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Abstract

Gold is an important global reserve asset, widely held by the official sector

and private investors. In this paper, we study a measure of the opportunity costs

of holding gold, the gold lease rates – interests paid in gold for borrowing gold.

Gold lease rates are economically significant in magnitude and display substantial

variations over time. Using a term structure model with “unspanned” risk factors,

we find that risk premia in gold lease rates are highly time-varying and strongly

increasing in the level and slope of gold lease rates, as well as in gold volatility.

Expected excess returns of “gold bonds” are mostly positive, suggesting that they

are perceived as risky investments.
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1 Introduction

Gold is an important global reserve asset. According to World Gold Council (2013a), as of

the second quarter of 2012, gold accounts for about 13%, equivalent to $1.56 trillion, of the

$12 trillion total reserves held by central banks. This amount makes gold the third largest

reserve asset globally, only behind the U.S. dollar and the Euro, but larger than the British

Pound, Japanese Yen, and Swiss Franc. In particular, the United States (the Euro area)

holds 69.8% (56.0%) of their foreign exchange reserves in gold.1 In three joint statements

issued in 1999, 2004, and 2009, fifteen central banks led by the ECB have affirmed that “gold

will remain an important element of global monetary reserves.”2

Gold also plays an increasing role as financial collateral, formally recognized so by the

Basel Accords, an international standard for regulating bank capital (see Basel II 2006 and

Basel III 2012). Leading exchanges and clearinghouses, such as CME Group, ICE Clear

Europe, and LCH.Clearnet, accept gold as eligible collateral for margining purposes.3 J.P.

Morgan, a major tri-party repo collateral manager, also allows clients to post gold collateral

to satisfy security lending and repo obligations.4

The use of gold for investment, reserve and collateral purposes is important partly because

of its large stock. According to World Gold Council (2011), as of 2010, the total above-ground

stock of gold is approximately 168,300 tonnes, or roughly $2.4 trillion (evaluated at the

average price in 2010). This dollar value of gold stock is about twice as large as the amount

outstanding of UK gilts. While jewelry still accounts for 50% of gold stock, private investment

and official holdings account for 18.7% and 17.2%, respectively.

The status of gold as a reserve asset and collateral raises important questions: What

are the opportunity costs of holding gold or pledging gold as collateral, over short and long

terms? Equivalently, what is the term structure of interest rates for borrowing and lending

gold? And what determines the risk premium associated with gold borrowing and lending?

In this paper, we study the dynamics and risk premia of “gold interest rates” – the interest

rates paid in gold for borrowing gold – often known as the gold lease rates. For example, an

1See World Gold Council (2013b). For the Euro area, the largest holders include Germany (66.3%), Italy
(64.9%), France (64.5%), Netherlands (52%), and Portugal (84.2%).

2See http://www.ecb.eu/press/pr/date/1999/html/pr990926.en.html ,
http://www.ecb.eu/press/pr/date/2004/html/pr040308.en.html, and
http://www.ecb.eu/press/pr/date/2009/html/pr090807.en.html.

3See http://www.cmegroup.com/trading/metals/cme-group-accepts-gold-as-collateral.html for the CME
announcement, http://ir.theice.com/releasedetail.cfm?ReleaseID=527772 for the ICE announcement, and
http://www.lchclearnet.com/member notices/circulars/2012-08-21.asp for the LCH.Clearnet announcement.

4See “J.P. Morgan Will Accept Gold as Type of Collateral,” Wall Street Journal, February 8, 2011.
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Figure 1: Time series of gold lease rates from June 1991 to December 2012.
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investor lending 100 ounces of gold at a lease rate of 2% per annum will earn 102 ounces

of gold after a year. The gold lease rates are, therefore, analogous to interest rates of the

U.S. dollar. Just as the latter measure the costs of dollar borrowing, the former capture

the returns – in terms of gold – earned by central banks and investors for lending gold held

as part of their reserves and asset allocation. Equivalently, the gold lease rates capture the

opportunity costs for central banks and investors for holding gold passively without lending

it, or for pledging gold as collateral. For gold mining firms, gold lease rates may also be

viewed as discounting rates for future revenues from production (see Brennan and Schwartz

(1985) and Tufano (1998)).

Figure 1 shows that gold lease rates display substantial variations over time. Characterizing

these time variations and associated risk premia embedded in gold lease rates are the primary

objectives of our study.

Toward this end, we construct and estimate a no-arbitrage dynamic term structure model

of the gold lease rates with “unspanned” risks—risk factors that can drive risk premium but

are not necessarily explained, or “spanned,” by the gold lease rates themselves. Following

Joslin, Priebsch, and Singleton (2011) and Joslin, Le, and Singleton (2012), we allow the

unspanned risk factors to affect the time-series dynamics of yields but not the risk-neutral

dynamics. Specifically, the pricing factors in our model are the first two principal components

(PCs) of gold lease rates, and the unspanned risk factor is gold volatility. We motivate the
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use of gold volatility through a simple descriptive analysis, which confirms that gold volatility

is indeed a significant predictor of the changes in the PCs of gold lease rates, but it does

not significantly correlate with the PCs. Moreover, among many financial market variable

we have examined, gold volatility stands out as the only one with consistently significant

predictive power.

We estimate the model using weekly gold lease rates data, with maturities up to one

year, from June 1991 to August 2007. We find that risk premia in gold lease rates are

strongly time-varying and predictable. A higher current PC1, PC2 and gold volatility all

predict a lower PC1 in the following week, hence a higher expected excess return. Parameters

governing the market prices of risks are statistically and economically significant. Moreover,

gold volatility can explain a substantial fraction of variations in expected excess returns in

gold lease rates, above and beyond the PCs.

While gold volatility is the only variable we find that can consistently predict risk premium

in gold lease rates, we do document a strong contemporaneous relation between gold lease

rates and many financial market variables. For example, the level of gold lease rates tend

to rise with a higher equity market excess return, a higher Treasury yield, a higher VIX,

a higher bond-market illiquidity, and a lower credit spread. The slope of gold lease rates

tend to increase in Treasury yields, VIX, and the growth of gold inventory at the COMEX

branch of CME. This evidence differs from those of Bailey and Chan (1993), who find that

the basis in gold futures market cannot be explained by credit spread or Treasury yield in

monthly data from 1966 to 1987. Consistent with Fama and French (1987) and Casassus and

Collin-Dufresne (2005), however, we find that gold returns do not significantly correlate with

the PCs of gold lease rates.

To the extent that gold resembles a currency and gold lease rates resemble interest

rates, this paper provides new evidence against the expectations hypothesis (EH)—in the

sofar largely unexplored gold leasing markets. The rejection of EH is not ex ante obvious.

Although the EH has been rejected by many studies using long-term interest rates of major

fiat currencies,5 evidence regarding the EH for short-term interest rates is far from conclusive.

For example, Longstaff (2000) and Downing and Oliner (2007) respectively find strong support

for the EH in the U.S. repo market and U.S. commercial paper market, whereas Buraschi

and Menini (2002) and Piazzesi and Swanson (2008) respectively document violations of the

EH for the German repo “specialness” and U.S. Fed Fund futures market.

5 For U.S. evidence, see Dai and Singleton (2002) and references therein. For international evidences, see
Jotikasthira, Le, and Lundblad (2013) and references therein.
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The closest studies to our analysis of gold lease rates are Schwartz (1997) and Casassus

and Collin-Dufresne (2005). Our results and approach differ from theirs in at least two ways.

First and foremost, they model the joint dynamics of gold (and other commodities)

convenience yields – conceptually similar to gold lease rates – together with gold spot prices

and the instantaneous dollar interest rate. As shown by Joslin, Le, and Singleton (2012),

however, the affine structure of their models necessarily forges a spanning relation between

the commodity spot prices, the lease rates, and the dollar interest rates. The spanning

condition implies that, for instance, the model-implied R-squared statistic from regressing

the dollar gold prices onto the term structures of gold lease rates and dollar interest rates

must be one. If this spanning relation does not hold in the data, forcing it to hold in the

model will compromise the estimation of the commodity prices, the convenience yields, the

interest rates, or any combination of the three.6 Our model is not subject to this spanning

issue because the non-yield risk factor, gold volatility, only predicts the risk premium but

does not affect the pricing of gold lease rates.

Second, the gold lease rate data we use are constant-maturity and are not subject to the

measurement errors induced by the delivery options of gold futures contracts (see Appendix A).

This type of noise in futures data, combined with the relatively small magnitude of gold

lease rates (about 1% per year in our sample), might have contributed to the conclusion

by Schwartz (1997) that gold has “insignificant” or “zero” convenience yield. By contrast,

we show that directly observed gold lease rates in the forward markets are economically

significant and display significant time-varying risk premia.

2 The Markets for Gold Leasing

2.1 Gold Lease Rates and Gold Leasing Markets

Gold lease rates are the “gold interest rate” investors pay in gold for borrowing gold. The

London Bullion Market Association (LBMA) provides daily quotes of the gold lease rates,

formally defined as the U.S. dollar LIBOR minus the “Gold Forward Offered Rate” (GOFO):

Gold Lease Rate = LIBOR−GOFO, (1)

6Joslin, Le, and Singleton (2012) illustrate this point in the context of term structure models with spanned
macroeconomic series, but the general spanning argument applies to many other affine models.
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where GOFOs are “rates at which dealers will lend gold on a swap basis against US dollars,”

according to the LBMA. In other words, GOFOs are the US dollar rates at which dealers are

willing to pay in order to borrow US dollars, using gold as collateral.7

GOFOs are determined as follows. At 10.30 am London time, market makers in the

London bullion markets enter their forward offered rates for five different maturities: 1-, 2-,

3-, 6-, 12-month. A minimum of six contributors must enter rates in order for the means to be

calculated. At 11.00 am, the mean is established for each maturity by discarding the highest

and lowest quotations in each period and averaging the remaining rates. The current market

making members of the LBMA include the Bank of Nova Scotia-ScotiaMocatta, Barclays

Bank Plc, Deutsche Bank AG, HSBC Bank USA London Branch, Goldman Sachs, JP Morgan

Chase Bank, Société Générale, and UBS AG.8

While the LMBA defines the gold lease rates as the rate implied from a gold-dollar swap

trade, it is easy to see that the gold lease rate is equal to the rate at which investors lend

gold (to be repaid in gold) on an unsecured basis. Intuitively, the gold lease rate of (1) is the

secured-unsecured spread of dollar funding rate, which represents an investor’s opportunity

cost of using gold as financial collateral instead of lending it. In equilibrium, the funding

advantage of using gold as collateral should be equal to the rate for lending gold on an

unsecured basis.

Important participants in the gold leasing markets include the official sector (e.g., central

banks and IMF), bullion banks, and producers, among others. For example, producers

can borrow gold and sell them in the spot market, the proceeds of which are then used to

finance production. The gold loan is repaid at maturity from new gold production. In this

transaction, the lenders of gold, such as central banks and bullion banks, earn a return on

their otherwise inert gold holdings.

In recent years the gold leasing markets have also been increasingly used as a venue to

raise funding in other currencies, such as the U.S. dollar and Euro. For example, in its 2010

annual report, the Bank for International Settlements (BIS 2010) reports that 346 tonnes ($

8.16 billion) of its gold held at central banks are “in connection with gold swap operations,

under which the Bank exchanges currencies for physical gold. The Bank has an obligation to

return the gold at the end of the contracts.” According to a later Financial Times article,

more than ten European banks used gold to obtain funding from the BIS in this transaction.9

7Although the LBMA definition may appear to imply that the gold borrower pays GOFO, it is actually
the lender of gold, namely the borrower of US dollars, who pays the interest rate.

8See http://www.lbma.org.uk/pages/index.cfm?page id=62 for more details.
9See “BIS gold swap mystery is unravelled” by Jack Farchy and Javier Blas, Financial Times, July 29,
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2.2 Trading Activities

Gold spot and forward are traded in global over-the-counter markets in London, Zurich, New

York, and gold futures contracts are traded on exchanges in US, Japan, India, among other

countries.

The LBMA conducted a survey in April 2011 on its members’ trading activities in the

“loco London” (i.e., delivery in London) gold market in the first quarter of 2011. The results

are reported by Murray (2011). The average daily trading volume in the OTC London

gold market is about $240 billion per day. Spot, forward, and other (options and bullion-

related commodity swaps) transactions account for roughly 90%, 5% and 5% of total volume,

respectively. The daily trading volume is about ten times as large as the daily net balance

transfers at the London Precious Metals Clearing Ltd, the entity managing the clearing of

London gold trades, suggesting active intraday trading. To put this number into perspective,

this daily volume in London gold markets is about 125 times of the annual world gold

production and about twice as large as the daily dollar volume in U.S. equity markets. In

particular, these statistics suggest that the trading volume in the forward market is about $12

billion per day, an active market from which the GOFO and gold lease rates are determined.

Omitted in the LBMA survey statistics are the amount of deposits or loans in gold. While

comprehensive data seem scarce in this regard, ABN AMRO and VM Group (2010) estimate

that central banks lent approximately 1000 tonnes of gold in 1990, 2000 tonnes in 1995, 5000

tonnes in 2000, 3000 tonnes in 2007, and 2000 tonnes in 2010. Evaluated at the then price of

$1400/ounce, the outstanding dollar amount of gold lending by central banks at the end of

2010 is approximately $90 billion.

Another important component of gold trading is the futures markets. According to the

World Gold Council (2011), as of 2010, CME Group of US (formerly COMEX) has an average

daily volume of $20.8 billion in gold, whereas the Tokyo Commodity Exchange and the

Multi Commodity Exchange of India have a combined daily volume in gold trading of $3.6

billion. Other trading centers for gold include the Dubai Gold and Commodity Exchange,

the Chinese Gold and Silver Exchange Society in Hong Kong, the Istanbul Gold Exchange,

and the Shanghai Gold Exchange.

Trading gold does not necessarily involve the physical movement of the metal. This is

because gold accounts can be “allocated” or “unallocated.” Most accounts are unallocated.

An investor with an allocated account at a bullion bank has segregated ownership of specific

gold bars with serial numbers, and a primary purpose of holding an allocated account is for

2010.
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custodian and safekeeping. By contrast, an investor with an unallocated account effectively

owns the promise of the bullion bank to deliver a given amount of gold, but not specific gold

bars, should the investor request so. That is, the investor is an unsecured creditor of the

bullion bank. A sale of gold from one unallocated account to another is accomplished by

changing the book entries at the bullion banks (and clearing banks if necessary), but not

necessarily by the shipment of the physical metal. On typical futures exchanges like the

CME, the delivery of gold futures contracts (or metal futures contract in general) is in the

form of warehouse warrants; after delivery the long side of the futures contracts may choose

to ship out the physical metal or keep it at the warehouse.

3 Data

The main data we use are the gold lease rates, downloaded from the LBMA’s website, and US

dollar interest rates on Eurodollar deposits, obtained from Bloomberg. We use the Eurodollar

deposit rates, rather than LIBOR, because of the recent regulatory investigation into LIBOR

manipulation. The results of this paper do not depend on the use of either LIBOR or

Eurodollar rates.10 We construct the gold lease rate from the GOFO and Eurodollar data

according to (1). All the spot rates are converted to a continuously-compounding basis. While

LBMA’s GOFO data start in July 1989, only since May 1990 do the GOFO data include

all five maturities (i.e., 1-, 2-, 3-, 6- and 12-month). The Eurodollar deposit rates data with

all five maturities are available starting June 1991. We exclude the financial crisis period

in our sample. Thus, our data sample consists of 848 weekly data observations from June

1991 to August 2007. To mitigate the effect of potential outliers in the data, we winsorize

the outliers at the 1% level.

In addition to the gold lease rate data, we also use the variables enumerated below, with

data source in parenthesis. These variables are available at the weekly frequency.

1. Gold-specific variables:

(a) Weekly gold spot returns, measured as the London AM fixing (LBMA, Bloomberg)

10A slight subtlety is that the Eurodollar deposit rates are “bid” rates, whereas the GOFO data are “offer”
rates. While ideal data would be the market midpoint of bid and offer rates for both data sources, we note
that the current data are unlikely cause problems for our results on time-varying risk premium. We have
checked that the Eurodollar deposit rates are close to the LIBID (London interbank bidding rate), and the
LIBOR-LIBID spread is almost always 1/8 of one percent. Therefore, the observed time variation in the
measured gold lease rates is very unlikely to be driven by the bid-offer spreads.
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(b) Realized volatility of gold daily returns over the last 22 business days (calculated

from gold spot prices)

(c) Weekly growth of COMEX gold inventories (CME, Bloomberg)

2. Variables in other asset markets:

(a) Returns of Fama and French (1992) factors: market excess returns, SMB, and

HML (Ken French’s website)

(b) 3-month Treasury yield and the spread between 10-year and 3-month Treasury

yield (Fed H.15)

(c) Weekly returns of traded weighted dollar index (Bloomberg)

(d) Baa-Aaa credit spread (Moody’s, Bloomberg)

3. Macroeconomic variables:

(a) Chicago Fed Financial Conditions Index (FRB Chicago), a higher reading of which

indicates a worse financial condition

(b) Weekly growth of MZM money supply (Fed H.15)

4. Liquidity variables:

(a) VIX index (CME)

(b) The Hu, Pan, and Wang (2012) liquidity measure (Jun Pan’s website)

(c) Merrill Option Volatility Estimate (MOVE) index, a measure of bond market

volatility (Bloomberg)

4 Descriptive Analysis of Gold Lease Rates

In this section we conduct descriptive analysis of gold lease rates. Our objective is to explore

the connection of gold lease rates and various market conditions.

Applying the principal component (PC) analysis to the gold lease rate data reveals that

the first two PCs, PC1 and PC2, explain 99.7% of all variations in gold lease rates, with PC1

explaining 96.7%. We will therefore focus on the level and change in PC1 and PC2 in this

section.
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Our first step is to run the contemporaneous regressions:

PC1t = α + β ·Xt + εt, (2)

PC2t = α + β ·Xt + εt, (3)

where Xt is the vector of the non-gold lease rates variables described in Section 3. These

contemporaneous regressions essentially produce the conditional correlations of the first

two PCs of gold lease rates and other variables. The frequency is weekly, and all standard

errors are calculated using the Newey-West method with 8 lags. Because the COMEX gold

inventory data are only available 66 weeks after the start of our gold lease rate data, we do

two regressions, with and without COMEX inventory.

Table 1 shows the results from the regression of PC1. Overall, about 50% of variations in

PC1 of gold lease rates can be explained by all these variables. The PC1 of gold lease rates

is higher if equity market excess return is higher, Treasury 3-month yield is higher, credit

spread is lower, the US dollar is strengthening, or the financial condition index has a calmer

reading. The PC1 of gold lease rates also correlates positively with the VIX index and the

HPW noise measure, suggesting that gold lease rates increase with worse liquidity conditions.

Interestingly, equity market excess return and VIX are significantly correlated with PC1 of

gold lease rates only if they enter the regression with other variables. We note that none of

gold spot returns, gold volatilities, or COMEX gold inventory growth correlate significantly

with PC1 of gold lease rates. Nor does an increase in money supply have a detectable effect

on the level of gold lease rates.

Compared with PC1, Table 2 shows that PC2 of gold lease rates is only significantly

correlated with the 3-month Treasury yield, the spread between 10-year and 3-month Treasury

yield, VIX, and COMEX gold inventory growth; all these conditional correlations are positive.

The comovement of PC2 with the slope of US Treasury yields suggests that gold lease rates

share some commonalities with the interest rates of US dollar. A higher COMEX inventory

growth implies an increased availability of deliverable gold, which is naturally associated

with a steepening of the term structure of gold lease rates. A higher VIX is associated with a

higher PC2, suggesting that equity volatility has a positive effect on the term premium of

gold lease rates. All these variables can explain about 25% of variations in PC2 of gold lease

rates.

Our next step is to run predictive regressions of the weekly changes in the level and slope
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of gold lease rates on the same variables, in addition to the lagged PC1 and PC2 themselves:

PC1t − PC1t−1 = α + β · [PC1t−1, PC2t−1, Xt−1] + εt, (4)

PC2t − PC2t−1 = α + β · [PC1t−1, PC2t−1, Xt−1] + εt. (5)

As before, we calculate Newey-West standard errors with 8 lags. Given that almost 97% of

all variations in gold lease rates are captured by the variations in PC1, the predictability of

PC1, if any, will be revealing for the predictability of excess returns of gold leasing, a subject

we take on more rigorously in Section 5.

Table 3 shows the results from the predictive regression for changes in PC1. The

results from predictive regressions are dramatically different from those of contemporaneous

regressions (see Table 1). The most significant predictors of changes in PC1 are lagged

PC1 and realized gold volatility. The coefficient of about −0.05 on lagged PC1 indicates

a persistent PC1 with a slow mean-reversion, which again is analogous to evidence in the

term structure of US dollar and other major currencies. More interestingly, a higher gold

volatility in week t predicts a lower PC1—and thus a higher realized returns on gold lending

or deposit—in week t+ 1. To the best of our knowledge, this relation between returns on gold

lending and gold volatilities have not been explored in the literature, and we formally embed

gold volatility in the term structure estimation of gold lease rates in Section 5. Besides lagged

PC1 and gold volatility, none of the other variables can significantly predict changes in PC1;

although Treasury 3-month yield, credit spread, and the MOVE index of bond volatilities are

marginally significantly, their significance depends on the inclusion or exclusion of COMEX

gold inventory, which itself is not significant.

Table 4 shows the results from the predictive regressions for changes in PC2. As in Table 3,

the weekly change of PC2 is significantly predicted by its own lag and by gold volatility.

The coefficient of about −0.1 on its own lag indicates a faster mean-reversion of PC2. A

higher gold volatility predicts a steepening of the slope of the gold lease rates, which by itself

would indicate a lower return of lending gold over a long horizon relative to doing so over

a short horizon. (The combined effect of gold volatility for the risk premium in gold lease

rates depend, of course, on its effect for both PC1 and PC2.) Interestingly, a higher lagged

weekly return of gold in dollar terms predicts a steeper term structure of gold lease rates; so

does a lower COMEX gold inventory growth. Given that PC2 accounts for less than 3% of

all variations in gold lease rates, it is unclear at this stage whether gold returns or COMEX

inventory can predict risk premium in gold lease rates.
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Table 1: Contemporaneous regression of gold lease rate PC1 on other variables

(1) (2) (3) (4) (5) (6)
pc1 pc1 pc1 pc1 pc1 pc1

goldret -3.537 2.448 2.235
(-0.76) (1.04) (0.92)

goldvol -4.779 -0.368 -0.806
(-1.22) (-0.14) (-0.33)

mktrf 0.00883 0.0773∗∗∗ 0.0804∗∗∗

(0.30) (2.94) (2.92)

smb 0.0119 0.0362 0.0302
(0.32) (0.85) (0.72)

hml -0.0138 0.0561 0.0596
(-0.22) (1.13) (1.18)

tsy3m 0.585∗∗∗ 0.451∗∗∗ 0.675∗∗∗

(5.24) (4.58) (5.64)

tsy10y3m 0.337∗∗ -0.0773 0.256
(2.41) (-0.42) (1.13)

creditspread -1.571∗∗ -2.471∗∗∗ -1.695∗∗∗

(-2.31) (-4.08) (-3.05)

USdollar 11.51∗∗ 10.23∗∗ 9.741∗

(2.18) (2.09) (1.85)

nfci 2.121∗∗∗ -1.993∗∗∗ -1.991∗∗

(3.11) (-2.83) (-2.50)

dmzm 20.25 3.292 20.48
(0.98) (0.21) (1.28)

vix 0.0167 0.0839∗∗∗ 0.0888∗∗∗

(0.64) (3.20) (3.46)

hpw 0.562∗∗∗ 0.611∗∗∗ 0.677∗∗∗

(2.98) (3.10) (3.47)

MOVE 0.0348 1.399∗∗ 0.350
(0.05) (2.25) (0.49)

dcomxgold -1.190
(-1.17)

Constant 0.503 -1.587 1.265∗∗∗ -1.964∗∗∗ -5.550∗∗∗ -6.723∗∗∗

(1.28) (-1.59) (2.74) (-3.34) (-4.98) (-6.11)

Observations 847 847 847 847 847 781
Adjusted R2 0.028 0.292 0.079 0.139 0.491 0.521

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Contemporaneous regression of gold lease rate PC2 on other variables

(1) (2) (3) (4) (5) (6)
pc2 pc2 pc2 pc2 pc2 pc2

goldret -0.739 -0.430 -0.453
(-1.52) (-0.87) (-0.83)

goldvol -0.181 0.0123 -0.0420
(-0.37) (0.04) (-0.12)

mktrf -0.0102 0.00385 0.00501
(-1.52) (0.76) (0.94)

smb -0.00604 0.000944 -0.000260
(-0.49) (0.11) (-0.03)

hml -0.0217 -0.00630 -0.00612
(-1.61) (-0.53) (-0.48)

tsy3m 0.0754∗∗∗ 0.0619∗∗∗ 0.0788∗∗∗

(3.32) (2.89) (2.70)

tsy10y3m 0.0693∗∗ 0.0768∗∗ 0.0945∗

(2.37) (2.09) (1.83)

creditspread 0.309∗∗ 0.0107 0.0604
(2.51) (0.08) (0.44)

USdollar -0.245 -0.901 -1.469
(-0.18) (-0.75) (-1.06)

nfci 0.539∗∗∗ 0.0705 0.0109
(4.67) (0.32) (0.05)

dmzm 5.661 3.239 5.118
(1.19) (0.96) (1.46)

vix 0.0154∗∗∗ 0.0196∗∗∗ 0.0210∗∗∗

(3.47) (3.35) (3.72)

hpw 0.0808∗∗∗ 0.0397 0.0468
(3.13) (1.12) (1.24)

MOVE 0.00766 -0.0614 -0.0958
(0.07) (-0.41) (-0.53)

dcomxgold 0.970∗∗∗

(3.37)

Constant 0.0195 -0.661∗∗∗ 0.321∗∗∗ -0.529∗∗∗ -0.762∗∗ -0.938∗∗∗

(0.33) (-3.52) (4.22) (-6.27) (-2.42) (-2.83)

Observations 847 847 847 847 847 781
Adjusted R2 0.001 0.051 0.139 0.219 0.246 0.269

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Predictive regression of the change in gold lease rate PC1 on other variables

(1) (2) (3) (4) (5) (6) (7)
dpc1 dpc1 dpc1 dpc1 dpc1 dpc1 dpc1

pc1 -0.0242∗∗ -0.0507∗∗∗ -0.0519∗∗∗

(-2.07) (-3.09) (-2.94)

pc2 0.0489 -0.00131 -0.0180
(0.91) (-0.02) (-0.25)

goldret 1.322∗ 1.103 1.041
(1.79) (1.55) (1.44)

goldvol -0.562∗∗ -0.605∗∗∗ -0.623∗∗∗

(-2.17) (-2.85) (-2.91)

mktrf -0.00448 -0.00247 -0.00286
(-0.64) (-0.34) (-0.37)

smb 0.00432 0.00537 0.00602
(0.45) (0.56) (0.61)

hml -0.00255 -0.00289 -0.00159
(-0.18) (-0.19) (-0.10)

tsy3m 0.00157 0.0178 0.0336∗

(0.22) (1.20) (1.71)

tsy10y3m -0.000658 -0.0175 -0.00155
(-0.07) (-0.80) (-0.05)

creditspread -0.0372 -0.145∗ -0.0987
(-0.74) (-1.95) (-1.54)

USdollar -2.791 -1.809 -1.772
(-1.53) (-1.06) (-0.99)

nfci -0.00995 -0.0889 -0.102
(-0.16) (-1.05) (-1.11)

dmzm 0.703 1.537 4.479
(0.13) (0.28) (0.81)

vix -0.000882 0.00343 0.00404
(-0.47) (0.88) (0.98)

hpw -0.0134 0.0186 0.0207
(-0.71) (0.79) (0.80)

MOVE 0.0970∗ 0.156∗∗ 0.137
(1.69) (1.99) (1.33)

dcomxgold 0.449
(1.58)

Constant -0.00172 0.0560∗ 0.0236 -0.00881 -0.0423 -0.191 -0.322
(-0.13) (1.90) (0.35) (-0.20) (-1.14) (-1.04) (-1.61)

Observations 846 846 846 846 846 846 780
Adjusted R2 0.011 0.009 -0.003 -0.002 -0.001 0.025 0.027

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Predictive regression of the change in gold lease rate PC2 on other variables

(1) (2) (3) (4) (5) (6) (7)
dpc2 dpc2 dpc2 dpc2 dpc2 dpc2 dpc2

pc1 0.00933∗∗ 0.00853 0.00869
(2.40) (1.36) (1.25)

pc2 -0.101∗∗∗ -0.117∗∗∗ -0.107∗∗∗

(-5.32) (-4.80) (-4.10)

goldret 0.347∗ 0.382∗∗ 0.385∗

(1.66) (2.00) (1.96)

goldvol 0.158∗ 0.177∗∗ 0.174∗∗

(1.83) (2.04) (2.03)

mktrf -0.000108 0.000450 -0.000930
(-0.04) (0.16) (-0.34)

smb -0.00422 -0.00482 -0.00533
(-1.25) (-1.46) (-1.55)

hml 0.00138 0.00151 -0.000702
(0.27) (0.26) (-0.12)

tsy3m -0.00478∗ -0.0000160 -0.00217
(-1.86) (-0.00) (-0.26)

tsy10y3m -0.00418 0.00357 0.00242
(-1.22) (0.42) (0.20)

creditspread -0.0180 0.00304 0.000825
(-1.14) (0.10) (0.03)

USdollar 0.244 0.395 0.588
(0.40) (0.73) (1.01)

nfci -0.00315 0.00158 0.00234
(-0.19) (0.04) (0.06)

dmzm -1.049 -0.933 -1.083
(-0.58) (-0.50) (-0.51)

vix -0.0000497 0.00146 0.00109
(-0.08) (1.06) (0.76)

hpw 0.00208 0.00708 0.00718
(0.46) (0.85) (0.76)

MOVE -0.0121 -0.00876 -0.0141
(-0.66) (-0.29) (-0.36)

dcomxgold -0.198∗

(-1.94)

Constant -0.000787 -0.0176∗ 0.0398∗ -0.00125 0.00602 -0.0645 -0.0387
(-0.17) (-1.68) (1.69) (-0.11) (0.45) (-0.99) (-0.52)

Observations 846 846 846 846 846 846 780
Adjusted R2 0.061 0.004 -0.005 -0.002 -0.003 0.063 0.064

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5 Term Structure Model of Gold Lease Rates with Un-

spanned Risk

The descriptive analysis of Section 4 reveals that the time-variation of gold lease rates are

predictable, most notably by the lagged first two PCs and gold volatility. This evidence

suggests that expected excess returns in gold leasing markets are time-varying and predictable.

To analyze time-varying risk premium more rigorously, in this section we lay out and estimate

a discrete-time, no-arbitrage term structure model of the gold lease rates with unspanned

risks—variables important for the time-series dynamics but are unidentified or only weakly

identified from the cross-sectional of gold lease rates. Our model imposes a no-arbitrage

relation on gold lease rates of different maturities in the same way standard no-arbitrage

models of interest rates, such as Joslin, Priebsch, and Singleton (2011) (JPS), constrain

interest rates of different maturities. With slight abuse of terminology, in the remainder of

the paper we refer to gold leases as “gold bonds” with the corresponding zero yields being

the gold lease rates we observe.

The use of a no-arbitrage term-structure model with unspanned risk offers a number of

benefits beyond the regression-based analysis in Section 4. First, a no-arbitrage model nests

information across maturities in one coherent framework. Moreover, the model structure, in

combination with Kalman filtering, allows for a robust treatment of potential measurement

errors in the yield data. This is particularly important because measurement errors, left

untreated, could result in potentially inflated fits for predictive regressions (see Cochrane and

Piazzesi 2005 for a discussion of this point). Finally, forcing the non-yields risk factors to be

unspanned, rather than allowing them to be spanned, prevents the model from producing

counterfactual results that those risk factors are simply linear combinations of yields plus

measurement errors. This last point is discussed in depth by Joslin, Le, and Singleton (2012)

(JLS) in the context of term structure models with spanned macroeconomic variables.

5.1 Models with Unspanned Variables

The risk-neutral dynamics of our model are standard and follow the canonical setup of Joslin,

Singleton, and Zhu (2011) (JSZ). We let Xt be an N -element vector of state variables. The

core of the risk-neutral setup consists of the risk neutral dynamics of states:

Xt+1 = λQXt +
√

ΣXε
Q
t+1, (6)
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with standard gaussian noise εQt+1 and the short rate specification:

rt = rQ∞ + ι′Xt, (7)

where rt is the amount of gold (expressed as a percentage) earned on a “gold bond” over one

unit of time interval; λQ is a diagonal matrix and, for simplicity, real-valued; and ι denotes a

column vector of ones. It is important to stress that these normalizations, obtained through

standard rotations of the state variables, are only for identification purposes.11 Under the

risk neutral measures, investors are indifferent between making a long term loan and rolling

short term loans successively. This indifference allows us to derive the n-period gold lease

rates ynt for all n’s as affine functions of the state variables:12

ynt = An,X(λQ, rQ∞,ΣX) +Bn,X(λQ)Xt. (8)

We let yt be the J × 1 vector of yields used in estimation. As in JSZ, for each fixed N × J
matrix W , we can write Pt = W yt = W AX +W BXXt, where AX is obtained by stacking

An,X on top of each other for all n’s used in the estimation. BX is similarly obtained by

stacking column vectors Bn,X together. This equation allows us to re-write the term structure

model using Pt as the pricing factor:

yt = AP +BPPt, (9)

where AP = AX −BP(WAX) and BP = BX(WBX)−1.

The risk-neutral dynamics of Pt is given by:

Pt+1 = κQ0 + κQ1Pt +
√

ΣPε
Q
t+1, (10)

where ΣP = (WBX)ΣX(WBX)′, κQ1 = (WBX)λQ(WBX)−1 and κQ0 = (I − κQ1 )WAX .

In the physical dynamics of Pt we incorporate unspanned variables. In the context of

modeling term structures of interest rates, Joslin, Priebsch, and Singleton (2011), Duffee

(2011), and others have shown that unspanned variables reveal information of risk premium

that is not in the cross-section of yields. To accommodate a given set of unspanned variables

11The assumption that λQ is real-valued is slightly over-identifying since it rules out the possibility that λQ

may be complex. Nevertheless, as is shown in JSZ, the real-valued case is often empirically adequate.
12To be precise, the n-period gold lease rate ynt is per unit of time interval. That is, the gold price

of a gold bond with n periods until maturity is given by e−ny
n
t . The loadings can be computed as:

Bn,X = 1
ndiag((I − λQ)−1(I − (λQ)n))′ and An,X = rQ∞ − 1

2n tr
(

ΣX

∑n−1
i=0 i

2Bi,XB
′
i,X

)
.
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Ut, we leave the risk-neutral dynamics intact (hence gold lease rates are given by equation

(9)) and augment the VAR of the factors Pt with the unspanned variables Ut:(
Pt+1

Ut+1

)
= κP0 + κP1

(
Pt

Ut

)
+
√

ΣPUε
P
t+1, (11)

where εPt+1 follows a standard normal distribution, and κP0 and κP1 are both free parameters.

For each loading matrix W , the model is fully characterized by the parameter set ΘU =

{κP0 , κP1 , rQ∞, λQ,ΣPU}. Note that the matrix ΣP , needed to compute the yields loadings AP

and BP , can be obtained as the upper left block of matrix ΣPU .

5.2 Estimation Strategies

In implementing the estimations, we use the gold lease rates for all available maturities (1-, 2-,

3-, 6-, and 12-month) from June 1991 to August 2007, constructed as described in Section 3.

Since the first two principal components (PCs) of gold lease rates account for 99.7% of all

variations in the gold lease rates, we set the number of pricing factors to N = 2. We choose

the loading matrix W of the pricing portfolios to correspond to the those of the first two

PCs, that is, Pt is chosen to be the vector of the two PCs observed at week t.13 Moreover,

the descriptive analysis of Section 4 reveals that, among a wide variety of financial market

factors, gold volatility is the only substantial predictor of changes in gold lease rates, above

and beyond the predictability offered by PC1 and PC2. We therefore include gold volatility

as the unspanned variable Ut. We sample our data at the weekly frequency, so the time

interval for our model is ∆t = 1/52. The weekly sampling of our data results in a time series

with 848 data points.

We adopt two estimation approaches. In the first approach, we assume that the state

vector (P ′t, U ′t)′ are observed perfectly, whereas J −N yields portfolios, Pe
t , are observed with

i.i.d. errors:

Pe,o
t = Pe

t + et with et ∼ N(0, σ2
eIJ−N), (12)

13For estimations with perfectly observed pricing factors, Joslin, Le, and Singleton (2012) show that this
choice of the loading matrix is the most innocuous because it is likely to deliver estimates that are closest to
those obtained by Kalman filtering. An important caveat here is Joslin, Le, and Singleton (2012)’s results are
based on the interest rates data in the U.S., sampled at the monthly frequency. They also discuss conditions
under which the filtering and the Chen and Scott (1993) approaches may be nearly equivalent. At the heart
of these conditions is the relative difference between the magnitudes of time-series and cross-sectional errors,
which can be quite different for distinct datasets and/or data frequencies.
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where the superscript o differentiates the observed series from its theoretical counterpart. This

approach is in the spirit of Chen and Scott (1993), and we refer to it by “WOE” (standing

for “without observational errors”). Many parameters can be analytically concentrated out

under the WOE approach (see Appendix B), so estimation is fast and robust.

In the second approach, we follow Joslin, Le, and Singleton (2012) and assume that the

unspanned variable Ut is observed perfectly but all yields are observed with errors:

yot = AP +BPPt + et and et ∼ N(0, σ2
eIJ), (13)

where AP and BP given by equation (9). We refer to this approach by “FY” (standing for

“filtering yields”). Although the numerical optimization will be over the full parameter vector

(since analytical concentration is no longer feasible), estimates from the WOE approach can

be used as the starting guesses. For our choices of the loading matrix W , these guesses are

excellent and deliver efficient and robust estimation.

5.3 Parameter Estimates

Table 5 reports the estimates for κP1 , κQ1 , and the Cholesky decomposition of the covariance

matrix ΣPU , using both the Chen and Scott (1993) approach (WOE) and the filtering

approach (FY). The table also reports the corresponding robust standard errors.14 For

brevity, we have omitted the estimates of the intercept parameters (κP0 , rQ∞) – these are

available upon request. The pricing errors implied by the models are economically small with

σe estimated at 8 basis points for the gold lease rates data. These estimates are smaller than

or comparable to estimates obtained in prior studies of the term structure of interest rates in

the U.S. and other countries.

Three interesting observations emerge from the parameter estimates. First, a quick

comparison between the diagonal values of κQ1 and of κP1 suggests that the degree of persistence

under Q is higher than that under P. Explicit eigenvalue calculations of these matrices confirm

this is indeed the case for both the WOE and FY estimations. Since risk premia in no-arbitrage

models are intimately connected to the difference between the physical and risk-neutral drifts,

the difference in persistence under the two measures is informative of time-varying risk premia

embedded in the gold lease rates – an issue we take on in depth in the next subsection. Second,

14To compute these robust standard errors, we first express the first-order conditions with respect to the
parameter vector as relevant moment conditions in the Hansen (1982)’s GMM framework. We then use six
lags in computing the Newey and West (1987) covariance matrix, which is prewhitened and recolored in
accordance with Andrews and Monahan (1992) to treat possible autocorrelation in the residual errors.
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Table 5: Parameter estimates (Ests) using the Chen and Scott approach (WOE), assuming
the first two PCs of bond yields observed perfectly, and Kalman filtering (FY). Standard
errors (s.e.) are computed using Newey West matrices with six lags. ∗, ∗∗, ∗∗∗ refer to the
significance levels of 10%, 5%, and 1% respectively.

κP1 κQ1 ΣPU

WOE

Ests
0.970∗∗∗ 0.024 −6.723∗∗∗ 0.994∗∗∗ 0.064∗∗∗ 0.166∗∗∗

0.035∗∗∗ 0.867∗∗∗ 6.474 0.001 0.947∗∗∗ −0.121∗∗∗ 0.179∗∗∗

-0.000 -0.000 0.875∗∗∗ 0.000∗ -0.000 0.002∗∗∗

s.e.
0.011 0.018 2.032 0.002 0.004 0.016
0.013 0.033 4.126 0.004 0.010 0.021 0.034
0.000 0.000 0.027 0.000 0.000 0.000

FY

Ests
0.972∗∗∗ 0.020 −6.816∗∗∗ 0.994∗∗∗ 0.061∗∗∗ 0.158∗∗∗

0.033∗∗∗ 0.917∗∗∗ 5.253∗ 0.001 0.952∗∗∗ −0.121∗∗∗ 0.116∗∗∗

-0.000 -0.000 0.875∗∗∗ 0.000∗ 0.000 0.002∗∗∗

s.e.
0.011 0.018 2.002 0.002 0.004 0.017
0.012 0.021 2.895 0.004 0.010 0.023 0.021
0.000 0.000 0.027 0.000 0.000 0.000

while the estimates under WOE and FY are similar, they are not identical, perhaps with the

exception of κQ1 . The differences in estimates capture the differences between the observed

yields portfolios Po
t and their filtered counterpart. As we discuss shortly, the differences

across WOE and FY estimates become more pronounced when these parameter estimates are

transformed into those that govern the model’s market prices of risks. Finally, the unspanned

risk factor, gold volatility, significantly predicts the PC1 of gold lease rates with a negative

sign (see the (1,3) entry of estimated κP1). Gold volatility significantly predicts PC2 only for

the FY estimation, however.

Figure 2 compares the observed and filtered PC1 (subfigure (a)) and PC2 (subfigure (b))

of the gold lease rates. We find that filtering is inconsequential for the level factor PC1 – the

two graphs of subfigure (a) are on top of one another. For the slope factor PC2, although the

observed and filtered series track each other relatively well, filtering does have some effect in

smoothing out some extreme movements of the slope. This suggests that observed PC2 may

have nontrivial, albeit small, measurement errors.

Using the FY estimates, we plot in Figure 3 the expected yield curve (subfigure (a)) and

the term structure of rates volatility (subfigure (b)) implied by the no-arbitrage model against

their sample counterparts for all maturities in one-week increment from one week to one year.
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Figure 2: Observed and filtered time series of PC1 and PC2 of the gold lease rates.
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Maturities not in our data (which contain only 1-, 2-, 3-, 6- and 12-month maturities) are

filled by a standard bootstrapping technique that assumes constant forward rates between

available maturities (see, for example, Fama and Bliss 1987 for details).

The no-arbitrage model does a very good job in replicating both the upward pattern of

the (zero-coupon) yield curve as well as the downward slope in rates volatility. Expected

yield implied by the no-arbitrage model deviates from the corresponding sample averages by

no more than ten basis points across all maturities. The upward-sloping pattern of the yield

curve depends on the sign of the average risk premia implied by the model. We examine the

model-implied dynamics of risk premia in detail in the next subsection.
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Figure 3: Expected yields and term structure of yields volatility implied by the no-arbitrage
model of gold lease rates. Estimation is done by Kalman filtering.
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The model-implied volatilities curve misses their empirical counterparts by no more than

two basis points. The downward-sloping pattern of volatility is partly due to the stationarity

of the states under the pricing (Q) measures. If the eigenvalues of the risk-neutral feedback

matrix κQ1 were outside of the unit circle, the yield loadings would be exploding as maturities

increase, giving rise to an upward term structure of volatility. More subtly, the flexibility

of the risk neutral setup, as opposed to the physical dynamics, allows our model to match

the speed at which long-maturity yields converge to their limits (as maturities goes infinity),

which in turn determines how fast or slowly volatility decreases in maturity.15

5.4 Time-Varying Risk Premia

In this section, we consider the model’s implication for the dynamics of risk premia and its

consequence for the expectation hypothesis. At the heart of this analysis is the time-varying

property of risk premia and their determinants.

We let Σ
1/2
P be the Cholesky decomposition of the covariance matrix ΣP , and let µP

t and

15Backus and Zin (1993) provides an example in which a no-arbitrage model, with constant market prices
of risks, can grossly miss the volatility curve implied by the data. In their example, due to the constancy of
the market prices of risks that shackles the physical and risk-neutral persistences together, their no-arbitrage
model lacks the flexibility afforded by our setup.
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Table 6: Market prices of risks parameters estimates (Ests) using the Chen and Scott approach
(WOE), assuming the first two PCs of bond yields observed perfectly, and Kalman filtering
(FY). Standard errors (s.e.) are computed using Newey West matrices with six lags. ∗, ∗∗, ∗∗∗

refer to the significance levels of 10%, 5%, and 1% respectively.

STD risk χ2

WOE
Ests

−0.146∗∗ −0.240∗∗ −40.532∗∗∗ 0.000
0.087 −0.611∗∗∗ 8.739

s.e.
0.061 0.118 11.908
0.075 0.104 21.491

FY
Ests

−0.140∗∗ −0.259∗∗ −43.093∗∗∗ 0.000
0.125 −0.576∗∗∗ 0.316

s.e.
0.066 0.123 12.578
0.094 0.103 23.731

µQ
t be the physical and risk-neutral conditional means of the pricing states Pt+1. The market

prices of (standard-deviation) risks can be computed as:

ΛSTD
t = Σ

−1/2
P (µP

t − µ
Q
t ) = constant + Σ

−1/2
P

(
κ̃P1 − κ̃

Q
1

)︸ ︷︷ ︸
ΛSTD

(
Pt

Ut

)
, (14)

where κ̃P1 is the first N rows of κP1 , and κ̃Q1 is κQ1 augmented by a block of zeros to the right.

Intuitively, (14) captures the extra expected returns required by investors for each extra

“unit” in the the standard deviation of the factors Pt. In our setup, (14) is affine in the state

vector Pt and Ut.

Table 6 reports the estimated market prices of risk parameters ΛSTD. Since we are

primarily interested in the time-varying nature of the market prices of risks, we omit the

intercept parameters in (14).

As we see from Table 6, all entries in the first row of the market prices of risk matrix are

significantly negative. This suggests that not only the two PCs but also the unspanned factor

are important for forecasting the excess returns of gold bonds. In particular, the negative sign

on the (1, 3) entry of ΛSTD reveals that a higher gold volatility predicts a lower PC1, hence

a higher return on gold bonds. This evidence is consistent with the descriptive analysis of

Section 4. These results hold regardless of the estimation method, WOE or FY. The p-values

of the χ2-test for the joint significance for all elements in ΛLSD are essentially zeros.
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Figure 4: CS regression implied by the no-arbitrage model of gold lease rates. Estimation is
done by Kalman filtering.
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Figure 4 plots the Campbell and Shiller (1991) coefficients implied by the no-arbitrage

model of gold lease rates, together with those implied by the data. The model-implied

regression coefficients (red dash line) clearly stay closer to the empirical counterparts (blue

circles) than to the unit line implied by the expectations hypothesis. Although the red line lies

strictly above the blue line for all maturities, based on evidence from existing studies using

U.S. interest rates data (for example Dai and Singleton 2002), our model does a relatively

good job in capturing the predictability implicit in the CS regressions. The goodness-of-fit of

our model is comparable to previously estimated Gaussian term structure models of interest

rates.

Given the significant market prices of risk parameters that are estimated from the gold

lease rates data, a natural question arises: what do those estimates capture economically? To

answer this question, it is instructive to examine the exact connection between the market

prices of risk matrix and the model-implied risk premia (or, equivalently, the model-implied

expected excess returns). For example, consider a generic one-period security whose payoff

next period is e−c
′Pt+1 , where c is a constant vector that determines the exposure of this

security to the factor risk in next period’s state variable Pt+1. The continuously compounded
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expected excess return on the security is given by:

EP
t

[
log

(
e−c

′Pt+1

EQ
t [e−rte−c′Pt+1 ]

)]
− rt =− c′(µP

t − µ
Q
t ) + constant,

=− c′Σ1/2
P ΛSTD[P ′t, U ′t ]′ + constant. (15)

That is, the time-varying part of the expected excess return for holding this security is equal

to the quantity of risks, −c′Σ1/2
P , multiplied by the market prices of risks, ΛSTD[P ′t, U ′t ]′.

To further illustrate the economic intuition, consider now a security whose risk exposure

is such that c′Σ
1/2
P = (1, 0), i.e., the only relevant source of risk is the standard-deviation risk

of the level factor. For such a security, the time variation in risk premia is driven by the

product of the first row of ΛSTD and the state vector [P ′t, U ′t ]′. Combined with the fact that

all entries in the first row of ΛSTD are significantly negative (see Table 6), it implies that

PC1, PC2, and gold volatilities are all important determinants of premia that compensate

the level risk, and a higher risk is associated with a higher expected return. Likewise, for a

slope-risk-only security (i.e. c′Σ
1/2
P = (0, 1)), slope is the only factor relevant for risk premia;

the (2,1) and (2,3) entries of ΛSTD, which pick up the effects of the level factor and gold

volatility on risk premia, are insignificant.

To investigate the contribution of the unspanned factor, gold volatility, to expected excess

returns, we perform the following exercise. We take each maturity used in the estimation (1-,

2-, 3-, 6-, and 12-month), compute the annualized one-week expected excess returns implied

by the FY model,16 and plot the cross-maturity averages in Figure 5 (the thick blue line).

Next, we do the same calculation of expected excess returns but replacing the unspanned

factor Ut by zeros, and plot the difference between the two expected excess returns (thin red

line). We see that the unspanned factor is an important determinant of risk premia of gold

bonds.

It is evident from Figure 5 that risk premia in gold leasing markets are mostly positive,

with the exception of the last three years of the sample. This explains why the average term

16For a gold bond with n weeks to maturity, the one-week expected excess return can be computed as

nAP,n − (n− 1)AP,n−1 −AP,1 − (n− 1)BP,n−1κ̃
P
0 +

(
nBP,n −BcP,1

)
Pt − (n− 1)BP,n−1κ̃

P
1

(
Pt

Ut

)
,

where AP,n and BP,n are the intercept and loadings for the n-week maturity. κ̃P0 and κ̃P1 are the first N rows
of κP0, and κP1, respectively.
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Figure 5: Expected weekly excess returns (annualized) and contribution by the unspanned
factor
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structure of gold lease rates is upward sloping, as is seen in Figure 3 (a).17 The average

positivity of risk premia also suggests that buying a gold bond (or lending gold) is often

viewed by the marginal investor as a risky investment. For this to be the case, upward shifts

in the gold yield curve (resulting in reduction in bond prices) must on average be perceived as

bad news. Equally notable from Figure 5 are the occasional short episodes during which risk

premia become negative, such as during the recessions around 2001 and 2007, suggesting that

17For a formal derivation, let us denote the one-week excess return on the n-period gold bond by

xrnt = nynt − (n− 1)yn−1t+1 − rt,

and note that

1

n

n−1∑
i=0

xrn−it+i = ynt −
1

n

n−1∑
i=0

rt+i,

which, by applying the expectation operator to both sides, yields:

1

n

n−1∑
i=0

E[xrn−it+i ] = E[ynt − rt].

Clearly, the average slope, as measured by E[ynt − rt], must be positive, implying an upward-sloping average
yield curve, so long as the risk premia are also positive on average.
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buying a gold bond can occasionally provide insurance-like benefits. (We cannot, however,

definitively identify economic events associated with the negative expected excess returns

around the start of 1993 and 1996.)

6 A Diagnosis of Models with Spanned Variables

In commodities markets, the closest precursors to the no-arbitrage model in Section 5 are

joint models of commodity (futures) prices, convenience yields, and stochastic interest rates,

such as Schwartz (1997) and Casassus and Collin-Dufresne (2005). In these models, the

concept of convenience yields is closely related to that of (gold) lease rates studied in our

analysis. Our main objective in this section is to understand the main difference between our

model and previous approaches.

To begin, the models by Schwartz (1997) and Casassus and Collin-Dufresne (2005) do not

allow for unspanned risks. Instead, all variables, denoted by St, are linear transformations of

the same set of latent factors. Therefore, by standard rotation arguments, the model-implied

St must all be “spanned,” or perfectly explained, by any N portfolios of lease rates Pt:

St = γ0 + γ1Pt, (16)

for some constants γ0 and γ1. Equation (16) says that the portfolios of yields, Pt, contains all

information to price and forecast any construct of the model. In other words, the observable

variables in St do not offer any incremental information beyond what is already embedded in

the yields. In this sense, unspanned risks – risks arising from non-yields sources – are not

allowed in the existing models.

We estimate a spanned model of the gold lease rates in the spirit of the models by Schwartz

(1997) and Casassus and Collin-Dufresne (2005). To follow the setups of their models as

closely as possible, we specify a joint model of the term structure of U.S. interest rates, the

term structure of gold lease rates, and (logged) gold prices. To save space, we defer the

detailed construction of this model to Appendix C. In estimation, we use a three-factor

model (N = 3) as in Casassus and Collin-Dufresne (2005). For U.S. interest rates, we use

the Eurodollar rates with the same maturities as the gold lease rates (1-, 2-, 3-, 6-, and

12-month). For gold prices, we use the average of the AM and PM London fixing prices.

We use weekly data over the same sample period as in Section 5. We assume that all data
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contain measurement errors and implement the estimation using the Kalman filter.18

Our main findings are summarized in Figure 6 and Figure 7 (detailed estimates available

upon request). Figure 6 compares the observed and filtered PCs of the gold lease rates (on

the left) and of the Eurodollar rates (on the right). Figure 7 compares the observed and

filtered gold prices. It is clear from the figures that the likelihood function chooses to fit the

first two PCs of gold lease rates and the first PC of the Eurodollar rates almost perfectly. By

contrast, other PCs of the gold lease rates and Eurodollar rates, as well as the gold prices,

are fitted with substantial errors. There are numerous episodes during which the model fits

the gold price with errors of more than $100/ounce. The errors are more than $200/ounce in

2007.

The substantial pricing errors in the spanned non-yield variable, logged gold price,

result from the fact that the filtered series for (logged) gold prices are essentially linear

transformations of the three series that are almost perfectly priced by the model. Intuitively,

in order to force (16) in estimation, we are likely constrained in our ability to fit both S

and P well. Since the cross section of yields offer much richer and more precise information

than gold prices do, the objective function chooses to fit P almost exactly and the gold price

component of S very poorly. This logic is discussed by Joslin, Le, and Singleton (2012) in

the context of term structure models with spanned macro variables.

Our results suggest that movements in logged gold prices that are orthogonal to the

relevant PCs of gold lease rates and the Eurodollar rates are essentially inconsequential for

all pricing and forecasting purposes. These movements are considered noise by the Kalman

filter.

Whereas the results in this section up to now allow us to relate better to existing models,

to facilitate a better comparison with the model in Section 5, we also implement a spanned

model of the gold lease rates and gold volatility (detailed estimates available upon request).

The results are very similar: the filtered series of gold volatility is fully spanned by the PCs

of the gold lease rates. This suggests, counter-factually, that all relevant information in gold

market volatility is fully captured by the PCs of the gold lease rates. Taken altogether, the

evidence here gives strong support to the unspanned models employed in Section 5.

18Following standard practice, we assume that all Eurodollar rates are observed with i.i.d. uncorrelated
errors with one common variance. The same assumption also is applied to the gold lease rates. The variances
of observational errors of (logged) gold price, gold lease rates, and eurodollar rates are distinct.
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Figure 6: Time series of observed and filtered PCs of Eurodollar rates (left) and the gold
lease rates (right) implied by the spanned model
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Figure 7: Time series of observed and filtered gold prices implied by the spanned model
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7 Conclusion

In this paper we investigate the dynamics of gold lease rates, interests paid in gold for

borrowing gold. Through a term-structure model with the unspanned risk of gold volatility,

we find that risks in both the level and the slope of gold interest rates are strongly priced.

The risk premia are increasing in the level and slope of gold lease rates as well as in gold

volatility, with gold volatility explaining a substantial fraction of risk premia.

As central banks around the world continue to hold gold as part of their reserve assets,

and the financial markets increasingly accept gold as eligible collateral, it seems all the more

important to better understand the risk-return dynamics in the gold lending market. While

our analysis provides initial evidence of risk premium behavior in this market, many questions

remain open. For example, can risk premia in gold lease rates help predict returns of other

asset classes and macroeconomic conditions? Moreover, since gold is not tied to any specific

currency or sovereign country, to what extent do gold interest rates reflect the (shadow) real

interest rates for the global economy? We leave these questions for future research.
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Appendix

A Comparison between GOFO Data and Futures Data

So far, we have characterized risk premium in gold lease rates implied by GOFO. In this

section, we compare the GOFO data and futures data as a robustness check.

A.1 The Futures Data

The futures data we use are from the CME Group. Each CME gold futures contract is

equivalent to 100 ounces of gold. CME specifies the trading and delivery of gold futures as

as follows: “Trading is conducted for delivery during the current calendar month; the next

two calendar months; any February, April, August, and October falling within a 23-month

period; and any June and December falling within a 72-month period beginning with the

current month. . . . Trading terminates on the third last business day of the delivery month.

. . . Delivery may take place on any business day beginning on the first business day of the

delivery month or any subsequent business day of the delivery month, but not later than the

last business day of the current delivery month.”19

The key implications of the futures contract specification are: (i) futures data are not

constant maturity, and, more importantly, (ii) each futures contract can be delivered as

early as the start of a month and as late as the end of the month.20 The latter feature

introduces substantial uncertainty regarding the effective maturity of a gold futures contract

and, together with it, substantial measurement errors in futures-implied gold lease rates.

This problem is particularly acute at short maturities.

To address the uncertainty associated with futures data, we use the following method

and convention. We take the first week of each delivery month as the maturity date of the

corresponding futures contract. We then exclude all contracts that have maturity less than

6 weeks because these contracts are most sensitive to the assumed maturity date. We fill

in the short end of the futures curve by including the 4-week GOFO. Futures contract that

mature longer than 12 months are also excluded, in order to be consistent with GOFO data.

In addition, because the futures prices is proportional to the spot gold price, and because

19See http://www.cmegroup.com/trading/metals/precious/gold contract specifications.html.
20See http://www.cmegroup.com/delivery reports/MetalsIssuesAndStopsMTDReport.pdf for monthly

delivery report of CME gold futures. This report shows the dispersion of delivery dates within the current
delivery month.

31

http://www.cmegroup.com/trading/metals/precious/gold_contract_specifications.html
http://www.cmegroup.com/delivery_reports/MetalsIssuesAndStopsMTDReport.pdf


spot gold prices are too noisy to measure, we use the forward rates implied by the futures

term structure as the input to our model. Finally, we will ignore the daily mark-to-market of

the futures contracts; this means that the futures prices and forward prices should be equal,

if it were not for measurement errors and the delivery option in the futures market. For

simplicity, in the exposition below we call our final data set consisting of gold futures and

4-week GOFO the “futures data.”21

A.2 Data Comparison

Having described the procedure of cleaning the futures data, we now show a few comparisons

of gold lease rates implied by the two data sources: futures data and GOFO data. Table 7

presents the correlations between the GOFO-implied gold lease rates and the futures-implied

gold lease rates. The left half shows the spot-rate correlations, and the right half shows the

forward-rate correlations. These correlations are high (at least 0.98 for spot rates and at least

0.95 for forward rates). Since the inclusion of 4-week GOFO data cannot affect the forward

rates beyond 4 weeks, these high correlations are not mechanical.

Table 7: Correlations between gold lease rates implied by GOFO and filtered from futures
data. The left half shows the correlations of the spot rates, and the right half shows the
correlations of the forward rates.

Spot rate correlations

4w 9w 13w 26w 52w

4w 0.979 0.971 0.962 0.925 0.848
9w 0.994 0.991 0.986 0.958 0.893
13w 0.993 0.995 0.993 0.974 0.920
26w 0.960 0.975 0.983 0.989 0.968
52w 0.891 0.920 0.938 0.971 0.986

Forward rate correlations

4w 4-9w 9-13w 13-26w 26-52w

4w 0.979 0.961 0.933 0.874 0.740
4-9w 0.985 0.984 0.970 0.930 0.823
9-13w 0.930 0.949 0.951 0.935 0.865
13-26w 0.877 0.924 0.950 0.967 0.947
26-52w 0.774 0.844 0.890 0.937 0.963

Figure 8 shows the time-series of the gold lease rates (spot and forward) computed

using three different methods: by directly computing from GOFO data (blue solid lines),

by bootstrapping the futures data using constant forward rates (red dashed lines), and by

21We illustrate our method of data cleaning by an example. Suppose that in the first week of August 2013,
we observe the raw prices of futures contracts that mature on the third last business day of August 2013,
September 2013, October 2013, November 2013, December 2013, February 2014, April 2014, June 2014, and
August 2014. These futures mature in 0, 1, 2, 3, 4, 6, 8, 10, and 12 months. First, we exclude the first two
contracts, August 2013 and September 2013, because they mature within 6 weeks. Second, we include the
4-week GOFO data. Third, we calculate the 2-3, 3-4, 4-6, 6-8, 8-10, and 10-12 months forward rates. Our
final input to the model includes those forward rates as well as the 4-week zero rate from GOFO.
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filtering the futures data. We observe that these three time series closely track each other. A

slightly subtler pattern is that futures-implied lease rates tend to be lower than GOFO-implied

lease rates, especially for longer maturities. This pattern can come from the delivery option

of the short side in the futures market.

Figure 8: Comparison between filtered and observed estimates of gold lease rates, spot and
forward. First plot: 4-week spot rates. Second plot: 52-week spot rates. Third plot: 13-26
week forward rates. Fourth plot: 26-52 week forward rates.
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B Estimation of No-Arbitrage Term Structure Models

In this section, we show how to analytically concentrate out κP0 , κP1 , σe, and rQ∞ for the WOE

estimation.

Continuing from Section 5, we write the log likelihood of observing the entire time series

of (P ′t, U ′t ,P
e,o
t
′)′ as:

L =
∑
t

f(Zt+1,Pe,o
t+1|It), (17)

where Z = (P ′, U ′)′ and f denotes the log conditional density and It denotes all information

up to time t which is fully captured by Zt. Here, L is computed as the sum of two components:∑
t f(Zt+1|Zt) +

∑
t f(Pe,o

t+1|Pt+1). The first captures the time series dynamics and can be

written as:∑
t

f(Zt+1|Zt) = −T
2
log((2π)N+M |ΣPU |)−

1

2

∑
t

||Σ−1/2
PU (Zt+1 − (κP0 + κP1Zt)||22,

where T refers to the sample length and ||.||2 denotes the L2 norm; M is the number of

elements in U . The second captures the cross-sectional fit and can be expressed as:

∑
t

f(Pe,o
t+1|Pt+1) = −T

2
log((2π)J−Nσ2(J−N)

e )− 1

2σ2
e

∑
t

||Pe,o
t+1 −W e(AP +BPPt+1)||22.

B.1 Notations

We write:

An,X = rQ∞ + tr(ΣXCn,X), where Cn,X = − 1

2n

n−1∑
i=0

i2Bi,XB
′
i,X . (18)

It is important to note that both Bn,X and Cn,X are only functions of λQ.

Obviously, Bn,P is only dependent on λQ. To see clearly how rQ∞, ΣP and λQ influence
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An,P , we first write:

An,X = rQ∞ + tr(ΣXCn,X)

= rQ∞ + tr(V −1ΣP(V ′)−1Cn,X)

= rQ∞ + tr(ΣP(V ′)−1Cn,XV
−1)

= rQ∞ + vec((V ′)−1Cn,XV
−1)′vec(ΣP)

= rQ∞ +Dn,Xvec(ΣP), (19)

where Dn,X = vec((V ′)−1Cn,XV
−1)′ and V = WBX .

Stacking An,X for all maturities used in the estimation, we obtain:

AX = ιJr
Q
∞ +DXvec(ΣP), (20)

where DX is obtained by staking the relevant row vectors Dn,X on top of one another. ιJ

denotes a J-size vector of ones.

Now plugging An,X and AX into An,P , we have:

An,P =rQ∞ +Dn,Xvec(ΣP)−B′n,XV −1W (ιJr
Q
∞ +DXvec(ΣP)) (21)

=(1−B′XV −1WιJ)rQ∞ + (DX −B′XV −1WDX)vec(ΣP) (22)

=Enr
Q
∞ + tr(ΣPFn), (23)

where

En = 1−B′n,XV −1WιJ , (24)

and Fn is obtained by appropriately collapsing the row vector Dn,X −B′n,XV −1WDX into a

square matrix. It is important to note that both En and Fn are only dependent on λQ.

Stacking AnP for all maturities n used in estimation, we obtain:

AP = ErQ∞ + F, (25)

where E is obtained by stacking up En’s, and F is obtained by stacking up tr(ΣPFn), for

relevant n’s.
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B.2 κP0 and κP1

We know from JSZ that the globally optimal estimates of κP0 and κP1 can be obtained from a

VAR of Zt+1 on Zt:

κP1 = ET [Ze
t+1(Ze

t )′](ET [Ze
t (Ze

t )′])−1, (26)

κP0 = ET [Zt]− κP1ET [Zt], (27)

where ET [.] denotes sample average and Ze
t = Zt − ET [Zt].

B.3 σe

Likewise, the global estimate of σe can be obtained from the first order condition of the

likelihood function:

σ2
e =

1

T (J −N)

∑
t

||Pe
t+1 −W e(AP +BPPt+1)||2. (28)

B.4 rQ∞

The first order condition with respect to rQ∞ is:

(
ET [Pe

t+1]−W e(AP +BPET [Pt+1])
)′
W e∂AP

∂rQ∞
= 0. (29)

Utilizing the earlier representation, AP = ErQ∞ + F , we have

(
ET [Pe

t+1]−W e(F +BPET [Pt+1])−W eErQ∞
)′
W eE = 0, (30)

which is linear in rQ∞. Collecting terms, we have:

rQ∞ =

(
ET [Pe

t+1]−W e(F +BPET [Pt+1])
)′
W eE

||W eE||2
. (31)
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C A Spanned Model of Gold Lease Rates

First, note that we have two term structures: one for the gold lease rates and one for the

Eurodollar rates. Both term structures are spanned by the same set of N -variate latent

variables Xt. In addition, we also have a vector of observable variables Mt, also linearly

spanned by Xt. Our objective here is to lay out a canonical setup for this model.

We denote the two sets of yields used in estimation, gold lease rates and Eurodollar rates,

by Y
(1)
t (J1 × 1) and Y

(2)
t (J2 × 1), respectively.

C.1 Risk neutral dynamics

First term structure: gold lease rates

We can always apply standard JSZ normalization to one of the two term structures, say Y
(1)
t .

That is, the risk neutral dynamics of Xt can be written as:

Xt+1 = KQ
1XXt +N(0,ΣX) (32)

with the short rate of the first term structure:

r
(1)
t = r(1)

∞ + ι′Xt. (33)

These two equations allow us to write:

Y
(1)
t = A

(1)
X +B

(1)
X Xt. (34)

For a given matrix W (1), we can follow JSZ and rotate Xt to P(1)
t = W (1)Y

(1)
t such that:

P(1)
t+1 = KQ

0P(1) +KQ
1P(1)P

(1)
t +N(0,ΣP(1)) (35)

and

Y
(1)
t = A

(1)

P(1) +B
(1)

P(1)P
(1)
t . (36)
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Second term structure: Eurodollar rates

To construct the term structure for Y
(2)
t , all we need is the short rate equation:

r
(2)
t = δ

(2)

0,P(1) + δ
(2)

1,P(1)P
(1)
t . (37)

Combining this equation with the risk neutral dynamics of P(1)
t , the whole term structure of

Y
(2)
t for all maturities can be derived:

Y
(2)
t = A

(2)

P(1) +B
(2)

P(1)P
(1)
t . (38)

Remark: An alternative to equation (37) is to express r
(2)
t as an affine function of the

latent state Xt. However, the loadings δ
(2)
1,X would be much harder to identify due to the

latency of X.

Other observed variables

Following JLS, macro variables that are spanned by X can be modeled simply as:

Mt = γ0,P(1) + γ1,P(1)P(1)
t . (39)

C.2 Physical dynamics

For the physical dynamics, we simply assume that P(1)
t follows a VAR(1). The full model is

characterized by the pricing equations for Y
(1)
t , Y

(2)
t , Mt, and the physical dynamics for P(1)

t .

The full parameter vector is (KQ
1X , r

(1)
∞ , ΣP(1) , δ

(2)

0,P(1) , δ
(2)

1,P(1) , γ0,P(1) , γ1,P(1)), combined with

the parameters governing the time series dynamics of P(1)
t .
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