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Abstract
Management practices have been shown to have a significant and

economicaly large impact on firm output after controling for a range
of standard factors such as other inputs, industry etc. We investigate
non-linearities in the impact of management practices on firm per-
formance using Gaussian process and a continuous piece-wise linear
approach with probabilistically smoothed endogenous breaks. In all
cases we find significant evidence of a U-shaped relationship, with the
biggest returns to management occuring when management practices
are at their highest levels.

1 Introduction

In their seminal paper [2] establish that management practices have a large
and statistically significant impact on output on manufacturing of firms in the
USA, UK, France and Germany. The result is established primarily through
the OLS estimation of an augmented Cobb-Douglas production function. The
Cobb-Douglas framework is standard in the literature because it has proved
to be well behaved in practice and approximates more flexible functional
forms (see [8]).1

∗Corresponding author: Research School of Economics, Australian National University,
Canberra, ACT 0200, Australia. e-mail : kieron.meagher@anu.edu.au

1The [2] results are robust to considering return on assets and Tobin’s Q as dependent
variables and to alternative estimation approaches like [7].
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The Bloom and Van Reenen approach has had significant policy impact
and has been extended to manufacturing firms in over twenty countries across
Europe, Asia and the Americas (see [1]) and to healthcare, retail and schools.
Details can be found at the World Management Survey website2.
The augmented Cobb-Douglas framework yields an estimated 4% increase

in revenue for a one unit increase in the management index, or about a
16% increase in revenue from the 5th to 95th percentile on the management
index (holding other inputs constant). Much theorizing in both Economics
and Management predicts that this impact should not be constant across
the distribution of firms but rather that the impacts of small improvements
should be modest for most firms and that the big payoff comes from getting
the whole bundle of practices right (see [3] for survey and overview of this
extensive literature).
We apply this essentially non-linear (and possibly convex) perspective of

management practices to the original Bloom and Van Reenen analysis by
allowing increased flexibility in the impact of the management term while
maintaining the rest of the original specification and sample. Specifically,
we first consider a Gaussian processes approach in which each firm has its
own management function and secondly a piecewise-linear approach with
probabilistically smoothed endogenous breaks. Both methods reaffi rm the
original finding on the importance of management practices but show the
impact is significantly non-linear and is strongest when firms have most of
their practices right.

2 The Models

2.1 The Data

The survey was collected by telephone interview. Trained MBA students
interviewed a member of a firm’s senior management about management
practices in their firm. The responses were then scored by two scorers using
18 dimensions and a 5 point scale. Publicly reported financial data was then
merged with the management data3. Details of the dimensions and the scor-

2http://worldmanagementsurvey.org
3The issues with estimating production functions from financial/accounting data are

well known but have not proved unacceptable to industrial economics research or national
statiatical agencies. Augmenting the accounting data with management practices seems
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ing method can be found in Bloom and Van Reenen (2007). The choice of
the dimensions to focus on and the details of the scoring is necessarily some
what arbitrary but was constructed to reflect expert opinion from an interna-
tional management consulting firm and has proved to work well statistically
in understanding the impact of management practices.

2.2 Features of Interest

One of the unique features of this dataset is that it allows the analysis of out-
put (as measured by sales) as a function of management practices in addition
to the normal inputs: labor, capital and intermediate goods. To gain an im-
pression of the relationship between management and performance, consider
the histograms and plot in Figure (1) which shows the key distributions and
relationships.
Sales for this set of firms, as is typical, are highly skewed with a long right

tail. Some of this skew is presumably part of the well documented persistent
performance difference among seemingly similar firms ([4]), but some is quite
simply due to differences in scale and input use. Thus sales are a poor subject
to analyse directly to see the impact of management on fifm performance.
To remove the influence on sales of these normal inputs, we regress log

sales on a constant and these factors. Total factor productivity (TFP), calcu-
lated from the constant and residuals of a log-log regression of sales on inputs
represents the differences in firm performance in effi ciency terms. The log-log
regression estimates a Cobb-Douglas production function

Si = AiL
β1
i K

β2
i G

β3
i

as
lnSi = lnA+ β1 lnL+ β2 lnKi + β3 lnGi + εi (1)

where Ai = Aeεi is total factor productivity, L is labor, K is capital and G is
intermediate inputs. Thus the constant plus the residual from this regression,
which we will denote by ai = lnA+εi, represents log TFP as the (log of) sales
unexplained by these factors but which may be explained by other factors
such as management practices. The histogram of ai estimated from (1) is
plotted in the top left hand panel in Figure (1). There clearly remains a
strong right skew in the distribution of ai, although the effect is much less
than would appear in the histogram for Sales.

to address some of the deficiencies in earlier work.
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Recognizing the potential importance of management practices, [2] pio-
neer the analysis in a very natural way by augmenting the standard log-log
specification with the management index, mi, specifically

lnSi = lnAi + β1 lnL+ β2 lnKi + β3 lnGi + β4mi + εi.

The management score is taken by simply averaging a firms score across the
18 categories and is then normalized as a z-score by subtracting the sample
mean and dividing by the sample standard deviation. That is, the z - statistic
computed as an affi ne function of the management index;

zi =
mi −m
sm

where m is the sample mean of mi and sm is the estimated sample standard
deviation. The distribution for the management z-scores is shown in the
bottom right panel of Figure (1). In contrast with the distribution for ai,
the distribution of zi looks relatively symmetric although there is a slight left
skew. It is diffi cult to reconcile the symmetry of the distribution of zi with
the skew in the distribution of ai without looking for other causes of firm
performance or considering a nonlinear relationship between these variables.
As the range of variables in the Bloom and Van Reenen (2007) is already
extensive, we take up investigation of the latter possibility.
Looking at these histograms for total factor productivity ai and the man-

agement score as zi gives only an incomplete picture of their relationship as
each plot is only one-dimensional. We need to consider two-dimensional rep-
resentations of this relationship. The obvious choice of plot - a scatterplot of
these two variables - is, however, even less informative than the histograms.
A more useful impression of this relationship is given in the top right panel of
Figure (1) which plots the median bands plots (essentially a non-parametric
summary of the scatter plot) of ai against zi. To produce this plot, the val-
ues of zi are grouped into nine bands and the median coordinates (median
ai and median zi) from each band are connected by a line. We see in this
image the first evidence of form of the function describing the relationship
between ai and zi which this paper investigates. The most important feature
of the function is the U-shape. The results appear quite nonlinear with a
fall at bottom, little variation across the middle and, in particular, a sharper
increase in performance as the index of management practices approaches
the upper values.

4



Figure 1: Productivity and Management
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The median band plot is a non-parametric summary but it is largely ar-
bitrary due to the need to choose the number of bands, and the appearance
of the curve does change with the number of bands. It takes TFP as given
and then compares it to management rather than including management in
the estimation of the production function and of course in being agnostic
about the structure of an underlying relationship it is limited in terms of in-
ference we can obtain. In the following sections we estimate two alternative
approaches which are something of a middle road, allowing more flexibility
than the linear model while providing more structure and inferential oppor-
tunities than the graphical analysis.

3 Empirical Results

We investigate formal estimates of the functional relationship between firm
performance and management practices. We approach the empirical investi-
gation by beginning with a reasonably general model specification to get an
impression of any likely nonlinearity. The estimate of this model provides
clear evidence that the relationship is not linear and suggests points at which
we might expect changes in the response of sales to changes in the manage-
ment score. This evidence informs us what structure to impose for the second
model which, due to the increased structure, permits formal inference and
more precise estimates of the form of the response of firm performance to the
management score.
Gaussian Process: We begin with an exploratory investigation of the

likely form of the relationship between the response variable of interest and
the management index in which we impose no structure beyond smoothness.
The response variable of interest, such as log sales, we denote by yi. As we
are interested in modelling the response of yi to the management index score,
zi, without making any strong assumptions on the form of this response, we
begin by modelling the response in a very flexible but smooth form using
a Gaussian process. To permit comparison with the results in Bloom and
Van Reenen (2007), we take z on the x− axis. Using a Gaussian process is
sometimes called a nonparametric estimate as no functional form is assumed
for the mean of yi. The model estimated by a Gaussian process is

yi = µi + xiβ + εi

εi ∼ N
(
0, σ2

)
.

6



The coeffi cient µi = µ (zi) varies smoothly with zi but is not otherwise given
a specific functional form. The smoothness is achieved via the correlation
structure among the µi. To describe the process more explicitly, collect the
N different µi into an N ×1 vector µ = (µ1, µ2, . . . , µN)

′ and give µ the prior
distribution µ ∼ N (0, R) where R is an N ×N matrix of correlations. The
strength of the correlation between any two points i and j is determined by
the distance, dij = ‖zi − zj‖, between the two points zi and zj. There are
many ways to specify the correlation structure in R, but for our purposes we
take a squared exponential form such that the correlations are given by

ρij = exp
{
−α
2
h (dij)

}
where hi = h (‖zi − zj‖) > 0 is a monotonically increasing function of the
distance dij. By construction the resulting function will be continuous.
Figure (2) presents the posterior average of the prediction

E
(
yi|zi, xi = x, µ, β, σ2

)
= µi + xβ

obtained using the Gaussian process. In Bayesian analysis, the parameters
are treated as random and unknown, so functions of the parameters, such as
E (yi|zi, xi = x, µ, β, σ2), are also random and have their own distributions.
We denote this function as E (yi|GP ) . and the lower and upper bounds of
the 95% credible interval around E (yi|GP ) are denoted as E (yi|GP ) 5% and
E (yi|GP ) 95% respectively. On the x − axis is the z - statistic computed
from the management index. We also plot the estimated function

E (yi|zi, xi = x) = µ̂zi + xβ̂

where µ̂ and β̂ have been estimate using OLS as in Bloom and Van Reenen
(2007), shown as E (yi|BvR).
The bounds around the nonparametric function E (yi|GP ) largely sup-

port the linear estimate in E (yi|BvR) through the middle region from, say,
zi = −1.37 through to zi = 1.07. Outside this range the estimates disagree
significantly with E (yi|GP ) > E (yi|BvR). It is in the end regions that we
begin to see evidence of deviation from the strictly linear form, although the
deviation could be well described by new linear functions over subregions.
Based upon these observations, and for further reasons discussed below, we
choose to treat the form of the nonlinearity as a sequence of continuous,
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Figure 2: Plot of the Gaussian Processes (GP ) and Linear OLS as in Bloom
and Van Reenen (2007), BvR (2007). For the GP, the plot shows E (yi|GP )
and the lower and upper bounds of the 95% credible interval denoted as
E (yi|GP ) − lower and E (yi|GP ) − upper respectively. On the x − axis is
the z - statistic computed from the management index.

piecewise linear functions with a small number of breaks in the linear func-
tion.
Continuous Piecewise Linear Model (CPLM): Although visual in-

spection of the estimation using the Gaussian Process specification suggests
strong non-linearity, this model does not provide much formal evidence of
non-linearity nor an economically useful indication of key turning points in
the relationship. To obtain estimates of the level at which increases in zi lead
to more pronounced increases in the response variable, we need to impose
a simpler structure on the model which will also permit formal inference on
the response. We therefore propose a piece-wise linear form. However, we
wish to maintain the continuous structure of the model and so we use the
form with B breaks in the continuous piecewise linear mean as a function of
zi. Define the support of zi as M = [z, z] . This support is partitioned into
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B + 1 segments with boundaries at the break points z(j) where z(0) = −∞
and z(B) < max {zi} . We will denote each segment by S(j) where zi ∈ S(j) if
z(j−1) < zi < z(j). The specification of the CPLM is given by

yi = ziµ+

B∑
j=1

(
zi − z(j)

)+
δj + xiβ + εi εi ∼ N

(
0, σ2j

)
where

(
zi − z(j)

)+
= max

(
zi − z(j), 0

)
.

The model with B breaks will have two main blocks of parameters; the kB×1
vector γB = (µ, δ1, ..., δB, β

′)
′ and the vector ofB variances, σ2 = (σ21, ..., σ

2
B) .

The first element in xi is 1.
In this model, the response of E (yi|zi, xi, γB, σ2) to zi is non-linear in

that it depends upon the value of zi. Specifically,

∂E (yi|zi, xi, γB, σ2)
∂zi

= µ+
B∑
j=1

δj1
(
zi > z(j)

)
= θj (zi) . (2)

However, conditional upon being within a segment, the response is linear in
that segment. In other words, for zi ∈ S(J)

∂E (yi|zi, xi, γB, σ2)
∂zi

= µ+
J∑
j=1

δj = θj (3)

where θj =
J∑
j=1

δj.

Were the number, B, and location of the break points, z(j), known, this
specification would constitute a simple regression exercise. However, there is
no theoretical guidance as to where the breaks would be or how many there
should be, so the parameters B and z(j) must be estimated. Collect all of
the break points into a vector z =

{
z(1), z(2), . . . , z(B)

}
. Different values of

(B, z) define different models and we have only informal guidance on what
their values should be. We again take a Bayesian approach as this allows a
natural way to incorporate this model uncertainty.
We compare the support for the models by looking at the posterior prob-

ability that each model is true. We adopt an inverse gamma prior for each of
the σ2j in σ

2, and a standard prior for the kB × 1 vector γB ∼ N (0, Ikcσ
2
i ) .
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The z(j) are assumed unknown and we give them a conditional uniform dis-
tribution over the area from the previous break point, z(j−1), to the end of the
sample. Constraints are imposed to ensure all breaks have non-degenerate
support.
We have chosen a piecewise linear form as this will provide us with clear

estimates of where the relationship between management score and perfor-
mance change, and how this relationship changes. However, as any linear
combination of piecewise linear forms will approximate to a given degree of
accuracy any smooth form, then the mean of all CPLM will be less infor-
mative on the important ‘change-points’and will approximate just a smooth
function. We therefore focus upon the modal model, that is the model (B, z)
with the highest posterior probability of being true and estimate of the re-
lationship from this model. To provide a measure of uncertainty about the
value in (2), we also report the full posterior of θj (zi) averaged over all
models. We explain this concept in more detail below.
The parameter estimates for the modal model are given in Table 1. The

modal model has three breaks, however the first break occurs at the lowest
value of zi, zi = −1.6461, which is observed for the first 1.1% of the obser-
vations. It is reasonable, therefore, to consider that the function only has
two breaks or three pieces to the function. In Table 1, j denotes the segment
or piece in the function. So j = 1 denotes the region before the first break,
j = 2 denotes the region after the first break but before the second, and so
on. In the second column, z(j) denotes the point at which the function breaks
between each piece. The column E (θj) gives the estimate of the term in (3)
and the standard deviation of this estimate is given as

√
V ar (θj). The final

column gives what looks like a t-statistic and indeed it measures the distance
E (θj) is, in standard deviations, from zero.

j z(j) E (θj)
√
V ar (θj)

θj√
V ar(θj)

0 0 -1.1203 0.1132 -9.8973
1 -1.6461 -0.3973 0.1006 -3.9477
2 -1.4046 0.0346 0.0062 5.6214
3 0.92845 0.1715 0.0438 3.9193

Table 1: Estimates of break location, z(j), and slope in each range.

We ignore the value of E (θj) in the first row as it plays no role in the
model and, for reasons we discuss later, we also do not discuss the results for
zi < −1.4046. The largest segment or linear piece in this model extends from
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zi = −1.4046 to zi = 0.92845. In this range, covering roughly three quarters of
the data, the estimate of the effect of management score on log sales at 0.0346
is very close to the estimates of Bloom and Van Reenen (2007). Above this
range the slope of the function is much steeper, 0.1715, suggesting increasing
returns to management practices at higher values. In the following discussion
we demonstrate that we have a high level of confidence in the general form
of this estimated relation over the region zi > −1.4046.
In Figure (3) we again plot the mean and upper and lower bands for

the Gaussian process, but this time we also plot the modal estimate of the
continuous piecewise linear, E (y|CPL−mode), model. The bounds around
E (y|GP ) encompass E (y|CPL−mode) for all of the middle and upper re-
gion. The left hand part of the E (y|CPL−mode) function begins well
above, outside the bounds. We discuss this feature further below and give
details now on the estimates from the modal model.

Figure 3: Comparison of the Gaussian Process and modal model from the
set of Continuous Piece-Wise Linear Models, CPL−mode.

The above results relate to the a posteriori most probable, or modal,
model. As mentioned earlier, there is uncertainty about which is the true
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model such that the estimates from one model will under-represent the true
uncertainty about the estimate. Generally, there is information to be gained
from considering all estimated models and so to incorporate this evidence
we use Bayesian model averaging (BMA). We can use BMA to obtain an
estimate of, for example, the expected level of log sales for different values
of the management score, as presented in Figures (2) and (3). In contrast to
these earlier results, the estimate from BMA will not depend upon a single
model. BMA has been used extensively in a range of applications in, for
example, finance and macroeconomics (see, e.g., Koop, Potter and Strachan
(2008), Koop, Léon-Gonzalez and Strachan (2012) and Strachan and Van
Dijk (2013)).
We provide a brief overview of BMA, further details can be obtained

from a range of textbooks such as Koop (2003). First let there be M
models and denote model s by Ms. We compute the posterior probability
that model Ms is correct, P (Ms|y).4 Next compute the value of Es (yi) =
E (yi|zi, xi = x, γB, σ

2,Ms) for this model. Denote the posterior density of
Es (yi)

5 from model Ms by p (Es (yi) |Ms, y) . This value Es (yi) has an in-
terpretation that is constrained because it is only valid for model Ms. If Ms

is not a good model then it may be that p (Es (yi) |Ms, y) is a very good
representation of the expected of log sales for a given level of management
practices. To remove this dependence on Ms, we use BMA to average the
Es (yi) from all models according to the weights or probabilities associated
with each model. The BMA estimate of the posterior density of Es (yi) is
then

p (E (yi) |y) =
M∑
i=1

p (Es (yi) |Ms, y)P (Ms|y) .

Note that this output still depends upon the data y which is desirable,
but does not depend upon any one model, also an attractive feature. Rather
than simply reporting the mean, we can also report the full distribution of
E (yi) averaged over all models. Figure (4) plots the estimate Es (yi) from
the modal model (again denoted as E (y|CPL−mode)) against the 5th, 50th,
and the 95th percentiles of the distribution of E (yi) averaged over all models,
p (E (yi) |y). We see that the modal value and the percentiles are similar

4A range of sophisticated approaches exist to estimate P (Ms|y). In our model we have
a closed form expression and so can compute this probability exactly.

5Recall that as this function depends upon the parameters γB and σ
2 which are random,

then the function itself is random and has a distribution.
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around the middle and upper regions of zi, above about zi = −1.25. This
suggests that the densities of many of our models are located around the
same area and so we can have a high degree of confidence in how log sales
will respond to increases in the management score over this range.
There is considerable divergence, however, at lower values of zi. Given

that there are far fewer observations of zi at these lower values (see the
bottom left panel in Figure (1)), it is not surprizing that there is much more
uncertainty about the response of log sales to increases of the management
score at these low levels than in the middle. However, although there are
more than at lower values, there are also few observations at high values
of zi where the function is accurately estimated. One possible explanation
for this difference is that the model that is not performing well at the lower
values. Explaining the relationship in this region we therefore leave to further
research.

Figure 4: In this figure are the modal estimate of the CPL model, and the
BMA median and 5th and 95th percentile values of the distribution of E (yi)
averaged over all models.

We conclude with a visual diagnostic of how well the continuous piecewise
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linear model (CPLM) has performed. To do this, we compare the location
of the posterior density p (E (yi) |y) from the CPLM to the location of the
density for the same parameters from the Gaussian Process which assumed
no functional form beyond there being a smooth relationship. Figure (5)
plots the 5th and 95th percentiles of the distributions of E (yi|GP ) from the
Gaussian process (dashed lines) and the BMA estimate E (yi|CPLM) of all
of the CPL models (the solid lines). These agree very closely except at the
very low values of zi. This agreement suggests that the simpler model, the
CPL, captures the general form of the relationship well compared to a much
more relaxed or general form as implied by the Gaussian process.

Figure 5: This figure plots the 5th and 95th percentiles of the response of log
sales to the management index for the Gaussian process model and the CPL
model averaged over all models by BMA.
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4 Conclusion

TheWorldManagement Survey research agenda has been successful in demon-
strating that good management is, to some degree, measurable and that the
measured management has a significant impact on economic output. Moti-
vated by theory, we investigated the possibility of a non-linear relationship
between management and output. We found significant evidence of a U-
shaped relationship from the graphical median bands plot between TFP and
management; from a very flexible Gaussian processes model which allowed
each firm to have its own output related function of management (with these
functions varying smoothly between close firms) and finally from a piecewise-
linear approach with probabilistically smoothed endogenous breaks.
All these approaches allowed suffi cient flexibility to avoid our conclusions

being driven by assumed functional forms. Taken together the evidence sug-
gests that the original finding of [2], that management has a positive impact
on output is broadly correct. Rather importantly, the returns to improving
management for most of the sample are relatively flat compared to the very
steep, positive returns for firms with the high existing levels of management.
These results are consistent with theories of managerial complementaries,
but are also consistent with management as a (approximately) weakest link
or superstar technology. A weakest link technology would mean that the
highest returns would require all the practices to improve together. The lit-
erature on superstars emphasizes the returns to performance can be highly
non-linear with the classic example being the (almost) winner-takes-all na-
ture of sporting competitions. To the degree that sales reflects innovation
and quality, better management might be reflected in increased benefit per
unit, not reduced cost per unit.
The U-shaped relationship also helps reconcile the findings on the impact

of management with the large literature on persistent performance differences
(see [4] for a survey). If firms are only able to make incremental improvements
in management due perhaps to change costs or institutional constraints then
firms with low and medium management scores will have much less incentive
to invest in change than high management score firms and as a result the
status quo will be maintained, i.e. top performers will tend to stay ahead.
This area of empirical research is in its infancy and there is ample opportu-
nity for new studies and surveys to throw further light on the considerable
complexities of the internal organization of firms.
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