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Abstract

We consider a market for indivisible items with m buyers, each of whom wishes to buy

at most one item, and m sellers, each of whom has one item to sell. The traders privately

know their values/costs, which are statistically dependent. Two mechanisms for trading are

considered. The buyer’s bid double auction collects bids and offers from traders and determines

the allocation by selecting a market-clearing price. It fails to achieve all possible gains from trade

because of strategic bidding by buyers. The designed mechanism is a revelation mechanism

in which honest reporting of values/costs is incentive compatible and all gains from trade are

achieved in equilibrium. This optimality, however, comes at the expense of plausibility: (i)

the monetary transfers among the traders are defined in terms of the traders’ beliefs about

each other’s value/cost; (ii) a trader may suffer a loss ex post; (iii) the mechanism may run a

surplus/deficit ex post. We compare the virtues of the simple yet mildly inefficient buyer’s bid

double auction to the flawed yet perfectly efficient designed mechanism.
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Economists evaluate institutions from both normative and positive perspectives. The normative

perspective characterizes the optimal mechanism in a given problem. The positive perspective

models procedures that are used in practice and evaluates their properties. The approaches are

combined when a practical procedure is measured against the optimum. If a practical procedure

is not optimal, then the normative approach may provide guidance for improving performance

in practice. Alternatively, the normative analysis may be questioned on the grounds that the

optimization analysis has failed to address all constraints that matter in practice. A procedure

that endures in practice and seems to perform well but not optimally in a theoretical sense compels

a reappraisal of the optimization analysis.

We compare in this paper the properties of two mechanisms for organizing trade in a simple

model of exchange of homogeneous, indivisible items. There are m buyers, each of whom wishes

to buy at most one item, and m sellers, each of whom has one item to sell. In the terminology of

auction theory, a correlated, private values model is considered. Each buyer i privately observes

the value vi that he receives if he acquires an item and each seller j privately observes the cost

cj that he bears if he sells his item. Utility for each trader is quasilinear in his value/cost and

money. The normative approach we consider generalizes a mechanism devised by McAfee and

Reny (1992) in the bilateral case to the case of multiple traders on each side of the market. Using

the statistical dependence among values and costs, a revelation mechanism is designed in which

(i) honest reporting defines a Bayesian-Nash equilibrium and (ii) all potential gains from trade are

achieved in this equilibrium.1 This is the designed mechanism (or DM ). Alternatively, one can

solicit a bid from every buyer, an ask from every seller, and then construct demand and supply

curves. The buyer’s bid double auction (or BBDA) selects as the market price the upper boundary

of the interval of market-clearing prices with trade occurring among buyers who bid at least this

price and sellers whose offers are less than this price. It is a simple model of a call market that is

used in practice to organize trade. Traders bid strategically, however, which means that a buyer’s

value may exceed a seller’s cost even though the bid does not exceed the ask. The consequence of

this strategic behavior is that the BBDA inefficiently fails to achieve all possible gains from trade.

The DM is impractical because its monetary transfers among the traders are functions of the

probability distribution that models their common beliefs about the value/cost of each other. This

is the Wilson Critique of mechanism design (Wilson (1987)), namely, that the field has focused

upon mechanisms defined in terms of the agents’ beliefs. The assumption of probabilistic beliefs

held by the agents are a means to rigorously model the agents’ choices under uncertainty; these

beliefs are not a datum that is practically available for defining economic institutions.2 The rules

1The use of statistical dependence among the private types of agents to improve mechanism performance originates
in Myerson (1981), which presents an example of an auction in which the seller extracts the entire potential revenue
by using the dependence among bidder reservation values. This example was formalized into a general theorem for
finite auction models by Crémer and McLean (1988). McAfee and Reny (1992) showed that statistical dependence
can be used for welfare gains in a variety of mechanism design problems while also extending the analysis to the
continuum models that are more commonly used in Bayesian mechanism design.

2Econometricians, however, are developing sophisticated methods to identify the beliefs that underlie agents’ ac-
tions in auctions and bargaining problems. See, for example, Aradillas-López, Gandhi, and Quint (2013), Henderson,
List, Millimet, Parmeter, and Price (2012) and Krasnokutskaya (2011). The relevance of this work to mechanism
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of the BBDA, in contrast, are specified purely in terms of the bids and offers of the traders. It is

a mechanism that is robust in the manner that Wilson (1987) advocates.3

The focus in this paper is not the failure of the DM to satisfy the Wilson Critique;4 rather, it

is to measure the BBDA against the DM as part of the positive/normative methodology. Though

efficient, the DM may compel a buyer to bear a loss when he fails to trade and can run either an

ex post monetary surplus or deficit because it is only budget balanced in expectation. In contrast,

the BBDA is ex post individually rational and ex post budget balanced.5

Our comparison of the DM and BBDA is for the case of a particular informational environment

and varying sizes m of markets. We focus on the following three questions:

1. How inefficient is the BBDA?

2. How significant are the ex post losses that a trader may bear in the DM ?

3. How large of monetary subsidy may be required ex post to operate the DM ?

Our results concerning inefficiency in the BBDA are drawn from Satterthwaite, Williams, and

Zachariadis (2012): (i) a seller reports his cost honestly; (ii) in any symmetric equilibrium strategy,

a buyer underbids by an amount that is O(1/m); (iii) the ex ante expected gains from trade that

inefficiently fail to be achieved in equilibrium as a fraction of the ex ante expected potential gains

from trade is O(1/m2). Computational evidence that is presented in Section 4 demonstrates that

the losses from strategic behavior may be negligible even for market sizes m as small as 8 or 16.6

We next consider the DM. Let U(m) denote for a market with m traders on each side the

ex post utility of a buyer who fails to trade in the DM. We show that U(m) is strictly negative

and bounded away from zero for all m and for a robust family of trading problems. A buyer

fails to trade in the efficient DM if his value is among the m smallest of the 2m values/costs of

design remains to be explored.
3A second criticism of Wilson (1987) concerns the assumption of common knowledge of beliefs. This criticism

is addressed by the growing field of robust mechanism design (see Bergemann and Morris (2012, pp. 1-48) and the
references therein). The criticism is relevant to both the DM and the BBDA. Both the DM and the BBDA have the
property that honest reporting is a dominant strategy for sellers and hence beliefs are not needed for seller decision
making in either procedure. A buyer, however, must know the distribution of values and costs to verify the optimality
of his equilibrium behavior in either the DM or the BBDA. While honest reporting in the DM is arguably simpler
than strategic bidding in the BBDA, it still requires common knowledge of beliefs to sustain equilibrium. We shall
also discuss below a particularly simple form of equilibrium bidding behavior by buyers in the BBDA.

4It is also well known that the ex post transfers used to sustain incentive compatibility in the designed approach
go to infinity in magnitude as the case of independent types is approached, rendering it impractical. See Robert
(1991) and Kosmopoulou and Williams (1998).

5Kosenok and Severinov (2008) provide necessary and sufficient conditions on the distributions of types for the
existence of an ex post efficient, interim individually rational, ex post budget balanced and Bayesian incentive
compatible mechanism. Their proof of sufficiency is constructive, and given our focus on the ex post budget
imbalance of the DM, it would seem that their mechanism would be a more suitable point of comparison than the
McAfee-Reny approach that we use here. As in Crémer and McLean (1988), however, Kosenok and Severinov
(2008) assume finite type spaces. Generalizing their conditions and construction to our continuous model is far from
immediate. Their mechanism holds promise for future evaluation of the designed mechanism approach in the double
auction setting.

6That these losses are relatively small is also supported by Satterthwaite and Williams (2002), who show in an
independent private values model that no incentive compatible, ex ante budget balanced and interim individually
rational mechanism achieves a faster rate of convergence to efficiency over all trading environments than the BBDA.

3



all traders. The symmetry of our model implies that a buyer trades with probability 1/2 and so

the expected number of buyers who bear an ex post loss is m/2. The magnitude of the aggregate

expected ex post loss |U(m) ·m/2| of buyers in the DM therefore increases without bound as the

market increases in size, which goes against the standard intuition that increasing the size of a

market perfects its performance. We then present computational evidence concerning the size of

the loss U(m) that a buyer may bear in comparison with the increased expected gains from trade

that switching from the BBDA to the DM creates. This evidence suggests that this ex post loss

can be a steep price to pay for a relatively modest increase in efficiency, even for relatively small

sizes m of the market.

A problem that exists for all sizes of markets is that the DM may require a substantial ex post

monetary subsidy in order to operate. We show that the sum of transfers from buyers minus the

payments to sellers ex post has a worst case value over all samples of values/costs that is strictly

negative and decreasing at a linear rate in m to −∞. This is a serious obstacle to using the

mechanism.

The paper is organized follows. Section 1 discusses the trading environment that we study

along with a summary of relevant results concerning the BBDA from other sources. Section 2 first

recounts the McAfee-Reny mechanism in the bilateral case of m = 1 and then extends it to define

the basic designed mechanism or BDM. This mechanism is incentive compatible, efficient, ex ante

individually rational but not ex ante budget balanced. It is an intermediate step to defining the DM

of interest, which achieves the additional property of ex ante budget balance by adding constant

transfers to the BDM. Section 3 defines the DM and addresses its ex post irrationality/rationality

and ex post budget imbalance. Section 4 presents a numerical example for a specific distribution

of values/costs and for m ranging from 2 to 16. We then summarize our results in the final section.

All proofs are deferred to the Appendix.

1 Model

1.1 The Trading Environment

The values/costs of the 2m traders are generated as follows. A state µ is drawn from the uniform

diffuse prior on R. We elaborate on our use of this distribution below. For each trader i, a value

εi is independently drawn from the cumulative distribution F on R, which is absolutely continuous

with mean 0. The density f is strictly positive and continuous on R. Trader i privately observes

his value/cost

µ+ εi.

Through the state µ, a trader’s beliefs about the distribution of the values/costs of the 2m − 1

other traders is dependent upon his observation of his own value/cost. The process by which

the values/costs of the traders are drawn is assumed to be common knowledge in our analysis of

Bayesian-Nash equilibrium. Letting v denote a buyer’s value, the buyer’s utility if he acquires an

item and makes a monetary payment of x is v − x; if he fails to trade and makes a payment of x,
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then his utility is −x. Similarly, a seller with cost c who sells his item and receives a payment of

x has utility x− c; his utility if he does not sell but receives a payment of x equals x.

The uniform diffuse prior can be thought of intuitively as “the uniform distribution across the

entire real line.” It is an improper prior in the sense that it is not a well-defined probability

distribution. Once a trader observes his value, however, his beliefs conditional on his value/cost

concerning the distribution of the values and costs of the other traders is well-defined. DeGroot

(1980, p. 190) motivates the use of an improper prior as a model of a decision-maker who has little

information ex ante concerning future random events but who will receive a valuable signal at the

interim stage on which he can base his interim probabilistic beliefs. It may not be worthwhile

for the decision-maker to spend time and effort in properly specifying his ex ante beliefs. The

diffuse uniform prior is adopted in our model for reasons of mathematical tractability;7 it implies

an invariance of a trader’s decision problem to translations of his value/cost that greatly simplifies

the problem of studying double auctions in the case of correlated values/costs. This invariance

is discussed below. It is also useful in modeling a financial meltdown in which no trader knows

anything ex ante about what the ex post price is likely to be. It thus maximally challenges a double

auction mechanism to achieve gains from trade in an environment with incomplete information.

Further discussion of the use of the uniform diffuse prior in models of double auctions can be found

in Satterthwaite, Williams, and Zachariadis (2012).

1.2 A Summary of Results Concerning the Buyer’s Bid Double Auction BBDA

Trade in the BBDA is organized as follows. Buyers and sellers simultaneously submit bids and

offers, which are ordered in a list8

s(1) ≤ s(2) ≤ ... ≤ s(2m).

Assume for the moment that s(m) 6= s(m+1) and let d denote the number of buyers’ bids among the

top m bids/offers s(m+1), ..., s(2m). There are m − d buyers’ bids among the m lowest bids/offers

s(1), ..., s(m). Because we have assumed that there are exactly m bids/offers among the m lowest

bids/offers, there must be d offers of sellers among the m lowest. Selecting a price p ∈ [s(m), s(m+1)]

therefore equates supply and demand, i.e., the number d of buyers’ bids at or above p equals the

number d of offers below p.9 In the case of s(m) = s(m+1), allocate trades on the long side of the

market by assigning priority first to the larger bids/smaller offers and then using a fair lottery in

the case of ties. The interval [s(m), s(m+1)] is therefore the interval of market-clearing prices; it

could alternatively be derived as the intersection of demand and supply curves constructed from

the offers/bids.

7The diffuse uniform prior is used for similar purposes in the case of one-sided auctions by Wilson (1998) and
Klemperer (1999). It has also proven useful in the theory of global games (see Morris and Shin (2003)).

8We use s(t) throughout the paper to denote the tth smallest in a specified sample of either true or reported values
and costs.

9A minor change in the allocation rule is required in order to clear the market when the price p is selected as s(m):
sellers whose offers are at or below p trade with buyers whose bids are strictly more than p.

5



The BBDA is the market procedure that selects s(m+1) as the market price.10 Because a seller

only sells if his ask is below this price, his ask can not influence the price at which he trades. It is

straightforward to show that setting his ask equal to his true cost is a weakly dominant strategy for

each seller. Tying down the strategic behavior of one side of the market is an attractive feature of

the BBDA as a theoretical model. We assume the use of this strategy by each seller in the BBDA

for the rest of the paper.

A buyer, however, sets the price at which he trades if his bid equals s(m+1). He therefore has

an incentive to bid less than his value. Items are allocated in the BBDA to those traders who

submit the m largest bids/offers (i.e., buyers who buy and sellers who do not and therefore retain

their items). As a consequence of buyer underbidding, the m largest bids/offers may not have

been submitted by the traders with the m largest values/costs. Buyer underbidding may therefore

cause inefficiency in the allocation.

The results of Satterthwaite, Williams, and Zachariadis (2012) concern the use of an increasing

function B : R → R by each buyer that, together with honest revelation by each seller, defines a

Bayesian-Nash equilibrium. The paper shows that in such an equilibrium the inefficiency caused

by the strategic behavior of buyers quickly becomes inconsequential as the market size m increases.

The results are as follows:11

1. Buyer misrepresentation is O(1/m): There exists a constant κ (F ) such that

v −B(v) ≤ κ (F )

m
for all v ∈ R.

2. Relative Inefficiency is O(1/m2): Fixing the state µ, let GFT (m) denote the ex ante expected

potential gains from trade and GFTBBDA (B,m, µ) denote the ex ante expected gains from

trade earned by the 2m traders in the equilibrium determined by the strategy B. Relative

inefficiency I(µ,m,B) is the fraction of GFT (m) that the traders inefficiently fail to achieve

in the equilibrium given by B,

I(µ,m,B) =
GFT (m)−GFTBBDA (B,m, µ)

GFT (m)
. (1)

There exists a constant K(F ) such that

I(µ,m,B) ≤ K(F )

m2
for all m,B, and µ.

These results are consistent with earlier results proven in a variety of trading environments with a

proper prior distribution.12

10Further discussion of the rules of the BBDA can be found in Satterthwaite and Williams (1989).
11In addition to the assumptions of section 1.1, these results assume that the density f is symmetric about 0 and that

the strategy B and distribution F satisfy the boundary conditions limv→−∞B
′
(v) <∞ and limv→−∞ F (v)/f(v) <∞.

The assumptions made in section 1.1 are all that are required within this paper.
12Relevant references that are not cited elsewhere in this paper include Williams (1991), Rustichini, Satterthwaite,

and Williams (1994), Cripps and Swinkels (2006) and Reny and Perry (2006).
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A particular aspect of equilibrium in the uniform diffuse prior model is worth mentioning. For

whatever value vi that bidder i observes, he has exactly the same conditional beliefs given vi about

the distribution of the differences of values and costs

(vj − vi)j 6=i, (ck − vi)1≤k≤m

of the other 2m − 1 traders about his value vi. This is the invariance property of his decision

problem that is mentioned above. It is therefore reasonable to conjecture an invariant solution for

his choice of a bid, i.e., a bidding strategy B that has the simple form

B(v) = v − λ

for a constant λ (F,m). This is an offset strategy. Satterthwaite, Williams, and Zachariadis (2012)

prove the existence of an offset strategy that solves a buyer’s first order condition on B to define a

Bayesian-Nash equilibrium. While sufficiency of the first order approach is in general difficult in

the double auction setting, numerical calculations demonstrate that such strategies define equilibria

for the case of the standard normal distribution that is considered in section 4 and for a variety of

other common distributions.13

2 The Basic Designed Mechanism BDM

2.1 The Bilateral Case

The McAfee-Reny mechanism is defined so that: (i) the seller has a dominant strategy to report

honestly; (ii) the buyer’s best response is to report honestly; (iii) the allocation is ex post efficient;

(iv) the interim expected utility of the buyer equals zero in equilibrium for each of his possible

values and all ex ante expected gains from trade therefore go to the seller. The mechanism works

as follows. Each trader reports a value/cost and trade occurs if the buyer’s reported value is greater

than or equal to the seller’s reported cost. When trade occurs, the seller receives the buyer’s report

as his payment. The seller receives no transfer when trade does not occur. Consequently, the

seller’s dominant strategy is to report honestly.

Let v denote the buyer’s value and r his report. The buyer’s payment as a function of his

report r and the seller’s report c is as follows:

− Pr(r ≥ c |r )2

∂
∂v Pr(r ≥ c |v )

∣∣
v=r

if r < c,

r +
Pr(r ≥ c |r )

∂
∂v Pr(r ≥ c |v )

∣∣
v=r

− Pr(r ≥ c |r )2

∂
∂v Pr(r ≥ c |v )

∣∣
v=r

if r ≥ c.

13Offset strategies have also been motivated by their simplicity as a form of cognitive behaviour by bidders in
one-sided auctions (Compte and Postlewaite (2012)).
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This is derived by starting with the following payment scheme and solving for α(r) and β(r):

−α(r) if r < c,

r + β(r)− α(r) if r ≥ c.

The buyer’s interim expected utility with value v and report r is

u(v, r) = α(r) + (v − r − β(r)) · Pr(r ≥ c |v ).

We want u(v, v) = 0, or

α(v)− β(v) · Pr(v ≥ c |v ) = 0⇔

α(r) = β(r) · Pr(r ≥ c |r ). (2)

A second equation is obtained by requiring that

∂u

∂v
(v, r)

∣∣∣∣
v=r

= 0. (3)

This condition is necessary for u(v, r) to have a maximum of 0 at v = r, which (together with the

sufficient conditions discussed below) insures incentive compatibility.14 We have

∂u

∂v
(v, r) = Pr(r ≥ c |v ) + (v − r − β(r)) · ∂

∂v
Pr(r ≥ c |v ),

and so at v = r,

0 = Pr(r ≥ c |r )− β(r) · ∂
∂v

Pr(r ≥ c |v )

∣∣∣∣
v=r

⇔

β(r) =
Pr(r ≥ c |r )

∂
∂v Pr(r ≥ c |v )

∣∣
v=r

.

The denominator is nonzero by assumption, as a sufficient condition for dependence. The formula

α(r) =
Pr(r ≥ c |r )2

∂
∂v Pr(r ≥ c |v )

∣∣
v=r

is then determined by (2).

14We would normally use
∂u

∂r
(v, r)

∣∣∣∣
r=v

= 0

as a necessary condition for the maximization of u(v, r) at r = v for each v. Because we want u(v, v) = 0 for all v,
however, it follows that

∂u

∂v
(v, r)

∣∣∣∣
r=v

+
∂u

∂r
(v, r)

∣∣∣∣
r=v

= 0,

and so the two first order conditions are equivalent. The first order condition with respect to v has the advantage
of avoiding derivatives of the “unknowns” α(r) and β(r) and the differential equations that result.
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The conditions
∂

∂v
Pr(r ≥ c |v ) < 0

and
∂

∂v

[
v +

Pr(r ≥ c |v )
∂
∂v Pr(r ≥ c |v )

]
≥ 0

insure that ∂u/∂v(v, r) changes from positive to negative as v goes from v < r to v > r, i.e., u(v, r)

achieves its maximum value of 0 at v = r. These sufficient conditions are motivated in McAfee

and Reny (1992, p. 415-6).

2.2 The Multilateral Case

Ex post efficiency, incentive compatibility, ex ante budget balance and interim individual rationality

do not uniquely determine a mechanism in the case of correlated values and costs, and so choices

are made below in defining the mechanism. We begin by generalizing from the bilateral case to

define a mechanism with the following properties: (i) each seller has a dominant strategy to report

honestly; (ii) assuming honest reporting by each seller and every other buyer, each buyer’s best

response is to report honestly; (iii) the allocation is ex post efficient; (iv) the interim expected

utility of the buyer equals zero in equilibrium for each of his possible values. Call this the basic

designed mechanism (or BDM ). It is not ex ante budget balanced and should be regarded as an

intermediate step to defining the designed mechanism of interest in this paper. We then define a

family of mechanisms DM that have the additional property of ex ante budget balance by adding

constants to the transfer functions of every trader in the BDM. The designed mechanism DM is

the member of this family that is of particular interest for investigating the issues of ex post budget

imbalance and irrationality.

2.2.1 The Basic Designed Mechanism BDM

Consider first the decision problem of a seller who faces a sample of m reported values from buyers

and m − 1 reported costs from sellers. Letting c denote the seller’s cost and c∗ his report, the

following transfer is provided to the seller:

s(m) if c∗ ≤ s(m) (4)

0 if c∗ > s(m).

If c∗ ≤ s(m), then the seller’s report is among the m smallest of the 2m reported values/costs so

that he sells his item; if c∗ > s(m), then the seller’s ask is among the m largest of the 2m reported

values/costs so that retains his item. The logic of the BBDA implies that honest revelation is a

dominant strategy for each seller given the transfer formula (4).

We next consider a buyer’s decision problem. Assuming honest reporting by every other trader,

the sample that he faces is m costs reported by sellers and m − 1 values reported by buyers. As

in the bilateral case, let v denote the value of the selected buyer and r his report. The buyer
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receives an item if r ≥ s(m). We follow the logic of the bilateral case and solve for α(r) and β(r)

to determine the selected buyer’s payment:

−α(r) if r < s(m), (5)

r + β(r)− α(r) if r ≥ s(m).

If r < s(m), then the reported value r is among the m smallest offers/bids and so the selected buyer

does not trade; if r ≥ s(m), then the reported value r is among the m largest and so he trades.

The buyer’s expected utility with value v and report r is

u(v, r) = α(r) + (v − r − β(r)) · Pr(r ≥ s(m) |v ).

Pr(r ≥ s(m) |v ) plays the role that Pr(r ≥ c |v ) has in the bilateral case. The requirement that the

buyer’s interim expected utility u(v, v) equals zero implies

α(r) = β(r) · Pr(r ≥ s(m) |r ), (6)

which generalizes (2). The first order condition

∂u

∂v
(v, r)

∣∣∣∣
v=r

= 0

is again imposed so that u(v, r) has a maximum of 0 at v = r. This implies

0 = Pr(r ≥ s(m) |r )− β(r) · ∂
∂v

Pr(r ≥ s(m) |v )

∣∣∣∣
v=r

⇔

β(r) =
Pr(r ≥ s(m) |r )

∂
∂v Pr(r ≥ s(m) |v )

∣∣
v=r

, (7)

and so

α(r) =

(
Pr(r ≥ s(m) |r )

)2
∂
∂v Pr(r ≥ s(m) |v )

∣∣
v=r

. (8)

2.2.2 The Sufficient Conditions

The sufficient conditions of the bilateral case generalize to

∂

∂v
Pr(r ≥ s(m) |v ) < 0, (9)

∂

∂v

[
v +

Pr(r ≥ s(m) |v )
∂
∂v Pr(r ≥ s(m) |v )

]
≥ 0. (10)

We now show that condition (9) holds in our model for general F . Invariance implies

Pr(r ≥ s(m) |v ) = Pr(r + λ ≥ s(m) |v + λ) for all λ ∈ R.
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Consequently,

0 =
d

dλ
Pr(r + λ ≥ s(m) |v + λ)

∣∣∣∣
λ=0

(11)

=
∂

∂r
Pr(r ≥ s(m) |v ) +

∂

∂v
Pr(r ≥ s(m) |v ).

The desired sufficient condition is therefore equivalent to

∂

∂r
Pr(r ≥ s(m) |v ) > 0.

It is clear that this inequality holds because increasing r increases the probability that it is among

the m largest reports.

Condition (10) is therefore equivalent to

∂

∂v

[
v −

Pr(r ≥ s(m) |v )
∂
∂r Pr(r ≥ s(m) |v )

]
≥ 0. (12)

As in the first order approach to the BBDA, it is difficult to identify conditions directly upon F

that imply (12). Numerical calculations, however, suggest that this condition holds in the case of

the standard normal distribution studied in section 4.

2.2.3 The Values of α and β

Given honest reporting, the values of α (v) and β (v) are

α(v) =
Pr(v ≥ s(m) |v )2

∂
∂v Pr(r ≥ s(m) |v )

∣∣
r=v

(13)

and

β(v) =
Pr(v ≥ s(m) |v )

∂
∂v Pr(r ≥ s(m) |v )

∣∣
r=v

. (14)

The invariance of a buyer’s decision problem simplifies the values of α (v) and β (v), as summarized

in the following theorem.

Theorem 1 The following properties hold for formulas (13) and (14):

1.

Pr(v ≥ s(m) |v ) =
1

2
. (15)

2. The derivatives
∂

∂v
Pr(r ≥ s(m) |v )

∣∣∣∣
r=v

= − ∂

∂r
Pr(r ≥ s(m) |v )

∣∣∣∣
r=v

(16)

do not depend upon the value of v.

11



As a consequence of (15) and (16), the values of α (v) and β (v) do not depend upon v. We

hereafter write α (m) and β (m) as we explore their dependence on the market size m. Notice also

that (15) and (6) imply

α (m) =
β (m)

2
, (17)

where

α(m) =

(
Pr(v ≥ s(m) |v )

)2
∂
∂v Pr(r ≥ s(m) |v )

∣∣
v=r

= −1

4

1
∂
∂r Pr(r ≥ s(m) |v )

∣∣
r=v

< 0. (18)

2.3 The Utility Consequences of the BDM for a Buyer

Applying (5), a buyer’s ex post utility in the BDM when v is his value and all traders report

honestly is

α (m) if v < s(m),

α (m)− β (m) if v ≥ s(m).

Recall that s(m) here is the mth smallest value/cost among the 2m − 1 values/costs of the other

traders. The first line is his ex post utility when he fails to trade and the second is his ex post

utility when he trades. Applying (17) and (18), this reduces to

α (m) if v < s(m),

−α (m) if v ≥ s(m),

where

α(m) = −1

4

1
∂
∂r Pr(r ≥ s(m) |v )

∣∣
r=v

is strictly negative and does not depend upon v. Ex post individual rationality is therefore violated

in the BDM if and only if a buyer fails to trade.

The following theorem bounds this ex post loss away from zero and characterizes its asymptotic

value.

Theorem 2 Assume that the density f is continuous and bounded with f(µ1/2) > 0, where µ1/2

denotes the median of F . The loss α (m) satisfies the inequality

|α (m)| ≥ 1

4f
(19)

for all m ∈ N, where

f = sup
x∈R

f(x).

Its limiting value is

lim
m→∞

α(m) = − 1

4f
(
µ1/2

) . (20)
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2.4 Ex Ante Budget Balance and the Basic Designed Mechanism

From the ex ante perspective, a seller’s expected utility in the BDM is the same as it would be in

the BBDA if (contrary to the incentives of buyers) all traders report their values/costs honestly.

A buyer’s interim expected utility in the BDM is zero by construction, and so his ex ante expected

utility equals zero. All of the ex ante gains from trade are thus not distributed among the traders

in the BDM. As defined in section 1.2, GFT (m) denotes the total ex ante expected gains from

trade received by all traders in each state µ in an efficient allocation rule. Let GFT ∗(m) denote the

ex ante expected gains from trade received by the m sellers in each state µ in the BBDA assuming

honest revelation by all traders. The difference GFT (m)−GFT ∗(m) represents the portion of the

ex ante gains from trade allocated to buyers in the BBDA when all traders report honestly. The

BDM must be modified to distribute this quantity among the 2m traders in order to achieve ex

ante budget balance.

We consider here adding constants

(
γsj
)
1≤j≤m ,

(
γbi

)
1≤i≤m

to the monetary transfers (4) and (5) of sellers and buyers. Seller j receives a payment of

s(m+1) + γsj if cj ≤ s(m)

γsj if cj > s(m)

with the honest report of his cost cj , and buyer i pays

−α(m)− γbi if vi < s(m+1),

vi + β(m)− α(m)− γbi if vi ≥ s(m+1)

when he honestly reports his value vi. The order statistics s(m) and s(m+1) above are for the entire

sample of 2m values/costs. Each trader receives the subsidy of his particular constant for every

sample of values and costs. The inclusion of these constants in the transfer functions therefore

does not alter the incentives for honest reporting by the traders.15

The constraint of ex ante budget balance is satisfied if and only if

m∑
j=1

γsj +
m∑
i=1

γbi = GFT (m)−GFT ∗(m). (21)

Define DM as the set of all mechanisms obtained by starting with the BDM and adding constant

transfers that satisfy (21).

There are two particular mechanisms in the family DM that are noteworthy for our purposes.

15More generally, each trader’s subsidy could depend upon the reported values/costs of all other traders.
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Let γ (m) denote the constant

γ (m) =
GFT (m)−GFT ∗(m)

m
.

Define DM s as the mechanism BDM with the additional constant transfers in the case in which

each γbi = 0 and the sellers share the remaining surplus equally,

γsj = γ (m) for 1 ≤ j ≤ m.

This is a mechanism that most directly generalizes the McAfee-Reny mechanism from the bilateral

case in the sense that all ex ante gains from trade are allocated to the sellers. Alternatively, define

DM as the mechanism BDM with the additional constant transfers in the case in which each γsj = 0

and the buyers share the remaining surplus equally,

γbi = γ (m) for 1 ≤ i ≤ m.

The ex post irrationality of the BDM is with respect to buyer payoffs; as discussed below, the

mechanism DM is most promising for the sake of addressing this flaw of the BDM.16

We conclude this subsection by characterizing the limiting value of γ (m). This will be of

interest below in the effort to address the ex post budget imbalance and irrationality of the BDM.

Theorem 3 The constant γ (m) satisfies

lim
m→∞

γ (m) =

∫ ∞
µ1/2

vf(v)dv − µ1/2. (22)

3 Ex Post Irrationality and Deficits in the Designed Mechanism

DM

The BDM leaves a buyer with an ex post loss when he fails to trade and may also require an ex

post monetary subsidy to operate. We consider in this subsection the possibility of resolving these

problems through the constant transfers discussed in subsection 2.4.

Ex Post Irrationality. The ex post utility of a seller in the BDM is nonnegative and so any

allocation of the ex ante surplus GFT (m)−GFT ∗(m) among the sellers wastes a precious resource

that could be better applied to resolve the ex post irrationality of the mechanism for buyers. With

this in mind, we therefore focus here on DM in which all of the surplus is allocated equally among

16Given the discussion of DM s , it makes sense notationally to write DM b instead of simply DM as a way to indicate
that it modifies BDM by allocating the excess gains from trade equally among buyers. This is the only point of the
paper, however, at which DM s is mentioned. The rest of the paper focuses exclusively on BDM and DM, and so
the superscript b is not needed for our purposes.
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the buyers.17 Let U(m) denote a buyer’s ex post utility in the DM when he fails to trade,

U(m) = α(m) + γ (m) . (23)

Theorems 2 and 3 together imply

lim
m→∞

U(m) =

∫ ∞
µ1/2

vf(v)dv − µ1/2 −
1

4f
(
µ1/2

) .
We show below that this quantity is strictly negative when F = Φ, the cumulative for the standard

normal N (0, 1). Consequently, for sufficiently large m, no element of the family DM is ex post

individually rational in this case. The integral on the right-hand side, however, can be arbitrarily

large or even infinite depending upon the distribution F .18 We conclude that there are robust

examples of distributions F in which the DM is ex post individually rational and robust examples

in which it is not.

As a final point in this discussion of individual rationality, we mention the problems posed for

the use of a trading mechanism if a trader earns a positive payoff when he fails to trade. This is a

feature of any mechanism in the family DM in which γsj > 0 for some seller j or γbi +α (m) > 0 for

some buyer i. This does not pose a problem for the rationality of each trader’s participation. In

a dynamic setting or with repeated use of the mechanism, however, it may provide a trader with

an incentive to bid/ask so as to increase the likelihood that he fails to trade so that he can return

to the marketplace in a subsequent period to again participate and take his profit. A seller might

set his ask far above his cost and a buyer might bid far below his value. It is also the case that

the mechanism may attract a con man who participates as a trader, bids/offers so that he almost

surely will not trade, and then with high likelihood makes a positive profit. A fraudulent buyer

may bid without having the money to truly buy and a fraudulent seller may ask without having

an item to sell. Modeling this kind of behavior in a dynamic framework is beyond the scope of

this paper. This is, however, a plausible set of problems that a trading mechanism may face in

practice if traders profit when they do not trade. It is a twist on the usual individual rationality

constraint that to our knowledge has not previously appeared in the market design literature.

Ex Post Budget Imbalance. How large of an external monetary subsidy may be required to

operate a member of the family DM? Define B(ṽ, c̃) as the ex post monetary surplus in DM,

i.e., the total payments by buyers minus the total payments to sellers in DM given the sample of

values and costs ṽ = (vi)1≤i≤m and c̃ = (cj)1≤j≤m. The constraint (21) on the constant transfers

(γbi )1≤i≤m, (γsj )1≤j≤m implies that B(ṽ, c̃) equals the ex post monetary surplus in any member of

the family DM, and so we focus on DM below with no loss of generality. Let B(m) denote the

17There is nothing gained for the sake of reducing the ex post loss of buyers who fail to trade by allowing the
constant payments to the buyers to differ, as in (21): diminishing the ex post loss to buyer i by choosing γb

i > γ (m)
necessarily worsens the loss of some other buyer because of the ex ante budget constraint (21). This justifies our
symmetric treatment of buyers in this discussion.

18The Cauchy distribution is one instance in which this integral is infinite. It is relevant here because its “fat-tails”
are useful in finance for modeling extreme events that occur with nontrivial probability.
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worst case value of B(ṽ, c̃), i.e.,

B(m) = inf
ṽ,c̃
B(ṽ, c̃).

The following theorem shows that B(m) is strictly negative, bounded away from zero for all m,

and decreasing at a linear rate in m to −∞.

Theorem 4 The worst case value of the monetary surplus B(ṽ, c̃) of any mechanism in DM is

B(m) = m (α (m)− γ (m)) , (24)

which occurs in the event in which all m values of buyers are equal and all m costs of sellers are

strictly less than this value. This worst case value satisfies the bound

B(m) ≤ m
(
− 1

4f
− γ (m)

)
(25)

for all m. On a per capita basis, B(m)/2m has the limiting value

lim
m→∞

B(m)

2m
=

1

2

(
− 1

4f
(
µ1/2

) − ∫ ∞
µ1/2

vf(v)dv + µ1/2

)
. (26)

Because α (m) < 0 and γ (m) > 0, (24) implies that B(m) is strictly negative for all distributions

F , i.e., every mechanism in DM necessarily requires an external monetary subsidy to operate for

some samples of values/costs.

Example. In the case of F = Φ, the cumulative for the standard normal distribution, we have

lim
m→∞

γ (m) =

∫ ∞
0

vf(v)dv

=

∫ ∞
0

v · 1√
2π
e−v

2/2dv

=

∫ ∞
0

1√
2π
e−xdx

= − 1√
2π
e−x
∣∣∣∣∞
0

=
1√
2π
.

We also have

lim
m→∞

α(m) = − 1

4f (0)
= −
√

2π

4
.

The limiting value of a buyer’s ex post utility when he fails to trade is therefore

lim
m→∞

U(m) = lim
m→∞

γ (m) + α(m) =
1√
2π
−
√

2π

4
< 0.
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The limiting value of the worst case budget subsidy per capita is

lim
m→∞

B(m)

2m
=

1

2

(
−
√

2π

4
− 1√

2π

)
= −1

2

(√
2π

4
+

1√
2π

)
< 0.

4 Numerical Example

We numerically investigate the properties of the DM relative to the BBDA in this section in the

case of F = Φ, the cumulative of the standard normal distribution. Table 1 documents the

properties of the DM.19 Column 1 lists the number m of traders on each side of the market; the

asymptotic limiting values of each column are presented in the bottom row. Column 2 lists the ex

ante expected gains from trade in each size of market. This column is included to provide a sense

of scale for the other numbers in the table. Column 3 lists the ex post utility α(m) of a buyer who

fails to trade in the BDM. Column 4 presents the maximal constant transfer γ(m) that can be

provided to each buyer to lessen this ex post loss while also adapting the BDM so that it satisfies

ex ante budget balance. This defines the transfer of a buyer in the DM. Column 5 then lists the

ex post loss U(m) of a buyer who fails to trade in the DM and the convergence of this value to its

asymptotic limit.

Columns 6 and 7 in Table 1 address the ex post surplus/deficit B (ṽ, c̃) that the DM runs. This

surplus/deficit has expectation zero, but its ex post realization can vary significantly. Column 6

shows that the worst case deficit, |B(m)|, exceeds the DM ’s expected gains from trade. |B(m)|
is the monetary reserve that is required if the DM ’s solvency is to be guaranteed for all possible

realizations of values and costs. It may overstate the problem of deficits because the likelihood

that B (ṽ, c̃) lies within ε of B(m) decreases to zero exponentially fast for any sufficiently small

ε. Column 7 is therefore relevant. It shows that the standard deviation SD [B (ṽ, c̃)] of B (ṽ, c̃)

increases at the rate O (
√
m). The problem of deficits and surpluses thus worsens in absolute

terms as the market size m increases. Because GFT grows linearly in m, however, the ratio

SD [B (ṽ, c̃)] /GFT is O (1/
√
m). The budget problem thus diminishes relative to GFT when the

market size m increases.

The performance of the BBDA is presented in Table 2. Columns 2 through 4 demonstrate the

properties of the BBDA as m increases. GFT in column 2 is the ex ante expected gains from

trade for an ex post efficient mechanism and GFTBBDA is the expected gains from trade achieved

in the market of size m when buyers use an offset equilibrium in the BBDA. Column 4 tabulates

the relative inefficiency (GFT − GFTBBDA)/GFT , i.e., the ex ante expected relative loss to the

traders from using the inefficient BBDA, as defined in (1). Alternatively this number represents

the relative gain to the traders that is obtained by switching from the BBDA to the DM. For m as

19The results in this section are computed using a Monte Carlo method. Alternatively, one can follow Serfling
(1980, p. 77) and use the fact that the sample median in this case is asymptotically normal with mean zero and
variance π/2m. The values of U(m) and B(m) can then be estimated using the asymptotic distribution. The
estimates calculated in this way closely track the values obtained by Monte Carlo method even for the small values
of m considered here.
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m GFT α(m) γ(m) U(m) = α(m) + γ(m) |B(m)| SD [B (ṽ, c̃)]

2 1.327 −0.7539 0.1833 −0.5707 1.8740 0.8396
4 2.901 −0.6894 0.2874 −0.4019 3.9014 1.0347
8 6.081 −0.6577 0.3407 −0.3170 7.9844 1.4006
16 12.460 −0.6470 0.3696 −0.2724 16.1951 1.9581
∞ ∞ −0.6267 0.3987 −0.2278 ∞ ∞

Table 1: The table documents the properties of the DM. Column 1 lists the number m of traders
on each side of the market and Column 2 lists the ex ante expected gains from trade for each size of
market. Column 3 lists the ex post utility α(m) of a buyer who fails to trade in the BDM. Column
4 presents the maximal constant transfer γ(m) that can be provided to each buyer to lessen this
ex post loss while also adapting the BDM so that it satisfies ex ante budget balance. Column 5
then lists the ex post loss U(m) of a buyer who fails to trade in the DM and the convergence of
this value to its asymptotic limit. Column 6 lists |B(m)|, which is the maximal amount of money
that may be needed as an external subsidy to operate the mechanism ex post. Column 7 lists the
standard deviation of the ex post budget surplus in each size of market.

m GFT GFTBBDA
GFT−GFTBBDA

GFT
|U(m)|

GFT−GFTBBDA

2 1.327 1.222 0.07912 5.4352
4 2.901 2.854 0.01620 8.5511
8 6.081 6.065 0.00263 19.8125
16 12.460 12.452 0.00064 34.0500

Table 2: The table evaluates the performance of the BBDA relative to the DM . Column 1 is the
size of the market, column 2 is the expected gains from trade for the efficient DM , column 3 is the
expected gains from trade for the imperfectly efficient BBDA, column 4 is the relative inefficiency
of the BBDA. Column 5 measures the relative cost and benefit of switching from the BBDA to
DM . It tabulates the magnitude of the loss that a buyer may bear ex post in the DM relative to
the increase in the expected gains from trade that switching from the BBDA to the DM generates.

small as 8, the percentage gain in efficiency from switching from the BBDA to an ex post efficient

mechanism is significantly less than one percent.

Column 5 of Table 2 evaluates the ex post cost of achieving efficiency in the DM in comparison

with the BBDA. A buyer’s ex post loss when he fails to trade is U(m); bearing this ex post loss

allows an increase in the ex ante gains from trade of GFT − GFTBBDA from switching from the

BBDA to the DM. The ratio
|U(m)|

GFT −GFTBBDA
therefore represents the cost that a buyer may bear ex post per dollar increase in the ex ante

expected gains from trade. It is worth reemphasizing that these ex post losses fall on buyers who

do not trade, an event that has ex ante probability 1/2 for each buyer, regardless of the size m of

the market.
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5 Conclusion

Statistical dependence among the private signals of agents can be used to design mechanisms that

are ex post efficient despite the possibility of strategic behavior. We show, however, in a simple

trading problem that a family of designed mechanisms inspired by the methods of McAfee and Reny

(1992) can have unattractive properties such as ex post budget imbalance and irrationality. Its

flaws do not diminish as the market increases in size, which is counterintuitive to our understanding

of a competitive market. We consider these to be undesirable features in comparison to the

buyer’s bid double auction that, while inefficient, is simply defined, ex post budget balanced, and

ex post individually rational. Its inefficiency quickly diminishes as the market increases in size and

converges to perfect competition. Using dependence among costs/values to achieve efficiency in a

market setting thus appears in this analysis as a complicated exercise that produces an unintuitive

mechanism for the sake of only modest gains in efficiency over simple mechanisms such as the

BBDA.

Appendix

Proof of Theorem 1. The probability (15) can be written as

Pr(v ≥ s(m) |v ) =

∫ ∞
−∞

2m−1∑
t=m

(
2m− 1

t

)
F (v − µ)t F (v − µ)2m−1−t f (v − µ) dµ.

The change of variable v − µ→ µ and moving the integral sign reduces this to

2m−1∑
t=m

(
2m− 1

t

)∫ ∞
−∞

F (µ)t F (µ)2m−1−t f (µ) dµ. (27)

The tth integral reduces as follows through integration by parts:∫ ∞
−∞

F (µ)t F (µ)2m−1−t f (µ) dµ

=
F (µ)t+1

t+ 1
F (µ)2m−1−t

∣∣∣∣∣
∞

−∞

+

∫ ∞
−∞

2m− 1− t
t+ 1

F (µ)t+1 F (µ)2m−2−t f (µ) dµ

=

∫ ∞
−∞

2m− 1− t
t+ 1

F (µ)t+1 F (µ)2m−2−t f (µ) dµ

...
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=

∫ ∞
−∞

(2m− 1− t) · (2m− 2− t) · . . . · 1
(t+ 1) · (t+ 2) · . . . · (2m− 1)

F (µ)2m−1 f (µ) dµ

=

(
2m− 1

t

)−1 ∫ ∞
−∞

F (µ)2m−1 f (µ) dµ

=

(
2m− 1

t

)−1 F (µ)2m

2m

∣∣∣∣∣
∞

−∞

=

(
2m− 1

t

)−1
· 1

2m
.

Substitution into (27) implies

Pr(v ≥ s(m) |v ) =

2m−1∑
t=m

1

2m
=

1

2
.

Statement 2. follows from expanding one of the derivatives and applying a change of variable:

∂

∂r
Pr(r ≥ s(m) |v )

=
∂

∂r

∫ ∞
−∞

2m−1∑
t=m

(
2m− 1

t

)
F (r − µ)t F (r − µ)2m−1−t f (v − µ) dµ

=
2m−1∑
t=m

(
2m− 1

t

)∫ ∞
−∞

∂

∂r

[
F (r − µ)t F (r − µ)2m−1−t

]
f (v − µ) dµ

=
2m−1∑
t=m

(
2m− 1

t

)∫ ∞
−∞

[t− (2m− 1)F (r − µ)] ·

F (r − µ)t−1 F (r − µ)2m−2−t f (r − µ) f (v − µ) dµ.

Evaluated at r = v, this equals

2m−1∑
t=m

(
2m− 1

t

)∫ ∞
−∞

[t− (2m− 1)F (v − µ)] ·

F (v − µ)t−1 F (v − µ)2m−2−t f (v − µ)2 dµ

=
2m−1∑
t=m

(
2m− 1

t

)∫ ∞
−∞

[t− (2m− 1)F (µ)]F (µ)t−1 F (µ)2m−2−t f (µ)2 dµ,

where the second line follows from the change of variable v − µ→ µ.

Proof of Theorem 2. For (19), it is sufficient to bound

∂

∂r
Pr(r ≥ s(m) |v )

∣∣∣∣
r=v
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above by a constant for all m. We have

∂

∂r
Pr(r ≥ s(m) |v )

∣∣∣∣
r=v

= Pr(v = s(m) |v )

=

∫ ∞
−∞

(2m− 1)f(v − µ)

(
2m− 2

m− 1

)
F (v − µ)m−1F (v − µ)m−1f(v − µ)dµ

=

∫ ∞
−∞

f(µ)(2m− 1)

(
2m− 2

m− 1

)
F (µ)m−1F (µ)m−1f(µ)dµ.

The expression

(2m− 1)

(
2m− 2

m− 1

)
F (µ)m−1F (µ)m−1f(µ) (28)

is the density of the mth order statistic in a sample of 2m− 1 independent draws according to the

distribution F (i.e., the median of the sample). This integral is therefore the expected value of

f computed with respect to this density and it is bounded above by f . The bound (19) follows

immediately.

The sample median is asymptotically normal with mean µ1/2 and variance (4f(µ1/2)
2m)−1

(Serfling (1980, p. 77)). The density of the mth order statistic therefore converges to a Dirac

function at the median µ1/2 as m → ∞. Equation (20) then follows from the assumption that f

is continuous and bounded (Serfling (1980, p. 16)).

Proof of Theorem 3. The definition of γ (m) implies that it equals the ex ante expected gains

from trade of a buyer in the BBDA assuming that all traders report honestly. The expected gains

from trade of a buyer has the same value in every state µ, which allows us to calculate this value

despite the improper distribution of µ. We therefore fix µ = 0. A selected buyer’s ex ante gains

from trade given µ = 0 equals∫ ∞
−∞

∫ v

−∞
(v − t) (2m− 1)

(
2m− 2

m

)
F (t)m F (t)m−2 f (t) f (v) dtdv. (29)

The variable t denotes the (m+ 1)st smallest value/cost in a sample of 2m− 1 values/costs given

µ = 0, and

(2m− 1)

(
2m− 2

m

)
F (t)m F (t)m−2 f (t)

is the density of this order statistic. This equals∫ ∞
−∞

∫ v

−∞
v (2m− 1)

(
2m− 2

m

)
F (t)m F (t)m−2 f (t) f (v) dtdv (30)

−
∫ ∞
−∞

∫ v

−∞
t (2m− 1)

(
2m− 2

m

)
F (t)m F (t)m−2 f (t) f (v) dtdv. (31)

We consider these two integrals in separate arguments.
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Integral (30) equals ∫ ∞
−∞

vPr[v ≥ t]f(v)dv.

We have by Serfling (1980, Sec. 2.3.3, Cor. A),

lim
m→∞

Pr[v ≥ t] =

{
1 if v > µ1/2

0 if v < µ1/2
.

Consequently,

lim
m→∞

∫ ∞
−∞

vPr[v ≥ t]f(v)dv =

∫ ∞
µ1/2

vf(v)dv.

Reversing the order of integration, the integral in (31) equals∫ ∞
−∞

∫ ∞
t

t (2m− 1)

(
2m− 2

m

)
F (t)m F (t)m−2 f (t) f (v) dvdt

=

∫ ∞
−∞

t (2m− 1)

(
2m− 2

m

)
F (t)m F (t)m−1 f (t) dt.

This is the expected value of the (m+ 1)st order statistic in a sample of 2m − 1 values from the

distribution F . Its limit is µ1/2 (Serfling (1980, p. 77)), which completes the proof.

Proof of Theorem 4. We pair (i) each buyer who trades with a seller who trades and (ii) each

buyer who does not trade with a seller who does not trade. We then consider the increment that

each pair adds to B(ṽ, c̃). If a buyer and a seller trade in the DM, the buyer pays

v + α (m)− γ (m) ,

and the seller receives s(m+1). Each consummated trade therefore adds

v + α (m)− γ (m)− s(m+1)

=
(
v − s(m+1)

)
+ α (m)− γ (m)

to B(ṽ, c̃). A buyer trades only if v ≥ s(m+1); this term therefore attains its minimum value of

α (m) − γ (m) at v = s(m+1). A seller who does not trade receives nothing while a buyer who

does not trade pays −α (m) − γ (m). Each buyer/seller pair that do not trade therefore adds

−α (m)− γ (m) to B(ṽ, c̃). Because α (m) < 0, we have

α (m)− γ (m) < −α (m)− γ (m) .

A buyer/seller pair therefore contribute more to B(ṽ, c̃) when they do not trade than when they

trade and the buyer’s value equals s(m+1). The monetary surplus therefore has the minimum value

of (24).

The bound (25) then follows from (19) and the limit (26) follows from (20) and (22).
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