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Abstract

We consider the problem of short-term time series forecasting (nowcasting) when there

are more possible predictors than observations. Our approach combines three Bayesian

techniques: Kalman filtering, spike-and-slab regression, and model averaging. We

illustrate this approach using search engine query data as predictors for consumer

sentiment and gun sales.

1 Introduction

Choi and Varian [2009a,b, 2011] described how to use search engine data to forecast contem-

poraneous values of macroeconomic indicators. This type of contemporaneous forecasting,

or “nowcasting,” is of particular interest to central banks, and there have been several sub-

sequent research studies from researches at these institutions. See, for example, Arola and

Galan [2012], McLaren and Shanbhoge [2011], Hellerstein and Middeldorp [2012], Suhoy

[2009], Carrière-Swallow and Labbé [2011]. Choi and Varian [2011] contains several other

references to work in this area.

In these studies, the researchers selected predictors using their judgment of relevance to

the particular prediction problem. For example, it seems natural that search engine queries

in the “Vehicle Shopping” category would be good candidates for forecasting automobile
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sales while queries such as “file for unemployment” would be useful in forecasting initial

claims for unemployment benefits.

One difficulty with using human judgment is that it does not easily scale to models

where the number of possible predictors exceeds the number of observations—the so-called

“fat regression” problem. For example, the Google Trend service provides data for millions of

search queries and hundreds of search categories extending back to January 1, 2004. Even if

we restrict ourselves to using only categories of queries, we will have several hundred possible

possible predictors for 100 months of data. In this paper we describe a scalable approach to

time series prediction for fat regressions of this sort.

2 Approaches to variable selection

Castle et al. [2009, 2010] describes and compares 21 techniques for variable selection for

time-series forecasting. These techniques fall into 4 major categories.

• Significance testing (forward and backward stepwise regression, Gets )

• Information criteria (AIC, BIC)

• Principle component and factor models (e.g. Stock and Watson [2010])

• Lasso, ridge regression and other penalized regression models (e.g., Hastie et al. [2009])

Our approach combines 3 statistical methods into an integrated system we call Bayesian

Structural Time Series or BSTS for short.

• A “basic structural model” for trend and seasonality, estimated using Kalman filters;

• Spike and slab regression for variable selection;

• Bayesian model averaging over the best performing models for the final forecast.

We briefly review each of these methods and how they fit into our framework.

2.1 Structural time series and the Kalman filter

Harvey [1991], Durbin and Koopman [2001], Petris et al. [2009] and many others have ad-

vocated the use of Kalman filters for time series forecasting. The “basic structural model”

decomposes the time series into four components: a level, a local trend, seasonal effects and
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an error term. The model described here drops the seasonal effect for simplicity and adds a

regression component. It could be called a “local linear trend model with regressors.”

This “local linear trend model” is a stochastic generalization of the classic constant-trend

regression model,

yt = µ+ bt+ βxt + et

In this classic model the level (µ) and trend (b) parameters are constant, (xt) is a vector of

contemporaneous regressors, β is a vector of regression coefficients, and et is an error term.

In local linear trend model each of these structural components is stochastic. In partic-

ular, the level and slope terms each follow a random walk model.

yt = µt + zt + vt vt ∼ N(0, V ) (1)

µt = µt−1 + bt−1 + w1t w1t ∼ N(0,W1) (2)

bt = bt−1 + w2t w2t ∼ N(0,W2) (3)

zt = βxt (4)

The unknown parameters to be estimated in this system are the variance terms (V,W1,W2)

and the regression coefficients, β.

If we drop the trend and regression coefficients by setting bt = 0 and β = 0, the “local

trend model” becomes the “local level” model. When V = 0, the local level model is a

random walk, so the best forecast of yt+1 is yt. When W1 = 0, the local level model is a

constant mean model, where the best forecast of yt+1 is the average of all previously observed

values of yt. Hence, this model yields two popular time series models as special cases.

It is easy to add a seasonal component to the local linear trend model, in which case

it is referred to as the “basic structural model.” In the Appendix we describe the general

structural time series model that contains these and other models in the literature as special

cases.

It is also possible to allow for time-varying regression coefficients by simply including

them as another set of state variables. In practice, one would want to limit this to just a few

coefficients, particularly when dealing with sample sizes common in economic applications.

2.2 Spike and slab variable selection

The spike-and-slab approach to model selection was developed by George and McCulloch

[2007]) and Madigan and Raftery [1994].
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Let γ denote a vector the same length as the list of possible regressors that indicates

where or not a particular regressor is included in the regression. More precisely, γ is a vector

the same length as β, where γi = 1 indicates βi 6= 0 and γi = 0 indicates βi = 0. Let βγ

indicate the subset of β for which γi = 1, and let σ2 be the variance of the prior distribution

on γ.

A spike and slab prior for the joint distribution of (β, γ, σ−2) can be factored in the usual

way.

p(β, γ, σ−2) = p(βγ|γ, σ−2)p(σ−2|γ)p(γ). (5)

There are several ways to specify functional forms for these prior distributions.

The “spike” part of a spike-and-slab prior refers to the point mass at zero, for which we

assume a Bernoulli distribution for each i, so that the prior is a product of Bernoullis:

γ ∼
∏
i

πγii (1− πi)1−γi . (6)

When detailed prior information is unavailable, it is convenient to set all πi equal to the same

number, π. The common prior inclusion probability can easily be elicited from the expected

number of nonzero coefficients. If k out of K coefficients are expected to be nonzero then

set π = k/K in the prior.

More complex choices of p(γ) can be made as well. For example, a non-Bernoulli model

could be used to encode rules such as the hierarchical principle (no high order interactions

without lower order interactions). The MCMC methods described below are robust to the

specific choice of the prior.

The “slab” component is a prior for the values of the nonzero coefficients, conditional on

knowledge of which coefficients are nonzero. Let b be a vector of prior guesses for regression

coefficients, let Ω−1 be a prior precision matrix, and let Ω−1γ denote rows and columns of Ω−1

for which γi = 1. A conditionally conjugate “slab” prior is

βγ|γ, σ2 ∼ N
(
bγ, σ

2
(
Ω−1γ

)−1)
,

1

σ2
∼ Γ

(
df

2
,
ss

2

)
.

(7)

It is conventional to assume b = 0 (with the possible exception of the intercept term)

and Ω−1 ∝ XTX, in which case equation (7) is known as Zellner’s g−prior Chipman et al.

[2001]. Because XTX/σ2 is the total Fisher information in the full data, it is reasonable to
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parametrize Ω−1 = κ(XTX)/n, the average information available from κ observations.

One issue with Zellner’s g−prior is that when the design matrix contains truly redundant

predictors (as is the case when the number of possible predictors exceeds the number of

observations), then XTX is rank deficient, which means that for some values of γ, p(β, σ|γ)

is improper. We can restore propriety by averaging XTX with its diagonal, so that

Ω−1 =
κ

n

[
wXTX + (1− w)diag(XTX)

]
.

The final values that need to be chosen are df and ss. These can be elicited by asking the

modeler for the R2 statistic he expects to obtain from the regression, and the weight he would

like to assign to that guess, measured in terms of the equivalent number of observations. The

df parameter is the equivalent number of observations, and ss = df(1−R2)s2y.

Software implementing the spike-and-slab prior can make reasonable default choices for

expected model size, κ, expected R2, and df , giving the modeler the option to accept the

defaults, or provide his own inputs.

2.3 Bayesian model averaging

Bayesian inference with spike-and-slab priors is an effective way to implement Bayesian

model averaging over the space of time series regression models. We will end up drawing

from the posterior distribution of the parameters in the model. Each draw of parameters

from the posterior can be combined with the available data to yield a forecast of yt+1 for that

particular draw. Repeating these draws many times gives us an estimate of the posterior

distribution of the forecast yt+1.

This approach is motivated by the Madigan and Raftery [1994] proof that averaging over

an ensemble of models does no worse than using the best single model in the ensemble. See

Volinksy [2012] for links to tools and applications of Bayesian model averaging.

3 Estimating the model

The Kalman filter, spike-and-slab regression, and model averaging all have natural Bayesian

interpretations and tend to play well together. The basic parameters we need to estimate are

γ (which variables are in the regression), β (the regression coefficients), and the variances of

the error terms (V,W1,W2,W3).

As the appendix describes in detail, we specific priors for each of these parameters and
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then sample from the posterior distribution using Markov Chain Monte Carlo techniques.

There are a number of attractive short cuts available that make this sampling process quite

efficient. These are described in more detail in the appendix and in a companion paper,

Scott and Varian [2012].

These techniques yield a sample from the posterior distribution for the parameters that

can be then used to construct a posterior distribution for forecasts of time series of interest.

4 Fun with priors

We have already indicated that it is possible to use an informative prior to describe beliefs

about the expected number of predictors. It is also possible to use a prior in the regression

to indicate likely relationships. For example, one might expect that autmobile purchases are

likely to be correlated with automotive-related queries.

A less obvious example involves using data-based priors for estimating the state and

observation variances, (V,W1,W2,W3). Even though the Google Trends data only goes back

to 2004, economic time series are often much longer. One can estimate posterior distribution

the parameters in the univariate Kalman filter using the long series, then use this posterior

distribution as the prior distribution for the shorter series where the Google Trends data are

available.

5 Nowcasting consumer sentiment

To illustrate the use of BSTS for nowcasting, we use the University of Michigan monthly

survey of Consumer Sentiment from January 2004-April 2012. We focus on “nowcasting”

since we expect that queries at time t could be related to sentiment at time t but are not

necessarily predictive of future sentiment.

Our data from Google Search Insights starts at January 2004, and our sample ends

in April 2012, giving us about 100 observations. For predictors, we use 151 categories

from Google Search Insights that have some connection with economics. These potential

predictors were chosen from the roughly 300 query categories using the authors’ judgment.

Our problem is to find a good set of predictors for 100 observations chosen from a set

of 151 possible predictors. This qualifies as a qualifies as a mildly obese, if not actually fat,

regression.

The Consumer Sentiment index is not highly seasonal but many of the potential predictors
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Energy.Utilities

Search.Engines

Business.News

Investing

Financial.Planning

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Top 5 predictors for consumer sentiment. Bars show the probability of inclusion.
Shading indicates the sign of the coefficient.

are seasonal so we first deseasonalize the data by using the R command stl. We then detrend

the predictors by regressing each predictor on a simple time trend. A visual inspection of

the time series of the predictors indicated that these techniques were sufficient to “whiten”

the data.

We then applied the BSTS estimation procedure described earlier. Figure 1 shows the

inclusion probability for the top 5 predictors. A white bar indicates that the predictor

has a positive relationship with consumer sentiment and a black bar indicates a negative

relationship. The size of the bar measures the proportion of the estimated models in which

that predictor was present.
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Figure 2: Posterior distribution of forecast and the observations.

The top predictor is Financial Planning which is included in almost all of the models

explored. The top queries in this category in the US can be found on the Google Search

Insights web page. They are schwab, 401k, charles schwab, ira, smith barney, fidelity 401k,

john hancock, 403b, 401k withdrawl, and roth ira.

The second most probable predictor is Investing, which tends to have a negative rela-

tionship with confidence. The top queries in this category are stock, gold, fidelity, stocks,

stock market, silver, gold price, mutual, scottrade, and finance.

The inclusion of the Energy category is likely due to gasoline prices, which are known to

have a negative impact on consumer sentiment in the US. We have no explanation for the

Search Engine inclusion, though a visual inspection of the series shows that it does change

direction at about the time the recession started.

Figure 2 shows the posterior distribution of the one-step ahead forecast along with the

actual observations.

Note that the regression parameters are estimated using the entire sample of data, but

the forecasts for period t are made using the value of consumer sentiment at t − 1 and the
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Figure 3: Actual, base AR(1), regression, and BSTS one-step ahead predictions.

observed query categories at time t (for the included categories).

The model predicts reasonably well with a mean absolute one-step-ahead prediction error

of about 4.5%. A naive AR(1) model has a mean absolute one-step-ahead prediction error

of 5.2%, indicating an improvement of about 14%. See 3 for a time series plot of the actual,

AR(1), and BSTS one-step-ahead predictions.

As we have seen BSTS system can decompose the forecast into the trend and regression

components. The trend component is basically the univariate Kalman filter forecast, while

the regression component uses the predictors from the query categories. Figure 4, illustrates

the contribution of each state variable and regressor to the fit. The faint line in each panels

is the previous fit.

6 Nowcasting gun sales

The National Instant Criminal Background Check is a service offered by the FBI to Federal

Firearms Licensees that can quickly determine whether a prospective buyer is eligible to buy

firearms or explosives. A monthly report on the number of checks conducted is available on

the web.1

We downloaded this data and fed it to Google Correlate which produced 100 queries that

were highly correlated with this series. The first 10 were (stack on, bread, 44 mag, buckeye

1http://www.fbi.gov/about-us/cjis/nics/reports/080112_1998_2012_Monthly_Yearly_Totals.

pdf
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Figure 4: Decomposition of forecast for Consumer Sentiment using Trends data. Variables
are ordered by probability of inclusion, mean absolute error is given in title, and residuals
are shown at bottom of each panel.
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Figure 5: Decomposition of forecast for NICS using Correlate data. Variables are ordered
by probability of inclusion, mean absolute error is given in title, and residuals are shown at
bottom of each panel.

outdoors, mossberg, g star, ruger 44, baking, .308, savage 22). Most of these queries are

related to weapons.

We used BSTS to find the best predictors from this set for of the NICS background check

data. Since the data was highly seasonal, we used both a local linear trend and seasonal

state variables. The best predictor by far was “gun stores” which, interestingly, only ranked

36th on the list of correlates. The in-sample MAE of the simple model using only trend +

seasonal was 0.34, but adding “gun stores” cut the MAE to 0.15, a substantial reduction.

Figure 5 shows how adding trend, seasonal and query data improves the in-sample fit.

We also ran bsts using all 585 verticals produced by Google Trends to fit the 107 ob-

servations of monthly NICS data. The two most probable predictors are shown in Table 1.

As you can see, the category Recreation::Outdoors::Hunting:and:Shooting is by far the

most probable predictor. The forecast decomposition is shown in Figure 6, which indicates

a substantial contribution by the regression component.
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Category mean inc.prob
Recreation::Outdoors::Hunting:and:Shooting 1,056,208 0.97

Travel::Adventure:Travel -84,467 0.09

Table 1: Google Trends predictors for NICS checks.

Figure 6: Decomposition of forecast for NICS using Trends data. Variables are ordered by
probability of inclusion, mean absolute error is given in title, and residuals are shown at
bottom of each panel.
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7 Appendices

A Structural time series models

We focus on structural time series models of the standard form

yt = ZT
t αt + εt εt ∼ N (0, Ht)

αt+1 = Ttαt +Rtηt ηt ∼ N (0, Qt) .
(8)

Here yt is time series to be modeled and the vector αt is a latent variable indicating the

state of the model; it contains any trend, seasonal, or other components deemed necessary

by the modeler.

Zt is a vector of coefficients applied to the state variables, εt is a Normally distributed

error term with mean zero and Ht is its variance. Each state component contributes to the

block diagonal transition matrix Tt, the rectangular block diagonal residual matrix Rt, and

the observation vector Zt. The error term ηt has covariance matrix Qt.

The model matrices (Z, T,R,H,Q) can be used to construct the Kalman filter, which

can then be used to forecast future values yt+τ from current observations (y1, . . . , yt). One

attractive feature of the Kalman filter is that it has a natural Bayesian interpretation and

can easily be combined with the variable selection and model averaging techniques we have

chosen.

A.1 Regression

Regressors can be included in a structural time series model in either a static framework

(where the regression coefficients are fixed) or dynamic framework (where the regression

coefficients can change over time).

In a dynamic regression the coefficients are a component of the state vector which evolve

over time according to some stochastic process. In a static regression, by contrast, the

coefficients are fixed, unknown parameters. A convenient way to include a static regression

component in the model is to set αt = 1, tt = 1, qt = 0, and zt = βtxt. This specification

adds βtxt to the contributions of the other state components in a computationally efficient

way, because it only adds one additional state to the model. A small dimension is helpful

because the Kalman recursions are quadratic in the dimension of the state space.
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B Estimating the model using Markov Chain Monte

Carlo

We estimate the posterior distribution of the model parameters using Markov Chain Monte

Carlo. Let θ denote the collection of model parameters (β, σ, ψ) where ψ is the collection

of all model parameters associated with state components other than the static regression.

Then the complete data posterior distribution is

p(θ,α|y) ∝ p(θ)p(α0)
n∏
t=1

p(yt|αt, θ)p(αt|αt−1, θ). (9)

In order to sample from the posterior distribution we use an efficient Gibbs sampling al-

gorithm that alternates between draws of p(α|θ,y) and p(θ|α,y), which produces a sequence

(θ,α)0, (θ,α)1, . . . from a Markov chain with stationary distribution p(θ,α|y).

The key point is that, conditional on α, the time series and regression components of the

model are independent. Thus the draw from p(θ|α,y) decomposes into several independent

draws from the different conditional posterior distributions of the state components. In

particular, p(ψ, β, σ−2|α,y) = p(ψ|α,y)p(β, σ−2|α,y).

B.1 Sampling α

The idea of using Kalman filtering to sample the state in a linear Gaussian structural

time series model was independently proposed by [Carter and Kohn, 1994] and [Frühwirth-

Schnatter, 1994]. Various improvements to the early algorithms have been made by [de Jong

and Shepard, 1995] [Rue, 2001], and others. We use the method proposed by [Durbin and

Koopman, 2002], who observed that the variance of p(α|θ,y) does not depend on the nu-

merical value of y. Durbin and Koopman [2001] describes a fast smoothing method for

computing E(α|y, θ) using the Kalman filter.

Thus one may simulate a fake data set (y∗,α∗) ∼ p(y,α|θ) by simply iterating equa-

tion (8). Then the fast mean smoother can be used to subtract the conditional mean

E(α∗|θ,y∗) from α∗, which is now mean zero with the correct variance. A second fast

smoother can be used to add in E(α|y, θ), yielding a draw of α with the correct moments.

Because p(α|y, θ) is Gaussian, the correct moments imply the correct distribution.
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B.2 Sampling θ

Many of the usual models for state components are simple random walks, whose variance

parameters are trivial to sample conditional on α. For example, consider the state variables

for the local linear trend model described in 1

µt+1 = µt + δt + η0t

δt+1 = δt + η1t,

where η0 and η1 are independent Gaussian error terms with variances ψ2
0 and ψ2

1. With

independent Gamma priors on ψ−20 ∼ Γ(df0/2, ss0/2) and ψ−21 ∼ Γ(df1/2, ss1/2), their full

conditional is the product of two independent Gamma distributions

p(ψ−20 , ψ2
1|α) = Γ

(
df0 + n− 1

2
,
SS0

2

)
Γ

(
df1 + n− 1

2
,
SS1

2

)
,

where SS0 = ss0 +
∑n

t=2(µt − µt−1 − δt−1)
2 and SS1 = ss1 +

∑n
t=2(δt − δt−1)

2. These

complete data sufficient statistics are observed given α, so drawing ψ−20 and ψ−21 from their

full conditional distribution is trivial. Most of the traditional state models can be handled

similarly, including the seasonal component of the BSM and dynamic regression coefficients.

The full conditional for (β, σ−2) is likewise independent of the other state components,

with ỹt = yt − ZT
t αt + βTxt ∼ N

(
βTxt, σ

2
)
. Thus, by subtracting the contributions from

the other state components from each yt we are left with a standard spike and slab regres-

sion. The posterior distribution can be simulated efficiently by drawing from p(γ|α,y) using

a sequence of Gibbs sampling steps, and then drawing from the well known closed form

p(βγ, σ
−2|γ,α,y). This technique is known as “stochastic search variable selection” [George

and McCulloch, 1997]. There have been many suggested improvements to the SSVS algo-

rithm (notably [Ghosh and Clyde, 2011]), but we have obtained satisfactory results with the

basic algorithm.

The conditional posteriors for βγ and σ−2 can be found in standard texts [e.g. Gelman

et al., 2002]. They are

p(β|y,α, γ, σ−2) = N
(
β̃γ, σ

2Vγ

)
, and

p(σ−2|y,α, γ) = Γ

(
df + n

2
, ss+ S̃

)
,

(10)

where the complete data sufficient statistics are V −1γ = XTXγ+Ω−1γ , β̃γ = Vγ(X
T ỹγ+Ω−1γ bγ),

15



and S̃ =
∑n

t=1(ỹt − xTt β̃γ)
2 + (β̃γ − bγ)TΩ−1γ (β̃γ − bγ). The distribution for p(γ|α,y) can be

shown to be

p(γ|y,α) ∝ |Ω
−1|−1/2

|V −1γ |−1/2
S̃−(df+n)/2. (11)

Let |γ| denote the number of included components. Under Zellner’s g−prior it is easy to see

that
|Ω−1γ |
|Vγ|

=

(
κ/n

1 + κ/n

)|γ|
is decreasing in |γ|. It is true in general that |Ω−1| ≤ |Ω−1 + XTXγ| which implies that

p(γ|y,α) prefers models with few predictors and small residual variation.

Equation (11) can be used in a Gibbs sampling algorithm that draws each γi given

γ−i (the elements of γ other than γi). Each full conditional distribution is proportional

to equation (11), and γi can only assume two possible values. Notice that p(γ|y,α) only

requires matrix computations for those variables that are actually included in the model.

Thus if the model is sparse the Gibbs sampler involves many inexpensive decompositions

of small matrices, which makes SSVS computationally tractable even for problems with a

relatively large number of predictors.
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