the problem will be

important once we allow for fully time-varying duration of government debt, where the linear quadratic

approximation is no longer valid.

The main difference in the model from the literature is the introduction of long-term government debt.

A representative household maximizes expected discounted utility over the infinite horizon

Et

∞∑
t=0

βtUt = Et

∞∑
t=0

βt [u (Ct) + g (Gt)− v(ht))] ξt (1)

where β is the discount factor, Ct is household consumption of the composite final good, Gt is government

consumption of the composite final good, ht is quantity supplied of labor of type i, and ξt is a shock. Et
is the mathematical expectation operator conditional on period-t information, u (.) is concave and strictly

increasing in Ct, g (.) is concave and strictly increasing in Gt, and v (.) is increasing and convex in ht.8

The composite final good is an aggregate of a continuum of varieties indexed by i, Ct =
∫ 1

0

[
ct(i)

ε−1
ε di

] ε
ε−1

,

where ε > 1 is the elasticity of substitution among the varieties. The optimal price index for the composite

final good is given by Pt =
[∫ 1

0
pt(i)

1−εdi
] 1
1−ε

, where pt(i) is the price of the variety i. The demand for

the individual varieties is then given by ct(i)
Ct

=
(
pt(i)
Pt

)−ε
. Finally, Gt is defined analogously to Ct and so

we omit detailed description of government spending.

The household is subject to a sequence of flow budget constraints

PtCt +BSt + StBt + Et{Qt,t+1At+1} ≤ ntht + (1 + it−1)BSt−1 + (1 + ρSt)Bt−1 +At − PtTt +

∫ 1

0
Zt(i)di (2)

where nt is nominal wage, Zt(i) is nominal profit of firm i, BSt is the household’s holding of one-period

risk-less nominal government bond at the beginning of period t + 1, Bt is a perpetuity bond, St its price,

and ρ its decay factor (further described below). At+1 is the value of the complete set of state-contingent

securities at the beginning of period t+ 1 and Qt,t+1 is the stochastic discount factor between periods t and

t+1 that is used to value random nominal income in period t+1 in monetary units at date t.9 Finally, it−1 is

the nominal interest rate on government bond holdings at the beginning of period t and Tt is government

taxes.

The way we introduce long term bonds into the model is to assume that government debt not only

takes the form of a one period riskfree debt, BSt , but that the government also issues a perpetuity in period

t which pays ρj dollars j + 1 periods later, for each j ≥ 0 and some decay factor 0 ≤ ρ < β−1.10 St is

the price of the perpetuity nominal bond which depends on the decay factor ρ. The main convenience of

introducing long term bond in this way is that we can consider government debt of arbitrary duration. For

example, a value of ρ = 0 implies that this bond is simply a short-term bond while ρ = 1 corresponds to

a classic console bond. More generally, in an environment with stable prices, the duration of this bond is

(1− βρ)−1. Thus, this simple assumption allows us to explore a change in the duration of government debt

in a transparent way. The appendix contains details on why the budget constraint takes the form (2). In

particular, the modelling of long-term bond in this way admits a simple recursive formulation of the price

of old government bonds.

8We abstract from money in the model and are thus directly considering the “cash-less limit.”
9The household is subject to a standard no-Ponzi game condition.
10We follow Woodford (2001).
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For now, observe that we treat ρ as a constant. We will explore a one-time reduction in this duration as

a main "comparative static" of interest. In other words, a reduction in ρ answers the question: What does

a permanent reduction in the maturity of government debt do? Toward the end of the paper, however, we

will extend the analysis so that ρ becomes a time varying choice variable ρt. The main reason for our initial

benchmark assumption is simplicity (and the fact that we get a clean comparative static). But perhaps

more importantly, we will see later that a one-time reduction in ρ (in a liquidity trap) turns out to be a

reasonably good approximation in our model because ρt is close to a random walk under optimal policy

under discretion at a positive interest rate.

The maximization problem of the household is now entirely standard, with the additional feature of the

portfolio choice between long and short term bonds.11 Let us now turn to the firm side of the model.

There is a continuum of monopolistically competitive firms indexed by i. Each firm produces a variety

i according to the production function that is linear in labor yt(i) = ht(i). As in Rotemberg (1983), firms

face a cost of changing prices given by d
(

p(i)
pt−1(i)

)
. This adjustment cost makes the firm’s pricing problem

dynamic. The demand function for variety i is given by

yt(i)

Yt
=

(
pt(i)

Pt

)−ε
(3)

where Yt is total demand for goods. The firm maximizes expected discounted profits

Et

∞∑
s=0

Qt,t+sZt+s(i) (4)

where the period profits Zt(i) are given by

Zt(i) =

[
(1 + s)Ytpt(i)

1−εP εt − nt(i)Ytpt(i)−εP εt − d
(

pt(i)

pt−1(i)

)
Pt

]
where s is a production subsidy which we will set to eliminate the steady state distortion of monopolistic

competition as is common in the literature.12

We can now write down the necessary conditions for equilibrium that arise from the maximization

problems of the private sector described above. We focus on a symmetric equilibria where all firms charge

the same price and produce the same amount of output. Note that these conditions hold for any government

policy.

The households optimality conditions are given by

vh (ht)

uC (Ct)
=
nt
Pt

(5)

1

1 + it
= Et

[
β
uC(Ct+1)ξt+1

uC(Ct)ξt
Π−1
t+1

]
(6)

St = Et

[
β
uC(Ct+1)ξt+1

uCCt)ξt
Π−1
t+1 (1 + ρSt+1)

]
(7)

11The problem of the household is thus to choose {Ct+s, ht+s(i), BSt+s, Bt+s, At+s} to maximize (1) subject
to a sequence of flow budget constraints given by (2), while taking as exogenously given initial wealth and
{Pt+s,nt+s(i), it+s, St+s(ρ), Qt,t+s, ξt+s, Zt+s(i), Tt+s}.
12The problem of the firm is thus to choose {pt+s(i)} to maximize (4), while taking as exogenously given
{Pt+s,Yt+s, nt+s(i), Qt,t+s, ξt+s}
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where Πt = Pt
Pt−1

is gross inflation.13 The firm’s optimality condition from price-setting is given by

εYt [uC (Ct)− vy(Yt)] ξt + uC(Ct)ξtd
′ (Πt) Πt = Et [βuCCt+1)ξt+1d

′ (Πt+1) Πt+1] (8)

where with some abuse of notion we have replaced vh with vy since in a symmetric equilibrium ht(i) =

yt(i) = Yt.

2.2 Government

There is an output cost of taxation (for example, as in Barro (1979)) captured by the function s(Tt−T ) where

T is the steady-state level of taxes. Thus, in steady-state, there is no tax cost. Total government spending

is then given by

Ft = Gt + s(Tt − T )

where Gt is aggregate government consumption of the composite final good defined before.

It remains to write down the (consolidated) flow budget constraint of the government. Note that the

government issues both a one-period bond BSt and the perpetuity Bt. We can write the flow budget constraint

as

BSt + StBt = (1 + it−1)Bt−1 + (1 + ρSt)Bt−1 + Pt (Ft − Tt) .

Next, we assume that the one-period bond is in net-zero supply (i.e. BSt = 0, which makes clear that we

only introduce this bond explicitly as the risk free short term nominal rate is the key policy instrument of

monetary policy), and write the budget constraint in real terms as

Stbt = (1 + ρSt) bt−1Π−1
t + (Ft − Tt) (9)

where bt = Bt
Pt
. We now define fiscal policy as the choice of Tt, Ft , and bt. For simplicity, we will from now

on suppose that total government spending is constant so that Ft = F. Monetary policy is the choice of it.

We simply impose the zero bound constraint on the setting of monetary policy so that14

it ≥ 0. (10)

2.3 Private sector equilibrium

The goods market clearing condition gives the overall resource constraint as

Yt = Ct + Ft + d (Πt) . (11)

We can then define the private sector equilibrium, that is the set of possible equilibria that are consistent

with household and firm maximization and the technological constraints of the model. A private sector

equilibrium is a collection of stochastic processes {Yt+s, Ct+s, bt+s, St+s, Πt+s, it+s, Qt,t+s, Tt+s, Ft+s,

Gt+s} for s ≥ 0 that satisfy equations (5)-(7), (8), (9), and (11), for each s ≥ 0, given bt−1 and an

exogenous stochastic process for {ξt+s}. To determine the set of possible equilibria in the model, we now
need to be explicit about how policy is determined.

13We may also append a standard transversality condition as a part of these conditions or a natural borrowing limit.
14This bound can be explicitly derived in a variety of environment, see e.g. Eggertsson and Woodford (2003).
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3 Markov-perfect Equilibrium

We characterize a Markov-perfect (time-consistent) Equilibrium in which the government cannot commit

and acts with discretion every period.15 In particular, we consider coordinated monetary and fiscal policy,

where the central bank and the treasury conduct optimal monetary and fiscal policy under discretion. A

key assumption in a Markov-perfect Equilibrium is that government policy cannot commit to the actions

for the future government. Following Lucas and Stokey (1983), however, we suppose that the government is

able to commit to paying back the nominal value of its debt.16 The only way the government can influence

future governments, then, is via any endogenous state variables that may enter the private sector equilibrium

conditions. Before writing up the problem of the government, it is therefore necessary to write the system

in a way that makes clear what are the endogenous state variables of the game we study.

Define the expectation variables fEt , g
E
t , and h

E
t . The necessary and suffi cient condition for a private

sector equilibrium is now that the variables {Yt, Ct, bt, St, Πt, it, Tt} satisfy: (a) the following conditions

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π−1
t + (F − Tt) (12)

1 + it =
uC (Ct) ξt
βfEt

, it ≥ 0 (13)

St(ρ) =
1

uC (Ct) ξt
βgEt (14)

βhEt = εYt

[
ε− 1

ε
uC (Ct) ξt − ṽy (Yt) ξt

]
+ uC (Ct) ξtd

′ (Πt) Πt (15)

Yt = Ct + F + d (Πt) (16)

given bt−1 and the expectations fEt , g
E
t , and h

E
t ; (b) expectations are rational so that

fEt = Et
[
uC (Ct+1) ξt+1Π−1

t+1

]
(17)

gEt = Et
[
uC (Ct+1) ξt+1Π−1

t+1 (1 + ρSt+1(ρ))
]

(18)

hEt = Et [uC (Ct+1) ξt+1d
′ (Πt+1) Πt+1] . (19)

Note that the possible private sector equilibrium defined above depends only on the endogenous state

variable bt−1 and shocks ξt. Given that the government cannot commit to future policy (apart from through

the endogenous state variable), a Markov-perfect Equilibrium then requires that the expectations fEt , g
E
t ,and

hEt are only a function of these two state variables, i.e, we can define the expectation functions

fEt = f̄E(bt, ξt) (20)

gEt = ḡE(bt, ξt) (21)

hEt = h̄E(bt, ξt). (22)

We can now write the discretionary government’s optimization problem as a dynamic programming

problem

V (bt−1, ξt) = max
it,Tt

[U (.) + βEtV (bt, ξt+1)] (23)

15See Maskin and Tirole (2001) for a formal definition of the Markov-perfect equilibrium.
16One could model this more explicitly by assuming that the cost of outright default is arbitrarily high.
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subject to the private sector equilibrium conditions (12)-(16) and the expectation functions (20)-(22). Note

that in equilibrium, the expectation functions satisfy the rational expectation restrictions (17)-(19). Here,

U (.) is the utility function of the household in (1) and V (.) is the value function.17 The detailed formulation

of this maximization problem and the associated first-order necessary conditions, as well as their linear

approximation, are provided in the appendix.18

4 Linear-quadratic approach

Rather than studying the fully non-linear policy problem, we will instead do a linear-quadratic approximation

of the policy problem. The main reason for this approach is that it clarifies the interpretation of our result,

and connects more closely to some of the earlier literature. As we will see shortly (Proposition 1), however,

this approach yields the same solution as if we would have approximated directly the non-linear first-order

conditions of the problem (23). When moving to time-varying ρ, however, a linear quadratic approximation

will no longer be valid, in which case we will only rely on the fully non-linear statement of the government’s

decision problem.

We approximate our model around an effi cient non-stochastic steady-state with zero inflation.19 More-

over, there are no tax collection costs in steady-state20 . Thus, there is a non-zero steady-state level of debt.21

In steady-state, we assume that there is some fixed total market-value of public debt Sb = Γ̄. Then, the

following relationships hold

1 + i = β−1, S =
β

1− ρβ , b =
1− ρβ
β

Γ̄ and T = F +
1− β
β

Γ̄.

We log-linearize the private sector equilibrium conditions around the steady state above to get the relation-

ships

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1 − ret ) (24)

πt = κŶt + βEtπt+1 (25)

b̂t = β−1b̂t−1 − β−1πt − (1− ρ)Ŝt − ψT̂t (26)

Ŝt = −ı̂t + ρβEtŜt+1 (27)

where κ and σ are a function of structural model parameters that do not depend upon ρ and ret is the

effi cient rate of interest that is a function of the shock ξt.22 The coeffi cient ψ ≡ T
Γ̄
is also independent of ρ

in our experiment.23

Here, (24) is the linearized household Euler equation, (25) is the linearized Phillips curve, (26) is the

linearized government budget constraint, and (27) is the linearized forward-looking asset-pricing condition.24

17Using compact notation, note that we can write the utility function as [u (Ct) + g (F − s(Tt − T ))− v (Yt)]ξt.
18Note here that we assume that the government and the private-sector move simultaneously.
19Variables without a t subscript denote a variable in steady state. Note that output is going to be at the effi cient level in

steady state because of the assumption of the production subsidy (appropriately chosen) we have made before.
20We can think of this as being due to a limited set of lump sum taxation.
21The steady-state is effi cient even with non-zero steady-state debt because of our assumption that taxes do not entail output

loss in steady-state.
22The details of the derivation are in the appendix.
23Since we are thinking of changes in ρ in our experiment as exchanging short bonds with long bonds — effectively reduc-

ing/increasing ρ —this interpretation would imply that total value of debt in steady-state — Γ̄—should remain unchanged.
24Variables with hats denote log-deviations from steady state except for the nominal interest rate, which is given as ı̂t = it−i

1+i
.

Since in the non-stochastic steady state with zero inflation, 1+ i = 1
β
, this means that the zero lower bound on nominal interest
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(24) and (25) are standard relationships depicting how current output depends on expected future output

and the current real interest rate gap and how current inflation depends on expected future inflation and

the current output respectively.25

(26) shows that since debt is nominal, its real value is decreased by inflation. Higher taxes also reduce the

debt burden. Moreover, an increase in the price of the perpetuity bond decreases the real value of debt, with

the effect depending on the duration of debt: longer the duration, lower is the effect of the bond price on

debt. Finally, (27) shows that the price of the perpetuity bond is determined by (the negative of) expected

present value of future short-term interest rates. Hence, lower current or future short-term nominal interest

rate will increase the price of the perpetuity bond. Note that when ρ = 0, all debt is of one-period duration

and (26) reduces to the standard linearized government budget constraint while (27) reduces to Ŝt = −ı̂t.26

A second-order approximation of household utility around the effi cient non-stochastic steady state gives

Ut = −
[
λππ

2
t + Ŷ 2

t + λT T̂
2
t

]
(28)

where λπ and λT are a function of structural model parameters.27 Compared to the standard loss-function

in models with sticky prices that contains inflation and output, (28) features losses that arise from output

costs of taxation outside of steady-state.

To analyze optimal policy under discretion in the linear-quadratic framework we once again maximize

utility, subject the now linear private sector equilibrium conditions, taking into account that the expectation

are functions of the state variables of the game. In the linear system, the exogenous state is now summarized

with ret while the endogenous state variable is once again b̂t−1.Moreover, the expectation variables appearing

in the system are now EtŶt+1, EtŜt+1, and Etπt+1. Accordingly, we will define the game in terms of the state

variables (ret , b̂t−1) and the government now takes as given the expectation functions Ȳ E(b̂t, r
e
t ), S̄

E(b̂t, r
e
t ),

and π̄E(b̂t, r
e
t ).

The discretionary government’s optimization problem can then be written recursively as a linear-quadratic

dynamic programming problem

V (b̂t−1, r
e
t ) = min[λππ

2
t + Ŷ 2

t + λT T̂
2
t + βEtV (b̂t, r

e
t+1)]

s.t.

Ŷt = Ȳ E(b̂t, r
e
t )− σ(̂ıt − π̄E(b̂t, r

e
t )− ret )

πt = κŶt + βπ̄E(b̂t, r
e
t )

b̂t = β−1b̂t−1 − β−1πt − (1− ρ)Ŝt − ψT̂t

Ŝt = −ı̂t + ρβS̄E(b̂t, r
e
t )

Observe that once again, in equilibrium, the expectation functions need to satisfy the rational expectations

restrictions that EtŶt+1 = Ȳ E(b̂t, r
e
t ), EtSt+1 = S̄E(b̂t, r

e
t ), and Etπt+1 = π̄E(b̂t, r

e
t ).

We prove in the proposition below that this linear-quadratic approach gives identical linear optimality

rates imposes the following bound on ı̂t : ı̂t ≥ − (1− β) .
25We write directly in terms of output rather than the output gap since we will not be considering shocks that perturb the

effi cient level of output in the model.
26 It is important to point out one techical detail in this case. The interpretation in this case of b̂t is that it is the real value

of the debt inclusive of the interest rate payment to be paid next period, that is, if all debt were one period bt = (1 + it)
BSt
Pt
.

27The details of the derivation are in the appendix. In particular, λπ = ε
k
.
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conditions as the one obtained by linearizing the non-linear optimality conditions of the original non-linear

government maximization problem that we described above. This provides the formal justification of our

simplified approach.

Proposition 1 The linearized dynamic system of the non-linear Markov Perfect Equilibrium is equivalent

to the linear dynamic system of the linear-quadratic Markov Perfect Equilibrium.

Proof. In Appendix.

4.1 Solution at positive interest rates

The complication in solving a Markov-perfect Equilibrium is that we do not know the unknown expectation

functions π̄E , Ȳ E , and S̄E . To solve this, we use the method of undetermined coeffi cients. Provided that

the expectation functions are differentiable, the solution of the model is of the form

πt = πbb̂t−1 + πrr
e
t , Ŷt = Ybb̂t−1 + Yrr

e
t , Ŝt = Sbb̂t−1 + Srr

e
t , (29)

ı̂t = ibb̂t−1 + irr
e
t , T̂t = Tbb̂t−1 + Trr

e
t , and b̂t = bbb̂t−1 + brr

e
t

where πb, Yb, Sb, ib, bb, Tb, πr, Yr, Sr, ir, br, and Tr are unknown coeffi cients to be determined. We make

the assumption that the exogenous process ret satisfies Etr
e
t+1 = ρrr

e
t where 0 < ρr < 1. Then (29) implies

that the expectations are given by

Etπt+1 = πbb̂t + πrρrr
e
t , EtŶt+1 = Ybb̂t + Yrρrr

e
t , and EtŜt+1 = Sbb̂t + Srρrr

e
t . (30)

We can then formulate the Lagrangian of the government problem. We substitute out for the expectation

function using (30) and suppress the shock for simplicity

Lt =
1

2
(λππ

2
t + Ŷ 2

t + λT T̂
2
t ) + βEtV (b̂t, r

e
t+1)

+ φ1t[Ŷt − Ybb̂t + σı̂t − σπbb̂t] + φ2t[πt − κŶt − βπbb̂t]

+ φ3t[b̂t − β−1b̂t−1 + β−1πt + (1− ρ)Ŝt + ψT̂t] + φ4t[Ŝt + ı̂t − ρβSbb̂t].

For now, we are not analyzing the effects of the shock, and hence not carrying around πr, Yr, Sr, ir, br, and

Tr since our key area of interest at this state is not the effect of the shock at positive interest rates. Instead,

we will start focusing on the shock once the zero bound becomes binding.

The associated first order necessary conditions of the Lagrangian problem above and the envelope condi-

tion of the minimization problem of the government above are provided in the appendix. Our first substan-

tiative result is that the equilibrium conditions can be simplified, in particular by eliminating the Lagrange

multipliers φ1t − φ4t, to get

λππt + κ−1Ŷt = [κ−1 (1− ρ)σ−1 + β−1]
1

ψ
λT T̂t (31)

[1− βπbκ−1 (1− ρ)σ−1 − (Yb + σπb) (1− ρ)σ−1 + ρβSb(1− ρ)]T̂t = − (ψ)λ−1
T βπbκ

−1Ŷt + EtT̂t+1 (32)

which along with (24)-(27) define the equilibrium in the approximated economy. The final step to computing

the solution is then to plug in the conjectured solution and to match coeffi cients on various variables in (24)-

11



(27), (31), and (32), along with the requirement that expectation are rational, to determine πb, Yb, Sb, ib,

bb, and Tb. The details of this step are in the appendix.

The most important relationships emerging from our analysis are captured by (31) and (32). (31) is

the so called “targeting rule” of our model. That represents the equilibrium (static) relationship among

the three target variables πt, Ŷt, and T̂t that emerges from the optimization problem of the government.

(31) thus captures how target variables are related in equilibrium as governed both by the weights they

are assigned in the loss function (λπ and λT ) as well as the trade-offs among them as given by the private

sector equilibrium conditions (κ−1 and [κ−1 (1− ρ)σ−1 +β−1] 1
ψ ). Note in particular that κ

−1 represents the

trade-off between πt and Ŷt as given by (25) while [κ−1 (1− ρ)σ−1 +β−1] 1
ψ represents the trade-off between

πt and Ŷt vs. T̂t as given by the combination of (24), (25), and (26).

(32) is another optimality condition characterizing the Markov-perfect equilibrium and represents the

“tax-smoothing objective”of the government. In contrast to similar expressions following the work of Barro

(1979), which would lead to taxes being a martingale, output appears in (32) because of sticky-prices, which

makes output endogenous. Finally, because of the dynamic nature of (32), as opposed to (31), the unknown

coeffi cients that are critical for expectations of variables, πb, Yb, and Sb, appear in (32). As we shall see

—and this is again in contrast to the classic tax smoothing result in which debt is a random walk — the

government will in general have an incentive to pay down public debt if it is above steady-state due to

strategic reasons.

4.1.1 Debt dynamics, inflation, and interest rates

Let us first consider the most basic exercise to clarify the logic of the government’s problem. How do the

dynamics of the model look like in the absence of shocks when the only difference from steady state is that

there is some initial value of debt with some fixed value of debt duration? To do this exercise we calibrate

the model as follows. The parameter values we pick are given in Table 1. Following Eggertsson (2006), we

choose our baseline parameters as follows: β = 0.99, σ = 1, κ = 0.02, and ε = 8. For the steady-state level

of debt-to-taxes, bST = Γ̄
T , we use data from the Federal Reserve Bank of Dallas to get the long-run average

of market value of debt over output ( bSY ) and NIPA data to estimate the ratio of taxes over output ( TY ).

This gives us the value bS
T = Γ̄

T = 7.2. There is no direct counterpart to λT = s′′

φ+σ−1 in the data, and hence

we will experiment with several values and discuss our choices further below. For now, we set it at 0.8,

so that tax distortions obtain less weight than output in the objective of the government. The parameter

ρ is chosen to get a (baseline) duration of debt of 16 quarters. We pick this value based on estimates in

Chadha, Turner, and Zampoli (2013) which suggest that the average maturity of treasury debt held outside

the Federal Reserve was around 4 years in the last 10 years

Figure (1) shows the dynamics of the endogenous variables in the model for an initial value of debt that

is 30 percent above the steady state debt in the model.28 We see that if debt is above steady state, it is

paid over time back to steady state. For our baseline duration of 16 quarters (solid line), the half-life of

debt repayment is about 30 quarters. Note that in this transition for this parameterization, inflation is

about 1 percent above steady state. Importantly, in the transition phase, we see that the real interest rate

is below its steady state. As a consequence, output is also above its steady state value. Note that this

result is in contrast to the classic Barro tax smoothing result whereby debt follows a random walk. The

reason for this is that debt creates an incentive to create inflation for a discretionary government as further

28This is consistent with data from the Federal Reserve Bank of Dallas which suggests that at 2008:IV, government debt was
around 30 percent above the steady state.
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described below. By paying down debt back to steady state, the government thus eliminates this incentive

and achieves better outcomes.

The figure illustrates that for a given maturity of government debt, debt is inflationary and implies lower

future real interest rate until a new steady state is reached. What is the logic for this result? Perhaps the

best way to understand the logic is by inspecting the government budget constraint (26). Recall that debt

issued in nominal terms, although in the budget constraint we have rewritten it in terms of b̂t =
Bt
Pt
−b̄
b̄

.

This implies that for a given outstanding debt b̂t−1, any actual inflation will reduce the real value of the

outstanding debt. Accordingly we have the term β−1πt term in the budget constraint which reflects this

inflation incentive. As the literature has stressed in the past (see e.g. Calvo and Guidotti (1990 and 1992)),

if prices are flexible then this will reduce actual debt in equilibrium only if the inflation is unanticipated.

The reason for this is that otherwise anticipated inflation will be reflected one-to-one in the interest rate

paid on the debt.

Apart from the inventive to depreciate the real value of the deb via inflation, there is a second force

at work in our model. In our model, the government is not only able to affect the price level, it can also

have an effect on the real interest rate. Hence we see that in Figure 1 the real interest rate is below steady

state during the entire transition path back to steady state. This will reduce the real interest rate payment

the government needs to pay on debt — in contrast to the classic literature with flexible prices where the

(ex-ante) real interest rate is exogenous. Intuitively, it may be most straight forward to see this force at

work by simplifying the model down to the case in which ρ = 0. In that case, the budget constraint of the

government can be written as

b̂t = β−1b̂t−1 − β−1πt + ı̂t − ψT̂t

and now b̂t is the real value of one period risk-free nominal debt in period t which is inclusive of interest

paid (to relate to our prevision notation in 2 then when ρ = 0 we have bt = Bt
Pt

=
(1+it)B

S
t

Pt
where BSt was

the one period government debt that did not include interest payment). This expression makes clear that

while πt has a direct effect by depreciating the real value of government debt, the government has another

important margin by which it can influence its debt burden. The term ı̂t reflects the cost or rolling-over-cost

of the one-period debt. In particular, we see that if the interest rate is low, then the cost of rolling over

debt is smaller. This latter mechanism will be critical when considering the effects of varying debt maturity

since its force is highly depending on the value of ρ.

4.1.2 The role of duration of debt

We now consider how reducing the value of ρ affects the transition dynamics from last section. As noted

before, our main interest for this is that a natural interpretation of quantitative easing is that it corresponds

to a reduction in ρ as in our model, as the duration of debt is given by (1−βρ)−1. As Figure (1) reveals, where

we consider a reduction in duration from 4 years to 3.42 and 2 years (dotted and dashed lines respectively),

this increases inflation in equilibrium considerably, but also reduce the real rate further. Similarly, we see

that the debt is now paid down at a faster clip, a point we will return to.

To obtain some intuition for this result, let us again write out the budget constraint, this time substituting

out for St to obtain

b̂t = β−1b̂t−1 − β−1πt + (1− ρ)[̂ıt − ρβŜE(b̂t, r
e
t )]− ψT̂t (33)

We observe here that the rollover interest rate is now multiplied by the term (1− ρ). Intuitively then, if a

larger part of government debt is held with long maturity, the short-term rollover rate matters less, as the
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term of the loans are to a greater extent predetermined. Hence, the incentive of the government to lower

the short-term interest rate are reduced.

4.1.3 Real interest rate incentives and duration of outstanding debt

How does the duration of debt affect the real interest rate incentives of the central bank? The effect on the

real interest rate of lower duration is at the heart of the matter because what influences output is eventually

the real interest rate and the aim in a zero lower bound situation is precisely to be able to decrease the

short-term real interest rate (today and in future) even when the current short-term nominal interest rate

is stuck at zero. That is, we are interested in the properties of

r̂t = ı̂t − Etπt+1 = (ib − πbbb) b̂t−1 = rbb̂t−1

where r̂t is the short-term real interest rate. This is important because in a liquidity trap situation, as is

well-known, decreasing future real interest rate is key to mitigating negative effects on output, and so, if rb
depends negatively on duration, then we are able to provide a theoretical rationale for quantitative easing

actions by the government. To clarify what is going on in the model, we first find it helpful to consider two

special cases.

a) Fully flexible prices When prices are fully flexible, then as is well-known, monetary policy cannot

control the (ex-ante) real interest rate r̂t. Then, the only way monetary policy can affect the economy is

through surprise inflation as debt is nominal. In fact there is a well-known literature that addresses the issue

of how the duration of nominal debt in a flexible price environment affects allocations under time consistent

optimal monetary policy. For example, Calvo and Guidotti (1990 and 1992) address optimal maturity of

nominal government debt in a flexible price environment while Sims (2013) explores how the response of

inflation to fiscal shocks depends on the maturity of government debt under optimal monetary policy. We

conduct a complementary exercise here and want to characterize how inflation incentives depend on the

duration of debt under optimal monetary and fiscal policy under discretion. Thus, we are interested in how

πb depends on duration of debt.

For this exercise, we can think of this special case of fully flexible prices as κ→∞. Note however, that
from the two optimality conditions (31) and (32), while under flexible prices Tb = 0, there is indeterminacy in

terms of inflation and nominal interest rate dynamics.29 This is a well-known result in monetary economics

under discretion in a flexible price environment, and comes about because the government cannot affect

output and taxes can be put to zero with various combinations of inflation and interest rate choices. To

show our result on the role of the duration of debt, we follow the literature such as Calvo and Guidotti (1990

and 1992) and Sims (2013) and include a ( very small) aggregate social cost of inflation that is independent

of the level of price stickiness. Then, the objective of the government under flexible prices will be given by

Ut = −
[
λ
′

ππ
2
t + λT T̂

2
t

]
where λ

′

π parameterizes the cost of inflation that is independent of sticky prices. Using λ
′

π = 0.001 and the

rest of the parameter values from Table 1, Fig (2) shows how πb depends on duration of debt (quarters). We

see clearly that with shorter duration, there is more of an incentive to use current inflation. The intuition for

29Note that λπ = ε
k
.
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this result is that from (26), we see that everything else the same, when ρ (and thereby, duration) decreases,

then there will be a greater period by period incentive to increase Ŝt, that is, keep nominal interest rates low

to manage the debt burden. This, however, will increase current inflation further in equilibrium according

to our result. As a consequence —and perhaps a little counterintuitively —equilibrium nominal interest rate

will generally increase as well with lower duration since the real rate is exogenously given under flexible

prices.30 In particular, observe that ı̂t = Etπt+1 (since Ŷt = 0 and there are no shocks) and hence it is

increasing one-to-one with expected inflation.

b) Fully rigid prices Next we can consider the other extreme case: that of fully rigid prices. In this

case, inflation is zero in equilibrium and hence πb = 0. Then, one can directly consider the effects on the

ex-ante real interest rate by analyzing the effect on the nominal interest rate since rb = ib−πbbb = ib. Thus,

we are interested in how ib depends on the duration of debt. Using the parameters from Table 1, Fig (3)

shows how ib depends on duration of debt (quarters). We see that with shorter duration, there is more of

an incentive to keep the nominal interest rate lower. The intuition for this result is again that from (26),

when ρ (and thereby, duration) decreases, then there will be more of an incentive to increase Ŝt, that is keep

interest rates low, to manage the debt burden.

c) Partially rigid prices Having established the results in these two special cases, we now move on to the

main mechanism in our paper in the intermediate and quantitatively relevant case of partially rigid prices.

Fig (4) shows how rb depends on duration of debt (quarters) at different levels of κ. When the duration

of debt in the hands of the public is shorter, it unambiguously provides an incentive to the government to

keep the short-term real interest rate lower in future. The intuition again is that by doing so, it reduces

the cost of rolling over the debt period by period. That is, if the debt is short-term, then current real short

rates will more directly affect the cost of rolling the debt over period by period, while the cost of rolling

over long-term debt is not affected in the same way period by period. Also note that when prices are more

flexible, that is when κ is bigger, rb is affected less typically and as we saw above, in the extreme of fully

flexible prices, (ex-ante) real interest rate is not controlled by policy at all.

Figs.(5) and (6) show how rb depends on duration of debt at different levels of ε and λT respectively.

We do this since these parameters affect the two weights in the loss-function and help us understand better

the mechanics of the equilibrium. First, note that since λπ = ε
k , changing ε will only affect the weight

on inflation in the loss-function without affecting any private sector equilibrium conditions. The effect of a

higher ε, while not very important quantitatively, is to increase the response of the real interest rate. This is

because with a higher weight on inflation, since inflation responds less (we show this below), the real interest

30The way to understand how the model works in this case is to explore the government budget constraint. It is given by

b̂t = β−1b̂t−1 − β−1πt − (1− ρ)Ŝt − ψT̂t
where again recall that Ŝt = −it+ρβEtŜt+1. Under flexible prices when there are no shocks (so Ŷt = 0) then it = Etπt+1 = πbbt
and recall that b̂t = bbb̂t−1. Solving for Ŝt and substituting for ı̂t we can then rewrite the budget constraint as

b̂t = β−1b̂t−1 − β−1πt + (1− ρ)
1

1− bbρβ
πbb̂t − ψT̂t.

The term (1 − ρ) 1
1−bbρβ

πbb̂t reflects the cost of the government in rolling over the debt issued at t to t+1. Note that this

cost depends on expected inflation which can be reduced by lowering current debt (because future inflation depends on this
variable). The way current debt can be lowered is by creating inflation today (and thus depreciate nominal debt issued last
period) or raising taxes. The government does both in equilibrium. The more long-term is the debt (the higher is ρ), however,
the smaller is this effect since then a smaller part of the debt is rolled over on the current nominal interest rate (which depends
directly on newly issued debt b̂t).
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rate gets affected by a higher degree. Finally, the comparative statics with respect to λT are intuitive: as

the weight on taxes in the loss-function increases, the real interest rate decreases by more in order to lower

interest payments and reduce the need to raise taxes.

4.1.4 Inflation incentives and duration of outstanding debt

While the dependence of real interest rate incentive of the government on the duration of debt is the main

mechanism of our paper, given the attention inflation incentives receive in the literature, we now study how

πb varies with the duration of outstanding government debt?31 Moreover, it helps us emphasize a point that

just focusing on inflation incentives might not be suffi cient to understand the nature of optimal monetary

and fiscal policy in a liquidity trap situation.

While an analytical expression for πb is available in the appendix and it is possible to show that πb > 0

for all ρ < 1, a full analytical characterization of the comparative statics with respect to the duration of

debt is not available and so we rely on numerical results. Fig (7) below shows how πb depends on duration

of debt (quarters) at different levels of κ. As expected, πb is positive at all durations in the figure.32 More

importantly, note that that at our baseline parameterization of κ = 0.02, πb does decrease with duration

over a wide range of maturity.33 At the same time, however, there is a hump-shaped behavior, with πb
increasing when duration is increased at very short durations.

What drives this result? First, note from (26) that everything else the same, when ρ (and thereby,

duration) decreases, then there will be an incentive to decrease Ŝt, that is keep interest rates low to manage

the debt burden. This will then increase inflation in equilibrium. At the same time however, the government’s

incentives on inflation are not fully/only captured by this reasoning. This is because what ultimately matters

for the cost of debt is the real interest rate, which because of sticky prices, is endogenous and under the

control of the central bank, and which we have seen before robustly depends negatively on the duration of

debt. Therefore, to understand the overall effect on the government’s inflation incentives, it is critical to

analyze the targeting rule, as discussed above and given by (31). Here, the term [κ−1 (1− ρ)σ−1 + β−1]

plays a key role as it captures the trade-off between πt and Ŷt vs. T̂t . Note first that β−1 here simply

captures the role of surprise inflation in reducing the debt burden as government debt is nominal. This

term would be present even when prices are completely flexible. The term κ−1 (1− ρ)σ−1 however, appears

because of sticky prices. This reflects how the real interest rate is affected by manipulation of the nominal

interest rate and how it in turn affects output.

Thus, in situations where either κ−1, σ−1, or (1− ρ) is high, this term can dominate and it can be the

case that decreasing the duration (or decreasing ρ) actually leads to a lower πb. This means, for example,

that when κ−1 is low (or when prices are more flexible), the hump-shaped behavior of πb gets restricted to

very short maturities only as the channel coming from sticky-prices is not that influential. This is exactly

what is seen in Fig (7): as κ increases, the range at which πb increases with duration gets narrower and the

hump disappears in fact for κ = 3.34 This is also completely consistent with what we in fact showed above

31For some recent discussion and analysis of how inflation dynamics in sticky-price models could depend on duration of
government debt, see Sims (2011) and Faraglia et al (2012).
32Again, it is possible to show analytically that for all ρ < 1, πb > 0. In a very similar model but one with no steady-state

debt, Eggertsson (2006) proved that πb > 0 for ρ = 0 (that is, for one period debt).
33Some limited analytical results on the properties of πb with respect to ρ are available in the appendix. For example, it can

be shown that πb is positive for all ρ < 1 and that when ρ = 1 + β−1σκ (and thus, ρ > 1), πb = 0. In this sense, for a specific
case, one can show that πb is declining in ρ by comparing some extreme cases (such as ρ = 0 with ρ = 1 + β−1σκ). Please
see the appendix for details. Note also here that the upper bound on ρ is β−1. So this case of πb = 0 is not necessarily always
reached.
34A similar picture is obtained when increasing σ. We do not present the figure to conserve space.
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in the case of fully flexible prices, where inflation response depends negatively throughout on duration of

debt.

Moreover, note that not surprisingly, πb is higher at a given duration for higher κ. This simply reflects

the fact that prices are now more flexible and inflation thus responds by more to a given level of outstanding

debt. We also present some additional properties of πb with respect to the two weights in the loss-function

in order to understand the mechanics of the equilibrium. In Fig. (8) we see that as ε and thereby λπ
increases, as expected, inflation responds less to outstanding debt as inflation now has a greater weight in

the loss-function. Fig. (9) presents results of changing the value of λT . As expected, now that taxes have a

greater weight in the loss-function, inflation responds by more to outstanding debt in order to devalue debt

and reduce the tax burden.

4.1.5 Debt dynamics and duration of outstanding debt

While the primary focus so far is on properties of rb as it determines the real interest rate incentives of the

central bank, it is also interesting to consider the properties of bb, the parameter governing the persistence

of government debt. This exercise is interesting in its own right, but more importantly, it is also worth

exploring because as explained before, what is critical is the behavior of the real interest rate, and that gets

affected by bb as Etπt+1 = πbb̂t = πbbbb̂t−1. Unlike for πb, it is not possible to show a tractable analytical

solution (or any property) for bb as it is generally a root of a fourth-order polynomial equation. We thus

rely fully on numerical solutions.

Figs. (10)-(12) show how bb depends on duration of debt at different levels of κ, ε, and λT respectively.

It is clear that the persistence of debt increases monotonically as the duration increases.35 In fact, for a

high enough duration, debt dynamics approach that of a random walk (bb = 1), as in the analysis of Barro

(1979). The persistence of debt increases with duration mainly because the response of the short-term real

interest rate decreases, as we discussed above. Some of this effect is reflected in the response of inflation

decreasing as also discussed above. Thus, the existence of long-term nominal debt has an important impact

on the dynamics of debt under optimal policy under discretion. Finally, intuitive comparative static results

are in Fig. (12): as the loss-function weight on taxes increases, debt is less persistent at any level of debt

duration.

Having established that at positive interest rates, decreasing the duration of debt increases the incentives

of the government to lower short-term real interest rates, we now move on to analyzing the case where the

nominal interest rate is at the zero lower bound.

4.2 At the zero lower bound

To model the case of a liquidity trap, we follow Eggertsson and Woodford (2003) and suppose that a large

enough negative shock to the effi cient rate of interest ret , driven by an increase in the desire to save, makes

the zero lower bound binding.36 Moreover, we also assume that ret follows a two-state Markov process with

an absorbing state: every period, with probability µ, ret takes a (large enough) negative value of r
e
L while

with probability 1 − µ, it goes back to steady-state and stays there forever after. This means that the

35There is thus, no hump-shaped pattern, unlike for inflation. The reason is that what matters directly for persistence of
debt is the real interest rate and there is no hump-shaped pattern there as we show later. Note also that for one-period debt,
often bb is negative (even here, recall that πb is still positive). A negative bb is not very interesting empirically as it implies
oscillatory behavior of debt.
36For an alternate way of generating a liquidity trap in monetary models, based on an exogenous drop in the borrowing limit,

see Eggertsson and Krugman (2012).
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economy will exit the liquidity trap with a constant probability of 1−µ every period and that once it exits,
it does not get into the trap again. The appendix contains details about the computation algorithm.

With this structure, we next consider the following policy experiment. At the liquidity trap, the level of

debt is constant at bL, while out of the trap, it is optimally determined by the government according to the

Markov-perfect equilibrium described previously. Then, we analyze what would be the effect of changing the

duration of debt once-and-for-all, while the zero lower bound is binding. In other words, we are interested in

the comparative statics of the model as we vary the duration of debt at the liquidity trap. Note in particular

that the steady-state market value of debt to taxes is always kept fixed in our experiments. For now a key

abstraction is that the value of ρ is fixed, an issue we will come back to in the last section.

Our calibrated parameter values for this experiment are given in Table 1, where we pick values in a similar

strategy to Eggertsson (2006). We pick µ and reL to get a drop in output of 10%, to make the experiment

relevant for the recent “Great Recession”in the United States, and a 2% percent drop in inflation. We allow

for debt while at the liquidity trap to be 30% above its steady-state value, which as we mentioned before is

in line with the Dallas Fed data. We will consider the experiment of reducing the duration of government

debt by 7 months, starting from 16 quarters. For average maturity of government debt and the reduction

in the duration of government debt due to quantitative easing by the Federal Reserve, we use the recent

estimates of Chadha, Turner, and Zampoli (2013) which suggest that the average maturity of treasury debt

held outside the Federal Reserve was around 4 years in the last 10 years and that recent Federal Reserve

balance sheet policies reduced the maturity by around 7 months.

4.2.1 Initial duration of government debt

Figs. (13) and (14) show the response of inflation and output to a negative shock to the effi cient rate of

interest when the duration of government debt is 16 quarters. The solid line shows the expected path for

the variables (impulse response) while the thin lines show each possible economic contingency (thus the

third thin line — for example —corresponds to the case in which the shock reverts to normal in the third

quarter). As is clear, because of the zero lower bound constraint, the economy suffers from deflation and

because of the increase in the real interest rate that it creates (that is, a gap between the real interest

rate and its effi cient counterpart), also from a negative effect on output. This reflects what Eggertsson

(2006) labelled the “deflation bias” of a discretionary central bank at the zero lower bound. In such a

case, generating expectations of future inflation would be very beneficial as it would decrease the extent

of deflation and the rise of the real interest rate, as stressed by Krugman (1998) and Eggertsson (2006).

Observe, also, that because of the presence of nominal debt in the economy, the inflation rate once the

shock is over is not zero. Instead it is of the order of about 1 percent. This “inflation bias”arises from the

governments incentive to inflate away the nominal value of the outstanding debt.

It would be beneficial for the central bank to commit to keeping the short-term real interest rates lower

in future, once the zero lower bound is no longer binding. This would decrease real long-term interest rates

today and help spur the economy. Thus, one main goal of monetary policy would be to decrease the extent of

increase in real interest rates (after the shock is over) that is seen in Fig. (15). In other words, as Krugman

(1998) and Eggertsson (2006) emphasize, the central bank needs to “commit to being irresponsible.”37

37Adam and Billi (2007), another important study of optimal policy in the New Keynesian model under discretion, emphasizes
how the gains from commitment are much stronger once the zero lower bound on nominal interest rates is taken into account.
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4.2.2 Shorter duration of government debt

A reduction in the duration of government debt outstanding helps achieve this goal. Figs. (16) and (17)

show the response of inflation and output to a negative shock to the effi cient rate of interest when the

duration of government debt is 13.7 quarters. As is clear by comparing with the case when the duration is

16 quarters, at the trap, the extent of deflation is reduced by 95.4 basis points (annualized) as well as the

negative effect on output by 140 basis points. Note in particular that once the shock is over and the zero

lower bound is no longer a constraint, the response of inflation and output is higher compared to Figs. (13)

and (14).

The main reason why this is achieved is that because the government’s balance sheet has more long-term

bonds (or its debt is more short-term), the central bank keeps the short-term real interest rates lower in

future, especially once the zero lower bound is not binding, in order to keep the real interest rate low on

the debt it is rolling over. Thus, quantitative easing indeed provides a signal about the future conduct of

monetary policy and in particular, the future path of short-term interest rates. This then enables it to have

effect on macroeconomic prices and quantities at the zero lower bound, as real interest rates also decline

at the liquidity trap because of higher inflationary expectations once the trap is over. The response of the

real interest rate when the duration of debt is shorter is given in Fig. (18), where by comparing with Fig.

(15), one can see that the real interest rate increases by less at the trap and decreases by more out of the

trap. This, then, is the central result of our paper: quantitative easing acts as a commitment device during

a liquidity trap situation.38

We also conduct an experiment of how long the duration reduction has to be in order for the output

gap to be closed completely at the zero lower bound. We find that approximately doubling the size of the

quantitative easing, that is, reducing the maturity by 20.6 months, would make the response of output zero

at the liquidity trap. Figs. (19)-(21) show the responses of inflation, output, and the real interest rate

respectively in this case. As expected, this leads to a much bigger reduction in the real interest rate and

much more of a boom in inflation and output out of the trap.

At this point, we want to clarify an important element of our analysis: the distinction between nominal

and real interest rates. A key to understanding optimal policy in the sticky price model at the zero bound is

that it involves committing to lower future short-term real interest rates. The short term real interest rate

is the difference between future short-term nominal interest rate and expected inflation. A lower short-term

real interest rate can be achieved by either a lower future short-term nominal interest rate or higher future

expected inflation. A commitment of this kind will under some parameterization of the model be achieved via

higher expected inflation and higher future short-term nominal interest rates —even if the difference between

the two (the real rate) is going down. An implication of this is that a successful policy of quantitative easing

aimed at lowering long-term real interest rate may involve an increase in expected future nominal interest

rates and therefore, an increase in long-term nominal rates at the zero lower bound.

In fact, in our numerical experiments, this indeed does happen. Figs. (22) and (23) show the responses

of the short and the long nominal interest rate when debt duration is 16 quarters while Figs. (24) and (25)

show the responses when debt duration is 13.7 quarters.39 As can be seen, the short-term nominal interest

rate in fact rises by more once the trap is over when debt duration is 13.7 quarters and that the long-term

nominal interest rate at the zero lower bound is higher by around 23 basis points. This aspect is relevant

38This result thus connects our paper with Persson, Persson, and Svensson (1987 and 2006), who show in a flexible price
environment that a manipulation of the maturity structure of both nominal and indexed debt can generate an equivalence
between discretion and commitment outcomes.
39Note that since we are plotting ı̂t, the zero lower bound implies a bound of −(1− β) = −0.01.

19



because some empirical analyses of the effect of quantitative easing focus only on long-term nominal interest

rates, which our analysis suggests is not a suffi cient statistic. Even if long-term nominal interest rate decline

very little in response to quantitative easing, or even if they increase (like in our example), this does not by

itself suggest that the policy is ineffective, as long as the real interest rate is declining.40

Finally, note that since the long-term nominal interest rate at the zero lower bound increases due to

quantitative easing, this means that the market value of debt increases as we have kept the real stock of

debt (bL) constant at 0.3 for both long and short duration of debt. To ensure that this does not drive our

results, we now do an alternate experiment where the market value of debt at the zero lower bound does

not change at all after the reduction in duration. To do so, we now make the real stock of debt at lower

duration during the zero lower bound 0.289, which ensures that the market value at the ZLB at baseline

duration and after quantitative easing is exactly the same. The results on the effects of quantitative easing

change only slightly: now output increases by 127 basis points (compared to 140 before) and inflation by

85.4 basis points (compared to 95.4 before).

4.2.3 Capital losses from reneging on optimal policy

We have emphasized and illustrated so far that the reason why lowering the duration of debt during a

liquidity trap situation is beneficial is that it provides incentives for the government to keep the real interest

rate low in future as it is now rolling over more short-term debt. We have shown these results by comparing

the path of the real interest rate under optimal policy at a baseline and lower duration of debt.

Another way of framing this is that otherwise it would suffer capital losses on its balance sheet. These

losses then would have to be accounted for by raising costly taxes. One way to illustrate the mechanism

behind this result is to conduct the following thought experiment: suppose that once the liquidity trap is

over, the government reneges on the path for inflation and output dictated by optimal policy under discretion

and instead perfectly stabilizes them at zero. In such a situation, how large are capital losses, or equivalently,

how high do taxes have to rise out of zero lower bound compared to if the government had continued to

follow optimal policy? In particular, is this increase in taxes more when debt is of shorter duration ? We

show in Figs. (26) and (27) the change in taxes if the government were to renege on optimal policy at a

duration of 16 and 13.7 quarters respectively. As is clear, the increase in taxes out of zero lower bound are

higher at a shorter duration of outstanding debt. Thus indeed, lowering the duration of government debt

provides the government with more an incentive to keep the real interest rate low in future in order to avoid

having to raise costly taxes.

4.2.4 Robustness

We now conduct some robustness exercises. In particular, compared to the literature, we calibrated some

new parameters in this paper: λT (at 0.8) and bL (at 0.30). We show in Fig. (28) the effect of quantitative

easing on output when we vary λT and in Fig. (29) the effect of quantitative easing on output when we vary

bL.
41 Clearly, a higher λT increases the effect of quantitative easing as it leads to more of an incentive for

the central bank to keep the real interest rate low (to avoid costly taxes) while a higher bL also increases the

effect of quantitative easing as it increases the debt burden and thereby, the incentive to keep real interest

40Admittedly, an increase in the long-term nominal interest rate because of quantitative easing is perhaps not empirically
consistent. We just want to make the point that looking at the long-term nominal interest rate is not suffi cient.
41Here we focus on the difference in output as a result of quantitative easing and to avoid clutter only show the probablity

weighted impulse response function and not the various contingencies.
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rates low. The Figures show that our results continue to hold qualitatively for several of these parameter

values.

5 Extension

So far, we have focused on analyzing a situation where the duration of government debt is reduced once-

and-for all. That is, we have studied comparative statics experiments with respect to ρ. A natural question

that arises in this context is whether there is an incentive for the government to increase the duration of

debt once the economy has recovered and if by not considering that, we are overstating our results.

To address this, we now extend our model to allow the government to pick the duration of government

debt optimally, period by period. That is, now, ρ is time-varying. In particular, the government issues a per-

petuity bond in period t (Bt) which pays ρ
j
t dollars j+1 periods later. Following very similar manipulations

as for the fixed duration case, the flow budget constraint of the government can be written as

St(ρt)bt = (1 + ρt−1Wt(ρt−1)) bt−1Π−1
t + (F − Tt) (34)

where St(ρt) is the period-t price of the government bond that pays ρ
j
t dollars j + 1 periods later while

Wt(ρt−1) is the period-t price of the government bond that pays ρjt−1 dollars j+1 periods later. Moreover, bt =
Bt
Pt
. Given these types of government bonds, the asset-pricing conditions then take the form

St(ρt) = Et

[
β
uC (Ct+1, ξt+1)

uC (Ct, ξt)
Π−1
t+1 (1 + ρtSt+1(ρt))

]
(35)

Wt(ρt−1) = Et

[
β
uC (Ct+1, ξt+1)

uC (Ct, ξt)
Π−1
t+1 (1 + ρt−1Wt+1(ρt−1))

]
. (36)

The rest of the model is the same as before.

The government’s instruments are now it, Tt , and ρt. Moreover, it is clear from above that in addition

to bt−1, now, ρt−1 is also a state variable in the model. Then, we can write the discretionary government’s

problem recursively as

J (bt−1, ρt−1, ξt) = max [U (.) + βEtJ (bt, ρt, ξt+1)]

subject to the three new constraints, (34)-(36), as well as the other private sector equilibrium conditions

that are common from the model in the previous section. Here, U (.) is the utility function of the household

in (1) and J(.) is the value function.42 The detailed formulation of this maximization problem and the

associated first-order necessary conditions are provided in the appendix. We discuss below why we take this

non-linear as opposed to a linear-quadratic approach.

We proceed by computing the non-stochastic steady-state and then taking a first-order approximation

of the non-linear government optimality conditions as well as the non-linear private sector equilibrium

conditions around the steady-state. Of particular note is that a first-order approximation of (34)-(36) leads

to

v̂t = β−1v̂t−1 − β−1π̂t − (1− ρ) L̂t − ψT̂t (37)

42Using compact notation, note that we can write the utility function as u (Ct, ξt) + g (F − s(Tt − T ), ξt)− ṽ (Yt, ξt) .
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where

v̂t = b̂t +
ρβ

1− ρβ ρ̂t (38)

L̂t = −ı̂t + ρβEtL̂t+1

Ŝt − Ŵt = ρ̂t − ρ̂t−1.

Thus, after undertaking a transformation of variables as given by (38), (37) takes the same form as (26), the

linearized government budget constraint when there was no time variation in duration. Thus, time-variation

in duration does not play a separate role in government debt dynamics upto first order. Therefore, if we had

taken a linear-quadratic approach, like before, then with the quadratic loss-function (28) and the linearized

private sector equilibrium conditions including (37), we would not be able to solve for optimal debt duration

dynamics at all.

Given this appropriate redefinition of the state variable, we can show that the (bounded) solution of the

model at positive interest rates takes the form[
v̂t

ρ̂t

]
=

[
ρ 0

ρv 1

][
v̂t−1

ρ̂t−1

]
 Ŷt

πt

r̂t

 =

 Yv 0

πv 0

rv 0

[ v̂t−1

ρ̂t−1

]

where, ρv, Yv, πv, and rv are functions of the model parameters. Here, for simplicity, we are only focussing

on solution of some of the endogenous model variables and do not consider shocks.

Two results stand out: first, ρ̂t follows a random-walk like behavior; second, ρ̂t−1 does not affect directly

other other variables such as output, inflation, and the real interest rate. This suggests then that even if

we allow the government to pick the duration optimally period by period, there is no incentive for it to

increase the duration of debt after the economy has recovered following a liquidity trap episode. Therefore,

the simple comparative static analysis that we focussed on in the main part of the paper does not appear

to be overstating our results.

6 Conclusion

We present a theoretical model where open market operations that reduce the duration of outstanding

government debt, so called “quantitative easing,”are not neutral because they affect the incentive structure

of the central bank. In particular, in a Markov-perfect equilibrium of our model, reducing the duration of

outstanding government provides an incentive for the central bank to keep short-term interest rates low in

future in order to avoid balance sheet losses. When the economy is in a liquidity trap, such a policy is thus

effective at generating inflationary expectations and lowering long-term interest rates, which in turn, helps

mitigate the deflation and negative output gap that would ensue otherwise. In other words, quantitative

easing is effective because it provides a “signal” to the private sector that the central bank will keep the

short-term real interest rates low even when the zero lower bound is no longer a constraint in future.

In future work, it would be of interest to evaluate fully the quantitative importance of our model mech-

anism in a medium-scale sticky price model, along the lines of Christiano, Eichenbaum, and Evans (2005)
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and Smets and Wouters (2007). Computation of Markov-perfect equilibrium under coordinated monetary

and fiscal policy at the ZLB appears to not have been investigated for such models in the literature If one

departs from the assumption of an effi cient steady-state, which would preclude a linear-quadratic approach,

this extension is likely to involve a substantial computation innovation. Moreover, as a methodological ex-

tension, it would be fruitful to allow for time-varying duration of government debt to affect real variables.

To do so, it will be necessary to take a higher order approximation of the equilibrium conditions and modify

the guess-and-verify algorithm to compute the Markov-perfect equilibrium accordingly.
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7 Tables and Figures

7.1 Tables
Table 1: Calibration of model parameters

Parameter Value

β 0.99

σ 1

κ 0.02

ε 8

λT 0.8
bS
T

7.2

Table 2: Calibration of model parameters for the ZLB experiment
Parameter Value

reL 0.033

µ 0.75

bL 0.30
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7.2 Figures

Figure 1: Responses at positive interest rates to a 30% increase in debt outstanding at different durations
of government debt.
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Figure 2: The effect on πb of changing the duration (quarters) of outstanding nominal government debt
under fully flexible prices.
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Figure 3: The effect on ib of changing the duration (quarters) of outstanding nominal government debt
under fully rigid prices.
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Figure 4: The effect on rb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the slope of the Phillips curve.

Figure 5: The effect on rb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the elasticity of substitution among varieties.

Figure 6: The effect on rb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the weight on taxes in the loss function.
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Figure 7: The effect on πb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the slope of the Phillips curve.

Figure 8: The effect on πb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the elasticity of substitution among varieties.

Figure 9: The effect on πb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the weight on taxes in the loss function.
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Figure 10: The effect on bb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the slope of the Phillips curve.

Figure 11: The effect on bb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the elasticity of substitution among varieties.

Figure 12: The effect on bb of changing the duration (quarters) of outstanding nominal government debt at
different levels of the weight on taxes in the loss function.
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Figure 13: Reponse of inflation when the duration of government debt is 16 quarters. Each line represents
the response of inflation when the effi cient rate of interest returns to its steady-state in that period.
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Figure 14: Reponse of output when the duration of government debt is 16 quarters. Each line represents
the response of output when the effi cient rate of interest returns to its steady-state in that period.
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Figure 15: Reponse of the real interest rate when the duration of government debt is 16 quarters. Each line
represents the response of the real interest rate when the effi cient rate of interest returns to its steady-state
in that period.
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Figure 16: Reponse of inflation when the duration of government debt is 13.7 quarters. Each line represents
the response of inflation when the effi cient rate of interest returns to its steady-state in that period.
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Figure 17: Reponse of output when the duration of government debt is 13.7 quarters. Each line represents
the response of output when the effi cient rate of interest returns to its steady-state in that period.
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Figure 18: Reponse of the real interest rate when the duration of government debt is 13.7 quarters. Each line
represents the response of the real interest rate when the effi cient rate of interest returns to its steady-state
in that period.
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Figure 19: Reponse of inflation when the duration of government debt is 9.11 quarters. Each line represents
the response of inflation when the effi cient rate of interest returns to its steady-state in that period.

0 10 20 30 40 50
t

0.01

0.02

0.03

0.04

0.05

Y

Figure 20: Reponse of output when the duration of government debt is 9.11 quarters. Each line represents
the response of inflation when the effi cient rate of interest returns to its steady-state in that period.
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Figure 21: Reponse of the real interest rate when the duration of government debt is 9.11 quarters. Each line
represents the response of the real interest rate when the effi cient rate of interest returns to its steady-state
in that period.
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Figure 22: Reponse of the short-term nominal interest rate when the duration of government debt is 16
quarters. Each line represents the response of the short-term interest rate when the effi cient rate of interest
returns to its steady-state in that period.
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Figure 23: Reponse of the long-term nominal interest rate when the duration of government debt is 16
quarters. Each line represents the response of the long-term interest rate when the effi cient rate of interest
returns to its steady-state in that period.
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Figure 24: Reponse of the short-term nominal interest rate when the duration of government debt is 13.7
quarters. Each line represents the response of the short-term interest rate when the effi cient rate of interest
returns to its steady-state in that period.
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Figure 25: Reponse of the long-term nominal interest rate when the duration of government debt is 13.7
quarters. Each line represents the response of the long-term interest rate when the effi cient rate of interest
returns to its steady-state in that period.
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Figure 26: Increase in taxes a result of reneging on optimal policy when the duration of government debt
is 16 quarters. Each line represents the response of the long-term interest rate when the effi cient rate of
interest returns to its steady-state in that period.
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Figure 27: Increase in taxes a result of reneging on optimal policy when the duration of government debt
is 13.7 quarters. Each line represents the response of the long-term interest rate when the effi cient rate of
interest returns to its steady-state in that period.

Figure 28: Effects of quantitative easing on output at different values of λT .
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Figure 29: Effects of quantitative easing on output at different levels of initial debt.

8 Appendix

8.1 Model

8.1.1 The perpetuity nominal bond and the flow budget constraint

Following Woodford (2001), the perpetuity issued in period t pays ρj dollars j+ 1 periods later, for each j ≥ 0 and some decay

factor 0 ≤ ρ < β−1. The implied steady-state duration of this bond is then (1− βρ)−1.

Let the price of a newly issued bond in period t be St (ρ) . Given the existence of the unique stochastic discount factor

Qt,t+j , we can write this price as

St(ρ) = Et

∞∑
j=1

Qt,t+jρ
j−1.

Now consider the period t+ 1 price of such a bond that was issued in period t. We can then write the price SOt+1 (ρ)

SOt+1 (ρ) = Et+1

∞∑
j=2

Qt+1,t+jρ
j−1.

Note first that

SOt+1 (ρ) = ρSt+1(ρ) (39)

since

St+1(ρ) = Et+1

∞∑
j=2

Qt+1,t+jρ
j−2.

This is highly convenient since it implies that one needs to keep track, at each point in time, of the equilibrium price of only

one type of bond.

Next, we derive an arbitrage condition between this perpetuity and a one-period bond. By simple expansion of the infinite

sums above and manipulation of the terms, one gets

St(ρ) = [EtQt,t+1] + Et
[
Qt,t+1S

O
t+1 (ρ)

]
.

Since

EtQt,t+1 =
1

1 + it
we get

St(ρ) =
1

1 + it
+ Et

[
Qt,t+1S

O
t+1 (ρ)

]
.

Substituting further for SOt+1 (ρ) = ρSt+1(ρ), we then derive

St(ρ) =
1

1 + it
+ ρEt [Qt,t+1St+1(ρ)] . (40)
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Finally, consider the flow budget constraint of the government

BSt + St(ρ)Bt = (1 + it−1)BSt−1 +
(
ρ0 + SOt (ρ)

)
Bt−1 + Pt (Ft − Tt) .

This can be simplified using SOt+1 (ρ) = ρSt+1(ρ) to

BSt + St(ρ)Bt = (1 + it−1)BSt−1 + (1 + ρSt(ρ))Bt−1 + Pt (Ft − Tt) .

This is the form in which we write down the flow budget constraint of the household and the government in the main text.

8.1.2 Functional forms

We make the following functional form assumptions on preferences and technology

u (C, ξ) = ξC̄
1
σ
C1−

1
σ

1− 1
σ

v (h(i), ξ) = ξλ
h(i)1+φ

1 + φ

g (G, ξ) = ξḠ
1
σ
G1−

1
σ

1− 1
σ

y(i) = h(i)κ

d(Π) = d1 (Π− 1)2

S
(
T̄
)

= s1 (T − T )2

where we only consider a discount factor shock ξ. Note that ξ = 1 in steady-state and that in steady state, we scale hours such

that Y = 1 as well. This implies that we can derive

ṽ (Y, ξ) =
1

1 + φ
λξY

1+φ
κ .

8.2 Effi cient equilibrium
As benchmark, we first derive the effi cient allocation.

Using Gt = Ft − s(Tt − T ) = F − s(Tt − T ), the social planner’s problem can be written as

maxu (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt)

st

Yt = Ct + F.

Formulate the Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt)

+ φ1t (Yt − Ct − F )

FOCs (where all the derivatives are to be equated to zero)

∂Lt

∂Yt
= −ṽY + φ1t

∂Lt

∂Ct
= uC + φ1t [−1]

∂Lt

∂Tt
= gG

(
−s′(Tt − T )

)
Eliminating the Lagrange multiplier gives

uC = ṽY

gG
(
−s′(Tt − T )

)
= 0.

Note that we make the following functional form assumptions on the tax collection cost

s(0) = 0; s′(0) = 0.
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Thus, when taxes are at steady state, that is, Tt = T, then s(Tt−T ) = s′(Tt−T ) = 0. But note that we will allow for s
′′

(0) > 0.

Effi cient allocation thus requires

uC = ṽY

Tt = T.

In steady state, without aggregate shocks, we have

Y = C + F

uC = ṽY

Tt = T.

8.3 Non-linear markov equilibrium

8.3.1 Optimal policy under discretion

The policy problem can be written as

J (bt−1, ξt) = max [U (Λt, ξt) + βEtJ (bt, ξt+1)]

st

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π−1t + (F − Tt) .

1 + it =
uC (Ct, ξt)

βfet

it ≥ 0

St(ρ) =
1

uC (Ct, ξt)
βget

εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
+ uC (Ct, ξt) d

′ (Πt) Πt = βhet

Yt = Ct + F + d (Πt)

fet = Et
[
uC (Ct+1, ξt+1) Π−1t+1

]
= f̄e (bt, ξt)

get = Et
[
uC (Ct+1, ξt+1) Π−1t+1 (1 + ρSt+1(ρ))

]
= ḡe (bt, ξt)

het = Et
[
uC (Ct+1, ξt+1) d′ (Πt+1) Πt+1

]
= h̄e (bt, ξt)

Formulate the period Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt) + βEtJ (bt, ξt+1)

+ φ1t
(
St(ρ)bt − (1 + ρSt(ρ)) bt−1Π−1t − (F − Tt)

)
+ φ2t

(
βfet −

uC (Ct, ξt)

1 + it

)
+ φ3t (βget − uC (Ct, ξt)St(ρ))

+ φ4t

(
βhet − εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
− uC (Ct, ξt) d

′ (Πt) Πt

)
+ φ5t (Yt − Ct − F − d (Πt))

+ ψ1t
(
fet − f̄e (bt, ξt)

)
+ ψ2t (get − ḡe (bt, ξt))

+ ψ3t
(
het − h̄e (bt, ξt)

)
+ γ1t (it − 0)
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First-order conditions (where all the derivatives should be equated to zero)

∂Ls

∂Πt
= φ1t

[
(1 + ρSt(ρ)) bt−1Π−2t

]
+ φ4t

[
−uCd

′′
Πt − uCd

′]
+ φ5t

[
−d′

]
∂Ls

∂Yt
= −ṽY + φ4t

[
−ε
(
ε− 1

ε
(1 + s)uC

)
+ εYtṽyy + εṽy

]
+ φ5t

∂Ls

∂it
= φ2t

[
uC (1 + it)

−2
]

+ γ1t

∂Ls

∂St
= φ1t

[
bt − ρbt−1Π−1t

]
+ φ3t [−uC ]

∂Ls

∂Ct
= uC + φ2t

[
−uCC (1 + it)

−1
]

+ φ3t [−uCCSt(ρ)] + φ4t

[
−εYt

ε− 1

ε
(1 + s)uCC − uCCd′Πt

]
+ φ5t [−1]

∂Ls

∂Tt
= gG

(
−s′(Tt − T )

)
+ φ1t

∂Ls

∂bt
= βEtJb (bt, ξt+1) + φ1t [St(ρ)] + ψ1t

[
−f̄eb

]
+ ψ2t [−ḡeb ] + ψ3t

[
−h̄eb

]
∂Ls

∂fet
= βφ2t + ψ1t

∂Ls

∂get
= βφ3t + ψ2t

∂Ls

∂het
= βφ4t + ψ3t

The complementary slackness conditions are

γ1t ≥ 0, it ≥ 0, γ1tit = 0

While the envelope condition is

Jb (bt−1, ξt) = φ1t
[
− (1 + ρSt(ρ)) Π−1t

]
This also implies that

βEtJb (bt, ξt+1) = βEtφ1t+1
[
− (1 + ρSt+1(ρ)) Π−1t+1

]
8.3.2 Steady-state

A Markov-perfect steady-state is non-trivial to characterize because generally, we need to take derivatives of an unknown

function, as is clear from the FOCs. Here, we will rely on the fact that given an appropriate production subsidy, the Markov-

perfect steady-state will be the same as the effi cient steady-state derived above.

First, note that this requires no resource loss from price-adjustment costs, which in turn requires

d (Π) = 0

and thereby ensures

Y = C + F

This means that we need

Π = 1.

Also, this implies

d′ (Π) = 0.

Next, note from the Phillips curve that this means, we need

ε− 1

ε
(1 + s)uC − ṽy = 0.

Now, since the effi cient steady-state has uC = ṽY , the production subsidy then has to satisfy

ε− 1

ε
(1 + s) = 1.
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We will be looking at a steady-state with positive interest rates

1 + i =
1

β

which means that

γ1 = 0

and that from the FOC wrt it we have

φ2 = 0.

Also, given that taxes are at steady-state, gG (−s′(Tt − T )) = 0, from the FOC wrt Tt

φ1 = 0.

Given this, in turn, we have from the FOC wrt St
φ3 = 0.

Then, given that d′ = 0 in steady-state and d′′ is not, and since φ1 = 0, it gives from the FOC wrt to Πt

φ4 = 0.

Note that this is highly convenient since these Lagrange multipliers being zero implies

ψ1 = ψ2 = ψ3 = 0.

Thus, we do not need to worry about the derivatives of the unknown functions.

This proposed steady-state is consistent with other FOCs. For example, the FOC wrt Yt is now given by

φ5 = ṽY

and that the FOC wrt Ct is given by

uC = φ5

which implies

ṽY = uC .

Finally, FOC wrt bt implies

βJb = βφ1
[
− (1 + ρS(ρ)) Π−1

]
= 0

which is also consistent with the conjectured guess.

Finally, the guess of the steady-state is also consistent with the other model equilibrium conditions, with S(ρ) given by

S(ρ) = β [(1 + ρS(ρ))]

that is

S(ρ) =
β

1− ρβ
.

Then b and F are linked by

S(ρ)b = (1 + ρS(ρ)) b+ (F − T )

that is

T = F +
1− β
1− ρβ

b.

8.3.3 First-order approximation

We now take a log-linear approximation of the Markov perfect FOCs and the private sector equilibrium conditions around

the steady-state above. Also, lets normalize the scale of the economy (with appropriate scaling of hours) so that Ȳ = 1. This

implies C̄ = 1− F. Also the shock ξt takes a value of 1 in steady-state.

Private sector equilibrium conditions We first start with the private sector equilibrium conditions. We denote

variables that are in log-deviations from their respective steady-states by hats, except for ı̂t.We denote variables in steady-state

by bars.

First,

Yt = Ct + F + d (Πt)
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gives

Ŷt = C̄Ĉt

Second,

εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
+ uC (Ct, ξt) d

′ (Πt) Πt = βEt
[
uC (Ct+1, ξt+1) d′ (Πt+1) Πt+1

]
gives

ūCd
′′π̂t + εūCC C̄Ĉt − εv̄yyŶt−εv̄yξ ξ̂t + εūCξ ξ̂t = βūCd

′′Etπ̂t+1

which can be simplified by making use of the log-linearized resource constraint above to yield

ūCd
′′π̂t + ε (ūCC − v̄yy) Ŷt = βūCd

′′Etπ̂t+1

π̂t = βEtπ̂t+1 +
ε (v̄yy − ūCC)

ūCd′′
Ŷt.

Third,

1 + it =
uC (Ct, ξt)

βEt
[
uC (Ct+1, ξt+1) Π−1t+1

]
gives

ūCC C̄Ĉt + ūCξ ξ̂t = ūC ı̂t + ūCCEtC̄Ĉt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

which can be simplified by making use of the log-linearized resource constraint above to yield

ūCC Ŷt + ūCξ ξ̂t = ūC ı̂t + ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

and

Ŷt = EtŶt+1 +
ūC

ūCC
[̂ıt − Etπ̂t+1] +

ūCξ

ūCC

[
Etξ̂t+1 − ξ̂t

]
Note here that this implies that the effi cient rate of interest is given by

ret = −
ūCξ

ūC

[
Etξ̂t+1 − ξ̂t

]
.

Fourth,

St(ρ) =
1

uC (Ct, ξt)
βEt

[
uC (Ct+1, ξt+1) Π−1t+1 (1 + ρSt+1(ρ))

]
gives

S̄ūCC C̄Ĉt + S̄ūCξ ξ̂t + ūC S̄Ŝt = β
(
1 + ρS̄

)
ūCCEtC̄Ĉt+1 + β

(
1 + ρS̄

)
ūCξEtξ̂t+1 − β

(
1 + ρS̄

)
ūCEtπ̂t+1 + βρS̄ūCEtŜt+1

which can be simplifies by making use of the log-linearized resource constraint above to yield

S̄ūCC Ŷt + S̄ūCξ ξ̂t + ūC S̄Ŝt = β
(
1 + ρS̄

)
ūCCEtŶt+1 + β

(
1 + ρS̄

)
ūCξEtξ̂t+1 − β

(
1 + ρS̄

)
ūCEtπ̂t+1 + βρS̄ūCEtŜt+1.

Note here that by using the log-linearized Euler equation above, one can further simplify as

S̄
[
ūC ı̂t + ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

]
+ ūC S̄Ŝt

= β
(
1 + ρS̄

)
ūCCEtŶt+1 + β

(
1 + ρS̄

)
ūCξEtξ̂t+1 − β

(
1 + ρS̄

)
ūCEtπ̂t+1 + βρS̄ūCEtŜt+1

or [
ūC ı̂t + ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1

]
+ ūC Ŝt

=
β
(
1 + ρS̄

)
S̄

ūCCEtŶt+1 +
β
(
1 + ρS̄

)
S̄

ūCξEtξ̂t+1 −
β
(
1 + ρS̄

)
S̄

ūCEtπ̂t+1 + βρūCEtŜt+1.

Moreover, since
β
(
1 + ρS̄

)
S̄

= 1

we have finally as the asset-pricing condition

ı̂t + Ŝt = βρEtŜt+1.

Fifth,

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π−1t + (F − Tt)
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gives

b̂t + Ŝt = ρŜt +

(
1 + ρS̄

)
S̄

b̂t −
(
1 + ρS̄

)
S̄

π̂t −
T̄

S̄b̄
T̂t

which is simplified further as

b̂t = β−1b̂t − β−1π̂t − (1− ρ) Ŝt −
T̄

S̄b̄
T̂t.

Then, finally, the expectation functions are given by

f̂et = Et
[
uC (Ct+1, ξt+1) Π−1t+1

]
= ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūC π̂t+1

ĝet = Et
[
uC (Ct+1, ξt+1) Π−1t+1 (1 + ρSt+1(ρ))

]
=
(
1 + ρS̄

)
ūCCEtŶt+1+

(
1 + ρS̄

)
ūCξEtξ̂t+1−

(
1 + ρS̄

)
ūCEtπ̂t+1+ρS̄ūCEtŜt+1

ĥet = Et
[
uC (Ct+1, ξt+1) d′ (Πt+1) Πt+1

]
= ūCd

′′Etπ̂t+1

Markov-perfect FOCs Here, note that since all the Lagrange multipliers except one are zero in steady-state, what we

mean by hats will in fact only be deviations from steady-state for all the lagrange multipliers (as opposed to log-deviations).

First,

φ1t
[
(1 + ρSt(ρ)) bt−1Π−2t

]
+ φ4t

[
−uCd

′′
Πt − uCd

′]
+ φ5t

[
−d′

]
= 0

gives (
1 + ρS̄

)
b̄φ̂1t − ūCd

′′
φ̂4t − φ̄5d′′π̂t = 0

and since φ̄5 = ṽy = ūC (
1 + ρS̄

)
b̄φ̂1t − ūCd

′′
φ̂4t − ūCd′′π̂t = 0.

Second,

−ṽY + φ4t

[
−ε
(
ε− 1

ε
(1 + s)uC

)
+ εYtṽyy + εṽy

]
+ φ5t = 0

gives

−v̄Y Y Ȳ Ŷt +
[
εȲ v̄yy

]
φ̂4t + φ̂5t = 0.

Third,

φ2t
[
uC (1 + it)

−2
]

+ γ1t = 0

gives

ūCβ
2φ̂2t + γ̂1t = 0.

Fourth,

φ1t
[
bt − ρbt−1Π−1t

]
+ φ3t [−uC ] = 0

gives [
(1− ρ) b̄

]
φ̂1t − ūC φ̂3t = 0.

Fifth,

uC + φ2t
[
−uCC (1 + it)

−1
]

+ φ3t [−uCCSt(ρ)] + φ4t

[
−εYt

ε− 1

ε
(1 + s)uCC − uCCd′Πt

]
+ φ5t [−1] = 0

gives

Ŷt +
ūCξ

ūCC
ξ̂t − βφ̂2t − S̄φ̂3t − εφ̂4t −

1

ūCC
φ̂5t = 0.

Sixth,

gG
(
−s′(Tt − T̄ )

)
+ φ1t = 0

gives

−ḡGs
′′
T̄ T̂t + φ̂1t = 0.

Seventh (after some replacements),

βEtφ1t+1
[
− (1 + ρSt+1(ρ)) Π−1t+1

]
+ φ1t [St(ρ)] + βφ2t

[
f̄eb
]

+ βφ3t [ḡeb ] + βφ4t
[
h̄eb
]

= 0

gives

−S̄Etφ̂1t+1 + S̄φ̂1t + βf̄bφ̂2t + βḡbφ̂3t + βh̄bφ̂4t = 0.
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8.4 Linear-quadratic approach

8.4.1 Linear approximation of equilibrium conditions

We approximate around an effi cient non-stochastic steady-state where Π = 1. For simplicity, from here on we will assume that

the only shock that hits the economy is a discount factor shock given by ψ. Standard manipulations that are prevalent in the

literature, for example in Woodford (2003), and as shown above in the Markov perfect equilibrium, give (24) and (25) where

σ = σ̃C
Y
and k = ε

(σ−1+φ)
d
′′ . Here we again detail the derivations of (26) and (27). Given

St(ρ) =
1

uC (Ct, ξt)
βEt

[
uC (Ct+1, ξt+1) Π−1t+1 (1 + ρSt+1(ρ))

]
,

and

1 + it =
uC (Ct, ξt)

βEt
[
uC (Ct+1, ξt+1) Π−1t+1

]
and the functional form assumptions above together with in steady state 1 + i = β−1, log-linearization gives immediately

Ŝt = −ı̂t + ρβEtŜt+1.

Next, given

St(ρ)bt = (1 + ρSt(ρ)) bt−1Π−1t + (Ft − Tt)

and that we assume Ft = F and have from steady state S = β
1−ρβ , T = F + 1−β

1−ρβ b, log-linearization gives immediately

b̂t = β−1b̂t−1 − β−1πt − (1− ρ)Ŝt − ψT̂t.

Note that also the following relationship holds in steady state F = G. We finally derive an expression for ret , the effi cient rate

of interest

ret = σ̃−1 (ψt − Etψt+1) .

8.4.2 Quadratic approximation of household utility

For household utility, we need to approximate the following three components

u (Yt − F − d(Πt), ξt) ; g (F − S(Tt − T ), ξt) ; v (Yt, ξt) .

Standard manipulations that are prevalent in the literature, for example in Woodford (2003), give as a second-order approxi-

mation to household utility

1

2

−σ
(
T̂ 2t
(
F − Ȳ

)
s′′
(
T̄
)

+ Fd′′(1)Π̂2
t

)
+ 2σŶt

(
−Ȳ + F ξ̂t + F

)
+ Ŷ 2t

σ
(
F − Ȳ

) +

1

2
Ȳ

(
d′′(1)Π̂2

t

F − Ȳ
+ ξ̂t

(
2σ

σ − 1
− 2Ŷt

F − Ȳ

)
+

2σ

σ − 1

)
− 1

2
2λ
(
ξ̂t + 1

)
ŶtȲ

φ − 1

2

2λ
(
ξ̂t + 1

)
Ȳ φ+1

φ+ 1
− 1

2
λφŶ 2t Ȳ

φ−1 + tip

which is in turn given as

1

2

(
Ŷ 2t

(
1

Fσ − σȲ
− λφȲ φ−1

)
+ T̂ 2t

(
−s′′

(
T̄
))
− 2

(
ξ̂t + 1

)
Ŷt
(
λȲ φ − 1

)
− d′′(1)Π̂2

t

)
+ tip.

Now lets multiply everything by 1
φ+σ̃−1

and consider effi cient equilibrium in steady-state (uC = ṽY ), together with the scaling

that λȲ φ = 1 and Ȳ = C̄ + F = 1, to get

−
σ̃T̂ 2t s

′′ (T̄ )
2 (φσ̃ + 1)

− σ̃d′′(1)Π̂2
t

2 (φσ̃ + 1)
− Ŷ 2t

2

So, finally, we get as approximation

−
[
λππ

2
t + Ŷ 2t + λT T̂

2
t

]
where

λT =
s′′
(
T̄
)

φ+ σ̃−1
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λπ =
d′′(1)

(φ+ σ̃−1)
=
ε

κ
.

8.4.3 Markov-perfect equilibrium at positive interest rates

Given the Lagrangian where the expectation functions are substituted and the shocks are suppressed

Lt =
1

2
(λππ

2
t + Ŷ 2t + λT T̂

2
t ) + βEtV (bt, r

e
t+1) + φ1t[Ŷt − Ybbt + σı̂t − σπbbt − σret ]

+ φ2t[πt − κŶt − βπbbt] + φ3t[bt − β−1bt−1 + β−1πt + (1− ρ)Ŝt + ψT̂t] + φ4t[Ŝt + ı̂t − ρβSbbt]

the first-order necessary conditions are given by

∂L

∂πt
= λππt + φ2t + β−1φ3t = 0

∂L

∂Yt
= Yt + φ1t − κφ2t = 0

∂L

∂Tt
= λTTt + ψφ3t = 0

∂L

∂it
= σφ1t + φ4t = 0

∂L

∂St
= φ3t(1− ρ) + φ4t = 0

∂L

∂bt
= βEtVb(bt, r

e
t+1)− (Yb + σπb)φ1t − βπbφ2t + φ3t − ρβSbφ4t = 0

while the envelope condition is given by

Vb(bt−1, r
e
t ) = −β−1φ3t

which implies

EtVb(bt, r
e
t+1) = −β−1Etφ3t+1.

We can then combine the envelope condition with the last FOC to yield

−Etφ3t+1 − (Yb + σπb)φ1t − βπbφ2t + φ3t − ρβSbφ4t = 0.

To summarize, we have

λππt + φ2t + β−1φ3t = 0

Yt + φ1t − κφ2t = 0

λTTt + ψφ3t = 0

σφ1t + φ4.t = 0

φ3t(1− ρ) + φ4t = 0

−Etφ3t+1 − (Yb + σπb)φ1t − βπbφ2t + φ3t − ρβSbφ4t = 0

Ŷt = EtŶt+1 − σ(ı̂t − Etπt+1 − ret )

πt = κŶt + βEtπt+1

bt = β−1bt−1 − β−1πt − (1− ρ)Ŝt − ψT̂t

Ŝt = −ı̂t + ρβEtŜt+1

which can be simplified to get

λππt + κ−1Yt = [κ−1 (1− ρ)σ−1 + β−1]
bS

T
λT T̂t

[1− βπbκ−1 (1− ρ)σ−1 − (Yb + σπb) (1− ρ)σ−1 + ρβSb(1− ρ)]T̂t = − (ψ)λ−1T βπbκ
−1Yt + EtT̂t+1

Ŷt = EtŶt+1 − σ(ı̂t − Etπt+1 − ret )

πt = κŶt + βEtπt+1

bt = β−1bt−1 − β−1πt − (1− ρ)Ŝt − ψT̂t

Ŝt = −ı̂t + ρβEtŜt+1.
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The final step is then to match coeffi cients after replacing the conjectured solutions

λππbbt−1 + κ−1 (Ybbt−1) = [κ−1(1− ρ)σ−1 + β−1]
bS

T
λT (Tbbt−1)

[1− βπbκ−1 (1− ρ)σ−1 − (Yb + σπb) (1− ρ)σ−1 + ρβSb(1− ρ)] [Tbbt−1] = − (ψ)λ−1T βπbκ
−1 [Ybbt−1] + [Tb (bbbt−1)]

Ybbt−1 = Yb [bbbt−1]− σ((ibbt−1)− [πb [bbbt−1]])

πbbt−1 = κ [Ybbt−1] + βπb [bbbt−1]

bbbt−1 = β−1bt−1 − β−1 [πbbt−1]− (1− ρ) [Sbbt−1]− ψ [Tbbt−1]

Sbbt−1 = − (ibbt−1) + ρβSb [bbbt−1]

which in turn can be simplified to get

λππb + κ−1Yb = [κ−1(1− ρ)σ−1 + β−1]
bS

T
λTTb (41)

[(1− ρ)−1 − βπbκ−1σ−1 − (Yb + σπb)σ
−1 + ρβSb] (1− ρ)Tb = − (ψ)λ−1T βπbκ

−1Yb + Tbbb (42)

Yb = Ybbb − σ(ib − πbbb) (43)

πb = κYb + βπbbb (44)

bb = β−1 − β−1πb − (1− ρ)Sb − ψTb (45)

Sb = −ib + ρβSbbb. (46)

We now show some properties of πb analytically. First, note that we will be restricting to stationary solutions, that is one

where | bb |< 1. Manipulations of (41)-(46) above lead to the following closed-form expression for πb

πb =
(1− βbb)

β
[
T
lV
χ [λπ + κ−1κ−1 (1− βbb)] + [(1− ρ)σ−1κ−1 (1− bb) + β−1] (1− βbb) (1− ρβbb)−1

]
where χ =

[
[κ−1σ−1(1− ρ) + β−1]

bS

T
λT

]−1
.

Since | bb |< 1, it is clear that πb > 0 for all ρ < 1, . What happens whenρ > 1? Numerically, we have found that often πb > 0

still, but sometimes in fact it can hit zero (and then actually go negative if ρ is increased further). It is in fact possible to

pin-down analytically when πb = 0. Note that from (44), if πb = 0, then Yb = 0. This then implies that for this to be supported

as a solution for all possible values of Tb, from (41), it must be the case that

[κ−1(1− ρ)σ−1 + β−1] = 0

which in turn implies that

ρ = 1 + β−1σκ.

In this knife-edge case, note that one needs ρ > 1. Moreover, since the upper bound on ρ is β−1, one needs to ensure that

1 + β−1σκ < β−1 or σκ < 1− β.

This is a fairly restrictive parameterization (not fulfilled in our baseline, for example). Still, it is instructive to note that in

this case of when πb does reach 0, then it is indeed possible to show analytically that πb declines as duration is increased while

comparing ρ = 0 with ρ = 1 + β−1σκ or ρ = 1 with ρ = 1 + β−1σκ.

8.5 Equivalence of the two approaches
We now show the equivalence of the linearized dynamic systems for non-linear and linear-quadratic approaches.

Consider the system of equations describing private sector equilibrium and optimal government policy

Ŷt = EtŶt+1 +
ūC

ūCC
[̂ıt − Etπ̂t+1 − ret ]

π̂t =
ε (v̄yy − ūCC)

ūCd′′
Ŷt + βEtπ̂t+1.

ı̂t + Ŝt = βρEtŜt+1.

47



b̂t = β−1b̂t − β−1π̂t − (1− ρ) Ŝt −
T̄

S̄b̄
T̂t.

(
1 + ρS̄

)
b̄φ̂1t − ūCd

′′
φ̂4t − φ̄5d′′π̂t = 0

−v̄Y Y Y Ŷt +
[
εȲ v̄yy

]
φ̂4t + φ̂5t = 0

ūCβ
2φ̂2t + γ̂1t = 0

[
(1− ρ) b̄

]
φ̂1t − ūC φ̂3t = 0.

Ŷt +
ūCξ

ūCC
ξ̂t − βφ̂2t − S̄φ̂3t − εφ̂4t −

1

ūCC
φ̂5t = 0.

−ḡGs
′′
T̄ T̂t + φ̂1t = 0.

−S̄Etφ̂1t+1 + S̄φ̂1t + βf̄bφ̂2t + βḡbφ̂3t + βh̄bφ̂4t = 0.

Under additional functional assumptions outlined in previous sections we get

v̄Y Y = φY
−1

= φ

ūCC = −σ−1C̄−1 = −σ̃−1

ūCξ = 1

ūC = 1

ḡG = 1

φ̄5 = 1

Ȳ = 1

The first four equations are equivalent to their counterparts in the LQ-approach once one use the functional form assump-

tions to get
ūC

ūCC
= −σ̃

and introduce new notation
ε (v̄yy − ūCC)

ūCd′′
= κ.

The latter relation implies
ε
(
φ+ σ̃−1

)
κ

= d′′.

Let us guess solutions for all variables for the case when the ZLB is slack as a linear function of b̂t−1 and r̂et . Then the

expectations will take form

f̂et = ūCCEtŶt+1 + ūCξEtξ̂t+1 − ūCEtπ̂t+1 = f̂eb b̄b̂t−1 + f̂er r̂
e
t

ĝet =
(
1 + ρS̄

)
ūCCEtŶt+1 +

(
1 + ρS̄

)
ūCξEtξ̂t+1 −

(
1 + ρS̄

)
ūCEtπ̂t+1 + ρS̄ūCEtŜt+1 = ĝeb b̄b̂t−1 + ĝer r̂

e
t

ĥet = ūCd
′′Etπ̂t+1 = ĥeb b̄b̂t−1 + ĥer r̂

e
t

where

f̂eb = −b̄−1
(
σ̃−1Yb + πb

)
ĝeb = −σ̃−1b̄−1

(
1 + ρS̄

)
Yb −

(
1 + ρS̄

)
b̄−1πb + ρS̄Sbb̄

−1
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ĥeb =
ε
(
φ+ σ̃−1

)
κ

πbb̄
−1

Also under the assumption about the process ξ̂t we get

Etξ̂t+1 = µξ̂t

and

r̂et = −
ūCξ

ūC

[
µξ̂t − ξ̂t

]
= ξ̂t(1− µ).

When the economy is out of ZLB r̂et = 0.

Now we can find explicit representation for the lagrange multipliers

φ̂1t = s
′′
T̄ T̂t.

φ̂2t = 0

φ̂3t = [(1− ρ)] s
′′
T̄ T̂t.

φ̂4t =
κ

ε (φ+ σ̃−1)

(
1 + ρS̄

)
b̄s
′′
T̄ T̂t − π̂t

φ̂5t = φŶt − φ
κ

(φ+ σ̃−1)

(
1 + ρS̄

)
s
′′
T̄ T̂t + εφπ̂t

So the last two equations take the form

επ̂t = −Ŷt +
1

(φ+ σ̃−1)

[
σ̃−1S̄ (1− ρ) + κ

(
1 + ρS̄

)]
b̄s
′′
T̄ T̂t.

S̄s
′′
T̄ T̂t +

(
ρβSb − σ̃−1Yb − πb

)
b̄−1 (1− ρ) S̄b̄s

′′
T̄ T̂t + b̄−1πbS̄b̄s

′′
T̄ T̂t − β

ε
(
φ+ σ̃−1

)
κ

πbb̄
−1π̂t = s

′′
T̄ S̄EtT̂t+1.

which after straightforward manipulations become

ε

κ
π̂t + Ŷtκ

−1 =
[
σ̃−1 (1− ρ)κ−1 + β−1

] b̄S̄
T̄

T̄ 2s
′′

(φ+ σ̃−1)
T̂t.

(
1 +

(
ρβSb − σ̃−1Yb − πb

)
(1− ρ) + πb

) S̄b̄
T̄

s
′′
T̄ 2

(φ+ σ̃−1)
T̂t − β

ε

κ
πbπ̂t =

s
′′
T̄ 2

(φ+ σ̃−1)

b̄S̄

T̄
EtT̂t+1.

These two equations are equivalent for the last two equations from the dynamic system obtained in LQ—approach once we

use the derived weights from the quadratic approximation of the loss function

λT =
s
′′
T̄ 2

(φ+ σ̃−1)

λπ = κ−1ε.

8.6 Computation at ZLB
In our experiment the debt is kept fixed at the zero lower bound at bL . Moreover, at the zero lower bound, ı̂t = 1 − β−1.
Given the specific assumptions on the two-state Markov shock process, the equilibrium is described by the system of equations

Ŷt = −σ
(
−πb(1− µ)b̂t − ret − µπL + ı̂t

)
+ (1− µ)b̂tYb + µYL,

π̂t = β
(
πb(1− µ)b̂t + µπL

)
+ κYt,

ı̂t = 1− β−1,

b̂t = bL,

Ŝt = −ı̂t + ρβ ((1− µ)SbbL + µSL) .
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where variables with a b subscript denote the solution we compute at positive interest rates while variables with a L subscript

denote values at the ZLB. The solution to this system is

Ŷt = YL =
βπb(µ− 1)bL

κ
−

(1− βµ)
(
βπb(1− µ)2bL − κ (bL (πb(µ− 1)σ + (µ− 1)Yb)− σret + σiL)

)
κ(κµσ − (1− µ)(1− βµ))

,

π̂t = πL =− βπb(1− µ)2bL − κ (bL (πb(µ− 1)σ + (µ− 1)Yb)− σret + σiL)

κµσ − (1− µ)(1− βµ)
,

ı̂t = iL =1− β−1, b̂t = bL,

Ŝt = SL =
ρβ(1− µ)SbbL − ı̂t

1− ρβµ

where the solution for variables with a b subscript has already been provided above.

8.7 Non-linear markov equilibrium of extended model
We now consider a model where the duration of government debt is time-varying and chosen optimally by the government.

The policy problem can be written as

J (bt−1, ρt−1, ξt) = max [U (Λt, ξt) + βEtJ (bt, ρt, ξt+1)]

st

St(ρt)bt = (1 + ρt−1Wt(ρt−1)) bt−1Π−1t + (F − Tt) .

1 + it =
uC (Ct, ξt)

βfet

it ≥ 0

St(ρt) =
1

uC (Ct, ξt)
βget

Wt(ρt−1) =
1

uC (Ct, ξt)
βjet

εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
+ uC (Ct, ξt) d

′ (Πt) Πt = βhet

Yt = Ct + F + d (Πt)

fet = Et
[
uC (Ct+1, ξt+1) Π−1t+1

]
= f̄e (bt, ρt, ξt)

get = Et
[
uC (Ct+1, ξt+1) Π−1t+1 (1 + ρtSt+1(ρt))

]
= ḡe (bt, ρt, ξt)

het = Et
[
uC (Ct+1, ξt+1) d′ (Πt+1) Πt+1

]
= h̄e (bt, ρt, ξt)

jet = Et
[
uC (Ct+1, ξt+1) Π−1t+1 (1 + ρt−1Wt+1(ρt−1))

]
= j̄e (bt, ρt, ξt)
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Formulate the period Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− ṽ (Yt) + βEtJ (bt, ρt, ξt+1)

+ φ1t
(
St(ρt)bt − (1 + ρt−1Wt(ρt−1)) bt−1Π−1t − (F − Tt)

)
+ φ2t

(
βfet −

uC (Ct, ξt)

1 + it

)
+ φ3t (βget − uC (Ct, ξt)St(ρt))

+ φ4t (βjet − uC (Ct, ξt)Wt(ρt−1))

+ φ5t

(
βhet − εYt

[
ε− 1

ε
(1 + s)uC (Ct, ξt)− ṽy (Yt, ξt)

]
− uC (Ct, ξt) d

′ (Πt) Πt

)
+ φ6t (Yt − Ct − F − d (Πt))

+ ψ1t
(
fet − f̄e (bt, ρt, ξt)

)
+ ψ2t (get − ḡe (bt, ρt, ξt))

+ ψ3t
(
het − h̄e (bt, ρt, ξt)

)
+ ψ4t (jet − j̄e (bt, ρt, ξt))

+ γ1t (it − 0)

First-order conditions (where all the derivatives should be equated to zero)

∂Ls

∂Πt
= φ1t

[
(1 + ρt−1Wt(ρt−1)) bt−1Π−2t

]
+ φ5t

[
−uCd

′′
Πt − uCd

′]
+ φ6t

[
−d′

]
∂Ls

∂Yt
= −ṽY + φ5t

[
−ε
(
ε− 1

ε
(1 + s)uC

)
+ εYtṽyy + εṽy

]
+ φ6t

∂Ls

∂it
= φ2t

[
uC (1 + it)

−2
]

+ γ1t

∂Ls

∂St
= φ1t [bt] + φ3t [−uC ]

∂Ls

∂Wt
= φ1t

[
ρt−1bt−1Π−1t

]
+ φ4t [−uC ]

∂Ls

∂Ct
= uC + φ2t

[
−uCC (1 + it)

−1
]

+ φ3t [−uCCSt(ρt)] + φ4t [−uCCWt(ρt−1)] + φ5t

[
−εYt

ε− 1

ε
(1 + s)uCC − uCCd′Πt

]
+ φ6t [−1]

∂Ls

∂Tt
= gG

(
−s′(Tt − T )

)
+ φ1t

∂Ls

∂bt
= βEtJb (bt, ρt, ξt+1) + φ1t [St(ρt)] + ψ1t

[
−f̄eb

]
+ ψ2t [−ḡeb ] + ψ3t

[
−h̄eb

]
+ ψ4t (−j̄eb )

∂Ls

∂ρt
= βEtJρ (bt, ρt, ξt+1)

∂Ls

∂fet
= βφ2t + ψ1t

∂Ls

∂get
= βφ3t + ψ2t

∂Ls

∂jet
= βφ4t + ψ4t

∂Ls

∂het
= βφ5t + ψ3t

The complementary slackness conditions are

γ1t ≥ 0, it ≥ 0, γ1tit = 0

While the envelope conditions are

Jb (bt−1, ρt−1, ξt) = φ1t
[
− (1 + ρt−1Wt(ρt−1)) Π−1t

]
Jρ (bt−1, ρt−1, ξt) = φ1t

[
−Wt(ρt−1)bt−1Π−1t

]
.
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