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Abstract

Managerial incentives influence risk-taking as well as effort. Theoretical research
has long considered inefficient risk-taking to be a potential side effect of incentive pay,
but empirical analysis that examines effort and risk-taking simultaneously has been
limited. This paper uses exogenous variation in incentives to separate how convex
incentive schemes influence performance and risk-taking. We first establish that when
hedge fund managers fall below their threshold, beyond which they earn performance
fees, risk-taking increases and performance drops. On average, risk-taking increases
50% and performance falls 2.3 percentage points when a hedge fund is below the in-
centive threshold. We then examine the link between performance and risk-taking
explicitly. First, we separately identify the shirking and risk-taking effects of being be-
low the incentive threshold, and show that excessive risk-taking, rather than shirking,
causes much of the performance declines. Second, we show that risk-taking behavior is
non-monotonic; managers who are significantly below the threshold reduce risk-taking
relative to those who are moderately below. These results suggest that risk-taking, due
to convex incentives, is not only inefficient–inappropriately choosing from the efficient
risk-return frontier given the principal’s objectives–but excessive–in taking risk that are
dominated and lead to absolute performance declines. The importance of risk-taking to
performance adds to the debate about the impact of incentives on behavior. Whether
increasing incentive intensity is justified by moral hazard considerations, or concerns
about adverse selection, it is crucial to recognize how incentive-induced risk-taking will
influence organizational performance.
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1 Introduction

Managerial incentives fundamentally influence risk-taking and effort and are therefore cru-
cial to understanding how compensation schemes affect the performance and behavior of
managers and firms. Effort has been the primary focus of theoretical and empirical work
on incentives. But as the Great Recession demonstrated, risk-taking by managers can have
drastic consequences not just for their own firms but also for the global economy.

At least since Jensen and Meckling (1976), scholars have noted the potential for perfor-
mance incentives to induce inefficient risk-taking as a moral hazard response rather than
shirking, when performance pay is convex with respect to output. The risk-taking and per-
formance implications of convex compensation may have important economic consequences
given that performance pay comprises the majority of executive compensation1 and that
stock options are exentensively used in non-executive compensation.2 In addition, common
non-stock incentive schemes have convex features (See, e.g. Downs and Rocke 1994, Larkin
2012, Oyer 1998, Weinstein 1998).3 In this paper we build on and extend the literature on
incentive contracts and moral hazard by examining the risk-taking and performance impli-
cations of convex incentives in the hedge fund industry, where such incentive schemes are
ubiquitous. The features of this industry, where variation in incentives is plausibly exoge-
nous and measure of risk and perofrmance are well-defined, allow us not only to separaetely
analyze risk-taking and performance but also to show that these are not distinct outcomes
but are closely linked. In particular, we disentangle shirking and risk-taking mechanisms
and provide evidence that risk-taking, as opposed to shirking, is an important driver of
performance declines.

Few studies examine risk-taking and performance consequences of incentives together.
While there has been considerable theoretical attention on the effects of performance pay
on risk-taking behavior (e.g., Jensen and Meckling, 1976; Hall and Murphy, 2000, 2002;
Vereshchagina and Hopenhayn, 2009; Panageas and Westerfield, 2009),4 there have been
significant challenges in estimating the causal effects of incentives on risk-taking and perfor-
mance for four main reasons. First, most studies do not examine both risk-taking and per-
formance, let alone disentangle effort and risk-taking mechanisms for performance changes.
Perhaps closest to this work, Shue and Townsend (2013) use patterns in option grant con-
tracts to show risk-taking responses, but they find mixed performance implications and do
not disentangle risk-taking and performance. Yet, as we demonstrate, understanding the

1Anderson and Muslu (2011) estimate that half of executive compensation is from options, and an addi-
tional 30% is from bonuses and long term incentive plans.

2“Taking Stock: Are Employee Options Good for Business?”
http://knowledge.wpcarey.asu.edu/article.cfm?cid=8&aid=26

3For example, sales people often face convex incentives when they are rewarded by either meeting quotas
(Oyer, 1998) or increasing marginal commissions (Larkin, 2012), a system that sales people appear to
deliberately game at considerable cost to their employers. Profit-sharing contracts, such as those used in the
movie industry, are also convex, where payouts are accelerated above certain thresholds (Weinstein, 1998).
Entrepreneurs with debt financing face an implicit convex incentive scheme from limited liability. Convex
compensation even extends to the political realm; Downs and Rocke (1994) argue that political leaders face
a form of limited liability, similar to entrepreneurs, where the threshold reflects the approval necessary to
remain in office.

4There is also a larger literature about agents responding to, or gaming incentives, which this paper builds
on. See, for a recent survey, Oyer and Schaefer (2011.)
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performance consequences of risk-taking is crucial to properly evaluate the normative impli-
cations of incentive contracts. Second, in examining risk-taking or performance many studies
ignore the endogeneity of compensation schemes, which are presumably matched selectively
to particular types of managers and firms. In many contexts, including CEO compensa-
tion, the compensation structure is set based on the manager’s skills, risk attitudes, and
characteristics as well as the firm’s risk exposure, opportunities and objectives. Typical
cross-sectional comparisons of executives’ compensation, such as Wright et al. (2007) or
Carpenter et al. (2003), do not distinguish between the effects of incentives and the decision
to offer incentive compensation, even though it seems likely that riskier firms give more
convex and option-like compensation. This endogenous matching problem is further con-
founded by the fact that many of these compensation contracts may be altered ex post. For
example, CEO options are often set to new strike prices when the stock price falls. A third
issue is that good measures of incentives for risk-taking are often limited. Many studies use
option counts as a crude measure of employee incentives, but options are difficult to compare
across firms. Further, more options may not imply more incentive to take risk as they may
actually induce risk-aversion (e.g. Carpenter, 2000; Malmendier and Zheng, 2012). Even
Chevalier and Ellison’s (1997) path-breaking empirical research on mutual fund managers
could only impute a proxy for implicit incentives, as explicit incentive measures were not
available in their setting. Others, such as Brown, Harlow and Starks (1996), focus on in-
centives from market-derived relative “tournaments”. Finally, measuring risk-taking is also
difficult. Common measures in the literature such as merger and acquisition behavior and
financing decisions (e.g. Devers et al., 2009, Eisenmann, 2002, Sanders and Hambrick 2007)
are hard to interpret from the framework of an agency problem because they are measures
over which the principal (the board) has direct control. Further, firms may have different
opportunities. For example, the same acquisition target may provide different outcomes to
acquirers with different resources.

The two trillion dollar hedge fund industry is a fertile setting in which to empirically
investigate the impact of non-linear incentive contracts on both risk-taking and performance
for a number of reasons. First, hedge funds have explicit convex compensation schemes
provided by the fee structure. Almost all hedge funds charge both a management fee, which
is caclulated as a fixed percentage of assets, and a performance fee, which is calculated as
a percentage of positive returns to investors. The convexity in hedge fund fees is generated
because most performance fee terms contain a threshold known as a “high-water mark”. The
high-water mark is the highest value of assets for which performance fees have previously been
paid or the initial value of the investments if none have been paid. Performance fees are only
paid when the value of the assets are above the high-water mark. This fee structure implies
that hedge fund managers face an incentive threshold, as hedge fund revenues are kinked at
the high-water mark. Below the high-water mark performance fees are zero, above the high-
water mark performance fees are a substantial percentage of the fund’s value in excess of the
threshold–typically 20%. Second, incentive contracts in hedge funds are generally fixed ex
ante. This eliminates endogeneity problems in two ways: it removes the possibility of ex post
readjustment to contracts seen in many settings, and it facilitates a research design where
fund fixed-effects control for endogenous contracting choices. Third, and crucially, market
movements and industry level asset flows, neither of which are subject to the control of a
given manager, provide exogenous variation in the effective incentives of the fixed contract.
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Finally, measurement of both performance and risk-taking are relatively straightforward in
hedge funds given that asset returns are directly observable, interpretable, and comparable.
This measurement advantage is reinforced by the fact that the decisions of the agent, the
hedge fund manager, are not subject to veto or review by the principals who set incentives,
which is unlike many measures used to examine risk-taking of executives.

To study the effect of convex (or specifically, kinked) incentives on risk-taking in our
setting, we develop a model of a manager’s decision-making when facing a threshold incentive.
In the model the manager chooses both how much costly effort to exert, where effort improves
outcomes on average, and a risk level, where higher risk spreads the distribution of outcomes
but may also have a performance cost. The model predicts that as managers become more
distant from the threshold for positive performance compensation their risk-taking increases
and performance declines from both reduced effort and excessive risk-taking.5 However, the
model also reveals an additional testable implication of kinked compensation arrangements;
while the excessive risk-taking result holds when managers are not “too far” from their
incentive threshold, when managers are “very far” below their threshold they stop taking
additional risks even though their incentives for effort continue to decrease monotonically.
The intuition behind this prediction is that when managers are far from the threshold, despite
the same set of choices, they have little to gain from taking more risk but face the same costs
of risk-taking as a manager closer to the threshold.

We test the predictions of the theory using data on 3,845 hedge funds from 1994 to 2006.
Each fund is categorized into one of thirty-four self-identified investment “strategies,” which
describe the underlying assets the funds trade and the way they are traded. Variation in
the measure of a fund’s distance to its high-water mark, an intuitive and explicit measure of
the fund’s effective incentive compensation scheme, allows us to examine how both changes
in performance and risk-taking as a function of variation in the incentive scheme across
and within funds. Furthermore, we are able to exploit plausibly exogenous variation in the
fund’s distance from its high-water mark to approximate random assignment of the intensity
of incentive arrangements. While distance to the high-water mark is generally endogenous
– a function of past manager success, among other things – market movements, particularly
downturns, provide an exogenous movement in the distance of the fund below their threshold.
To compute the exogenous shift parameter, our instrument, we use the return of all of the
funds in each strategy to estimate strategy-level exposures to a set of market indexes that are
commonly used to explain the performance of hedge funds and other financial assets (Fama
and French, 1993; Carhart, 1997; and Fung and Hsieh, 2004). Our approach uses strategy-
level variation in the measure of how exposed any given fund is to a composite of market
indices. Since downturns in the indexes affect strategies differently, the instrument provides
exogenous cross-sectional variation in funds’ distance to the threshold. In conjunction with
fund fixed effects the instrumental variable approach allows us to identify the causal effect
of incentives on both performance and risk-taking outcomes.

The results show that risk-taking increases as a function of distance from the incentive

5In contrast to much of the literature, risk-aversion plays no role in our model. Excessive risk-taking here
is not simply an inefficient level of risk for the risk aversion of the parties; it is risk-taking that provides
lower expected returns, ceteris paribus. We use the term “excessive” risk-taking to mean risk-taking that
reduces expected returns and “inefficient” risk-taking as in the literature that examines optimal risk-levels
given risk-aversion.
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threshold (i.e., the high-water mark); managers respond to being farther below the threshold
by increasing their risk exposure. Performance also declines, which we show is driven by the
structure of the incentive contract itself rather than implicit incentives from aspirations, per-
formance targets (as in March and Shapira, 1987), reference point behavior, loss aversion (as
in Wiseman and Gomez-Mejia, 1998), or relative performance contests. Moreover, the effects
are economically significant: moving a fund just 15% below its threshold (the average in our
data conditional on being below the threshold), leads to 50% greater risk while returns drop
by 2.3 percentage points on average. Moreover, we use variation in fee structures to show that
this behavior is driven by the explicit incentive contracts rather than implicit tournaments,
investor behavior, or reference dependent behavior and to provide important intra-strategy
variation in our instrument. Together, our baseline results provide well-identified evidence
that convex incentive schemes cause increased risk-taking and a decline in performance.

Indeed, the main contributions of the paper stem from linking convex incentives, risk-
taking, and performance conceptually and empirically. In the canonical risk-return paradigm,
higher risk implies higher returns in equilibrium. Yet, we find that underwater managers,
those below their high-water marks, take more risk but generate lower returns. We explain
this result by building on the idea that convex incentives can lead to excessive risk-taking,
that is, risk-taking which reduces returns. Developing this idea further leads to three main
contributions.

First, we raise and answer the question of whether performance declines are caused by
reduced effort, excessive risk-taking, or both. Our model allows us to separate these two
potential sources of performance declines empirically and show that independent of effort
effects, excessive risk-taking causes a statistically and economically significant decline in
performance. In fact, given the baseline assumptions of our empirical model our estimates
suggest that about four fifths of the performance drop observed by managers who are not
very far below their threshold is due to the performance costs of risk-taking and only a fifth
of the performance decline is due to effort reduction.

A second contribution of our paper is to provide evidence that the effect of high-powered
incentives on excessive risk-taking is non-monotonic with respect to the distance from the
incentive threshold. Conceptually the non-monotonicity results from a feasible risk-return
frontier that is initially upward sloping, but eventually turns downward (see, for example,
Palomino and Prat 2003). In this context, agents who are below their incentive threshold
will choose excessively high risk levels even though they reduce the level of expected returns.
However, agents very far from their thresholds are not as willing to sacrifice return for risk.
Empirically, although the average treatment effect on risk-taking is positive, we also find
that managers that are very far below their thresholds take less risk and perform better
than managers who are more moderate distances below their thresholds. At first glance, this
finding is consistent with Chevalier and Ellison (1997) who also note non-monotonicities in
risk-taking in mutual funds. That said, there is an important difference in the mechanism.
In Chevalier and Ellison (1997), the non-monotonicities are driven by the shape of the
elasticity of demand (i.e., the elasticity of fund flows) with respect to performance. Because
the demand function is concave and then convex, this generates non-monotonic incentives to
take risk. In other words, non-monotonicities in the returns to risk lead to non-monotonicities
in risk-taking behavior. In our case, we show that even when incentives are weakly convex
everywhere, the incentive to take risk is a non-monotonic function of distance from the
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threshold. Close to the threshold, the incentive to take risk is increasing in distance, but once
the distance becomes “large” the benefit in terms of increased incentive fees is outweighed
by the fact that risk-taking comes at the cost of a reduction in expected performance. When
managers are very far from the threshold, therefore, risk-taking decreases.

Finally, our results contribute to the scholarly debate on the role of incentive contracts.
Oyer and Schaefer (2011), highlight that there are still fundamental empirical questions as
to the role of incentive contracts in labor markets, particularly for executives, managers, and
others with complex jobs. As they point out, the importance of incentives as a motivator
to managers to improve their output is an open empirical question. They argue that in
the standard moral hazard model, high-powered incentives are needed to induce effort by
the agent. Yet, most high-level managers and executives appear willing to work long hours
without regard to any obvious high-powered incentives. This lacuna and the lack of well
identified empirical evidence has led scholars to explore alternative avenues for incentives
to operate that do not depend on moral hazard. For example, employers may use incentive
contracts to induce selection effects and compensate for outside options. We offer well-
identified evidence suggesting that moral hazard in response to explicit contractual incentives
matters economically. However, in a twist, we show that moral hazard is important not
merely because of effort, as emphasized by much of the extant literature, but because of
excessive and inefficient risk-taking, which has implications for firms where employees have
incentive contracts and the wherewithal to influence the riskiness of the firm’s operations.
Indeed, these results may help explain part of the risk-taking and performance declines
associated with financial crises.6

The paper proceeds as follows. In the next section we lay out the conceptual framework,
model and predictions. Section 3 describes the data and institutional context. Section 4
describes the empirical approach used to estimate the risk and average return consequences
of being below the incentive threshold. Section 5 provides the empirical results examining the
average response of managers including threats to identification, those very far from their
thresholds, predictions on the differential effects of fees, and finally discusses robustness
concerns. The last section concludes.

6More specifically, our results are consistent with the idea that managerial effort does not change with
incentives. The same calculation that disentangles risk-taking and effort’s impact on performance suggests
that if risk-taking and its performance impact were removed from the agent’s choice set, we would find no
statistically significant impact on performance. Further, if we were to observe the effort of the managers
in our sample directly, we would likely find insignificant changes in how much they work based on changes
in distance to their thresholds. However, our results do show that moral hazard is important for these
managers–if not in how hard agents work then in how agents take risks that reduce return. In other words,
the observation that effort does not increase does not imply that moral hazard is less important for high-level
managers; instead, it may be the case that incentives address (or create) moral hazard issues but through
a mechanism other than effort, including the return reducing managerial risk-taking we focus on here. Of
course, if the only effects of incentive schemes are those evaluated in this paper it would be difficult to
justify them. A simple flat wage could induce similar effort without the risk-taking consequences. Because
we estimate with-in manager variation in risk and performance and do not include investor portfolios,
despite the observed risk-increases and performance declines, the funds may still provide positive returns
and valuable diversification. That is, the observed incentive structure may have been designed for reasons
we do not observe, for example as a screening contract to induce selection on ability or risk-attitudes when
employees are hired.
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2 Conceptual Framework

Our research focuses on how convex incentives generally and kinked incentives specifically in-
fluence risk-taking and effort in combination. These are compensation schemes in which total
compensation varies little, if at all, with performance when below a performance threshold
but varies significantly with performance above the threshold. Figure 1 shows an example
of a compensation scheme of a manager. In this example, the intercept of the compensation
scheme is the manager’s base compensation. The low initial slope represents the impact of
equity holdings on total compensation as firm value increases. The steeper region represents
the realized value of option holdings where the exact threshold is determined by the exercise
price of those options. Drawing on and extending existing theory,7 we develop a simple model
of the decision a manager makes about effort and risk when facing threshold incentives. The
model is intended to provide intuition and clarity for the empirical work that follows and
therefore is simple and highly stylized.

In the model, a manager simultaneously chooses an effort level and a risk level. Greater
effort increases the mean of the distribution of outcomes, but is costly to the manager.8 In
choosing a risk level, the manager selects a position on a risk-return frontier. The risk-return
frontier follows Palomino and Prat (2003) who generalize the standard assumption of the
classical Capital Asset Pricing Model (CAPM) (Sharpe, 1964). Specifically, we assume that
the risk-return frontier is single peaked; in other words, there is a level of risk-taking beyond
which additional risk-taking reduces expected return.9

To formalize this stylization, the agent chooses an effort level e ∈ [0,∞) at cost c(e) where
c (0) = 0, c′ (·) > 0, c′′ (·) > 0. The agent also chooses a risk level r that yields return q(r).

7Classic incentive theory has linked options as an effective way to align managers and principals (e.g.
Haugen and Senbet 1981) but at the cost of inefficient risk allocation (Jensen and Meckling 1976). More
recently Vereshchagina and Hopenhayn (2009) argue that entrepreneurs facing a convex incentive scheme
will choose higher risk projects. Hall and Murphy (2000 and 2002) study the price at which options should
be granted, but do not consider risk-taking as a consequence. Other research has looked at how incentives
influence risk-taking but do not consider the implications of the incentive threshold. Panageas and Westerfield
(2009) focus on the dynamic ratcheting of thresholds in hedge funds and show that the value of future periods
reduces risk-taking. In our setting incentives are fixed, thus, unlike Hermalin and Katz (2001) risk-taking
does not influence incentives. In this section we develop some predictions on the consequence of the distance
to the threshold on changes in the manager’s risk-taking and performance.

8Effort in this setting simply raises the risk-return frontier. For any given level of risk more effort yields
higher return. In some settings there might be low return to effort, for example, if market prices are perfectly
efficient, but in others managers may be able to change the performance of their firm separately from its
risk exposure.

9As Palomino and Prat argue, standard depictions of the risk-return frontier simply stop at this peak
because no risk-neutral or risk-averse agent with linear incentives (including those normally facing those
making investment decisions for themselves) would choose assets beyond this frontier. Indeed, investment
opportunities that have high risk and return below the peak of the frontier certainly exist (e.g. gambling,
dominated trading strategies, and paying managers to trade with no information). In financial settings,
the exact location of the peak may also be affected by the availability of leverage. Where opportunities for
leverage exist, the peak of the levered frontier would not represent the peak of the underlying investment
opportunities. Instead it would reflect the point where market frictions (e.g. liquidity, convex borrowing
costs and limitations) make the cost of additional risk lower than the return to that underlying risk. See
Albagli, Hellwig, and Tsyvinski (2013) for one such characterization. Agent’s who wish to choose risk levels
beyond this peak face reduced returns for additional risk as pointed out by Palomino and Prat (2003).
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We assume that q (·) is single peaked with maximum at rmax > 0 and weakly concave.10 An
agent’s decision therefore is a pair (e, r), and yields outcome x that is normally distributed
with mean e+ q (r) and variance r, x ∼ N (e+ q (r) , r).

The manager is opportunistic and risk-neutral, and the manager’s compensation scheme
is an exogenous, convex, two part linear contract. The contract pays the manager a share
of the performance of the project (base rate) and a share of the performance of the project
above a threshold (performance rate). For an executive the base rate would reflect his equity
holdings and the performance rate would reflect options.11 Formally, the compensation of
the manager for a realized outcome x is:

π(x) = bx+ max{0, p(x− d)}

Where b > 0 is the base rate, p > 0 is the performance rate, and d is the manager’s
distance below the threshold. As such the expected utility of the manager is:

Π(e, r) = b (e+ q (r))

+p

(
1− Φ

(
d− e− q (r)√

r

))−d+ e+ q (r) +

√
rφ
(
d−e−q(r)√

r

)
1− Φ

(
d−e−q(r)√

r

)
− c (e)

where the first term is the base payment for the expected mean, the second term is the
expected performance fee given the distance from the threshold, and the final term is the
private cost of effort.

The manager then chooses e, r to maximize her welfare. The first order conditions yield
the first insight:

Lemma 1. Risk taking is on the strictly downward sloping part of the curve q (r).

Proof. See appendix for all proofs.

Lemma 1 indicates that in general, agents will take more risk than that which maximizes
expected return, even though they are risk neutral. Indeed, a risk neutral agent facing a
linear, increasing incentive curve would always choose a level of risk that would maximize the
expected return, or in other words, would be at the peak of the risk-return frontier. However,
here the convexity of the incentive scheme implies that the manager would always take some

10That is, there exists rmax > 0 such that on range [0, rmax) q′ (r) ≥ 0 and on range (rmax,∞) q′ (r) <
0 and q′′ ≤ 0. These assumptions generalize the risk-reward frontier of the CAPM to describe return-
dominated, but riskier parts of the frontier, and can be derived from basic assumptions about the risk-return
set. The concavity of q follows directly from an agent’s ability to allocate assets to a combination of
underlying assets. rmax > 0 follows from the existence of some asset with return above the risk-free rate.
As discussed above, since opportunities that provide higher risk and lower return than the opportunity that
provides the peak return, the curve is downward sloping after the peak. If there are limits to leverage,
than the levered version of the frontier retains this shape because of the costs of leverage and/or levering of
investment opportunities beyond the peak.

11In a one period game the level of fixed compensation (base rate times starting assets) provides no
incentives so we ignore it. However, the base rate incents returns because compensation increases as assets
increase.
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measure of risk above the peak. While the set-up of the problem does not assume that
risk-taking is inherently bad for returns, these managers always choose risk levels that are
high enough so that the marginal return to risk is negative. Moreover this result combined
with the convexity of the cost of effort, b > 0, and p > 0, implies that the solution is interior
in both effort and risk-taking.

To further develop predictions about the interaction between risk-taking and effort, we
also assume the cost of effort is sufficiently convex. Specifically, we have

Assumption c′′ (·) ≥ p√
2πrmax .

This technical assumption means that either rmax is high enough or c is sufficiently curved.
It is a sufficient condition to ensure that the maximization problem we have is concave over
all possible d, and r ≥ rmax. This allows us to establish the uniqueness of the solution to
the agent’s maximization problem.

Lemma 2. There exists a single solution to the maximization problem for any triple (d, b,
p). Moreover, it is the unique local maximum.

Lemma 2 allows use of the Implicit Function Theorem to characterize comparative statics
everywhere by ensuring that there is only one local maxima in the optimization problem.12

Since close to the threshold effort is most valuable when risk is low there is the possibility
of both a low-risk high-effort and a high-risk low-effort local maxima. The proof uses the
assumption above to preclude the low-risk, high effort local maxima. With the above re-
sults, the empirical predictions of this model on effort and risk-taking as distance below the
thresholds follow from the implicit function theorem.

Proposition 1. Effort is decreasing in distance below the threshold.

The intuition behind Proposition 1 is that increasing the distance to the incentive thresh-
old decreases the probability that outcomes will be above the threshold. The effort level
undertaken is driven by the marginal return to improving outcomes, which is the average
slope of the incentive curve that the manager expects outcomes to reach. Increasing the
distance decreases the probability the manager will be in the high marginal incentive region,
so the manager reduces effort.

Proposition 2. Risk-taking has the following comparative statics with respect to distance
from the threshold:

(i) Risk-taking is increasing with distance “near” or above the threshold;
(ii) Risk-taking is decreasing in distance “far” below the threshold; and
(iii) Risk-taking is single-peaked if the marginal cost of effort is sufficiently high. A

sufficient condition is c′(e) > p exp
(−1

2

)
/
√

2π.

The intuition behind these results is nuanced. Increasing the distance below the threshold
decreases the marginal return to risk-taking because the kink in the compensation scheme is

12Since the implicit function describes changes in the local maximum around a solution knowing that there
is always one local maximum ensures that these comparative statics are meaningful beyond local results.
That is, the global maximum does not jump between one local maximum to another as parameters change.
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farther away. However, increasing the distance below the threshold also decreases the cost of
the risk-taking, because it is more likely that the marginal movement of outcomes is in the low
marginal incentive region than the high incentive region. At first, the second effect dominates
and risk-taking increases. However, when the manager is “far” from the threshold, increasing
risk-taking only has second order effect because the compensation scheme the manager faces
is nearly linear. But the manager still faces first order costs of risk, so risk-taking decreases.
Further, an assumption of sufficiently costly effort ensures that these two regions meet.

While the above propositions describe effort and risk-taking, empirically, we do not ob-
serve effort directly. Instead, we observe performance, e − q (r) . How performance changes
with effort and risk-taking depends on the relative cost of risk and value of effort. In partic-
ular, from the two Propositions, we have

Corollary 1. When the threshold is near, increasing distance unequivocally reduces perfor-
mance.

and

Corollary 2. When the threshold is far, the performance consequence of increasing distance
depends on the cost of risk-taking relative to the cost of effort. If the cost of risk-taking is
high relative to the cost of effort, performance improves; it reduces otherwise.

Effectively, these results imply that managers that are far from their performance thresh-
old can be used to tease out the importance of effort and risk-taking on performance.

Figure 2 displays the predictions of the model on risk-taking, performance, and unobserv-
able effort. In both panels, the green effort line is monotonically decreasing, per Proposition
1. Similarly, in both panels, risk-taking is increasing and then decreasing, per Proposition 2.
The difference in the two panels reflects the different effects these two results may have on
performance. In panel (a), the cost of effort relative to risk is high, so performance is first
decreasing and then increasing. When the cost of effort is relatively low, as in panel (b) the
non-monotonicity in performance is not observed.

Finally, the interactive effects of fees are also important predictions of the model. The
intuition behind these effects are simple. Consider a manager with a very small performance
fee. This manager is going to respond to distance very little because her compensation
scheme is nearly linear. On the other hand, a manager with a very small base fee will
respond quite sharply to distance because she faces no other incentives.

Proposition 3. If the threshold is near, and the cost of effort is sufficiently convex,
i) the rate of decrease in effort with distance is increasing in the ratio of the performance

fee to the base fee; and
ii) the rate of increase in risk-taking with distance is increasing in the ratio of the per-

formance fee to the base fee.

3 Industry and Context

The setting for this study is the hedge-fund industry. In this industry, hedge fund managers
are paid fees to make investments with investor’s assets. Each hedge fund is a standalone
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private investment vehicle with hedge fund management firms as general partners and high
net worth individuals and institutional investors as limited partners. Hedge funds face mini-
mal regulatory constraints and managers are free, unlike other asset managers such as those
who manage mutual funds, to make almost any investments, including derivatives, short
sales, leveraging and private transactions.13 Hedge funds identify an investment strategy
that broadly identifies the sort of assets the fund will invest in, the sort of profit oppor-
tunities that the manager will pursue, and the risk exposure that the fund will accept. In
the context of our analysis, we view these categorizations as similar to industry classifica-
tions; they identify that, within a strategy, firms face similar exogenous factors that influence
performance.

Hedge fund management firms earn revenue from fees paid from the assets of investors.
These fees are composed of a management fee and a performance fee. The management
fee pays the manager a percentage of fund assets each year. Management fees are usually
between 1 and 2%. On average, the performance fee pays the manager a substantially
larger share of the profits the fund makes than the management fee. The most common
performance fee rate is 20%. Because the performance fee is calculated on profits, often
above a benchmark rate, the benchmark is a threshold in a kinked incentive structure. The
details of this performance fee are central to the analysis and we discuss it in detail in the
context of the empirical approach. While the internal organization of the management firms
vary, all are known for high powered incentives that tie compensation of the individuals in
the firm quite closely to fees and performance. Indeed, funds generally have a single manager
who is responsible for the ultimate investment decisions and is a defacto residual claimant
on fees.14

Our work builds on an extant recent literature on hedge fund risk-taking and performance
which provides both descriptive and cross-sectional results. Ackermann, McEnally, and
Ravenscraft (1999) describe hedge fund risk, return and fee profiles. Agarwal and Naik (2004)
focus on identifying market factors that are relevant to explaining hedge fund performance
and risk exposures. Agarwal, Daniel, and Naik (2009) correlate a measure of marginal fees
with expected outcomes, focusing on issues of effort and performance. Kouwenberg and
Ziemba (2007) correlate fee rates and various measures of risk-taking. Like Chevalier and
Ellison (1997), Brown, Goestzmann, and Park (2001) focus on intra-year changes in risk-
taking following good absolute and relative performance, but do not consider the contracts
explicitly. Similarly, Holland, Kazemi, and Li (2010) correlate performance in the first half
of the year and changes in risk-taking. Smith (2011) looks at how investors respond to
idiosyncratic risk-taking by managers.

Our data set includes monthly assets under management and returns for approximately
9,000 hedge funds from 1994 through 2006. This data set was compiled by merging data on
hedge funds from Lipper-TASS and Hedge Fund Research. Each of these data sets retains
“graveyard” funds, funds that have closed or otherwise stopped reporting to the data vendor.
While exact measures do not exist, these data sets are together estimated to include about

13See Stulz (2007) for more comparison to the more familiar mutual fund.
14Because the data does not include information about the decisions of the manager separate from the

ultimate actions of the management firm one cannot distinguish between actions of the individual or of the
firm. However, the strong internal incentives suggest that in this context the two are closely aligned. These
results can be fairly interpreted as either about the individuals’ decisions or the firms’ response.
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a quarter of the entire hedge fund industry. The data also contain fund fee structures
classification of the funds into 34 investment categories. While the data are self-reported,
which raises potential selection concerns, the results are robust to selection corrections as
discussed more fully discussed in Section 5.2.

4 Empirical strategy

To understand how managerial incentives influence risk-taking and performance our em-
pirical approach focuses on hedge fund performance fees and high-water marks, where the
high-water mark offers a useful kink, or threshold, in the performance fee calculation. At
the end of each year hedge fund managers are paid any performance fees and the high-water
mark is adjusted for this payment. Figure 3 illustrates how high-water marks are adjusted
over time. The red line identifies the cumulative return of a hypothetical hedge fund. At the
end of 1994 this fund is 8% below its high-water mark, and, therefore, is not paid a perfor-
mance fee. At the end of 1995, however, the fund’s returns exceed the previous high-water
mark. Thus, the fund is paid a performance fee, and its high-water mark ratchets up. In
practice high-water marks are tracked individually for each investment into the fund, so each
vintage of assets may have a different high-water mark. Because managers make investment
decisions for the fund, rather than separate investment decisions by vintage, we use an asset
weighted average of the distance to the threshold. In the example illustrated in Figure 3, if
the fund at the end of 1994 was composed equally of two vintages of equal size from the end
of 1993 and the end of 1994, we would take the average distance by vintage and treat the
fund as if it is 4% below its high-water mark.

The implementation of this calculation depends on the returns the fund experiences as
well as the flow of assets in and out of the funds. Returns and gross assets are directly
reported in the data, but funds do not report asset flows. Therefore, we use gross assets
to impute net asset flows treating net inflows as new vintages and allocating net outflows
proportionally across previous vintages.15 Potential measurement error concerns related to

15The formal calculation of distance, how far a fund is from its threshold, is as follows. Let rit represent
the return of fund i in period (month) t. Representing the initial period of fund i as t0i, let CRit =
Π

t
j=t0i (1 + rij) be the cumulative return to t. The high-water mark of investments of vintage v in month t is

HWMivt = max
(
CRiv, CRiY (v), CRiY (v+1), . . . , CRiy(t)

)
where y (x)and Y (x) note the last month of the

calendar year ending before, respectively after, month x and if y (t) < v this is understood to equal CRiv.
To aggregate each vintage’s high-water mark, we measure how far it is from the threshold as Distanceivt =
(HWMivt − CRit) / (CRit) or what percentage growth is needed to bring that vintage to its high-water
mark. To aggregate vintages, we weight each vintage by its share of assets. Let Iniv be the dollar inflows in
month v. Let Outiv be the outflows in period v as a percent of assets. So the assets remaining in vintage v
at time t is Aivt = Iniv

CRit

CRiv

(
Π

t
j=v+1 (1−Outij)

)
. Note that by construction the assets of fund i at time t

is Ait =
∑t

v=t0i
Aivt. Then, weighting vintages by assets: Distanceit =

∑t
v=t01

(
Distanceivt ∗ Aivt

Ai

)
. How

this depends on the underlying data is clearer with some expansion:

Distanceit =

t∑
v=t01

(
max

(
CRiv, CRiY (v), CRiY (v+1), . . . , CRiy(t)

)
− CRit

CRit
∗
InivCRit

(
Π

t
j=v+1(1−Outij)

)
CRivAi

)
(4.1)
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this approach are discussed in Section 5.2.
One of the key outcome variables, risk-taking, is measured as the realized variance of the

fund’s monthly net returns over the prior year.16 A year is the natural length of time over
which to measure risk-taking because that is the period used to compute performance fees,
but the results are robust to shorter and longer measurement periods (e.g., 6 months or 24
months).

We use a fixed-effects estimator as the basic test of the relationship between Distance
and risk-taking of the form:

Riskiy+1 = β1Distanceiy + λXiy + δi + γy + εiy+1, (4.2)

where the vector Xiy are controls for assets and age, δi are fund fixed effects, γy are time
fixed effects, and each period is one year.17 Empirically, the fund fixed effects are important
as they absorb time-invariant fund-specific sources of heterogeneity that might be correlated
with both distance and risk-taking. To control for convexities in the effects of fund age and
size we include both linear and curvature terms for these controls.

To examine the relationship between return consequences, we use reported returns as the
dependent variable and the same regressors as in expression (2) above:

Returniy+1 = β1Distanceiy + λXiy + δi + γy + εiy+1. (4.3)

While fund fixed effects control for time-invariant sources of fund-specific heterogeneity
one may be concerned about time-varying factors correlated with both Distance and the
dependent variables of interest. For example, if a fund changes to a higher return, higher
volatility risk profile in period 2 it will increase the probability that it will be below its high-
water mark at the end of period 2 and increase its expected distance below the high-water
mark. At the same time the change in strategy also increases the fund’s realized volatility
and performance in period 3, which lead to an overstatement of the causal relationship
between risk-taking and Distance. The opposite problem is probably even more prevalent.
If managers borrow to buy an asset which is mispriced. Until the price corrects, the current
returns will reflect that the manager is moving farther away from the threshold, but the
manager is not changing their average risk or return choices because they understand that
the accounting valuations do not reflect the true values of their endogenous choices. This will
lead to an understatement of the causal effect in regressions where Distance is endogenous.

To address concerns about endogenous time-varying contractual changes, we use an in-
strumental variable approach where the instrument for Distanceiy is the average distance
of a representative fund in the same strategy, Distanceiy. Distanceiy satisfies the exclu-
sion restriction because is based on a synthetic high-water mark that does not depend on
the choices of the fund and should not influence risk-taking or performance directly, except
through its correlation with Distanceiy.

16This measure of risk-taking measures realized risk and not intended risk directly.
17An alternate specification would calculate the fund’s incentive to take risk as the average of the incentives

for risk-taking provided by each vintage. However, to implement the alternative approach one would need
to make explicit functional form assumptions. The approach we take here makes weaker assumptions that
depend only on non-monotinicity in incentives.
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There are two key inputs into the measureDistanceiy: representative returns and rep-
resentative fund flows (in and out). Representative return is calculated in two steps. The
first step uses the performance of 15 market “factors” to estimate average strategy-level risk-
adjusted return and risk factor loadings, where the factors represent the returns to indices
of pertinent bundles of securities. We use standard factors from the asset pricing literature,
which reflect both the performance of equity markets (Fama and French, 1993) as well as
additional factors found to be important in explaining the returns of mutual funds (Carhart,
1997) and hedge funds (Fung and Hsieh, 2004). For each strategy we regress the monthly
return of the funds in that strategy on the monthly market factors. That is, indexing months
by m, we estimate:

Returnim = αs + βsjFactorjm + εim (4.4)

In the second step of the representative return calculation we use the estimates α̂s and
β̂sj from the regression in (4) above to calculate the return of strategy s in time m:

rsm ≡ α̂s + β̂sjFactorjm (4.5)

The computed values from expression (5) capture the monthly returns of a representative
“passive” hedge fund for each strategy category.

The second input to the instrument are representative fund flows.
Rather than using fund-level flows, which may be endogenous,18 we use the flows into

and out of funds that identify themselves as “Fund of Funds”, which are excluded from the
analysis otherwise, to capture the general availability of funds to the industry that are not a
consequence of the beliefs of investors about the future performance of any particular fund
or of its strategy.19 Using the average of all fund of funds we calculate the representative
percentage inflows InFoFm and outflows OutFoFmto the industry in each month. Combining
the exogenous inputs, strategy returns and Fund of Funds flows, we calculate the instrument
Distanceim using the formula in expression (1).20

18For example, suppose that the flows a particular fund experiences reflect investors’ beliefs about the
future performance of the fund. Also, suppose that investors believe that a fund with recent poor performance
will experience low risk returns in the next period. If investors add funds to this fund at the end of this
period then it will be less underwater than it would have been and, if those beliefs were correct, realized risk
would be lower. Thus, the correct beliefs would produce a correlation between distance to the threshold and
realized risk.

19Using aggregate flows observed in the data as a measure of industry flows produces similar results.
20The exact formula is:

Distanceim =

m∑
v=t0i


max(CRsv,CRsY (v),CRsY (v+1),...,CRsy(t))−CRsm

CRsm
∗

InFoFvCRsm

(
Π

m
j=v+1(1−OutFoFj)

)

CRsv

v∑
k=t0i

(
InFoFkCRsm

CRsk
(Pm

j=v(1−OutFoFj))
)


,

(4.6)
where subscript s denotes representative returns, risk, inflows and outflows. Despite the apparent com-

plexity of this formula it has a simple interpretation. It is the Distance of a fund that had the same initial
founding date as the fund, experienced the same average flows of funds of funds, and had the same returns
exposure to market factors.

14



Using Distanceiy, we estimate the annual first stage regression:

Distanceiy = β1Distanceiy + λXiy + δi + γy + εiy+1 (4.7)

Which yields ̂Distanceit as the predicted value to be used in the second stage regressions:

Riskiy+1 = β1
̂Distanceiy + λXiy + δi + γy + εiy+1 (4.8)

Returniy+1 = β1
̂Distanceiy + λXiy + δi + γy + εiy+1 (4.9)

It is illustrative to consider how the instrument might be positive, or below the repre-
sentative high-water mark. Managed Futures and Global Macro strategies were below their
threshold high-water marks in 1994, presumably, because of the spike in interest rates.21

Similarly, in 1998 emerging market funds were below their thresholds because of the crash
in emerging market returns, however, some regional emerging market strategies were much
more affected than others. The technology crash in 2000 and the market wide downturn in
2002 were also significant downward shocks that caused strategies to be below their thresh-
olds. Despite operating at the category level, the instrument can be expected to be strong
in the first stage because different strategy-level exposures provide meaningful variation in
how far different funds are from their thresholds. Another advantage of using a category-
level instrumental variable approach is that, by definition, in the second stage it will break
the endogenous relationship between funds that have planned for the downturn and their
investment approach, which allows us to make valid inferences about the causal effect of
incentives on risk and return. Finally, the category-level IV approach removes the influence
of implicit relative performance incentives from our measures of explicit incentives.

It is straightforward to calculate two important controls: the return and variance of a
passive hedge fund in each strategy. We use these to control for changes in the opportunity set
of investments available, including, for example cyclicality in strategy returns. Additionally,
we use this to estimate the risk increases that a passive fund would experience. If there
is persistence or cyclicality in the performance and risk characteristics of underlying assets
beyond that absorbed by time fixed effects, as for example Carhart (1997) demonstrated,
then using the variation driven by these factors makes controlling for the risk and return
that is driven by market factors particularly more important.

5 Primary Results

The most basic prediction of the model, is that the farther managers are from their threshold,
the more risk they will take. Figure 4 shows how exogenous changes in the distance below
the high-water mark (horizontal axis) influences risk-taking (left vertical axis, solid line)
and performance (right vertical axis, dashed line), restricted to managers that are not “far”
from their thresholds. The line plots the non-parametric fitted values of risk and return
after adjusting for fund and year fixed effects and controls for age, age-squared, assets under

21http://money.cnn.com/magazines/fortune/fortune archive/1994/10/17/79850/index.htm

15



management, and log assets under management. The figure illustrates the baseline prediction
graphically– the farther a manager is from the threshold the more they increase risk.

Table 2 regresses risk (columns 1-4) and return (columns 5-8) on the (endogenous) dis-
tance a fund manager is below their high-water mark. Columns (1) and (2) are OLS regres-
sions, with the fund and time fixed effects and controls for age, age-squared, assets under
management, and log assets under management. Robust standard errors are clustered at
the fund-level. Column (2) includes controls for the return and variance of the passive com-
parison. With fund fixed effects the interpretation of columns (1) and (2) is that for funds
with assets that fall from the high-water mark to half of the high-water mark in one year,
and thus increase distance to the threshold by 100%, risk-taking increases by 40 percent-
squared/year, an amount equal to the average variance, compared to a fund that stays at
its high-water market. However, distance rarely increases so quickly. The mean distance for
funds that are below their thresholds is 15.8%,22 implying that the average below-threshold
fund increases risk-taking by about 16%.23

While the correlations reported in the OLS regressions are suggestive of a relationship
between changes in Distance and in risk-taking, Distance is clearly endogenous, making
causal inference fraught. Columns (3) and (4) implement the instrumental variables strat-
egy described in section 4, where the endogenous measure Distance is replaced with an
exogenously determined strategy-specific instrument. In the presence of fund fixed effects,
the instrument captures the change in Distance the fund is expected to be experience due
of the performance of its strategy class, independent of own choices. The second stage of the
two stage least squares (2SLS) instrumental variable (IV) approach is reported in column
(3).24 When instrumenting for Distance the estimated increase in risk from a 100% increase
in Distance is 130 percent-squared/year, or more than three times the average variance.25

One potential concern with the identification strategy is that the variation in the in-
strument, which depends on past strategy-level performance, might be correlated with cur-
rent fund-level risk-taking and performance through current strategy-level risk and return
(i.e., rather than only influencing outcomes through the incentives captured in the variable
Distance), which would violate the exclusion restriction. One way of addressing this concern
is to control for contemporaneous strategy-level risk and performance directly. Controlling
for the variance of the strategy in the same period in column (4) reduces the point estimate
to 71 percent-squared/year. The interpretation is that the average underwater fund increases
risk-taking by 28% due to the impact of non-linear incentives.26

22Because the specifications include fund fixed effects, they can be interpreted as differences in differences
estimates. Because all funds are sometimes at their threshold (a distance of zero), the mean distance for
funds that are below their threshold is the average change and useful to discuss the economic magnitudes of
these effects.

23These specifications include all managers, even those that are very far from their thresholds. If the
non-monotonic prediction of Proposition 2 holds, which we show below, it suggests that these results under-
estimate the impact for the typical managers.

24The first stage is quite strong, as the F-statistic (cluster-robust)is 46.46 (column (3)).
25The coefficient estimates from the 2SLS specifications are 2-3 times larger than the OLS estimates. One

explanation for this difference is that the endogeneity in the difference between valuations and accounting
valuations used to calculate Distance causes some managers to appear to be below their threshold, but they
act like they are at it.

26The results are robust to aggregating the data to the strategy-year or also clustering at the strategy-year
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The second basic prediction we test is that the farther managers are from their thresholds
the worse they will perform, as illustrated by the dashed line in Figure 4, and displayed
more concretely in the next four columns of Table 2. The OLS results in Columns (5) and
(6) show insignificant increases in performance before addressing endogeneity concerns, but
after instrumenting for Distance in column (7) we see an economically meaningful decrease
in expected returns when funds are 100% below the high-water mark of 6.5 percentage
points/year. However, the point estimate is only on the margin of statistical significance.
Once one controls for the performance of the strategy directly in column (8), the effect of
being 100% underwater is substantially larger at 14.1 percentage points/year, and precisely
estimated. 27The interpretation of the result in column (8)28 is that annual returns are
2.3 percentage points lower for the mean below threshold fund.29 While this effect is large
economically, it is actually somewhat smaller than other findings in the literature. For
example, Agarwal, Daniel, and Naik (2009) find a cross-sectional correlation between hedge
fund managers’ marginal incentives including those provided by performance fees and future
returns of 12 percentage point of return for a 1 standard deviation change in incentives. A
one standard deviation increase in distance yields a 5.3 percentage point drop in returns.30

A rough calculation of the size of the risk and performance effects in dollars, assuming
contracts are always readjusted to keep funds at the threshold, but that this adjustment
does not affect performance when the manager is at the threshold, is equivalent to $12
billion per year in risk-aversion costs and $20 billion per year in average performance.31

Taken together the results in Table 2 suggest that when funds are below their high-water
mark they tend to behave in ways that simultaneously increase risk and reduce their expected
return. These results are consistent with mangers being increasingly likely to take riskier,
yet lower expected value projects, as they move farther from their threshold. The key novel
testable implication of the model follows from Propsotion 2, which predicts that managers
with distant thresholds will behave differently than those closer, because distant managers

level.
27The differences between the OLS and 2SLS estimates and the differences between specification (7) and

(8) suggest, in addition to the other endogeneity concerns, there is mean-reversion at the strategy level.
28Specification (8) is clearly preferred to specification (7) because it controls for the average performance

of other funds in the same strategy class. An alternative approach to measuring performance would be to use
the estimated alphas from a standard hedge fund asset pricing model. Replacing raw returns in specifications
4-8 produce comparable results. An alternative way of interpreting the variation in the specifications that
include contemporaneous strategy risk and return, columns 2, 4, 6 and 8, is that the dependent variables
are the actively managed outcomes while contemporaneous strategy risk and return control for the passive
performance.

2914.1 percentage points/year * 15.8% below the high-water mark, conditional on being underwater= 2.3
3014.1 percentage points/year * 37.9% below the high-water mark (one standard deviation)= 5.3
31Valuing the risk requires assuming something about the utility function of investors. Suppose investors

have a risk aversion coefficient of 1. If returns are normally distributed we can characterize investors’ utility
functions as mean-variance utility of return − variance/2. The average fund is 7.5% below the threshold
(15.8% below the high-water mark, conditional on being underwater x 47.6% of funds are underwater at any
given point in time), and using the coefficient estimate from column (3), which is in monthly variance and scal-
ing to percentages, yields a cost of risk-taking of 0.0479 percentage points per month (130/10000*7.5/2*100
=0.0479), which is 0.587 percentage points per year, which when applied to the $2 trillion hedge fund indus-
try is approximately $12 billion per year. Similarly, a the average fund under-performs an average of 1.06
percentage points per year using the estimates column (8) (7.5% * 14.1% = 1.06%), which, when applied to
the hedge fund industry, is approximately $20 billion per year.
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will not find risk-taking profitable given that the threshold is so unlikely to be surpassed.
However, the incentives for exerting effort continue to decline as distance increases. Thus,
performance should continue to decline because of decreased effort, but the performance
cost of risk-taking will no longer magnify the decline. Figure 5 extends Figure 4, but now
includes all managers, including those who are very distant from the threshold. One can
see that, consistent with the Proposition 2, risk-taking appears to decrease with distance
for managers far from their thresholds (solid line). These same managers perform better as
they take less risk (dashed line), which is consistent with Corollary 2 that the performance
cost of risk-taking is large.

To test this effect statistically, we estimate a separate response to distance for managers
far from their thresholds. The measure of “far from their threshold” is admittedly somewhat
arbitrary. Here we present results where “far” means one would need a return of 75%
to reach the threshold, but the results are robust to other reasonable definitions of “far.”
(Approximately 2% of funds are 75% below their high-water mark in at least one year.)
Table 3 presents the 2SLS regression results on risk-taking and performance using a similar
specifications as in Table 2, except the interaction of the “far from the threshold” dummy
with Distance is included and instrumented for with the interaction of the “far from the
threshold” dummy with the representative strategy-level distance as well.32 The interaction
term reflects the difference between the main effect, the responsiveness of near managers,
and the responsiveness of distant managers. The net effect on risk-taking in columns (1) and
(2) are that distant managers take much less risk than managers moderately far from their
thresholds. Indeed, while the point estimates suggest that distant managers take more risk
than managers at their thresholds the estimate is not significantly different from zero. To
put the effect sizes in perspective, the estimates in column (2) imply that a manager 50%
from their threshold increases risk-taking by about twice the amount of a manager who is
100% below their high-watermark.33

Columns (3) and (4) show the same pattern: managers far from their high-watermark
perform better than managers who are moderate distances to their threshold. The estimates
in Column (4) suggest that a manager 50% from the threshold reduces performance by almost
three times as much as a manger 100% from the threshold.34 These regressions facilitate an
estimate of how much of the performance drop due to moral hazard associated with convex
incentives for managers who are underwater, but not “far” from their thresholds, is due to
reductions in effort, and how much is due to the performance cost of risk-taking. To do so we
assume that the reduction in performance observed by managers far from their thresholds is
entirely due to effort reduction, which allows one to net out this effect from other managers

32Being far from the threshold is potentially endogenous as well. However, the bias works against us
because the results suggest that risk-taking is lower and performance is better beyond this threshold, and
the key endogeneity concern would be that funds with riskier and lower performance are more likely to be
far from the threshold.

Alternative specifications (e.g., using a spline) and alternative instrumental variables approaches (e.g.,
interacting an exogenous measure of “far” with exogenous distance) yield similar point estimates. The
specification in Table 3 parsimoniously allows us to capture the information in the sparsely populated tail of
managers and facilitates a simple and direct comparison of those managers to the mass of managers closer
to the threshold.

33157.0*.5=78.5 vs 157.0*1-114.5*1=42.5
34-36.9*.5=18.5 vs -36.9*1+30.3*1=6.6
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who are closer to the threshold.35 We then take the difference between the performance
effect of “far” managers and the performance effect of managers closer to the threshold to
find the performance cost of risk-taking. The estimates in column (4), suggest that 82% of
the performance drop observed in managers who are underwater, but not “far” underwater
can be attributed to the performance cost of risk-taking and only 18% is due to reduced
effort.36

5.1 Fee Variation

The primary results show that moving below the threshold increases risk-taking and reduces
performance, until the fund becomes “too far” underwater. To extend these results we
explore whether there are heterogeneous treatment effects associated with the underlying
performance contracts (i.e., fees), as predicted by the model. Proposition 3 says that when
the ratio of the performance fee to base fee increases the incentive effects increase. This
follows because the importance of the threshold, and thus the distance to it, is relative to
the change in incentives provided by the performance fee over the base fee.

The heterogeneous treatment effect of the fee ratio is examined in Table 4. There is
limited variation in the fees: 80% of the funds have performance fees of 20% and 80% of
funds have base fees of 1, 1.5, or 2%. However, the results are consistent with the theory.
Columns (1) and (2) show that funds with higher fee ratios increase their risk more with
distance to the threshold. Evaluating the magnitudes of column (2) says that a fund with
a mean fee ratio increases their risk-taking by 36% when below the threshold, while a fund
with a standard deviation lower fee ratio increases their risk-taking by only 4%. Columns
(3) and (4) show that these funds decrease their performance more with distance to the
threshold. Again comparing a fund with a one standard deviation lower fee ratio, that fund
has an average performance drop of only 1.4 percentage points compared with a fund with
a mean fee ratio having a performance drop of 2.5 percentage points.37

Taken together the heterogeneous responses of underwater funds to contractual fee struc-
tures provides several interesting results. First, consistent with the theory, the fee ratio
results show that, ceteris paribus, bigger performance fees lead to more responsiveness to
the threshold, while higher management fees serve to blunt the incentives to take extra risk
for underwater funds. Further, these results address a potential threat to the identification
strategy by using meaingful intra strategy-year variation and provide robustness to the main
empirical findings in section 5, as they suggest that the results are being driven by explicit
incentives. Indeed, the direct effect of Distance in Table 4 is a useful falsification test. It

35As the point estimates in columns (1) and (2) suggest that risk-taking is still increasing slowly in managers
far from their thresholds this may result in an underestimate of the performance cost of risk-taking.

36The net performance decrease of “far” managers is (-36.9+30.3)*.01=6.6 basis points per 1% increase in
distance. Assuming that far managers are no longer taking more risk and the linear functional form of the
performance response this is the impact of decreased effort. The performance decrease of “near” managers
is 36.9 basis points, which reflects both increased risk-taking and decreased effort. Thus the performance
cost of risk-taking is 30.3 basis points per increase in distance.

37These compare a fee ratio of 15.2 and 3.5 at a distance of 15.8%. This leads to changes in risk-
taking increases of (-14.1+6.9*15.2)*.158/40.0=36% and (-14.1+6.9*3.5)*.158/40.0=4% respectively. And
performance drops of (6.6+0.6*15.2)*.158=2.5 percentage points and (6.6+0.6*3.5)*.158=1.4 percentage
points respectively.

19



estimates (assuming a linear heterogeneous treatment effect) what the responsiveness of a
fund without a performance fee, and thus with a fee ratio of zero. These funds serve as
a useful placebo, because they are exposed to the same market conditions and similar in-
vestor responses, but do not have a meaningful high-water mark. Here we see statistically
insignificant and, in the case of columns (2) and (3), opposite signed estimates of the effect of
distance for those funds. If these coefficients were large and significant, it would suggest that
the funds were responding to something other than explicit incentives or we were missing
important controls.38 For example, if these behaviors were the result of reference points, we
would not expect differential responses for different fee structures. Applied more broadly the
results suggest that top management teams with many options are more likely to increase
risk when they are out of the money.

5.2 Robustness Checks

The data used in this analysis is well suited to studying the impact of incentives on risk-taking
and performance, but they do have some potential limitations. The first set of challenges
arises because the data are self-reported and represent only a subset of the hedge fund
industry. However, the funds included in this data set represent approximately one quarter
of all hedge funds during this period and are believed to be broadly representative.

Beyond the question of coverage, there are two potential forms of self-selection bias
discussed in the literature that might apply to these data. First, when a fund first begins to
report to the data vendor, it generally reports not only current and future performance, but
past performance as well. This “instant history” bias tends to include funds with particularly
good initial performance. We can follow the standard approach to dealing with instant
history bias by excluding the first two years of a fund’s data and find that doing so does not
meaningfully change to the results reported. Additionally, for a subset of the data, we have
access to information about when a fund first began reporting. This allows robustness checks
of limiting only to funds that began reporting immediately or to more precisely exclude the
instant history. Neither is a meaningful change. The second potential form of self-selection
bias relates to a firm’s decision to exit the data set (i.e., to stop to reporting to the data
vendors). One way to test for this bias is to restrict the analysis to a set of funds that
as of a particular point are actively reporting, and only including those funds before that
time. Again, the results are not qualitatively changed by this restriction. Additionally, for
a subset of the funds that have exited the data set we know the reason the fund has left.
While prior literature has assumed that funds exited the data because of extreme success
and failure, the vast majority of fund exits in this data are due to fund liquidation (45%)

38For example, in this paper we emphasize the role of effort and risk-taking in response to incentives,
however, if a fund experiences significant net outflows it may change the composition of the fund as the fund
sells liquid assets, which may be correlated with the effects of interest. Similarly, as a fund experiences inflows
it may acquire liquid assets faster than illiquid assets. If illiquid and liquid assets have different risk and
return profiles, these asset composition effects might be confounded with changes in distance. Empirically,
because flows are potentially endogenous, it is not trivial to separate compositional effects from the effect of
changes in the distance to the threshold. However, the results in Table 4 suggest that the effects are being
driven by the contracting terms. For the results in Table 4 to be spurious there must be a correlation not
only between flows and distance, but also differential correlations between those flows as the contracting
terms. The first is plausible, the second less so.
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or firm failure (18%). Less than one percent of exits are due to closures to new investments
(a sign of success). 26% are voluntary decisions to stop reporting for an unspecified reason,
and 5% are mergers into other funds. These last three groups would be the potential sources
of reporting bias.39

One potentially important source of measurement error arises from the possibility that
definition of “return” may vary across funds, or within funds over time. For example, if
different investment vintages have different fee structures, some funds may report net returns
using the fees of oldest vintage, while other funds (properly) report a weighted average. A
small number of funds report gross returns. Returns net of fees also depend on when fees are
accounted for out of assets – returns are monthly, but fees are often accounted for quarterly
and paid annually. None of our data report the method of calculating net returns though a
subset of our data suggests that gross returns are reported by less than 2% of funds. None
the less, the results are qualitatively similar and statistically indistinguishable if we treat the
raw data as net returns, input gross returns, and analyze those. However, because we observe
net flows rather than the full details of each vintage and use those to calculate distances as
well, this adjustment produces an omitted variable bias because both the dependent and
independent variables are correlated with the measurement error in the flows.

Hurdle rates complicate the calculation of high-water marks. A hurdle is a base rate of
return that a fund must earn before earning a performance fee, which effectively moves the
high-water mark by a specific amount every year regardless of performance. The hurdle rate
may be specified as a fixed percentage or as a floating rate, such as the 3-month LIBOR rate.
Though we know which funds have hurdle rates, we rarely observe the rate itself; however
the results are robust to excluding funds with hurdles 40

Finally, the calculation of high-water marks depends on vintages of investments into
funds. However, we do not observe actual flows, only net flows each month, which, because
hedge funds were growing rapidly during the sample period biases the estimates of asset

39Survivor bias is another concern in this style of research, but is not a limitation of this data. Funds are
included in the data regardless of whether they have exited or continue to report to the data vendors.

40There are, additionally, a variety of sources of measurement error in the data and in the calculation
of high-water marks. We exclude returns before assets are reported, which tends to bias our regression
estimates towards zero. Similarly, excluding any funds for which returns are not available from inception
would produce the same bias. An untabulated robustness check restricting to funds for which assets are
available at inception verifies that the results are not sensitive to this form of measurement error. Any funds
which stop reporting assets but continue to report returns are treated as exits and are addressed in the
robustness checks for voluntary reporting. For funds for which assets are not reported for some intermediate
period, net flows over that period are distributed evenly over the period. Another source of measurement
error is self-categorization into investment strategy types. If categories are too broad it will include funds
with heterogeneous strategies. Relatedly, a fund may not properly self-identify in a way that allows it to be
categorized with like funds. Both of these effects would weaken our instrument in the first stage by lowering
the correlation between the representative “passive” distance measure, and a fund’s actual distance below
their high-water mark. However, the first stage results are strong, which suggests that any bias from self-
categorization is not meaningfully influencing the results. Serial correlation in returns is another potential
source of measurement error. There are several sources of serial correlation. First, funds which hold illiquid
assets may use valuation measures that induce serial correlation. Second, assets that the funds own may
exhibit momentum. The second source is partially addressed by the inclusion of Carhart’s (1997) momentum
factor for equity. However a we purse a broader robustness check by estimating an AR(1) return process
and using a measure of return which is net of this AR(1) process. Doing so does not meaningfully change
the results.
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vintages (i.e., it treats them as older vintages than they actually are). As older funds
always have the highest high-water mark, our distance measure is, therefore, biased upward.
However, this is only a problem of scale because the vintages do not matter unless a fund
is some distance below its threshold. As soon as a fund is above its threshold all of the old
vintages get shifted up. The scaling issue, however, is further complicated by not observing
the vintage of the assets that flow out. Instead, we apply the outflows proportionally among
all fund assets. An alternative assumption is to apply out flows on a first-in first-out basis
that assumes that the funds that leave are the always the oldest vintages. Neither is a perfect
representation of actual flows, but either approach generates similar results.41

6 Conclusion

This paper demonstrates how convex incentive schemes, such as increasing payouts for per-
formance above a certain threshold, create moral hazard problems for organizations. Most
importantly, we show that threshold incentives influence principals not only by inducing in-
efficient risk-taking, but also by inducing excessive risk-taking, when the principal fall below
their threshold, This finding has implications for contract and incentive design.

A similar logic provides a further cautionary consequence of kinked incentives used to
incent managers in many industries. Kinked incentives lead managers to increase risk and re-
duce expected performance following a negative shock. However, if there is negative macroe-
conomic shock, many managers will simultaneously increase their risk exposure in a manner
that destroys value systematically across an industry, or even across an economy, essentially
multiplying and sustaining the original shock. This magnification effect is important from a
public policy perspective as it suggests that kinked incentives may have contributed to both
the depth and duration of recent economic downturn.

Yet, the results do not suggest that convex incentive compensation should necessarily
be avoided, but rather suggest the importance of setting thresholds correctly or designing
alternative incentives that consider risk-taking explicitly. Interestingly hedge fund perfor-
mance contracts are already being written to address the excessive risk-taking behavior we
document. Whether these new contracts will be superior to the standard pre-crisis structures
promises to be a rich area for future study.

41The uncertainty over net flows produces a form of multiplicative heteroscedasticity, which may bias the
2SLS estimates. The usual solution of a logarithmic specification is not appropriate in this setting because
of the large number of funds at zero distance. In the reported specifications the weighting induces a bias
towards zero in the reported coefficients, but unbiased average treatment effects. The average treatment
effects are unbiased, since the same weighting is used in the calculation of average treatments.
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Figure 1: Threshold Incentive Schemes
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Figure 1: Threshold Incentive Schemes. 
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Note: The figure shows a generic threshold incentive scheme where total compensation
is increasing at a slow rate below the performance threshold and at a higher rate
after the performance threshold. In this example the threshold is measured in
firm value, but could be sales, financial returns, or other context specific metrics.
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Figure 2: Theoretical Risk-Taking, Performance, and Effort
with Distance to the Threshold

(a) High Cost of Effort
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(b) Low Cost of Effort
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Note: Both figures show single peaked risk-taking and monotonically decreasing effort.
Panel (a) displays non-monotonic performance when effort is relatively costly.
Panel (b), in contrast, shows performance not deivating much from the decreasing
effort line. In both panels, the solid blue line plots the change in risk-taking against
the left vertical axis, the green dotted line plots the change in effort, and the red
dashed line plots the change in performance, both against the right vertical axis,
of the manager’s solution to the maximization problem against distance below
the threshold. Empirically, effort will be unobservable. q (r) = r2 − r , b = 2%,
p = 20%. For panel (a): c (e) = e2. For panel (b): c (e) = e2/10.
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Figure 3: Calculation of High-Water Marks
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Figure 3: Calculation of High-Water Marks. 

 

The red line identifies the cumulative return of a hypothetical hedge fund. At the end of 1994 this fund 
is 8% below its high-water mark. Or in other terms the fund is 8% Distant. At the end of 1995, this fund 
is paid a performance fee and its high-water mark ratchets up.   
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Note: The figure shows the calculation of high-water marks. The red line identifies the
cumulative return of a hypothetical hedge fund. At the end of 1994 this fund is
8% below its high-water mark. At the end of 1995, this fund is paid a performance
fee and its high-water mark ratchets up.
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Figure 4: Risk-Taking Increases and Performance Falls
with Distance when the Threshold is Near.

Figure 4 Risk-Taking and Performance with Distance to the Threshold. 

 

The horizontal axis is the distance below the high-water mark the manager is as driven by the 
performance of market factors calculated above. The left vertical axis measures the variance of fund 
returns in the following year plotted in the blue solid line. The right vertical axis measures the annual 
return of funds in the following year plotted in the red dashed line. Both lines are non-parametric fitted 
values after including fund and year fixed effects and controls from age, age-squared, assets under 
management, and log assets under management. Includes only market driven distances up to 30%. 
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Note: The figure shows the relationship between exogenous changes in the distance to the
high-water mark and changes in risk-taking and performance. The horizontal axis
represents distance below the high-water mark due to exogenous market variation.
The left vertical axis measures the variance of fund returns in the following year
plotted in the increasing blue solid line. The right vertical axis measures the
annual return of funds in the following year plotted in the decreasing red dashed
line. Both lines are non-parametric fitted values after including fund and year
fixed effects and controls from age, age-squared, assets under management, and
log assets under management. Includes only market driven distances up to 30%.
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Figure 5: Risk-Taking Declines and Performance Improves
with Distance when the Threshold is Far.

Figure 5 Risk-Taking and Performance with Distance to the Threshold including Distant Managers. 

 

The horizontal axis is the distance below the high-water mark the manager is as driven by the 
performance of market factors calculated above. The left vertical axis measures the variance of fund 
returns in the following year plotted in the blue solid line. The right vertical axis measures the annual 
return of funds in the following year plotted in the red dashed line. Both lines are non-parametric fitted 
values after including fund and year fixed effects and controls from age, age-squared, assets under 
management, and log assets under management. Includes all managers. 
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Note: The figure includes extends Figure 4 to include managers far from the threshold
and shows the non-monition relationships between between exogenous changes in
the distance to the high-water mark and changes in risk-taking and performance.
The horizontal axis represents distance below the high-water mark due to exoge-
nous market variation. The left vertical axis measures the variance of fund returns
in the following year plotted in the blue solid line. The right vertical axis mea-
sures the annual return of funds in the following year plotted in the red dashed
line. Both lines are non-parametric fitted values after including fund and year
fixed effects and controls from age, age-squared, assets under management, and
log assets under management. Includes all distances.
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Table 1: Summary Statistics

(a) Fund-Year

Variable Mean (Std. Dev.) N
Variance 40.0 (411.3) 19750
Return 12.9 (24.9) 19750
Assets Under Management (Millions) 111.4 (252.7) 19750
Distance 0.075 (0.379) 19750
Below Threshold 0.476 (0.499) 19750
Distance if Below 0.158 (0.537) 9409
Age 4.339 (3.7) 19750

(b) Funds

Variable Mean (Std. Dev.) Min. Max. N
Complete Years 5.14 (2.85) 2 11 3845
Inception Year 1998 (4.1) 1976 2006 3845
Performance Fee 18.85 (4.82) 0 50 3845
Base Fee 1.48 (0.84) 0.05 20 3845
Fee Ratio 15.19 (11.71) 0 250 3845
Has Hurdle 0.35 (0.48) 0 1 3845
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Table 3: Distant Managers

(1) (2) (3) (4)
Variance Annual Return

2SLS 2SLS

Distance 337.6*** 157.0** -30.9*** -36.9***
[85.6] [74.7] [11.5] [9.6]

Distance X More than 75% -271.3*** -114.5* 32.0*** 30.3***
[77.8] [66.7] [10.5] [9.0]

Strategy Returnt -71.2 68.3***
[51.5] [3.9]

Strategy Variancet 2,978.9*** -14.3
[395.6] [47.1]

Observations 19,750 19,750 19,750 19,750
Number of Funds 3,845 3,845 3,845 3,845
Kleibergen-Paap Wald F Statistic
on Excluded Variables

58.99 68.99 58.99 68.99

Robust standard Errors clustered by fund in brackets. *** p<0.01, ** p<0.05, * p<0.10.
See notes to Table 2. “More than 75%” indicates if the fund is more than 75% from the
threshold
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Table 4: Explicit Incentives

(1) (2) (3) (4)
Variance Annual Return

2SLS 2SLS

Distance 26.1 -14.1 4.8 -6.6
[28.0] [36.0] [6.4] [5.5]

Distance X Fee Ratio 8.8*** 6.9** -1.0** -0.6*
[3.1] [3.1] [0.4] [0.3]

Strategy Returnt -74.0 70.0***
[53.1] [3.9]

Strategy Variancet
3,067.9*** -17.2

[398.0] [46.2]

Observations 19,750 19,750 19,750 19,750
Number of Funds 3,845 3,845 3,845 3,845
Kleibergen-Paap Wald F Statistic
on Excluded Variables

37.50 38.34 37.50 38.34

Robust standard Errors clustered by fund in brackets. *** p<0.01, ** p<0.05, * p<0.10
All Specifications include Age, Age Squared, Assets Under Management, Log Assets Under
Management, Time Fixed Effects, and Fund Fixed Effects.
See notes to Table 2.
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Table 5: First Stages - Basic Regression

(1) (2)
Distance

OLS First Stage

Market Distance 2.8*** 2.9***
(0.4) (0.4)

Strategy Returnt 0.3***
(0.1)

Strategy Variancet -3.1***
(0.6)

Observations 19,750 19,750
R-Squared 0.091 0.099
Number of Funds 3,845 3,845
Kleibergen-Paap Wald F Statistic
on Excluded Variables

46.46 50.10

Robust standard Errors clustered by fund in brackets. *** p<0.01, ** p<0.05, * p<0.10.
See notes to Table 2.
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Table 6: First Stages - Distant Managers

(1) (2) (3) (4)
Distance Distance X

More than 75%
Distance Distance X

More than 75%
OLS First Stage

Market Distance 0.7*** -0.4*** 0.9*** -0.2**
(0.1) (0.1) (0.1) (0.1)

Market Distance X More
than 75%

8.9*** 10.8*** 8.8*** 10.7***
(2.3) (2.5) (2.3) (2.5)

Strategy Returnt 0.1* 0.1
(0.1) (0.1)

Strategy Variancet -3.2*** -2.1***
(0.6) (0.6)

Observations 19,750 19,750 19,750 19,750
R-Squared 0.162 0.160 0.167 0.162
Number of Funds 3,845 3,845 3,845 3,845
Angrist-Pischke
multivariate F Statistic on
Excluded Variables

52.04 27.76 70.83 20.96

Robust standard Errors clustered by fund in brackets. *** p<0.01, ** p<0.05, * p<0.10.
See notes to Tables 2 and 3.
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Table 7: First Stages - Explicit Incentives

(1) (2) (3) (4)
Distance Distance X

Fee Ratio
Distance Distance X

Fee Ratio
OLS First Stage

Market Distance 4.6*** 3.7 4.7*** 5.9
(1.5) (7.7) (1.5) (7.5)

Market Distance X Fee Ratio -0.1 2.1*** -0.1 2.1***
(0.1) (0.5) (0.1) (0.5)

Strategy Returnt 0.3*** 2.8***
(0.1) (0.7)

Strategy Variancet -3.2*** -54.0***
(0.6) (10.0)

Observations 19,750 19,750 19,750 19,750
R-Squared 0.094 0.074 0.102 0.081
Number of Funds 3,845 3,845 3,845 3,845
Angrist-Pischke multivariate F
Statistic on Excluded
Variables

8.871 43.45 9.058 45.39

Robust standard Errors clustered by fund in brackets. *** p<0.01, ** p<0.05, * p<0.10.
See notes to Tables 2 and 4.
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Appendix

A Proofs of Results

As a preliminary step to proving our results, we begin by characterizing the solution to the
manager’s problem. The (static) profit function of the manager is given by:

Π(e, r, d, b, p) = b (e+ q (r))

+p

(
1− Φ

(
d− e− q (r)√

r

))−d+ e+ q (r) +

√
rφ
(
d−e−q(r)√

r

)
1− Φ

(
d−e−q(r)√

r

)
− c (e)

which can be re-written:

Π(e, r, c, b, p) = b (e+ q (r)) + p
√
rφ

(
d− e− q (r)√

r

)
+p

(
1− Φ

(
d− e− q (r)√

r

))
(−d+ e+ q (r))− c (e) (A.1)

Taking the derivative with respect to e and r yields the first-order conditions:

b+ p

(
1− Φ

(
−m√
r

))
− c′ (e) = 0 (A.2)

p

(
1

2
√
r

)
φ

(
−m√
r

)
+

[
b+ p

(
1− Φ

(
−m√
r

))]
q′ (r) = 0 (A.3)

where m = −d+ e+ q (r).

Lemma 3. Risk taking is on the strictly downward sloping part of the curve q (r).

Proof. To prove this result we must show that q′ (r∗) < 0. Given the Inada conditions on
c (e), we know the solution to the manager’s problem is at an interior. At any interior effort
level, from (A.2) we know that

b+ p

(
1− Φ

(
−m√
r

))
= c′ (e) > 0

Examining risk-taking at its lowest bound, we also need to satisfy, from (A.3), that

p

(
1

2
√
r

)
φ

(
−m√
r

)
+

[
b+ p

(
1− Φ

(
−m√
r

))]
q′ (r) ≤ 0

Since p
(

1
2
√
r

)
φ
(
−m√
r

)
> 0 and

[
b+ p

(
1− Φ

(
−m√
r

))]
> 0, it must be that q′ (r∗) <

0.
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Lemma 4. There exists a single solution to the maximization problem for any triple (d, b,
p). Moreover, it is the unique local maximum.

Proof. For a a solution to the manager’s problem to be unique we must show: (i) ∂2Π
∂2e

< 0,

(ii) ∂2Π
∂2r

< 0, and (iii) ∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

> 0.
For part (i) we take the derivative of the left hand side of (A.2). This yields

∂2Π

∂2e
= p

(
1√
r

)(
φ

(
−m√
r

))
− c′′ (e) (A.4)

Note that p
(

1√
r

)(
φ
(
−m√
r

))
≤ p

(
1√
rmax

)
(φ (0)) since φ (0) is the maximum of φ (·). So

a sufficient condition for this to hold is that c′′ (·) ≥ p√
2πrmax .

For parts (ii) and (iii) we must show that

∂2Π

∂2e

∂2Π

∂2r
− ∂2Π

∂e∂r

∂2Π

∂r∂e
> 0

Taking the derivative of (A.3) with respect to r and e gives

∂2Π

∂2r
= −p

(
1

4r
√
r

)
φ

(
−m√
r

)
− p

(
−m
2r

)(
m

2r
√
r
− q′ (r)√

r

)
φ

(
−m√
r

)
+

[
b+ p

(
1− Φ

(
−m√
r

))]
q′′ (r) +

[
∂2Π(e, r)

∂e∂r

]
q′ (r) (A.5)

and

∂2Π(e, r)

∂e∂r
= −p

(
m

2r
√
r
− q′ (r)√

r

)
φ

(
−m√
r

)
(A.6)

Substituting (A.4), (A.5) and (A.6) and simplifying yields the result :

∂2Π

∂2e

∂2Π

∂2r
− ∂2Π

∂e∂r

∂2Π

∂r∂e
=

[
−∂

2Π

∂2e

]
p

(
1

4r
√
r

)
φ

(
−m√
r

)
+c′′ (e) p

√
r

(
m

2r
√
r
− q′ (r)√

r

)2

φ

(
−m√
r

)
−
[
−∂

2Π

∂2e

] [
b+ p

(
1− Φ

(
−m√
r

))]
q′′ (r)

The first term is strictly positive if ∂2Π
∂2e

< 0. The second term is weakly positive if

c′′ (e) ≥ 0. The third term is strictly positive if ∂2Π
∂2e

< 0, q′′ (r) < 0 and weakly so if those
hold weakly.

Taking these two together, c′′ (·) ≥ p√
2πrmax and q′′ (r) ≤ 0 are sufficient conditions for

the Hessian to be negative semidefinite, and ensure that there is exactly one local maximum
of the agent’s problem. Because we also know that the solution is interior, that implies that
there is a unique solution to the maximization problem for any set of triple (d, b, p).
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Proposition 4. Effort is decreasing in distance below the threshold.

Proof. Note that condition (iii) of Lemma 2 satisfies the full rank condition of the Implicit
Function Theorem. Thus, by the IFT, we have

∂e∗

∂d
=
−∂2Π

∂2r
∂2Π
∂e∂d

+ ∂2Π
∂e∂r

∂2Π
∂r∂d

∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

∂r∗

∂d
=

∂2Π
∂e∂r

∂2Π
∂e∂d
− ∂2Π

∂2e
∂2Π
∂r∂d

∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

We know that

−∂
2Π

∂2e
− c′′ (e) =

∂2Π

∂e∂d
and

− ∂2Π

∂e∂r
==

∂2Π

∂r∂d
which implies

∂e∗

∂d
= 1 +

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(A.7)

∂r∗

∂d
=

− ∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(A.8)

From (A.7) we must show

∂2Π

∂2r
c′′(e) < −∂

2Π

∂2e

∂2Π

∂2r
+
∂2Π

∂e∂r

∂2Π

∂r∂e
Note that

∂2Π

∂2r
c′′(e) < −∂

2Π

∂2e

∂2Π

∂2r

is a sufficient condition since ∂2Π
∂e∂r

∂2Π
∂r∂e

> 0, which reduces to

c′′ (e) > −∂
2Π

∂2e

Substituting (A.4) in the right hand side we have

c′′ (e) > −p
(

1√
r

)
φ

(
−m√
r

)
+ c′′ (e)

−p
(

1√
r

)
φ

(
−m√
r

)
< 0

Which is satisfied since p > 0, 1√
r
> 0, and φ(·) > 0. Risk-taking has the following

comparative statics with respect to distance from the threshold:
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Proposition 5. (i) Risk-taking is increasing with distance “near” or above the threshold;
(ii) Risk-taking is decreasing in distance “far” below the threshold; and
(iii) Risk-taking is single-peaked if the marginal cost of effort is sufficiently high. A

sufficient condition is c′(e) > p exp
(
−1

2

)
/
√

2π.

Proof. Consider (A.8). It implies that the change in the agent’s optimal risk level has the
same sign as − ∂2Π

∂e∂r
c′′ (e).

For part (i), we will show that for all values of m > m̃ where m̃ < 0, ∂r∗
∂d

< 0. From (A.6)
we have

− ∂2Π

∂e∂r
= p

(
m

2r
√
r
− q′ (r)√

r

)
φ

(
−m√
r

)
c′′ (e) .

Since pφ
(
−m√
r

)
c′′ (e) > 0 we need to show that m

2r
√
r
− q′(r)√

r
> 0 for all m > m̃. Rearranging

yields:

m > 2rq′ (r)

By Lemma 1 the right hand side is strictly less than zero, which implies that there exists
m̃ < 0 such that for all m > m̃, the above is satisfied.

For part (ii), if d is large then from (A.6),

∂2Π

∂e∂r
≈ −pφ

(
−m√
r

)
m

2r
3
2

because for d large
∣∣∣ m

2r
√
r

∣∣∣� ∣∣∣ q′(r)√r ∣∣∣. Moreover, when d is large, this implies m is negative.

So, as above, risk-taking has the same sign as:

− ∂2Π

∂e∂r
≈ pφ

(
−m√
r

)
m

2r
3
2

< 0

For part (iii) we note that parts (i) and (ii) show that there is at least one sign change
in ∂r∗

∂d
. To show that it is single peaked, it sufficies to show that m − 2rq′ (r) is monotonic

in d. Taking the derivative at the optimums:

∂

∂d
(−d+ e∗ + q (r∗) + 2r∗q′ (r∗)) = −1 + 1−

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

+ [q′ (r∗)− 2q′ (r∗)− 2r∗q′′ (r∗)]

×
− ∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

Which has the opposite sign as:

∂2Π

∂2r
− [q′ (r∗) + 2r∗q′′ (r∗)]

∂2Π

∂e∂r

Substituting in from A.5 and A.6, dropping the astrerisks and simplifying yields:
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=

(
c′ (e) +

m√
r
pφ

(
−m√
r

))(
1

2r
q′ (r) + q′′ (r)

)
+pφ

(
−m√
r

)(
− m2

4r2
√
r
− 2
√
rq′ (r) q′′ (r)

)
The second line is always negative. The first line is also negative if

c′ (e) +
m√
r
pφ

(
−m√
r

)
> 0

Note that from the properties of the normal distribution m√
r
pφ
(
−m√
r

)
has a minimum

at m = −
√
r equal to −p exp

(
−1

2

)
/
√

2π . Thus c′(e) > p exp
(
−1

2

)
/
√

2π is a sufficient
condition. .

Proposition 6. If the threshold is near, and the cost of effort is sufficiently convex,
i) the rate of decrease in effort with distance is increasing in the ratio of the performance

fee to the base fee, and
ii) the rate of increase in risk-taking with distance is increasing in the ratio of the per-

formance fee to the base fee.We note that the maximization problem is written in the levels
of the fees, not the ratios. However, without loss of generality, we can normalize such that
b = 1 and interpret p as the ratio of performance to base fees.

Proof. Next, we extend the implicit function theorem to second order results for our specifi-
cation in the standard way. From first order solution to the maximization problem we know
that:

∂Π

∂e
(e∗, r∗, d, p) = 0

∂Π

∂r
(e∗, r∗, d, p) = 0

Taking the total derivative with respect to d and p and expanding yields:

∂

∂p

∂

∂d
e∗
∂2Π

∂2e
+

∂

∂p

∂

∂d
r∗
∂2Π

∂r∂e

+

(
∂

∂p

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂p

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂p

∂2Π

∂r∂e

)
+

(
∂

∂e

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂e

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂e

∂2Π

∂r∂e

)
+

(
∂

∂r

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂r

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂r

∂2Π

∂r∂e

)
= 0

and

42



∂

∂p

∂

∂d
r∗
∂2Π

∂2r
+

∂

∂p

∂

∂d
e∗
∂2Π

∂r∂e

+

(
∂

∂p

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂p

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂p

∂2Π

∂r∂e

)
+

(
∂

∂e

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂e

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂e

∂2Π

∂r∂e

)
+

(
∂

∂r

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂r

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂r

∂2Π

∂r∂e

)
= 0

Solving for ∂
∂p

∂
∂d
e∗and ∂

∂p
∂
∂d
r∗and substituting in from Lemma 2 (iii) those have the same

signs, respectively as:

∂2Π

∂r∂e

(
∂

∂p

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂p

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂p

∂2Π

∂r∂e

)
+
∂2Π

∂r∂e

(
∂

∂e

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂e

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂e

∂2Π

∂r∂e

)
+
∂2Π

∂r∂e

(
∂

∂r

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂r

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂r

∂2Π

∂r∂e

)
−∂

2Π

∂2r

(
∂

∂p

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂p

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂p

∂2Π

∂r∂e

)
−∂

2Π

∂2r

(
∂

∂e

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂e

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂e

∂2Π

∂r∂e

)
−∂

2Π

∂2r

(
∂

∂r

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂r

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂r

∂2Π

∂r∂e

)
and

−∂
2Π

∂2e

(
∂

∂p

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂p

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂p

∂2Π

∂r∂e

)
−∂

2Π

∂2e

(
∂

∂e

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂e

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂e

∂2Π

∂r∂e

)
−∂

2Π

∂2e

(
∂

∂r

∂

∂d

∂Π

∂r
+

∂

∂d
r∗
∂

∂r

∂2Π

∂2r
+

∂

∂d
e∗
∂

∂r

∂2Π

∂r∂e

)
+
∂2Π

∂r∂e

(
∂

∂p

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂p

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂p

∂2Π

∂r∂e

)
+
∂2Π

∂r∂e

(
∂

∂e

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂e

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂e

∂2Π

∂r∂e

)
+
∂2Π

∂r∂e

(
∂

∂r

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂r

∂2Π

∂2e
+

∂

∂d
r∗
∂

∂r

∂2Π

∂r∂e

)
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With those quantities identified, one can sign those values using substitution. In addition
to the above numbered equations, we have:

∂3Π

∂p∂e∂r
= −

(
m

2r
√
r

+
q′ (r)√
r

)
φ

(
−m√
r

)
∂

∂r

∂

∂d

∂Π

∂e
= − ∂

∂r

∂

∂e

∂Π

∂e

So

∂

∂r

∂

∂d

∂Π

∂e
+

∂

∂d
e∗
∂

∂r

∂2Π

∂2e
= − ∂

∂r

∂2Π

∂2e
+

∂

∂d
e∗
∂

∂r

∂2Π

∂2e
=

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

∂

∂r

∂2Π

∂2e

Suppose that m is small and negative, i.e. near the threshold. Then we have:

∂2Π

∂e∂r
= p

(
q′ (r)√
r

)
φ (0)

∂3Π

∂p∂e∂r
=

(
q′ (r)√
r

)
φ (0)

∂3Π

∂p∂d∂r
= −

(
q′ (r)√
r

)
φ (0)

∂2Π

∂2e
= p

(
1√
r

)
(φ (0))− c′′ (e)

∂2Π

∂2r
= −p

(
−(q′ (r))2

√
r

+
1

4r
√
r

)
φ (0) + [b+ p/2] q′′ (r)

Since ∂φ(m)
∂m

= −mφ(m), we have:

∂3Π

∂r∂2e
= 0

∂3Π

∂d∂2e
= 0

∂3Π

∂p∂2e
=

(
1√
r

)
(φ (0))

∂3Π

∂3e
= −c′′′ (e)

∂3Π

∂r∂e∂d
= 0
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∂3Π

∂p∂e∂d
= −

(
1√
r

)
(φ (0))

∂3Π

∂e∂2r
= p

(
q′′ (r)√

r
− q′ (r)

2r
√
r

)
φ (0)

∂3Π

∂d∂2r
= −p

(
q′′ (r)√

r
− q′ (r)

2r
√
r

)
φ (0)

∂3Π

∂p∂2r
= −

(
−(q′ (r))2

√
r

+
1

4r
√
r

)
φ (0) +

1

2
q′′ (r)

∂3Π

∂3r
= −p

(
−2 (q′ (r)) q′′ (r)√

r
+

(q′ (r))2

2r
√
r
− 3

8r2
√
r

)
φ (0) + [b+ p/2] q′′′ (r)

Substituting those in, and simplifying we have:

− ∂2Π
∂e∂r

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(
−

(
−(q′ (r))2

√
r

+
1

4r
√
r

)
φ (0) +

1

2
q′′ (r)

)

+
∂2Π
∂e∂r

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

p

(
−2 (q′ (r)) q′′ (r)√

r
+

(q′ (r))2

2r
√
r
− 3

8r2
√
r
− q′′ (r)√

r
+
q′ (r)

2r
√
r

)
φ (0)

−
∂2Π
∂2r

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(
1√
r
φ (0)

)
−
− ∂2Π
∂e∂r

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(b+ p/2) q′′′ (r)

+
∂2Π
∂e∂r

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(
−p
(
−q
′′ (r)√
r

+
q′ (r)

2r
√
r

)
+
q′ (r)√
r

)
2φ (0)

+
∂2Π

∂2r

(
1 +

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

)
c′′′ (e)

and
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∂2Π

∂2e

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(
−

(
−(q′ (r))2

√
r

+
1

4r
√
r

)
φ (0) +

1

2
q′′ (r)

)

−∂
2Π

∂2e

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

p

(
−2 (q′ (r)) q′′ (r)√

r
+

(q′ (r))2

2r
√
r
− 3

8r2
√
r
− q′′ (r)√

r
+
q′ (r)

2r
√
r

)
φ (0)

+
∂2Π

∂2e

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(− [b+ p/2] q′′′ (r))

+
∂2Π

∂2e

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(
−q
′ (r)√
r

+ p

(
−q
′′ (r)√
r

+
q′ (r)

2r
√
r

))
φ (0)

+
∂2Π

∂r∂e

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

((
1√
r

)
(φ (0))

)
+
∂2Π

∂r∂e

∂2Π
∂e∂r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

(
−q
′ (r)√
r

+ p

(
−q
′′ (r)√
r

+
q′ (r)

2r
√
r

))
φ (0)

− ∂2Π

∂r∂e

(
1 +

∂2Π
∂2r

c′′(e)
∂2Π
∂2e

∂2Π
∂2r
− ∂2Π

∂e∂r
∂2Π
∂r∂e

)
c′′′ (e)

Which, if c′′′ (e) is sufficiently large, yield the signs of the proposition.
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