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Abstract

Deregulation of the frequency response market in the UK allowed electricity firms

to compete on price in an otherwise stable environment. We provide an analysis of

the evolution of the deregulated market from the date it started. Initial activity was

volatile, with some firms exploring different prices, while others made few price changes.

This was followed by a period in which prices fell and the variance in the cross sec-

tional distribution of bids declined markedly. By the end of our study price changes

had became relatively rare and small, consistent with convergence to a static Nash

equilibrium. We examine how well models of learning do in predicting play during the

period prior to convergence but after the initial volatility. Models where perceptions

of competitors’ play depend on past play suggest that firms’ weight recent play dispro-

portionately. We also find evidence of statistical learning about the underlying demand

parameters conditional on competitors’ play. A model that combines these two features

fits quite well: it is able to explain 37% of the share-weighted variation in prices, even

though none of the model parameters are chosen to fit the pricing behavior.

∗We are grateful to Paul Auckland and Graham Hathaway of National Grid, and Ian Foy of Drax Power
for useful conversations about this project. We have also benefited from discussions with Joseph Cullen and
Mar Reguant, and from the comments of seminar participants at Boston College, Cornell, Duke, Kellogg
and the NBER Productivity Lunch. Rebecca Diamond, Duncan Gilchrist, Daniel Pollmann, Sean Smith and
Amanda Starc have all provided excellent research assistance.



1 Introduction

Entirely new markets arise frequently, often as a result of innovation or deregulation. Firms

entering these markets face considerable uncertainty. This is partly because overall demand

is typically uncertain, and partly because the demand for their product depends on the de-

cisions of competitors facing similar uncertainties. This paper explores how this uncertainty

manifests itself in the bidding behavior of firms from “day one” of a new market.

An understanding of how firms form strategies in new markets — or indeed in existing

markets following a sudden change in conditions — is necessary in any investigation of

the implications of changes in market institutions. The empirical industrial organization

literature has focused on simulation of new equilibria following counterfactual policy changes

(e.g. a merger). But convergence to a new equilibrium is not guaranteed to be swift (or

indeed certain), and so having a reliable model of out-of-equilibrium pricing dynamics would

be extremely helpful. Moreover, such a model might help narrow down the set of possibilities

in cases where there are multiple counterfactual equilibria (see, e.g. Lee and Pakes (2009)).

There has been little empirical work on how new markets (or existing markets with sharp

changes in the institutions which govern them) evolve, and consequently little field evidence

to discriminate among models of how firms adapt to both the strategic and demand uncer-

tainty presented by changes in the environment. This paper attempts to fill this gap with an

analysis of the frequency response market in the UK. Broadly speaking, frequency response is

a product required by the system operator in electricity markets to keep the system running

smoothly. It is bought from electricity generating firms. Prior to November 2005, generators

in the UK were required to provide frequency response to the system operator at a fixed

system-wide price. Then the market was deregulated and generators were allowed to bid

into an auction market, setting the stage for price competition. We study what happened

next.

Though the introduction of the auction essentially started a new market, it is a new market

with features which should make it relatively easy to analyze. Prices are set simultaneously

each month, as in a standard normal form game. The system operator is required to buy

frequency response according to a public and fixed set of regulations, so the rules of the game

are reasonably clear. Moreover the same firms had been supplying frequency response in the

regulatory period preceding the change, so the bidders had quite a bit of prior knowledge of

the vagaries of demand. Finally while the market is somewhat concentrated, there are still
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ten big firms, so that tacit collusion is difficult and repeated game considerations may be

less relevant.

The paper is primarily an attempt to bring descriptive evidence to the question of how

markets adapt to changes in institutions. We show that the FR market reaches a “rest-

point” after three and a half years. Generators set substantially different prices in the early

stages of the market, and update their prices regularly. But after three and a half years

of repeated interaction, price changes became infrequent and small, and the cross-sectional

variance in prices had shrunk markedly. We estimate a flexible demand system using all

the data, and then back out marginal costs under the assumption that firms play a static

Nash equilibrium in the latter part of the data. Our estimated costs are in line with the

“cost-reflective” fixed price prior to deregulation, which is evidence in favor of the rest point

being a static Nash equilibrium.

When the market starts up we see different firms following different strategies which do not

seem to be coordinated in any way. The behavior of some looks to be exploratory, and

when the exploration leads to large gains in returns, others seem to follow. There are also

firms who hardly change their prices at all. After just over a year competition between firms

drives the highest prices down, leading to dramatically lower variance in the cross-sectional

bid distribution. We consider a series of learning models that might explain the convergence

in this period. Recall that the firms may be uncertain about both the behavior of their

rivals and about the demand for their products given rival behavior. In our first set of

models we assume away the second source of uncertainty to focus on strategic uncertainty.

We allow firms to weight the past play of their competitors differentially for different lagged

periods (in the theory literature, this is “fictitious play”, as in Brown (1951)). In our second

set of models we allow firms to be uncertain about the demand parameters as well as rival

strategies. We model how firms form perceptions about demand parameters by a statistical

learning process, assuming firms run regressions given the set of data available to them at

each point in time. This approach originates in the macro literature on rational expectations

(e.g. Townsend (1983), Marcet and Sargent (1989), Evans and Honkapohja (2001)).

Our criterion for comparing the different models is their ability to make “one-step-ahead”

predictions: we compare the predicted bid for time t given data from time t−1 to the actual

bid at time t, where the predictions vary across models. None of the models in which firms

know the demand system from the start fit the data particularly well. By contrast, when

we allow for statistical learning on the properties of the demand system given the bids of
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others, as well as use the fictitious play assumptions for the perceptions of competitors’ bids,

we obtain a much better fit. Perhaps not surprisingly, firms seem to optimize given the

currently available information and their perceptions evolve over time.

In the context of the fictitious play model we reject a model in which firms think that their

rivals are equally likely to take any of their past actions. Instead we find that firms discount

the past behavior of their opponents and pay relatively more attention to recent actions;

in the extreme this leads to a best response model. A model with firms both re-estimating

demand each period and best responding to their rival’s actions fits the data quite well: the

(volume-weighted) R2 is 0.37, which is reasonably impressive considering that the demand

and cost parameters were estimated in a previous step, and no parameters were chosen to

maximize the fit of the learning process per se.

We view the current version of the paper as making two distinct contributions. The first is

to carefully document what happens to prices and bidding over time when a new market is

started in a fairly stable environment. Since it is common in empirical industrial organization

to assume that an equilibrium will be re-asserted following a change in conditions, and yet

not clear from the theory on strategic learning that this should be the case, it seems useful to

bring empirical evidence to bear on this issue. We find that there is convergence to some sort

of rest point, albeit only after three and a half years of monthly strategic interaction. This

rest point is consistent with a static Nash equilibrium in bids. To the best of our knowledge,

ours is the first paper to demonstrate convergence and describe how it occurs.

A second contribution is to test different learning models against each other by comparing

their relative fit during the competitive period. Our results here are preliminary, but suggest

that firms more heavily weight recent competitor actions and engage in statistical learning.

Related literature. There is a large theory literature on learning in static normal-form

games. The organizing feature of this literature has been on deriving conditions under which

the canonical models of fictitious play (Brown 1951) and reinforcement learning imply con-

vergence to equilibrium (e.g. Milgrom and Roberts (1991), Fudenberg and Kreps (1993),

Börgers and Sarin (1997), Hart and Mas-Colell (2000)); usually in stable and known envi-

ronments. Experimental economists have pushed this literature further, using lab data to

work out which learning models best describe how people actually learn, and proposing new

models as a result. Subsequent work has led to more general models, such as experience-

weighted attractive learning (Camerer and Ho 1999); or models with sophisticated learners,
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who try to influence how other players learn (Camerer, Ho, and Chong 2002). There are now

a number of meta-studies, combining data from multiple lab experiments: Boylan and El-

Gamal (1993) finds that a fictitious play model performs better than adaptive best response;

Cheung and Friedman (1997) find evidence of heterogeneity across players in the discount

rate in fictitious play models; Erev and Roth (1998) show that a simple one-parameter re-

inforcement learning model can fit their data quite well. But recently Salmon (2001) has

argued using Monte Carlo simulations that in fact there is an “identification failure”: differ-

ent models are hard to tell apart statistically because they make similar predictions.

A second, distinct, theoretical literature considers behavior when there is uncertainty about

the state of nature. There is a long literature in applied mathematics and statistics analyzing

bandit problems, in which forward-looking agents trade off “exploration” versus “exploita-

tion”. Economists have contributed to this literature by analyzing what happens when

multiple agents compete in such an environment, noting informational free-riding incentives

(e.g. Bolton and Harris (1999)) and incentives to “signal jam” (e.g. Mirman, Samuelson,

and Urbano (1993)).

There has been no prominent empirical work on either of these topics (i.e. convergence to

equilibrium, or estimating learning models), but there are some papers on related topics.

Hortaçsu and Puller (2008) show that in the newly created spot market for electricity in

Texas, big firms made bids that were best responses to rival play, but small firms failed to

optimize fully (although their behavior improved over time). Goldfarb and Xiao (2011) show

that managers with different experience and education levels make different entry decisions

in local US telephone markets after deregulation. They rationalize this with a cognitive

hierarchy model, in which more experienced managers think more steps ahead.

Surprisingly, there is also little empirical work on how agents learn about demand for their

product from the observation of their and their rivals’ sales. In the IO and marketing litera-

ture, a number of papers have examined how agents may learn their demand for experience

goods from their own experimentation (Erdem and Keane 1996, Ackerberg 2003, Dickstein

2013). There is also a small empirical literature on observational learning, where agents see

the choice of others but not outcomes (e.g. Zhang (2010) on patient decisions to accept

a kidney offer, and Newberry (2013) on music downloads). Social learning has been more

widely studied in other contexts (see e.g. Griliches (1957) on hybrid corn, Conley and Udry

(2010) on fertilizer in Ghana, and Covert (2013) on fracking in the Bakken Shale).
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Paper Structure. The paper proceeds as follows. In the next two sections we describe the

frequency response market, our data on it, and some descriptive evidence on how it evolved

over time. The following section outlines our estimation strategy for recovering the supply

and demand primitives. We then estimate a number of learning models and compare their

comparative fit, before concluding. Additional information on the construction of the data

and the estimation procedures are to be found in the appendix.

2 Overview of the British electricity market

The British electricity market is a network of generators and distributors, connected by a

transmission grid. This grid is owned and operated by a company called National Grid (NG).

NG is responsible for the transmission of electricity from the generators to the distributors,

as well as the balancing of supply and demand in real time.

The unit of exchange in this market is a given amount of power supplied for a half-hour

(measured in megawatt hours (MWh)). About 98% of electricity is sold through some form of

forward contracting. Bilateral forward contracts between generators and distributors account

for the vast majority of these sales, and they can be formed months or even years in advance.

There are also shorter term contracts (both day ahead and day of) which are often traded on

power exchanges. One hour prior to the settlement period, both distributors and generators

must submit their contracted positions to NG, who then holds an auction to equate supply

and demand as expected over the settlement period. This multi-unit discriminatory auction

is called the balancing mechanism (BM), and it accounts for the remaining 2% of electricity

sales. The generators bidding in the BM and are called BM units. A power station typically

consists of multiple BM units, and multiple power stations may be owned by a single firm.

The market for electricity — referred to as the “main market” in the rest of the paper — is

summarized in figure 1.

Frequency response. NG is obligated by government regulation to maintain a system

frequency within a one-percent band of 50Hz. System frequency is determined in real-time

by imbalances between the supply and demand of electricity. The higher demand is relative

to supply, the lower the system frequency is, and vice versa. Imbalances occur due to shocks

that cannot be corrected in advance through the BM. To balance the system, NG instructs
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one or more BM units into frequency response (FR) mode. Once in this mode, NG can

rapidly adjust the energy production of the BM unit using so-called governor controls.

NG is required by government regulation to hold an certain amount of FR capacity at all

times.1 This response requirement is based on risk-response curves that assess the likelihood

and magnitude of possible shocks given the total amount of electricity demanded. As the

total amount of electricity demanded evolves, NG instructs BM units in and out of FR mode

in real time to satisfy its response requirement. To the best of our knowledge, the response

requirement was held fixed over the sample period.2

FR capacity is thus a second product, distinct from electricity, that BM units can sell to NG,

and the FR market is distinct from the main market. Offering FR capacity is costly: a unit

in FR mode incurs additional wear and tear as it may have to make rapid adjustments to

its energy production in response to supply and demand shocks.3 It is compensated by NG

by a holding payment and an energy response payment. The holding payment is per unit

of FR capacity and paid for the time that it is called into FR mode regardless of whether

the BM unit has to adjust its energy production in response to demand or supply shocks.

The energy response payment compensates the BM unit for actual adjustments to its energy

production.4 These energy response payments remained constant pre-and-post deregulation,

and are considered by industry insiders to be a relatively small source of profits. For this

reason, our focus on this paper will be on the holding payments.

Deregulation. Our interest in the FR market stems from a change in way holding pay-

ments were calculated, which occurred with the enactment of an amendment to the Con-

1There are in fact three different kinds of frequency response: primary, secondary and high. Primary
response is additional energy from a BM unit that is available ten seconds after an event and can be sustained
for a further twenty seconds; secondary response is additional energy that is available within thirty seconds
for up to thirty minutes. High response is a reduction of energy within thirty seconds. These responses are
technologically constrained and correspond to dilating the steam valve (primary), increasing the supply of
fuel (secondary), and decreasing the supply of fuel (high). For historical reasons, BM units are instructed
into FR mode in only two possible combinations: primary-high and primary-secondary-high. To simplify
the presentation and analysis, we aggregate over the three types of FR (primary, secondary, and high); see
the Data Appendix for details.

2We have checked the publicly available minutes of all meetings of the frequency response working group
(comprising representatives from the generating firms and NG), and at no point was there a discussion of a
change in the overall response requirements.

3It also runs less efficiently, with a degraded heat rate.
4If the BM unit produces more energy than it was initially contracted to in the BM, NG pays it 125% of

the current market price per additional unit of energy; if the BM unit produces less energy, it pays NG 75%
of the current market price.
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Figure 2: Holding payments for high frequency response pre and post CAP047.
Source: National Grid.

nection and Use of System Code called CAP047. This change “went live” on November 1,

2005. Pre CAP047, providing FR was mandatory, and the holding payments were at an

administered price (per unit of FR capacity) which had been fairly constant over time (see

figure 2). CAP047 replaced the mandatory provision of FR with a market for FR. In this

market, holding payments are determined by an auction.

Post CAP047, a BM unit tenders a bid each month for FR. The bid for the next month is

submitted before the 20th of the current month, well in advance of electricity production,

and consists of a price per unit of FR capacity. If called upon by NG, the BM unit is paid

a holding payment equal to its bid per unit of FR capacity for time spent in FR mode

(i.e. they get “paid-as-they-bid”). A bid commits the BM unit to offer FR at a fixed price

over the next month. The quantity that a unit delivers if instructed into FR mode varies

with its operating position and current system deviation according to a unit-specific contract

between the generator and NG that is generally fixed over the sample period.5

5This contract takes the form of a 5× 3 matrix for each type of frequency response (see footnote 1) that
specifies the quantity delivered at 5 deload points (operating positions) and 3 system deviations (0.2Hz,
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NG can choose to call upon any unit at any time, and often does not choose the lowest

bidding units to provide frequency response. Instead, it simultaneously accepts bids in the

BM and issues FR instructions to equate supply and demand and maintain the mandated

amount of FR capacity in the most cost-effective way. In practice, this cost minimization

problem is solved by a computer program running a linear program.

The market for FR was proposed by one of the largest electricity firms in the UK market,

RWE. This proposal was bitterly opposed by NG, who argued that since their demand for

FR is regulated and thus inelastic, generators would be able to exploit their market power

and the price of FR would rise. The government regulator dismissed these concerns, and on

November 1, 2005 introduced CAP047. Figure 2 shows that NG had every reason to worry

about CAP047, as average daily holding payments for FR doubled within the year after the

introduction of the market.

From the pre-CAP047 period, firms likely had an understanding of NG’s requirements and

their BM units’ relative desirability given their main market positions, as well as the cost of

providing FR. However, firms faced uncertainty as to the demand for their frequency response

services because they didn’t know how their rivals would bid, nor how price sensitive NG was.

Our goal is to understand how firms learned to bid in the presence of this initial uncertainty,

and how this contributed to the trends in holding payments over time.

Data. We collected most of our data from two public sources. Our data on the FR market

comes from NG. For the post-CAP047 period we have the bids submitted by each BM unit

at a monthly level and the quantities provided of each type of FR (in MWh) by each BM

unit at a daily level. The combination of bid and volume data allows us to calculate the

daily holding payment received by each BM unit.

The second data source is Elexon Ltd. They are contracted by the government regulator to

manage measurement and financial settlement in the BM. For every BM unit we collected

detailed data on the bids and acceptances in the BM every half-hour. This allows us to

assess the operating position of the BM unit. Finally, we worked out which firms own which

BM units through data from the Central Registration Agency.

0.5Hz and 0.8Hz away from 50Hz). At other deload points and deviations, the quantity is found by linear
interpolation. The matrices are proprietary information, but selected entries are published by NG in the
capability data (see the data appendix). Generators can re-bid the matrix as well as the price each month,
but for over 80% of the units, the observed entries don’t change at all during the sample period.
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Table 1: Firms with the largest frequency response revenues

Rank Firm name Total Revenue Cumulative Months
Revenue Share (%) Share (%) revenue > 0

1 Drax Power Ltd. 99.5 23.8 23.8 72
2 E.ON UK plc 67 16 39.9 72
3 RWE plc 48.5 11.6 51.5 72
4 Eggborough Power Ltd 29.8 7.1 58.7 72
5 Keadby Generation Ltd 24.2 5.8 64.5 72
6 Barking Power Ltd 17.8 4.2 68.8 72
7 SSE Generation Ltd 15.2 3.6 72.5 55
8 Jade Power Generation Ltd 15 3.6 76.1 69
9 Centrica plc 14.8 3.5 79.6 72
10 Seabank Power Ltd 14 3.3 83 72

Inflation-adjusted revenue in millions of british pounds (base period is November 2012). There is information
on 72 months in the data.

Market participants. There are 132 BM units grouped into 63 power stations. The BM

units belonging to the same power station tend to be identical. The 132 BM units are

owned by 40 firms. Table 1 provides summary statistics on revenue in the FR market for

the ten largest recipients over the first seven years of the market’s existence (until October

31, 2011).6 The ten firm concentration ratio is just over 80%, and the HHI is 76.5, so the

FR market is mildly concentrated.

The participant that earned the most revenue, Drax, had about 20% of the FR market and

earned over £90,000,000 over the sample period, or about £1,100,000 per month. Drax is

a single-station firm, while the next two largest participants, E.ON and RWE, are multi-

station firms. Anecdotally, Drax’s disproportionate revenue share is attributable to having a

relatively new plant, with accurate governor controls, making them attractive for providing

FR. The smallest of these firms, Seabank, still makes around £200,000 per month. All of

this suggests that the market was big enough that firms may have been willing to devote an

employee’s time to actively managing their bidding strategy, at least when the profitability

of the market became apparent. For example, in 2006 Drax hired a trader to specifically

deal with the FR market.7 Within a year, this increased Drax’s annual revenue from the FR

market more than threefold.

6Most firms have positive revenue in every month; the exceptions tend to be single-station firms who may
shut down occasionally for maintenance.

7Source: private discussion with Ian Foy, Head of Energy Management at Drax.
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Figure 3: Monthly prices over time. Prices are weighted averages of bids across units, where
the weights for each period are the volumes received by each unit.

3 The evolution of the frequency response market

We divide our analysis of the evolution of the FR market into three periods or phases.

Figure 3 shows the prices over the entire period with the three periods delineated by vertical

lines. During the first phase, from November 2005 until February 2007, the average holding

price exhibits a noticeable upward trend, moving from an initial price of £3.1/MWh to a

final price of £7.2. From March 2007 to May 2009 this trend reverses itself and prices fall

back down to £4.8/MWh. From June 2009 to the end of our study period there is no obvious

trend at all. While there are fluctuations, they are smaller, and prices stayed in the range

of £4.3/MWh to £5.1/MWh. Moreover, during this third phase, the sharper movements in

one direction are followed by corrections in the opposite direction.
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Figure 4: Volumes over time and by season. The left panel shows the total volume of
frequency response for each month in the sample period, while the right panel shows the total
volume by month-of-year (4 observations per month-of-year).

Environment. Our analysis assumes that the environment in which the FR market oper-

ates, i.e., the demand and supply conditions, is relatively stable. We now provide evidence

that this is largely true. The left panel of figure 4 plots monthly data on the volume of FR.

Though these are clearly volatile, they are no more volatile at the beginning than at the

end of the period we study. There is a bit of evidence of seasonality in volumes: see the

right panel of figure 4. While this may explain some of the fluctuations in the final period,

the price movements in the first two periods are too persistent to be driven by seasonality.

There is also a slight downward trend in volumes over the sample period, which we attribute

to NG’s signing of long-term contracts with individual firms to fulfill part of their frequency

response requirements. Again, this is small.

As further evidence of stability, in the left panel of figure 5 we plot the realized daily electricity

demand in the UK over the sample period. Though it is clearly seasonal, there are no

obvious trends in electricity consumption. Since NG’s response requirement derives from

risk-response curves that did not change over the sample period, the stability of the main

market implies the stability of frequency response demand that is documented above.

Turning from the demand for FR to the supply of FR, the right panel of Figure 5 plots the

number of “active” stations over time, where a station is active if one of its units submits

a competitive bid (bids ≤ 23). While the number of active stations does fluctuate a bit,

ranging from 53–61 over the sample period, the movements are relatively small and none of

the stations who become active or inactive are particularly large stations.
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panel plots the total daily realized electricity demand in the UK over the sample period. This plots
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We conclude that the changes in the holding payments in Figure 3 occurred despite the

relative stability of the demand and supply conditions. As a result we look to an explanation

that is rooted in changes in bidding behavior over time. For each phase, we begin with

an overview of how bidding behavior changed from period to period. After providing the

overview we come back to look more closely at the role of individual power stations.

Early period (November 2005 – February 2007). Firms are most likely to experiment

with different bids, during the first, or rising price, phase of our data. In this phase they

adjust their bids more frequently as well as by larger amounts (in absolute value) than in

any of our other periods. This is illustrated in Figures 6 and 7. The first graphs a weighted

average of indicator variables for a BM unit changing its bid, and the second graphs the

absolute value of the change conditional on changing. The weights are the fraction of FR

volume in the base (lagged) period. The other fact that is worth noting is the cross-sectional

variance in bids is an order of magnitude higher in the first period than in other periods, see

Figure 8. We show below that during this period virtually all bidding changes by firms were

bid increases. What the large cross-sectional variance in bids thus indicates is that the bid

increases were not coordinated across firms in time.

Figure 9 shows the bids of the biggest 8 stations in the opening period.8 The levels and

8We define “biggest” by revenue rank during the pre-equilibrium period, as we want to include all the
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Figure 6: Probability of a bid change over time. This is a weighted average across units
of an indicator for a change in their bid in period t, using quantity-weights from period t− 1.

trends of the bids across stations are quite different. Peterhead and Seabank bid very high

early on — pricing themselves out of the market — and then drift back down into contention.

The remaining firms start low and then gradually ramp up. The big increase in bids by Drax

during late 2006 and early 2007 leads to the “price bubble” we see in Figure 3.

At least to some extent, this heterogeneity in bidding strategies and accompanying price

volatility is to be expected. Firms had no experience in this market and had to learn the

likely profitability of different bidding strategies. This view is consistent with a conversation

we had with Ian Foy of Drax Power, the largest provider of FR. He explained that initially

they found it difficult to project revenue for each of their BM units. Though they were aware

of the cost of providing FR in terms of both efficiency and wear and tear, it was hard to

predict how others would bid and therefore the volume of FR they would attract. In each

big players during this period.
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Figure 7: Absolute bid changes over time conditional on changing. This is a weighted
average across units of the absolute change in their bid in period t, using quantity-weights from
period t− 1 and assigning a weight of zero if their bid did not change.

month they tried to predict the demand for their services at various prices, and changed

their bid from the previous month if they thought they could make more money. After some

period of time they no longer perceived any opportunities for increasing their profit.

Middle period (March 2007 – May 2009). There are still some sharp increases in

bids in the second, or falling price, period. However in this period the upward bidding

experiments are short lived. The dominant trend is for the bids of the different firms to

move toward one another. The way this happens is that the firms that entered the period

bidding higher decreased their bids while the firms that entered the period with relatively

low bids maintained those bids. This combination generated the marked decrease in the

cross-sectional variance in bids seen clearly in Figure 8. Indeed the overall impression is
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Figure 8: Variance in bids across units. Variance in the cross-section of bids at each point
in time, where bids are quantity-weighted using contemporaneous quantities.

that this was a period of intense competition where the changes in bids that occurred were

designed to undercut competitors’ bids.

To give more detail, the “price bubble” bursts when Seabank sharply decreases their bid and

steals significant market share from Drax. Drax follows Seabank down and this inaugurates

the period of intense competition that we see in Figure 10. There are attempts to establish

a higher price (notably by Drax) but they were not successful and bid cuts and falling prices

are the dominating feature of this period.9

9Drax increased its bid at the end of 2007 for exactly two periods, giving its rivals an opportunity to see
its bid increase and respond, presumably with the aim of some sort of tacit collusion. When no one followed
suit, they decreased it.
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Figure 9: Bids of the top 8 biggest stations (November 2005 – February 2007)
Stations are ranked by total revenues in the pre-equilibrium period. Bids are censored above at 10
to compress the axes and improve the visual presentation.

Final period (June 2009 – October 2011). There are fewer and smaller changes in bids

during the final period, see again Figures 6 and 7. The smaller bid changes are accompanied

by changes in average prices. However, each time prices move in one direction there is a

mitigating effect in subsequent periods, bringing prices back to a level of about £4.8/MWh,

the price at the beginning of the period, see Figure 3. By the time we reach this period it

looks like prices have converged to an “equilibrium”, or a rest point.

Figure 11 makes it clear that the range of bids in this period is much smaller than in the

prior periods. While bids at some stations continue to fall (Rats and Cottam), others are

more erratic or rise (Drax and Eggborough), and others are completely flat (Aberthaw). The

fact that the bids are relatively stable and the resultant prices are relatively flat during this

period leaves the impression that the market has reached some sort of “rest point” that is,
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Figure 10: Bids of the top 8 biggest stations (March 2007 – May 2009) Stations are
ranked by total revenues in the pre-equilibrium period

perhaps, periodically shocked by the volume changes we see in Figure 3.

Summary. We have shown that the environment is stable. Despite this, the opening

phase of the market was characterized by heterogeneity in bidding strategies. Over time, the

bids grew closer, the cross-sectional bid variance declined, and the frequency of bid changes

decreased. In the final period, the bids stabilized.

One interpretation of this final period is that the data has reached a static Nash equilibrium.

Notice that in a stable game with a unique static Nash equilibrium, in every period players

will take the same actions.10 So the data from the final period is consistent with a static

Nash. But it may also be consistent with other notions of equilibrium (e.g. collusion),

10With multiple equilibria, this statement remains true provided there is a deterministic and time-invariant
equilibrium selection mechanism.
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Figure 11: Bids of the top 8 biggest stations (June 2009 – October 2011) Stations
are ranked by total revenues in the pre-equilibrium period

or even certain disequilibrium models. To shed further light on this, we need to directly

examine whether firms are mutually best responding in a static sense, which requires us to

start modeling and estimating the demand and cost primitives.

4 Estimating demand and cost primitives

Our goal is to understand how the market evolved. The prior data analysis described above

indicates that it would be useful to divide the period of analysis into three sub-periods

and allow firm behavior to be different in each. We treat the first period as a period of

experimentation. We have already illustrated why we think this is the case, but a comment

by Ian Foy reinforces our interpretation. His e-mail states “The initial rush by market

participants to test the waters having no history to rely upon; to some extent it was guess
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work, follow the price of others and try to figure out whether you have a competitive edge”.

The experimentation appears to be quite complex; apparently different firms had different

strategies and some firms reacted to the experience of other firms as well as their own past

experience. As a result further analysis of this period is beyond the scope of this paper.

We treat the second period as a period of learning about how best to maximize current

profits; i.e. we treat it as a period of exploitation rather than experimentation. It is this

period which we consider in light of the available learning models. The learning models

require a demand system and the bidders’ perceived costs of supplying FR. The demand

generated by any vector of prices is generated by NG’s complex computer program, and

since, to our knowledge, this has not changed over the period, we form an approximation to

it from the observed quantity responses over the entire period of our data. The perceived

costs are not observable and we also have to estimate them before turning to an exploration

of learning.

To obtain cost estimates we treat the third period as a stable period in which, at least on

average, firms’ bids do satisfy the first order condition obtained from maximizing expected

profits. As a result we use the third period’s best response condition to estimate costs. Those

costs are then used in conjunction with the estimated demand system in our investigation

of the second period’s learning about how best to maximize profits.

4.1 The Demand System.

We approximate the demand system with a logit model for market shares. Were we not to

use the logit structure, and instead use, say, a log-linear approximation to demand, it would

require estimation of at least (66× 65)/2 = 195 own and cross-price elasticity terms, which

is more than our data can handle. Also by using a model for market shares we eliminate

the need for a model for the total quantity allocated. Market shares are more stable than

total market size because the total market size varies by month of the year as illustrated in

figure 4. Notice that by using a logit model for shares we have to explicitly deal with units

that aren’t active in a given month (i.e. have a zero share), as zero shares are impossible to

rationalize in a standard logit model.

We estimate the logit demand model for monthly frequency response at the unit level focusing

on data from the top ten firms. Together the 65 units that are owned by the top 10 firms

account for just over just over 80% of the market (see Table 1). The units owned by smaller
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Table 2: Summary Statistics (top 10 firms only)

Mean Std. Dev. Min Max
Unit share 0.0124 0.0164 0 0.131
Indicator for positive share 0.769 0.422 0 1
Bid 7.797 22.20 1.515 238.6
Average position 0.714 0.318 0 1
Number of observations 4752

Summary statistics on the frequency response market. An observation is a bmunit-month, and the sample is
restricted to units owned by the top 10 biggest firms (ranked by revenue over the sample period). Average
position is the average over half-hour periods (in a month) of the unit’s declared operating position (as a
fraction of its maximum generating capacity).

firms are aggregated into an “other” unit which is treated as the “outside” good. We allow

the characteristics of this “outside good” to be time-varying capturing there effects with

with month specific fixed effects (the µt below).

We summarize the data used in estimation in table 2. We have 4752 unit-month observations,

although around 23% of the time a unit gets a zero share. Shares of individual units are

reasonably small (1.25% on average), although this is highly variable, with one unit getting

13% of the FR market in one month. The average bid is 7.8 £/MWh, but there are a number

of outlying bids (as high as 238.6 £/MWh) that we will need to be thoughtful in handling.

Notationally, let i index firms, j index BM units, and t index months. In month t− 1 firm i

submits a bid bj,t for BM unit j in month t. Let Ji denote the indices of the BM units that

are owned by firm i and bi,t = (bj,t)j∈Ji
the bids for these BM units. We adopt the usual

convention to denote the bids for all BM units in month t by bt = (bi,t, b−i,t) = (bj,t, b−j,t).

Since we presumably have less information at our disposal than the firms do, we choose to err

on the side of flexibility in modeling demand. We allow for unit fixed effects (the γj below)

to capture both the preferences of the grid operator for particular units and transmission

constraints. Each unit has two time-varying characteristics that capture the main forces

at work in the market: their bid bj,t and their average position in the main market mj,t.

The latter is defined as the (average) ratio of the unit’s operating position to its maximum

production level, where the average is across half-hourly periods in month t. From our

conversations with market participants, we know that these are the most important time-

varying determinants of demand.
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If sj,t be the share of unit j in month t. Our logit model has

log sj,t − log s0,t ≡ δj,t = α log bj,t + βmj,t + γj + µt + ξj,t. (1)

We allow these error terms, the {ξj,t}, to follow an AR(1) process, or

ξj,t = ρξj,t−1 + νj,t,

where the innovations, the {νj,t}, are mean independent of current and past bids and positions

in the main market, and past disturbances. This setup allows the firms to know ξj,t−1 before

bidding (the bids are made prior to the operating period), but requires that firms do not

know the innovation νj,t when they bid.

If ρ = 0 (i.e. no autocorrelation), we can estimate equation (1) by OLS. However if ρ > 0,

OLS will be biased since the ξj,t may be correlated with bids. That is bj,t can be a function

of ξj,t−1 which, in turn, is a determinant of ξj,t (units of high unobserved quality may bid

more). To deal with this, we quasi-first-difference to obtain

δj,t − ρδj,t−1 = α(log bj,t − ρ log bj,t−1) + β(mj,t − ρmj,t−1) + γ̃j + µ̃t + νj,t (2)

where γ̃j = (1− ρ)γj and µ̃t = µt − ρµt−1 and estimate by non-linear least squares.11

As noted earlier, around 23% of our units get zero share in each period, so that δj,t is not

well-defined in every period (and nor is δj,t−1 for the quasi-first-differencing). We choose

to simply drop these observations in the remainder of the analysis, resulting in a smaller

sample size. The main concern with doing so is that this potentially introduces a selection

problem: in particular, it may be that units get zero share when they bid too high, and so

our demand system understates the responsiveness of residual demand to price. We address

this problem in the appendix where we show that it does not appear to be significant. 12

11We ignore an “incidental parameter” problem in the estimation of the model with ρ > 0. That is the
“within” estimator generated by the BM unit specific fixed effect generates an error which is a function of
mean of the quasi first difference in ξ′ which in turn can be correlated with the quasi first difference in bids.
Following Nickell (1981), the bias in a linear (balanced) panel model with fixed effects is of the order ρ/T .
The median number of time periods in which we observe a unit is T = 58, so the bias is probably relatively
small.

12The probability of getting a positive share is not significantly correlated with a unit’s bid, over a large
range of bids. However extremely high bids (bj,t > 23) are an almost perfect predictor of not getting called.
Accordingly, in the rest of the paper we assume that demand is zero for bids in this range (implying, for
example, that such bids are never optimal); and we drop these observations when inverting the first order
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Table 3: Demand System Estimates

Log share ratio
OLS QFD

Log bid -1.690*** -1.684***
(0.136) (0.135)

Average position 2.538*** 2.416***
(0.144) (0.122)

Unit and Month FE yes yes
ρ – 0.41
s.e. ρ – 0.03
R2 (in shares) 0.52 0.66
N 3600 3319

In all regressions the dependent variable is the log ratio of the unit share to the outside good share (an
observation is a bmunit-month), coded as missing where the share is zero and omitted in estimation. In the
first column, the regression is by OLS; in the second column, the specification allows for an AR(1) process in
the error term, and we estimate the quasi-first-differenced equation by non-linear least squares (we provide
an estimate of the autocorrelation coefficient ρ and the standard error of that estimate). The R2 measure
reported is for the fit of predicted versus actual shares (again omitting zero-share observations). Standard
errors are clustered by bmunit. Significance levels are denoted by asterisks (* p < 0.1, ** p < 0.05, ***
p < 0.01).

Table 3 shows the estimated demand system parameters. The estimated price coefficient

α̂ is negative and significantly less than −1. The coefficient on main market position β̂

is significant and positive, consistent with the fact that only generators who are currently

operating can supply frequency response. In the QFD specification we find some evidence

of persistence in the unobservables, as ρ > 0. However, our estimate of α is not significantly

different across the specifications.

To assess the fit of the demand system, we simulate out the shares {sj,t}65
j=1 in each period

from t = 2 . . . 72. Since each unit’s share depends on the period-specific utility from all

available options, this requires integrating out the vector of iid errors {νj,t}65
j=1, which we do

by sampling independently and uniformly from the empirical distribution of residuals ν̂j,t in

equation (2). The fit of the demand system is reasonably good. Comparing observed and

predicted shares we get an R2 of 0.66 in our preferred QFD specification.13 Figure 12 shows

that the fit is quite good even for the biggest stations, whose shares vary quite dramatically

conditions to obtain costs.
13The R2 is computed on the sample of units that have positive share, as we have no model for predicting

zero share outcomes.
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Figure 12: Fit of the demand system. Shown are the actual (blue, solid) and predicted (red,
dashed) shares for the 4 biggest stations (Drax, Eggborough, Ratcliffe and Barking).

over time. This indicates that the good fit is not solely a consequence of having unit fixed

effects.

4.2 Costs.

The next step is to use the data from the third and final period to estimate costs. We assume

that each BM unit has a marginal cost of providing frequency response cj. In many other

electricity markets, a generator has to remove capacity from the main market in order to

provide FR. As a result the main cost of participation in the FR market is the opportunity

cost of lost production in the main market, and so the holding payments are a magnitude of

order bigger. In the UK, however, it is NG’s responsibility to create sufficient FR capacity

by re-positioning units in the main market, and so firms can — and do — contract out all of
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their generating capacity in the forward market while still actively participating in the FR

market. So the main source of marginal costs is wear and tear, which should be relatively

stable over time for each unit.

The realized profit for firm i in period t is then equal to

πi,t =
∑
j∈Ji

(bj,t − cj)Mtsj,t(bt, xt, ξt; θ) (3)

where Mt is the total market size in period t. In the next section, where we use the data

from the second period to investigate how learning occurs, we will entertain the possibility

that the firm knows the form of the demand function but does not know either the bids of

its competitors, b−i,t, or θ (the response of demand to its bid given b−i,t). In this section we

can be less specific, as all we will need is that the weak form of rationality introduced below

holds in the final, or equilibrium, period.

To recover the costs cj we take an approach that is standard in empirical IO: we invert

the first order conditions, but only for our “equilibrium period” (from month 43 onwards).

This requires bidding assumptions for that period, and we turn to those assumptions now.

We let the information the agent has available to form its expectations of the profits that

would accrue from different bids be Ωi,t, and assume that firms form their bids to maximize

their expectation of static profits conditional on this information set in each period. We let

E [·|Ωi,t] be the operator which provides the firm’s perceptions of expected profits conditional

on Ωi,t.

Assumption 1 (static maximizing behavior) The firm choses its bid to

max
bi,t
Eθ,b−i,t,ξt

[∑
j∈Ji

(bj,t − cj)Mtsj(bt, xt, ξt; θ)

∣∣∣∣Ωi,t

]
.

This assumption is stronger than it may at first appear. While it seems completely reasonable

to ask that agents choose their bids to maximize profits given their perceptions (i.e. that

they “do their best”), we are restricting them to static profit maximization. This rules out

collusion, for example. It also rules out bid experimentation, although by the final stage of

the data the incentives to do this may be small.

Since total demand for frequency response is determined exogenously by regulatory require-
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ments, it is independent of the bids, so that ∂Mt/∂bk,t = 0.14 Thus Mt drops out of the first

order condition in bk,t and we have the system of |Ji| first-order conditions for firm i

Eθ,b−i,t,ξt

[
sk(bt, xt, ξt; θ) +

∑
j∈Ji

(bj,t − cj)
∂sj(bt, xt, ξt; θ)

∂bk,t

∣∣∣∣Ωi,t

]
= 0, k ∈ Ji, (4)

and the solution is the course of action taken by firm i.

In order to back out costs, we next place some restrictions on agent perceptions during the

final period. Our assumption on the relationship between the firm’s expectations and the

data generating process in the last period is only that agents expectations are on average

correct. More formally if we let t = 1, . . . , T e index the equilibrium time periods than our

assumption is that

Assumption 2 (behavior in the equilibrium period)

(T e)−1

T e∑
t=1

[
sk(bt, xt, ξt; θ) +

∑
j∈Ji

(bj,t − cj)
∂sj(bt, xt, ξt; θ)

∂bk,t

]
= 0.

Given the estimated demand system, Assumption 2 lets us back out cj for each BM unit

simply by solving for it (i.e. method-of-moments estimation). This is a weak assumption in

the sense that it is consistent with many different models of play during the last period. This

makes using the assumption attractive for inference. For example, suppose the firms knew

each other’s costs and characteristics, and had perfect foresight over the demand innovations

{νj,t}. Then if they were playing the standard Bertrand-Nash equilibrium of the resulting

game of complete information, we would expect the first order conditions to hold exactly in

every period: stronger than requiring that they hold on average, as in assumption 2.

With this in mind, as an alternative estimation approach we also solve the system of equa-

tions (4) separately by firm-month, replacing the firm’s expectations with the realizations,

to get a vector of implied costs ĉi,t = {cj,t}j∈Ji
. These cost estimates should be identical over

time if the more restrictive assumptions above hold, but otherwise they will be a bit noisy.

Table 4 shows our cost estimate for the top 8 stations (ranked by revenue).15 The mean

and standard deviation of the time-varying estimates are shown, as are the estimates from

14Moreover it is presumably known to be independent of bids, so Eθ,b−i,t,ξt
[∂Mt/∂bk,t|Ωi,t] = 0 as well.

15As mentioned earlier, we only include units when the firm received a positive share, as the FOC is
only required to hold on the interior of the support of bids that are accepted. As a result the number of
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Table 4: Cost estimates for the top 8 stations (by total revenue)

Station # Units # Obs Fuel Vintage Mean Std. Dev. MM Estimate

Barking 2 59 CCGT 1994 1.39 .17 1.39
Connah’s Quay 4 109 CCGT 1996 1.17 .18 1.18
Cottam 4 87 Coal 1969 1.55 .19 1.55
Drax 6 173 Coal 1974 1.36 .4 1.4
Eggborough 4 108 Coal 1969 1.73 .21 1.74
Peterhead 1 29 CCGT 2000 1.72 .11 1.72
Ratcliffe 4 97 Coal 1968 1.54 .23 1.55
Seabank 2 58 CCGT 1998 1.77 .12 1.77

Summary statistics on the cost estimates derived from solving the firm first order condition arising from the
demand system, separately by time period and firm. An observation is a cost estimate at the station-month
level, obtained by averaging the unit-month specific cost estimates. Means and standard deviations of these
cost estimates are reported separately by station. In the final column, we report the within-station average
of the unit-specific cost estimate obtained from the method-of-moments cost estimation approach.

the method-of-moments approach based on assumption 2. The mean of the time-varying

estimates are approximately equal to the method-of-moments estimates.

They are quite reasonable: they vary between 1.39 and 1.77 for the top 8 stations, and are

on average 1.54 across the whole sample. By comparison, the “cost reflective” regulated

prices before CAP047 were around 1.7.16 Since one would have expected some markup to

be built into the regulated prices, our costs are in the right ballpark. Note that this also

suggests that, at least when we average over time, market outcomes are well approximated

by a static Nash equilibrium during the equilibrium period of the data.

Table 5 shows the results from projecting our estimated costs cj,t onto unit characteristics.

As one might have expected the (typically larger) CCGT or Large Coal plants have higher

costs than plants with other fuel types, while units of later vintage have lower costs (although

the latter result is only statistically significant at 10%). In the second column we add month-

of-year fixed effects, and in the third column a full set of interactions between fuel type and

month-of year. While jointly statistically significant, the estimated fixed effects are small

observations for each firm is not exactly equal to number of units times number of periods (30), although
for many stations the total number of observations is pretty close.

16We have two sources for this: figure 2, which shows holding payments in the high market alone, and
a policy document prepared by NG for Ofgem prior to the implementation of CAP047 (https://www.
ofgem.gov.uk/ofgem-publications/62273/8407-21104ngc.pdf). The latter notes in paragraph 5.3 that
the current response prices are “of the order of £5/MWh”, for the bundle of primary, secondary and high,
implying an average price of 1.67 for a single unit of response.
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Table 5: Projecting costs onto unit characteristics

Cost estimate
Unit vintage -0.013* -0.013* -0.013*

(0.007) (0.007) (0.007)
Dual Fuel -0.617*** -0.617*** -0.543**

(0.207) (0.208) (0.208)
Large Coal -0.150 -0.150 -0.169

(0.183) (0.184) (0.177)
Medium Coal -0.507** -0.506** -0.431**

(0.205) (0.207) (0.203)
Oil -0.683*** -0.680*** -0.618***

(0.136) (0.138) (0.131)
Pumped Storage 0.163 0.162 0.164

(0.226) (0.230) (0.223)
Fixed effects none month-of-year month-of-year × fuel type
R2 0.15 0.16 0.17
N 1531 1531 1531

The dependent variable is the cost estimate cj,t. Standard errors are clustered by bmunit. The omitted
fuel type is combined cycle gas turbines (CCGT). Significance levels are denoted by asterisks (* p < 0.1, **
p < 0.05, *** p < 0.01).

and add little to the fit of the model. This is further evidence against significant interaction

between the bids in this market and the economics of the main electricity market, since the

main market is certainly seasonal — see figure 5.

5 Learning

We are now in a position to start evaluating different learning models. Most sensible models

will make similar predictions during the equilibrium period. Indeed, they should do very well

at predicting behavior since the mean costs were estimated to fit bidding patterns during

the equilibrium period, and most models will generate first order conditions similar to (4).

As noted above without introducing further heterogeneity across firms, we would struggle

to explain the divergent strategies during the early period of the data. This leaves us with

comparing the predictive abilities of different learning models during the middle period,

where firms appear to start to compete more aggressively on price.
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5.1 Learning models

Baseline: equilibrium play. It is useful to set up a baseline to compare the learning

models to. The obvious baseline is the static Nash equilibrium, since typically when an IO

economist wants to predict outcomes, they assume some form of equilibrium play in the

counterfactual. In each period, we find a static Nash by iterating the best response function

(with some damping) until convergence. In contrast to the simpler belief formation in the

strategic learning models below, equilibrium play demands that agents mutually believe that

their rivals will play the equilibrium actions, and best respond given those beliefs.

Strategic Learning. We model strategic uncertainty through the well-known model of

fictitious play (see e.g. Fudenberg and Levine (1998)). This is one of the leading strategic

learning models (though there are important alternatives such as reinforcement learning and

experience-weighted attraction learning). In this model, firms believe that rival bids are

sampled from the empirical distribution of their play in the past, with sampling weights

that typically decrease as one goes back in time. For example, the dynamic best response

model is one in which each player believes that each opponent will play their last action with

certainty (i.e. they believe that bm,t = bm,t−1 for all m 6∈ Ji). A more general formulation

allows sampling weights that geometrically decay (i.e. wt−k = δk/
∑t−1

l=1 δ
l). Dynamic best

response is then a special case (δ = 0). Another interesting special case is the model with

δ = 1, so that all past observations are equally weighted.

We are just starting our analysis of learning models and we begin by considering these

two special cases as well as the case δ = 1/2. While the above notion of fictitious play is

conceptually well-defined for 2-player or population games, it requires additional assumptions

on the sampling procedure with multiple distinct opponents. We assume that the fictitious

joint distribution of rival bids is a product of the marginal distributions (i.e. independent

sampling). This seems natural, as in a stable and competitive environment, firms should not

expect rival actions to be coordinated. This is another assumption we will eventually relax.

Statistical Learning. The fictitious play models used in the literature assume that firms

know the demand system parameters θ. However as we have argued above, it is quite possible

that the firms are learning the price sensitivity α (and possibly other demand parameters)

over time. So we consider an additional set of models with both strategic and demand
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uncertainty, where firms engage in statistical learning : they estimate αt according to the

best information at their disposal as of time t, and then use this estimate in choosing their

bids.

We now detail how we operationalize the idea of demand uncertainty. Recall that we esti-

mated the demand system using all of our data. When the firm’s formulated their bids they

did not have all of this information available. The predictable part of demand is a function

of bids, main market position, lagged unobservables and unit and month fixed effects. We

assume that the firms know the fixed effects from the beginning of the market, and are only

learning about the price parameter α (statistical learning model 1), or about both the price

parameter α and the main market position parameter β (statistical learning model 2).17 It

is natural that firms are learning α, since there wasn’t any price variation before. It is less

obvious why they should be learning β, since the firms should know NG’s responsiveness to

availability from the pre-CAP047 period. However we find that the model fits better when

we allow for this; more investigation of this point is needed.

In concrete terms, when firms are learning both α and β we assume that their estimates

(α̂t, β̂t) are the OLS estimates of α and β that uses the data available prior to the bid and

the regression equation

yj,t = αb̃j,t + βm̃j,t + νj,t,

where yj,t = δj,t − ρδj,t−1 − γ̃j − µ̃t, b̃j,t = bj,t − ρbj,t−1 and m̃j,t = mj,t − ρmj,t−1. When

firms learn α only, we run the same regressions imposing the constraint that β is equal to

our estimated value. We will refer to these demand estimates as the “sequential” demand

estimates in what follows.

Notice that knowing the parameter estimates at each point in time would not be enough to

guide the behavior of a sophisticated Bayesian firm: they would want to know the entire

posterior distribution on the parameters. We assume that our firms are more näıve, and have

beliefs that place a point mass on the estimated parameters (i.e. ignore residual parameter

uncertainty). This is a simplification that reduces the computational complexity of the

simulation exercises that follow.

17It may seem odd to assume that firms know the time fixed effects for the previous periods. What we
have in mind is that the time fixed effects stand in place of a more detailed model of the latent utility of
the outside good. Part of this is — like the unit fixed effects — known to the firms; while part is uncertain
(e.g. the effect of price changes in the outside good). So without further modeling, we can either assume
they know more than they should (they know the time fixed effects), or less (they estimate the time fixed
effects). We have started with the simpler case, but we plan to return to this point.
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Predicting bids: Each learning model M implies a particular form for the operator

Eθ,b−i,t,ξt . This pins down a bidding function φMi,t(ci,t|Ωi,t) via the first order conditions (4). For

example, in the case of best response with known demand parameters we have φBRi,t (ci,t|Ωi,t)

as the solution bi,t of:

Eξ

[
sk(bi,t, b−i,t−1, xt, ξt; θ) +

∑
j∈Ji

(bj,t − cj)
∂sj(bi,t, b−i,t−1, xt, ξt; θ)

∂bk,t

∣∣∣∣ξt−1

]
= 0

Best response with known demand parameters is equivalent to putting point mass at the

estimated demand parameters and at last period’s bids, implying that the only remaining

source of uncertainty is the realization of the demand unobservables ξ. As noted earlier, we

assume that firms know the stochastic process for ξt, and optimize given their knowledge

of ξt−1 and the distribution of the innovations νt. For our calculations, we sample the

innovations {νj,t} from their estimated empirical distribution independently across units.

Each draw gives us a draw of ξt according to ξt = (ξ1,t−1 + ν1,t . . . ξJ,t−1 + νJ,t), and we solve

the system of first order conditions so that they are all zero when averaged across draws. We

can analogously get bidding functions for all the different models by replacing rival bids with

an expectation over the empirical distribution of their past bids (fictitious play) or replacing

the estimated demand parameter θ with estimates θ̂t (statistical learning).

5.2 Evaluating fit

We follow the experimental literature in testing the fit of the model with “one-step-ahead”

predictions, comparing the observed and predicted bids for each time period t, where the

predicted bids use (for example) data on the observed bids at t− 1 (see e.g. Erev and Roth

(1998)). This is a natural test, as it corresponds to the thought experiment of predicting

the next move of a player in a game conditional on the information available to the player

at the time of its decision.

We evaluate the fit of the various models in three ways. The most direct is graphical.

Examining the fit for each unit separately is impractical, and so we compare the volume-

weighted average bids under each model with the observed price path (the weight for each

unit in each time period is just their realized share sj,t). For the reasons noted earlier we do

this only for the middle period of the data.
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A second measure of fit is an R2, defined as usual as R2 = 1−RSS/TSS, where the RSS is∑42
t=17(bj,t − b̂Mj,t)2 and the TSS is

∑42
t=17(bj,t − b̄)2 where b̄ is the mean bid over this period.

This tests whether the model does a good job of fitting the bids by a randomly chosen unit,

but it may be more interesting to look at a measure that weights bigger units more. For

this reason we compute a second R2 measure along the same lines, replacing the RSS with∑42
t=17(bj,t− b̂Mj,t)2sj,t and the TSS with

∑42
t=17(bj,t− b̃)2 where b̃ is the share-weighted average

bid over this period.

Many of the units in our data do not change their bids from period-to-period (see figure 6),

even though the environment is continually changing (e.g. rival bids have changed). None of

our models will do well in matching this “bid stickiness”. So as a last measure, we calculate

an R2 that assigns zero weight to units that don’t change their bid from the last period, and

gives share-weight to the remaining units (i.e. RSS is
∑42

t=17(bj,t − b̂Mj,t)2sj,t1(bj,t 6= bj,t−1)).
18

5.3 Results

Figure 13 shows the comparative fit of the fictitious play models with no statistical learning.

All of the models under-predict bids during the middle period. The best response and

fictitious play model with δ = 0.5 appear basically indistinguishable, whereas the fictitious

play model with δ = 1 performs significantly worse. This is evidence that firms pay relatively

more attention to recent bids by their opponents. Notice that even though the fit isn’t great,

the best response and fictitious play models perform better than the baseline of equilibrium

play.

The graphical analysis is backed up by the other measures of fit shown in Table 6. All the

models have negative R2. This occurs because their prediction of the mean bid is too low,

whereas the total sum of squares is at least computed around the correct mean. There is

a sense in which the fit of the models is not that bad; while the mean bid level is too low,

many of the pattens in the data are replicated by the models. Evidence in favor of this is

given by the share-weighted measures, which are respectable for the first two models, and

even better once they are restricted to active units.

The statistical learning models perform better still (see figure 14). In particular, the model

in which firms learn both α and β does quite a good job of reproducing the observed price

18We thank Pat Bayer for suggesting that we restrict attention to active players in measuring fit.
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Figure 13: Predicted bids: different strategic models. Shown are the actual bids, and
predicted bids from three different strategic models: fictitious play with δ = 1 (i.e. equal weighting
of past bids); fictitious play with δ = 0.5; and best response (i.e. δ = 0). The bids are weighted by
contemporaneous shares to produce a single price path for each model.

path, and has a share-weighted R2 of 0.37, and an activity-and-share-weighted R2 of 0.57 —

respectable for a model where no parameters were directly chosen to maximize fit. Another

way of interpreting this is that the out-of-sample fit is pretty good, which is surprising given

that the middle period is so different to the equilibrium period.

What have we learned about learning in this market from our research to date? The data

favor models in which firms pay more attention to recent behavior by their competitors. We

also see that the statistical learning model fits significantly better. This could be taken as

evidence that firms learn in the manner we suggest, which would be natural but also quite

interesting. On the other hand, our logit demand system is an approximation to the true

demand system, and so it may be that while the true demand system is stationary, our best

approximation to it is not. In particular, our sequential demand estimates may be better
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Figure 14: Predicted bids: different models of demand uncertainty. Shown are the
actual bids, and predicted bids from three different models of demand uncertainty: best response
with known demand parameters, best response with statistical learning of α and best response with
statistical learning of α and β. The bids are weighted by contemporaneous shares to produce a
single price path for each model.

approximations to the demand system at that point in time than our final set of estimates,

and so it is possible that the agents aren’t learning about demand at all and we fit better

with the statistical learning models because we get better approximations to the demand

system. In this case, the strategic learning models alone are sufficient to fit the patterns in

the data. Unraveling these different stories is something we hope to do in future versions of

this paper.
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Table 6: Fit of the Learning Models

Strategic Statistical R2 R2 R2

Model Learning (unweighted) (share-weighted) (active only, share-weighted)
Best Response α and β 0.08 0.37 0.57
Best Response α -0.01 0.28 0.40
Fictitious play (δ = 0.5) none -0.04 0.25 0.34
Best Response none -0.04 0.24 0.34
Fictitious play (δ = 1) none -0.18 0.06 0.04
Equilibrium play none -0.26 -0.06 -0.12

Fit of the different learning models, arranged from best-fitting to worst. For the fit measures based on R2,
an observation is a unit-month during the second period of the data (between months 17 and 42 inclusive).
The unweighted R2 is equal to one minus the ratio of the residual to the total sum of squares, while the
share-weighted measure weights each observation by its share sj,t in computing the RSS and TSS. In the
final column we share-weight, but in addition set the weight of units whose bid is unchanged (i.e. they are
“inactive’ this period) to zero.

6 Conclusion

We have documented what happened to the British frequency response market following

its deregulation. All our analysis suggests that the market converged to a rest point that

appears to be a static Nash equilibrium, although this process took over 3 years. The opening

period of the market was characterized by substantial uncertainty, and firms took different

approaches, with some exploring different bids, while others did little at all. This period

seems hard to formally model.

By contrast, the middle period is more amenable to analysis. We find that simple fictitious

play models fit the data better than assuming firms play according to the static Nash equi-

librium. Assuming that firms are uncertain about the price elasticity and update over time

as data comes improves fit still further.
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Appendix

A. Data Appendix

Data sources: The majority of the data on frequency response (FR) and the electricity

main market comes from the operators of the transmission grid and the balancing mech-

anism. NG plc (NG) owns and operates the transmission grid between generators and

distributors in the United Kingdom. Since a redesign on November 1, 2013, the data web-

site of NG is available at http://www2.nationalgrid.com/UK/Industry-information/

Electricity-transmission-operational-data/Data-explorer/Outcome-Energy-Services/.

All FR data is available under the tab “Frequency Response – FFR and Mandatory”. We

downloaded our FR data from a previous version of the NG data website. In those cases

detailed below where the original data is no longer available on the NG data website, it is

available from the authors on request. NG used to publish Seven Year Statements detailing

their projections of energy supply and demand and upcoming challenges. These used to be

available at http://www.nationalgrid.com/uk/Electricity/SYS/archive/.

• Bids: We obtained FR bid data directly from the NG data website.The relevant file

is labeled “Prices”. Currently, a version is available that starts in January 2007 and is

updated every month. From the old version of the data website, we downloaded one file

for the period from November 2005 to January 2010, and another file for January 2007

to July 2013. These files contain monthly bids (in £/MWh) by every BM unit with

mandatory FR provision requirements separately for the market segments primary,

secondary, and high. The combined data period from the two files is November 2005

to July 2013.

• Capabilities: We obtained FR capabilities data directly from the NG data website.

The relevant file is labeled “Capabilities”. Currently, a version is available that starts in

January 2006 and is updated every month. From the old version of the data website, we

downloaded one file for the period from November 2005 to January 2010, and another

file for January 2006 to August 2013. The former file reports that November and

December 2005 are not available, so only the latter file is relevant, since it contains all

the data that is available. The file contains monthly response capabilities by every BM

unit with mandatory FR provision requirements separately for the market segments
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primary, secondary, and high. For the market segment primary, response capabilities in

MWh are given at 0.2 Hz, 0.5 Hz, and 0.8 Hz, while for the market segments secondary

and high, only response capabilities at 0.2 Hz and 0.5 Hz are listed. In each case, the

column on the right represents the maximum over the operating range. These values

are constant over the sample period for more than 80% of the generators. The data

period is January 2006 to August 2013.

• Volumes: We obtained FR volume data directly from the NG data website. Unfortu-

nately, the new data website no longer provides historic volumes, and only a file that

holds volumes from August 2013 is available. We downloaded monthly volume files for

November 2005 thru June 2013. Each of these files contains one month of daily hold-

ing volumes in MWh by every BM unit with mandatory FR provision requirements

separately for the market segments primary, secondary, and high. The combined data

period of these monthly files is November 2005 to June 2013.

• Main market position: Elexon publishes all messages submitted to the Balancing

Mechanism Reporting System on a given day at http://www.bmreports.com/. An

example for a daily file is http://www.bmreports.com/tibcodata/tib_messages.

2003-01-01.gz. Each file collects the messages submitted as part of the balancing

mechanism on a given day. These messages contain information on Final Physical

Notification (FPN), Maximum Export Limit (MEL), Bid-Offer Data (BOD), or Bid-

Offer Acceptance Level (BOAL) for typically a half-hour interval.

• Fuel type: We take fuel type information from appendix F1 of the Seven-Year State-

ment prepared by NG in 2011: http://nationalgrid.com/NR/rdonlyres/3B1B4AE4-2368-4B6E-8DA4-539A67EAD41F/

47211/NETSSYS2011AppendixF1.xls The sheet “F-2”, corresponding to table F.2, pro-

vides fuel type for every BM unit listed under the column “Plant type”. For an addi-

tional eleven stations, we take information on fuel type from the Variable Pitch project:

http://www.variablepitch.co.uk/grid/

• Vintage: We take fuel type information from appendix F1 of the Seven-Year State-

ment prepared by NG in 2011: http://nationalgrid.com/NR/rdonlyres/3B1B4AE4-2368-4B6E-8DA4-539A67EAD41F/

47211/NETSSYS2011AppendixF1.xls The sheet “F-2”, corresponding to table F.2, pro-

vides vintages for most BM units under the column “Commissioning Year”. The cell

is empty for almost all hydro plants, so we take this information from the website of
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the British Hydropower Association: http://www.british-hydro.org/ For an addi-

tional eleven stations, we take this information from Wikipedia (5), from press releases

prepared by the respective operator (5), and the website www.scottish-places.info

(1). We are missing vintage for FAWN-1, which is connected with the Esso refinery in

Fawley.

• Ownership: After registration on https://www.elexonportal.co.uk/, information on

the registered party is contained in the file “reg bm units.csv” available under “Op-

erational Data” → “Registration Information” → “Registered BM units” or under

https://www.elexonportal.co.uk/REGISTEREDBMUNITS. It is based on registration

data at the Central Registration Agency and under “Party Name”, it lists the regis-

tered party. We downloaded a version of this file on December 29, 2009, and July 15,

2013, but there were no conflicts.

Sample selection and data construction: The paper restricts attention to data for

the time period November 2005 to November 2011. We include BM units if they provided

positive FR volume in at least one of these months. We collapse volumes for the three market

segments primary, secondary, and high into one by summing (daily) volume across segments

and days to get a unit-month level observation. Thus:

qj,t =
∑

k=P,S,H

∑
d∈Mt

qk,d,j,t

where Mt is set of days in month t, k indexes market segment and d indexes days. The

monthly bids are constructed as quantity-weighted averages of segment bids, where the

weights are constant and given by the overall volumes of the three segments over the sample

period:

bj,t =

( ∑
k=P,S,H

Qkbk,j,t

)
/Q

where Qk =
∑

j

∑
t

∑
d∈Mt

qk,d,j,t and Q = Qp+Qs+Qh. For the demand system, we classify

BM units into “inside goods” if they were owned by one of the ten largest parties, where size

is measured by revenue, and aggregate them into one “outside good” otherwise. Shares for

inside goods and the outside good are computed at the monthly level.
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Variables used: The unit of observation is BM unit by month, and we use the following

variables:

Table 7: Sources and Definitions of Variables used in the Analysis

Variable Unit Sample Source Definition

Bid £/MWh All Bids Monthly bid

Volume MWh All Volumes Sum of segment volumes

Average MEL

ratio

Fraction in

[0, 1]

> 75% in

merged data

Main market

position

Average MEL in given

month divided by maximum

MEL over sample period

Fraction on Fraction in

[0, 1]

> 90% in

merged data

Main market

position

Fraction of time unit posi-

tion is strictly greater than

zero according to BOAL in-

formation

Fuel type Categorical All but one

BM unit

Fuel type Type of fuel (e.g., Oil, Large

Coal, OCGT)

Vintage Year All Vintage Commissioning year

Owner Categorical All Ownership Registered party

B. Selection on positive share

In the main text, we estimate the demand system on the subsample of units that have positive

share in a period (i.e. sj,t > 0). Here we offer evidence that this does not significantly bias

our estimate of the price elasticity of demand. Table 8 shows the outcome of a probit where

the binary dependent variable is an indicator for a unit getting positive share (equivalently

positive volume) in period t, and the regressors are an indicator for the bid being above 23,

the log bid, and the unit position. The coefficient on log bid is small both economically

and statistically, so that a high bid does not appear to affect the probability of getting a

positive share. The exception is a bid above 23; of the 78 cases where bids in this range were

submitted, only 2 received positive share (and both were very small).
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Table 8: Determinants of positive volume

Indicator for positive share
Bid ≥ 23 -1.798**

(0.775)
Log bid -0.106

(0.223)
Average position 3.016***

(0.149)
Unit and Month FE yes
N 4752

An observation is a unit-month, and the dependent variable is an indicator for a unit having positive volume.
The regressors are an indicator for the unit’s bid being higher than 23, the log bid, and the average position
of the unit, where average position is the average over half-hour periods (in a month) of the unit’s declared
operating position (as a fraction of its maximum generating capacity). Standard errors are clustered by
bmunit. Significance levels are denoted by asterisks (* p < 0.1, ** p < 0.05, *** p < 0.01).
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