THE EFFECTS OF THE SAVING AND BANKING GLUT ON THE U.S. ECONOMY

ALEJANDRO JUSTINIANO, GIORGIO E. PRIMICERI, AND ANDREA TAMBALOTTI

ABSTRACT. We use a quantitative equilibrium model with houses, collateralized debt and foreign borrowing to study the impact of global imbalances on the U.S. economy in the 2000s. Our results suggest that the dynamics of foreign capital flows account for between one fourth and one third of the recent cycle in U.S. house prices and household debt. The key to these findings is that the model generates the sustained low level of interest rates observed in the last 15 years.

1. INTRODUCTION

Before the financial crisis of 2007-08, most observers saw the growing international imbalances in the trade of goods and assets as the main source of vulnerability for the U.S. and the world economy (e.g. Roubini and Setser, 2005, Obstfeld and Rogoff, 2007, Krugman, 2007). As shown in figure 1.1, the U.S. trade deficit had been growing since the mid 1990s, reaching 6 percent of GDP at its peak in 2006, mostly financed by emerging Asia (especially China) and the oil-exporting countries. In a very influential speech, then Fed Governor Ben Bernanke (2005) attributed these imbalances to a “Global Saving Glut” (SG), which he described as an excess of saving in developing countries primarily directed towards riskless assets in the U.S. Given these lopsided patterns of international exchange, many feared that a sudden loss of appetite for U.S. assets might precipitate an abrupt adjustment of its current account deficit, with serious repercussions on the U.S. and the rest of the world.

Although a catastrophic financial crisis did eventually occur, its epicenter was the American housing market, rather than the international market for assets and goods. As a consequence, most of the early literature on the causes and consequences of the crisis focused on the features of U.S. financial markets—regulation, risk-management, securitization, funding
models—that fueled the credit and housing boom of the first half of the 2000s, and whose reversal was the proximate cause of the crisis.¹

A more recent strand of literature, however, has brought back into focus the connection between the global imbalances that preceded the crisis and the credit and housing boom that precipitated it.² On the empirical side, this literature points to a significant depressing effect of capital inflows on U.S. interest rates and spreads, whose low levels contributed to the boom in mortgage debt and house prices before the crisis (Bernanke et al., 2011, Bertaut et al., 2011, Warnock and Warnock, 2009). Bertaut et al. (2011), for instance,

¹See Brunnermeir (2009) for an early overview. Demyanyk and van Hemert (2011), Ashcraft and Schuermann (2008), Adrian and Shin (2010), Pozsar et al. (2010), Gorton (2009), and Mian and Sufi (2009), among many others, provide more detailed accounts of the events of the crisis and of some of the important mechanisms at play, with a special focus on subprime mortgages and their securitization. In fact, in this early phase, this sequence of events was most often described as the “subprime crisis.”

²Obstfeld and Rogoff (2009) is one of the first papers forcefully arguing that global imbalances and the financial crisis are intimately related.
estimate that the purchases of Treasury and Agency debt by the SG countries over the period 2003 to 2007, amounting to roughly one trillion dollars, lowered long-term interest rates in the U.S. by between 110 and 140 basis points.

The careful detective work done by Bertaut et al. (2011) tracking the flows of capital to and from the United States, moreover, has uncovered another important channel through which international capital flows might have contributed to easier financial conditions in the U.S. before the crisis. Even though Europe’s current account vis-a-vis the U.S. was roughly balanced, Bertaut et al. (2011) document the increasing role of European banks in the market for safe U.S. assets after 2003, especially the AAA tranches of private label asset-backed securities (ABS) that turned out to be far from riskless in the crisis. These gross positions of European banks in ABS were funded by direct borrowing in the dollar wholesale credit market. As a result, European banks became an integral part of the financial intermediation sector in the U.S., in direct competition with domestic financial institutions, as also pointed out by Acharya and Schnabl (2009).

Shin (2012) refers to these gross flows from international banks into mortgage products, even in the absence of corresponding net imbalances, as a “Global Banking Glut” (BG), in juxtaposition to the Global Saving Glut associated with the U.S. current account deficit. In Shin’s (2012) analysis, the flow of funds associated with the BG played an important role in easing financial conditions in the United States during the boom, comparable in magnitude to that of the purchases of Government debt by the SG countries. In his model of global banking, spreads are negatively related to the total amount of funds intermediated by the financial system. When risks decrease, banks expand their balance sheet and spreads fall. This motivates Shin’s claim that higher total intermediation generated by European banks lowered the spreads between safe funding rates and the returns on ABS, and therefore ultimately on mortgages. Consistent with this view, Bertaut et al. (2011) estimate that the increase in the demand for ABS and similar instruments by European banks over the period 2003-2007 contributed to a decline in their yield of between 60 and 160 basis points, depending on the instruments and the methodology.3 When the boom turned to bust, and the market for private-label ABS in which European banks were most active disappeared,

3These estimates represent an upper bound on the effect of the BG on U.S. rates, since they do not account for the endogenous response in the supply of ABS and similar assets. The production of these assets rose dramatically during this period, in part to satisfy the increase in demand by U.S. and international investors.
the mechanism worked in reverse, contributing to the propagation of the U.S. financial crises around the world (Obstfeld, 2012, Acharya and Schnabl, 2009).

Despite the growing empirical evidence on the effects of net and gross capital flows on U.S. credit markets and interest rates, only a handful of papers have addressed quantitatively the impact of the global saving and banking gluts on the U.S. macroeconomy in general, and on the credit and house-price boom and bust of the 2000s more specifically. In this paper, we tackle this question using a quantitative dynamic equilibrium model, which includes most of the ingredients of typical medium-scale DSGEs inspired by Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007). In addition, our model features borrowing and lending among heterogeneous households, as well as from abroad, with houses serving as collateral (Iacoviello, 2005). Therefore, house prices play a key role in determining the amount of household debt in the economy. Thanks to these features, the model is a useful laboratory to study the macroeconomic effects of the SG and BG on the U.S. economy, including their contribution to the credit and real estate cycle of the 2000s.

To analyze the impact of the SG, we take the observed U.S. trade deficit, and the associated capital inflows, as exogenous: a given amount of goods and services that domestic households must consume today, received from the rest of the world in exchange for a promise of goods and services in the future. This exogenous flow of resources tilts the intertemporal consumption profile of domestic agents towards the present, which can be optimal only if interest rates decline. The rest of the adjustment in the domestic economy follows from this fall in the domestic rate of return. In brief, lower interest rates stimulate the demand for nondurable consumption, investment and housing by the lenders, who are on their Euler equation. The resulting upward pressure on house prices then relaxes the collateral constraint of the borrowers, who can thus also consume more. Finally, preferences parametrized to deliver a small wealth effect prevent this expansion in consumption from implying a sharp fall in hours worked. This chain of events is what we refer to as the Global Saving Glut channel. Quantitatively, the SG has fairly large effects on the macroeconomy. Consumption and investment increase by roughly 5% and 10% above the balanced growth path, while the effect on GDP is more muted because of the deterioration of the trade balance. The debt-to-GDP ratio increases by 8%, while house prices are 12% higher at the peak.
In addition to capturing the SG channel, we make an attempt at quantifying the impact of Shin’s (2012) Global Banking Glut. We model the BG as a reduction in the spread between the interest rate paid by (mortgage) borrowers and the funding rates of the shadow banking system, which are tied in turn to the interest rate earned by savers. This spread between borrowing and lending rates reflects the market power of financial intermediaries, which channel funds from the patient to the impatient households. More competition in this market therefore implies lower spreads. This is the channel through which the entry of European players in the intermediation market, which is at the heart of the Global Banking Glut hypothesis, affects credit conditions in the model.

This simple modeling approach captures the first order effect on macroeconomic outcomes of the entry of European banks in the American intermediation market. A reduction in spreads is also an outcome of the more sophisticated and realistic model of intermediation proposed by Shin (2012) to formalize the effects of the Global Banking Glut. Of course that model has many more interesting implications than ours regarding the behavior of intermediaries, although it is silent about their macroeconomic consequences.

In our simulations, the reduction in spreads due to the BG reduces the interest rate and makes houses more valuable for the borrowers, relative to nondurable goods. This shift in demand towards houses increases their price and relaxes the collateral constraint, allowing the borrowers to obtain more credit. The response of savers to the BG tends to be opposite to that of the borrowers, leading to fairly muted effects on aggregate variables. This is in contract to the SG case, where the fall in interest rates stimulates demand by both types of households. Overall, our experiments attribute to the combined effect of the BG and SG between one fourth and one third of the increase in house prices and household debt during the years leading up to the financial crisis.

1.1. Related literature. Among the first papers to formally address the saving glut hypothesis were Caballero, Farhi, and Gourinchas (2008), and Mendoza, Quadrini, and Rios-Rull (2009). These influential contributions share a focus on the differences in financial market development across countries that made riskless U.S. assets a particularly appealing store of value for the excess saving in the rest of the world. In their detailed quantitative exercise, Mendoza, Quadrini, and Rios-Rull (2009) also trace the dynamic implications of global financial liberalization on international imbalances and portfolios. However, they
concentrate much less then we do on the broader macroeconomic implications in the United States.

Our work is more closely related to a recent literature connecting current account deficits and foreign capital flows into the U.S. to the housing and credit booms that preceded the financial crisis. This literature is far from unanimous on the importance of this international channel for macroeconomic developments in the United States. At one extreme of this spectrum, Favilukis et al. (2012 and 2013) find virtually no effect of the foreign purchases of Government bonds on house prices and domestic credit. In their rich model, the reduction in the risk-free rate associated with the flow of international resources into the U.S. economy is offset by an increase in the risk premium on housing, due to the portfolio reallocation forced on domestic agents by the foreign purchases of safe assets.\footnote{Caballero and Krishnamurty (2009) also highlight the increase in risk borne by domestic agents following the absorption of safe assets by foreigners.} In our model, on the contrary, there is no risk, and hence no meaningful portfolio choice, since agents have perfect foresight. As a consequence, our results highlight the intertemporal substitution mechanisms associated to the fall in interest rates triggered by the trade deficit. On the one hand, this stricter macroeconomic focus comes at the cost of ignoring a potentially important portfolio channel and might bias our quantitative conclusions. On the other hand, the irrelevance of portfolio choice in our model allows us to take a more comprehensive view of the saving glut, without having to worry about the composition of the capital inflows, and to calibrate the foreign impulse to the total trade deficit, rather than just to the fraction corresponding to the purchases of Treasuries, as Favilukis et al. (2012) do.

Our results are more in line with those of Adam, Kuang, and Marcet (2011), Garriga, Manuelli, and Peralta-Alva (2012), and Kiyotaki, Michaelides, and Nikolov (2011), who all find large effects of a decline in the world interest rate on house prices in small open economy models calibrated on the U.S. experience of the 2000s, despite important differences in their modeling approaches. In Adam et al. (2011), the large reaction of house prices is due to the presence of agents with subjective beliefs about these prices. In Garriga et al. (2012), the quantitative results hinge on combining lower real interest rates and looser financial conditions, while we abstract from the latter. Furthermore, unlike these papers, we model the domestic country as large, and populated by both borrowers and savers, which makes interest rates endogenous and creates interesting dynamics from the interplay of the two
classes of agents. In this respect, we are closer to Kiyotaki et al. (2011), who focus on the redistributive effects of changes in the world interest rate across net buyers and net sellers of houses. Finally, Ferrero (2012) also addresses the correlation between current account deficits and house prices within a two-country model, but with one representative international saver lending to one representative borrower in the U.S. The analysis of the BG is a distinctive feature of our paper, relative to these other contributions. In this respect, the paper is related to the small-open economy business cycle literature that has emphasized the role of risk premia and spreads as a source of fluctuations (e.g. García-Cicco, Pancrazi, and Uribe, 2010).

The rest of the paper proceeds as follows. Section 2 describes the model, whose calibration is presented in section 3. Section 4 presents the model’s dynamics in response to three impulses: an increase in the trade deficit that captures the saving glut; a fall in the spread between borrowing and lending rates, which captures the banking glut; and a combination of the two. Section 5 concludes.

2. Model

This section presents the quantitative general equilibrium model we use to analyze the impact of the SG and BG on the U.S. economy, including their effect on the recent boom-bust cycle in the debt of U.S. households and real estate prices. The model builds on Iacoviello (2005) and Campbell and Hercowitz (2009). The key assumption is that domestic households have heterogeneous desires to save, which generate borrowing and lending among them, as well as from abroad. Debt, which we often call “mortgages”, is collateralized by houses, to capture the fact that mortgages represent by far the most important component of U.S. households’ liabilities.

The economy is populated by four main classes of domestic agents—households, house producers, goods producers and a government. Households can borrow from each other through a financial intermediation sector composed of monopolistic investment banks and competitive commercial banks, which also collect funds from abroad.

2.1. Households. There are two types of households, which differ by the rate at which they discount the future. Patient households are denoted by \(l \), since in equilibrium they are the ones saving and lending. They represent a share \(1 - \psi \) of the population, and we
interchangeably refer to them as the lenders or savers. Their discount factor is \(\beta_l > \beta_b \), where \(\beta_b \) is the discount factor of the impatient borrowers. At time 0, representative household \(j = b, l \) maximizes the utility function

\[
E_0 \sum_{t=0}^{\infty} \beta_j^t \left(\frac{C_{j,t} H_{j,t}^{1-\epsilon} - \varphi X_{j,t} L_{j,t}^{1+\eta}}{1 - \sigma} \right)^{1-\sigma} - 1,
\]

where

\[
X_{j,t} = \left(\frac{C_{j,t} H_{j,t}^{1-\epsilon}}{1 - \mu} \right)^\mu X_{j,t-1}^{1-\mu}.
\]

In these expressions, \(C_{j,t} \) denotes consumption of nondurable goods, \(H_{j,t} \) is the stock of houses, and \(L_{j,t} \) is hours worked. This specification of the utility function is similar to the one proposed by Jaimovich and Rebelo (2009). When \(\mu = 1 \), it belongs to the class of utility functions recommended by King, Plosser, and Rebelo (1988). When \(\mu = 0 \), these preferences resemble those of Greenwood, Hercowitz, and Huffman (1988), with no wealth effect on labor supply. The difference from Jaimovich and Rebelo (2009) is that the households in this model derive utility from a Cobb-Douglas aggregator of non-durable consumption goods and housing services (assumed to be proportional to the stock of housing). The parameter \(\epsilon \) denotes the share of nondurable consumption in this composite good.

The utility maximization problem is subject to the nominal flow budget constraint

\[
P_t C_{j,t} + P_t^h \Xi_{j,t} + P_t I_{j,t} + R_{j,t-1} D_{j,t-1} \leq W_{j,t} L_{j,t} + R_t^k K_{j,t} + \Pi_{j,t} - P_t T_{j,t} + D_{j,t}.
\]

In this expression, \(P_t \) and \(P_t^h \) are the prices of the consumption good and of houses, while \(R_t^k \) and \(W_{j,t} \) are the nominal rental rates of capital and labor. The wage is indexed by \(j \) because the labor input of the borrowers is not a perfect substitute for that of the savers. \(D_{j,t} \) is the amount of one period nominal debt (or deposits, when negative) accumulated by the end of period \(t \), and carried into period \(t + 1 \), with gross nominal interest rate \(R_{j,t} \). The interest rate depends on \(j \) because the return paid by borrowers and that earned by lenders differ due to the presence of a spread in the financial intermediation sector. \(\Pi_{j,t} \) is the share of profits of the intermediate firms and of investment banks accruing to each household of type \(j \), and \(T_{j,t} \) are lump-sum taxes and transfers from the government.

The stocks of houses and capital evolve according to the accumulation equations

\[
H_{j,t+1} = (1 - \delta_h) H_{j,t} + \Xi_{j,t},
\]

\[
L_{j,t+1} = (1 - \delta_l) L_{j,t} + \Pi_{j,t} - T_{j,t}.
\]
\[K_{j,t+1} = (1 - \delta_k) K_{j,t} + \left(1 - S_k \left(\frac{I_{j,t}}{I_{j,t-1}} \right) \right) I_{j,t}, \]

where \(\Xi_{j,t} \) is residential investment (i.e. new houses), \(I_{j,t} \) is investment in productive capital, and \(\delta_h \) and \(\delta_k \) are the rates of depreciation of the two stocks. The function \(S_k \) captures the presence of adjustment costs in investment, as in Christiano, Eichenbaum, and Evans (2005), and is parametrized as follows

\begin{equation}
S_k (x) = \zeta_k \frac{1}{2} (x - e^\gamma)^2,
\end{equation}

so that, in steady state, \(S_k = S'_k = 0 \) and \(S''_k = \zeta_k > 0 \), where \(e^\gamma \) is the economy’s growth rate along the balanced growth path, further described below.

2.1.1. The borrowing limit. Households’ ability to borrow is limited by a collateral constraint, similar to Kiyotaki and Moore (1997). We model this constraint to mimic the asymmetry of mortgage contracts, as in Justiniano, Primiceri, and Tambalotti (2012). When real estate prices increase, households can refinance their loans and therefore borrow more against the higher value of the entire housing stock. When prices fall, however, the lower collateral value leads to less lending against new houses, but lenders cannot require faster repayment of the debt already outstanding.

More formally, we write the collateral constraint as

\[D_{j,t} \leq \bar{D}_{j,t} = \begin{cases}
\theta P^h_{t} H_{j,t+1} & \text{if } P^h_{t} \geq P^h_{t-1} \\
(1 - \delta_h) \bar{D}_{j,t-1} + \theta P^h_{t} \Xi_{j,t} & \text{if } P^h_{t} < P^h_{t-1}.
\end{cases} \]

If collateral values increase (i.e. \(P^h_{t} \) rises), households can borrow up to a fraction \(\theta \) of the current value of their entire housing stock. This is the standard formulation of the collateral constraint, which implicitly assumes that all outstanding mortgages will be refinanced to take advantage of the new, more favorable conditions. On the contrary, if \(P^h_{t} \) falls, households need not repay the outstanding balance on their mortgage, over and above the repayment associated with the depreciation of the housing stock (\(\delta_h \)).\(^5\) Therefore, the

\(^5\)This formulation assumes that the amortization rate of the mortgage coincides with the depreciation rate of the housing stock. In Justiniano, Primiceri, and Tambalotti (2012) we also experiment with higher amortization rates, so that households build equity in their house over time, as in Campbell and Hercowitz (2009).
new less favorable credit conditions only apply to the flow of new mortgages, collateralized by the most recent house purchases.

This asymmetry of the borrowing limit makes debt in the model very similar to an adjustable-rate mortgage, in which the interest rate changes every quarter, but the principal can only be adjusted by the borrower, either through refinancing, or through pre-payment. However, this modeling device captures an important feature of long-term mortgages over the real estate boom and bust cycle we are focusing on, namely the downward stickiness of the principal. During the boom, refinancing activity was extremely elevated, precisely because homeowners took advantage of rising property values through refinancing, thereby reducing the effective life of outstanding mortgages. During the bust, on the contrary, existing homeowners were not forced to pay down a large fraction of their outstanding debt, even if the value of the collateral collapsed. Of course, without the option of refinancing, mortgage holders did have to pay the contracted interest rate, while in our model borrowers benefit from lower interest payments as short-term rates fall with the recession. However, in reality, many under-water households defaulted on their debt, effectively resetting their interest rate payments down to zero. Capturing the macroeconomic effects of these defaults is an interesting topic we leave to future research.

Given their low desire to save, impatient households borrow from the patient in equilibrium. In fact, local to the steady state, they borrow as much as the collateral constraint allows them to, and therefore, they choose not to hold any capital. Without the constraint, they would borrow even more, so it is clearly not optimal for them to hold any asset other than houses. For simplicity, we impose that borrowers do not accumulate capital also when the collateral constraint does not bind away from the steady state, even if it might occasionally be optimal for them to do so.

2.2. Goods producers. There is a continuum of intermediate firms indexed by $i \in [0, 1]$, each producing a good $Y_t(i)$, and a competitive final good sector producing output Y_t according to

$$Y_t = \left[\int_0^1 Y_t(i) \frac{1}{1+\lambda} \, di \right]^{1+\lambda}.$$
Intermediate firms, which are owned by the lenders, operate the constant-return-to scale production function

\[Y_t(i) = A_t^{1-\alpha} K_t^\alpha (i) \left[(\psi L_{b,t}(i))^\nu (1-\psi) L_{l,t}(i))^{1-\nu} \right]^{1-\alpha} - A_t F. \]

They rent labor (of the two types) and capital on competitive markets paying \(W_{b,t}, W_{l,t} \) and \(R^k_t \). \(F \) represents a fixed cost of production, and is chosen to ensure that steady state profits are zero. The labor augmenting technology factor \(A_t \) grows at rate \(\gamma \). The intermediate firms operate in monopolistically competitive markets and set their price \(P_t(i) \) subject to a nominal friction as in Calvo (1983). A random set of firms of measure \(1-\xi_p \) optimally reset their price every period, subject to the demand for their product, while the remaining \(\xi_p \) fraction of prices do not change. In section 4.1, we describe how the presence of sticky prices amplifies the expansionary effect of the SG on labor demand and the equilibrium level of production.

2.3. House producers. The production of new houses is undertaken by perfectly competitive firms. They purchase an amount \(I^h_t \) of final goods and use the technology

\[\Xi_t = \left(1 - S_h \left(\frac{I^h_t}{I^h_{t-1}} \right) \right) I^h_t \]

to transform them into houses, which are then sold to households. We adopt this decentralization of the production of houses, rather than building the adjustment cost in the accumulation equation, so as to have an explicit house price variable in the model.\(^6\) The function \(S_h \) is parametrized as in equation (2.1), with elasticity parameter \(S''_h = \zeta_h > 0 \). This formulation of the production of houses is appealing for its simplicity, while still allowing to parametrize the rigidity of housing supply.\(^7\) If \(\zeta_h = 0 \), the supply of houses is perfectly elastic, and their relative price is equal to one. As \(\zeta_h \) increases, the supply of houses becomes more and more rigid. The case of fixed supply along the balanced growth path corresponds to infinite adjustment costs.

\(^6\)See Justiniano, Primiceri, and Tambalotti (2011) for a similar argument with regards to the price of investment goods.

\(^7\)Davis and Heathcote (2005) calibrate a multi-sector neo-classical model in which the production of houses requires land and structures. They conclude that the presence of land (a quasi-fixed factor in their model) effectively plays the role of an adjustment cost.
House producers maximize the expected discounted value of future profits

\[
E_0 \sum_{t=0}^{\infty} \beta_t \Lambda_{l,t} \left(P_t^h \Xi_t - P_t I_t^h \right),
\]

where \(\Lambda_{l,t} \) is the marginal utility of income of the lenders, who are assumed to own these firms. Since lenders are unconstrained in equilibrium, and thus always satisfy their Euler equation, their discount factor is the one that pins down the steady state real interest rate. Therefore, this ownership assumption would return the standard representative agent setup in the limit with no impatient households.

2.4. **Government and monetary policy.** The government collects taxes, pays transfers, consumes a fraction of final output, and sets the nominal interest rate.

We assume that government spending is a constant fraction \(g \) of final output, and that the government balances its budget, i.e.

\[
G_t = gY_t = \psi T_{b,t} + (1 - \psi) T_{l,t}.
\]

In addition, we assume that total taxes levied on borrowers represent a constant share \(\chi \) of the financing needs of the government, i.e.

\[
\psi T_{b,t} = \chi G_t.
\]

If \(\chi = 0 \), the entire tax burden is on the savers, while if \(\chi = \psi \) borrowers and savers pay the same amount per-capita. Therefore, we can interpret the parameter \(\chi \) as capturing the extent of government redistribution. Given the presence of borrowing-constrained agents and the redistributive nature of the tax rule, Ricardian equivalence does not hold in our model. Therefore, the assumption that the government does not issue debt is not completely innocuous, but just a simplification that allow us to abstract from the details of the debt-tax composition of the financing of government spending.

Monetary policy sets the short-term nominal interest rate on deposits based on the feedback rule

\[
\frac{R_{l,t}}{R_l} = \max \left\{ \frac{1}{R_l}, \left(\frac{R_{l,t-1}}{R_l} \right)^{\rho_R} \left[\left(\frac{(\pi_t \cdot \pi_{t-1} \cdot \pi_{t-2} \cdot \pi_{t-3})^{1/4}}{\pi} \right)^{\tau_\pi} \left(\frac{Y_t}{Y_t^*} \right)^{\tau_y \cdot (1-\rho_R)} \right] \right\},
\]

where \(\pi_t \) is the gross rate of inflation, \(\pi \) is the Central Bank’s inflation target, and \(Y_t^* \) is the trend level of output that grows at the constant rate of technological progress. The
parameters ρ_R, τ_π and τ_y capture the degree of inertia, and the strength of the interest rate reaction to the deviations of annual inflation from the target and of output from trend.

2.5. Financial intermediaries. The financial intermediation sector transfers resources to the borrowers from savers at home and in the rest of the world. The sector consists of investment banks, which do the lending, and retail banks, which collect deposits. Investment banks fund the purchase of mortgages by issuing securities, say asset-backed commercial paper, on a non-competitive wholesale credit market. Retail banks (or money market mutual funds) buy these securities using the deposits that they collect. In the process, the investment banks earn a profit in the form of a spread between the mortgage rate and their funding rate, which is equal to the retail deposit rate paid to savers. We assume that this spread derives from market power exercised by investment banks in the wholesale funding market, for instance by creating differentiated credit products that they sell to commercial banks and money market mutual funds. The existence of this market power can be micro-founded through a monopolistic competition structure as in Gerali at al.’s (2010) DSGE model of banking. Alternatively, we could assume that the spread earned by investment banks derives from the costs of intermediation that each of them sustains, as for instance in Curdia and Woodford (2009).

In either case, what is relevant for our analysis is only that the spread falls when European banks enter the wholesale credit market, as suggested by Shin’s (2012) global banking glut hypothesis. Under monopolistic competition, this compression in the markup follows naturally when new competitors enter the market. With intermediation costs, instead, spreads fall if entry reduces each bank’s market footprint, and hence its volume of intermediation, under the conventional assumption that the cost is convex in the amount of funds intermediated.8

2.5.1. Investment banks. Investment banks purchase mortgages with funds that they raise in the wholesale credit market, by issuing a continuum of differentiated credit instruments indexed by $n \in [0, N_t]$. Each of these instruments carries a net interest rate $r_t(n)$, so that

8 For our purposes, this intermediation structure is equivalent to one with a third layer of intermediation, in which individual mortgages are securitized and sold to investment banks and other participants in the shadow banking system, rather than purchased directly by them. This more complex structure would be equivalent to the one presented here because the margin that is relevant for the global banking glut hypothesis that we are trying to capture is the one between wholesale funding and mortgage products, rather than the one between mortgages and mortgage-backed securities.
the profit earned from funding $D_{b,t}(n)$ dollars worth of mortgages by selling $L_t(n)$ dollars of instrument n is

$$\Pi_t(n) = r_{b,t}D_{b,t}(n) - r_t(n)L_t(n),$$

where one dollar in wholesale funding turns into one dollar in mortgages, so that $D_{b,t}(n) = L_t(n)$.

2.5.2. Retail banks. Retail banks collect a total amount of deposits

$$D_t = - (1 - \psi) D_{l,t} + D_{f,t},$$

where $-(1 - \psi) D_{l,t}$ come from the lenders and $D_{f,t}$ come from the RoW. The net interest rate paid on these deposits is $r_{l,t}$, and they are invested in the securities issued by investment banks, generating total profits for the retail banking sector in the amount

$$\int_0^{N_t} r_t(n) L_t(n) dn - r_{l,t} D_t.$$

We assume that retail banks have a taste for a diversified portfolio, which implies a downward sloping demand function for each instrument issued by the investment banks, with elasticity $\varepsilon(N_t)$. For instance, under the translog specification proposed by Feenstra (2003), this elasticity would be $\varepsilon(N_t) = -(1 + \varepsilon N_t)$, as in Bilbiie, Ghironi, and Melitz (2012). As the number of instruments available on the market increases, they become closer substitutes, and the elasticity of demand increases.

2.5.3. Equilibrium, spread and market clearing. The taste for portfolio diversification of retail banks generates monopoly power in the wholesale credit market, which investment banks exploit by selling their securities at a discount with respect to the interest rate charged to borrowers. As a result, in the symmetric equilibrium in which all securities pay the same interest rate, we have

$$r_{b,t} = \mu(N_t) r_{l,t},$$

where the spread in the borrowing over the lending rate $\mu(N_t)$ depends on the size of the market N_t. Under the translog specification, this function is $\mu_t(N_t) = 1 + (\varepsilon N_t)^{-1}$. Alternatively, if the portfolio purchased by the retail banks were a constant-elasticity of substitution aggregate of a discrete set of N_t instruments, we would obtain $\mu_t(N_t) = [\varepsilon(N_t - 1) + N_t] / [\varepsilon(N_t - 1)]$, as in Jaimovich and Floetotto (2008). As intuition would
suggest, both of these parametric specifications imply that markups fall as the number of competitors increase. However, in our calibration we do not exploit this mapping, but directly calibrate the decline in the spread due to the entry of European players.

In the symmetric equilibrium, in which one dollar of deposits turns into one dollar of wholesale lending and one dollar of loans, with no deadweight loss from interest rate dispersion, market clearing implies

\[-(1 - \psi) D_{l,t} + D_{f,t} = \int_0^{N_t} L_t(n) \, dn \]

\[\psi D_{b,t} = \int_0^{N_t} L_t(n) \, dn,\]

so that

(2.3) \[\psi D_{b,t} + (1 - \psi) D_{l,t} = D_{f,t}.\]

Moreover, the aggregate profits of the intermediation sector, which will be available to households in period \(t + 1 \), amount to

\[r_{l,t}(\mu(N_t) - 1) D_t.\]

2.6. **Resource constraint.** The economy’s resource constraint is

\[Y_t = \psi C_{b,t} + (1 - \psi) C_{l,t} + I^h_t + \psi I_{l,t} + G_t + r_{l,t-1} D_{f,t-1} - \Delta D_{f,t},\]

where \(I_{l,t} \) is the amount of per-capita investment undertaken by the lenders, who are the only households accumulating capital. This constraint is obtained by aggregating the budget constraints of borrowers and lenders with that of the government, using the zero profit conditions of the competitive firms and of retail banks, the definition of profits for the intermediate firms and the investment banks, and the debt market clearing condition (2.3).

This resource constraint clarifies the role of foreign debt in our economy. The RoW holds a stock of U.S. deposits equal to \(D_{f,t} \), on which it earns a return \(r_{l,t} \). Deposits are the only asset traded internationally, so that \(D_{f,t} \) also represents the U.S. net foreign debt position. The change in this position, \(\Delta D_{f,t} \), corresponds to the U.S. current account deficit. Net of the interest paid on the outstanding debt, \(r_{l,t-1} D_{f,t-1} \), this accumulation of deposits is the counterpart to the trade deficit in the financial account.
As further elaborated in section 4.1, from the perspective of the U.S. economy, the willingness of the RoW to invest its excess savings in U.S. assets result in an flow of real resources. This flow of resources is the exogenous force that tilts the consumption profile of U.S. households towards the present, allowing them to consume more today than their domestic production. As for the RoW, we do not model the source of their desire to lend to the U.S., but simply take as given their excess of saving with respect to investment. However, this does not imply that their desired current account surplus is insensitive to interest rates. Rather, the assumption is that there exists a shock to desired saving and/or investment in the RoW, which generates the observed current account deficit in the United States at the prevailing interest rate.

3. Calibration

We parametrize the model so that its steady state matches some key statistics for the period of relative stability of the 1990s. Choosing a later period would be problematic, because the large swings in debt, house prices and the trade balance observed in the 2000s are likely to represent large deviations from such a steady state. The calibration is summarized in table 1 and is based on U.S. aggregate and micro data.

Time is in quarters. We set the Central Bank’s inflation target (\(\pi\)) equal to the average gross rate of inflation (1.005, or 2% per year), and the growth rate of productivity in steady state (\(\gamma\)) to match average GDP growth (0.5%) during the 1990s. In steady state, \(R_l = \frac{\gamma \pi}{\beta_l}\). Therefore, we choose a value of 0.998 for the lenders’ discount factor (\(\beta_l\)), to obtain an annualized steady state nominal interest rate of 4.8%, close to the average Federal Funds Rate. For the borrowers’ discount factor (\(\beta_b\)) we pick a value of 0.99, so that the relative impatience of the two groups is similar to that in Campbell and Hercowitz (2009) and Krusell and Smith (1998). The labor disutility parameter (\(\varphi\)) only affects the scale
of the economy, so we normalize it to 1. We also pick a Frisch elasticity of labor supply \((1/\eta)\) equal to 1. This value is a compromise between linear utility, which is typical in the Real Business Cycle literature (Hansen, 1985), and the low elasticities of labor supply usually estimated by labor economists and more common in the empirical DSGE literature. We choose the standard value of 1 for the risk aversion parameter \((\sigma)\) and 0.0005 for the parameter \(\mu\), a value that minimizes the strength of the wealth effect on labor supply.

We parametrize the degree of heterogeneity between borrowers and lenders using the Survey of Consumer Finances (SCF), which is a triennial cross-sectional survey of the assets and liabilities of U.S. households. We identify the borrowers as the households that appear to be liquidity constrained, namely those with liquid assets whose value is less than two months of their total income. Following Kaplan and Violante (2012), we compute the value of liquid assets as the sum of money market, checking, savings and call accounts, directly held mutual funds, stocks, bonds, and T-Bills, net of credit card debt. We apply this procedure to the 1992, 1995 and 1998 SCF, and obtain an average share of borrowers equal to 61%, which directly pins down the parameter \(\psi\). Given this split between borrowers and savers, we set the production parameter \(\nu\) equal to 0.525 to roughly match their relative labor income (0.64) in the SCF. In addition, we choose the parameter controlling the progressivity of the tax/transfer system to match the ratio of hours worked by borrowers and lenders (1.08). This requires setting \(\chi = 0.45\), which implies a moderate level of overall redistribution.

The share of nondurable consumption in the Cobb-Doubles aggregator of the utility function \((\epsilon)\), the depreciation of houses \((\delta_h)\) and the initial loan-to-value ratio \((\theta)\) are chosen jointly to match three targets. The first target is the real estate-to-GDP ratio, which we estimate from Flow of Funds (FF) and NIPA data as the average ratio between the market value of real estate of households and nonprofit organizations and GDP (1.2). The second target is the debt-to-real estate ratio, for which we use FF data on the average ratio between home mortgages and the market value of real estate of households and nonprofit organizations (0.36). The third target is the ratio of residential investment to GDP (4%). Hitting these targets requires \(\delta_h = 0.003\), which is consistent with the low end of the interval for the depreciation of houses in the Fixed Asset Tables, and \(\theta = 0.85\), which is in line with the cumulative loan-to-value ratio of first time home buyers estimated by Duca et al. (2011) for the 1990s.
On the production side, we follow standard practice and set the elasticity of the production function \(\alpha = 0.3 \), and the depreciation of productive capital \((\delta_k) \) to 0.025. The average net markup of intermediate firms \((\lambda) \) is 20%, which is in the middle of the range of values used in the literature. We choose a value of 0.65 for the Calvo parameter \((\xi_p) \), which is consistent with the evidence in Nakamura and Steinsson (2008). For the second derivative of the investment adjustment cost function \((\zeta_k) \) we pick a value of 2, in line with the estimates of Eberly, Rebelo, and Vincent (2012). As for the adjustment cost parameter in home production\((\zeta_h) \), we set it to infinity, thus imposing a fixed supply of housing along the balanced growth path.

We set the \(G-Y \) steady state ratio equal to 0.175 and, in line with available empirical estimates of the Taylor rule in the post-1984 period, we choose a considerable amount of interest rate inertia \((\rho_R = 0.8) \), a moderate reaction to the output gap \((\tau_y = 0.125) \), and a relatively strong reaction to inflation \((\tau_\pi = 2.5) \).

We set the stock of foreign lending relative to annual GDP \((D_f/(4Y)) \) equal to 15%, based on the estimate of the U.S. net foreign asset position in 1998 of Gourinchas and Rey (2013). Finally, we choose a value of 1.5% for the annualized steady state interest rate spread in the financial intermediation sector \((4(R_b - R_l)) \). This number is motivated by the fact that, in the 1990s, the average spreads between the 30-year conventional mortgage rate and the 5-, 7- and 10-year constant maturity Treasury rates were 1.79, 1.57 and 1.45% respectively. It is not obvious which of these values is more appropriate, since this might depend on the frequency of mortgage refinancing in the data. Our choice of 1.5 is the result of a compromise.

As described in detail in the next section, we study the impact of the SG and BG by analyzing the response of the model’s endogenous variables to changes in the parameters \(D_f/(4Y) \) and \(4(R_b - R_l) \). We compute these responses by solving the system of nonlinear difference equations given by the first order conditions of the agents’ optimization problems and the market clearing conditions. The algorithm used to solve this nonlinear forward-looking model is based on Julliard, Laxton, McAdam, and Pioro (1998), but has been modified to account for the asymmetry of the borrowing constraint, and for the fact that this constraint is always tight in steady state, but binds only occasionally during the transitions.
4. Results

In this section, we present our estimates of the effects of the BG and SG on the U.S. economy, based on the quantitative model described in section 2. Although its open economy dimension is extremely stylized, this model is a useful laboratory to analyze how these international forces affected the U.S. economy, including the extent to which they contributed to the boom and bust cycle in house prices and household debt. In the rest of the section, we start by describing the impact of the SG and BG in isolation, and then consider their interaction.

4.1. Saving glut. Bernanke (2005) coined the phrase Global Saving Glut to suggest that the large current account deficits run by the United States since the 1990s might be primarily driven by a high level of desired saving in some developing economies, such as Emerging Asia and the oil exporting countries. The capital inflows generated by these countries were directed mostly towards safe assets, such as Treasuries and Agency debt, and to a lesser extent towards equity (Bernanke et al., 2011). This portfolio composition of the flows, however, is irrelevant in our model. The macroeconomic effects of net capital flows depend instead only on the size of the associated trade imbalance. Therefore, in our exercises, we treat the trade deficit as the forcing variable and ignore the composition of the corresponding financial flows.

To see more clearly why, suppose that a foreign agent wishes to purchase U.S. bonds in exchange for a certain amount of goods, thereby contributing to the trade deficit. Domestic lenders—the holders of these bonds in our economy—require a reduction in interest rates to deviate from their original consumption/saving plan, as implied by their undistorted Euler equation. Since under perfect foresight all returns are known with certainty, no-arbitrage transmits this decline in rates of return equally across all assets in the economy, making the domestic lender indifferent between selling Treasuries, mortgages/MBS or shares of the capital stock to the foreign agent. Therefore, in the experiments that follow, we need not worry about the composition of these capital flows into the U.S., but we can focus instead on the (net) amount of goods shipped from abroad, and on their effect on the intertemporal consumption profile of domestic agents, and hence on interest rates.

This exclusive focus on goods (as opposed to assets) may seem surprising in an economy with collateral-constrained agents. However, the presence of the savers, who can trade all
assets and do not face a constraint, makes the previous simple intuition valid also in our setup. In our model, international trade is ultimately an intertemporal reshuffling of consumption profiles, with effects on the interest rate dictated by the savers’ Euler equation. The presence of borrowers, however, matters both quantitatively and qualitatively. Quantitatively, the movement in interest rates engendered by trade is different than in a model without constrained agents, since borrowers can consume more only to the extent that their collateral gains value. Qualitatively, the transmission mechanism of trade deficit shocks to the domestic economy is enriched by the presence of heterogeneity among households, which also allows us to trace the implications of these shocks for debt and house prices.

The irrelevance of the portfolio composition of the foreign capital flows in our model, at least under the assumption of perfect foresight, is of course not a claim that this composition does not matter in practice. In this respect, our experiments only quantify the “first-order” effects of changes in trade flows on interest rates, and hence on the rest of the economy, ignoring the “higher-order” considerations stemming from the presence of time-varying risk, and the associated portfolio choices. Our calculations, therefore, can be thought of as a general equilibrium version of the empirical exercises of McCarthy and Peach (2004) and Himmelberg, Mayer, and Sinai (2005), who used present value models of house prices to measure the impact of low interest rates (and other fundamentals) on real estate values in the mid 2000s. A recent and growing literature in international finance includes a role for portfolio choice in affecting the impact of international capital flows on macroeconomic outcomes (e.g. Mendoza, Quadrini, and Rios-Rull, 2009, Caballero and Krishnamurty, 2009, Tille and van Wincoop, 2010, Devereux and Sutherland, 2011, Caballero and Farhi, 2013). Extending our model along these lines is an exciting avenue for future research.

Given that the effects of the SG in our economy depend on the size of trade deficit, rather than the composition of capital inflows, we feed into the model a sequence for net foreign debt \(\{D_{f,t}\}_{t=1998:Q1}^{2012:Q1} \) consistent with the observed evolution of the trade balance. As shown in figure 4.1, the U.S. trade deficit deteriorated significantly—from approximately 1.5 to 6 percent of GDP between 1998:Q1 and 2006:Q3—and subsequently retrenched to roughly 3 percent of GDP following the Great Recession. We calculate the implied path of capital inflows (i.e. the sequence of \(\Delta D_{f,t} \)) consistent with a V-shaped approximation to this data (dashed line in figure 4.1), given the interest payments on foreign debt implied by the model \((R_{t-1}D_{f,t-1}) \), and the initial level of debt \(D_{f,1998:Q1} \) observed in 1998. The solid lines
in figure 4.2a and 4.2b plot the resulting time series of the U.S. net foreign debt position as a fraction of GDP (i.e. $D_f^t / (4Y_t)$), which we treat as the exogenous driver of the SG, and the associated trade balance.\(^9\)

Since agents in the model are forward looking, we also need to specify their expectations regarding the future evolution of capital flows. One possibility would be to assume that they perfectly anticipated the realized path of capital flows as of 1998, which seems implausible. Instead, we assume that they were a bit surprised at every step of the way by the deterioration (and later reversal) of the trade balance. After these surprises, they gradually revised their expectations of the eventual size of the foreign debt-to-GDP ratio, as shown in figure 4.2a. At each point in time, these expectations on the evolution of the net foreign asset position imply a gradual improvement in the trade and current account deficits (figure 4.2b). The pace of this improvement is roughly consistent with 1 to 4-quarter ahead

\(^9\)In the data, changes in the net foreign asset position can differ from the current account due to valuation effects, which have indeed been sizable and favorable for the U.S. (Gourinchas and Rey 2013).
expectations for real net exports from the Blue Chip survey, as well as with the speed of current account rebalancing implied by the model of Ferrero, Gertler, and Svensson (2010).

To illustrate the expected paths and the realized surprises in our simulation, the dashed line in figure 4.2a represents the projected path of foreign-lending-to-GDP in 2000:Q1. However, in the following quarter, capital inflows are higher than originally anticipated, as shown in figure 4.2a. Similar surprises happen every quarter of the simulation until 2006:Q2, but we omit the expected paths to avoid cluttering the figure. After this date, the trade deficit recovers at a faster pace than anticipated, as seen from the dotted line corresponding to expectations in 2007:Q1. After 2009:Q1 there are no additional surprises and the rest of the path is perfectly anticipated.

Figures 4.3 and 4.4 summarize the effects of the SG experiment in our model. The desire of foreign agents to purchase more U.S. assets decreases real interest rates to induce the domestic lenders—the owner of these assets—to reduce saving and increase consumption (figure 4.3a). In our calibration, the SG reduces nominal interest rates by approximately 150 basis points (figure 4.3b), which is broadly consistent with some recent empirical studies on the effect of the SG on asset returns (Bertaut at al., 2011 and Warnock and Warnock, 2009). Lower interest rates also stimulate the demand for nonresidential investment (figure
Figure 4.3. Saving glut experiment: aggregate variables

4.3c) and real estate by the domestic lenders, by making these durable goods relatively more desirable than nondurable consumption.

The resulting upward pressure on house prices relaxes the collateral constraint on the borrowers. This reduces their urge to consume in the present, as measured by the multiplier on the borrowing constraint, and makes them more willing to hold durable goods. From their Euler equation,

\[
\left(1 - \xi_t \right) R_{b,t} = E_t \frac{\beta_b \Lambda_{b,t+1}}{\Lambda_{b,t}},
\]
the fall in the multiplier ξ_t associated with the relaxation of the borrowing constraint increases the borrowers' marginal valuation of future consumption vis-a-vis current consumption (the right-hand side of the expression), for any given level of the interest rate. Therefore, the borrowers’ demand for houses increases more than that for nondurable consumption, and more than that of the lenders. In equilibrium, house prices rise substantially because both agents increase demand, and supply is fixed (figure 4.3e). Moreover, houses reallocate from the lenders to the borrowers, since their demand increases more in relative...
terms (figures 4.4a and 4.4b). Finally, with higher house prices, debt increases as well (figure 4.3f).

To illustrate the behavior of the housing market more clearly, consider the borrowers’ first order condition with respect to the housing stock

\[(4.1) \quad P_h(t) (1 - \xi_t \theta) = E_t \left[\frac{\beta_b \Lambda_{b,t+1}}{\Lambda_{h,t}} \left(MRS_{h,c}^{h,c} + (1 - \delta_h) P_{t+1}^h \right) \right],\]

where \(MRS_{h,c}^{h,c}\) denotes the marginal rate of substitution between housing and consumption. Substituting for the discount factor in equation (4.1), and recalling that there is no uncertainty about future realizations of returns under perfect foresight, we obtain

\[(4.2) \quad P_h(t) = \frac{1}{1 - \xi_t \theta} \frac{1 - \xi_t}{R_{b,t}} \left[MRS_{h,c}^{h,c} + (1 - \delta_h) P_{t+1}^h \right].\]

This equation can be interpreted as a downward sloping demand for houses, since the \(MRS\) is decreasing in the housing stock, conditional on expectations about the future price. Comparing this expression with the equivalent one for the lenders

\[P_h(t) = \frac{1}{R_{l,t}} \left[MRS_{l,f}^{h,c} + (1 - \delta_h) P_{t+1}^h \right],\]

we see that, as long as \(\theta < 1\), the borrowers’ valuation is higher, the more they can borrow against the house (\(\theta\)) and the slacker is the constraint (i.e. \(\xi_t\) is lower).

The net positive effect on house prices from a loosening of credit conditions depends on two countervailing forces. First, a looser constraint makes an extra unit of housing less valuable as collateral, as captured by the multiplier \(\xi_t\) at the denominator of

\[\frac{1}{1 - \xi_t \theta} \frac{1 - \xi_t}{R_{b,t}}.\]

Second, a lower \(\xi_t\) makes the borrowers effectively less impatient, increasing their valuation of future vs. current consumption, as captured by the \(\xi_t\) in the numerator. Since \(\theta\) is less than one, this positive effect prevails in our model, the more so the more durable is the housing stock (i.e. the lower is \(\delta_h\)).

We combine these two demand functions in figure 4.5, together with the fixed supply of houses. The demand by the borrowers is measured from left to right, while that of the savers from right to left, and the future price \(P_{t+1}^h\) is held constant for illustration purposes. A fall in the interest rate shifts both schedules up, putting upward pressure on
For a given ξ_t, the demand of the lenders changes by more than that of the borrowers. However, the relaxation of the borrowing constraint associated with this increase in collateral values shifts the borrowers’ demand further, by lowering the multiplier ξ_t. In our simulations, the borrowers’ valuation increases by more, so that some houses change hands from the savers to the borrowers, as shown in the diagram.

Iterating equation (4.2) forward

$$P^h_t = \sum_{s=1}^{\infty} \left(\prod_{j=1}^{\bar{\nu}} \frac{1}{1 - \xi_{t+j-1}\theta} \frac{1 - \xi_{t+j-1}}{R_{b,t+j-1}} (1 - \delta_h) \right) MRS^{h,c}_{b,t+s}$$

we can also see that the borrowers’ valuation of housing reflects their expectations on the tightness of the constraint going forward. Therefore, the longer a loosening in the collateral constraint is expected to last, the larger the resulting shift into housing, relative to nondurable consumption.

Turning to the implications of the SG for economic activity, figure 4.3g shows that it generates an expansion through fairly standard channels. Lower interest rates boost investment and therefore the capital stock, which raises the marginal product of labor and labor demand. The increase in labor demand is larger under sticky prices, because firms need to hire to satisfy the higher demand for consumption and investment goods (i.e. markups fall). With the standard King-Plosser-Rebelo preferences ($\mu = 1$), labor supply

10Changes in the interest rate shift and rotate the demand function at the same time.
would decline due to the usual wealth effect. Under JR preferences with \(\mu \approx 0 \), instead, the position of the labor supply schedule depends on the housing-to-consumption ratio, rather than on the marginal utility of consumption alone. This explains why the borrowers work more, while the savers do not (figures 4.4e and 4.4f). In sum, the boom in real activity reflects the increase in the aggregate labor input and in capital.

In 2006:Q4, the trade deficit starts shrinking at a faster pace than expected, and the whole process goes in reverse. The real interest rate rises quite abruptly and investment, consumption, house prices and debt fall. Quite interestingly, GDP is flat after 2007, due to the fact that the reduction in the trade deficit is initially roughly comparable to the decline in consumption and investment.

4.2. Banking glut. In contrast to the saving glut, the banking glut refers to large gross inflows of foreign capital from advanced economies, mostly Europe, which were matched by similar outflows, resulting in small net flows and minor changes in the U.S. trade balance (Shin, 2012). Compared to the portfolio allocation of the SG countries, which was concentrated in Treasury and agency debt, the composition of the European gross capital inflows was more widely spread across asset classes, with a particular concentration in private-label ABS, corporate bonds and (to a lesser extent) equity (Bernanke et al. 2011). The empirical literature attributes to the higher demand for ABS and corporate bonds from European investors a depressing effect on the spreads of these securities relative to Treasuries, despite significant increases in their origination (Bertaut et al. 2011).

Consistent with this description, our model captures the BG as a gross inflow of capital into the mortgage market, which is not associated with movements in the trade balance. More specifically, we model the demand by European investment banks for structured mortgage products, and their associated issuance of credit instruments on the domestic wholesale credit market, as an increase in the competitive pressure in this market. This increase in the number of players and in the credit products they issue compresses the spread between borrowing and lending rates, as shown in equation (2.2) when \(N_t \) increases.

Direct evidence on the quantitative implications for spreads of this increased participation by European banks in the U.S. wholesale credit market is difficult to obtain, since spreads between mortgage products and funding rates move for many different reasons. Therefore, our calibration is based on two suggestive pieces of evidence, which help us pin down the magnitude and the timing of the changes in spreads. First, the spread between mortgage
rates and Treasuries of comparable maturities declined by between 50 and 150 basis points between 2003 and 2007, which coincides with the time of the surge of European funds into the market for ABS. Moreover, this spread compression was more pronounced in mortgage products directly connected with the subprime boom, which featured prominently in the portfolios of European banks.\footnote{See, for instance, figures 16 and 17 in Bertaut et al. (2011). The portfolio balance model estimated by these authors suggests that the European purchases of ABS during this period lowered ABS yields by 60 basis points. Including the purchases of non-ABS corporate debt, the negative effect on yields reaches 160 basis points. However, these estimates do not account for the impact of the increase in supply of these instruments, which presumably contributed to reduce these effects on rates.} Second, the market for these products dried up entirely in the second half of 2007. In the first half of 2008, foreign investors reduced their purchases of securities other than Treasuries virtually to zero, and even became net sellers in the second half of the year (Bertaut and Pounder DeMarco, 2009.) If the compression in spreads between 2003 and 2007 was due at least in part to the gross flows from Europe, then it seems reasonable to assume that the disappearance of those flows returned the spreads to their original level.

Taking the previous evidence as a rough guideline, our simulation assumes that in every quarter between 2003:Q1 and 2007:Q4, agents in the model are surprised with an unanticipated decline in the spread, which they expect to be permanent. Given the ambiguity surrounding the appropriate choice of a spread measure, our BG experiment assumes a gradual decline in the spread by a total of 75 basis points. This number approximately corresponds to the decline in the spread between the 30-year mortgage rate and the 10-year Treasury yield reported by Bertaut et al. (2011) and Bernanke et al. (2011). We also experimented with smaller (50 basis points) and larger declines (1 percent), and found roughly proportional changes in the model’s dynamics. In the simulation, the negative pressure exercised by European banks on spreads is reversed in 2007:Q4 and the spread returns to its original level by 2009:Q1.

Our findings on the implications of the banking glut for the U.S. economy are summarized in figures 4.6 and 4.7. Faced with a lower nominal (and real) interest rate, the borrowers reallocate their demand from nondurable consumption towards houses. This shift in demand puts upward pressure on house prices, which rise by 6\% during the first five years. Higher collateral values allow them to borrow more, and ultimately to increase also the consumption of nondurable goods. Moreover, the relaxation of the borrowing constraint entails an even larger decline in the effective interest rate faced by the borrower (i.e. $R_t/(1 - \xi_t)$), due to...
the current and future expected fall in the multiplier. As a result, the borrowers’ demand of housing increases substantially more than that of nondurable goods.

Absent any net injections of foreign capital, additional lending from the domestic savers to satisfy the increased borrowing by the impatient households requires an increase in the interest rate, which leads them to postpone consumption and investment. This reduction in the savers’ demand almost exactly counteracts the expansion from the borrowers, resulting in a negligible overall increase in consumption and output. These offsetting effects
of the responses of borrowers and savers on aggregate activity are also a feature of the closed-economy experiments in Justiniano, Primiceri, and Tambalotti (2012). As in those experiments, we also find a sizable re-allocation of houses from the borrowers to the savers.

As the spread rapidly returns to its original level in 2007:Q4, the whole process goes in reverse, although the effects on consumption and output are relatively larger than during
the expansion. This asymmetry in the size of the effects is due to the fact that the borrowing constraint is not binding during the transition from high to lower spreads, while it immediately becomes binding during the tightening.

Our simulation of the BG is subject to at least two caveats. First, empirical evidence suggests that capital inflows from the SG economies also contributed to the reduction in spreads of mortgage over Treasury yields, perhaps by substantial amounts (Bertaut et al., 2011, Warnock and Warnock, 2009). Since our model is not well equipped to capture this effect of the SG, we might be overestimating the impact of the BG relative to the SG. Second, foreign inflows were not the only factor behind the observed reduction in mortgage spreads, which is why we view the magnitude of our simulations as only suggestive of the potential effects of a compression in spreads that might be attributed to the BG channel.

4.3. Saving and banking gluts: a quantitative perspective. In this subsection, we present the results of a joint simulation of the SG and the BG. From 1998:Q1 through 2002:Q4, only the SG is active and the transition paths are identical to those described in section 4.1. After 2003:Q1, the BG is also at play. Given the focus of the previous subsections on the qualitative mechanisms at play in the model, here we concentrate on the overall quantitative impact of these international forces, with particular attention to their contribution to the house and credit boom and bust.

In our combined experiment, house prices increase by more than 15\% between 1998 and 2007, and then fall by 10\% (figure 4.8e). Therefore, our results attribute approximately one-fourth of the recent house-price cycle observed in U.S. data to the behavior of U.S. imbalances vis-a-vis the RoW. We regard the contribution of these international forces as realistic, considering that the literature has identified a host of domestic factors as the primary sources of the U.S. housing boom and bust and of the associated financial crisis, such as changes in the availability of credit on both the intensive and extensive margin (Mian and Sufi, 2009, Favilukis et al., 2012, Boz and Mendoza, 2010), an excessively loose monetary policy (Taylor, 2008, Ferrero, 2012), or deviations of house prices from fundamentals (Shiller, 2007).

Our results suggest an even larger impact of the SG and the BG on the behavior of household debt. The debt-to-GDP ratio rises steadily in the joint simulation to a level of 57\% (figure 4.8f), accounting for more than one-third of the run-up in the data over the same period (0.44 to 0.75). In addition, thanks to the asymmetry of the collateral constraint, the
model also matches the observed gradual reduction in debt following the financial crisis—the so-called deleveraging process. Absent this asymmetry, debt-to-GDP would fall abruptly below the original steady state. With regards to the relative contributions of the BG and SG, our simulations attribute a greater quantitative role to the latter, a point reinforced by the caveats on the calibration of the size of the BG impulse raised in section 4.2.

The remaining panels in figure 4.8 plot the behavior of the real interest rate, GDP, investment and aggregate consumption in the joint experiment. As for most variables in
the model, their transition paths are roughly equal to the sum of the responses in the
two experiments taken in isolation.\footnote{The most notable exception is the behavior of household debt, which increases less in the combined experiment. The reason is the “zero lower bound” on the multiplier \(\xi \). In the SG experiment, the collateral constraint does not bind while the trade deficit rises (from 1998:Q1 to 2006:Q3). Since the multiplier is already equal to zero, the reduction in the spread that starts in 2003:Q1 does not have an additional expansionary effect on borrowing, because the borrowers are already unconstrained.} The effects on activity are mostly shaped by the SG, due to the nearly offsetting responses of borrowers and savers to the BG. Investment and consumption rise considerably above trend, but the expansionary effects on GDP are more muted, due to the drag imposed by the trade deficit.

Overall, the quantitative experiments illustrated above suggest that the sustained current account deficits run by the United States in the last fifteen years, and to a lesser extent the gross capital flows into mortgage-backed securities mediated by European banks, had a sizable impact on the equilibrium of the domestic economy. These flows of goods and assets reduced interest rates and spreads, and lifted nondurable consumption and especially houses values. As a result households’ ability to borrow also increased, accounting for more than one third of the observed increase debt.

An important qualification to this conclusion is that, given the complexity of the current model, we took an extremely stylized view of international trade, as an exogenous flow of imports into the United States from the RoW, with no exports going in the opposite direction. This stark simplification is consistent with the two main tenets of the SG hypothesis put forth by Bernanke (2005). First, that international imbalances are best understood through the lens of the balance between desired saving and investment—the current account—rather than through that of the balance between exports and imports—the trade deficit—even if the two are just opposite sides of the same coin. Second, that the main source of these imbalances since the late nineties were developments in the RoW, rather than in the U.S., and in particular the surge in desired saving in emerging Asia and the Middle East, looking for safe harbor in the United States. Nonetheless, extending our analysis to a fully-fledged two country model might deliver significant spillovers that could amplify the channels that we analyze.

5. Concluding Remarks

The United States has been running large trade and current account deficits for more than twenty years. These deficits grew steadily during the 1990s and 2000s, and fell only...
partially following the Great Recession. We studied the quantitative effects of this massive transfer of resources from the Rest of the World on the U.S. economy, with a particular focus on its impact on the credit and real estate boom (and bust) that precipitated the Great Recession.

We did so with help from a dynamic, general equilibrium model that features most of the now standard ingredients in the DSGE literature. The model also includes borrowing and lending among heterogeneous households, a non-competitive financial intermediation sector that charges a spread on borrowing rates, and a stylized foreign sector that lends resources to the domestic economy in exchange for a promise of more resources in the future. With these ingredients, we can capture two channels through which global imbalances affected the U.S. economy. The first channel is the global saving glut popularized by Bernanke (2005), which we represent as an influx of real resources in the U.S. economy calibrated to the observed sequence of trade deficits.

The second channel is Shin's (2012) global banking glut, which refers to the effect of the gross capital flows intermediated by global (mostly European) banks into the U.S. mortgage market. The evidence recently collected by Bertaut et al. (2011) suggests that these gross purchases of mortgage instruments had a significant impact on interest rates and spreads in the mortgage market, even thought they were largely financed on domestic credit markets, giving rise to virtually no current account imbalance. We capture this second channel through a compression in the spread charged by the intermediaries, associated with the increased competition in the wholesale funding market brought by the entry of European banks.

The main finding is that the saving and banking glut together were an important contributor to some of the key macroeconomic developments in the U.S. during the 2000s, and in particular in the period preceding the financial crisis. These two forces contribute to a large boom in consumption and investment, and account for about 25 percent of the observed run-up in house prices, and more than a third in that of household debt. Between the two channels, the saving glut has much larger effects, since it engenders a fall in interest rates that stimulate the demand of both borrowers and savers, especially of durable goods such as houses. The compression in spreads with which we capture the banking glut, instead, elicits opposite responses between borrowers and lenders, leading to smaller effects on aggregate variables.
Our modeling strategy misses at least two potentially important dimensions of the connection between global imbalances and domestic macroeconomic developments. First, the portfolio composition of the financial flows mirroring the observed trade deficit is irrelevant in our model. This is because agents have perfect foresight, and therefore perceive no risk in the returns of the assets they hold, making them indifferent about the composition of their portfolio. The main advantage of this strategy is that it focuses on the overall macroeconomic effect of trade, without having to worry about the underlying financial flows, which can be difficult to track. The clear disadvantage is that we cannot address the important issues raised by the strong preference of the saving glut countries, and of China in particular, for safe U.S. dollar assets. These issues are the focus of Caballero, Farhi, and Gourinchas (2008) and Mendoza, Quadrini, and Rios-Rull (2009), and of a growing literature that followed them.

Second, there are no exports and imports explicitly in the model, just resources made available from the rest of the world for consumption in the U.S., and no structure on the reason why foreign agents are willing to lend those resources today. Therefore, we have nothing to say about what happens in the rest of the world, nor about the many channels through which imports, exports and the exchange rate affect domestic allocations. Nevertheless, the model provides useful insights on some of the basic mechanisms through which international imbalances affect a large economy, as well as a reasonable quantification of their aggregate effects.

References

Federal Reserve Bank of Chicago

E-mail address: ajustiniano@frbchi.org

Northwestern University, CEPR, and NBER

E-mail address: g-primiceri@northwestern.edu

Federal Reserve Bank of New York

E-mail address: a.tambalotti@gmail.com