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Abstract. Many websites rely on user-generated content to provide value to consumers.
Often these websites incentivize user-generated content by awarding users badges based on
their contributions. These badges confer value upon users as a symbol of social status. In
this paper, we study the optimal design of a system of badges for a designer whose goal
is to maximize contributions. We assume users have heterogeneous abilities drawn from a
common prior and choose how much effort to exert towards a given task. A user’s ability
and choice of effort determines the level of contribution he makes to the site. A user earns
a badge if his contribution surpasses a pre-specified threshold. The problem facing the
designer then is how to set badge thresholds to incentivize contributions from users. Our
main result is that the optimal total contribution can be well-approximated with a small
number of badges. Specifically, if status is a concave function of the number of players with
lower rank, then a single badge mechanism that divides players in two status classes suffices
to yield a constant approximation, whilst for more general functions we show that typically
logarithmic, in the number of players, badges suffice. We also show that badge mechanisms
with a small number of badges have nice structural stability properties for sufficiently large
number of players.

1. Introduction

A number of popular sites on the web today are driven by user-generated content. Review
sites such as Yelp and TripAdvisor need users to rate and review restaurants and hotels, social
news aggregators like Reddit rely on users to submit and vote upon articles from around the
web, and question and answer sites like Stack Overflow and Quora depend on their users
to ask good questions and provide good answers. Stack Overflow, a user-driven Q&A site
for programming questions, is one of the most successful of these sites; over five million
questions have been asked, with over 60% of those questions receiving a satisfactory answer.
An often-cited reason for the high quality of the Stack Overflow community is the clever
system of reputation points and badges it employs. While the main actions on SO are posting
and answering questions, a variety of other activities such as flagging posts for moderation,
rating contributions, etc are all necessary to maintain a healthy and vibrant discourse on the
site. Stack Overflow motivates question and answers through the use of reputation points
but all of these secondary activities are motivated by awarding badges. A badge is a small
symbol displayed on a user’s profile and posts and is typically awarded for accomplishing
a fixed task, such as answering ten questions, reviewing 100 restaurants, or completing an
online course. Most badge systems are not designed to promote competition among users but
simply to reward individual accomplishments. As such, badges do not have the exogenously
imposed scarcity that ranking systems (top 10 contributors) or contest systems (medals for
first, second, and third place) have. In this paper, we examine the incentives created by these
badge schemes and focus on designing badge schemes that maximize the user contributions
to a site.

Badge systems have become particularly popular in web communities over the past few
years. In addition to Stack Overflow, the Huffington Post recently implemented a badge
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system to reward actions from their commenters; these badges are now prominently displayed
next to usernames in the comment sections. Foursquare, a mobile social networking app,
awards badges for visiting certain locations or accomplishing certain tasks while there. The
Mozilla Foundation is leading an initiative called the Open Badge Project which hopes to
set an open standard for awarding, collecting, and displaying badges. Their ultimate goal
is provide a persistent collection of badges that can be displayed anywhere on the web as a
proof of acquired skills and achievements.

With all this excitement and energy surrounding badge systems, one fundamental question
emerges: why do people care about badges? On the surface level, a badge is just a small
sticker or group of pixels on a profile, so why should it be that badges incentivize people to
exert effort to earn them? In this work, we posit the primary value of a badge is derived from
its ability to confer social status to it’s owner. The most valuable badges not only signal
that a user has accomplished a certain task but they also signal that relatively few users
have earned them. Indeed, many systems include a top level of badges such as the “gold”
badges on Stack Overflow or the “Superuser” badge on Huffington Post, which are described
to be difficult to earn and only awarded to the most committed users. As more users earn a
particular badge, that badge loses its ability to distinguish a member within the community
and thus becomes less valuable. This work studies optimal badge design when badges are a
means for establishing relative social status.

The goal of the designer is to maximize the total contributions that users make towards a
single task on the site. Then the main question is how to design a set of badges to maximize
the total output that users contribute to that task? How many badges does the designer
need to set and how should they be awarded? For example, if Yelp wants to maximize the
number of reviews they receive, should they award just one badge for contributing at least
50 reviews or should they have one badge for 10 reviews and another badge for 100 reviews?
In our model, users have heterogenous abilities for certain tasks on a site; users of low ability
need to exert more effort to produce the same output as high ability users. This is effort is
costly to users, so they will balance the value they get from earning a badge with the effort
it takes to do so. Users all have the same base value for a badge (normalized to 1) but the
value of a badge diminishes as more users acquire it. The way in which each agent’s value for
a badge diminishes with the number of others users that have it is given by a status function.

In keeping with the general design and ethos of badge systems, we study badge mechanisms
which use a small number of threshold badges. A threshold badge is one which is awarded
to any user who contributes more than a fixed threshold, such as a badge for answering 10
questions, another badge for answering 100 questions, etc. In this sense, badges are used to
reward absolute accomplishments rather than relative ones. Thus the designer cannot use
the ex-post scarcity imposed by schemes such as awarding only the top 10 contributors or
ranking players into 1st, 2nd, ..., to motivate agents. We insist that our mechanism use a small
number of badges for two reasons. On a technical level, a badge mechanism with an arbi-
trarily large number of badges can essentially implement a ranking mechanism, so allowing
for an arbitrarily large amount of badges would not elucidate the fundamental differences
between threshold badges and rankings. Furthermore, badge systems tend to have a small
number of badges in practice. StackOverflow, for example, divides their badge systems into
just three tiers, bronze badges, silver badges, and gold badges. Bronze badges are awarded
for small contributions, such as editing 10 posts, silver badges for medium contributions,
editing 80 posts, and gold badges for high contributions, editing 500 posts. Similarly, The
Huffington Post divides their badge system into two categories (“level 1” and “level 2”), and
many other systems (such as traveler status with airlines) employ the “bronze,silver,gold”
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reward structure. A system with a small number of badges can be advantageous in many
scenarios, such as when it is costly to implement additional badges or when an overly com-
plex badge structure may overwhelm users. In this work, we describe the size of a badge
mechanism by the number of badges it specifies. The results in this paper show that small
badge mechanisms are competitive with both arbitrarily large badge mechanisms and general
ranking mechanisms.

Our main result is that the optimal small badge mechanism receives at least a constant
fraction of the contributions elicited by the optimal mechanism, but the precise definition
of “small” is determined by the shape of the status function. When the status function
is concave, i.e. the marginal value of increasing status decreases as status gets higher, a
single badge is sufficient to achieve a 4-approximation to the optimal mechanism. Further,
if the status function is linear, this result is improved to a 2-approximation. However, if the
concavity condition fails, log(n) badges are necessary for a badge mechanism to approximate
the optimal mechanism within a constant factor, where n is the number of agents. For general
status functions, if the status of the highest-contributing agent is no more than B times the
status of the lowest-contributing agent, then a badge mechanism with log(B) badges gives a
2-approximation to the optimal mechanism. For a number of a natural status functions, this
bound B is at most the number of agents.

The remainder of the paper is laid out as follows. In section 3 we formally describe our
model and we characterize the equilibria of this model in section 4. In section 5 we derive
the form of the optimal mechanism and use that characterization in section 6 to show that
small badge mechanisms are approximately optimal.

2. Related Work

The paper that is most closely related to ours is that of Moldovanu, Sela, and Shi [12], and
in fact, the specification of the game is identical to our setup (which is also used in [5]): agents
exert effort towards some task, are assigned into categories based on their output, and gain
(or lose) social status based on the rank of their category. When the distribution of agents’
abilities satisfy a monotone hazard rate assumption, they find the optimal mechanism assigns
agents to unique categories and further show that a coarse partitioning of agents into one
of two categories (winners or losers) can elicit at least half of the total effort as the optimal
mechanism. Our work differs in two important ways. First, their mechanism assigns each
agent into a category based on his relative position in the ranking of all contributions while our
mechanism assigns agents into categories only based on absolute thresholds for contributions.
Second, [12] considers a specific social status function that is a linear function of the number
of players you beat and the number of players you lose to. Specifically, each player gets a
utility of 1 for each player he beats and a utility of −1 for each player that he loses to. In our
setting we consider arbitrary status functions of the number of players that a person beats
(is ranked strictly higher). [12] shows that only two status classes are sufficient to yield a
2-approximation to the optimal mechanism for monotone hazard rate distributions. We show
that for any concave status function a single badge mechanism, which also discriminates in
two status classes, is a 4-approximation to the optimal mechanism for the more general class
of regular functions. Thus our setup is more general than the one in [12] in two ways: first
the more general class of regular distributions is used, and an arbitrary status function is
analyzed. The restriction is that this status function is dependent only on one parameter:
the number of players that are ranked strictly lower, rather than on two parameters as in
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[12]: the number of players ranked strictly lower and the number of players ranked strictly
higher.

Dubey and Geanakoplos [5] consider the same contest for status but assume each player
has complete information about the types of other players. In contrast to the incomplete-
information game, they find that the optimal mechanism will often group multiple players into
the same status category which illustrates the differences in the incomplete versus complete
informations settings.

Hopkins and Kornienko [9] consider a model where consumers care about their social
status, as determined by their consumption of a “positional” good, and study how shifts in
equality in the societal distribution of income affect conspicuous consumption. They use a
connection between first-price auctions and their status model in order to reason about the
strategic behavior induced by status concerns. Our work extends this connection by drawing
a link between a wider class of social status functions and allocations resulting from a general
mechanism.

There’s a growing literature on the role and design of incentives systems in online settings
such as question and answer websites (e.g. StackOverflow, Quora, etc). This line of the
literature considers how to award virtual points on a website in order to maximize some
objective for the designer. In the context of Q&A sites, Ghosh and Hummel [7] show that
a simple scheme of giving a large amount of points to the winning answer and a smaller
amount of points to each remaining answer can maximize a large class of objective functions.
Further, they show always choosing the best contribution to be the winning contribution
actually decreases the designer’s value. Jain, Chen, and Parkes [10] study the design of Q&A
reward schemes in a more complex environment where users contribute answers sequentially
and the value of a contribution may vary based on the set of other contributions the designer
receives, such as the case where contributions may compliment each other. They show there
is no mechanism which can achieve the efficient outcome for every type of valuation for the
designer. Hartline et al [4] study crowdsourcing contests where the principal only receives
value from the highest quality submission, as is the case with crowdsourcing tasks such as
the design of a poster or a logo. Using tools from optimal mechanism design, they show the
optimal crowdsourcing contest gives all the prize money to the best contribution and nothing
to all other contributions. Cavallo and Jain [3] shows that winner-take-all contests are not
welfare-maximizing when there’s uncertainty in the conversion from effort to quality and
instead propose a mechanism where every contributor earns a minimum amount of money.

Easley and Ghosh [6] consider a model of earning badges in the presence of noisy observa-
tions. They show that when a user’s value for a badge is exogenously determined, the optimal
badge structure is to award the badge only to a fixed number of top contributors. They also
extend their model to the case when a user’s value for a badge changes based on the number
of other users who have earned that badge and interestingly show that a designer can take
advantage of user uncertainty over the number of badge earners in order to incentivize more
contributions. Depending on the shape of the badge value function (as a function of mass of
users who have earned that badge), hiding the number of winners may increase or decrease
contributions in equilibrium. Kleinberg et al [1] find empirical evidence that people are mo-
tivated by badges; using the public logs from Stack Overflow, they show that as users get
closer to the threshold for winning a particular badge, they spend comparatively more effort
performing the action associated with that badge. They also develop a theoretical model
describing a how a single user may change his behavior to earn badges, and how to design
badge thresholds under this model.
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3. Badge Utilities and Social Status

We consider the following game theoretic model of contributions to a user-driven site.
There are n players each having ability vi with respect to some task which the designer
wishes to incentivize. Ability is a context-specific trait such as programming knowledge in
the case of Stack Overflow or inherent ability to write good restaurant reviews. If player i
invests effort ei on this task, then she produces an output of bi = vi · ei. A user’s output
is their observed contribution to the site, such as the number of questions answered or the
quality of a restaurant review. The goal of the designer is to maximize the sum of the output
of all players

∑
i bi.

Badge Mechanism. Before players invest effort, the designer defines a badge mechanism,
which is a set of m badges associated with this task. Specifically, each badge j ∈ [m] is
awarded to a user if her output bi is at least some threshold θj . As an example badge
mechanism, if the designer sets the badge thresholds θ = (10, 100, 200), it indicates that he
awards badge 1 for answering 10 questions, badge 2 for 100 questions, and badge 3 for 200
questions. Without loss of generality, we assume θ1 ≤ . . . ≤ θm. Given a player’s output
bi we denote a player’s rank r(bi) as the highest badge that player i wins, i.e. the highest
threshold θj such that bi ≥ θj . If a player doesn’t win any badge then we assume his rank is
zero.

Player Utilities. In this paper, a player’s value for a badge is determined endogenously
by its ability to signal social status within the community. If a player receives multiple
badges, they only value the highest badge they won. Thus their value is determined by their
rank. Given a profile of the ranks of all players r = (r1, . . . , rn), a player’s value for her
rank is some continuous decreasing function S (·) : [0, 1] → R+ of the proportion of people
that have an equal or higher rank (and zero in the case when she receives no badge). For
example, S (t) could be the proportion of the population that a player beats, S (t) = 1 − t,
or it could be the inverse of the proportion of the population that is at least as good as the
player S (t) = 1

t . We return to these two examples later in the paper.

Let ti(r) =
|{j∈[n]:rj≥ri}|

n denotes this proportion. A player’s utility is quasi-linear in their
value for their rank and the effort they exerted:

(1) ûi(r, ei) = S (ti(r)) · 1ri>0 − ei

We refer to the first term as the status value and we denote it as xi(r) = S (ti(r)) · 1ri>0.
Given a particular badge mechanism, the rank of a player is determined by the profile of

outputs b = (b1, . . . , bn). Also observe that a player’s effort is a function of their output and
ability, so we can rewrite a player’s utility as:

(2) ûi(b; vi) = xi(r(b))−
bi
vi

Additional Assumptions. We assume that each player’s ability vi is private information
and is drawn independently and identically from a commonly known, atomless, and regular1

distribution F with support [0, v̄] and density f (·). Hence, any badge mechanism defines a
game of incomplete information among the n players. We analyze the Bayes-Nash equilibria
of this game. A BNE is a profile of mappings from abilities vi to outputs bi(vi) such that
each player maximizes their utility in expectation over the abilities of the rest of the players.
For all vi, b

′
i:

(3) Ev−i [ui(b(v); vi)] ≥ Ev−i

[
ui(b

′
i, b−i(v−i); vi)

]
1A distribution F is regular if v − 1−F (v)

f(v)
is (weakly) monotone in v.
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Since each player is maximizing his utility conditional on his value, we can equivalently
assume that a player’s utility is:

(4) ui(b; vi) = vi · ûi(b; vi) = vi · xi(r(b))− bi

because any strategy which maximizes their original utility û also maximizes u. This new
formulation allows us to see that this game is equivalent to an all-pay auction where a player’s
allocation is a function of the ranks assigned to all players.

To summarize the timing of the game, the designer first announces a set of badges θ. Each
agent then learns his ability vi and simultaneously decides how much output bi to contribute
to the site. The designer observes the output of each agent and awards badges based on the
thresholds for each badge.

Main Question. The designer of the badge mechanism is interested in maximizing the
expected total output produced by the players: E[

∑
i bi(vi)], which is exactly the revenue of

the corresponding all-pay auction. We consider two main questions:

(1) Given a distribution of abilities, how should the designer set badge thresholds to max-
imize expected revenue?

(2) How many badges are sufficient to closely approximate the revenue achievable by any
mechanism in this context?

4. Uniqueness and Characterization of Bayes-Nash Equilibrium

We begin our analysis by characterizing the Bayes-Nash equilibria induced by any badge
mechanism. This model falls within the class of symmetric ranking mechanisms of Hartline
and Chawla [4] and therefore has a unique Bayes-Nash equilibrium. This equilibrium is
symmetric and monotone, i.e. each player uses the same strategy mapping bi(vi) = b(vi)
and this mapping is monotone in the player’s ability. Thus we just need to characterize this
unique symmetric Bayes-Nash equilibrium in order to analyze this game.

We start by observing that if a player gets rank ri, her output should be exactly the
threshold to win that badge, θri , because producing more output would cost more effort and
would not increase her value. Since the equilibrium mapping is monotone in ability, the
equilibrium is defined by a set of thresholds in the ability space of the players a1, . . . , am,
such that if player i has ability vi ∈ [at, at+1) then he produces output b(vi) = θt. If vi < a1
then b(vi) = 0 and if vi ≥ am then b(vi) = θm.

So given a badge mechanism with contribution thresholds θ = (θ1, . . . , θm), the resulting
BNE is defined by a vector of thresholds on player ability, but it remains to compute those
ability thresholds. We compute these thresholds using the Bayes-Nash equilibrium charac-
terization of Myerson [13] for quasi-linear utility, single-dimensional type environments. For
a fixed mapping b(·), we denote with x̃i(vi) = Evi−i [xi(r(b(v))], the expected status value
player i gets, assuming each player uses strategy b(·). x̃i(vi) is often referred to as the in-
terim allocation of player i. Since our setting is completely symmetric, the interim allocation
function is the same for all players, and we will denote it with x̃ (·). Now observe that the
expected utility of a player with ability vi, assuming that everyone employs strategy b(·), is :

(5) Ev−i [ui(b(v); vi)] = vix̃ (vi)− b(vi)

Myerson’s equilibrium characterization, when applied to our setting, states that b(·) is an
equilibrium only if x̃ (vi) is monotone in vi and:

(6) b(vi) = vix̃ (vi)−
∫ vi

0
x̃ (z) dz
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Additionally, if the function b(·) spans the whole region of feasible bids, then the latter is
an if and only if statement. The latter won’t be true in our setting. However, the proposed
strategy b(·) will include all the feasible undominated bids, which is all the badge threshold
bids. Hence, if we find a strategy that satisfies the above equation then that strategy will be
an equilibrium.

Now consider the mapping b(·) that corresponds to some vector of value thresholds a as
explained previously. For a player with value vi ∈ [at, at+1] we can compute explicitly his
expected status value as follows: we know that every player with value vj ≥ at will be assigned
a rank at least as high as player i. Thus the status value of player i is the same as the social
status of a player with value at and is simply the expected value of S

(
T+1
n

)
where T is the

random variable denoting the number of players other than player i that have value above
at. This can be computed as follows:

(7) x̃ (at) =
n−1∑
ν=0

S

(
ν + 1

n

)
· βν,n−1 (1− F (at))

where βν,n(x) =
(
n−1
ν

)
· xν · (1 − x)n−1−ν , denotes the Bernstein polynomial. It is also easy

to see that if S (x) is a strictly increasing function then x̃ (at) is also strictly increasing.
Additionally, since F is an atomless distribution, x̃ (at) is continuous and differentiable and
x̃ (v̄) = S (1/n) and x̃ (0) = S (1).

Using the step nature of the interim allocation function and the fact that by the initial
analysis, a player with value vi ∈ [aj , aj+1] bids θj , the equilibrium characterization (6) simply
becomes:

(8) θj = a1 · x̃ (a1) +
j∑

t=2

at · (x̃ (at)− x̃ (at−1))

This relation is depicted in Figure 1. Observe that the above defines a system of m equalities

Θ4

Α1 Α2 Α3 Α4 Α5
v

x�HΑ1L

x�HΑ2L

x�HΑ3L

x�HΑ4L

x�HvL

Figure 1. Relation between interim allocation probability and badge thresh-
olds at equilibrium.

that have a unique solution. An equivalent way of phrasing the above equations is that:
a1 · x̃(a1) = θ1 and for j ∈ [2,m]:

(9) aj · (x̃ (aj)− x̃ (aj−1)) = θj − θj−1
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Thus, given a profile of badge thresholds θ, we can iteratively solve for the profile of ability
thresholds a as follows: find a solution to the equation θ1 = a1x̃ (a1). Observe that v̄ · x̃ (v̄) =
v̄ · S (1/n), 0 · x̃ (0) = 0, v · x̃ (v) is continuous increasing. If θ1 < v̄ · S (1/n) then a unique
solution exists. Otherwise, no player is willing to bid as high as θ1 and the recursion stops.
Subsequently, find the solution a2 to the equation: θ2 − θ1 = a2(x̃ (a2)− x̃ (a1)). For similar
reason, either a unique such solution exists or no player (not even a player with ability v̄) is
willing to bid θ2 rather than bid θ1 and we can stop the recursion. Then solve for a3, . . . , am
in the same way.

The following corollary of the above discussion summarizes a property that will prove very
useful in subsequent sections:

Corollary 1. There is a one-to-one correspondence between a vector of ability thresholds
a = (a1, . . . , am) and a vector of badge thresholds θ = (θ1, . . . , θm) such that: 1) the badge
mechanism with badge thresholds θ has a unique Bayes-Nash equilibrium were a player with
ability vi ∈ [aj , aj+1) will win badge j, a player with ability vi ≥ am will win badge m and
a player with ability vi < a1 will win no badge, 2) this is the unique badge mechanism that
implements these ability thresholds. When this is the case, we say θ implements a.

Instead of setting badge thresholds, a designer could optimize over thresholds in the ability
space and then compute the badges needed to implement the ability thresholds. Intuitively,
this design can be thought of as the direct-revelation equivalent of the badge mechanism
design. This formulation of the problem is easier because we no longer need to worry about
the induced equilibrium behavior. For the remainder of the paper, we focus on this version
of the problem.

Quantile Space. Another convenient way of characterizing a badge mechanism is through
the notion of the upper quantile of a distribution. Given a distribution F of abilities, the
quantile of ability vi is the probability that a random sample from F is at least as high as vi:

(10) q(vi) = 1− F (vi)

For an atomless continuous distribution F , there is a one-to-one correspondence between
abilities and quantiles. Define v(qi) = F−1 (1− qi) to be the ability corresponding to quantile
qi. We can also define the interim allocation of a player as a function of his quantile rather
than his ability.

(11) x̂ (qi) = x̃ (v(qi)))

It is easy to see that there is a one-to-one correspondence between a vector of thresholds
a = (a1, . . . , am) in ability space and a vector of thresholds κ = (κ1, . . . , κm) in quantile
space. A higher ability corresponds to a lower quantile, with q(v̄) = 0 and q(0) = 1, and
therefore if a1 ≤ . . . ≤ am, we have κ1 ≥ . . . ≥ κm. Hence, the designer can equivalently
think of designing his thresholds in quantile space rather than ability space. By the above
observation and Corollary 1, for any vector of thresholds κ in the quantile space, there exists
a vector of badge thresholds θ that will implement κ in the unique Bayes-Nash equilibrium.

Given a badge mechanism defined by a vector of quantile thresholds κ, the interim alloca-
tion of a player with quantile qi ∈ [κt+1, κt] is simply:

(12) x̂ (qi) = x̂ (κt) =
n−1∑
ν=0

S

(
ν + 1

n

)
· βν,n−1(κt)

Using the equilibrium characterization we can compute the expected revenue produced
by a set of badges with thresholds κ = (κ1, . . . , κm) in the quantile space as follows: If a
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player has quantile qi ∈ [κj , κj+1] then by Equation (8) we get that he submits a bid of

θj =
∑j

t=1 v(κt) (x̂ (κt)− x̂ (κt−1))).
2 The latter happens with probability κj − κj+1. Thus a

player’s expected payment, after some rearrangements, is:

Evi [b(vi)] =
m∑
j=1

j∑
t=1

(κj − κj+1)v(κt) (x̂(κt)− x̂(κt−1))

=
m∑
t=1

m∑
j=t

(κj − κj+1)v(κt) (x̂(κt)− x̂(κt−1))

=
m∑
t=1

κt · v(κt) · (x̂(κt)− x̂(κt−1))

Let R(x) = v(x) ·x, which is usually denoted as the revenue function of the distribution [2, 8],
since it corresponds to the revenue of a monopolist, facing a single buyer and posting a price
such that he sells with probability x.Thus the total revenue of the mechanism is simply:

E

[∑
i

bi(vi)

]
= n ·

m∑
t=1

R(κt) · (x̂ (κt)− x̂ (κt−1))(13)

= n ·
m∑
t=1

(R(κt)−R(κt+1)) · x̂ (κt)(14)

5. Optimal Ranking Mechanism

In the previous section, we observed that a badge mechanism induces a ranking among
players; the players who win the highest badge are assigned the highest rank, players who
win the second highest badge are assigned the second highest rank, and so on. These badge-
induced rankings are just one example of a general mechanism which collects contributions
from agents and assigns ranks based on that output. For example, we could collect con-
tributions and then assign the highest contributor to the highest rank, the second highest
contributor to the next rank, etc. Another mechanism could assign the 10 highest contribu-
tors to the highest rank, then the next 100 highest contributors to the second highest rank,
and the lowest rank to every other player.

Along the same lines, one could ask the question of how does a badge mechanism with
a fixed or small number of badges compare with respect to a mechanism with a continuum
of badges (observe that adding more freedom to the designer to use more badges can only
increase optimal revenue). A continuum of badges essentially, can simulate any symmetric
ranking mechanism where rank is monotone in ability. For instance, it can simulate the
mechanism where every player is assigned a distinct rank.

Each of these mechanisms would incentivize players to invest effort and contribute to the
site because it gives them a way to achieve social status. In this section, we characterize the
optimal ranking mechanism. We show that the optimal mechanism is a fully discriminatory
one, that assigns a distinct rank to each player in decreasing order of submitted quality. In
the next section we show that a simple badge mechanism provides a good approximation to
the optimal mechanism.

We first introduce the optimal mechanism design problem. Suppose the designer is allowed
to run an arbitrary mechanism that asks each player to report their ability, and then outputs

2For notational convenience assume that κ0 = 1 with x̂(κ0) = 0 and κm+1 = 0 with x̂(κm+1) = 1.
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a rank profile r = (r1, . . . , rn) and an output profile b = (b1, . . . , bn), such that each player
i contributes bi and is assigned rank ri. Each player’s utility for any such output is of the
form ui(r, bi) = vi · x(r)− bi, where x(r) is as defined in the Section 3. The only restriction
we make on the mechanism is that each player’s expected utility is non-negative, i.e. it is
rational for participate in the mechanism. What is the mechanism that produces the highest
expected revenue in Bayes-Nash equilibrium?

This scenario is the classic single-parameter optimal mechanism design setting with quasi-
linear utilities. By the Revelation Principle the designer can restrict himself to direct Bayesian
incentive compatible mechanisms of the form: players report their abilities, the designer
decides an allocation of ranks based on the reported abilities, and then asks the players to
output some bi such that truthfully reporting ability is an equilibrium for all players in the
resulting game of incomplete information.

Before computing the revenue-optimal allocation, we compute the welfare-optimal alloca-
tion. The social welfare in this setting is defined as the sum of all agents utilities plus the
utility for the designer. The utility for the designer is equal to the sum of the output for the
agents. For a given vector of abilities v, an allocation of rankings r and a vector of agent
outputs b, the social welfare is as follows.

(15) SW (v, r, b) = SWplayers + SWdesigner =
∑
i

vi · x(r)

In words, each agent’s contribution to the social welfare is equal to his ability weighted by
status value. The following lemma shows welfare is maximized3 by assigning assigning each
player a different rank in decreasing order of ability.

Lemma 2. If v1 ≥ v2 ≥ . . . ≥ vn then the optimal social welfare is achieved by assigning
r1 = n, r2 = n− 1, . . . , rn = 1, producing welfare of:∑

i

vi · x(r) =
∑
i

vi · S
(
i

n

)
Proof. The statement follows by the following arguments: first it is easy to see that the rank
should be monotone non-decreasing in the value, since if vi > vj and ri < rj then we can
increase welfare by swapping the ranks of player i and player j. Additionally, if for some set
of values vi ≥ vi+1 ≥ . . . vi+k we have ri = . . . = ri+k then by discriminating vi to be strictly
higher than the rest of the values increases the welfare. More concretely, for any j > i we can
set r′j = rj+1. The satisfaction of all players j > i doesn’t change since the number of people
that have rank at least as high as them remains the same. Additionally, the satisfaction of
player i strictly increases, since the number of people ranked at least as high as him, strictly
decreased.

Myerson’s characterization states that the expected revenue of any mechanism is equal to
its expected virtual welfare, the sum of each agent’s virtual value. To continue the analogy
between the all-pay auction setting and our model, we analogously define the virtual ability
of an agent with ability vi to be

(16) ϕ(vi) = vi −
1− F (vi)

f (vi)

3This lemma is not characterizing the welfare-optimal because we transformed utilities in equation 4.
However, this lemma is useful for characterizing the revenue-optimal mechanism.
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Then the virtual welfare of any ranking mechanism is
∑

i ϕ(vi) · x̃ (vi). The expected total
output of any mechanism in any equilibrium profile (b1(·), . . . , bn(·)) is equal to the virtual
welfare.

(17) Ev

[∑
i

bi(vi)

]
= Ev

[∑
i

ϕ(vi) · x̃ (vi)

]
This characterization and lemma 2 imply that the optimal mechanism orders players by

decreasing virtual ability and assigns them a unique rank, so long as their virtual ability is
positive. Players, with negative virtual value are assigned rank 0. In section 3 we assumed
the ability distribution F is regular, so virtual ability is monotone in ability and ordering by
virtual ability is equivalent to ordering by ability. The optimal mechanism then asks each
player to contribute an output of bi(vi) according to the payment identity (6).

Corollary 3 (Optimal Ranking Mechanism). If players are distributed i.i.d. according to
a regular distribution F , then the optimal mechanism asks from players to report abilities,
assigns rank 0 to any player with ability vi ≤ η, where η is the solution to the equation
ϕ(η) = 0 (monopoly reserve), and assigns distinct ranks to the rest of the players in decreasing
order of their abilities. Last it asks from each player to submit an output:

(18) bi(vi) = vix̃ (vi)−
∫ vi

0
x̃ (z) dz

where

(19) x̃ (vi) =
n−1∑
ν=0

S

(
ν + 1

n

)
βν,n−1(1− F (vi))

Observe that the interim allocation of a player under a badge mechanism is equal to the
interim allocation of the lowest ability player in his badge under the optimal mechanism. Thus
the interim allocation of a badge mechanism can be thought of as a downwards rounding of
the interim allocation of the optimal mechanism.

Equivalently, the optimal mechanism can be described in the quantile space, as ordering
players in increasing quantile after discarding player with quantile higher than the quantile
κ∗ corresponding to the monopoly reserve η and asking a player with quantile qi to submit a
bid of:

(20) bi(qi) = v(qi) · x̂ (qi)−
∫ qi

1
x̂ (z) dz

where

(21) x̂ (qi) =
n−1∑
ν=0

S

(
ν + 1

n

)
βν,n−1(qi)

for any qi ≤ κ∗ and 0 otherwise. The revenue of the mechanism can be computed through
the use of the revenue function R(x) = x · v(x):

(22) Ev

[∑
i

bi(vi)

]
= n

∫ κ∗

0
R′(q) · x̂ (q) dq = n

(
R(κ∗) · x̂ (κ∗)−

∫ κ∗

0
R(q) · x̂′ (q) dq

)
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6. Approximating Optimal Revenue with Small Number of Badges

In this section, we show that simple badge mechanisms can achieve a constant approxima-
tion of the output generated by the optimal mechanism, under very generic assumptions on
the social status function S (·) : [0, 1] → R+. We break our analysis based on the convexity of
the status function. We show that when social status is a concave function of the proportion
of players ranked at least as high (i.e. the marginal increase in status decreases as you beat
more and more players), then a single badge can achieve a 4-approximation to the optimal
mechanism. On the contrary, when status is a convex function we show examples where a
logarithmic in the number of players loss is necessary for any fixed number of badges. We also
provide logarithmic upper bounds for several natural classes of non-concave status functions
and give a generic upper bound that applies to any status function, stating that a number of
badges that is logarithmic in the ratio between the highest and lowest status is sufficient.

6.1. Decreasing Marginal Status Functions. Concavity of the status function implies
that the marginal increase from beating one extra person decreases as a player is closer to the
top. For such status functions we show that a very coarse status discrimination is sufficient
to incentivize players to invest close to the optimal effort.

Theorem 4. If the social status function S (·) is concave, then a single badge, with quantile
threshold equal to half the monopoly quantile, can achieve a 4-approximation to the optimal
revenue.

Proof. Let OPT denote the revenue of the optimal mechanism and APX the revenue of the
single badge mechanism. A single badge mechanism at quantile κ achieves revenue of

(23) APX = n ·R(κ) · x̂ (κ)

We will show that if we set κ = κ∗

2 then 4 ·APX ≥ OPT .
First we point out that if the social status function is concave, then x̂ (q) is also a concave

function. This follows from known facts about binomial distributions and derivatives of
Bernstein polynomials. Thus x̂ (q) is a decreasing concave function of q. From this fact it
follows that:

(24) x̂

(
κ∗

2

)
≥ x̂ (0) + x̂ (κ∗)

2
≥ x̂ (0)

2

Additionally, by regularity of the distribution we know that R(q) is a concave function
and additionally, for any q ≤ κ∗, R(q) is increasing (since, κ∗ is defined as the point where
R′(κ∗) = 0). Additionally, R(0) = 0. From this it follows that:

(25) R

(
κ∗

2

)
≥ R(κ∗)

2

Combining the two we get that the revenue of the single badge mechanism is at least:

(26) APX ≥ n · R(κ∗) · x̂ (0)
4

By the fact that R(q) is increasing in the region [0, κ∗] we have that R(q) ≤ R(κ∗). Since
x̂ (q) is decreasing in q (i.e. x̂′ (q) ≤ 0) we have that: R(q)x̂′ (q) ≥ R(κ∗)x̂′ (q). Thus, we can
also upper bound the revenue of the optimal mechanism:

(27) OPT ≤ n

(
R(κ∗) · x̂ (κ∗)−R(κ∗)

∫ κ∗

0
x̂′ (q) dq

)
= n ·R(κ∗) · x̂ (0)
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The theorem then follows.

Example. To gain some intuition on the latter theorem, we examine the special case where
the social status function is simply the proportion of players that a player beats: i.e.

(28) S (t) = 1− t.

In this case the interim allocation takes the simple form: x̂ (q) = n−1
n (1 − q). Thus the

revenue of the optimal mechanism becomes:

(29) OPT = (n− 1)

(
R(κ∗)(1− κ∗) +

∫ κ∗

0
R(q)dq

)
Whilst, the revenue of a single badge mechanism is simply APX = (n−1) ·R(κ) ·(1−κ). The
proof of the existence of a threshold κ that achieves a 4-approximation, has a nice graphical
interpretation in this case as depicted in Figure 2. Theorem 4 in this example of a linear
status function, boils down to showing that for a concave revenue curve there exist a κ such
that the shaded area in the right figure is at least 1/4 of the shaded area in the left figure.

OPT

Κ
* 1

APX

Κ Κ
* 1

Figure 2. Left figure depicts the revenue of the optimal mechanism. The
dashed line corresponds to the revenue curve (in this example of the uniform
distribution) and the shaded region corresponds to the optimal revenue. The
shaded region in the right figure depicts the revenue of a single badge mecha-
nism with quantile threshold κ.

In fact for this specific status function a tighter 2-approximation can be achieved, via an
application of Jensen’s inequality and based on the latter graphical interpretation.

Lemma 5. When the status function is linear S (t) = α · (1 − t) then a single badge with
quantile threshold κ = min{κ∗, 1/2} achieves a 2-approximation to the optimal revenue.

Proof. Wlog consider the case where S (t) = 1 − t. We distinguish two cases. If κ∗ ≤ 1/2,
then it is easy to see that OPT ≤ (n− 1) ·R(κ∗) ≤ (n− 1) ·R(κ∗) · 2 · (1− κ∗). Thus setting
only one badge at the monopoly reserve is sufficient. When κ∗ > 1/2, then we consider the
concave curve defined as

R̂(q) =

{
R(q) q ≤ κ∗

R(κ∗) o.w.}
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Observe that OPT = (n − 1) ·
∫ 1
0 R̂(q)dq. By concavity of R̂(q) and applying Jensen’s

inequality we get that:

(30)

∫ 1

0
R̂(q)dq ≤ R̂(1/2) = R(1/2)

where in the last equality we used the fact that κ∗ > 1/2 and thereby R(1/2) < R(κ∗). Thus
we get that: OPT ≤ (n−1)R(1/2). A single badge mechanism with quantile thresholds at 1/2
gets revenue (n−1)·R(1/2)/2. Thus a single badge mechanism with quantile κ = min{κ∗, 1/2}
yields a 2-approximation to the optimal mechanism in any case.

A graphical depiction of the latter 2-approximation theorem is given in Figure 3. The
latter theorem can also be easily generalized to show that if m badges are used, then a m+1

m−1

approximation is achieved.4

OPT

0 Κ
*1�2 1

RH1�2L

APX

0 Κ=1�2 Κ
* 1

RH1�2L

Figure 3. Left figure depicts the revenue of the optimal mechanism. Observe
that the rectangle with height R(1/2) is at least as large as the are below the
concave curve, since the curve lies below the tangent at 1/2. The revenue of
a single badge at κ = 1/2 is depicted on the right and is half of the latter
rectangle.

6.2. Increasing Marginal Status. In this section we analyze the revenue of badge mech-
anisms for settings where status has an increasing marginal behavior. The prototypical such
status function that we will analyze is the case where the status of a player is inversely
proportional to the proportion of players ranked at least as high:

(31) S (t) =
1

t

We start by portraying that for such a function a logarithmic in the number of players loss
is necessary if the number of badges is constant.

4Consider iteratively placing badges at the center of the intervals defined by the previous set of badges and
the points 0 and 1. After adding such a set of badges, by the same reasoning as in Lemma 5, the remnant of
the optimal revenue that is not accounted for in the badge mechanism is reduced by half. Thus after t such
iterations we get that the resulting badge mechanism gets a 1− 1

2t
fraction of the optimal. Observe that if at

step t we had mt badges, then at step t+ 1 we have 2mt + 1 badges. Since m1 = 1, we get that at step t we
have 2t − 1 badges. Thus if we use m ∈ [2t − 1, 2t+1 − 1) badges we can achieve 1− 1

2t
≥ 1− 2

m+1
fraction of

the optimal.



SOCIAL STATUS AND THE DESIGN OF OPTIMAL BADGES 15

Example. (Logarithmic Loss) Consider the case where ability is distributed uniformly in
[0, 1]. The revenue function is then R(q) = q(1− q), with derivative R′(q) = 1− 2 · q and the
monopoly quantile is 1/2. Thereby the optimal revenue is:

OPT

n
=

∫ 1/2

0
(1− 2 · q)x̂ (q) dq =

∫ 1/2

0
(1− 2 · q)1− (1− q)n

q
dq

≥
∫ 1/2

0
(1− 2q)

1− e−nq

q
dq

= log(n) +
2
(
1− e−

n
2

)
n

+ Γ
(
0,

n

2

)
+ γ − 1− log(2)

≥ log(n) + γ − 1− log(2) = Θ(log(n))

where γ ≈ .57 is the Euler-Mascheroni constant and Γ
(
0, n2

)
=
∫∞
n/2

e−t

t dt → 0.

On the other hand we note that the maximum social welfare achievable by any mechanism
that uses m badges is at most n ·m. For any bid profile b, the social welfare from any badge
mechanism with m badges is simply:

(32)
m∑
t=1

|i : ri(b) = t|
|i : ri(b) ≥ t|/n

≤
m∑
t=1

n = n ·m

Therefore, it trivially follows that the optimal revenue achievable with m badges is at most
n ·m. Thus as n → ∞ the fraction of the optimal revenue achievable with m badges converges
to log(n)/m.

To complement the latter example we show that if the mechanism designer sets log(n)+ 1
badges in a particular way, then the expected total output produced by agents is at least half
of the total output in the optimal mechanism. Thereby, a logarithmic number of badges is
not only necessary but is also sufficient for a constant approximation. Our analysis makes use
of the revenue equivalence principle: if two mechanisms induce the same interim allocation
function, then their revenue is the same. We achieve our main result by constructing a set
of log(n) + 1 badges such that each player’s status value is at least half of their status value
in the optimal mechanism. Combining this property with the revenue equivalence principles
yields that our badge mechanism is a 2-approximation to the optimal mechanism.

Theorem 6. If S (t) = 1
t , the badge mechanism defined by setting quantile thresholds

(33) κ = (κ∗,
κ∗

2
, . . . ,

κ∗

2logn
)

achieves at least half of the revenue of the optimal ranking mechanism.

Proof. We first show that, for any player, the interim allocation in this badge mechanism is at
least half of the interim allocation in the optimal mechanism. Thus by revenue equivalence,
this badge mechanism achieves at least half of the revenue of the optimal mechanism.

Consider any quantile qi. From corollary 3, we know the interim allocation function of the
optimal mechanism is equation 19. Rewriting the interim allocation in quantile space yields
that the interim allocation for a player of quantile qi is:

(34) x̂ (qi) =

{
1−(1−qi)

n

qi
if qi ≤ κ∗

0 otherwise
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Now we examine the interim allocation of the badge mechanism under quantile thresholds
κ = (κ∗, κ

∗

2 , . . . , κ∗

2logn+1 ). Denote this interim allocation with x̂κ(qi). If qi > κ∗ then x̂κ(qi) =

x̂ (qi) = 0. If qi ∈ [κj , κj+1) =
[

κ∗

2j−1 ,
κ∗

2j

)
for some j ∈ [m− 1] then observe that the interim

allocation under the badge mechanism is equal to the interim allocation of a player with
quantile κj in the optimal mechanism.

(35) x̂κ(qi) = x̂ (κj) =
1− (1− κj)

n

κj

Now observe that qi ≤ κj ≤ 2qi, which yields:

(36) x̂κ(qi) =
1− (1− κj)

n

κj
≥ 1− (1− qi)

n

2 · qi
=

x̂ (qi)

2

Last consider a player i with quantile qi ≤ κm = κ∗

2log(n) = κ∗

n ≤ 1
n . The interim allocation of

such a player under the badge mechanism is:

(37) x̂κ(qi) = x̂ (κm) ≥ x̂

(
1

n

)
= n ·

(
1−

(
1− 1

n

)n)
≥ n

2
≥ 1

2
x̂ (qi)

Where we used the fact that the interim allocation is non-decreasing in ability and hence
non-increasing in the quantile in the first inequality and the fact that x̂ (qi) ≤ n in the last
inequality.

Thus we showed that for any quantile qi, the interim allocation of player i under the badge
mechanism is at least half of his interim allocation under the optimal ranking mechanism.

REVbadge = E

[∑
i

x̂κ(qi)ϕ(v(qi))

]
≥ 1

2
E

[∑
i

x̂ (qi)ϕ(v(qi))

]
=

1

2
REVopt

Figure 4 portrays the relation between the optimal and the badge interim allocation proba-
bilities. Using similar analysis we can also show that the transition to approximate optimality

Κ
*

Κ
*

2

Κ
*

3

Κ
*

4

Κ
*

5

q
x
`
HΚ1L

x
`
HΚ2L

x
`
HΚ3L

x
`
HΚ4L

x
`
HΚ5L

n

x
`
HqL

Figure 4. Optimal (dashed) versus badge mechanism (solid) interim alloca-
tion probabilities, with respect to quantiles.
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is smooth. That is if the designer uses m = logn
c + 1 badges then there exists a badge mech-

anism that achieves a 2c approximation. This can be achieved by setting quantile thresholds

of the form (κ∗, κ
∗

t ,
κ∗

t2
, . . . , κ∗

tm−1 ), for t = 2
log(n)
m−1 = 2c.

The above theorem can also be generalized for arbitrary social status functions, as follows.

Theorem 7. The optimal badge mechanism with log
(
S(1/n)
S(1)

)
badges, achieves at least half

of the optimal ranking mechanism.

7. Structural Stability of Badge Mechanisms in Large Markets

We show that for a sufficiently large number of players the unique Bayes-Nash equilibrium
of a badge mechanism with a fixed number of badges with quantile thresholds κ1, . . . , κm
becomes an ex-post equilibrium. The latter also has implications on the extensive robustness
of the Bayes-Nash equilibrium to extensive form perturbations of the game, by applying the
results of [11].

Our result implies that the single-badge approximate mechanism that we considered in
the previous section, results in an approximate ex-post equilibrium for sufficiently large mar-
kets and hence becomes extensively robust. Formally, we use the following definition of an
approximate ex-post equilibrium and of extensive robustness.

Definition 8 ([11]). A mixed Bayes-Nash equilibrium is (ϵ, ρ) ex-post Nash if with probability
at least 1−ρ, no player can improve his utility by more than additively ϵ, after the instantiation
of the types and strategies.

Kalai [11] shows that if the Bayes-Nash equilibrium becomes an ex-post equilibrium at an
exponential rate in the number of players then this implies that the Bayes-Nash equilibrium is
extensively robust, in the following sense. Consider extensive form versions of the game where
players take potentially many turns to play and revise their strategy and where information
about players types can be arbitrarily revealed in between rounds. The sole assumption
required is that for every possible strategy of the simultaneous game, a player has the option
in the extensive form version to play that strategy at the first time he is allowed to play
and stick to it for the rest of the game. A Bayes-Nash equilibrium of the simultaneous game
is extensively robust, if the strategy of playing according to that equilibrium in the first
round you are allowed to play and sticking to the same action for all subsequent plays, is
a Bayes-Nash equilibrium of any extensive form version of the game as described above. It
is (ϵ, ρ) extensively robust, if with probability 1 − ρ no player has an ϵ improving deviation
at any information set of the extensive form game. Kalai [11] shows that if a Bayes-Nash
equilibrium becomes an (ϵ, ρ) ex-post equilibrium, with ρ being exponential in the number
of players, then it is also an (ϵ, ρ′) extensively robust with ρ′ also decaying exponentially in
the number of players.

To prove our result we need to adapt the techniques of Kalai [11] to our setting. Kalai [11]
considers only settings with a finite set of actions and types and with continuous utilities.
Our setting involves a continuum of types, a continuum of strategies and at a first glance a
discontinuous utility. However, due to the monotonicity of the equilibrium, and the finiteness
of the badges, the number of undomianted strategies is finite and the number of types is
also essentially finite, since all that characterizes a players behavior is whether his type falls
in one of finitely many ability intervals. Additionally, we can view the utility of a player
as a function of the proportion of players that congest each badge, i.e. the proportion of
players that fall within each ability interval. Under such a perspective the utility of a player
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is a continuous function of this proportions, for any fixed action of the player, due to the
continuity of the status function. The latter allows us to apply techniques similar to those in
[11] to show an exponential convergence to an ex-post Nash equilibrium.

Lemma 9. Consider a badge mechanism with quantile thresholds κ = (κ1, . . . , κm) and a
c-Lipschitz status function S (·). For any positive ϵ, there exists constants α, and β that
depend on ϵ and on the instance of the game, such that any Bayes-Nash of the game with n
players is (ϵ, αβn) ex-post equilibrium.

Proof. Let Xi
t = 1qi≥κt be the indicator variable, of whether player i has quantile above κt.

Let Xt =
∑

i∈[n] X
n
t

n be the random variable that corresponds to the proportion of players with

quantile above κt. Observe that Pr[Xi
t = 1] = κt and E[Xt] = κt. By Chernoff-Hoeffding

bounds and following a similar reasoning as in [?] we have:

Pr [|Xt − κt| > δ] ≤ 2e−2δ2n(38)

Pr [|Xt − κt| > δ | vi] ≤ 2e−2[(nδ−1)/(n−1)]2(n−1)(39)

By the union bound we have that the probability that there exists some t ∈ [m] such that
the above event happens is:

Pr [∃t ∈ [m] : |Xt − κt| > δ] ≤ 2 · (m+ 1) · e−2δ2n(40)

Pr [∃t ∈ [m] : |Xt − κt| > δ | vi] ≤ 2 · (m+ 1) · e−2[(nδ−1)/(n−1)]2(n−1)(41)

Let E(δ) = {∀t ∈ [m] : |Xt − κt| ≤ δ} denote the corresponding event and Ec(δ) its

complement. Also denote with ρn = 2 · (m + 1) · e−2[(nδ−1)/(n−1)]2(n−1). Thus we know that
Pr[Ec(δ)] ≤ ρn.

Let X = (X1, . . . , Xm) and ui(t,X; vi) = S (Xt) − κt
vi
, be the utility of player i from

bidding to win badge t, ex-post and ui(t, κ ; vi) = S (κt) − κt
vi

be the hypothetical utility if
the expectation occurs.

Consider a player i who is winning badge t. Consider an ex-post instantiation of player’s
values where event E(δ) holds and let p = p1, . . . , pt be the values of X1, . . . , Xt. Suppose
that player i has a deviation to some other badge t′ that yields him an improvement of more
than ϵ. Then for any ex-post instantiation p′ under which event E(δ) happens we know, by
c-Lipschitz continuity of f(·), that for all t′ ∈ [m]:

(42) |ui(t′, p′ ; vi)− ui(t
′, p ; vi)| = |f(p′t′)− f(pt′)| ≤ c · δ

Additionally, observe that:∣∣[ui(t′, p ; vi)− ui(t, p ; vi)
]
−
[
ui(t

′, p′ ; vi)− ui(t, p
′ ; vi)

]∣∣ ≤
|ui(t′, p ; vi)− ui(t

′, p′ ; vi)|+ |ui(t, p ; vi)− ui(t, p
′ ; vi)| ≤ 2 · c · δ

Thus if t′ was an ϵ profitable deviation under p then it must be at least a ϵ−2 · c · δ profitable
deviation under p′, for any p′ in E(δ).

When an instance p′ /∈ E(δ) occurs, then deviating from t to t′ can lead to a loss of at most:
−(v̄+1)S (1/n). The reason is that player i is getting utility at most S (1/n) from any badge
t and at least −S (1/n) · v̄ by playing any other badge, since badges with κt ≥ S (1/n) · v̄ can
simply be ignored, since no player will ever consider them.

Thus the expected profit of player i from deviating to t′ is:

(43) E[ui(t
′, X ; vi)− ui(t,X ; vi)] ≥ (ϵ− 2 · c · δ)(1− ρn)− ρn · (v̄ + 1) · S (1/n)
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Since t is an equilibrium for player i it must be that the latter quantity is negative. Thus for
ϵ > 2 · c · δ + ρn

1−ρn
· (v̄ + 1) · S (0), we get a contradiction.

Thus we get for any δ, the Bayes-Nash equilibrium is an (ϵ, ρ) ex-post Nash equilibrium
with:

ϵ > 2 · c · δ + ρn
1− ρn

· (v̄ + 1) · S (1/n)(44)

ρ > 2 · (m+ 1) · e−2δ2n(45)

For sufficiently small δ and sufficiently large n the first inequality is always satisfied, yielding
the Lemma.

8. Extensions and Further Directions

8.1. Addition of Badges and Revenue Monotonicity. A natural question is whether an
extra badge at some prefixed quantile threshold can actually hurt revenue. We show that this
cannot happen as long as the quantile threshold of this extra badge is above the monopoly
quantile of the distribution.

Lemma 10. Adding an extra badge with quantile threshold κ̃ ≥ κ∗ can only increase the
revenue of an existing badge mechanism.

Proof. Consider augmenting the badge mechanism with an extra badge with quantile thresh-
old κ̃ and such that κ̃ ∈ [κt+1, κt] for some t ∈ [1,m], with the convention that κm+1 = 0 and
κ0 = 1. Then the revenue of this new mechanism is:

REVκ+κ̃ =
∑
σ ̸=t

(R(κt)−R(κt+1) · x̂(κt) + (R(κt)−R(κ̃)) · x̂(κt) + (R(κ̃)−R(κt+1)) · x̂(κ̃)

By regularity of the distribution, we know that R(·) is monotone in the region [0, κ∗]. Since
we assumed that κ̃ ≤ κ∗ we get that R(κ̃) ≥ R(κt+1). By monotonicity of x̂(·) we also have:
x̂(κ̃) ≥ x̂(κt). Combining the above we get the Lemma:

REVκ+κ̃ ≥
∑
σ ̸=t

(R(κt)−R(κt+1) · x̂(κt) + (R(κt)−R(κ̃)) · x̂(κt) + (R(κ̃)−R(κt+1)) · x̂(κt)

=
∑
σ ̸=t

(R(κt)−R(κt+1) · x̂(κt) + (R(κt)−R(κt+1)) · x̂(κt) = REVκ

8.2. Convex Effort Costs. We consider the generalization where each players cost for
investing some effort ei is a convex function of ei, rather than linear, that is fixed and known
to the designer:

(46) ûi(r, ei) = xi(r)− eαi

for some α ≥ 1, that is common knowledge. For this setting, we can still reformulate the
problem as a single-parameter mechanism design problem with quasilinear utilities. The
difference is that we will consider the translated utility:

(47) ui(b; vi) = vαi ûi(r, ei) = vαi xi(r(b))− bαi

The crucial part in achieving this translation is that the cost of a player depends only on his
own bid and is not an expectation over other players values. Thus we can do a completely
analogous analysis as in the quasi-linear utility model. The only difference will occur when
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translating the ability thresholds to badge thresholds, where we would replace θj with θαj in

all the related Equations (8) and (9).
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