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Abstract

Investors, firms, and intermediaries are located on a circle. Intermediaries facilitate

risk sharing by allowing investors at their location to invest in firms at other locations.

Access to markets is not frictionless, but involves participation costs that increase with

distance. Asset prices, the extent of market integration, the extent of cross-location

capital flows, and the resources devoted to the financial industry are jointly determined

in equilibrium. Although investors at any location are identical to each other, we find

that the financial sector may exhibit diversity, with some financial intermediaries in

every location offering high-leverage, high-participation, and high-fee structures and

some intermediaries offering unlevered, low-participation, and low-fee structures. The

capital attracted by high-leverage strategies is vulnerable to even small changes in

market access costs, leading to discontinuous price drops and portfolio-flow reversals.

Moreover, an adverse shock to intermediaries at a subset of locations causes contagion,

in the sense that it affects prices everywhere.



1 Introduction

The role of financial markets and intermediaries is to allocate capital efficiently and facilitate

risk sharing. However, in some situations access to financial markets is subject to frictions,

and therefore market integration and the allocation of capital are less than perfect.

These statements are supported by a body of empirical literature (described in detail in

the next section) showing that a) capital tends to stay “close” to its origin, b) reward for

risk reflects — at least partially — “local” factors that one would expect to be diversifiable,

and c) reductions in capital flows and the extent of market integration tend to be associated

with sudden and substantial drops in prices and increases in risk premia (“financial crises”).

We propose a tractable theoretical framework to capture and investigate the implications

of these empirical observations. The model features a continuum of investors and financial

markets located on a circle. Investors are endowed with shares of a risky firm domiciled at

their location and traded at the same location. The dividends of this security are closely

correlated with dividends of securities located in nearby locations and less correlated with

securities in distant locations. Even though securities in more distant locations offer greater

benefits from the perspective of diversification and risk allocation, participation in such

markets involves costs that grow with the distance from the current location. Such costs are

reflective of the fact that informational asymmetries, agency costs, etc., are likely to grow

as investors participate in progressively more unfamiliar markets; indeed, inside our model

distance on the circle should be viewed as a broad measure encompassing the magnitude of

these frictions rather than a narrow measure of geographical distance. Alongside the risky

markets, there exists a zero-net-supply bond market. Access to that market is assumed

costless for everyone, but borrowing must be collateralized with securities.

A competitive intermediation sector in each location offers local investors access to mar-

kets in other locations. In an attempt to attract investors, intermediaries offer combinations

of portfolios and fee structures that maximize the expected utility of investors — after deduct-

ing the fees necessary to cover the operating costs of intermediaries, namely the participation

costs in distant financial markets.

Because access to financial markets is subject to frictions, the market equilibrium features

limited integration. Investors from nearby locations, who face similar cost structures, choose

to participate on arcs of the circle that feature a high degree of overlap. As a result, investors

share risks predominantly with investors located near to them, leading to endogenous market

segmentation and lower risk sharing than achieved in a frictionless world.

An important feature of this setup is that, even though there may be many assets that
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share no common investor, neighboring investors overlap on some markets — namely, those

located close to both of them. This overlap creates a chain of linkages across markets so that

market conditions in one location influence prices in any other location, albeit indirectly. We

refer to this interdependence as “financial entanglement”.

In such a framework, we address the following set of questions. a) How are asset prices

determined in light of limited market integration? b) What structure does the financial

industry take, i.e., what combinations of investment choices and cost structures are offered

to investors? c) What are the effects of positive or negative shocks to the participation tech-

nology? and d) How are prices affected across all markets if a subset of locations experience

an adverse shock to their financial sector?

We summarize the answer to each question in turn.

a) Limited market integration implies that investors are over-exposed to the risks of

locations in their vicinity. Since these are the investors who primarily invest in securities in

that same neighborhood, risk premia are higher than they would be in a frictionless world.

An important aspect of the analysis is that the magnitudes of risk premia and of portfolio

flows are tightly linked and reflect the extent of market integration.

b) A surprising implication of the analysis is that although investors in any given location

are identical, the resulting financial industry may exhibit diversity. Specifically, we show

that a symmetric equilibrium, i.e., an equilibrium where financial intermediaries offer the

same strategies to all investors, may fail to exist. Instead, there are financial firms offering

strategies involving high leverage, high Sharpe ratios, and high fees, along with firms offering

unlevered, low-Sharpe ratio, and low-fee strategies. Investors are indifferent between the

two types of strategies; however, the amount of capital directed to each type of investment

strategy is determinate and dictated by market clearing.

The intuition for this finding is that leverage decisions and participation decisions are

complements. For a given value of risk premia, choosing to participate in more markets

implies that a portfolio can attain a higher Sharpe ratio, which induces intermediaries to

leverage such a portfolio. Since leverage increases the overall variance of the portfolio, it

increases the marginal benefit of further market participation and diversification.

This complementarity between participation and leverage decisions introduces multiple

local extrema in the problem of determining the optimal participation arc. As we show in

the text, in such situations a symmetric equilibrium may fail to exist. Instead, prices adjust

so as to leave investors indifferent between unlevered, low-participation, low-Sharpe ratio

strategies with low fees versus levered, high-participation, high-Sharpe ratio strategies with

high fees. This feature of the model may help explain the co-existence of financial firms such
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as mutual funds and hedge funds in reality.

c) An interesting situation emerges when the financial industry is diverse and access to

the intermediation sector (or financial markets) becomes more costly. In such a situation

prices may drop and flows of capital may cease in a discontinuous manner.

The intuition is as follows. An increase in the cost of accessing distant markets makes

investors particularly reluctant to continue allocating funds to the strategies that rely on par-

ticipation in costly and distant markets. The resulting outflows from these levered strategies

reduce aggregate market integration and push down the prices of risky securities. The drop

in prices has two effects. On one hand, it raises the Sharpe ratio and helps restore the at-

tractiveness of high-leverage, increased-participation strategies. On the other, it reduces the

possibility of leverage and increased participation because the collateral value of risky securi-

ties declines. When the second effect becomes sufficiently strong, further drops in prices can

no longer help in attracting capital for high-leverage, increased-participation strategies. In

these situations, even a marginal increase in participation costs eliminates the pre-existing

asymmetric equilibrium and triggers a transition to a new type of equilibrium (in the exam-

ple we discuss in the text it causes a transition from an asymmetric to a symmetric one). The

consequence of this transition is that prices of risky securities, capital flows across locations,

and the amount of leverage in the economy drop discontinuously, despite the continuous and

smooth dependence of investors’ objective functions and feasible choices on participation

costs.

d) Somewhat surprisingly, the fact that markets are only partially integrated implies

stronger correlations between the prices of risky securities in different locations than in fully

integrated markets. We present an example where the intermediation sector in a subset of

locations — we refer to them as the “affected” locations — ceases to function. We show

that such an event pushes prices in almost all locations downward. This is true even for

locations that are not connected with the affected locations through asset trade and also

have negative dividend correlation with them.

The intuition for this finding is as follows. When intermediation breaks down somewhere

on the circle, the demand for risky assets becomes lower in the locations these investors used

to participate in.To bring the market back to equilibrium, prices in these locations drop

so as to attract demand from neighboring locations, where the intermediation sector still

operates. This results in a portfolio reallocation in these neighboring locations away from

other, farther locations, resulting in weaker demand in these farther locations, necessitating

price drops in these locations as well, so as to attract demand from locations neighboring

the neighboring locations, etc..
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The extent of price drops required to compensate investors for tilting their portfolios to

absorb local risks depends on the extent of their overall participation in risky markets. If the

extent of their participation is small, so that their portfolio is heavily exposed to risks in their

vicinity, then even the smallest tilt towards a nearby location requires a high compensation.

By contrast, if investors’ portfolios are invested across a broad range of locations, then they

are more willing to absorb risks in their vicinity. Hence, somewhat surprisingly, the smaller

the degree of integration between risky markets, the higher the interdependence of prices

across locations.

This article is related to several strands of theoretical and empirical literature. We discuss

connections to the theoretical literature here and postpone a discussion of related empirical

literature for the next section. On the technical side, our circle model and especially the

assumption on distance-dependent participation costs, is motivated by Salop (1979), who

introduced such a model in the industrial-organization literature.1 We advance the circle

model by proposing a tractable dividend specification that helps capture the notion that

nearby locations feature stronger dividend correlation. Recent studies featuring a circle

include Allen and Gale (2000) on financial contagion and Caballero and Simsek (2012) on

financial networks and crises. Our modeling approach is also related to models of overlapping

generations. Just as in these models, every subset of investors overlaps with some other

subset on some markets, but no market participant participates in all markets. In many

ways, the role played by locations in our model is reminiscent of the role played by time in

overlapping generations models (except that our locations are aligned on a circle). Finally,

our construction of an asymmetric equilibrium is based on Aumann (1966), whose analysis

covers the case of non-concave investor-optimization problems in markets with a continuum

of agents.

Price crashes in our model are driven by the interaction of a collateral constraint and

a non-concavity in investors’ optimization problems. There exists a vast literature ana-

lyzing the interaction between declining prices and tightening collateral constraints (we do

not attempt to summarize this literature and simply refer to Kiyotaki and Moore (1997)

for a seminal contribution). A novel aspect of our analysis is that leverage is not caused

by differences in preferences or endowments. Instead, leverage and the capital allocated to

high-leverage, high-participation strategies arise in response to a non-concave participation

problem solved by investors. We show that, following an increase in participation cost, a

collateral constraint may prevent falling prices from restoring an equilibrium in which some

1In a financial-markets context, the idea that investing in more distant locations involves frictions is also

present in Gehrig (1993), Kang and Stulz (1997), and Brennan and Cao (1997).
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investors take high leverage — the farther prices fall, the more capital must leave such strate-

gies. In this case, the result is an abrupt change in the nature of the equilibrium accompanied

by a downward jump in prices, abrupt reversals in capital flows, and deleveraging. We wish

to underscore that the non-concavity we identify in this paper, which is due to the comple-

mentarity between participation and leverage, is crucial for the abrupt change in the type of

equilibrium.

Modelling price crashes through changes in the type of equilibrium is common in the

literature, typically featuring a combination of backward-bending demand curves and mul-

tiple equilibria (see, e.g., Gennotte and Leland (1990), Barlevy and Veronesi (2003), Yuan

(2005), Basak et al. (2008), and Brunnermeier and Pedersen (2009)). Our economic mech-

anism is different from that literature. In particular, our model does not feature multiple

equilibria, noise traders, or sunspots.2 Instead, the price crash is obtained when prices can

no longer support an asymmetric equilibrium (as in Aumann (1966)), by adjusting so as

to attract investors to high-leverage, high-participation strategies. As we explain in greater

detail in the next section, our channel is consistent with the typical flight-to-home effect and

de-leveraging effect observed during financial crises (e.g., Giannetti and Laeven (2012) and

Ahrend and Schwellnus (2012)).

Finally, the domino effects identified in our model are related to the vast literature on

contagion. We do not attempt to summarize this literature. Instead we single out a popular

mechanism that has been advocated in that literature as an explanation of contagion. (see,

e.g., Dumas et al. (2003), Kyle and Xiong (2001), Cochrane et al. (2008), Pavlova and

Rigobon (2008)). Specifically, a popular idea is that there exist some agents who price all

the assets, and whose marginal utility therefore transmits the shock experienced by one asset

to the price of another. In contrast, contagion in our model obtains because of — and, in fact,

despite — a fairly strong notion of market segmentation, namely that no agent participate

in all markets. Instead, in our paper a shock in one area is transmitted to another area

in a sense that is reminiscent of the medical notion of contagion, i.e., by affecting first the

immediately neighboring areas, which in turn affect their neighboring areas, etc. A practical

implication is that there can be positive interdependence between the prices in locations that

have no or negatively correlated dividends, and no common traders in their risky assets.

Overall, we complement the literature by providing a unified, yet tractable, framework

that addresses the joint determination of risk premia, the extent of leverage in the financial

2Another possibility that does not involve multiple equilibria is evoked by Romer (1993) and Hong and

Stein (2003), who argue that small events can reveal substantial information to partially informed investors,

leading to large price changes, albeit not a discontinuity, technically speaking.
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Table 1: Gravity Equations in International Trade and Finance.
The table reports a survey of the literature on gravity equations in international trade and finance. Portes

and Rey (2005) uses bilateral equity flow data among 14 countries from 1989 to 1996. Buch (2005) uses

the stock of assets and liabilities of banks from 1983 to 1999. Head and Ries (2008) uses bilateral FDI

stocks with 30 OECD reporters and 32 partners in year 2001. Talamo (2007) uses FDI flow data from

1980-2001. Aviat and Coeurdacier (2007) uses bilateral trade data and bank asset holding data in year 2001.

Ahrend and Schwellnus (2012) uses IMF’s Consolidated Portfolio Investment Survey (CPIS) in 2005-2006,

which reports bilateral debt investment for 74 reporting countries and 231 partner countries. Typically the

regression performed is

log(Xi,j) = α+ β1 log(GDPi) + β2 log(GDPj) + β3 log(Distancei,j) + controls+ εi,j

where Xi,j is the equity flow, portfolio holding, FDI flow, FDI stock, trade, or bank asset holdings.

Source Dependent variable Distance t-stat

Portes and Rey (2005) Equity flows -0.881 -28.419

Buch (2005) Bank asset holdings -0.650 -12.020

Talamo (2007) FDI flow -0.643 -9.319

Head and Ries (2008) FDI stock -1.250 -17.361

Aviat and Coeurdacier (2007) Trade -0.750 -10.000

Aviat and Coeurdacier (2007) Bank asset holdings -0.756 -8.043

Ahrend and Schwellnus (2012) Bond holdings -0.513 -4.886

system, and the magnitude of capital flows, alongside excess correlation between seemingly

unrelated markets and price crashes in response to small shocks to the financial sector. The

key channel we highlight is the partial integration of the financial markets.

The paper is organized as follows. Section 2 presents in greater detail the empirical evi-

dence underlying and motivating this paper. Section 3 presents the baseline model. Section

4 presents the solution and the results. Section 7 considers extensions. All proofs are in the

appendix.

2 Motivating Facts

As a motivation for the assumptions of the model, we summarize some well-documented

facts about the allocation of capital. Table 1 summarizes the evidence on so-called “gravity”

equations in international finance. These gravity equations typically specify a linear relation

between logs of bilateral flows in various forms of asset trade (equities, bonds, foreign direct
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investment, etc.) as a linear function of the logs of the sizes of countries and the geographical

distance between them.

A striking and robust finding of this literature is that bilateral capital flows and stocks

decay substantially with geographical distance. This finding is surprising, since countries

that are geographically distant would seem to offer greater diversification benefits; hence

one would expect distance to have the opposite sign from the one found in regressions.

The literature typically interprets this surprising finding as evidentiary of informational

asymmetries that increase with geographical distance — a crude proxy for familiarity and

similarity in social, political, legal, cultural, and economic structures.

Supportive of this interpretation is the literature that finds a similar relation between

distance and portfolio allocations in domestic portfolio allocations. For instance, Coval

and Moskowitz (1999) shows that US mutual fund managers tend to overweight locally

headquartered firms. Coval and Moskowitz (2001) shows that mutual fund managers earn

higher abnormal returns in nearby investments, suggesting an informational advantage of

local investors. Using Finnish data, Grinblatt and Keloharju (2001) shows that investors are

more likely to hold, buy, and sell the stocks of Finnish firms that are located close to the

investors. Similar evidence is presented in Chan et al. (2005): Using mutual fund data from

26 countries, and using distance as a proxy for familiarity, this paper finds that a version of

the gravity equation holds for mutual fund holdings. That is, the bias against foreign stocks

is stronger when the foreign country is more distant. In a similar vein, Huberman (2001)

documents familiarity-related biases in portfolio holdings.

Further supportive evidence is provided by literature that documents how partial market

integration affects the pricing of securities. Bekaert and Harvey (1995) finds that local factors

affect the pricing of securities and are not driven out by global factors.

An important additional finding of Bekaert and Harvey (1995) is that the relative impor-

tance of global and local factors is time varying, suggesting time-varying integration between

markets. Consistent with this evidence, Ahrend and Schwellnus (2012) uses IMF’s Consol-

idated Portfolio Investment Survey (CPIS) and BIS Locational Banking Statistics (ILB) to

document a significantly stronger coefficient on distance in cross-border gravity equations

during 2008-2009 as compared to previous years. This evidence suggests that capital becomes

more concentrated “locally” during times of crisis.

Indeed, crisis periods offer a unique opportunity to visualize the extent of variation in

market integration. The left plot of Figure 1 reports the sum of global net purchases of foreign

assets by residents (labeled “Gross capital inflows”) and the sum of global net purchases of

domestic assets by foreigners (labeled “Gross capital outflows”). The figure also reports
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Figure 1: Reversals in global capital flows. Source: Hoggarth et al. (2010). The left plot depicts

the sum of global net purchases of foreign assets by residents (labeled “Gross capital inflows”) and

the sum of global net purchases of domestic assets by foreigners (labeled “Gross capital outflows”).

The figure also reports cross-border bank inflows and outflows based on BIS data. Right plot:

Cumulative percentage in local claims held by banks against cumulative percentage change in

cross-border claims during the 2008Q1 - 2009Q4 period. Source: Hoggarth et al. (2010). based on

BIS Data on the 50 largest debtor countries by foreign liabilities. For a detailed description of the

sample of reporting countries, see Hoggarth et al. (2010).

cross-border bank inflows and outflows based on BIS data. The picture helps visualize that,

in the years preceding the financial crisis of 2008, there was a large increase in gross capital

flows. This expansion in capital flows came to a sudden stop in the first quarter of 2008, as

the financial crisis took hold.

The right panel of Figure 1 plots the cumulative percentage change in cross-border claims

against the respective cumulative change in local claims for various countries. Most points

on the graph are below the 45-degree line, suggesting that most banks chose to liquidate

foreign holdings disproportionately more than local holdings during the crisis.

Direct evidence of a “flight to home” effect is provided by Giannetti and Laeven (2012),

which shows that the home bias of lenders’ loan origination increases by approximately 20%

if the bank’s home country experiences a banking crisis. Giannetti and Laeven (2012) also

argues that this flight to home effect is distinct from flight to quality, since borrowers of

different quality are equally affected.

Figure 2 provides two further illustrative examples of abrupt reversals of market integra-

tion during a crisis by focusing on the recent European debt crisis and the mortgage crisis in

the US. The left plot shows that cross-border holdings of European banks in other European
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Figure 2: Abrupt reversals in capital allocations. Left plot: European banks’ consolidated foreign

claims in other European countries - ultimate risk basis. Millions of USD. For comparison we

also plot Euro area GDP in millions of USD. Sources: BIS Quarterly Review, 2012 and IMF

World Economic Outlook, 2012. Right plot: Issuance of Non-agency residential mortgage backed

securities (RMBS) and home equity lines (HEL) as a fraction of new mortgage originations. Sources:

Securities Industry and Financial Markets Association (SIFMA) and Mortgage bankers association

(MBAA).

countries fell substantially compared to Euro-area GDP. The plot supports the commonly

held view that the process of cross-border financial integration within the Euro-area reversed

abruptly since the onset of the recent crisis. The right plot documents a similar “sudden

stop” in the securitization market in the US. (To avoid issues related to implicit guarantees,

we focus on the non-agency market). If one views cross-border financial relationships as a

way in which different countries in the European area share local risks, and similarly, if one

views the securitization market as allowing regional banks to diversify local real-estate risk,

then crisis periods are associated with a collapse in pre-existing mechanisms of risk sharing.

In summary, the empirical evidence supports the following broad conclusions: a) Capital

stays “close” to its origin. Despite the potential benefits of diversification from investing

in distant locations, the evidence from both domestic and international data is that capital

allocations gravitate towards the capital’s origin. b) The extent of market integration. More

importantly, crises are times when financial integration retreats quite abruptly.
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3 Model

3.1 Agents and firms

Time is discrete and there are two dates t = 0 and t = 1. All trading takes place at

time t = 0, while at t = 1 all payments are made and contracts are settled. Investors are

price takers, located at different points on a circle with circumference normalized to one.

We index these locations by i ∈ [0, 1). Investors have exponential utilities and maximize

expected utility of time-1 wealth

E [U (W1,i)] = −E
[
e−γW1,i

]
, (1)

where W1,i is the time-1 wealth of an investor in location i. The assumptions that investors

only care about terminal wealth and have exponential utility are made for tractability and

in order to expedite the presentation of the results. In Section 7.1 we allow investors to

consume over an infinite horizon.

Besides having identical preferences, investors at any given location are also identical

in terms of their endowments and their information sets. Specifically, at time t = 0 the

investors in location i are equally endowed with the total supply of shares (normalized to

one) of a competitive, representative firm, which is domiciled at the same location i. Each

firm pays a stochastic dividend equal to Di in period 1.

We specify the joint distribution of the dividends Di for i ∈ [0, 1] so as to obtain several

properties. Specifically, we wish that 1) firms be ex-ante symmetric, that is, the marginal

distribution of Di be independent of i; 2) the total dividends paid
∫ 1

0
Didi be constant (and

normalized to one); 3) firms with indices close to each other (in terms of their shortest

distance on the circle) experience a higher dividend correlation than firms farther apart; and

4) dividends at different locations be normally distributed.

To formalize these notions, we let Zi denote a standard Brownian motion for i ∈ [0, 1] ,

and we also introduce a Brownian bridge

Bi ≡ Zi − iZ1 for i ∈ [0, 1] .

We note that — by construction — the Brownian Bridge satisfies B0 = B1 = 0. Using these

definitions, we let Di be defined as

Di ≡ 1 + σ

(
Bi −

∫ 1

0

Bjdj

)
, (2)

where σ > 0 is a constant controlling the volatility of the dividend process. Since the

specification (2) plays a central role in our analysis, we show first that Di satisfies properties
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Figure 3: The left plot depicts a circle with circumference 1. The bold arc on the right plot

depicts the notion of the shortest distance on the circle d(i, j) between points i and j that

we use throughout.

1–4 mentioned above, and then we provide a graphical illustration of these properties to

build intuition.

Lemma 1 Di satisfies the following properties.

1. (Symmetry and univariate normality) The marginal distribution of Di is the same for

all i. Specifically, Di is normally distributed with mean 1 and variance σ2

12
.

2. (No aggregate risk)
∫ 1

0
Didi = 1.

3. (Continuity on the circle) Let d (i, j) ≡ min(|i− j| , 1− |i− j|) denote a metric on the

interval [0, 1). Then Di is continuous (a.s.) on [0, 1) if the interval [0, 1) is endowed

with the metric d.

4. (Joint normality and distance-dependent covariance structure) For any vector of loca-

tions i = (i1, i2, . . . , iN) in [0, 1), the dividends
−→
D i are joint normal, with covariances

given by

cov (Din , Dik) = σ2

(
1

12
− d (in, ik) (1− d (in, ik))

2

)
. (3)

It is easiest to undestand the properties of Di by using a graphical illustration. The left

plot of Figure 3 provides an illustration of the interval [0, 1] “wrapped” around as a circle

with circumference one. The metric d (i, j) can be thought of as the length of the shortest

arc connecting i and j. The right plot of Figure 3 provides an illustration. Figure 4 illustrates

a path of Z(i) and the associated paths of B(i) and D(i).
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Figure 4: An illustration of the construction of the dividend process Di. The two plots at the top

depict a sample Brownian path Zi, and the associated path of a Brownian bridge Bi. The two

bottom plots depict the associated sample path of Di, when the indices i ∈ [0, 1) are aligned on a

line and when the same interval is depicted as a circle with circumference one.

A remarkable property of the dividend structure (2) is that the covariance, and therefore

correlation, of dividends in any locations i and j depend exclusively on the distance d (i, j)

between the two locations, but not the locations themselves. Lemma 1 states the covariances,

while the correlations follow immediately as

corr (Di, Dj) = 1− 6d (i, j) (1− d (i, j)) . (4)

Equation (4) implies that the correlation between Di and Dj approaches one as the

distance d (i, j) approaches zero, and is minimized when d (i, j) = 1
2
, i.e., when the two firms

are located diametrically opposite each other on the circle.

3.2 Intermediaries, financial markets, and participation costs

Investors in location i access financial markets in other locations j 6= i through interme-

diaries domiciled at the location i. These intermediaries receive funds from local investors

(obtained from the sale of the local stock the investors are endowed with) and purchase a
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portfolio of shares of firms domiciled in other and potentially also the local markets along

with bonds. Free entry into the intermediation sector implies that intermediaries make zero

profits. Moreover, competition between intermediaries in the local market implies that inter-

mediaries create a portfolio of securities so as to maximize the welfare of the local investors.3

An important assumption is that participation in financial markets is costly, and the more

so the farther away a financial market is from an intermediary’s location. This assumption

is motivated by the evidence we presented in the previous section, which suggests that

investors in one location invest most heavily in nearby locations. The literature has proposed

various reasons why participation in more unfamiliar locations is likely to be costlier, with a

common reason being the difficulty of overcoming informational frictions4. For our results,

the assumption of distance-dependent participation costs is meant to encapsulate the frictions

associated with leveling the playing field being local and distant investors.

We next propose a mathematical structure for these costs. We assume that the partici-

pation decision of intermediaries consists of choosing a subset of all markets [0, 1) in which

to invest. To avoid unnecessary complications, we restrict attention to subsets of [0, 1) that

can be represented as a finite union of intervals with midpoints ai,n and lengths ∆i,n. If an

intermediary in location i chooses to participate in Ni disjoint intervals with midpoints ai,j

and total length ∆i ≡
∑Ni

n=1∆i,n, she incurs costs equal to

Fi (Ni, {ai,1, . . . , ai,Ni},∆i) = κ

[
bNi

Ni∑
n=1

× f (d(ai,n, i)) + g (∆i)

]
(5)

where κ > 0, f(x) and g (x) are positive, non-decreasing, differentiable, and convex functions

for all x ∈ (0, 1), and bN is positive and increasing in N . We furthermore assume that f

has a discontinuity at zero in the sense that limx→0 f (x) > 0, while f(0) = 0. Similarly

g (0) = 0. Finally, we assume that lim∆→1 g (∆) =∞, so that investing in all markets would

be prohibitively costly.

We make several remarks on specification (5). First we note that Fi (1, {i}, 0) = 0, so that

participating only in the local market is costless. Second, the fact that f is increasing implies

that investing in markets that are farther away (in the sense that the distance d(ai,n, i) from

the current location is large) is more costly than participating in markets that are close by.

Third, increasing the total mass of markets in which the intermediary participates (∆i),

while keeping the number (and midpoints) of intervals the same, incurs incremental rather

3Otherwise, these local investors would be attracted by other local intermediaries who would charge a

sufficiently small ε > 0 in exchange for building a better portfolio for them, an outcome that is inconsistent

with the zero-profit condition.
4See, e.g., Brennan and Cao (1997).
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Figure 5: Illustration of participation choices under different assumptions on the participation

costs Fi (Ni, {ai,1; ..; ai,Ni},∆i). The left plot depicts feasible participation choices in the special

case bNf (x) =∞ and g(y) <∞ for any x, y > 0 and n > 1. The middle plot depicts the respective

participation choices in the special case where g (y) = ∞ for all y > 0 and bNf(x) is sufficiently

small for some x > 0 and n > 1. The right plot depicts the general case in which both bNf(x) and

g(y) take small enough values for some x, y > 0 and n > 1.

than fixed costs. This captures the idea that expanding participation to contiguous markets

is substantially less costly than participating in a market that is not adjacent to any of

the markets where the intermediary has already decided to trade. Fourth, the fact that

participation costs depend on the location of the intermediary implies that intermediaries

in different locations on the circle face different costs of participating in a given market j,

depending on their proximity to that market.

It is helpful to consider a few limiting cases that illustrate the properties of Fi. The first

limiting case entails bNf (x) = ∞ and g(y) < ∞ for any x > 0, y > 0, and N > 1. In that

case, the intermediary finds it optimal to participate only in markets that are contiguous to

her local market and her only choice is the length of the interval ∆i surrounding her local

market. This situation is depicted in the left plot of Figure 5. The second limiting case

entails bNf (x) < ∞ and g(y) = ∞ for any y > 0. In that case the intermediary chooses to

participate in a finite set of markets around the circle, and the only interesting choice concerns

the locations (ai,n) and the number of these points (Ni). This situation is depicted in the

middle plot of Figure 5. In the general case bNf (x) < ∞ and g (y) < ∞, the participation

decision involves choosing the number of points Ni, the location of the midpoints ai,n, and

the length of the intervals ∆i,n at each location. This situation is depicted in the right plot

of Figure 5.

Besides the market for risky shares, there is a zero-net-supply market for riskless bonds

that simply pay one unit of wealth at time 1. Participation in the bond market is costless

for everyone.

The participation costs act as deadweight costs that are paid out (i.e., reduce consump-
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tion) at time 1, but the funds corresponding to the participation costs are deducted from

a client’s account at time zero and placed in riskless bonds that act as collateral so as to

ensure payment of the participation costs at time 1.5

Finally, we make the assumption that any borrowing of securities must be collaterlized

by other securities. We also allow — but do not require — the possibility of “haircuts”.

Specifically, if risky securities are used as collateral to borrow bonds, then only a fraction

(1− χ) with χ ∈ [0, 1] of their value can be used as collateral to borrow riskless securities.

3.3 Maximization problems

To formalize an intermediary’s decision problem we let Pi denote the price of a share in a

market i, PB ≡ 1
1+r

the price of a bond, dX
(i)
j the mass of shares in market j bought by an

intermediary located in i,6 and X
(i)
B the respective number of bonds. Then, letting

W0,i ≡
∫ 1

0

PjdX
(i)
j + PBX

(i)
B

denote the total financial wealth of an investor in location i, the budget constraint of an

investor can be expressed as

W0,i = Pi. (6)

The assumption that all borrowing of securities must be collateralized, with a haircut χ, is

expressed formally as[
(1− χ)

∫ 1

0

PjdX
(i)
j

]
+ PB

(
X

(i)
B − Fi

)
≥ 0. (7)

Equation (7) stipulates that the maximum amount an investor can borrow (the term inside

square brackets) exceeds the one she actually borrows, namely −PB(X
(i)
B −Fi).7 Combining

5If we extend the model to allow for consumption at both times zero and one, then we can adopt the more

straightforward assumption that investors need to pay the participation fees directly at time 0 in advance of

trading; either assumption delivers the same results.
6The function Xj has finite variation. We adopt the natural convention that X

(i)
j is continuous from the

right and has left limits.
7Note that, since the investor must hold Fi in bonds as collateral for the participation fees, lending X

(i)
B

net requires investing X
(i)
B − Fi in bonds.
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the definition of W0,i with equation (7) gives

W0,i =

∫ 1

0

PjdX
(i)
j + PBX

(i)
B

= (1− χ)

∫ 1

0

PjdX
(i)
j + PB

[
X

(i)
B − Fi

]
+ PBFi + χ

∫ 1

0

PjdX
(i)
j

≥ PBFi + χ

∫ 1

0

PjdX
(i)
j . (8)

We are now in a position to formulate the intermediary’s maximization problem as

max
wfi ,G

(i),Ni,
−→a i,
−→
∆i

E [U (W1,i)] , (9)

subject to (6), (8), and

W1,i = W0,i

(
wfi (1 + r) +

(
1− wfi

)∫ 1

0

RjdG
(i)
j

)
− Fi, (10)

where wfi is the fraction of W0,i invested in the risk-free security by an agent in location i,

G
(i)
j is a bounded-variation function with

∫ 1

0
dG

(i)
j = 1, which is constant in locations where

the intermediary does not participate (i.e., dG
(i)
j =0 in these locations), so that dG

(i)
j captures

the fraction of the risky component of the portfolio
(

1− wfi
)
W0,i invested in the share of

stock j by a consumer located in i. Finally, Ri ≡ Di
Pi

is the realized gross return on security

i at time 1. We do not restrict G to be continuous, that is, we allow intermediaries to invest

mass points of wealth in some locations.

We conclude with a remark on (8). This assumption does not preclude leverage or

shorting since bonds can be used as collateral to purchase stocks and vice versa (wfi is allowed

both to be negative and to exceed one). However, this constraint implies an upper bound on

participation costs, namely PBFi ≤W0,i−χ
∫ 1

0
PjdX

(i)
j ≤ Pi. Combined with the assumption

that participation in all markets would be prohibitively costly (lim∆→1 g (∆) = ∞), this

constraint implies that investors participate only in a strict subset of all available locations.

We note that lim∆→1 g (∆) only needs to be large enough, rather than infinite, to imply that

intermediaries do not participate in all markets.8

8We also note that the constraint (8) and the assumption that lim∆→1 g (∆) is large enough are sufficient

but not necessary conditions to ensure that intermediaries don’t participate in all locations. Indeed, as we

discuss later, if g′(∆) becomes arbitrarily large and sufficiently fast as ∆i increases, then the constraint (8)

is not binding, and the investor chooses to participate in a subset of markets.
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3.4 Equilibrium

The definition of equilibrium is standard. An equilibrium is a set of prices Pi, a real interest

rate r, and participation and portfolio decisions G(i), Ni, and {ai,1...ai,Ni ,∆i,1...∆i,Ni} for all

i ∈ [0, 1] such that: 1) G(i), Ni, and {ai,1...ai,Ni ,∆i,1...∆i,Ni} solve the optimization problem

of equation (9), 2) financial markets for all stocks clear: Pj =
∫
i∈[0,1]

(
1− wfi

)
W0,idG

(i)
j , and

3) the bond market clears, i.e.,
∫
i∈[0,1]

W0,iw
f
i di = 0.

By Walras’ law, we need to normalize the price in one market. Since in the baseline

model we abstract from consumption at time zero for parsimony, we normalize the price of

the bond to be unity (i.e., we choose r = 0). We discuss consumption at more dates than

time one and an endogenously determined interest rate in Section 7.1.

4 Solution and Its Properties

We solve the model and illustrate its properties in a sequence of steps. First, we discuss

a frictionless benchmark, where participation costs are absent. Second, in order to build

intuition we discuss in succession the two limiting cases illustrated in the left-most panel

and middle plot of Figure 5. We discuss the general case, which allows for both contiguous

and non-contiguous participation choices, in a later section.

4.1 A frictionless benchmark

As a benchmark, we consider the case without participation costs: g(x) = bNf(x, n) = 0 for

all x ∈ [0, 1) and n ≥ 1, so that Fi = 0. In this case, the solution to the model is trivial.

Every intermediary i participates in every market j. The first order condition for portfolio

choice is

E [U ′(W1,i) (Rj − (1 + r))] = 0. (11)

With the above first-order condition in hand, one can verify the validity of the following

(symmetric) equilibrium: wfi = 0, and G
(i)
j = Gj = j for all (i, j) ∈ [0, 1) × [0, 1) — i.e.,

intermediaries in all locations i choose an equally weighted portfolio of every share j ∈ [0, 1]

for their clients. Accordingly, W1,i =
∫ 1

0
Djdj = 1. Since in this equilibrium W1,i = 1, the

Euler equation (11) implies that

E(Rj) = 1 + r. (12)
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Combining (12) with the definition Rj =
Dj
Pj

implies

Pj =
E (Dj)

1 + r
=

1

1 + r
= 1, (13)

where the last equation follows from the normalization r = 0. The equilibrium in the

frictionless case is intuitive. Since there are no participation costs, intermediaries maximizing

agents’ welfare by holding an equally weighted portfolio across all locations. Since — by

assumption — there is no risk in the aggregate, the risk of any individual security is not

priced. This is reflected in the fact that dividends are discounted at the risk-free rate in

equation (13). Indeed, 1 + r is the common discount factor for all asset prices in this

economy.

4.2 Symmetric equilibria with participation costs

To facilitate the presentation of some of the key results, we focus on the special case depicted

on the left panel of Figure 5, i.e., a situation in which the cost of participation in markets

that are not contiguous to the ones in which the intermediaries already have an established

presence is too large (bNf (x) =∞ for x > 0).

We start by introducing a convention to simplify notation.

Convention 1 For any real number x, let bxc denote the floor of x, i.e., the largest integer

weakly smaller than x. We henceforth use the term “location x” (on the circle) to refer to

the unique point in [0, 1) given by x mod 1 ≡ x− bxc.

With this convention we can map any real number to a unique location on the circle with

circumference one. For example, this convention implies that the real numbers -0.8, 0.2,

and 1.2 correspond to the same location on the circle with circumference one, namely 0.2.

An implication of this convention is that any function h defined on the circle extends to a

function ĥ on the real line that is periodic with period one, i.e., ĥ(x) = ĥ(x + 1) = h(x

mod 1). From now on, we adopt the convention that when we refer to a function h on the

circle, we also refer to its extension to the real line.

We next introduce two definitions.

Definition 1 The standardized portfolio associated with G
(i)
j is the function Lj defined by

Lj = G
(i)
i+j.

The notion of a standardized portfolio allows us to compare portfolios of investors at

different locations on the circle. For example, if all investors choose portfolios with weights
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that only depend on the distance d between their domicile and the location of investment,

then these investors hold the same standardized portfolio.

Definition 2 A symmetric equilibrium is an equilibrium in which all agents choose the same

participation interval ∆, the same leverage wf , and the same standardized portfolio.

Due to the symmetry of the problem, it is natural to start by attempting to construct a

symmetric equilibrium.

Proposition 1 For any ∆ ∈ (0, 1) define

L∗j ≡


0 if j ∈ [−1

2
,−∆

2
)

j + 1
2

if j ∈ [−∆
2
, ∆

2
)

1 if j ∈ [∆
2
, 1

2
)

(14)

and

ω (∆) ≡ V ar

(∫ 1

0

Dj dL
∗
j

)
=
σ2

12
(1−∆)3 . (15)

Finally, let ∆∗ denote the (unique) solution to the equation

κg′ (∆∗) = −γ
2
ω′ (∆∗) (16)

and also consider the set of prices

Pi = P = 1− γω (∆∗) . (17)

Then, assuming that (1− γω (∆∗))(1− χ) > κg (∆∗) and also that a symmetric equilibrium

exists, the choices ∆(i) = ∆∗, wfi = 0, and dG
(i)
j = dL∗j−i constitue an equilibrium supported

by the prices Pi = P .

Proposition 1 gives simple, explicit expressions for both the optimal portfolios and par-

ticipation intervals. To understand how these quantities are derived, we take an individual

agent’s wealth W1,i from (10) and we assume that prices for risky assets are the same in all

locations. Then, using W0,i = Pi = P , r = 0, Rj =
Dj
P
, and Fi = κg (∆) , we express W1,i as

W1,i = P

(
wfi +

(
1− wfi

)∫ 1

0

RjdG
(i)
j

)
− κg (∆)

=

(
Pwfi +

(
1− wfi

)∫ 1

0

DjdG
(i)
j

)
− κg (∆) .
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Because of exponential utilities and normally distributed returns, maximizing EU (W1,i) is

equivalent to solving

max
dG

(i)
j ,∆,wfi

Pwfi +
(

1− wfi
)∫ 1

0

EDjdG
(i)
j −

γ

2

(
1− wfi

)2

V ar

(∫ 1

0

DjdG
(i)
j

)
−κg (∆) . (18)

Noting that EDj = 1, inspection of equation (18) shows that (for any wf and ∆) the

optimal portfolio is the one that minimizes the variance of dividends in the participation

interval ∆. Since the covariance matrix of dividends is location invariant, the standardized

variance-minimzing portfolio is the same at all locations. Solving for this variance-minimizing

portfolio Lj is an infinite-dimensional optimization problem. However, because of the sym-

metry of the setup we are able to solve it explicitly, and equation (14) provides the solution.

To understand the structure of L∗j , we note that it corresponds to the distribution that

minimizes the sum of the vertical distances to the uniform distribution on
[
−1

2
, 1

2

)
, subject

to the constraints that Lj = 0 for j ∈ [−1
2
,−∆

2
) and Lj = 1 if j ∈ [∆

2
, 1

2
). The resulting

optimized variance is given by ω (∆), where ω (∆) is defined in (15).

Accordingly, the agent’s problem can be written more compactly as

V = max
∆,wfi

Pwfi +
(

1− wfi
)
− γ

2

(
1− wfi

)2

ω (∆)− κg (∆) . (19)

The first order condition with respect to wfi leads to

1− P = γ
(

1− wfi
)
ω (∆) , (20)

while the first order condition with respect to ∆ leads to

κg′ (∆) = −γ
2

(
1− wfi

)2

ω′ (∆) . (21)

Since in a symmetric equilibrium market clearing requires wfi = 0, equation (20) becomes

identical to (17) and (21) becomes equivalent to (16). Finally, the assumption (1−γω (∆∗))(1−
χ) > κg (∆∗) ensures that the constraint (7) is non-binding.9

Equation (16) allows us to view the length ∆ as resulting from a tradeoff between spending

resources to pay for participation costs in exchange for obtaining a better allocation of risk.

In balancing this tradeoff the participation interval is determined as the point where the

marginal cost of participation, κg′ (∆), is equal to the marginal benefit of participation,

−γ
2
ω′ (∆).

9If the constraint is binding at ∆∗, then ∆ is given by the unique solution ∆∗∗ to (1− γω (∆))(1− χ) =

κg (∆), while the market clearing price is P = 1− γω (∆∗∗)).
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Figure 6: Illustration of the determination of ∆∗ when a symmetric equilibrium exists. The figure

illustrates that ∆∗ increases when κ2 < κ1.

Figure 6 illustrates this tradeoff by plotting the marginal cost from increasing ∆, namely

κg′ (∆), against the respective marginal benefit −γ
2
ω′ (∆) . Since g(∆) is convex, g′(∆) is up-

ward sloping. By contrast, the marginal benefit is declining, since −ω′′(∆) = −σ2

2
(1−∆) <

0. Since g′ (0) = 0, lim∆→1 g
′ (∆) =∞, −ω′ (0) > 0, and ω′ (1) = 0, the two curves intersect

at some point ∆∗ ∈ [0, 1].

Proposition 1 helps capture the economic mechanisms that underlie our model. Consider,

for instance, its implications for a reduction in the cost of accessing markets (i.e., a reduction

in κ). As Figure 6 illustrates, such a reduction increases the degree of participation ∆ and

promotes portfolio flows across different locations. In turn, this increased participation im-

proves risk sharing across different locations, which leads to higher prices of risky securities,

P = 1− γω (∆), and accordingly lower risk premia. By contrast, an increase in the costs of

accessing risky markets leads to a lower ∆ and a higher degree of concentration of risk. The

resulting decline in the extent of risk sharing leads to a drop in the prices of risky assets and

an increase in risk premia.

These mechanisms of the model help capture the stylized facts summarized in Section

2. We highlight especially one aspect of our analysis: the extent of market integration and

cross-location portfolio flows and the magnitude of risk premia are intimately linked. By

contrast, representative-agent approaches to the determination of risk premia are — by their

construction — limited in their ability to explain the empirically prevalent joint movements

in risk premia and portfolio movements, since the representative agent always holds the

market portfolio and prices adjust so as to keep the agent content with her holdings.
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We conclude this section by noting that in Section 7.1 we extend the results obtained so far

to an intertemporal version of the model with recurrent shocks to participation costs. That

extension helps further illustrate how the comparative statics results of this section imply

that, in a dynamic setting, the mechanism we identify produces a) a negative correlation

between capital flows and excess returns, b) time variation in excess returns that is unrelated

to expected dividend growth, aggregate output etc., and c) return correlation across locations

that exceeds the respective correlation of dividends.

We postpone the discussion of these issues; instead, we next turn our attention to a

different set of issues related to the existence of a symmetric equilibrium.

4.3 Asymmetric, location-invariant equilibria: The role of lever-

age and the diversity of the financial industry

Proposition 1 contains the premise that a symmetric equilibrium exists. Surprisingly, despite

the symmetry of the model setup, a symmetric equilibrium may fail to exist. Instead, the

market equilibrium may involve different choices (leverage ratios, portfolios of risky assets,

wealth allocations, etc.) for agents in the same location, even though these agents have

the same preferences and endowments and are allowed to make the same participation and

portfolio choices.

These claims are explained by the observation that the necessary first-order conditions

resulting in the prices Pi = P = 1 − γω (∆∗) are not generally sufficient. We now take a

closer look at whether, fixing the prices P = 1−γω (∆∗), an investor’s optimal participation

interval is given by ∆ = ∆∗ along with wf = 0.

To answer this question, we consider again the maximization problem (19). Taking

P = 1 − γω (∆∗) as given, substituting into (20), and re-arranging implies that if investors

allocate their wealth over a participation interval ∆ (potentially different from ∆∗), then

1− wf =
ω (∆∗)

ω (∆)
. (22)

Equation (22) contains an intuitive prediction. An investor allocating her wealth over a

span ∆ > ∆∗ is facing the same average returns, but a lower variance ω (∆), and hence a

higher Sharpe ratio compared to an investor allocating her wealth over an interval of size ∆∗.

Accordingly, the former investor finds it optimal to leverage her portfolio. This is reflected

in equation (22), which states that wf < 0
(
wf > 0

)
whenever ∆∗ < ∆ (∆∗ > ∆) .

An interesting implication of (21) is that for investors who choose 1 − wf > 1 , the

marginal benefit of an increased participation interval becomes larger. This is intuitive since
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Figure 7: Illustration of the marginal benefit curve −γ
2

(
ω(∆∗)
ω(∆)

)2
ω′ (∆) , the marginal cost curve

κg′ (∆) and the marginal benefit curve −γ
2ω
′ (∆) assuming that wf = 0. The left plot illustrates

a case where a symmetric equilibrium exists whereas the right plot illustrates a case where a

symmetric equilibrium fails to exist.

increased leverage implies a more volatile wealth next period and hence a higher marginal

benefit of reducing that variance by increasing ∆.

In short, the choice of ∆ and the choice of leverage 1− wf are complements.

This complementarity leads to an upward sloping marginal benefit of increased partici-

pation. Indeed, substituting (22) into (21) gives

κg′ (∆) = −γ
2

(
ω (∆∗)

ω (∆)

)2

ω′ (∆) . (23)

Using the fact ω (∆) = σ2

12
(1−∆)3, the right hand side can be expressed as−γ

2

(
ω(∆∗)
ω(∆)

)2

ω′ (∆) =

γσ2

8
(1−∆∗)6 (1−∆)−4 , which is increasing in ∆.

Figure 7 helps illustrate these notions. The figure depicts the marginal cost curve κg′ (∆) ,

the benefit curve −γ
2

(
1− wf (∆; ∆∗)

)2
ω′ (∆) = −γ

2

(
ω(∆∗)
ω(∆)

)2

ω′ (∆), and also the curve

−γ
2
ω′ (∆) , i.e., the marginal benefit of participation fixing wf = 0. The point where all

three curves intersect corresponds to the point ∆ = ∆∗. The left plot of Figure 7 illustrates

a case where a symmetric equilibrium exists, whereas the right plot illustrates a case where

a symmetric equilibrium fails to exist. The difference between the two plots is the shape of

g′ (∆) . In the left plot g′ (∆) intersects the private marginal benefit curve only once, namely

at ∆∗. For values smaller than ∆∗, the private marginal benefit is above the marginal cost

and vice versa for values larger than ∆∗. Hence, in this case ∆∗ is indeed the optimal choice.

This is no longer the case in the right plot. Here the private marginal benefit curve

intersects the marginal cost curve three times (at ∆∗1, ∆∗, and ∆∗2). Since the private
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Figure 8: Illustration of an asymmetric equilibrium involving mixed strategies. The price

adjusts so that area A is equal to area B. Accordingly, an investor is indifferent between ∆∗∗1
and ∆∗∗2 . Here, P3 < P2 < P1 < 1.

marginal benefit is below the marginal cost for values of ∆ that are smaller and “close” to

∆∗, while the private marginal benefit is larger than the marginal cost for values of ∆ that

are larger and “close” to ∆∗, ∆∗ is a local minimum, and hence a suboptimal choice. By

contrast the points ∆∗1 and ∆∗2 correspond to local maxima. (In this particular example the

point ∆∗1 is the global maximum, since the area A is larger than the area B.) The fact that

∆∗ is not a maximum implies that there does not exist a symmetric equilibrium, since in a

symmetric equilibrium it would have to be the case that wf = 0.

The fact that there does not exist a symmetric market equilibrium implies that one should

look for equilibria where investors in the same location make different choices, even though

they have the same preferences, endowments, and information. Figure 8 presents a simple

graphical illustration of such an equilibrium in the context of the example depicted on the

right plot of Figure 7.

Specifically we illustrate the construction of an equilibrium that features the same price

Pi = P for all markets, but where a fraction π of investors in every location i invest with

intermediaries who choose (wf1 , ∆1), while the remaining fraction (1 − π) of agents invest

with intermediaries who choose (wf2 ,∆2) . We introduce a function l (∆;P ) that captures the

marginal benefit of participation as a function of ∆ and P :

l (∆;P ) ≡ −γ
2

(
1− wf (x;P )

)2
ω′ (x) = −γ

2

(
1− P
γ

)2
ω′ (x)

ω2 (x)
, (24)
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where the last equation follows from (20).

Figure 8 depicts the function l (∆;P ) for three values P1 < P2 < P3 < 1. A first

observation is that as P declines from P3 to P1, the curve l (∆;P ) shifts up. Moreover

there exists a level P2 and associated values ∆∗∗1 and ∆∗∗2 for which the area “A” equals

the area “B”, so that investors are indifferent between choosing ∆∗∗1 or ∆∗∗2 . Fixing these

values of P,∆∗∗1 ,∆
∗∗
2 , we can determine the values of wf1 and wf2 from (20). As part of the

proof of Proposition 2 (in the appendix), we show that these values of wf1 and wf2 satisfy

1−wf1 < 1 < 1−wf2 . In order to make sure that the bond market clears, we need to set π so

that πwf1 +(1−π)wf2 = 0, which implies a value of π =
wf2

wf2−w
f
1

∈ (0, 1).10 We also show in the

appendix that for this value of π all markets for risky assets clear as well. Finally, in order

to verify that this is indeed an equilibrium, we additionally need to assume that κg (∆2) ≤
P
(

1− χ
(

1− wf2
))

, so that (7) does not bind. For a non-empty set of parameters, this

condition will indeed hold.11

The next proposition generalizes the insights of the above illustrative example. It shows

the existence of an asymmetric equilibrium, when a symmetric equilibrium fails to exist.

Proposition 2 When the cost function g is such that a symmetric equilibrium fails to ex-

ist, there exists an asymmetric equilibrium. Specifically, there exist (at least) two tuples{
∆k, w

f
k

}
, k ≥ 2, and πk > 0 with

∑
kπk = 1 and

∑
kπk
(
1 − wfk

)
= 1, such that in every

location i a fraction πk of agents choose the interval, leverage, and portfolio combination{
∆k, w

f
k , dL

(k)
}
, where dL(k) is the measure given in (14) for ∆ = ∆k.

In summary, the model predicts that the complementarities between leverage and the

incentive to increase participation in risky markets may result in a non-concave objective

function for the determination of ∆. In such situations a symmetric equilibrium can fail

to exist. Instead, the market equilibrium features a diverse financial industry, with some

financial intermediaries pursuing high-cost, high-Sharpe-ratio, high-leverage strategies (such

as hedge funds) and some financial intermediaries pursuing low-cost, low-Sharpe-ratio, no-

leverage strategies (such as mutual funds). It is useful to underscore that this diversity of

the financial industry obtains despite the facts that investors are identical and participation

costs are convex. Instead, when markets are partially integrated, the interaction between

participation decisions and leverage may actually necessitate a diverse financial industry

(with some intermediaries pursuing high leverage strategies) for markets to clear.

10π ∈ (0, 1) since wf2 < 0 and wf1 > 0.
11Specifically, it is straightforward to confirm that this condition holds if we set κ proportional to σ and

we let σ become sufficiently small.
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In the next section we show that the tendency of the model to endogenously require

some intermediaries to pursue levered strategies may lead to price crashes in equilibrium in

response to small changes in participation costs. In Section 7.2 we examine the robustness

of the non-concavities we identified in this section. Specifically, we show that the non-

concavities become stronger (in a sense we make precise in that section) when we allow for

investment in non-contiguous locations.

5 Collateral Constraints and Price Crashes

In the illustrative example of an asymmetric equilibrium of Section 4.3, we assume that the

constraint (7) does not bind on any investor. However, when the equilibrium is asymmetric,

a fraction of agents pursues high leverage, high cost strategies. For these strategies it is

particularly likely that the constraint (7) may bind. In this section our goal is to show that

in this case equilibrium prices may react abruptly (indeed, discontinuously) in response to

incremental changes in κ.

In order to keep the exposition uncluttered, we use a stylized specification of participa-

tion costs that allows analytical computations. Specifically, we postulate the cost function

depicted in the middle graph of Figure 5. In that case, the optimal participation choice

amounts to choosing the location of the points ai and the number of the discrete points N .12

To keep computations as simple as possible, we assume furthermore that bN =∞ for N > 2,

so that only choices involving N ≤ 2 are feasible.13 Accordingly, an intermediary’s problem

comes down to choosing N = 1 or N = 2, and the distance d from her home location if

N = 2. At the cost of adding complexity, the results of this section can be extended to

multiple disjoint intervals or points; we sketch how in section 7.2.

Conjecture next that in equilibrium Pj = P for all j and let π ∈ [0, 1] denote the fraction

of funds invested in the local market. Assuming that a given intermediary chooses N = 2 and

another location at distance d, equation (3) allows the computation of the minimal portfolio

12Recall that in this case there is a minimum “fixed” cost that one needs to pay for every new location

that she chooses given by κbN limx→0 f(x) > 0.
13The condition bN =∞ can be substantially weakened. Indeed all that is needed for N = 1 or N = 2 to

be the only feasible choices is that κbN limx→0 f(x) > 1 for N > 2. This follows from (8), Pj ≤ 1, and the

fact that f is increasing.
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variance:

ω̂ (d) = σ2 min
π

{(
π2 + (1− π)2) 1

12
+ 2π (1− π)

(
1

12
− d (1− d)

2

)}
= σ2

(
1

12
− 1

4
d (1− d)

)
.

Using the obtained expression for ω̂ (d) , the optimal distance d needs to satisfy a first

order condition similar to equation (21), namely

−γ
2

(
1− wf

)2 ω̂′ (d)

ω̂2 (d)
= κb2f

′ (d) . (25)

An interesting special case arises when f ′ = 0, i.e., in the special case where participation

in distant markets involves a “fixed” cost κb2f0 ≡ κb2f(x) > 0 for x ∈ (0, 1), but no distance-

dependent, variable costs. In that special case equation (25) implies that the optimal d is

given by d = 1
2

irrespective of wf , since ω̂′ (d) = 0 when and only when d = 1
2
. To further

simplify calculations we assume for the rest of the section that f ′ = 0. Assuming that the

equilibrium is of the asymmetric type, and ignoring momentarily the constraint (7), we can

use equation (19) to express the indifference between the choices N = 1, respectively N = 2

and d = 1
2
, as

Pwf1 +
(

1− wf1
)
−γ

2

(
1− wf1

)2

ω̂ (0) = Pwf2 +
(

1− wf2
)
−γ

2

(
1− wf2

)2

ω̂

(
1

2

)
−κb2f0. (26)

Using the first order conditions for leverage

1− P = γ
(

1− wf2
)
ω̂

(
1

2

)
= γ

(
1− wf1

)
ω̂ (0) (27)

inside (26) yields — after some simplifications — the equilibrium price:

P (κ) = 1−

√√√√ 2γκb2f0

1

ω̂( 1
2)
− 1

ω̂(0)

. (28)

For P (κ) to be an equilibrium price, it must also be case that a) 1 − w1 ≤ 1 ≤ 1 − w2,

and b) the constraint (7) is not binding for any agent. In light of (27), the requirement

1 − w1 ≤ 1 ≤ 1 − w2 is equivalent to P ∈
[
1− γω̂ (0) , 1− γω̂

(
1
2

)]
. This requirement is

satisfied as long as κ lies between κ1 and κ2, where

κ1 =
γω̂ (0)

2f0

[
ω̂ (0)

ω̂
(

1
2

) − 1

]
, κ2 =

γω̂
(

1
2

)
2f0

[
1−

ω̂
(

1
2

)
ω̂ (0)

]
.
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For values of κ below κ1 or above κ2 the only candidate equilibria are symmetric with

everyone choosing N = 2 and d = 1
2

or everyone choosing N = 1, respectively. Hence,

ignoring momentarily the constraint (7), the left plot of Figure 9 gives a visual depiction of

P (κ), which is a continuous function of κ. Hence, even though investors make essentially

discrete choices, prices are a continuous function of κ.

However, when we take into account the constraint (7) a different situation arises, which

is depicted on the right plot of Figure 9. The downward-sloping dotted line of that plot

depicts the price P (κ) that would obtain in the absence of the constraint (7), i.e., it is

identical to the solid line of the left plot. The upward-sloping dotted line depicts the locus

of κ, P for which

κb2f0 = P
(

1− χ(1− wf2 )
)
, (29)

where wf2 (P ) is given by (27). For these points the constraint (7) binds with equality.14

For values of κ and P that lie above and to the left of the upward-sloping line, the

constraint (7) is not binding; hence the equilibrium price (the solid line) coincides with the

downward-sloping dotted line for values of κ smaller than κc. However, for values of κ ≥ κc,

the downward-sloping dotted line no longer describes the equilibrium price.

To obtain the equilibrium price for κ ≥ κc we proceed as follows. We define V1 and V2 as

V1 = max
wf1

Pwf1 +
(

1− wf1
)
− γ

2

(
1− wf1

)2

ω̂ (0) , (30)

V2 = max
wf2

Pwf2 +
(

1− wf2
)
− γ

2

(
1− wf2

)2

ω̂

(
1

2

)
− κb2f0, (31)

where the second maximization is subject to the constraint (7). Indifference requires that

V1 = V2, and hence dV1

dκ
− dV2

dκ
= 0.

Attaching a Lagrange multiplier λ ≥ 0 to the constraint (29), solving the resulting

maximization problem, and utilizing the envelope theorem implies

dV1

dκ
− dV2

dκ
=
(
wf1 − w

f
2 − λ

[
1− χ

(
1− wf2

)]) dP
dκ

+ (1 + λ) b2f0, (32)

with λ =
1−P−γ(1−wf2)ω̂( 1

2)
χP

≥ 0. Inspection of (32) allows us to draw two conclusions. For

values of κ such that the constraint is not binding (κ < κc), λ = 0, and there always exists

a value dP
dκ

such that dV1

dκ
− dV2

dκ
= 0. Indeed, from (32),

dP

dκ
= − b2f0

wf1 − w
f
2

< 0.

14To see this, evaluate equation (8) with Pj = P = W0,i, PB = 1, Fi = κb2f0, and
∫ 1

0
dXj = 1− wf , and

note that equation (8) is equivalent to (7).
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Figure 9: The left plot depicts the price P (κ) assuming the leverage constraint is not binding.

The downward-sloping dotted line on the right plot plots the same quantity, along with the actual

price (solid line) and the locus of points such that the leverage constraint is just binding (upward

sloping line). Hence for points above and to the left of the upward sloping line the constraint is not

binding, whereas it is binding for points below and to the right. Parameters used in this example:

γ = 5, b2f0 = 0.1, χ = 0.2, σ = 1.

If κ increases sufficiently for the constraint to start binding (κ > κc), then λ > 0. For

values of κ larger than, but close to κc, the value of λ is positive and small. Therefore

wf1 − w
f
2 − λ

[
1− χ

(
1− wf2

)]
> 0

and

dP

dκ
= − (1 + λ) b2f0

wf1 − w
f
2 − λ

[
1− χ

(
1− wf2

)] < − b2f0

wf1 − w
f
2

< 0.

Accordingly, the slope of the decline in P as κ increases becomes steeper than it would be

absent the constraint. As κ keeps increasing, the constraint becomes progressively more

binding, and possibly up to the point where

wf1 − w
f
2 − λ

[
1− χ

(
1− wf2

)]
= 0. (33)

At that point equation (32) shows that there exists no value dP
dκ

that can set dV1

dκ
= dV2

dκ
, and

hence the price jumps (down) to P = 1− γω̂ (0) .

Figure 10 helps illustrate such a discontinuity. For each subplot we fix a value of κ.

Given that value of κ, the line denoted “Indifference” in each subplot depicts combinations

of
(

1− wf2
)

and P, such that the indifference relation holds:

V1(P ) = Pwf2 +
(

1− wf2
)
− γ

2

(
1− wf2

)2

ω̂

(
1

2

)
− κf0. (34)
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Figure 10: For three different values of the cost parameter κ, the three plots depict combinations

of price (P ) and leverage (1 − wf2 ) so that (i) investors are indifferent between adopting no- or

high-leverage strategies (line labeled “Indiference”) , (ii) Investors’ choices of leverage (1 − wf2 )

are (unconstrained) optimal given P (line labeled “FOC”), and (iii) the leverage constraint just

binds (line labeled “Constraint”). In each plot, points to the left and above the line labeled

“Constraint” are admissible. The intersection of the lines “FOC” and “Indifference” corresponds

to the combination of P and 1 − wf2 that would prevail in an equilibrium without the leverage

constraint. Similarly, the intersection of the lines “Indifference” and “Constraint” characterize an

asymmetric equilibrium with a binding leverage constraint (if one exists). Parameters are identical

to Figure 9.

Similarly, the line denoted “Constraint” depicts combinations of P and 1 − wf2 such that

the constraint (29) holds as an equality. Accordingly, all the points that lie above that line

are admissible combinations of P and 1 − wf2 . Finally, the line denoted “FOC” depicts the

combination of points that satisfy the first-order condition (27).

The intersection of the lines “Indifference” and “FOC” corresponds to the equilibrium

price (and the associated leverage wf2 ) of equation (28). We refer to that intersection as the

“unconstrained” point. The left plot depicts the case where κ is set equal to κ = κc. In that

case the constraint just becomes binding, and all three lines intersect at the same point. As κ

increases further, illustrated in the middle panel, the constraint binds actively. Intermediaries

reduce leverage and hence the magnitude of their risky positions, and equlibrium prices drop

to the point where the constraint is satisfied (i.e., up to the point where the line “Indifference”

intersects the line “Constraint”).

The right-most plot shows a case where κ drops further and there is no point of inter-

section between the lines “Indifference” and “Constraint”. At that point there can be no

asymmetric equilibrium. The equilibrium becomes symmetric, i.e., the price drops to the

level that obtains when everyone simply chooses N = 1 and wf = 0.
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This example helps illustrate that — when the leverage constraint is binding — the price

associated with an asymmetric equilibrium may discontinuously drop to the price associated

with a symmetric equilibrium even in response to incremental changes in the cost parameter

κ.

To understand intuitively why prices react so abruptly, we start by identifying the ba-

sic mechanism that helps restore equilibrium when κ increases and the constraint (7) isn’t

binding: at existing prices, an increase in κ induces a fraction of investors to walk away

from high-leverage, increased-market-participation, high-cost strategies; the resulting loss

in aggregate participation lowers prices, raises the Sharpe ratio, and helps restore the at-

tractiveness of high-cost, high-leverage strategies. However, when the constraint binds, the

decline in prices also lowers the value of collateral that investors are endowed with, thus

necessitating further reductions in leverage, which results in even smaller overall participa-

tion in risky markets, further reductions in prices, etc. These mutually reinforcing effects

can lead to a rapid drop in prices and eventually a discontinuous jump in prices, whereby

intermediaries deleverage instantaneously and capital flows drop to zero.

We conclude with a technical remark: even though the example of this section is stylized

(to ease computations), it is not special. The rapid decline in prices is driven by the non-

concave nature of investors’ participation problem: Non-concave objective functions admit

multiple optima, and small changes in equilibrium prices — coupled with constraints on

leverage — may cause large changes in the optimal leverage and participation choices, which

would in turn result in discontinuous changes in prices to clear markets.

6 Reduced Participation in a Subset of Locations and

Contagion

In the previous sections we assumed the same cost structure for all intermediaries, regard-

less of location. This allowed us to focus on (potentially asymmetric but) location-invariant

equilibria, which entail the same price in all locations. In this section we relax this assump-

tion in order to study the effect of an adverse shock to the financial sector of a subset of

locations. The challenge in analyzing the model with location-specific costs is that an entire

price function on [0, 1) has to be computed, rather than a single value. To present the key

insights of the model with location-specific costs, we restrict ourselves to a specific setup

that is sufficiently simple to analyze, yet rich enough to illustrate how a reduction in market

participation in a subset of risky markets (due to a local “breakdown” of intermediation)
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Figure 11: Contagion effects. The price function P (j) depicts the price in different locations

when k = 0, and k = 0.1. We choose ∆̄ = 0.2. The locations between the arrows feature both

negative correlation of dividends and no overlap between the participants in these markets and the

set A =
[
−k

2 ,
k
2

]
.

can propagate across all markets, a phenomenon that we refer to as “contagion”.

Specifically, we consider the following simple setup: for some positive k < 1 intermedi-

ation in locations
[
−k

2
; k

2

]
“breaks down”. Specifically, we assume that in these “affected”

locations the cost parameter κ becomes infinite, so that investors choose to participate only

in the bond market and the market for the local risky claim. In the rest of the locations

intermediaries choose to participate in a single interval of length ∆̄, centered at their “home

location” — this would be the outcome of a cost structure in these locations involving, e.g.,

κ <∞, bN =∞ for N > 1, g′(∆̄) = 0 for ∆ < ∆̄, and g′(∆) arbitrarily large for ∆ > ∆̄.

We solve this heterogeneous-participation-costs version of the model in the appendix.

First, we calculate analytically the optimal demand of every investor given a price function

(Lemma 3), and then aggregate the demands to solve for prices. We are unable to find a

closed-form solution for the prices, but we can characterize the solution in terms of a linear

integro-differential equation with delay, which can be solved numerically as easily as a matrix

inversion problem.

To obtain a visual impression of the solution, Figure 11 depicts the price P (x) for x ∈
[0, 1) and compares it with the (symmetric) equilibrium price P ∗

(
∆̄
)

that would prevail if all

agents in all locations chose a participation interval with length equal to ∆ = ∆̄. There are

several noteworthy facts about Figure 11. As one might expect, prices in the set A ≡
[
−k

2
, k

2

]
are lower than P ∗

(
∆̄
)
. The more important fact is that prices in all other markets are
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affected, as well. This holds true even in markets in the interval B ≡
[
k
2

+ ∆̄, 1− k
2
− ∆̄

]
,

i.e., locations that are in a larger distance than ∆̄ from the set A so that agents in the

sets A and B would not trade any risky securities with each other even in a symmetric

equilibrium where all agents choose the same participation interval ∆̄. A third observation is

that the prices in almost all markets are lower than P ∗
(
∆̄
)
. Indeed, this reduction in price

can happen even in markets with dividends that have a zero or negative correlation with the

dividends of any risky security in A, as the figure illustrates.

The intuition behind Figure 11 is the following. By assumption, investors in the set A

reduce their demand for risky assets to zero in locations other than their home location.

Hence compared to the case where everyone participates in an interval of length ∆̄ centered

at their location, there is now lower demand for risky securities in locations neighboring the

set A. The lower demand for risky securities in these locations leads to lower prices, which

attracts demand from locations adjacent to the neighborhood of A, where intermediaries still

operate. By tilting their portfolio towards these locations, intermediaries vacate demand for

risky securities in locations even farther than A. Accordingly, prices in these farther locations

need to drop in order to attract investors from locations adjacent to the neighbourhood of

the neighbourhood of A, who also tilt their portfolios and so on.

This chain reaction implies that all locations are affected in equilibrium. In fact, even

some prices in locations close to point 1
2
, the farthest from A, drop, as the following result

states.15

Proposition 3 Assume ∆ + k < 1 and that 1
2

= arg maxj∈[ 1
2
−∆̄, 1

2
+∆̄] Pj. Then there exists

a positive-measure subset D ⊂
[

1
2
− ∆̄; 1

2
+ ∆̄

]
such that P (x) < P ∗

(
∆̄
)

for all x ∈ D.

Proposition 3 helps formalize the notion that even (some) prices in locations within

a radius ∆̄ of the maximal price are lower than the price P ∗(∆̄) that would obtain in a

symmetric equilibrium.

The extent of the change in risk premia in the various locations depends on the distance

from the arc A, the length of the arc A, and most interestingly, on the length of the partici-

pation arc ∆̄. Figure 12 illustrates these statements. If ∆̄ is small, so that their portfolio is

heavily exposed to risks in their vicinity, then even the smallest tilt towards a nearby loca-

tion requires a high compensation. By contrast, if investors’ portfolios are invested across a

broad range of locations, then they are more willing to absorb risks in their vicinity.

15It is easy to show that, in the general case when a subset of investors are limited to a smaller investment

set than the original arc of length ∆̄, and therefore in the setting of this section, the average risky-asset price

in the economy declines.
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Figure 12: Contagion effects for various choices of ∆̄ and k.

In summary, a surprising result of our analysis is that contagion occurs due to limited,

rather than excessive, integration of risky markets. Indeed, contagion becomes stronger the

weaker the integration of risky markets.

7 Extensions

7.1 An infinite horizon version of the baseline model

In this section we develop an intertemporal version of the model. The intertemporal version

allows us to extend the intuitions of our comparative statics exercises to a framework where

the shocks to the participation technology are recurrent.

Specifically, we keep the key assumptions of the baseline model (Section 4.2). However,

we assume that investors maximize expected discounted utility from consumptiuon

−
∞∑
t=0

βtEt
[
e−γct,i

]
,

where t denotes (discrete) calendar time. We assume that divdends at location i ∈ [0, 1) are

given by

Dt,i = (1− ρ)
t∑

k=−∞

ρt−kεk,i (35)
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where ρ < 1,

εt,i ≡ 1 + σ

(
B

(t)
i −

∫ 1

0

B
(t)
j dj

)
, (36)

and B
(t)
i denote a family of Brownian Bridges on [0, 1] drawn independently across times

t = −∞, ..1, 2, ..,+∞.
We make a few observations about the above dividend structure. First, we note that

equation (36) coincides with equation (2). Accordingly,
∫ 1

0
εt,idi = 1, and therefore, equation

(35) implies that
∫ 1

0
Dt,i = 1 for all t, so that the aggregate dividend is always equal to one.

Second, dividends at individual locations follow AR(1) processes, since equation (35) implies

that

Dt,i = (1− ρ) εt,i + ρDt−1,i. (37)

Moreover, since (36) coincides with (2), the increments of two dividend processes at two

locations i and j have the covariance structure of equation (3).

In terms of participation decisions, we keep the same cost assumption as in the baseline

model and further assume that investors participate in a single interval of length ∆
(i)
t centered

at their “home” location. Participation costs are paid period by period in advance of trading.

Specifically, an investor’s intertemporal budget constraint is given by

ct,i + Ft

(
∆

(i)
t

)
+

∫ 1

0

Pt,jdX
(i)
t,j + PB,tX

(i)
B,t =

∫ 1

0

(Pt,j +Dt,j) dX
(i)
t−1,j +X

(i)
B,t−1. (38)

We note that in equation (38) we allow the entire cost function Ft = κtgt (∆) to be different

across different periods in order to capture the effect of repeated shocks to the participation

technology.

This intertemporal version of the model presents a challenge that is absent in a static

framework: If the interest rate varies over time, then the value function of an agent is not

exponential in wealth. In fact, a closed-form expression for the value function most likely

does not exist. Furthermore, once the value function is no longer exponential, portfolios

are no longer independent of wealth, and hence the entire wealth distribution matters — an

infinite-dimensional state variable.

In order to maintain the simple structure of the solution, therefore, we make necessary

assumptions to achieve a constant interest rate despite random participation costs. The

following proposition states that it is possible to achieve this outcome; the proof is in the

appendix. The main thrust of the proposition, however, concerns the form of the risky-asset

prices; Proposition 5 below collects the main implications of interest of this form.
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Proposition 4 There exist an interval [∆l,∆u], a (non-trivial) distribution function Ψ (·)
on [∆l,∆u], and a cost function F (·; ∆t) : [∆l,∆u] → R+ such that, if ∆t is drawn in an

i.i.d. fashion from Ψ, then

(i) intermediaries optimally choose ∆ = ∆t, thus incurring cost F (∆t; ∆t);

(ii) the risk-free rate is constant over time and given as the unique positive solution to

1 = β (1 + r)E

[
e
γ2

2 ( r
1+r−ρ)

2
(1−ρ)2ω(∆)

]
, (39)

where the expectation is taken over the distribution of ∆;

(iii) the risky-asset prices equal

Pt,j (∆t, Dt,j) = φ (Dt,j − 1) +
1

r
− Φ1ω (∆t)− Φ0 (40)

with φ ≡ ρ
1+r−ρ and

Φ1 = γ
r(1− ρ)2

(1 + r − ρ)2 (41)

Φ0 =
Φ1

r

E

[
e
γ2

2 ( r
1+r−ρ)

2
(1−ρ)2ω(∆)ω (∆)

]
E
[
e
γ2

2 ( r
1+r−ρ)

2
(1−ρ)2ω(∆)

] > 0. (42)

Furthermore, investors’ optimal portfolios of risky assets are given by (14).

Equation (40) decomposes the price of a security into three components. As in pretty

much all CARA models, one of these components equals the expected discounted value

of future dividends, φ(Dt,j − 1) + r−1. The other two capture the risk premium. The term

Φ1ω(∆t) is the risk premium associated with the realization of time-t+1 dividend uncertainty,

to which each investor is exposed according to the breadth ∆t of her time-t portfolio. Finally,

Φ0 equals the sum of the expected discounted value of risk premia due to future realizations

of dividend innovations and ∆t.

We emphasize that the risk premium decreases with ∆t and is common for all securi-

ties. Alternatively phrased, increases in capital movements across locations are correlated

with higher prices for all risky securities (and hence lower expected excess returns). Impor-

tantly, these movements in the prices of risky securities are uncorrelated with movements in

aggregate output or the interest rate, which are both constant by construction.

A further immediate implication of equation (40) is that the presence of repeated shocks

to participation costs introduces comovement in security prices that exceeds the correlation
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of their dividends. Indeed, taking two securities j and k, and noting that the symmetry of

the setup implies V ar (Dt,j) = V ar (Dt,k) , we can use equation (40) to compute

corr (Pt,j, Pt,i) =
V ar(Φ1ω (∆t)) + φ2cov (Dt,j, Dt,k)

V ar(Φ1ω (∆t)) + φ2V ar (Dt,j)
>
cov (Dt,j, Dt,k)

V ar (Dt,j)
= corr (Dt,j, Dt,i) .

The intuition is that movements in market integration cause common movements in

the pricing of risk which make prices more correlated (and volatile) than the underlying

dividends.

We collect some basic properties of the price due to the randomness in ∆t in the following

proposition.

Proposition 5 (i) Pt,i increases with ∆t, and therefore corr(Pt,i,∆t) > 0;

(ii) Et[Pi,t+1 − (1 + r)Pi,t] decreases with ∆t;

(iii) corr(Pt,i, Pt,j) > corr(Dt,i, Dt,j);

(iv) The portion Φ0 of the risk premium is higher than the one obtaining for ∆t constant

and equal to E[∆]. The unconditional expected price is lower for the deterministic ∆t.

7.2 Multiple arcs on the circle

In our baseline model we have assumed that investors participate in markets spanning a

single arc of length ∆ around their “home” location. Extending the results to the general

case where investors can choose to participate on multiple, disconnected arcs (as illustrated

on the right-most graph of Figure 5) is straightforward and involves essentially no new

insights. In this section we briefly sketch how to extend the results of the baseline model to

this case and we show that allowing for this extra generality introduces an additional source

of non-concavity into an investor’s optimization problem.

To start, we introduce the function

v(I) = min
Ni,
−→a i,
−→
∆i,G

(i)
j

V ar

(∫ 1

0

DjdG
(i)
j

)

s.t. I = F

(
Ni,
−→a i,

∑
n=1..Ni

∆i,n

)
.

In words, the function v(I) is the minimal variance, per share purchased, of the portfolio

payoff that can be obtained by an investor who is willing to spend an amount I on partici-

pation costs. Proceeding similarly to Section 4.2 under the assumption that Pj = P for all

j, the facts that U is exponential and all Dj are normally distributed imply that maximizing
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Figure 13: Numerical example to illustrate that v(I) is non-convex. The figure depicts two (dotted)

lines and the minimum of the two lines (solid line). The first dotted line starts at I = 0 and depicts

the minimal variance that can be attained when participation costs are equal to I and the investor

chooses to participate only on a single arc centered at her home location. The second dotted line

starts at I = 0.05, i.e. at the minimum expenditure required to invest in two distinct arcs. This

second dotted line depicts the minimal variance that can be attained when participation costs are

equal to I and the investor can participate on two separate arcs with locations and lengths chosen

so as to minimize variance. The function v(I) (the minimum of the two dotted lines) is given by

the solid line. This example helps illustrate that the function v(I) is in general not convex. For this

example we chose σ = 1, g(x) = 0.1 ×
(
(1− x)−6 − 1

)
, f(y) = 0.05 + 0.005 ×

(
(1

2 − y)−2 − 1
0.25

)
.

(For I > 0.1 the function v(I) would in general exhibit further kinks at the critical values In,

n = 2, 3.. where the investor is indifferent between choosing n or n+ 1 distinct arcs.)

utility over the choice of Ni, {ai,1; ..; ai,Ni}, {∆i,1; ..; ∆i,Ni}, G
(i)
j , and wfi is equivalent to

solving

max
wfi ,I

Pwfi +
(

1− wfi
)∫ 1

0

E[Dj]dG
(i)
j −

γ

2

(
1− wfi

)2

v (I)− I, (43)

subject to the constraint I ≤ P
(

1− χ
(

1− wfi
))

. Given that E[Dj] = 1, equation (43) can

be rewritten as

V = max
I,wfi

Pwfi +
(

1− wfi
)
− γ

2

(
1− wfi

)2

v(I)− I. (44)

It is useful to note that (43) is identical to (19) in the special case where investors partic-

ipate in markets spanning a single arc of length ∆ around their “home” location. Indeed, in
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that special case v (I) = ω
(
g−1

(
I
κ

))
. Since g (∆) is a monotone function, inspection reveals

that (43) is identical to (19). In particular, the first order conditions of the problem (44)

become identical to the first order conditions (20) and (21) upon subsituting I = κg (∆)

and v′ (I) =
ω′(g−1( Iκ))
κg′(g−1( Iκ))

= ω′(∆)
κg′(∆)

. Accordingly, all our conclusions of the previous sections

remain unaltered: We can simply use the mappings I = κg (∆) and ∆ = g−1
(
I
κ

)
to translate

implications for I into implications for ∆ and vice versa.

In the general case where investors’ portfolios are invested on disconnected arcs, the

function v (I) is different from ω
(
g−1

(
I
κ

))
. Interestingly, the function v (I), which is convex

in the single-arc case,16 will in general be non-convex with kinks at the expenditure levels In

where it becomes optimal to invest in n+ 1 rather than n distinct arcs. Figure 13 provides

an illustration. This non-convexity of v (I) , which may arise when (and only when) investors

participate in markets located on multiple distinct arcs, implies an additional reason for the

maximization problem (44) to be non-concave. This reason is distinct from the non-concavity

arising from the interaction between leverage and participation decisions that we identified

in Section 4.3, and implies an additional reason why a symmetric equilibrium may not exist.

Indeed, one can essentially repeat the proof of Proposition 2 to establish the existence of

asymmetric equilibria, where strategies involving no leverage, low participation costs I, and

low Sharpe ratio coexist with strategies involving high leverage, high participation costs I,

and high Sharpe ratio.

16To see this note that v′ (I) = ω′(∆)
κg′(∆) where ∆ (I) = g−1

(
I
κ

)
. Differentiating again gives v′′ (I) =

1
κ
ω′′(∆)g′(∆)−ω′(∆)g′′(∆)

(g′(∆))2
∆′ (I) > 0.

39



References

Ahrend, R. and C. Schwellnus (2012). Do investors disproportionately shed assets of distant

countries under increased uncertainty? evidence from the global financial crisis. Working

Paper, OECD Economics Department.

Allen, F. and D. Gale (2000). Financial contagion. Journal of Political Economy 108, 1–33.

Aumann, R. J. (1966). Existence of competitive equilibria in markets with continuum of

traders. Econometrica 34, 1–17.

Aviat, A. and N. Coeurdacier (2007). The geography of trade in goods and asset holdings.

Journal of International Economics 71, 22–51.

Barlevy, G. and P. Veronesi (2003). Rational panics and stock market crashes. Journal of

Economic Theory 110, 234–263.

Basak, S., D. Cass, J. M. Licari, and A. Pavlova (2008). Multiplicity in general financial

equilibrium with portfolio constraints. Journal of Economic Theory 142, 100–127.

Bekaert, G. and C. Harvey (1995). Time-varying world market integration. Journal of

Finance 50, 403–444.

Brennan, M. J. and H. Cao (1997). International portfolio investment flows. Journal of

Finance 52, 1851–1880.

Brunnermeier, M. K. and L. H. Pedersen (2009). Market liquidity and funding liquidity.

Review of Financial Studies 22, 2201–2238.

Buch, C. M. (2005). Distance and international banking. Review of International Eco-

nomics 13 (4), 787–804.

Caballero, R. J. and A. Simsek (2012). Fire sales in a model of complexity. forthcoming,

Journal of Finance.

Chan, K., V. Covrig, and L. Ng (2005). What determines the domestic bias and foreign

bias? evidence from mutual fund equity allocations worldwide. Journal of Finance 60 (3),

1495–1534.

Cochrane, J. H., F. A. Longstaff, and P. Santa-Clara (2008). Two trees. Review of Financial

Studies 21, 347–385.

40



Coval, J. D. and T. J. Moskowitz (1999). Home bias at home: Local equity preference in

domestic portfolios. Journal of Finance 54, 1695–1704.

Coval, J. D. and T. J. Moskowitz (2001). The geography of investment: Informed trading

and asset prices. Journal of Political Economy 109, 811–841.

Dumas, B., C. R. Harvey, and P. Ruiz (2003). Are correlations of stock returns justied by

subsequent changes in national outputs? Journal of International Money and Finance 22,

777–811.

Gehrig, T. (1993). An information based explanation of the domestic bias in international

equity investment. Scandinavian Journal of Economics 95, 97–109.

Gennotte, G. and H. Leland (1990). Market liquidity, hedging and crashes. American

Economic Review 80, 999–1021.

Giannetti, M. and L. Laeven (2012). The flight home effect: Evidence from the syndicated

loan market during financial crises. Journal of Financial Economics 104, 23–43.

Grinblatt, M. and M. Keloharju (2001). How distance, language, and culture influence

stockholdings and trades. Journal of Finance 56 (3), 1053–1073.

Head, K. and J. Ries (2008). FDI as an outcome of the market for corporate control: Theory

and evidence. Journal of International Economics 74, 2–20.

Hoggarth, G., L. Mahadeva, and J. Martin (2010). Understanding international bank capital

flows during the recent financial crisis. Financial Stability Paper No. 8, Bank of England.

Hong, H. and J. C. Stein (2003). Differences of opinion, short-sales constraints, and market

crashes. Review of Financial Studies 16, 487–525.

Huberman, G. (2001). Familiarity breeds investment. Review of Financial Studies 14 (3),

659 – 680.

Kang, J.-K. and R. M. Stulz (1997). Why is there a home bias? an anayisis of foreign

portfolio equity ownership in japan. Journal of Financial Economics 46, 3–28.

Kiyotaki, N. and J. Moore (1997). Credit cycles. Journal of Political Economy 105, 211–248.

Kyle, A. S. and W. Xiong (2001). Contagion as a wealth effect. Journal of Finance 56 (4),

1401 – 1440.

41



Pavlova, A. and R. Rigobon (2008). The role of portfolio constraints in the international

propagation of shocks. Review of Economic Studies 75, 1215–1256.

Portes, R. and H. Rey (2005). The determinants of cross-border equity flows. Journal of

International Economics 65, 269–296.

Romer, D. (1993). Rational asset-price movements without news. American Economic

Review 83, 1112–1130.

Salop, S. C. (1979). Monopolistic competition with outside goods. Bell Journal of Eco-

nomics 10, 141–156.

Talamo, G. (2007). Institutions, FDI, and the gravity model. Working Paper, Universita de

Palermo.

Yuan, K. (2005). Asymmetric price movements and borrowing constraints: A rational ex-

pectations equilibrium model of crises, contagion, and confusion. Journal of Finance 60,

379–412.

42



A Proofs

Proof of Lemma 1. Property 2 follows immediately from integrating (2). To show property 3,

note that, for any i ∈ (0, 1), limd(i,j)→0Dj = limj→iDj = Di a.s. by the continuity of the Brownian

motion. Continuity at 0 follows from the fact that B0 = B1.

We turn now to property 1. Since E(Bi) = 0 for all i ∈ [0, 1], E(Dj) = 1. To compute

cov(Di, Dj) we start by noting that cov (Bs, Bt) = E(BsBt) = s (1− t) for s ≤ t.Therefore, for any

t ∈ [0, 1],∫ 1

0
E (BtBu) du =

∫ t

0
u(1− t)du+

∫ 1

t
t(1− u)du (45)

=
1

2
(1− t)t2 +

1

2
(1− t)2t =

t (1− t)
2

.

Accordingly,

V ar

(∫ 1

0
Budu

)
= E

[(∫ 1

0
Budu

)2
]

= E

[(∫ 1

0
Budu

)(∫ 1

0
Btdt

)]
(46)

=

∫ 1

0

(∫ 1

0
E(BuBt)du

)
dt =

∫ 1

0

t (1− t)
2

dt =
1

12
,

where the second line of (46) follows from Fubini’s Theorem and (45). Combining (46) and (45)

gives

1

σ2
V ar (Dt) = V ar (Bt) + V ar

(∫ 1

0
Budu

)
− 2cov

(
Bt,

∫ 1

0
Budu

)
(47)

= t (1− t) +
1

12
− 2

∫ 1

0
E(BtBu)du =

1

12
.

This calculation finishes the proof of property 1. For property 4, take any s ≤ t and use (45)

and (46) to obtain

cov (Ds, Dt)

σ2
= cov

(
Bs −

∫ 1

0
Budu,Bt −

∫ 1

0
Budu

)
(48)

= E(BsBt)− E
(
Bs

∫ 1

0
Bu

)
du− E

(
Bt

∫ 1

0
Bu

)
du+

1

12

= s (1− t)− s (1− s)
2

− t (1− t)
2

+
1

12

=
(s− t)(1 + s− t)

2
+

1

12
.

This establishes property 4.

Proof of Proposition 1. We start by establishing the following lemma.

Lemma 2 The (bounded-variation) function L with L−∆
2

− = 0 and L∆
2

= 1 that minimizes

V ar

(∫ ∆
2

−∆
2

− Dj dLj

)
is given by (14). Moreover, the minimal variance is equal to ω (∆) .
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Proof of Lemma 2. To simplify notation, we prove a “shifted” version of the lemma,

namely finding the minimal-variance portfolio on [0,∆] rather than [−∆
2 ,

∆
2 ]. The two versions are

clearly equivalent, since covariances depend only on the distances between locations, rather than

the locations themselves.

We start by definining q (d) = 1
12 −

d(1−d)
2 and therefore q′ (d) = −1

2 + d. In light of (3),

q(d) = 1
σ2 cov (Di, Dj) whenever d (i, j) = d. If Lu =

∫ u
0− dLu is a variance-minimizing portfolio of

risky assets, it must be the case that the covariance between any gross return Rs = Ds
P for s ∈ [0,∆]

and the portfolio
∫ ∆

0− RudLu =
∫ ∆

0−
Du
P dLu is independent of s. Thus, the quantity

1

σ2
cov

(
Ds,

∫ ∆

0−
DudLu

)
=

1

σ2

[∫ s

0−
cov (Ds, Du) dLu +

∫ ∆

s
cov (Ds, Du) dLu

]
= (49)

=

∫ s

0−
q (s− u) dLu +

∫ ∆

s
q (u− s) dLu

is independent of s. Letting L̃ (s) = 1− L (s) and integrating by parts we obtain∫ s

0−
q (s− u) dLu = L (s) q (0)− L

(
0−
)
q (s) +

∫ s

0−
Luq

′ (s− u) du (50)∫ ∆

s
q (u− s) dLu = L̃ (s) q (0)− L̃ (∆) q (∆− s) +

∫ ∆

s
L̃uq

′ (u− s) du. (51)

Using (50) and (51) inside (49) and recognizing that q (0) = 1
12 , L (0−) = 0, and L̃ (∆) = 0, we

obtain that (49) equals

Q(s) ≡ 1

12
+

∫ s

0−
Luq

′ (s− u) du+

∫ ∆

s
L̃uq

′ (u− s) du. (52)

This expression is independent of s ∈ [0,∆] if and only if Q′(s) = 0. A straightforward computation

yields

Q′(s) =

∫ s

0−
Luq

′′ (s− u) du−
∫ ∆

s
L̃uq

′′ (u− s) du+ Lsq
′ (0)− L̃sq′ (0)

=

∫ ∆

0−
Ludu−∆ + s− Ls +

1

2
= 0, (53)

where we used q′ (0) = −1
2 , q′′ = 1, and L̃ (s) = 1−L (s). Since (53) needs to hold for all s ∈ [0,∆],

it must be the case that Ls = A+ s for an appropriate constant A. To determine A, we subsitute

Ls = A+ s into (53) and solve for A to obtain

A =
1−∆

2
.

It is immediate that the standardized portfolio corresponding to the solution L we computed

is L∗ of (14).

44



Using the variance-minimizing portfolio inside (52), implies after several simplifications, that

Q = 1
12 (1−∆)3 and hence cov

(
Ds,

∫ ∆
0− DudLu

)
= Qσ2 = ω (∆) . Accordingly,

V ar

(∫ ∆

0−
DudLu

)
= cov

(∫ ∆

0−
DsdLs,

∫ ∆

0−
DudLu

)
=

∫ ∆

0−
cov

(
Ds,

∫ ∆

0−
DudLu

)
dLs

= ω(∆)

∫ ∆

0−
dLs = ω (∆) .

With Lemma 2 in hand it is possible to confirm that the allocations and prices of Proposition

1 constitute a symmetric equilibrium — assuming that one exists. We already argued that the all

agents choose the same standardized portfolio (as agent ∆
2 ). Furthermore, since in a symmetric

equilibrium all agents must hold the same allocation of bonds, clearing of the bond market requires

wfi = 0 for all i. By equation (20), wfi = 0 is supported as an optimal choice for an investor only if

Pi = P is given by (17). Similarly, in light of (21), equation (16) is a necessary optimality condition

for the interval ∆∗. Since the values of P and ∆∗ implied by (17) and (16) are unique, they are

necessarily the equilibrium values of P and ∆∗ that characterize a symmetric equilirium.

Since the choices ∆∗, wfi = 0, and G
(i)
i+j = L∗j are optimal given prices Pi = P, it remains

to show that markets clear. We already addressed bond-market clearing. To see that the stock

markets clear, we start by noting that, since Pi = W0,i = P for all i, the market clearing condition

amounts to
∫
i∈[0,1) dG

(i)
j = 1. We have

∫
i∈[0,1) dG

(i)
j =

∫
i∈[0,1) dL

∗
j−i =

∫
j∈[0,1) dL

∗
j = 1.

Proof of Proposition 2. Let w∗ (P ) denote the set of optimal wfi solving the maximization

problem (19) when the price in all markets is P. We first note that the assumption that no symmetric

equilibrium exists implies that there exists no P such that 0 ∈ w∗(P ). (If such a P existed, then

we could simply repeat the arguments of Proposition 1 to establish the existence of a symmetric

equilibrium with price Pi = P, and interval choice ∆i = ∆∗(P )).

We next show that since there exists no P such that 0 ∈ w∗(P ), it follows that w∗(P ) can-

not be single-valued for all P. We argue by contradiction. Suppose to the contrary that w∗(P ) is

single-valued. Since the theorem of the maximum implies that w∗(P ) is a upper-hemicontinuous

correspondence continuous function, it follows that w∗(P ) is actually a continuous function. In-

spection of (19) shows that w∗(1) = 1. Moreover, as P → −∞, the optimal solution to (19) subject

to the constraint (7) becomes negative: w∗ (−∞) < 0. Then an application of the intermediate

value theorem gives the existence of P such that w∗ (P ) = 0, a contradiction.

Combining the facts that a) there exists no P such that 0 ∈ w∗(P ), b) w∗(P ) is multi-valued for

at least one value of P , and c) w∗(P ) is upper-hemicontinuous, implies that there exists at least one

P such that {w1, w2} ∈ w∗(P ) with w1 > 0 and w2 < 0. An implication of the necessary first-order

condition for the optimality of the interval choice ∆∗ (P ) is that ∆∗ (P ) is also multi-valued with

∆1 < ∆2. Furthermore, since prices in all locations are equal, the (standardized) optimal portfolio

of an agent choosing ∆k is the variance-minimizing portfolio of Proposition 1, denoted L∗,k.
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From this point onwards, an equilibrium can be constructed as follows. By definition, the

tuples
{

∆1, w1, dL
∗,1} and

{
∆2, w2, dL

∗,2} are optimal. Hence it only remains to confirm that asset

markets clear. Define π ≡ − w2
w1−w2

∈ (0, 1). By construction, πw1 + (1− π)w2 = 0 and, therefore,

if in every location π agents choose
{

∆1, w1, dL
∗,1} and the remaining fraction (1− π) choose{

∆2, w2, dL
∗,2} , then the bond market clears by construction. To see that the stock markets clear,

we start by noting that, since Pi = W0,i = P , the market clearing condition for stock i amounts to

π

∫
[0,1]

dL∗,1j−i + (1− π)

∫
[0,1]

dL∗,2j−i = 1,

which holds because L∗,kj for k ∈ {1, 2} is a measure on the circle.

Remark 1 The existence proof of an asymmetric equilibrium (when a symmetric equilibrium fails

to exist) obtains whether the leverage constraint binds or not for some subset of agents.

Lemma 3 Consider an investor located at i /∈
[
−k

2 ; k2
]
, and therefore investing in markets [i −

∆̄
2 , i + ∆̄

2 ]. Suppose that P (x) is continuously differentiable everywhere on [i − ∆̄
2 , i + ∆̄

2 ]. With

dX
(i)
l the number of shares purchased on the account of an investor at i in market l and j ≡ i− ∆̄

2 ,

X
(i)

j+∆̄
=

1

γω
(
∆̄
) [1− 1− ∆̄

2

(
Pj + Pj+∆̄

)
−
∫ j+∆̄

j
Pu du

]
. (54)

Furthermore, the function X is given by

X
(i)
j+l =

P ′j+l
γσ2

+X
(i)

j+∆̄

1−∆ + 2l

2
+

1

1− ∆̄

Pj+∆ − Pj
γσ2

. (55)

If an investor is located at i ∈ [−k
2 ,

k
2 ] and only invests in market i then the respective demand for

risky asset i is given by

X̂
(i)
i =

1

γω (0)
(1− Pi) . (56)

Proof of Lemma 3. Notice that optimization problem of agent i is equivalent to

max
X

Pi +

∫ j+∆̄

j−
(1− Pu) dXu −

γ

2
V ar

(∫ j+∆̄

j−
DudXu

)
(57)

Thus, the first-order condition requires that

γ cov

(
Ds,

∫ j+∆̄

j−
DudXu

)
= 1− Ps (58)

for all s ∈
[
j, j + ∆̄

]
. Letting q (d) be defined as in Lemma 2 we can rewrite (58) as∫ s

j−
q (s− u) dXu +

∫ j+∆

s
q (u− s) dXu =

1− Ps
γσ2

. (59)
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Let X̃ (s) = X
(
j + ∆̄

)
−X (s) and integrating by parts we obtain∫ s

j−
q (s− u) dXu = X (s) q (0)−X

(
j−
)
q (s) +

∫ s

j
Xuq

′ (s− u) du (60)∫ j+∆

s
q (u− s) dXu = X̃ (s) q (0)− X̃

(
∆̄
)
q (∆− s) +

∫ j+∆̄

s
X̃uq

′ (u− s) du (61)

Substituting (60) and (61) into (59), recognizing that q (0) = 1
12 , X (j−) = 0, and X̃

(
j + ∆̄

)
= 0,

we obtain

1

12
X
(
j + ∆̄

)
+

∫ s

j
Xuq

′ (s− u) du+

∫ j+∆̄

s
X̃uq

′ (u− s) du =
1− Ps
γσ2

. (62)

Since this relation must hold for all s, we may differentiate both sides of (62) to obtain∫ s

j
Xuq

′′ (s− u) du−
∫ j+∆̄

s
X̃uq

′′ (u− s) du+Xsq
′ (0)− X̃sq

′ (0) = − P
′
s

γσ2
. (63)

This equation holds for all s ∈ (j, j + ∆̄). Noting that q′′ = 1, q′ (0) = −1
2 , X̃ (s) = X

(
j + ∆̄

)
−

X (s), and using (63) to solve for Xs yields

Xs =

∫ j+∆̄

j
Xudu+

(
s− j +

1

2
− ∆̄

)
X
(
j + ∆̄

)
+
P ′s
γσ2

. (64)

Integrating (64) from j to j + ∆̄ and solving for
∫ j+∆̄
j Xudu leads to∫ j+∆̄

j
Xudu =

1

1− ∆̄

[
X
(
j + ∆̄

)
∆̄

(
1− ∆̄

2

)
+
P
(
j + ∆̄

)
− P (j)

γσ2

]
, (65)

so that

Xs =
1

1− ∆̄

[
X
(
j + ∆̄

)
∆̄

(
1− ∆̄

2

)
+
P
(
j + ∆̄

)
− P (j)

γσ2

]
+(

s− j +
1

2
− ∆̄

)
X
(
j + ∆̄

)
+
P ′s
γσ2

. (66)

Evaluating (62) at s = j + ∆̄, and noting that q′ (s) = −1
2 + s leads to

1

12
X
(
j + ∆̄

)
+

∫ j+∆̄

j
Xu

[
−1

2
+
(
∆̄− u

)]
du =

1− Pj+∆̄

γσ2
. (67)

An implication of (64) is that Xu = Xj +
P ′u−P ′j
γσ2 + X

(
j + ∆̄

)
u. Using this expression for

Xu inside (67), carrying out the requisite integrations and using integration by parts to express∫ j+∆̄
j

(
P ′u
γσ2

)
u du =

Pj+∆̄

γσ2 (j + ∆̄)− Pj
γσ2 j −

∫ j+∆̄
j

Pu
γσ2du, leads (after some simplifications) to

X
(
j + ∆̄

)( 1

12
+

∆̄3

6
− ∆̄2

4

)
−

∆̄
(
1− ∆̄

)
2

(
Xj −

P ′j
γσ2

)
−
Pj+∆̄ − Pj

2γσ2
+

∫ j+∆̄

j−

Pu − Pj
γσ2

du

=
1− P∆̄

γσ2
. (68)
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Finally, evaluating (64) at j gives(
Xj −

P ′j
γσ2

)
=

∫ j+∆̄

j
Xudu+

(
1

2
− ∆̄

)
X
(
j + ∆̄

)
. (69)

Equations (65), (68), and (69) are three linear equations in three unknowns. Solving forX(j+∆̄)

and using the definition of ω
(
∆̄
)

leads to (54). Equation (66) simplifies to (55). Finally, (56) is a

direct consequence of (58) when ∆̄ = 0.

Proof of Proposition 3. For any j ∈
(
k
2 ,

1
2

]
and l ∈

(
− ∆̄

2 ,
∆̄
2

)
, we have from Lemma 3:

X
(j)

j− ∆̄
2

=
P ′
j− ∆̄

2

γσ2
+
P
j− ∆̄

2

− P
j+ ∆̄

2

γσ2(1−∆)
+

1−∆

2
X

(j)

j+ ∆̄
2

dX
(j)
j+l =

(
P ′′j+l
γσ2

+X
(j)

j+ ∆̄
2

)
dl

X
(j)

j+ ∆̄
2

−X(j)(
j+ ∆̄

2

)− = −
P ′
j+ ∆̄

2

γσ2
−
P
j− ∆̄

2

− P
j+ ∆̄

2

γσ2(1−∆)
+

1−∆

2
X

(j)

j+ ∆̄
2

.

Specialize the first equation to j = 1
2 + ∆

2 , the second to j = 1
2 − l for all l ∈

(
− ∆̄

2 ,
∆̄
2

)
, and the

third to j = 1
2 −

∆
2 and aggregate to obtain the total demand for asset 1

2 :

1 =
1−∆

2
X

( 1
2

+ ∆̄
2

)
1
2

+∆̄
+

1−∆

2
X

( 1
2
− ∆̄

2
)

1
2

+

∫ ∆̄
2

− ∆̄
2

X
( 1

2
−l)

1
2
−l+ ∆

2

dl +
P ′′1

2

γσ2
∆ +

P 1
2
−∆̄ + P 1

2
+∆̄ − 2P 1

2

2γσ2(1−∆)
.

Suppose now that Pj ≥ 1 − γω(∆̄) on
[

1
2 −∆, 1

2 + ∆
]
, with strict inequality on a positive

measure set. It then follows from equation (54) that X
(j)

j+ ∆
2

≤ 1, so that

0 <
P ′′1

2

γσ2
∆ +

P 1
2
−∆̄ + P 1

2
+∆̄ − 2P 1

2

2γσ2(1−∆)
.

This inequality contradicts the assumption that P is maximized at 1
2 .

Proof of Proposition 4. We adopt a guess-and-verify approach. We start by noting that the

beginning-of-period wealth of investor i at time t+ 1 is Wt+1,i ≡
∫ 1

0 (Pt+1,j +Dt+1,j) dX
(i)
t,j +X

(i)
B,t.

We then conjecture that, as long as

F (∆) =
M

γ
+
γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (∆t) (70)

for some M > −γ2

2

(
r

1+r−ρ

)2
(1− ρ)2 ω (∆u), (ii) and (iii) obtain. We show at the end that the

function F can be chosen to ensure (i).
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We also conjecture and verify that investors’ holdings of risky assets X
(i)
t,j coincide with G

(i)
t,j of

Proposition 1, and that their bond holdings equal

X
(i)
B,t = Wt,i − (1 + r)P t,i − rΦt, (71)

where P t,i ≡
∫ 1

0 Pt,jdX
(i)
t,j is the average price that investor i pays for her portfolio. Here, to simplify

notation, we defined Φt ≡ Φ1ω(∆t) + Φ0.

We first ensure that with these postulates markets clear. Clearly, all risky markets clear,

since the holdings of risky assets are the same as in Proposition 1. To show that bond markets

clear, we proceed inductively. First we note that investors are endowed with no bonds at time

zero. Hence
∫ 1

0 X
(i)
B,−1di = 0 and therefore

∫ 1
0 W0,idi =

∫ 1
0 (P0,i +D0,i) di. Next we postulate that∫ 1

0 X
(i)
B,t−1di = 0, so that

∫ 1
0 Wt,idi =

∫ 1
0 Pt,idi +

∫ 1
0 Dt,jdj. Integrating our postulate (71) for X

(i)
B,t

across all investors, we obtain∫ 1

0
X

(i)
B,tdi =

∫ 1

0
Wt,idi− (1 + r)

∫ 1

0
P t,idi− rΦt. (72)

We next note that that (a)
∫ 1

0 Dt,jdj = 1, by construction of the dividend process; (b)
∫ 1

0 Wt,idi =∫ 1
0 Pt,idi+

∫ 1
0 Dt,jdj = r−1−Φt+1, using the induction hypothesis, (40), and (a); and (c)

∫ 1
0 P t,idi =∫ 1

0 Pt,idi = r−1 − Φt. Using these three facts, it follows immediately that the right-hand side of

(72) is zero, so that the bond market clears.

If investors set their bond holdings according to (71), then their budget constraint implies a

consumption of

ct,i = Wt,i −
1

1 + r
X

(i)
B,t − P t,i − Ft. (73)

Using the definition of Wt,i and market clearing condition for bond holdings inside (73), and inte-

grating across i implies that the market for consumption goods clears:
∫ 1

0 ct,idi = 1− Ft.
Having established market clearing given the postulated policies and prices, we next turn to

optimality. Equation (73) implies

ct+1,i − ct,i = Wt+1,i −Wt,i −
1

1 + r

(
X

(i)
B,t+1 −X

(i)
B,t

)
−
(
P t+1,i − P t,i

)
− (Ft+1 − Ft)

=

(
r

1 + r

)
(Wt+1,i −Wt,i) +

r

1 + r
(Φt+1 − Φt)− (Ft+1 − Ft) , (74)

where the second line follows from (71). We next use the definition of Wt,i and (71) to obtain

Wt+1,i −Wt,i =

∫ 1

0
(Pt+1,j +Dt+1,j) dX

(i)
t,j +X

(i)
B,t −Wt,i

=

∫ 1

0
(Pt+1,j +Dt+1,j) dX

(i)
t,j − (1 + r)P t,i − rΦt. (75)

Substituting (75) into (74) and using (40) and (71) leads to

ct+1,i−ct,i =

(
r

1 + r

)[
(1 + φ)

∫ 1

0
Dt+1,jdX

(i)
t,j − (1 + r)φ

∫ 1

0
Dt,jdX

(i)
t,j − 1

]
−(Ft+1 − Ft) . (76)
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Next use the fact Dt+1,j = ρDt,j + (1− ρ) εt+1,j along with φ = ρ
1+r−ρ , (1 + φ) ρ = (1 + r)φ, and

(1 + φ) (1− ρ) = (1− rφ) inside (76) to arrive at

ct+1,i − ct,i =

(
r

1 + r − ρ

)
(1− ρ)

∫ 1

0
(εt+1,j − 1) dX

(i)
t,j − (Ft+1 − Ft) . (77)

Having established (77), the dynamics of agent i’s consumption under our postulate, we next

turn attention to the Euler equations, starting with the bond Euler equation

1 = β (1 + r)Ete
−γ(ct+1,i−ct,i). (78)

Substituting (77) into (78) and noting that
∫ 1

0 (εt+1,j − 1) dX
(i)
t,j is normally distributed with mean

zero and variance ω (∆t) gives

1 = β (1 + r) e
γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(∆t)−γFtEt

(
eγFt+1

)
. (79)

Now suppose that for any r and a given desired distribution Ψ (∆) we set

Ft (∆t; r) =
M

γ
+
γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (∆t) . (80)

Then equation (79) can be written as (39). Since (1 + r)Ee
γ2

2

(
r

1+r−ρ

)2
(1−ρ)2ω(∆)

is equal to 1 when

r = 0 and increases monotonically to infinity as r increases, it follows that there exists a unique

positive r such that equation (39) holds. For that value of r, all investors’ bond Euler equations

are satisfied.

Finally, we need to determine Φt so as to ensure that the Euler equations for risky assets hold,

i.e., that

Pt,j = βEt

[
e−γ(ct+1,i−ct,i) (Pt+1,j +Dt+1,j)

]
. (81)

To that end, we use (40) and (37) to express (81) as

1

r
−Φt+φ(Dt,j−1) = βEt

[
e−γ(ct+1,i−ct,i)

(
1

r
− Φt+1 + (1 + φ) (ρDt,j + (1− ρ) εt+1,j)− φ

)]
. (82)

We next note that

βEt

[
e−γ(ct+1,i−ct,i)

]
(1 + φ) ρDt,j =

(1 + φ) ρ

1 + r
Dt,j = φDt,j (83)

using (78). Equation (83) simplifies (82) to

1

r
− Φt − φ = βEt

[
e−γ(ct+1,i−ct,i)

(
1

r
− Φt+1 + (1 + φ) (1− ρ) εt+1,j

)]
=

1

r(1 + r)
− βEt

[
e−γ(ct+1,i−ct,i)Φt+1

]
+

1

1 + r
(−φ+ (1 + φ) (1− ρ)) (84)

+ (1 + φ) (1− ρ)βEt

[
e−γ(ct+1,i−ct,i)(εt+1,j − 1)

]
.
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Using (77), Stein’s Lemma, the fact that cov
(∫ 1

0 (εt+1,j − 1) dX
(i)
t,j , εt+1,j

)
= ω (∆) (see Proposition

1), and (78) implies

βEt

[
e−γ(ct+1,i−ct,i)εt+1,j

]
=

1− γ r
1+r−ρ (1− ρ)ω (∆t)

1 + r
. (85)

Substituting (85) into (84) gives linear equations in Φ0 and Φ1, solved by (41), respectively

(42).

To complete the proof of the claim that ∆t is chosen optimally, we provide an explicit example

of a family of functions for Ft (∆) that has the desired properties. To start, we compute the value

function of an investor adopting the policies of Proposition 4. Equation (78) along with (77) imply

that

V (Wt,i,∆t) = −1

γ

∑
t≥0

βtEt
[
e−γct,i

]
= −1

γ
e−γc0,i

∑
t≥1

βtEt

[
e−γ

∑t
m=0(ct+1,i−ct,i)

]
= −1

γ
e−γc0,i

∑
t≥0

(1 + r)−t = − 1

γr
e−γc0,i .

In turn equations (71), (73), and (80) imply that

V (Wt,∆t) = − 1

γr
e−

γr
1+r

Wt,i+z(∆t), (86)

where zt (∆t) ≡ rΦt
1+r −M + γ2

2

(
r

1+r−ρ

)2
(1− ρ)2 ω (∆t) .

Next we suppose that we no longer impose that the investor choose ∆ = ∆t, (where ∆t is

the time-t random draw of ∆ that we imposed in Proposition 4) . Instead ∆ is chosen optimally.

However, prices are still given by Pt,j (∆t, Dt,j) from equation (40). We will construct a function

κtgt (∆) that renders the choice ∆ = ∆t optimal at the total cost specified in (80).

Throughout we let X
(i)
t (∆; ∆t) denote the optimal number of total risky assets chosen by

investor i, and assuming that that investor chooses ∆ and prices are given by Pt,j (∆t, Dt,j) . For

future reference, we note that by construction of the price function Pt,j (∆t, Dt,j) it follows that

X
(i)
t (∆t; ∆t) = 1. Using (86) the first order condition characterizing an optimal ∆ is

F ′t (∆) = h (∆; ∆t) ,

where

h (∆; ∆t) = − 1

1 + r

γ

2

(
r

1 + r − ρ

)2

(1− ρ)2
(
X

(i)
t (∆; ∆t)

)2
ω′ (∆) . (87)

Next we fix a value of ∆t and we simplify notation by writing h (∆) rather than h (∆; ∆t) . We

also let q (x) denote some continuous function with q (0) = 1, q (x) > 1 for x > 0. Let η ∈ [0, 1],

take some positive (and small) ε < ∆t
2 , and consider the following function

F ′t (∆) =


∆
ε ηh (ε) for ∆ ≤ ε
ηh (∆) for ∆ ∈ (ε,∆t − ε]

ηh (∆t − ε) ∆t−∆
ε + h (∆t)

∆−∆t+ε
ε for ∆ ∈ (∆t − ε,∆t]

h (∆) q(∆) for ∆ > ∆t + ε.

. (88)
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By construction, F ′t (0) = 0, and F ′t (∆) is continuous and increasing in ∆. More importantly,

F ′t (∆t) = h (∆t) , and hence ∆ = ∆t satisfies the necessary first order condition (87). Moreover,

since F ′t (∆) < (>)h (∆) for ∆ < (>)∆t, it follows that ∆ = ∆t is optimal for any ε > 0 and

η ∈ [0, 1]. Finally,

lim
ε→0

∫ ∆t

0
F ′t (∆) = η

∫ ∆t

0
h (x) dx > 0. (89)

Now suppose that nature draws ∆t = ∆u > 0. By choosing M that is sufficiently close to

−γ
2

(
r

1+r−ρ

)2
(1− ρ)2 ω

(
∆
)

it follows that

0 <
M

γ
+
γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (∆u) <

∫ ∆u

0
h (x) dx. (90)

Combining equations (89) and (90) it follows that for sufficiently small ε > 0, there exists some

η ∈ [0, 1], so that∫ ∆u

0
F ′t (x) dx =

M

γ
+
γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (∆u) > 0. (91)

Hence, when ∆t = ∆u the cost function κtgt (∆) renders ∆ = ∆u, while also satisfying (80). The

same argument implies that for any value of ∆t that satisfies

0 <
M

γ
+
γ

2

(
r

1 + r − ρ

)2

(1− ρ)2 ω (∆t) <

∫ ∆t

0
h (x) dx, (92)

there exists η ∈ [0, 1] and sufficiently small ε > 0 such that the optimal ∆ coincides with ∆t, and

(80) holds. Continuity of ω (∆t) and of
∫ ∆t

0 h (x) dx in ∆t implies that as long as ∆ is sufficiently

close to ∆u, there always exists η ∈ [0, 1] and ε > 0 (both depending on the random draw ∆t) such

that ∆ = ∆t is optimal and (80) holds.

Proof of Proposition 5. Parts (i)–(iii) are proved in the main body of the text. Part (iv)

comes down to noticing that

cov (ez, z) > 0 (93)

for any random variable z — in particular, for z = ω(∆). The second statement of (iv) follows

from the first and Jensen’s inequality applied to the convex function ω.
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