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Abstract

We characterize a dynamic ex post equilibrium in a sequence of uniform-

price double auctions. Bidders start with private inventories, receive over

time a sequence of private signals, have interdependent and linearly decreasing

marginal values, and trade with demand schedules. In our ex post equilibrium,

each bidder’s strategy remains optimal even if he would observe the concurrent

and historical private information of other bidders; therefore, the ex post equi-

librium is robust to distributions of signals and inventories. The equilibrium

prices aggregate dispersed private information, and the equilibrium allocations

converge to the efficient allocation exponentially over time. The socially opti-

mal trading frequency is low for scheduled arrivals of information but is high

for stochastic arrivals of information.
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1 Introduction

Dynamic trading of divisible assets is important in many markets. For example, the

exchange trading of equities, futures and options is typically organized as continuous

double auctions. Other notable examples include the periodic auctions of treasury

securities and commodities such as milk powder, iron ore, and electricity. Strategic

trading in these markets involves private information regarding the asset value, in-

ventories, or both. Analyzing the trading behavior in these markets helps us better

understand information aggregation, allocative efficiency, and market design.

In this paper we analyze strategic trading in a dynamic market, as well as the

associated welfare and optimal trading frequency. In our model, a finite number of

agents, whom we call “bidders,” trade a divisible asset in an infinite sequence of

uniform-price double auctions, held at discrete time intervals. Each bidder receives

over time a sequence of private signals that form a martingale, and each bidder’s

value for owning the traded asset is a weighted average of his most recent signal and

other bidders’ most recent signals. Since other bidders’ signals are unobservable, this

type of “interdependent values” capture adverse selection in financial markets, as well

as in goods markets where winning bidders subsequently resell part of the assets. In

addition to private signals, bidders also start with private inventories of the asset

and have linearly decreasing marginal values for owning it. Time-varying valuations

and private inventories create the gains from trade. In each double auction, bidders

submit demand schedules (i.e., a set of limit orders) and pay for their allocations at

the market-clearing price. All bidders maximize their time-discounted utilities and

internalize the price impact of their trades.

Our main result is a dynamic and stationary “ex post equilibrium”—an equilib-

rium in which a bidder’s trading strategy depends only on his private information

(i.e., his current signal and inventory) but remains optimal even if he learns the

concurrent and historical private information of all other bidders.1 In other words,

the ex post equilibrium is regret-free (hence the “ex post” notion) and is a strictly

stronger equilibrium notion than Bayesian equilibrium. The ex post equilibrium is

robust because a bidder’s equilibrium strategy does not depend on the distribution

assumptions regarding other bidders’ private signals and inventories. Wilson (1987)

1The equilibrium is Bayesian optimal with respect to future signals because these are yet to
realize.
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highlights this type of robustness as a desirable feature for models of auctions and

trading (the “Wilson criterion”). In addition, the ex post equilibrium notion greatly

simplifies the equilibrium analysis because the calculation of a bidder’s optimal strat-

egy does not involve the often-intractable conditional distributions of others bidders’

private information. In our proposed ex post equilibrium, a bidder’s optimal demand

in each double auction is a linear function of his most recent signal, the price, his

private inventory, and the total asset supply in the market. The equilibrium price in

each auction is a multiple of the average of the most recent signals, adjusted for the

decreasing marginal valuation for holding the average inventory.

The dynamic ex post equilibrium proves to be a useful tool to answer welfare ques-

tions. In the dynamic ex post equilibrium, we show that the equilibrium allocations

of assets across bidders after each auction are not fully efficient, but they converge

exponentially over time to the efficient allocation. Exponential convergence suggests

that a sequence of double auctions is a simple and effective mechanism to quickly

achieve allocative efficiency, even if the number of bidders is small.

We further exploit our ex post equilibrium to investigate the impact of trading

frequency on social welfare. The social value of increasing trading speed has recently

received much regulatory, industry and academic attention. Trading frequency is

defined in our model as the number of double auctions per unit of clock time. We

show that although the speed of convergence to efficiency increases with trading

frequency, continuous trading does not lead to immediate convergence to efficient

allocation due to bidders’ price impact and adverse selection.

Moreover, we show that depending on the nature of new information, the socially

optimal trading frequency can be very high or very low. For scheduled information

arrivals, a slow (batch) market tends to be optimal; this is because a longer delay until

the next trading opportunity serves as a commitment device to encourage aggressive

trading immediately. By contrast, for stochastic information arrivals, a fast (contin-

uous) market tends to be optimal; this is because a shorter delay implies a shorter

waiting time between new information arrival and the first trading opportunity to

reallocate the asset. Since information in reality is likely to combine scheduled and

stochastic components, the optimal trading frequency in practice needs not have a

clear-cut answer. While we do not attempt to prescribe the best market design in

general, we do present a relevant tradeoff associated with increasing trading speed:

the benefit of faster reaction to unpredictable information versus the cost of less active
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trading in each trading round. We believe that understanding this salient tradeoff is

a key component for answering the important question of optimal trading speed.

Related literature. Our results contribute to two broad branches of literature:

dynamic trading under asymmetric information and ex post equilibrium.

Dynamic trading under asymmetric information. Our results are related to dy-

namic models of informed trading, most notably Kyle (1985) and Glosten and Mil-

grom (1985), as well as many extensions.2 A common theme in this literature is that

certain investors are informed of the asset value, whereas others are “noise traders”

who trade for exogenous reasons. By contrast, we explicitly model the trading mo-

tives of all agents; doing away with noise traders makes welfare implications more

transparent in our setting and enables us to study optimal trading frequency. Clas-

sic models of rational expectations equilibrium (REE), starting from Grossman and

Stiglitz (1980) and Grossman (1976, 1981), also generalize to dynamic markets (see,

for example, He and Wang 1995 and Biais, Bossaerts, and Spatt 2010, among oth-

ers). While agents in these models are assumed to take prices as given, bidders in

our model fully internalize the impacts of their trades on the equilibrium price.

A separate literature analyzes trading by demand schedules, with the focus mostly

on information aggregation and endogenous “demand reduction” (i.e., trading less

than the efficient level to avoid price impact). Most of such models are static and

study Bayesian equilibria, as in Kyle (1989), Vives (2011), Rostek and Weretka (2012),

and Babus and Kondor (2012). Rostek and Weretka (2011) study dynamic trading

and allocative trading motive with multiple assets, but they assume commonly ob-

servable fundamental information. In comparison, our ex post equilibrium combines

dynamic trading and asymmetric information, while retaining analytical tractability

and closed-form solutions.

Our analysis on welfare and optimal trading frequency is most closely related to

Vayanos (1999), who studies dynamic trading by investors who receive periodic in-

ventory shocks. The key difference is that Vayanos assumes public information of

asset fundamentals, whereas we allow interdependent valuations and adverse selec-

tion. Moreover, while Vayanos (1999) shows that slower trading tends to be optimal

under private inventory information, we show that this conclusion holds only under

scheduled information arrivals. If, instead, information arrives at stochastic times,

2Recent dynamic extensions of Kyle (1985) include Foster and Viswanathan (1996), Back, Cao,
and Willard (2000), and Ostrovsky (2011), among many others.
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continuous trading can be optimal because it allows bidders to react immediately to

new information.

Our dynamic trading model is also related to the continuous-time model of Kyle,

Obizhaeva, and Wang (2013), in which agents have common values but “agree to

disagree” on the precision of their signals. Because trading in their model happens in

continuous time, Kyle, Obizhaeva, and Wang (2013) do not address the question of

optimal trading frequency. (Their main application is non-martingale price dynamics,

such as price spikes and reversals.) By contrast, we focus on market design and

explicitly characterize the effect of trading frequency on welfare.

Ex post equilibrium. Our definition of dynamic (“periodic”) ex post equilibrium

is adopted from Bergemann and Valimaki (2010), who study dynamic ex post im-

plementation, that is, designing a mechanism such that the efficient allocations are

obtained by a dynamic ex post equilibrium.3 In contrast, we fix the double auctions

mechanism and study its dynamic ex post equilibrium.

Our dynamic ex post equilibrium is similar in spirit to the dynamic ex post equi-

libria in Hörner and Lovo (2009), Fudenberg and Yamamoto (2011), and Hörner,

Lovo, and Tomala (2012). A major distinction is that the ex post equilibria in these

three studies rely on dynamic punishments to be sustained and require the discount

factors to be close to 1, whereas our dynamic ex post equilibrium is stationary and

imposes no restriction on the discount factor.

Our results complement those of Perry and Reny (2005), who construct an ex post

equilibrium in a multi-unit ascending-price auction with interdependent values. In

their ascending-price auction, bidders’ private information is revealed as the auction

proceeds, whereas in our model, no private information is revealed until the auction

ends. In addition, while Perry and Reny focus on designing an auction format that

ex post implements the efficient outcome, we focus on the standard uniform-price

double auction and show that multiple rounds of double auctions achieve exponential

convergence to efficiency.

In static settings, the ex post equilibrium condition originates from the “uni-

form incentive compatible” condition of Holmström and Myerson (1983). Klemperer

and Meyer (1989) pioneer the study of “supply function equilibria” that are ex post

optimal given supply shocks in settings where bidders have symmetric information

3Other work in the ex post implementation literature includes Crémer and McLean (1985), Berge-
mann and Morris (2005), and Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006), among others.
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regarding the marginal values of the asset. Separately, Ausubel (2004) proposes an

ascending-price multi-unit auction and characterizes an equilibrium in which truthful

bidding is ex post optimal if bidders have purely private values.

2 Dynamic Trading in Double Auctions

In this section we study dynamic trading with interdependent values and arrivals of

new information. In the next section we analyze the effect of trading frequency on

social welfare.

2.1 Model

This subsection describes the dynamic trading model. Discussions of modeling fea-

tures and assumptions are deferred to Section 2.1.1.

Time is continuous. Trading happens at clock times τ ∈ {0,∆, 2∆, 3∆, . . .}, where

∆ > 0 is the length of clock time between consecutive rounds of trading. The smaller

is ∆, the higher is the frequency of trading. The exact trading mechanism is described

shortly. We will refer to each trading round as a “period,” indexed by t ∈ {0, 1, 2, . . .},
so period-t trading occurs at clock time t∆. The discount rate per unit of clock time

is r > 0.

There is one divisible asset traded on the market. The asset can be a commodity, a

financial security, or a derivative contract. There are n > 2 traders, who we refer to as

“bidders.” At clock time 0 but before the first round of trading, each bidder i starts

with an inventory zi,0 of the asset. The initial inventory zi,0 is bidder i’s private

information, but the total inventory Z =
∑n

i=1 zi,0 is a constant and is common

knowledge. For example, the total supply of stocks and bonds is public information,

and the total net supply of a derivative contract is zero.

In addition to the private inventories, each bidder i receives a private ”signal”

si,τ ∈ R at clock time τ . The sequence of signals, {si,τ}τ≥0, follows a continuous-time

martingale (conditional on period-0 inventories). That is, for every i and τ ′ > τ ≥ 0,

E[si,τ ′ | {sj,τ ′′}1≤j≤n,0≤τ ′′≤τ , {zj,0}1≤j≤n] = si,τ . (1)

The conditional variables in (1) include the histories of other bidders’ signals and

initial inventories because, as will become clear shortly, our equilibrium is optimal
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with respect to such private information. A simple application of the law of iter-

ated expectation shows that (1) implies that a bidder’s signal is also a martingale

conditional only on his private information:

E[si,τ ′ | {si,τ ′′}0≤τ ′′≤τ , zi,0] = si,τ . (2)

We can interpret the martingales as conditional expectations (of some future pay-

off) that are updated over time. Under the martingale assumption, each bidder i’s

current signal si,τ is the best estimate of his future signals. As long as the martingale

property is satisfied, the exact detail of the signal processes is inconsequential to our

equilibrium analysis.4

The trading mechanism is uniform-price double auctions. In each period t ≥ 0,

a new double auction is held to reallocate the asset among the bidders. (That is,

there is no external supply.) Each bidder can buy or sell the asset, and we use the

convention that a positive quantity qi,t∆ ≥ 0 denotes buying qi,t∆ units of the asset,

and a negative qi,t∆ < 0 denotes selling −qi,t∆ units. In the period-t auction, bidder

i starts with an inventory of zi,t∆ and submits a demand schedule xi,t∆(p) : R → R.

A demand schedule is essentially a set of limit orders, as in the exchange trading

of equities, futures and options. The auctioneer, which can be a human or (more

commonly today) a computer algorithm, determines the market-clearing price p∗t∆ by

n∑
i=1

xi,t∆(p∗t∆) = 0. (3)

In the equilibrium we state shortly, there exists a unique market clearing price p∗t∆
in each trading period.5 Given the price p∗t∆, bidder i receives qi,t∆ = xi,t∆(p∗t∆) units

of the asset at the price of p∗t∆. That is, all transactions in the same trading period

happen at the same market-clearing price. Inventories therefore evolve according to

zi,(t+1)∆ = zi,t∆ + qi,t∆. (4)

4For example, future signals can arrive continuously and follow a diffusion process; or, they can
arrive in discrete, irregular intervals, in which case the signal process exhibits “jumps.” Each bidder’s
signal process can have arbitrary autocorrelation and conditional variance, and any pair of signal
processes, {si,τ}τ≥0 and {sj,τ}τ≥0, for i 6= j, can have arbitrary conditional covariance.

5We specify the off-equilibrium behavior as follows. If no market clearing price p∗t∆ exists, each
bidder gets zero quantity qi,t∆ = 0 from that auction; if multiple market clearing prices exist, one is
selected arbitrarily.

7



Since bidder i’s initial inventory is his private information, so is his inventory history.

After describing the information structure and trading protocol, we now turn to

the preferences. Specifically, after acquiring the quantity qi,t∆ in period t but before

the start of period t+ 1, bidder i receives a “flow utility” (not counting the price) of

vi,t∆(zi,t∆ + qi,t∆)− λ

2
(zi,t∆ + qi,t∆)2 (5)

per unit of clock time, where

vi,t∆ ≡ α si,t∆ + (1− α)
1

n− 1

∑
j 6=i

sj,t∆ (6)

is bidder i’s value for owning an infinitesimal amount of asset in period t, and α ∈
(0, 1] and λ > 0 are constants known to all bidders. The simple specifications (5)

and (6) capture a number of realistic features of dynamic trading, as we further

discuss in Section 2.1.1. In particular, Equation (6) is a standard way of modeling

interdependence in bidders’ valuations (see, for example, Perry and Reny 2005 and

Bergemann and Morris 2009).

Given (5), bidder i’s period-t utility is the integral of time-discounted flow utility

less the one-off payment of asset transaction, i.e.,

U(qi,t∆, p
∗
t∆; vi,t∆, zi,t∆)

=

∫ ∆

τ=0

e−τr
(
vi,t∆(zi,t∆ + qi,t∆)− λ

2
(zi,t∆ + qi,t∆)2

)
dτ − p∗t∆ qi,t∆

=
1− e−r∆

r

(
vi,t∆(zi,t∆ + qi,t∆)− λ

2
(zi,t∆ + qi,t∆)2

)
− p∗t∆ qi,t∆. (7)

Bidder i’s overall utility (or “continuation value”) in all future trading periods, eval-

uated at the clock time t∆, is

Vi,t∆ =
∞∑
t′=t

e−r(t
′−t)∆U(qi,t′∆, p

∗
t′∆; vi,t′∆, zi,t′∆)

= U(qi,t∆, p
∗
t∆; vi,t∆, zi,t∆) + e−r∆Vi,(t+1)∆. (8)

We emphasize that in period t before the new auction is held, bidder i’s informa-

tion consists of the paths of his signals {si,τ}0≤τ≤t∆ and of his inventories {zi,t′∆}0≤t′≤t,
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as well as his submitted demand schedules {xi,t′∆(p)}0≤t′<t. For notational simplicity,

we denote bidder i’s information set at the beginning of period t by

Hi,t∆ = {{si,τ}0≤τ≤t∆, {zi,t′∆}0≤t′≤t, {xi,t′∆(p)}0≤t′<t} . (9)

Notice that by the identity zi,(t′+1)∆ − zi,t′∆ = qi,t′∆ = xi,t′∆(p∗t′∆), a bidder can infer

the previous price path {p∗t′∆}t′<t from his information set Hi,t∆. Bidder i’s period-t

strategy, xi,t∆ = xi,t∆(p;Hi,t∆), is measurable with respect to Hi,t∆. This completes

the description of our model.

2.1.1 Discussion of Model Assumptions

Before describing our equilibrium concept and solution, we discuss the motivation

and interpretation of our model, including the valuation form (6) and the utility form

(5) and (8).

First, values {vi,t∆} are interdependent; that is, bidder i’s period-t value for owning

the asset, vi,t∆, depends on the most recent information possessed by all bidders.6 This

type of interdependent values captures adverse selection. Since each bidder assigns

a potentially different weight on his own signal than on another bidder’s signal, our

model essentially has a private component of valuations. A key benefit of having

this private component is that we do not rely on “noise traders” to generate trades.

The economic implications of allocative efficiency and welfare are therefore more

transparent in our setting.

Second, bidders have linearly decreasing marginal values for owning the asset,

which leads to the linear-quadratic form of (5). The quadratic term in (5) can be

viewed as a reduced-form specification for (unmodeled) risk-aversion or collateral

costs (with λ being the variance of the price or return of the asset), or as a first order

approximation of nonlinear marginal values (which are hard to analyze in a dynamic

model). The linear-quadratic utility (5) is also used in the static models by Biais,

Martimort, and Rochet (2000), Vives (2011), Rostek and Weretka (2012), Malamud

6It is natural to have values depend on most recent signals, as information generally improves
over time (and thus a later signal subsumes an earlier one). In principal, a new signal may arrive
between two trading clock times t∆ and (t+ 1)∆. Given the martingale property, however,

E[vi,τ | {sj,τ ′}1≤j≤n,τ ′≤t∆] = vi,t∆

for all τ ∈ (t∆, (t+ 1)∆). Thus, the specification of flow utility is almost without loss of generality.
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and Rostek (2013), among others.

Third, a flow utility is a natural way to capture the benefit of holding an asset for

a (potentially short) period of time. In practice, the flow utility can be the dividend

of a stock, the accrued interest of a bond, the “convenience yield” of a commodity, or

the potential benefit of pledging the asset as collateral to obtain financing.7 A flow

utility for owning the asset is also standard in models of over-the-counter markets

(see, for example, Duffie, Garleanu, and Pedersen 2005). We emphasize, however,

that our results also hold if the marginal values in the flow utility of the asset were

received “once,” instead of continually over time.8

Fourth, the general form of our model does not impose restrictions on the price

pt∆, the pre-auction marginal value vi,t∆ − λzi,t∆, or post-auction marginal value

vi,t∆ − λ(zi,t∆ + qi,t∆). In particular, we do not restrict these prices and marginal

values to be positive. Indeed, the market prices of many financial and commodity

derivatives—including forwards, futures and swaps—are zero upon inception and can

become arbitrarily negative as market conditions change over time. A unilateral break

(or “free disposal”) of loss-making derivatives contracts constitutes a default and leads

to the loss of posted margin and reputation. For practical purposes, therefore, it is

realistic to think of these derivative contracts as having unlimited liabilities (until

default occurs). It is for these applications that we do not impose free disposal as a

necessary element of our model. In reality, it is not uncommon for investors to pay

7In particular, the collateral benefit of the asset is relevant intraday at a relatively high frequency.
In the U.S. repo markets, for example, financial institutions routinely pledge Treasury securities as
collateral to obtain financing; in this process, the same Treasury security can be pledged multiple
times per day.

8 For example, an alternative utility function is that each unit of asset yields its marginal value
only once, at the time of its acquisition. That is, given a path of quantities {qi,t∆}∞t=0 and prices
{pt∆}∞t=0, the utility from transacting at these quantities and prices is:

Ṽi,0 =

∞∑
t=0

e−rt∆
∫ zi,t∆+qi,t∆

q=zi,t∆

(vi,t∆ − λq − pt∆) dq. (10)

One can easily show that, up to some normalizing constants, Ṽi,0 is the same as the sum of flow
utilities in (8):

E
[
vi,0zi,0 −

λ

2
(zi,0)2 + Ṽi,0

∣∣∣∣ si,0, zi,0] (11)

= r · E

[ ∞∑
t=0

1− e−r∆

r
e−rt∆

(
vi,t∆(zi,t∆ + qi,t∆)− λ

2
(zi,t∆ + qi,t∆)2

)
− e−rt∆

r
pt∆qi,t∆

∣∣∣∣∣ si,0, zi,0
]
,

and likewise for any continuation value.
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others (e.g. broker-dealers and market makers) to dispose of loss-making derivative

positions, presumably because the negative marginal values for holding these positions

exceed (in absolute value) the negative price for selling them.9

2.2 Equilibrium Characterization

In this dynamic market we use a variant of the notion of “periodic ex post equilibrium”

introduced by Bergemann and Valimaki (2010). In this notion of equilibrium, for any

period t each bidder’s strategy is “ex post optimal” with respect to other bidders’

information sets up to period t, but is Bayesian optimal with respect to signals in

the future. This equilibrium is “ex post” because, in the absence of new information

immediately after the period-t auction, each bidder has no regret. We make this

equilibrium notion precise in the following definition.

Definition 1. A periodic ex post equilibrium consists of the strategy profile

{xj,t∆}1≤j≤n,t≥0 such that for every bidder i and for every path of his information set

Hi,t∆, bidder i has no incentive to deviate from {xi,t′∆}t′≥t even if he learns the profile

of other bidders’ information set. That is, for every alternative strategy {x̃i,t′∆}t′≥t
and every profile of other bidders’ information sets {Hj,t∆}j 6=i,

E[Vi,t∆({xi,t′∆}t′≥t, {xj,t′∆}j 6=i,t′≥t) | Hi,t∆, {Hj,t∆}j 6=i]

≥E[Vi,t∆({x̃i,t′∆}t′≥t, {xj,t′∆}j 6=i,t′≥t) | Hi,t∆, {Hj,t∆}j 6=i], (12)

where the conditional expectations are taken over all possible realizations of future

signals {sj,τ}1≤j≤n,τ>t∆.

A key feature of this equilibrium definition is that each bidder i’s strategy is op-

timal for all realizations of other bidders’ information sets, {Hj,t∆}j 6=i, even though

{Hj,t∆}j 6=i is unobservable to bidder i. The ex post equilibrium notion greatly simpli-

fies the analysis of dynamic trading. By contrast, in a conventional perfect Bayesian

equilibrium, bidder i needs to form conditional beliefs about {Hj,t∆}j 6=i, which can

quickly become intractable along the equilibrium path; and off the equilibrium path

9On the other hand, assets that have limited liabilities, such as stocks and bonds, should have
nonnegative prices and marginal values. Such restrictions are satisfied if λ is a sufficiently small
relative to the support of {vi,t∆}. More precisely, it is easy to show that if vi,t∆ − λzi,t∆ ≥ 0 for
every bidder i, then in the equilibrium of Proposition 1 every bidder i acquires a quantity qi,t∆ such
that vi,t∆ − λ(zi,t∆ + qi,t∆) ≥ 0 as well, which implies p∗t∆ ≥ 0.
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the conditional beliefs can be sensitive to the specific equilibrium refinement argu-

ment.

We now present a periodic ex post equilibrium in the dynamic market. We focus

on a stationary equilibrium, in which a bidder’s strategy only depends on his current

signal si,t∆ and current level of inventory zi,t∆, but does not depend explicitly on t.

Proposition 1. Suppose that nα > 2. In the market with dynamic trading, there

exists a stationary periodic ex post equilibrium in which bidder i submits the demand

schedule

xi,t∆(p; si,t∆, zi,t∆) = a

(
si,t∆ − rp−

λ(n− 1)

nα− 1
zi,t∆ +

λ(1− α)

nα− 1
Z

)
, (13)

where

a =
nα− 1

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
> 0.

(14)

The period-t equilibrium price is

p∗t∆ =
1

r

(
1

n

n∑
i=1

si,t∆ −
λ

n
Z

)
. (15)

Proof. See Section 2.2.2.

Before discussing the equilibrium construction, we make a few observations on its

properties. First, the market-clearing price p∗t∆ aggregates the most recent signals

{si,t∆}. The adjustment term λZ/n results from the declines in marginal value for

holding the average inventory. As an asset purchased in period t gives a bidder a

stream of flow utilities during the clock time τ ∈ (t∆,∞), the multiplier 1/r in (15)

reflects the present value of a perpetuity,10
∫∞
τ=0

e−rτ dτ = 1/r. Moreover, since the

signal processes are martingales, so are the equilibrium prices {p∗t∆}t≥0.

Second, although bidders learn from p∗t∆ the average signal
∑

i si,t∆/n in period

t, they do not learn individual inventories or signals. Thus, information does not

become symmetric after each round of trading. Moreover, because new information

10We can do away with the 1/r factor if we use the utility normalization in Equation (10); see
footnote 8.
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may arrive by the clock time (t + 1)∆ of the next auction, a period-(t + 1) strategy

that depends explicitly on the lagged price p∗t∆ is generally not ex post optimal.

Third, in a pure private-value setting, i.e. if α = 1, bidders’ strategies are inde-

pendent of the total inventory Z, and the equilibrium of Proposition 1 remains an

equilibrium if bidders face uncertainty regarding Z. This feature is reminiscent to

Klemperer and Meyer (1989), who characterize supply-function equilibria that are ex

post optimal given demand shocks. In their static model, however, bidders’s marginal

values are common knowledge. Similarly, in a static setting with a commonly known

asset value, Ausubel, Cramton, Pycia, Rostek, and Weretka (2011) characterize an

ex post equilibrium with uncertain supply.

Finally, for our construction of the periodic ex post equilibrium, it is important

that each bidder i puts the same additive weight (1 − α)/(n − 1) on other bidders’

signals, as in (6), and that the marginal value declines in quantity at the same rate

λ > 0 for every bidder. A dynamic model with asymmetric parameters is hard to

solve and is left for future research.11 The condition nα > 2 guarantees that the

second-order condition holds. Intuitively, if the weight α on one’s own signal were

too small, a bidder would rely too much on other bidders’ signals, and his demand

would be increasing in price (i.e., upward-sloping).

We illustrate the intuition of Proposition 1 in two ways: in Section 2.2.1 we

explicitly construct the equilibrium for the static special case, and in Section 2.2.2

we sketch the key steps of the full proof of Proposition 1, leaving some details to

Section A.1.

2.2.1 The Static Special Case of Proposition 1 with ∆ =∞

Corollary 1. Suppose that nα > 2 and ∆ =∞. There is only one trading round at

time zero. At time zero, each bidder i submits the demand schedule

xi,0(p; si,0, zi,0) =
nα− 2

λ(n− 1)
(si,0 − rp)−

nα− 2

nα− 1
zi,0 +

(1− α)(nα− 2)

(n− 1)(nα− 1)
Z, (16)

11For pure private values (i.e., α = 1) and in a static setting (i.e., ∆ =∞), we can solve an ex post
equilibrium for heterogeneous λ’s across bidders. This result is presented in the online appendix of
this paper.
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and the equilibrium price is

p∗0 =
1

r

(
1

n

n∑
i=1

si,0 −
λ

n
Z

)
. (17)

Corollary 1 is obtained simply by taking the limit of Proposition 1 as ∆ → ∞.

However, to better illustrate the intuition of Proposition 1, we now provide an explicit

construction of the equilibrium in Corollary 1.

Equilibrium construction of Corollary 1. Given ∆ = ∞, bidders never have a

second chance to trade after the first auction. Thus, we only need to calculate the

strategies in the first trading period, t = 0.

We conjecture a strategy profile (x1,0, . . . , xn,0). Given that all other bidders use

this strategy profile and for a fixed profile of signals (s1,0, . . . , sn,0) and inventories

(z1,0, . . . , zn,0), the expected utility of bidder i, at the price of p0 and conditional on

the period-0 signals and inventories, is:

Πi,0(p0) ≡ 1

r

(αsi,0 + β
∑
j 6=i

sj,0

)(
zi,0 −

∑
j 6=i

xj,0(p0)

)
− λ

2

(
zi,0 −

∑
j 6=i

xj,0(p0)

)2


− p0

(
−
∑
j 6=i

xj,0(p0)

)
, (18)

where for simplicity of notation we define

β ≡ 1− α
n− 1

. (19)

We can see that in (18) bidder i is effectively selecting an optimal price p0 given the

residual demand −
∑

j 6=i xj,0(p0). (In particular, bidder i can guarantee himself his

outside option from not trading by selecting a price p0 such that −
∑

j 6=i xj,0(p0) = 0.)

This optimization against residual demand schedule is also present in the construction

of Bayesian equilibrium in Kyle (1989), Vives (2011), and Rostek and Weretka (2012).

Taking the first-order condition of Πi,0(p0) at the market clearing price p0 = p∗0, we
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have, for all i,

0 = Π′i,0(p∗0) = −xi,0(p∗0)+
1

r

(
αsi,0 + β

∑
j 6=i

sj,0 − rp∗0 − λ(zi,0 + xi,0(p∗0))

)(
−
∑
j 6=i

∂xj,0
∂p

(p∗0)

)
.

(20)

We refer to the above equation as the ex post first order condition.

We further conjecture that the equilibrium strategy is linear and symmetric:

xj,0(p; sj,0, zj,0) = asj,0 − bp+ dzj,0 + fZ, (21)

where a, b, d and f are constants. Given that all bidders j 6= i use the strategy (21)

in this conjectured equilibrium, we can rewrite bidder j’s signal in terms of the price

and his demand and inventory as follows:

∑
j 6=i

sj,0 =
∑
j 6=i

xj,0(p∗0) + bp∗0 − dzj,0 − fZ
a

=
1

a

(
−xi,0(p∗0)+(n−1)(bp∗0−fZ)−d(Z−zi,0)

)
,

(22)

where we have used the market clearing condition and the condition that all inven-

tories add up to Z. Intuitively, in the above equation bidder i infers
∑

j 6=i sj,0 from

the price, his inventory, and his equilibrium demand. Substituting (22) into bidder

i’s first order condition (20) and rearranging, we have

xi,0(p∗0) =
(n− 1)b

r
·
αsi,0 −

[
r − β

a
(n− 1)b

]
p∗0 −

[
λ− β

a
d
]
zi,0 − β

a
[(n− 1)f + d]Z

1 + λ (n−1)b
r

+ β
a

(n−1)b
r

≡ asi,0 − bp∗0 + dzi,0 + fZ.

Matching the coefficients and using the normalization that α + (n− 1)β = 1, we

solve

a =
nα− 2

λ(n− 1)
, b = r · nα− 2

λ(n− 1)
, d = −nα− 2

nα− 1
, f =

(1− α)(nα− 2)

(n− 1)(nα− 1)
. (23)

It is easy to verify that under this linear strategy,

Π′′i,0(p0) = −(n− 1)b+
(n− 1)b

r
(−r − λ(n− 1)b) (24)

for every p0. So Π′′i,0(p0) < 0 if nα > 2. Thus, we have a periodic ex post equilibrium
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for ∆ =∞.

The static special case in Corollary 1 is similar to equilibria in the static trading

models of Vives (2011) without the non-strategic aggregate buyer, and of Rostek and

Weretka (2012) with a symmetric valuation covariance. Bidders in these models also

value the asset at a weighted average of signals and submit demand schedules. The

key difference is that we study ex post equilibrium in a dynamic model, whereas Vives

(2011) and Rostek and Weretka (2012) study Bayesian equilibria in a static model.

Even in the static setting, the ex post equilibrium notion proves to be useful. For

example, we prove that the equilibrium in Corollary 1 is the unique ex post equi-

librium in the class of continuously differentiable strategies. (This uniqueness result

is provided in an online appendix to preserve space.) Intuitively, the ex post opti-

mality condition can rule out most Bayesian equilibria because beliefs—which often

give rise to the multiplicity of Bayesian equilibria—are irrelevant for ex post equilib-

rium. By contrast, Vives (2011) and Rostek and Weretka (2012) obtain uniqueness

of equilibrium only in the class of linear and symmetric strategies.

2.2.2 Proof Outline for Proposition 1

We now sketch the key steps for the construction of the periodic ex post equilibrium

of Proposition 1. A challenge in analyzing dynamic trading is that transactions in any

period affects bidder’s inventory, which in turn affects his strategy in all subsequent

periods.

We conjecture that bidders use the following stationary and symmetric strategy:

xj,t∆(p; sj,t∆, zj,t∆) = asj,t∆ − bp+ dzj,t∆ + fZ. (25)

This conjecture implies the market-clearing prices of

p∗t∆ =
a

nb

n∑
j=1

sj,t∆ +
d+ nf

nb
Z. (26)

Because of the stationarity of the equilibrium, it is without loss of generality to

examine bidders’ incentives at period 0. Fix a profile of period-0 signals (s1,0, . . . , sn,0)

and inventories (z1,0, . . . , zn,0). We use the single-deviation principle to construct (25)

that forms a periodic ex post equilibrium: under the conjecture that other bidders

(j 6= i) use strategy (25) in every period, and that bidder i uses strategy (25) in period
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1 and onwards, we verfiy that bidder i has no incentive to deviate from strategy (25)

in period 0 only.

If bidder i uses alternative strategies in period 0, he faces the residual demand

−
∑

j 6=i xj,0(p0) and is effectively choosing a price p0 and getting xi,0(p0) = −
∑

j 6=i xj,0(p0)

as before. Therefore, by differentiating the conditional expectation of the total utility

(8) with respect to p0 and evaluating it at p0 = p∗0, we obtain the ex post first order

condition in period 0:

E

[
(n− 1)b ·

(
1− e−r∆

r

∞∑
t=0

e−rt∆
∂(zi,t∆ + xi,t∆)

∂xi,0
(vi,t∆ − λ(zi,t∆ + xi,t∆))−

∞∑
t=0

e−rt∆
∂xi,t∆
∂xi,0

p∗t∆

)

−
∞∑
t=0

e−rt∆ xi,t∆
∂p∗t∆
∂p0

∣∣∣∣∣ {si,0, zi,0}, {sj,0, zj,0}j 6=i
]

= 0, (27)

where we write xi,t∆ = xi,t∆(p∗t∆; si,t∆, zi,t∆) for the strategy xi,t∆( · ) defined in (25),

zi,(t+1)∆ = zi,t∆ + xi,t∆, and the conditional expectation E is over the future signals

{sj,τ}1≤j≤n,τ>0. By focusing on the ex post first order condition, we need not specify

bidder i’s beliefs about {sj,0, zj,0}j 6=i; by the symmetry and stationarity of the strategy

(25), we need not specify the belief of any bidder j in any period t. The ex post

optimality makes solving for the equilibrium strategy tractable in this dynamic game.

Since bidders follow the conjectured strategy in (25) from period 1 and onwards,

we have the following evolution of inventories: in any period t ≥ 1,

zi,t∆ + xi,t∆ =(asi,t∆ − bp∗t∆ + fZ) + (1 + d)(asi,(t−1)∆ − bp∗(t−1)∆ + fZ)

+ · · ·+ (1 + d)t−1(asi,∆ − bp∗∆ + fZ) + (1 + d)t(xi,0 + zi,0). (28)

The evolutions of prices and inventories, Equation (26) and (28), reveal that by

changing the demand/price in period 0, bidder i has the following effects on inventories

and prices in period t ≥ 1:

∂(zi,t∆ + xi,t∆)

∂xi,0
= (1 + d)t, (29)

∂xi,t∆
∂xi,0

= (1 + d)t−1d, (30)

∂p∗t∆
∂p0

=
∂p∗t∆
∂xi,0

= 0. (31)
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It turns out that the equilibrium value of d satisfies −1 < d < 0. This means that

xi,0 has a diminishing effect on future inventories and that there is a less than one-to-

one substitution between the acquisition today xi,0 and the future acquisition xi,t∆.

These are natural consequences of the marginal value of the asset declining with its

quantity.

Given the above equations and the martingale property of signals, the ex post

first order condition in (27) simplifies to:

(n− 1)b

[
1− e−r∆

r

(
∞∑
t=0

e−rt∆(1 + d)t
(
vi,0 − λ(E[zi,t∆ + xi,t∆ | {sj,0, zj,0}nj=1])

))

− p∗0 −
∞∑
t=1

e−rt∆(1 + d)t−1d p∗0

]
− xi,0 = 0, (32)

where we have (cf. Equation (28)):

E[zi,t∆ + xi,t∆ | {sj,0, zj,0}nj=1]

= (asi,0 − bp∗0 + fZ)

(
1

−d
− (1 + d)t

−d

)
+ (1 + d)t(xi,0 + zi,0). (33)

Given (33), the first order condition (32) can be written as a linear combination

of vi,0, zi,0, p∗0 and xi,0. As in Section 2.2.1, we can infer the sum of others’ signals in

vi,0 from xi,0, p∗0 and zi,0 (Equation (22)), and then match the coefficients with those

in our conjecture in (25) to solve for the periodic ex post equilibrium. We leave the

details to Section A.1.

2.3 Efficiency

We now study the allocative efficiency (or inefficiency) in the equilibrium of Propo-

sition 1. As a benchmark, we consider the social planner’s problem. In this dynamic

market, the planner who reallocates the asset according to the current information
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would solve the following problem in each period t:

{qei,t∆} = argmax{qi,t∆}

n∑
i=1

(
vi,t∆ (zi,t∆ + qi,t∆)− λ

2
(zi,t∆ + qi,t∆)2

)
(34)

subject to:
n∑
i=1

qi,t∆ = 0,

where zi,t∆ is bidder i’s inventory before period t’s reallocation, and zi,t∆ + qei,t∆ is his

efficient allocation in period t. We can easily derive that

zei,t∆ ≡ zi,t∆ + qei,t∆ =
nα− 1

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z. (35)

That is, in each period the efficient allocation to bidder i is equal to 1/n of the total

asset supply Z plus a constant multiple of the difference between bidder i’s signal

and the average signal. In particular, the efficient allocation zei,t∆ is independent of

the pre-existing inventory zi,t∆.

By contrast, the equilibrium of Proposition 1 does not achieve allocative efficiency

immediately. This feature is known as “demand reduction” in the literature on static

divisible auctions (see Ausubel, Cramton, Pycia, Rostek, and Weretka 2011). Ac-

cording to the periodic ex post equilibrium strategy, the post-auction allocation to

bidder i in period t is

zi,t∆ + xi,t∆(p∗t∆; si,t∆, zi,t∆)

= a

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z + (1 + d)

(
zi,t∆ −

1

n
Z

)
, (36)

where the constant a > 0 is given in Proposition 1, and

d ≡ −aλ(n− 1)

nα− 1
= −1+

1

2e−r∆

(√
(nα− 1)2(1− e−r∆)2 + 4e−r∆ − (nα− 1)(1− e−r∆)

)
,

(37)

is the coefficient of zi,t∆ in the equilibrium demand schedule (13).

It is straightforward to show that a < nα−1
λ(n−1)

; thus, relative to the efficient alloca-

tion in (35), post-auction allocations in the periodic ex post equilibrium “under-react”

to the cross-bidder dispersion in signals. This under-reaction is a natural consequence
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of adverse selection and of bidders’ price impact. Moreover, we can also verify that

1 + d ∈ (0, 1); thus, a bidder who starts period-t trading with an above-average

inventory only partially “liquidate” his excess inventory in period t. This partial

adjustment, along with the under-reaction in signals, leads to allocative inefficiency.

Nonetheless, as we show in the following proposition, there is exponential convergence

to efficient allocation over time in the periodic ex post equilibrium. Let us denote by

{z∗i,t∆} the path of inventories obtained by the periodic ex post equilibrium xi,t∆ in

Proposition 1: z∗i,0 = zi,0, and for any t ≥ 0,

z∗i,(t+1)∆ = z∗i,t∆ + xi,t∆(p∗t∆; si,t∆, z
∗
i,t∆). (38)

Proposition 2. Given any 0 ≤ t ≤ t, if si,t∆ = si,t∆ for all i and all t ∈ {t, t +

1, . . . , t}, then the equilibrium inventories z∗i,t∆ satisfy: for every i,

z∗i,t∆ − zei,t∆ = (1 + d)t−t(z∗i,t∆ − zei,t∆), ∀t ∈ {t+ 1, t+ 2, . . . , t+ 1}, (39)

where {zei,t∆} is the the period-t efficient allocation defined in (35), and d ∈ (−1, 0)

is the coefficient of zi,t∆ in the equilibrium strategy (13).

Moreover, we define the rate of convergence to efficiency per unit of clock time

to be − log[(1 + d)1/∆]. 12 This convergence rate is increasing with the number n of

bidders, the weight α of the private components in bidders’ valuations, the discount

rate r, and the clock-time frequency of trading 1/∆.

Proof. We first prove the convergence to efficient allocation. Conditional on the

signals staying the same from period t to t, the efficient allocation in each of these

periods is also the same and is given by

zei,t∆ =
nα− 1

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z. (40)

12The number R = − log[(1 + d)1/∆] is the rate of convergence per clock time, because for any
clock times τ < τ that are multiple of ∆, if no new signals arrive between τ and τ , then we have
(cf. Equation (39))

z∗i,τ − zei,τ = e−R(τ−τ)(z∗i,τ − zei,τ ).

20



We rewrite the equilibrium strategy (13) as

xi,t∆(p; si,t∆, zi,t∆) = asi,t∆ − bp+ dzi,t∆ + fZ. (41)

It is easy to verify that at the efficient allocation zei,t∆, bidder i trades zero unit in

equilibrium:

xi,t∆(p∗t∆; si,t∆, z
e
i,t∆) = 0. (42)

That is, for every i ∈ {1, 2, . . . , n},

zei,t∆ =
asi,t∆ − bp∗i,t∆ + fZ

−d
. (43)

By definition, we have

z∗i,(t+1)∆ = z∗i,t∆ + xi,t∆(p∗i,t∆; si,t∆, z
∗
i,t∆)

= asi,t∆ − bp∗i,t∆ + (1 + d)z∗i,t∆ + fZ

= (−d)zei,t∆ + (1 + d)z∗i,t∆,

where the last equality follows from (43). This proves (39) for t = t. The case of

t > t follows by induction. The comparative statics regarding convergence speed are

proved in Section A.2.

Proposition 2 reveals that a sequence of double auctions is an effective mechanism

to dynamically achieve allocative efficiency. Since 0 < 1 + d < 1 in (39), inven-

tory allocations under the periodic ex post equilibrium converge exponentially over

time to the efficient allocation, as determined by the most recent signals. Once new

signals arrive, the efficient allocation changes accordingly, and allocations under the

periodic ex post equilibrium start to converge toward the new efficient level. This con-

vergence result complements Rustichini, Satterthwaite, and Williams (1994), Cripps

and Swinkels (2006), and Reny and Perry (2006), among others, who show that allo-

cations in a one-shot double auction converge, at a polynomial rate, to the efficient

level as the number of bidders increases.

As the proof of Proposition 2 makes clear, the exponential convergence result is

driven by (i) the linearity and the stationarity of the equilibrium strategy, and (ii) at

the efficient inventory level, the equilibrium strategy buys and sells zero additional

unit. Because of the price impact of his limit orders, a bidder’s equilibrium demand
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xi,t∆ in any given period moves less than one-for-one with respect to his inventory

zi,t∆. This less than one-for-one movement implies that in equilibrium the efficient

inventory level is reached not immediately but gradually over time. It also implies

that the convergence is monotone; the equilibrium inventory path does not oscillate

between “overshooting” and “undershooting” the efficient inventory level.

The intuition for the comparative statics of Proposition 2 is simple. A larger n

makes bidders more competitive, and a larger r makes them more impatient. Both

effects encourage aggressive bidding and speed up convergence. The effect of α is

slightly more subtle. Intuitively, the interdependence of valuations, represented by

1 − α, creates adverse selection for the bidders. To protect themselves from trading

losses, bidders reduce their demand or supply relative to the fully competitive market.

The higher is α, the more bidders care about the private components of their valua-

tions, and the less they worry about adverse selection. Therefore, a higher α implies

more aggressive bidding and faster convergence to the efficient allocation. Finally, a

higher trading frequency increases the convergence speed in clock time, even though

it makes bidders more patient and thus less aggressive in each trading period. The

last comparative static suggests that for purely allocative purpose, a higher trading

frequency is always better, as it leads to a faster convergence to the efficient allocation

in clock time. It does not say, however, that a higher trading frequency always leads

to a higher level of social welfare. We turn to the welfare question in Section 3.

2.4 Limiting Equilibrium with High Trading Frequency

In this subsection we examine the limit of the equilibrium in Proposition 1 as ∆→ 0,

that is, as trading becomes continuous in clock time.

Proposition 3. Suppose that nα > 2. As ∆ → 0, the equilibrium of Proposition 1

converges to the following periodic ex post equilibrium:

1. Bidder i’s equilibrium strategy is represented by a process {x∞i,τ}τ∈R+. At the

clock time τ , x∞i,τ specifies bidder i’s rate of order submission and is defined by

x∞i,τ (p; si,τ , zi,τ ) = a∞
(
si,τ − rp−

λ(n− 1)

nα− 1
zi,τ +

λ(1− α)

nα− 1
Z

)
, (44)

where

a∞ =
(nα− 1)(nα− 2)r

2λ(n− 1)
. (45)
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Given a clock time T > 0, in equilibrium the total amount of trading by bidder

i in the clock-time interval [0, T ] is

z∗i,T − zi,0 =

∫ T

τ=0

x∞i,τ (p
∗
τ ; si,τ , z

∗
i,τ ) dτ. (46)

2. The equilibrium price at any clock time τ is

p∗τ =
1

r

(
1

n

n∑
i=1

si,τ −
λ

n
Z

)
. (47)

3. Given any 0 ≤ τ < τ , if si,τ = si,τ for all i and all τ ∈ [τ , τ ], then the equilibrium

inventories z∗i,τ in this interval satisfy:

z∗i,τ − zei,τ = e−
1
2
r(nα−2)(τ−τ)

(
z∗i,τ − zei,τ

)
, (48)

where

zei,τ =
nα− 1

λ(n− 1)

(
si,τ −

1

n

n∑
j=1

sj,τ

)
+

1

n
Z (49)

is the the efficient allocation at clock time τ (cf. Equation (34)).

Proof. The proof follows by directly calculating the limit of Proposition 1 as ∆→ 0

using L’Hopitâl’s rule.

Proposition 3 reveals that even if trading occurs continuously, in equilibrium the

efficient allocation is not reached instantaneously. The delay comes from bidders’

price impact and the associated demand reduction. Although submitting aggressive

orders allows a bidder to achieve his desired allocation sooner, aggressive bidding

also moves the price against the bidder and increases his trading cost. Facing this

tradeoff, each bidders uses a finite rate of order submission in the limit. Consistent

with Proposition 2, the rate of convergence to efficiency in Proposition 3, r(nα−2)/2,

is increasing in the number of bidders n, the discount rate r, and the weight α of the

private components in bidders’ valuations.
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3 Welfare and Optimal Trading Frequency

In this section we study the effect of trading frequency on welfare and characterize

the optimal trading frequency. We show that the optimal trading frequency depends

critically on the nature of new information (i.e., the signals). If new information

arrives at deterministic and scheduled intervals, then slow, batch trading (i.e., a

large ∆) is optimal. If new information arrives stochastically according to a Poisson

process, then fast, continuous trading (i.e., a small ∆) is optimal. Throughout this

section we assume that nα > 2 and conduct the analysis based on the periodic ex

post equilibrium of Proposition 1.

We define the equilibrium welfare as the expectation of the integral of time-

discounted flow utilities, summed over all bidders:

W (∆) = E

[
n∑
i=1

∫ ∞
τ=0

e−rτ
(
viz
∗
i,τ −

λ

2
(z∗i,τ )

2

)
dτ

]
, (50)

where {z∗i,τ}τ≥0 is the path of equilibrium inventories implied by Proposition 1: z∗i,0 =

zi,0, and z∗i,τ = z∗i,t∆ + xi,t∆(p∗t∆; si,t∆, z
∗
i,t∆) for every integer t ≥ 0 and every τ ∈

(t∆, (t+1)∆], where xi,t∆ is the equilibrium strategy in Proposition 1. The inventory

path is discontinuous as it “jumps” after trading in each period.

We let bidder i’s time-τ efficient allocation be (cf. Equation (34)):

zei,τ =
nα− 1

λ(n− 1)

(
si,τ −

1

n

n∑
j=1

sj,τ

)
+

1

n
Z. (51)

Since the signals are martingales, {zei,τ}τ≥0 also forms a martingale (adapted to the

signals {sj,τ}1≤j≤n,τ≥0) for each i. Note that while the equilibrium allocation only

changes when trading occurs, the efficient allocation changes whenever new signals

arrive (which may or may not coincide with trading time).

We denote by ∆∗ the optimal trading interval that maximizes the welfare W (∆).

The optimal trading frequency is then 1/∆∗.

3.1 Scheduled Arrivals of New Information

We first consider scheduled information arrivals. In particular, we suppose that new

private information arrive at regularly spaced clock times {0, γ, 2γ, . . .}, where γ >

24



0. Formally, this means that for every bidder i, si,τ is constant on the interval

[kγ, (k + 1)γ) for every integer k ≥ 0.

To rule out trivialities, we impose a non-degeneracy condition: the initial inven-

tories are not always efficient given the initial signals or some future signals. That is,

either E[(zi,0−zei,0)2] > 0 for some bidder i, or E[(zei,lγ−zei,(l−1)γ)
2] > 0 for some integer

l ≥ 1 and bidder i. If this non-degeneracy condition were not satisfied, there would

be no trade in equilibrium, and trading frequency would have no effect on welfare.

Proposition 4. Assume that new information arrives at clock times {0, γ, 2γ, . . .}
and that the above non-degeneracy condition holds. Then W (∆) < W (γ) for any

∆ < γ. That is, the optimal ∆∗ ≥ γ.

Proof. See Section A.3.

Proposition 4 says that if new information repeatedly arrives at scheduled times

(e.g., macroeconomic data releases or corporate earnings announcements), then the

optimal trading frequency cannot be higher than the frequency of information arrivals.

The intuition for this result is simple. For a large ∆, bidders have to wait for a long

time before the next round of trading. So they bid aggressively (and hence mitigate

the “demand reduction”) whenever they have the opportunity to trade, which leads

to a relatively efficient allocation early on. In other words, a large ∆ serves as

a commitment device to encourage aggressive trading immediately. If ∆ is small,

bidders know that they can trade again soon. Consequently, they bid less aggressively

in each round of trading and end up holding relatively inefficient allocations in early

rounds. We show that if ∆ < γ, then a larger ∆ leads to a higher welfare. 13

As ∆ increases beyond γ, the bidders face a tradeoff: a large ∆ > γ gives the

benefit of a commitment device, but incurs the cost that bidders cannot react quickly

to new information. Generally, the optimal ∆∗ in this case would depend on the

detail of the signal processes and would not be solvable in closed-form. Nonetheless,

we know that the optimal ∆∗ cannot be lower than γ.

13In Proposition 4, we have implicitly assumed that the first round of trading always starts at
clock time zero, immediately after the arrival of time-zero signals. This assumption is without loss
of generality: we can show that the equilibrium welfare from starting at time 0 and trading at
frequency 1/γ always dominates the equilibrium welfare from starting at some time τ0 > 0 and
trading at some frequency 1/∆ ≥ 1/γ; the proof is similar to that in Section A.3.1 and is available
upon request. Intuitively, there is no reason to delay trading after the information arrival because
in each trading period the equilibrium strategy always gives a weakly higher utility than that from
not trading.
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Note that Proposition 4 is true for any martingale of signals that arrive at clock

times spaced by γ, regardless of how the volatility of signals changes over time. In

particular, this means that it is not possible to put a finite upper bound on ∆∗ without

making additional assumptions. For example, if the signals do not change over time

(i.e., no new information arrives after time 0), then we effectively have γ = ∞, and

hence ∆∗ =∞ (i.e., it is optimal to trade only once at time zero).

3.2 Stochastic Arrivals of New Information

We now turn to stochastic arrivals of information. While there are many possible

specifications for stochastic information arrivals, our objective is not to calculate the

optimal trading frequency for all of them. Instead, our objective is to demonstrate

that a moderate change from scheduled to stochastic information can dramatically

change the optimal trading frequency. We use a simple yet natural Poisson process

to make this point.

In particular, we suppose that new and private signals of all bidders arrives ac-

cording to a homogeneous Poisson process with intensity µ > 0: within a time interval

τ , there are, in expectation, τµ arrivals of new signals. Clearly, µ is the analogue of

1/γ from Section 3.1. Moreover, conditional on the event that new signals {si,τ}ni=1

arrive at time τ , an event we denote by A(τ), the joint distribution of the increments

{si,τ − si,τ−}ni=1 is independent of τ . Thus, the increment in each bidder i’s efficient

allocation has a constant conditional variance:

σ2
i ≡ E[(zei,τ − zei,τ−)2 | A(τ)], (52)

which we assume to be positive.

Finally, we suppose that the initial inventories are efficient given the information

in period 0, that is, zi,0 = zei,0 for every bidder i, where the efficient allocation is given

by (34). We interpret the period-0 information as existing before period 0, and the

efficiency of the initial inventories as the result of trading activities before period 0.

We make this assumption to isolate the trading motives associated with the arrivals

of new information, rather than the existing information.

Proposition 5. Given the above assumptions on stochastic arrivals of new informa-

tion, the welfare W (∆) is strictly decreasing in ∆, and the optimal ∆∗ = 0.
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Proof. See Section A.3.

Proposition 5 suggests that faster trading is better if the arrival times of new

information are stochastic and unpredictable. This is because more frequent trading

enables bidders to react sooner after a new information arrival, which dominates the

cost of lower bidding aggressiveness in the subsequent rounds of trading. As a result,

a continuous market (with ∆∗ = 0) is optimal.

3.3 Discussion

Our focus on socially optimal trading frequency is most closely related to Vayanos

(1999), who studies a dynamic market in which the asset fundamental value (dividend)

is public information, but agents receive periodic inventory shocks. He finds that if

the inventory shocks are private information and are small, then a lower trading

frequency is always better for welfare. This result by Vayanos and our Proposition 4

share the common intuition and mechanism that traders tend to reduce their demand

now if they can trade again soon; this strategic effect favors a low trading frequency.

Nonetheless, our analysis offers several new insights that are not in Vayanos (1999).

First, our model allows interdependent values and hence partly captures adverse selec-

tion. We show that the intuition on strategic trading and demand reduction presented

by Vayanos (1999) also holds under adverse selection. Moreover, the higher is adverse

selection (the lower is α), the more severe is the demand reduction, and hence the

slower is the convergence of the equilibrium allocations to efficiency (Proposition 2).

Proposition 4 also naturally links the frequency of information arrivals to the optimal

frequency of trading for scheduled information arrivals. Modeling details aside, our

Proposition 4 can be viewed as a generalization of Vayanos’ corresponding result to

interdependent values and scheduled arrivals of new information.

Second, and perhaps more importantly, we characterize natural conditions under

which the “lower trading frequency improves welfare” result of Vayanos (1999) is

overturned. Specifically, if new information arrives at stochastic times, then too

low a trading frequency prevents bidders from reacting to new information quickly,

thus reducing welfare. We show that this latter information effect can dominate the

strategic effect, implying that continuous trading can be optimal (Proposition 5). Our

model makes this intuition salient and transparent by decoupling the clock times of

trading from the clock times of information arrival.
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Third, we develop a new solution method of dynamic ex post equilibrium. The

exact equilibrium notion is more than a technical nuance; it is relevant for answering

welfare and policy questions. For example, while the private-inventory equilibrium

of Vayanos (1999) indicates a low optimal trading frequency, his public-inventory

equilibrium—selected among multiple equilibria by a trembling-hand-perfect equilib-

rium refinement—argues for a higher trading frequency. By contrast, our ex post

equilibrium of Proposition 1 holds under private as well as public information (of

signals and inventories); its implications for socially optimal trading frequency are

the same regardless of the information asymmetry. Therefore, answers to important

policy questions such as optimal trading speed can depend on equilibrium selection.

We argue that the ex post equilibrium refinement is particularly suitable for welfare

analysis because of its robustness.

Our results on optimal trading frequency are also related to Fuchs and Skrzypacz

(2013), who consider a lemons market with many competitive one-time buyers and a

single seller who has private information. In their model, private information arrives

only once (at time 0), and continuous trading can always be improved, in terms

of welfare, by an “early closure” of market. By contrast, we show that continuous

trading can be optimal if information arrivals are stochastic.

Our approach complements the small but growing theory literature that focuses

on differential trading speed among agents (see, for example, Foucault, Hombert, and

Rosu 2012, Pagnotta and Philippon 2012, and Biais, Foucault, and Moinas 2012).

In these papers, certain traders are faster than others, and their welfare question

is whether investments in superior trading technology is socially wasteful. By con-

trast, bidders in our model have the same trading speed, and our welfare criterion is

allocative efficiency.

4 Concluding Remarks

In this paper we characterize a dynamic and stationary ex post equilibrium in a se-

quence of uniform-price double auction with interdependent values. In this ex post

equilibrium, a bidder’s strategy depends only on his own private information, but it

remains optimal even after observing the concurrent and historical private informa-

tion of other bidders. This ex post equilibrium aggregates the most recent private

information dispersed across bidders, and is robust to the probability distributions of
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signals and inventories.

Our ex post equilibrium greatly simplifies the analysis of dynamic trading and

allows us to derive, in a tractable way, interesting implications regarding welfare

and optimal trading frequency. Although the equilibrium allocations of assets among

bidders are not fully efficient after each auction, they converge exponentially over time

to the efficient level. Therefore, a sequence of double auctions is a simple and effective

mechanism to quickly achieve allocative efficiency. Moreover, while convergence speed

is increasing in trading frequency, continuous trading does not lead to immediate

convergence to the efficient allocation. We further show that the socially optimal

trading frequency is low for scheduled information arrivals, but is high for stochastic

information arrivals. Our results suggest that the nature of information is a critical

consideration for answering the policy question of optimal trading speed.

The ex post equilibrium allows us to derive a number of additional results, which

we delegate to the online appendix. One such result is the uniqueness of ex post

equilibrium in a static special case (that is, for ∆ = ∞). Under mild conditions,

we prove that the ex post optimality criterion is so strong that only one equilibrium

survives it, and that equilibrium has linear demand schedules and is given by Corol-

lary 1. Intuitively, uniqueness is possible in our model because beliefs—which often

lead to multiple Bayesian equilibria—are irrelevant for ex post optimality. Moreover,

our model makes no price-taking assumption that is typical in models of rational

expectations equilibria (REE).14 While we do not know whether our dynamic equi-

librium is unique, the uniqueness result in the static special case suggests that the

ex post optimality is nonetheless a useful equilibrium selection criterion for uniform-

price auctions, which often admit a continuum of Bayesian-Nash equilibria (Wilson

1979).

We also apply the ex post equilibrium to other markets, so far in the static special

14The price-taking behavior of agents is important for existing proofs of the uniqueness of REE.
Ausubel (1990) demonstrates the uniqueness of partially-revealing REE under certain conditions.
DeMarzo and Skiadas (1998) show the uniqueness of fully-revealing REE in an economy that nests
the Grossman (1976) model. Pálvölgyi and Venter (2011) and Breon-Drish (2012) prove the unique-
ness of REE for continuous price function in the Grossman and Stiglitz (1980) model. Agents in
these models are price-takers. Separately, Rochet and Vila (1994) prove that the equilibrium in the
Kyle (1985) model is unique if the single informed trader observes the demand from noise traders;
Back (1992) proves the uniqueness of equilibrium in continuous-time model where the single informed
trader can infer the flow of noise trades by observing the price flow. Our ex post equilibrium differs
in that we have multiple strategic bidders with dispersed information, and none of them observe the
private information of others.
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case (∆ =∞). For example, a simultaneous auction of multiple assets also admits an

ex post equilibrium, which can be naturally applied to “program trading” of multiple

stocks on the NYSE and to “default management auctions” of derivative portfolios

run by clearinghouses. In the special case of pure private values, we also solve an ex

post equilibrium in which bidders have different rates of decreasing marginal valua-

tions (different λ’s). These results are presented in the online appendix to preserve

space. Separately, Du and Zhu (2012) use the ex post equilibrium to analyze price

discovery in the settlement auctions of credit default swaps, in which bidders’ preex-

isting derivatives contracts distort their bidding incentives for the underlying assets.

While dynamic ex post equilibria in those markets are not analyzed in this paper, we

expect that the methodology can also be applied there. We leave these markets for

future research.
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A Appendix: Proofs

A.1 Proof of Proposition 1

Here we continue the construction of the periodic ex post equilibrium in Section 2.2.2.

Averaging Equation (32) across all bidders and using the fact that
∑n

i=1 xi,t∆ = 0 and∑n
i=1 zi,t∆ = Z, we get:

p∗0 =
1

r

(
s̄0 −

λ

n
Z

)
, (53)

where

s̄0 ≡
1

n

n∑
i=1

si,0.

Therefore, in (25) we must have

b = ra,
aλ

n
+
d

n
+ f = 0. (54)

Substituting (33), (53) and (54) into the first-order condition (32), we have:

(n− 1)(1− e−r∆)a

[
1

1− e−r∆(1 + d)

(
vi,0 − s̄0 +

λ

n
Z

)
(55)

−
∞∑
t=1

λe−rt∆(1 + d)t
(

1

−d
− (1 + d)t

−d

)(
a(si,0 − s̄0)− d

n
Z

)

− λ

1− e−r∆(1 + d)2
(xi,0 + zi,0)

]
− xi,0 = 0.

Rearranging the terms gives:(
1 +

(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
xi,0

= (n− 1)(1− e−r∆)a

[
1

1− e−r∆(1 + d)

(
α− 1− α

n− 1

)
(si,0 − s̄0)

− λe−r∆(1 + d)

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
a(si,0 − s̄0)

− λ

1− e−r∆(1 + d)2
zi,0 +

1

1− e−r∆(1 + d)2

λ

n
Z

]
. (56)
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On the other hand, Equation (54) simplifies the conjectured strategy (25) to

xi,0 = a(si,0 − s̄0) + dzi,0 −
d

n
Z.

Matching the coefficients in the above expression with those in (56), we obtain two

equations for a and d:(
1 +

(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
=

(1− e−r∆)(nα− 1)

1− e−r∆(1 + d)
− (n− 1)(1− e−r∆)λe−r∆(1 + d)a

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
,(

1 +
(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2

)
d = −(n− 1)(1− e−r∆)aλ

1− e−r∆(1 + d)2
. (57)

There are two solutions to the above system of equations. One of them leads to

unbounded inventories,15 so we drop it. The other solution leads to converging in-

ventories and is given by

a =
nα− 1

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
,

d = − 1

2e−r∆

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
,

(58)

where under the condition of nα > 2 we have a > 0 and −1 < d < 0. From (54), we

have b = ra > 0 and f = −d/n− aλ/n.

Finally, we verify the second-order condition. Under the linear strategy in (25)

with b > 0, differentiating the first-order condition (27) with respect to p0 gives

(n− 1)b
1− e−r∆

r

(
−λ(n− 1)b

∞∑
t=0

e−rt∆(1 + d)2t − 1

)
− (n− 1)b < 0. (59)

This completes the construction of the stationary periodic ex post equilibrium.

15This solution to (57) has the property of (1 + d)e−r∆ < −1, which leads to an unbounded path
of inventories (cf. Equation (28)) and utilities, even after discounting.
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A.2 Proof of comparative statics in Proposition 2

We write

1 + d =
1

2e−r∆

(√
(nα− 1)2(1− e−r∆)2 + 4e−r∆ − (nα− 1)(1− e−r∆)

)
. (60)

The comparative statics with respect to n, α and r follow by differentiating 1 + d

with respectively n, α and r and straightforward calculations.

For the comparative statics with respect to ∆, we find that

∂(log(1 + d)/∆)

∂∆
= − 1

∆2

(
r∆

η
√
η2(er∆ − 1)2 + 4er∆ − η2(er∆ − 1)− 2√

η2(1− e−r∆)2 + 4e−r∆
(√

η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)
)

+ log

(
1

2

(√
η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)

)))
,

where we let η ≡ nα − 1. Given η > 1, it is easy to show that the two terms in the

right-hand side of the above equation are both positive, which implies our conclusion.

A.3 Proofs of Proposition 4 and 5

We first establish some general properties of the equilibrium welfare, before spe-

cializing to scheduled (Section A.3.1) and stochastic (Section A.3.2) arrivals of new

information.

The following lemma relates the amount of inefficiency associated with an in-

ventory allocation to the square distance between that allocation and the efficient

allocation:

Lemma 1. Let {zei } be the efficient allocation given valuations {vi}:

{zei } = argmax{z′i}

n∑
i=1

(
vi (z

′
i)−

λ

2
(z′i)

2

)
subject to:

n∑
i=1

z′i = Z.

For any profile of inventories (z1, z2, . . . , zn) satisfying
∑n

i=1 zi = Z, we have:

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
−

n∑
i=1

(
vizi −

λ

2
(zi)

2

)
=
λ

2

n∑
i=1

(zi − zei )2. (61)
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Proof. First, by the definition of efficient allocation, we have vi−λzei = ν for every i,

where ν is the Lagrange multiplier for the constraint
∑n

i=1 z
e
i = Z in the maximization

problem of {zei }.
Since (zi)

2 = (zei )
2 + 2zei (zi − zei ) + (zi − zei )2, we have:

n∑
i=1

(
vizi −

λ

2
(zi)

2

)
=

n∑
i=1

(
viz

e
i −

λ

2
(zei )

2

)
+

n∑
i=1

(vi−λzei )(zi− zei )−
λ

2

n∑
i=1

(zi− zei )2.

(62)

The middle term in the right-hand side of (62) is zero because vi − λzei = ν and∑n
i=1(zi − zei ) = Z − Z = 0. This proves the lemma.

By Lemma 1 we write W (∆) as:

W (∆) = E

[
n∑
i=1

∫ ∞
τ=0

e−rτ
(
vi,τz

e
i,τ −

λ

2
(zei,τ )

2

)
dτ

]
−X(∆), (63)

where

X(∆) = E

[
λ

2

n∑
i=1

∫ ∞
τ=0

e−rτ (zei,τ − z∗i,τ )2 dτ

]
(64)

is the amount of inefficiency associated with the equilibrium path of inventories.

Since the efficient allocations depend only on the signal processes but not on trading

frequency, the optimal trading frequency is determined by the comparative statics of

X(∆) with respect to ∆.

Lemma 2. Suppose that τ ∈ (t∆, (t+ 1)∆). Then we have

E[(z∗i,τ − zei,τ )2] = E[(z∗i,(t+1)∆ − zei,t∆)2] + E[(zei,t∆ − zei,τ )2]. (65)

Proof. Recall that z∗i,τ = z∗i,(t+1)∆ for τ ∈ (t∆, (t + 1)∆) because trading does not

happen in (t∆, (t+ 1)∆). Thus, we can rewrite, for any τ ∈ (t∆, (t+ 1)∆),

E[(z∗i,τ−zei,τ )2] = E[(z∗i,(t+1)∆−zei,t∆)2]+E[(zei,t∆−zei,τ )2]+E[2(z∗i,(t+1)∆−zei,t∆)(zei,t∆−zei,τ )].
(66)

Since z∗i,(t+1)∆ is measurable with respect to {Hi,t∆}ni=1, τ > t∆, and {zei,τ ′}τ ′≥0 is

a martingale, we have E[(z∗i,(t+1)∆ − zei,t∆)(zei,t∆ − zei,τ )] = 0 by the law of iterated

expectations.
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By Lemma 2, we can further decompose X(∆) into two terms:

X(∆) = X1(∆) +X2(∆), (67)

where

X1(∆) =
1− e−r∆

r
· λ

2

n∑
i=1

∞∑
t=0

e−rt∆E[(z∗i,(t+1)∆ − zei,t∆)2] (68)

and

X2(∆) =
λ

2

n∑
i=1

∞∑
t=0

∫ (t+1)∆

τ=t∆

e−rτE[(zei,t∆ − zei,τ )2] dτ. (69)

X2(∆) is in terms of the efficient inventories (and hence of the signals) and is thus

easy to analyze. In contrast, X1(∆) depends on the equilibrium inventories. The

next lemma simplifies the equilibrium inventory terms in X1(∆).

Lemma 3.

E[(z∗i,(t+1)∆−zei,t∆)2] = (1+d)2(t+1)E[(z∗i,0−zei,0)2]+
t−1∑
t′=0

(1+d)2(t−t′)E[(zei,(t′+1)∆−zei,t′∆)2]

Proof. From Proposition 2, we have

z∗i,(t+1)∆ − zei,t∆ = (1 + d)(z∗i,t∆ − zei,t∆). (70)

Therefore,

E[(z∗i,(t+1)∆ − zei,t∆)2] = (1 + d)2E[(z∗i,t∆ − zei,t∆)2] (71)

= (1 + d)2E[(z∗i,t∆ − zei,(t−1)∆)2] + (1 + d)2E[(zei,t∆ − zei,(t−1)∆)2]

+ 2(1 + d)2E[(z∗i,t∆ − zei,(t−1)∆)(zei,t∆ − zei,(t−1)∆)]. (72)

Because z∗i,t∆ is measurable with respect to {Hi,(t−1)∆}ni=1 and {zei,τ}τ≥0 is a martingale,

E[(z∗i,t∆− zei,(t−1)∆)(zei,t∆− zei,(t−1)∆)] = 0 by the law of iterated expectations. The rest

follows by induction.

Finally, Lemma 4 expresses X1(∆) in terms of the efficient inventories, similar to

X2(∆).
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Lemma 4.

X1(∆) =
λ(1 + d)

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +
n∑
i=1

∞∑
t=0

e−r(t+1)∆E[(zei,(t+1)∆ − zei,t∆)2]

)
.

(73)

Proof. By Lemma 3, we have

X1(∆) (74)

=
λ(1− e−r∆)

2r

n∑
i=1

∞∑
t=0

e−rt∆

(
(1 + d)2(t+1)E[(z∗i,0 − zei,0)2] +

t−1∑
t′=0

(1 + d)2(t−t′)E[(zei,(t′+1)∆ − zei,t′∆)2]

)

=
λ

2r

(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆

n∑
i=1

E[(z∗i,0 − zei,0)2]

+
1− e−r∆

r

λ

2

n∑
i=1

∞∑
t′=0

E[(zei,(t′+1)∆ − zei,t′∆)2]
∞∑

t=t′+1

e−rt∆(1 + d)2(t−t′)

=
λ

2r

(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆

n∑
i=1

E[(z∗i,0 − zei,0)2]

+
λ

2r

(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆

n∑
i=1

∞∑
t′=0

E[(zei,(t′+1)∆ − zei,t′∆)2]e−r(t
′+1)∆.

We can simplify the constant in the above equations by direct calculation:

e−r∆(1 + d)2 (75)

=
2(nα− 1)2(1− e−r∆)2 + 4e−r∆ − 2(nα− 1)(1− e−r∆)

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

4e−r∆

= 1− (nα− 1)(1− e−r∆)(1 + d),

which implies:
(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆
=

1 + d

nα− 1
. (76)

Finally, by construction: z∗i,0 = zi,0 for every bidder i.

With these lemmas we are ready to prove Proposition 4 and Proposition 5.
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A.3.1 Proof of Proposition 4

For any τ > 0, we let t(τ) = min{t ≥ 0 : t ∈ Z, t∆ ≥ τ}. That is, if new signals

arrive at the clock time τ , then t(τ)∆ is the clock time of the next trading period

(including time τ).

For any ∆ ≤ γ, by the assumption of Proposition 4 there is at most one new

signal profile arrival in each interval [t∆, (t+ 1)∆). Thus, we only need to count the

changes in efficient allocation between period t((l− 1)γ) and t(lγ), for l ∈ Z+. Using

this fact, we can rewrite X1(∆) and X2(∆) as:

X1(∆) =
λ(1 + d)

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +
n∑
i=1

∞∑
l=1

e−rt(lγ)∆E[(zei,lγ − zei,(l−1)γ)
2]

)

=
λ(1 + d)

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +
n∑
i=1

∞∑
l=1

e−rlγE[(zei,lγ − zei,(l−1)γ)
2]

)

− λ(1 + d)

2(nα− 1)

n∑
i=1

∞∑
l=1

e−rlγ − e−rt(lγ)∆

r
E[(zei,lγ − zei,(l−1)γ)

2]. (77)

and

X2(∆) =
λ

2

n∑
i=1

∞∑
t=0

∫ (t+1)∆

τ=t∆

e−rτE[(zei,t∆ − zei,τ )2] dτ (78)

=
λ

2

n∑
i=1

∞∑
l=1

e−rlγ − e−rt(lγ)∆

r
E[(zei,lγ − zei,(l−1)γ)

2].

Note that all the expectations in the expressions of X1(∆) and X2(∆) do not

depend on ∆. To make clear the dependence of d on ∆, we now write d = d(∆).

Since (1 + d(∆))/(nα− 1) < 1, we have for any ∆ < γ:

X(∆) = X1(∆) +X2(∆) (79)

>
λ(1 + d(∆))

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +
n∑
i=1

∞∑
l=1

e−rlγE[(zei,lγ − zei,(l−1)γ)
2]

)

>
λ(1 + d(γ))

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +
n∑
i=1

∞∑
l=1

e−rlγE[(zei,lγ − zei,(l−1)γ)
2]

)
= X(γ),
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where the last inequality holds because d(∆) decreases with ∆ (which can be verified

by taking derivative d′(∆)) and where the last equality holds because t(lγ)∆ = lγ if

γ = ∆.

Therefore, we have W (∆) < W (γ) for any ∆ < γ. This proves Proposition 4.

A.3.2 Proof of Proposition 5

Since signals arrive according to a Poisson process with the intensity µ, we have

E[(zei,τ − zei,t∆)2] = (τ − t∆)µσ2
i , τ ∈ [t∆, (t+ 1)∆), (80)

E[(zei,(t+1)∆ − zei,t∆)2] = ∆µσ2
i . (81)

Substituting the above two expressions into (69) and (73), and using the assumption

that zi,0 = zei,0, we have

X1(∆) =
λ(1 + d)

2r(nα− 1)

n∑
i=1

∞∑
t=0

e−r(t+1)∆∆µσ2
i =

λ(1 + d)

2r(nα− 1)

∆e−r∆

1− e−r∆
n∑
i=1

µσ2
i (82)

and

X2(∆) =
λ

2

n∑
i=1

∞∑
t=0

e−rt∆
∫ ∆

τ=0

e−rττµσ2
i dτ = − λ

2r

∆e−r∆

1− e−r∆
n∑
i=1

µσ2
i +

λ

2r2

n∑
i=1

µσ2
i .

(83)

Therefore,

X(∆) = X1(∆) +X2(∆) =
λ

2r2

n∑
i=1

µσ2
i −

λ

2r

(
1− 1 + d

nα− 1

)
∆e−r∆

1− e−r∆
n∑
i=1

µσ2
i . (84)

We can write(
1− 1 + d

nα− 1

)
∆e−r∆

1− e−r∆
(85)

=
(nα− 1)(1 + e−r∆)−

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

2(nα− 1)e−r∆/2
· ∆e−r∆/2

1− e−r∆
.

It is easy to take derivatives to show that both

(nα− 1)(1 + e−r∆)−
√

(nα− 1)2(1− e−r∆)2 + 4e−r∆

2(nα− 1)e−r∆/2
(86)
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and
∆e−r∆/2

1− e−r∆
. (87)

are strictly decreasing in ∆.

Therefore, X(∆) increases in ∆, which means that W (∆) decreases with ∆ and

the optimal ∆∗ = 0. This proves Proposition 5.
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