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Abstract

We analyze a dynamic market with short lived adverse selection and correlated values. Un-

informed buyers compete inter- and intra-temporarily for a good that is sold by an informed

seller who is suffering a liquidity shock. We contrast a transparent (public price offers) with

an opaque (private price offers) information structure. First, we show that with private offers

a pure strategy equilibrium is not sustainable if the seller is patient enough. Moreover, we can

fully characterize the equilibrium in both information structures in a three period model if the

buyers’ valuations are a linear function of the seller’s costs and costs are uniformly distributed.

Finally, we derive that in this setting, any equilibrium with private offers is weakly more efficient

than the unique pure strategy equilibrium with public offers.

1 Introduction

We consider a problem of an owner of an indivisible durable asset who suffers a liquidity shock. If

information about the value of the asset was symmetric, the owner would sell the asset to a buyer not

facing a liquidity shock and who would hence have a higher valuation. The problem is that usually

the owner of the asset has better information about its quality. Any potential buyer therefore faces

an adverse selection problem. As first stressed by Akerlof [1], if there is only one opportunity to

trade, the buyer is only willing to pay his expected valuation of the asset. However, the highest

seller type may not want to accept this price, if the adverse selection problem is sufficiently strong.

Hence, only low type sellers sell in equilibrium, even though there are positive gains from trade for

all types. In a dynamic setting, in which sellers get several chances to sell their good, this logic of

a lemons market leads to an inefficient delay in trade.
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In this paper we analyze how the dynamic market (in)efficiency is affected by price disclosure

policy in the market. We consider two opposite information structures, one in which buyers ob-

serve past prices and one in which they do not (they observe the time on the market in both cases).

Following the recent financial crisis, there has been a lot of discussion and even legislation geared

towards moving trades that had been taking place in opaque over the counter markets into more

transparent exchanges. For example, one of the declared goals of the Dodd–Frank Wall Street

Reform and Consumer Protection Act, which came into effect in 2010, is to increase transparency

in the financial system. In Europe, the European Commission has recently announced that it is

discussing proposals to revise the Markets in Financial Instruments Directive (MiFID) for more

efficient, resilient and transparent financial markets in Europe. Oftentimes, transparency is consid-

ered to be welfare enhancing because it is a necessary condition for perfect competition, it decreases

uncertainty and it increases public trust. Indeed, transparency has many different aspects and it is

a complex question whether transparency benefits efficiency. In our setting, we demonstrate that

over the counter markets can actually create higher welfare than transparent markets.

We examine a game theoretic model in discrete time with a long-lived, privately-informed seller

and a competitive market of buyers in every period (modeled as a number of short-lived buyers

competing in prices in every period). In our model, the adverse selection problem is short lived

since we assume that at some date T the seller’s type is publicly revealed. This could arise because

there are some studies needed to determine the quality of the asset but these studies take time to

be conducted. Examples for such studies are recent stress tests of financial institutions, as well

as land with mining or oil potential which is undergoing a geological survey where the results are

revealed at some future date. Another example is of an entrepreneur who can over time prove the

value of its idea.

What makes the markets operate differently in these two information regimes? In a transparent

market, buyers can observe all previous price offers and thereby learn about the quality of the good

through two channels: the number of rejected offers (time on the market) and the price levels that

have been rejected by the seller. By rejecting a high offer, the seller can send a strong signal to

future buyers that she is of a high type. In contrast, in an opaque over the counter market, in

which buyers cannot observe previously rejected prices, the seller signals only via delay. Hence,

when offers are made publicly, the seller has a much higher incentive to reject a high offer than with

private offers. Put differently, the supply curve faced by the buyer is more elastic with private offers.

This difference in seller’s responses to price offers drives the differences in equilibrium dynamics

that we describe in this paper.

Our main contribution is to understand these driving forces in detail, to characterize the equi-

librium outcomes in settings with opaque and transparent information structures and to compare

their welfare implications. We first analyze pure strategy PBEs with public offers and show their
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existence for general discount factors. Then, we show that there are no pure strategy PBEs with pri-

vate offers if the discounting between two periods is small enough because buyers have an incentive

to deviate to higher prices due to the extremely elastic supply curve.1

Since there are no pure strategy equilibria with private offers for large discount factors, and in

either game that there can be multiple equilibria, welfare analysis in the general setting is hard or

impossible. Hence, to provide some intuition about welfare consequences of information disclosure,

we consider a benchmark model where buyer value is a linear function of the seller’s value, types

are distributed uniformly, and there three periods (two opportunities to trade while information is

asymmetric). In this setting, there is a unique PBE with public offers. In case of private offers, we

characterize all (mixed-strategy) equilibria. This result paves the way to welfare comparisons. We

show that any equilibrium with private offers has a higher expected welfare than the unique PBE

with public offers.

In other words, we show that transparency can hurt efficiency in markets with adverse selection

problems. It suggests that governments should take these equilibrium effects for dynamic interac-

tions into account when regulating financial or other markets. In particular, at times such as the

recent financial crisis it might be optimal to set up over the counter markets or non-transparent

exchanges for the toxic asset classes.

Our result about existence of pure strategy equilibria in the private offers case is related to the

result in Kremer and Skrzypacz [11] who study a dynamic version of the education signaling model

in a finite horizon model with the type being (partially or fully) revealed in the last period and with

all the offers being private. They show that there do not exist fully separating equilibria in a game

with a continuum of types or with a finite number of types if the length of periods is short enough.

We extend their reasoning to show that in our model with interdependent valuations pure strategy

equilibria do not exist if the discount factor is high enough or the periods are short enough.

Moreover, our paper is related to Hörner and Vieille [7] (HV from now on) who also analyze

a dynamic lemons market with publicly and privately observable offers. There are two important

differences in the setup. First, we consider a market that is liquid and competitive by assuming that

every period two or more buyers make offers. In HV there is a monopsonist buyer in every period,

which captures thin markets or search frictions. Second, we assume that private information is

short-lived while HV assume it is infinitely lived (we study a finite horizon while they study an

infinite horizon game). There is also a difference in questions/results. HV show that with private

offers there is a positive probability of trade in every period and with probability 1 trade eventually

happens. Moreover, if the discount factor is high enough, no buyer plays a pure strategy (other

1With the same logic we can show that holding the time horizon T fixed, if we consider a liquid market without

seller commitment by taking the length of periods towards zero, there is no pure strategy PBE in the game with

private offers.
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than possibly the first buyer, see HV Proposition 7). With public offers, trade only happens in the

first period and the probability of trade is uniformly bounded away from 1. As a result, for high

discount factors, markets with private offers are more efficient. We show a similar result that with

private offers and high enough discount factor, the equilibrium is in mixed strategies. However,

the equilibrium prices with public offers are quite different than in HV: for example with linear

valuations and uniform distribution of types there would be positive probability of trade in every

period. In terms of welfare comparisons, instead of an asymptotic result for high discount factors

(which would be less interesting in our setup since with a finite horizon all information regimes

are asymptotically efficient), we compare welfare in the benchmark model for any discount factor.

Finally, we are able to provide a complete characterization of equilibria in this benchmark model.

Similar questions are also addressed by Kaya and Liu [9] who consider a setting with independent

valuations (as opposed to interdependent valuations in this paper), and short-lived monopsonis-

tic buyers (as in HV). They as well compare the equilibrium outcomes in transparent and non-

transparent setups. In both information structures, they characterize unique equilibrium outcomes

and show that price paths are deterministic (pure strategy equilibria in both information regimes).

They show that given some regularity assumptions, in the opaque market, trade happens faster

and prices are lower.

Kim [10] compares three different information structures in a continuous time setting in which

many sellers and buyers, who arrive over time at a constant rate, match randomly. In every match,

the buyer makes a price offer that the seller can accept or reject. The type space of the seller

is binary. Instead of looking at observability of past offers, steady state equilibria in settings in

which buyers do not observe any past histories are compared with settings in which the time on

the market or the number of past matches can be observed by buyers. The welfare ordering is not

as clear cut as in our paper. It is shown that with small frictions, it is optimal if only the time on

the market is observable while with large frictions the welfare ordering can be reversed.

For repeated first-price auctions, Bergemann and Hörner [2] consider three different disclosure

regimes and they show that if bidders learn privately about their win, welfare is maximized and

information is eventually revealed. An analysis of the Spence signaling model is examined by

Nöldeke and Van Damme [13] who assume public offers and Swinkels [16] who focuses on private

offers. Welfare is higher with private offers (if offers are sufficiently frequent) because the equilibrium

with private offers avoids any costly signaling (there is full pooling at t = 0, which is not possible

in the lemons model). There are also many papers that explore the role of transparency different

from price transparency. These models are mostly in static environments. Pancs [14] illustrates

how it can be optimal for stock exchange to allow for iceberg or hidden offers introducing latent

buyers who can be attracted by such offers. Likewise, Buti and Rindi [3] show why traders with

different preferences choose different levels of information disclosure when they make offers.
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Besides our contribution regarding the implications of transparency, our paper also contributes

to the literature on dynamic lemons markets in general. One of the most recent works by Deneckere

and Liang [5] considers an infinite horizon bargaining situation, i.e. one long-lived buyer and one

long-lived seller, with correlated valuations. They show that even in the limit as the discount factor

goes to one, there can be an inefficient delay of trade unlike predicted by the Coase conjecture,

and they are able to characterize the limiting equilibrium outcome. Janssen and Roy [8] obtain

similar results with a dynamic competitive lemons market with discrete time, infinite horizon and

a continuum of buyers and sellers. While in their model both market sides compete, we assume

that there is only one seller. Unlike most previous papers that consider slightly different market

structures, we are able to almost fully characterize equilibrium mixed strategies of buyers with

private offers. This makes it possible to understand these kinds of equilibria in more detail. For

example, we show that non-offers (i.e. offers rejected by all types) in period one are always part of

an equilibrium.

While we focus our discussion on the welfare implications of different information structures,

the literature is also concerned with many other interesting questions in similar settings to ours.

For example Daley and Green [4] analyze the effect of news on a continuous time lemons market

with one risk-neutral seller who faces a competitive crowd of sellers, where offers are assumed to

be public and the asset can have only two values. They have information being gradually diffused

rather than it being released at some predetermined time as in our paper. The impact of temporary

closure of the market in a similar setting as in this paper with public offers, is considered by Fuchs

and Skrzypacz [6]. However, none of these works assumes private price offers as we do in this work.

Finally, our paper is also related to the recent literature on the design of optimal government

intervention in markets with adverse selection and investment decisions inspired by the classical

paper Myers and Majluf [12] on security design. Tirole [17] and Philippon and Skreta [15] both

consider models with a static market with adverse selection where the government can intervene

ex ante by offering contracts before the firms enter the market. Similar to our model, the rejection

of the government offer signals to the market that a firm is a high type. The government can skim

away some bad firms (by offering debt buybacks/equity injections and guarantees, respectively)

and thereby improve market efficiency.

Our paper is organized as follows. Section 2 formally introduces the model, the equilibrium

notion, the Reverse-Skimming Property and its implications. Then, the public offer setting is

fully analyzed in section 3. Section 4 first establishes that there are no pure strategy equilibria

with private offers if sellers are patient enough, develops some general properties of mixed strategy

equilibria in that case and then characterizes the mixed strategy equilibria in the linear example

with three periods. Section 5 presents the welfare implications of both information structures.

Finally, section 6 discusses the robustness of our results.
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2 Model

2.1 General Setup

A seller has an asset that she values at c where c ∈ [0, 1] is distributed according to the cumulative

distribution function (cdf) F (c) with a strictly positive density f (c) > 0 and no mass points (the

domain [0, 1] is a normalization). One can think of the asset giving an expected cash flow each

period and c being its present value for the seller.2 The seller’s type c is persistent over time and

her private information. Every period t ∈ {1, 2, ..., T}, for 2 < T < ∞, two short lived buyers,

whom we label by i = 1, 2, make simultaneous price offers pit to purchase the asset.3 The value

of the asset for the buyers is given by v (c). Gains from trade v (c) − c are strictly positive for all

c ∈ [0, 1) and v (1) = 1. 4 Initially, we only impose v (c) to be differentiable and increasing in c,

i.e. v′(c) > 0 . Later we focus on v (c) = Ac+ B and uniformly distributed c.5 The game ends as

soon as the good has been sold. If trade has not taken place by period T , the private information

of the seller is revealed before the last buyers make their offers.

The payoff relevant outcome of this game can be described by a quadruple (c, t, i, p), where c

is the realized type, t is the time at which agreement is reached, i is the buyer who receives the

good and p the price at which the good is traded. All players are risk neutral. The seller discounts

payoffs with a discount factor δ ∈ (0, 1). Given an outcome (c, t, i, p), the seller’s period 1 present

value payoff is (1− δt−1)c+ δt−1p; a buyer’s payoff is v(c)− p if he gets the good and 0 otherwise.

Without loss of generality, we restrict prices to be in [0, v (1)] , since it is a dominant strategy for

the seller to reject any negative price, and for any buyer it is a dominated strategy to offer any

price higher than v (1) that has a positive probability of being accepted.

We explore two setups that differ in the information sets of the buyers in terms of what they

observe about past offers. In the public offers case, we assume that period t > 1 buyers observe

all past rejected offers {ps}s=t−1
s=1 . A period t buyer’s strategy, ρBit , maps a history of prices to a

probability measure on [0, v(1)] (the domain of prices). A strategy for the seller is a sequence of

acceptance decisions (ρSt )Tt=1 that depends on her type as well as on past and current offers. That

is, ρSt : [0, 1]×[0, v (1)]2×t → {(η1, η2) : η1 + η2 ≤ 1} , where ηi represents the probability with which

the seller accepts buyer i’s offer in period t.

2Alternatively, and mathematically equivalently, c can be thought as the cost of producing the asset.
3The analysis is the same if there are more than two buyers since the buyers compete in a Bertrand fashion.
4We assume v (1) = 1 only to rule out the possibility of trade ending before T. This allows us to avoid making

assumptions about off-equilibrium beliefs if the seller does not sell by t even though in equilibrium he is supposed to.

If v(1) > 1 but T is small enough that not all types trade in equilibrium, our analysis still applies.
5In the discounted cashflow interpretation of valuations the proportional valuation v (c) = αc for α > 1 follows

naturally. In that case we need to assume c ∈ [cmin, cmax] where cmin > 0 in order to ensure that v (c) > c for all

c < cmax. The role of this assumption is equivalent to the requirement that B > 0, which as we show in Section 6 is

important in order to guarantee trade with positive probability before period T in equilibrium.
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With private offers, we assume that period t buyers are aware that the seller has rejected all

offers in periods s < t but, crucially, the buyers do not know what these offers actually were. The

generation t buyers can condition their offers on their information set. We denote the strategies

of generation t buyers by σBit which is a probability measure on [0, v(1)]. With a slight abuse of

notation we also denote the [0, v(1)]-valued random variable that represents buyer i’s strategy by

σBit . A strategy for the seller is of the same form as with public offers, but we will denote them in the

private offer setting by σSt . We will assume that the seller responses are buyer identity independent

that is, conditional on receiving the same price offer, she will treat both buyers equally. Given

the seller’s strategy and their information set, the buyers update their beliefs about the current

distribution of types and we denote the distribution of seller types, that the period t buyer i

(i ∈ {0, 1}) believes to be facing at the time of making their offer, by F it (c).

2.2 Equilibrium Notion

We will be interested in characterizing the appropriately extended notion of perfect Bayesian equi-

librium (PBE) for our setting. Essentially, this entails a sequence of pricing strategies for the two

buyers, {(ρB1
t , ρB2

t )}t and {(σB1
t , σB2

t )}t, for public and private offers, respectively, acceptance rules

{ρSt }t and {σSt }t, respectively, and the buyers’ beliefs {F 1
t , F

2
t }t satisfying the following three con-

ditions:

1) Any price offer in the support of ρBit and σBit must maximize the buyer’s payoff conditional on

the seller’s acceptance rule, the other buyer’s strategy ρ
Bj
t and σ

Bj
t , respectively, and his belief

F it (c).

2) The buyer’s beliefs are updated according to Bayes rule taking the seller’s and the other buyer’s

strategies as given.6 Hence, in particular, F i1(c) = F (c) for i ∈ {1, 2}. If the seller accepts an offer

that no remaining seller type was supposed to accept in equilibrium, we do not need to worry how

beliefs evolve off-equilibrium since the game ends in that case. Moreover, by the assumption that

v(1) = 1, there is a mass of sellers remaining with positive probability in every period in equilib-

rium. This implies we do not have to consider the off-equilibrium case in which all types should

have traded but the seller is still around.7 Furthermore, note that this implies that in equilibrium,

both buyers in any period t must have the same beliefs Ft ≡ F 1
t = F 2

t .

3)The seller’s acceptance rule maximizes her profit taking into account the impact of its choices on

the agents updating and the future offers she can expect to follow as a result.

6If the offer is public the updating is also conditional on the offered amount.
7We discuss the case where v (1) > 1 in Section 6.
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2.3 Preliminaries

As in other dynamic games, the seller’s equilibrium acceptance rule in each period turns out to be

a cutoff rule such that sellers with valuations above a cutoff kt(p) reject a price offer p in period t

while sellers with valuations less than kt(p) accept it. In the bargaining literature, it is the better

types that accept first and this property is known as the skimming property. Since here it is the

worse types that trade first, we call it reverse-skimming instead.

Lemma 1 (Reverse-Skimming Property) In any equilibrium with either type of information struc-

ture, for any period t and for any price p, there exists a cutoff type kt(p) so that a seller of type c

accepts the offer p in period t if c < kt(p) and rejects p in period t if c > kt(p).

Note that this lemma holds independently of the information structure in place. The intuition

for the lemma is straight forward. If a seller of type c is willing to accept a price that induces a

given future price path, then all sellers with c′ < c prefer to buy today to buying at a future price.

From now on, we will denote the cdf of the cutoff kt(pt) by Kt : [0, 1] → [0, 1], where pt is the

random variable representing the highest offer in period t, i.e. with public offers pt = maxj=1,2 ρ
Bj
t

and with private offers pt = maxj=1,2 σ
Bj
t , respectively.

Thanks to the Reverse-Skimming Property, we can, write a buyer’s expected profit conditional

on receiving the good if trade takes place as

Πt(p; ft) =

∫ kt(p)

0
(v(c)− p) ft(c)dc, (1)

if the belief about the remaining types of the sellers is distributed according to a probability density

function ft. We focus on this conditional expected profit because it is independent of the other

buyer’s strategy. 8 Note, however, that the actual expected profit of the buyer is the probability

that he receives the good times Πt(p; ft).

Furthermore, in equilibrium, buyers’ beliefs about the remaining types are given by mixtures of

truncations of the prior distribution F of c. With public offers, all past prices are observable, i.e.

ft(c) = f1(c)
1−F1(kt−1(p)) where p is the highest price chosen by buyers up to period t− 1. In contrast,

with private offers, it is given by the belief of period t buyers about the strategies of buyers

in previous periods. Nevertheless, also in this case, the Reverse-Skimming Property guarantees

that equilibrium beliefs about the remaining types at the beginning of period t have a relatively

simple structure. Given (possibly mixed) equilibrium strategies of previous buyers σBi1 , . . . , σBit−1,

the random variable kmt−1 ≡ max{k1(maxi σ
Bi
1 ), . . . , kt−1(maxi σ

Bi
t−1)} represents the cutoff at the

8Πt is also equal to the total expected buyers’ surplus, which is collected by one of the agents if he has the higher

bid.
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beginning of period t. Let us denote its cumulative distribution function by Km
t−1. In equilibrium,

it must hold that

ft(c) = ft[K
m
t−1](c) ≡

∫ c

0

f1(c)

1− F1(k̃)
dKm

t−1(k̃).

With private offers, the price history does not affect future buyers’ beliefs and hence it does not

affect their strategies. This makes it relatively straight forward to show that the mapping from

prices to cutoffs in each period is one-to-one, i.e. in a given period, there exists a unique price

pt(kt) that results in a cutoff kt. We will call the function pt inverse supply function. With public

offers, the history of prices affects future buyers’ strategies, so an out of equilibrium deviation offer

of a buyer can change the whole continuation game. Nevertheless, we can show that in every pure

strategy equilibrium the price-cutoff mapping is one-to-one in each period. Moreover, for every

pure strategy equilibrium outcome, there exists a PBE in which all equilibrium cutoffs are weakly

monotone in time. This is summarized in the following lemma.

Lemma 2 (Inverse supply)9

(i) (Private offers) With private offers, in every equilibrium, there exists a unique price pt(k) for

every period t that results in a cutoff type k. pt(·) = k−1
t (·) is increasing and continuous.

(ii) (Public offers) In any pure strategy equilibrium with public offers, there exists at most one price

pt(k) for each period t that results in each cutoff k. Hence, pt(·) = k−1
t (·) for all cutoffs k that are

attainable.10 Moreover, for any pure strategy equilibrium, there exists an outcome-equivalent pure

strategy equilibrium that results in cutoffs with k1 ≤ · · · ≤ kT−1 and for all t.

pt(kt) = δpt+1(kt+1) + (1− δ)kt.

Note that with public offers this inverse supply function does not have to be increasing. The

existence of an inverse supply function guarantees that the mapping from prices to cutoffs is one to

one, so it allows us to focus on the space of cutoffs only instead of on the space of prices and cutoffs

simultaneously. Moreover, it turns out that the slope of the inverse supply function is crucial for

the (non-)existence of pure-strategy equilibria with private offers. Abusing notation a little bit, we

will represent beliefs about past cutoffs and actual cutoffs expected in future periods as part of the

continuation game both by cdfs denoted by Kt.

The most immediate implication is that it allows us to think of the buyers to face supply curves

given by the inverse supply function

pt(kt) = δ

[(∫ 1

kt

pt+1(kt+1)dKt+1(kt+1)

)
+Kt+1(kt)pt+1(kt)

]
︸ ︷︷ ︸

continuation payoff

+ (1− δ)kt︸ ︷︷ ︸
utility from

keeping the good

(2)

9Note that the function pt is not an inverse supply function in the classical sense, since it does not have to be

increasing, i.e. sellers are not necessarily following a reservation price strategy.
10In the construction of the public offer pure strategy PBE (Theorem 1), every k turns out to be attainable for

buyers in every period in equilibrium.
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in periods t < T − 1, as derived in the proof of lemma 1 by the indifference condition of the

cutoff-seller, and

pT−1 = (1− δ)kT−1 + δv(kT−1) (3)

in period T −1. Hence, pt(kt) is the price that is needed to attract all types up to kt. The intuition

of the right hand side of these expressions is as follows. First, note that pt(k) is always exactly

type k seller’s expected payoff of not selling the good today but later because seller k should be

indifferent between receiving the price pt(k) and not selling the good today. Hence, in (2), (1− δ)kt
represents the payoff of a type kt buyer if he held on to the good for exactly one more period,∫ 1
kt
pt+1(kt+1)dKt+1(kt+1) is the expected price the seller can get if he sells the asset in period t+ 1

and pt+1(kt) is the expected payoff that the seller can expect if he does not sell tomorrow either.

One drawback of the representation of a buyer’s expected profit given by (1) is that the buyer’s

belief ft is defined on the space of cutoffs, whereas buyers choose prices in [0, v(1)]. The existence

of a unique pt(k) allows us, on the equilibrium path, to think of buyers essentially choosing cutoffs

instead of prices given the seller’s optimal cutoff strategy kt(·). More precisely, we can write a

buyer’s expected profit conditional on winning the bid on the equilibrium path, if he bids a price

p = k−1
t (k) and given belief Km

t−1 about the cutoff distribution at the beginning of period t, by

πt(k;Km
t−1) ≡ Πt(k

−1
t (k); ft[K

m
t−1]) =

∫ k

0

∫ c

0

1

1− F (k̃)
dKm

t−1(k̃) (v(c)− pt(k)) f1(c)dc. (4)

If Km
t−1 has a one-point support at l (which is always the case with public offers), then we write

πt(k; l) instead of πt(k;Km
t−1), abusing notation slightly.

Finally, it is worth noting that thanks to the Reverse-Skimming Property, the only efficiency

relevant outcome of the game is the distribution of the cutoff-types in each period. Hence, if we

can determine for any PBE the distribution of cutoffs, we are able to calculate the total surplus

and to compare the welfare with private and public offers.

3 Public Offers

Let us first consider the transparent market. With public offers, we can focus our analysis on

pure strategy equilibria because if buyers mix between different prices, the realization of prices is

observed and hence, the continuation game is the same as if buyers just chose that realized price

with probability one in the first place. We have shown in lemma 2 that for any pure strategy

PBE, there exists an outcome-equivalent equilibrium with equilibrium cutoffs by (k∗1, . . . , k
∗
T−1)

and k∗1 ≤ · · · ≤ k∗T−1 where the following seller’s indifference conditions must be satisfied:

pt(k
∗
t ) = (1− δ)k∗t + δpt+1(k∗t+1) ∀t < T − 1 and

pT−1(k∗T−1) = (1− δ)k∗T−1 + δv(k∗T−1).
(5)
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Hence, a buyer’s expected profit conditional on receiving the good is given by

πt(k
∗
t ; k
∗
t−1) =

F (k∗t )− F (k∗t−1)

1− F (k∗t−1)

[
EF [v(c)|[k∗t−1, k

∗
t ]]− pt(k∗t )

]
(6)

with E[v(c)|[kt−1, kt]] =

∫ kt
kt−1

v(c)f(c)dc

F (kt)−F (kt−1) . Note that since we have assumed v(1) = 1, in any pure

strategy equilibrium, there must be some seller types that do not trade in each period. It is

immediate that equilibrium prices must increase over time as the deadline approaches.

Lemma 3 In a pure strategy equilibrium with public offers and with δ < 1, prices are increasing

over time, i.e. pt(k
∗
t ) < pt+1(k∗t+1) for all t.

Proof. First, note that k∗1 ≤ k∗2 ≤ · · · ≤ k∗T−1. We argue by backward induction. First, note that

pT−1(k∗T−1) < v(k∗T−1). Moreover, if pt+1(k∗t+1) < pt+2(k∗t+2), then

pt(k
∗
t ) = (1− δ)k∗t + δpt+1(k∗t+1) < (1− δ)k∗t+1 + δpt+2(k∗t+2) = pt+1(k∗t+1).

There are two forces driving this result. First, even though buyers never receive any expected

surplus due to perfect competition, the seller’s reservation price increases over time since she can

allocate the good efficiently at T and hence, extract the maximum surplus. Second, by the Reverse-

Skimming Property, there are higher types remaining in the market as time goes on, so the will-

ingness to pay of buyers increases over time. Moreover, it is straight forward to show that cutoff

types converge to zero as δ goes to 1 since more patient sellers are willing to wait longer until they

sell their good at higher prices in later period.11

Remark 1 Note that the above results also hold true for pure strategy PBEs with private offers.

We will later even show that any pure strategy PBE with private offers corresponds to a PBE with

public offers.

Figure 1 shows the prices at which the different seller types trade if they are uniformly distributed,

v(c) = 0.5 + 0.5c, and the time horizon is T = 5 for two different discount factors δ = 0.7 and

δ = 0.9. pt denotes the price and kt denotes the equilibrium cutoff in period t. One can see that

for higher δ there is less trade. Moreover, it is interesting to note that the amounts of trade are not

monotone over time. For example in period 3 the amount of trade is smaller than in other periods

in this example.

Finally, we show the existence of PBEs with public offers in the general setting and uniqueness

of equilibrium prices if v(c) is linear and F (c) = c.

11Formally, this can be seen by noting that because of (5), limδ→1 pt(k
∗
t ) = limδ→1 pT (k∗T ) = v(k∗T ) for all t < T ,

that is by (10) k∗t = k∗t−1 = k∗T for all t.
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(a) δ = 0.7 (b) δ = 0.9

Figure 1: Pure strategy equilibria with T = 5 and v(c) = 0.5 + 0.5c

Theorem 1 (Public offers)

(i) With public offers, there exists a pure strategy equilibrium for all 0 < δ < 1.

(ii) With linear valuations and uniformly distributed costs, there are unique equilibrium prices (and

cutoffs) which result from a PBE in pure strategies.

We show the existence of a pure strategy equilibrium with public offers (i) by construction. The

best response function of the seller is given by her indifference condition (5). Buyers form their

beliefs about the cutoff type accordingly and if an off equilibrium price greater than pt−1(1) = 1

was rejected, then we can assume that buyers believe that the seller is of type 1.12 We show that,

if all buyers choose pricing strategies that result in a cutoff seller c∗t (kt−1) (defined below) given

beliefs kt−1 about the current cutoff, this constitutes an equilibrium. We define c∗t (·) inductively

for t = 1, . . . , T − 1 as follows

c∗T−1(kT−2) = sup

{
k ∈ [kT−2, 1]

∣∣∣ 1

1− F (kT−2)

∫ k

kT−2

(v(c)− pT−1(k)) f(c)dc > 0

}
.

with pT−1(k) = δv(k) + (1− δ)k and sup ∅ = kT−1 and for t < T − 1

c∗t (kt−1) = sup

{
k ∈ [kt−1, 1]

∣∣∣ 1

1− F (kt−1)

∫ k

kt−1

(v(c)− pt(k)) f(c)dc > 0

}
with pt(k) = δpt+1(c∗t+1(k)) + (1− δ)k and sup ∅ = kt−1. In order prove this defines an equilibrium,

we need to make sure that buyers do not make negative expected profits. This is guaranteed if

k 7→ 1

1− F (kt−1)

∫ k

kt−1

(
v(c)− (δpt+1(c∗t+1(k)) + (1− δ)k)

)
f(c)dc

12Any other belief that is a one-point distribution, e.g. that the type is 0, would work, too. This way we only need

to characterize strategies given beliefs that are not mixed.
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is left-continuous. Therefore, it is sufficient to show that pt+1 is left-continuous as a function

of c∗t+1. We defer the proof of this technical claim to the appendix. The equilibrium cutoffs

(k∗1, . . . , k
∗
T−1) are then, given by k∗1 = c∗1(0), . . . , k∗T−1 = c∗T−1(c∗T−2(. . . c∗1(0))). None of the buyers

has an incentive to deviate from this equilibrium, since by increasing the price offer, buyers will

either make zero or negative expected profits by definition of c∗t (·) and by decreasing the price they

will not receive the good and make zero expected profits. Note that there are generally multiple

equilibria because there can be several prices that result in zero expected profits for the buyers. If

v(c) = Ac + B, A,B > 0, A + B = 1 and F (x) = x, x ∈ [0, 1], then for any k′ > k, k, k′ ∈ [0, 1],

E[Ac + B|[k, k′]] = A
2 k
′ + A

2 k + B is linear in k′ and prices pt(kt) are also linear in kt. Hence,

there is only one price at which buyers earn zero expected profits given beliefs that are one-point

distributions. Hence, there can only be unique equilibrium cutoffs and prices.

As an example, let us explicitly calculate the unique pure strategy cutoffs in the linear setting

for T = 3 using backward induction. This will be useful when we do the welfare analysis in section

4. Let us first consider the continuation game starting in period 2 given that the current cutoff

resulting from period 1 trade is k1. If k2 is the highest type that trades in period 2 and p2 is the

highest price offered, then the type k2 seller must be indifferent between accepting p2 or waiting

for the information to be revealed, i.e. p2 = (1 − δ)k2 + δ(Ak2 + B). Hence, given k1, a buyer’s

expected profit conditional on trading in period 2 is given by

π2(k2; k1) =
k2 − k1

1− k1

((
A

2
− (1− δ)− δA

)
k2 + (1− δ)B +

A

2
k1

)
.

In equilibrium, the zero expected profit condition π2(κ2 (k1) ; k1) = 0 must hold because of compe-

tition between buyers in period 2, so that given k1 the equilibrium cutoff of the continuation game

in period 2 is given by

κ2(k1) =
(1− δ)B + A

2 k1

1− δ − A
2 + δA

. (7)

Similarly, the players in period 1 will choose prices p1 knowing that they will induce an equilibrium

response in terms of cutoffs k1 which takes into consideration, and must be consistent with, the

optimal response κ2 (k1) of second period buyers and their implication in terms of prices. Let k1 be

the highest type willing to accept the highest first period offer p1 when expecting p2 to be offered

the next period, that is p1 = (1− δ)k1 + δp2. Using the zero expected profit condition for period 1

and κ2(·), one can solve for the unique equilibrium period 1 cutoff

k∗1 =
2B · (Aδ − 2δ + 2−A) · (1− δ)

2(1− δ)(1−A)(Aδ − 2δ + 2) +A2
, (8)

and by plugging this into (7) one gets the unique equilibrium period 2 cutoff

k∗2 =
2B · (Aδ − 2δ + 2) · (1− δ)

2(1− δ)(1−A)(Aδ − 2δ + 2) +A2
. (9)
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4 Private Offers

In this section, we will discuss the PBE outcomes in an opaque information structure and compare

it to PBEs in the transparent market. We start with a couple of general results before we move to

a full characterization of PBEs in the linear example.

4.1 General Results

With public offers, pure strategy equilibria are somehow easier to analyze because the continuation

game does not change if a buyer today deviates from an equilibrium. First, note that (5) and

(6) apply for private offers as well. In addition, we can show the following lemma that further

characterizes pure strategy equilibria with private offers.

Lemma 4 (i) In any pure strategy PBE with private offers, there is a mass of seller types who

trade in each period.

(ii) pt(·) and πt(·; kt−1) are differentiable for all t ≤ T − 1.

Proof. (i) Let us consider a pure strategy PBE with private offers that results in cutoffs (k∗1, . . . , k
∗
T−1).

We prove the statement by backward induction. In period T − 1, expected profits are given by

πT−1(k; k∗T−2) = 1
1−F (k∗T−2)

∫ k
k∗T−2

(v(c) − δv(k) − (1 − δ)k)f(c)dc. Since v(k∗T−2) − δv(k∗T−2) − (1 −
δ)k∗T−2 > 0, there exists an ε > 0 so that

v(k∗T−2)− δv(k∗T−2 + ε)− (1− δ)(k∗T−2 + ε) > 0.

Hence, πT−1(k∗T−2 + ε; k∗T−2) > 0, so k∗T−1 > k∗T−2.

Next, let us assume k∗t < · · · < k∗T−1. We prove k∗t < k∗t+1 by contradiction. Let us assume

k∗t−1 = k∗t . Then, a period t buyer can deviate by offering pt+1(k) because all seller types who

would have accepted in period t + 1, accept in period t and even some better seller types accept

which guarantees him positive expected profits.

(ii) In period T −1, differentiability of the price and expected profit function follows immediately

from differentiability of v(k). In all other periods, πt(·; kt−1) is differentiable because pt(k) =

(1− δ)k + δpt+1(k∗t+1) where pt+1(k∗t+1) is a constant (unlike with public offers).

This lemma implies that with private offers, in a pure strategy equilibrium with cutoffs (k∗1, . . . , k
∗
T−1),

in every period t ≤ T − 1 the following zero-profit condition must be satisfied

EF [v(c)|[k∗t−1, k
∗
t ]] = pt(k

∗
t ). (10)

Now, we are ready to show two main results about the relation and differences of pure strategy

PBEs in the two information structures. First, we show that for any pure strategy PBE with
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private offers, the associated equilibrium cutoffs must correspond to equilibrium cutoffs with public

offers. The reason is that although buyers do not observe previous prices with private offers, in

equilibrium, their beliefs about previous prices must be correct. However, the opposite implication

is not true as the second result demonstrates. With private offers, pure strategy equilibria are

potentially harder to sustain because a buyer’s marginal cost of increasing the price offer is lower

with private offers than with public offers. In particular, we prove that with private offers and for

large discount factors, no pure strategy equilibria exist. This is formalized in the following theorem.

Theorem 2 (Private offers)

(i) Equilibrium cutoffs (and prices) in any pure strategy equilibrium with private offers correspond

to equilibrium cutoffs (and prices) in a pure strategy equilibrium with public offers.

(ii)There exists a δ∗ < 1 such that if δ > δ∗ there is no pure strategy equilibrium with private offers.

To best understand the intuition behind (ii), note that with public offers, the seller has a stronger

incentive to reject the offer than if the offer had been made privately. Suppose one of the buyers

make an off-equilibrium high offer, with public offers the seller gains additional reputation of her

type being high by rejecting this offer. Where the strength of her signal is endogenously determined

by the amount of money she left on the table. Hence, her continue value would increase upon a

rejection. Instead, with private offers, she cannot use the off-equilibrium higher offer as a signal,

so her continuation value remains constant and hence, she is more temped to take it. This implies

that for all δ pure strategies are going to be harder to sustain with private offers. In other words,

the supply curve is less elastic with public offers than with private offers at the equilibrium cutoffs

as illustrated in figure 3 for an example with three periods, uniformly distributed costs, v(c) = c+1
2

and δ ∈ {0.7, 0.8, 0.9}. As a result, in order to attract a marginally higher type, the buyers have to

pay more in the public offer case. Hence, from the buyer’s perspective, the marginal effect on her

expected profit from a deviation from a public offer PBE to higher prices/cutoffs is always higher

with private offers than with public offers.

The marginal effect of a buyer’s deviation from a PBE on his expected profit is also affected by

the discount factor δ but in a non-monotonic way. Recall that for any pure-strategy equilibrium

cutoffs (k∗1, . . . , k
∗
T−1) a buyer’s expected profit conditional on buying the good is given by (6) and

hence, the marginal profit of buyers at time t < T − 1 is given by

∂

∂kt
πt(kt; k

∗
t−1)

∣∣
kt=k∗t

=
f(k∗t )

1− F (k∗t−1)
(v(k∗t )− pt(k∗t ))︸ ︷︷ ︸

marginal benefit

− ∂pt
∂k

(k∗t )
F (k∗t )− F (k∗t−1)

1− F (k∗t−1)︸ ︷︷ ︸
marginal cost

. (11)
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Figure 2: MB and MC of deviating from equilibrium

Note that this expression represents the net marginal benefit (NMB) of deviation of a buyer for

both information structures, while ∂pt
∂k (k∗t ) differs across information structures.13 Suppose a buyer

wanted to deviate with a higher price in order to sell to an equal number of additional types under

both information structures. He would have the same marginal benefit (MB) in terms of additional

surplus from the extra type he now trades with. Yet, there is a difference in the cost side. With

private offers, supply is more elastic which means that the price he would need to offer with private

offers, in order to attract the additional seller types, must increase less than with public offers. Note

in the equation above that the marginal cost (MC) is the mass of types that trade
F (k∗t )−F (k∗t−1)

1−F (k∗t−1)

times the price change ∂pt
∂k (k∗t ) which is just the slope of the supply curve. Therefore, the MC of

this deviation with private offers (MCi) is lower than the MC with public offers (MCp). Hence,

the net marginal benefit of a deviation with private offers NMBi = MB −MCi is greater than

the net marginal benefit of a deviation with public offers NMBp = MB −MCp (for δ < 1):

NMBi > NMBp for δ < 1.

To show that the equilibrium fails with private offers because there is a profitable deviation for a

buyer, we need to show that NMBi > 0. 14 Note first that

lim
δ→1

NMBp = lim
δ→1

NMBi = 0

since for δ → 1 everything collapses to no trade until T . In order to isolate this effect from the other

effects, we consider instead the average NMB per type trading. For private offers, the average

13With public offers ∂pt
∂k

(k∗t ) might not always exist but we are only using it to provide an intuitive explanation.

We only need differentiability in the private offer case for the proof of theorem 2 and with private offers ∂pt
∂k

(k∗t )

always exists.
14Note that since we started with a PBE with public offers, NMBp < 0 must hold.
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MC is just given by ∂pt
∂k (k∗t ) = 1− δ which converges to zero as δ → 1 and the zero-profit condition

(10) must be satisfied. However, we can show in the formal proof in the Appendix that the average

MB per type trading converges to a strictly positive number. More precisely, we show

lim
δ→1

1

F (k∗t )− F (k∗t−1)

(
v(k∗t )− E[v(c)|[k∗t−1, k

∗
t ]]
)

=
v′(0)

2f(0)
> 0.

Hence we can establish that there exists a δ∗ < 1 such that for δ > δ∗ there is no pure strategy

equilibrium with private offers. Note that with public offers, MC must converge to a positive

number greater than v′(0)
2f(0) in order to outset the MB and make sure that no deviation is profitable.

0.2 0.4 0.6 0.8 1.0
k1

0.6

0.7

0.8

0.9

1.0
p1
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pub. H∆=0.9L

priv. H∆=0.8L

pub. H∆=0.8L

priv. H∆=0.7L

pub. H∆=0.7L

Figure 3: Inverse Supply p1(k) for T = 3, v(c) = 1+c
2 , F1(c) = c

The MB and MC of attracting a marginally higher seller type (as we have defined it above) is

qualitatively illustrated in figure 2. The MC is crucially affected by the supply curve if all buyers

offer prices resulting in cutoffs (k∗1, k
∗
2) which we have delineated in figure 3 for T = 3, v(c) = 1+c

2

and F (c) = c for different values of δ in both information structures. Note that with private offers,

the supply curve (faced by period 1 buyers) has a kink at k∗2 because period 2 buyers will offer

p2(k∗2) no matter what period 1 buyers do. Hence, the best outside option of sellers with c < k∗2

is to buy in period 2 and for all sellers c > k∗2 is to wait until period 3 in which the information

is revealed. With public offers, period 2 prices are smoothly adjusted to period 1 offers, so there

is no kink in the supply curve. In the graph one can nicely see how the supply curves become

more elastic at the period 1 equilibrium cutoffs k∗1 < k∗2 as δ increases, so an extra penny offered

attracts more sellers if sellers are more patient. With private offers, ∂pt
∂k |k∗(δ) = 1 − δ can become

arbitrarily small as δ increases because tomorrow’s price pt+1 is not affected by today’s buyers’

actual decisions, but for public offers, the slope of the supply curve is bounded away from zero,

so that the MC does not overweight the MB which will converge to zero as δ → 1. Note that in

period T − 1, today’s price actually affects tomorrow’s price pT (kT−1) = v(kT−1).
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Figure 4: Profitability of deviations from public offer equilibrium for T = 3, A = B = 0.5, F1(c) = c

The NMB for a buyer to deviate from a given PBE with public offers, as a function of δ, is

illustrated in panel (a) of Figure 4 for the same example. One can see how the NMB for private

offers is always higher and it becomes positive for high δ before it converges to zero. Note that

the difference between the two curves is solely driven by the different elasticities of supply curves

in the two information structures. Finally, Figure 4 (b) shows the expected profits of a buyer

conditional on receiving the good in the first period as a function of the cutoff k1 corresponding to

the buyer’s price offer p1 for the same example. With public offers, Bertrand competition pushes

the equilibrium cutoff up to k∗1(δ) since as long as expected profits are positive, buyers want to set

higher prices in order to outbid the competitor. However, given the competitor is offering p1 (k∗1(δ))

deviations to higher prices would lead to losing money and deviations to lower prices would never be

accepted. For low δ this is still the case with private offers and hence the public offers equilibrium

is also an equilibrium with private offers. Instead, when δ is sufficiently high (e.g. for δ = 0.8)

it becomes profitable for a buyer to increase the price given the other buyer is offering p (k∗1(δ)).

Hence, the pure strategy equilibrium with public offers collapses with private offers.

Remark 2 A natural question one can ask is whether a similar result holds if T is held fixed, but

the time intervals, ∆ are made smaller. In that case, the discount factor from one period to the

other e−r∆ goes to 1, but the number of periods increases at the same time N = T
∆ . We will show

in section 6 that for small ∆, no pure strategy PBE exists with private offers.

4.2 The Linear Case

The problem with the general setting is that the set of pure strategy equilibria can possibly be very

rich. Hence, in the following, we will focus on the case with linear valuation functions and uniform

cost distribution, so that there are unique pure strategy equilibrium cutoffs with public offers. In
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addition, the expressions are somewhat more tractable. From now on, let v(c) = Ac+B, A,B > 0,

A+B = 1 and F (x) = x, x ∈ [0, 1].

First, we show that with private offers there is a δ∗ = 1 − A
2 that partitions the space [0, 1] of

discount factors into two fundamentally different regions. For δ < δ∗, there are no mixed PBEs, i.e.

the unique PBE is the one that corresponds to the pure strategy PBE with public offers, while for

δ > δ∗, there is no pure strategy PBE. Moreover, we can show that in any mixed PBE, mixing has

to be discrete in periods t > 1. Using these results, we are able to fully characterize mixed strategy

PBEs for the three period case and thereby show their existence for δ > δ∗ in order to finally make

welfare statements in section 5. 15

Theorem 3 (Private offers; linear) With private offers, v(c) = Ac+B and uniformly distributed

costs, there exists δ∗ = 1− A
2 such that

(i) for δ < δ∗, there are only pure strategy PBEs with prices that coincide with the unique equilibrium

prices in the public offers game, i.e. there are no PBEs in which buyers play mixed strategies, and

(ii) for δ > δ∗, there is no pure strategy equilibrium.

Recall that

πt(k
∗
t ; k
∗
t−1) =

k∗t − k∗t−1

1− k∗t−1

[
A

2
k∗t +

A

2
k∗t−1 +B − pt(k∗t )

]
.

Hence, with private offers, by the chain rule and the zero profit condition (10), the marginal net

benefit of a buyer of deviating to a higher price is given by

∂

∂kt
πt(kt; k

∗
t−1)

∣∣
kt=k∗t

=
k∗t − k∗t−1

1− k∗t−1

[
A

2
− (1− δ)

]
which is just the linear version of (11). For δ ≤ 1− A

2 , the pure strategy equilibrium with private

offers coincides with the equilibrium with public offers since ∂πt
kt

(k∗t ; k
∗
t−1) ≤ 0, i.e. none of the

buyers has an incentive to marginally increase the price offer. Because of the quadratic structure of

πt(·; k∗t−1), this implies that buyers do not want to deviate to any higher price offers. In contrast,

for δ > 1 − A
2 , ∂πt

kt
(k∗t ; k

∗
t−1) > 0, so it is a profitable deviation for a buyer, to increase the price

a little bit if offers are made privately. Hence, the pure strategy PBE cutoffs in the public offers

setting are not supported by a PBE with private offers.

With a linear valuation function and uniform cost, we can additionally show that for δ < 1− A
2

the pure strategy equilibrium prices are the unique equilibrium outcome with private offers. Hence,

1− A
2 partitions the interval [0, 1] of discount factors into a region in which there are only pure PBEs

and a region in which there are no pure strategy PBEs with private offers. In order to prove this

statement, we need to understand the structure of mixed strategy equilibria if offers are private.

15We will briefly discuss the case δ = δ∗ in section 5.
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Therefore, let us look at the uniform and linear analogue of the buyer’s expected profit function

given by (4):

πt(kt;K
m
t−1) =

∫ kt

0

∫ c

0

1

1− k
dKm

t−1(k) (Ac+B − pt(kt)) dc. (12)

In order to have mixing on an interval [a, b] in period t, buyers must be indifferent between all prices

that result in cutoffs in [a, b]. Hence, πt(k;Km
t−1) = 0 for all k ∈ [a, b]. However, this requires that

there must be continuous mixing in previous periods on that interval since otherwise the expected

profit function is piecewise quadratic and non-constant as can be seen in the formal proof in the

appendix. The intuition is that expected profits can be kept at a non-negative level for higher

prices if the current cutoff type is high with some probability. The formal proof can be found in

the appendix. Furthermore, by induction we can conclude that there must be continuous mixing

on [a, b] in period 1 whenever there is continuous mixing in any later period t > 1 on [a, b]. It turns

out in the proof in the appendix that this leads to a contradiction since this would imply that in

period 2 cutoffs must be distributed according to K2(k) =
δ−1+A

2

δ ∂
∂k2

p2(k)
on [a, b] which is a proper cdf

if and only if δ > 1 − A
2 and p2(k) is constant. In order to see that p2 must be constant, we need

the following lemma which shows that prices are convex in cutoffs.

Lemma 5 (Convex prices; private offers) With private offers, pt(k) is differentiable and

∂

∂kt
pt(kt) = 1−

T−t−1∑
s=1

δs

(
t+s−1∏
u=t+1

Ku(kt)

)
· (1−Kt+s(kt))− δT−t−1 · (1−A) ·

(
T−1∏
u=t+1

Ku(kt)

)
(> 0)

is nondecreasing.

Proof. We argue by backward induction over t. In period T − 1, pT−1(kT−1) = δ (AkT−1 +B) +

(1− δ)kT−1 = (1− δ + δA) kT−1 + δB is differentiable and ∂
∂kT−1

pT−1 = 1− δ + δA. Given pt+1 is

differentiable with a nondecreasing derivative, (2) is differentiable and

∂

∂kt
pt(kt) = δKt+1(kt)

∂

∂kt+1
pt+1(kt) + (1− δ)

is nondecreasing and piecewise constant.

Recall that with private offers, today’s actual prices do not affected future price offers. Never-

theless, in order to attract a marginally higher seller type today, the buyers have to compensate

the seller for valuing the good more and for the opportunity to sell in later periods which affects

today’s price intricately if future buyers play mixed strategies. If in equilibrium, a type k seller is

not attracted by future prices with some probability α, then attracting this marginal type requires

a price that takes into account that in the last period he can get v(k) = Ak+B. Hence, attracting

this type requires to increase the price by the discounted αA in addition to (1 − δ) which solely

compensates the marginally higher type for valuing the good more. Since the probability of no
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agreement before the last period α is increasing in the type, the marginal price increase that is

necessary for attracting a type k seller is increasing in k or put differently, pt+1 is weakly convex.

This shows how past and future cutoffs affect today’s expected profit functions of the buyers in very

different ways. Broadly speaking, past cutoffs boost today’s expected profits while future cutoffs

harm today’s expected profits. This insight will also play a crucial role when we construct a mixed

strategy equilibrium for T = 3.

Remark 3 It is interesting to note that the convexity of prices can be generalized to the case when

v(·) is a weakly convex function. Nevertheless, a buyer’s expected profit function does not have the

nice piecewise quadratic structure, so that the following analysis is less tractable than in the linear

case.

We have summarized some properties of mixed strategy equilibria with private offers in the

following proposition.

Proposition 1 (Mixed Strategy Equilibria; Linear Case) With private offers and δ > 1 − A
2 all

mixed strategy equilibria must satisfy the following properties.

(i) In all periods t > 1, buyers mix between at most countably many prices.

(ii) If buyers in period 1 mix continuously between prices that result in cutoffs in an interval (a, b),

then buyers in periods t > 1 do not choose any price that results in a cutoff in (a, b) with positive

probability.

The technical implication of this proposition is that expected profits of buyers πt(kt;K
m
t−1) in

periods t < T are continuous and piecewise quadratic in kt wherever period 1 buyers do not mix

continuously. Moreover, all kinks of πt correspond to cutoffs in previous or future periods. At every

cutoff of a future period, πt has a downward kink because the convexity of pt(kt) and the shape of

πt can change from a parabola that is open above to a parabola that is open below (as in figure

5) since the coefficient in front of k2
t is decreasing. Moreover, it is worth noting that all pieces of

πT−1(·;Km
T−2) are parabolas that are open below since A

2 − (1− δ)− δA < 0.

4.3 Existence and Full Characterization of Equilibria for T = 3

We have already shown that for δ < 1 − A
2 , the unique equilibrium with private offers coincides

with the pure strategy equilibrium with public offers characterized above. From now on, we will

assume δ > 1− A
2 to focus on the most interesting case in which equilibria differ across information

structures. A full characterization of the equilibria with private offers for general T is a daunting

task. Hence, we will only provide a characterization for T = 3. There are possibly multiple mixed

strategy equilibria, yet all of the equilibria share some common properties. In particular, in any

equilibrium, the second period strategies and first period expected cutoff type are the same across
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equilibria. We end this section by fully characterizing the equilibrium for the case in which the

buyers mix only between a non offer and one serious offer (i.e. 2 cutoffs) in the first period and

in the process establish the existence of equilibria. We will use these results in order to make a

welfare comparison between private and public offers in the section 5.

The first proposition fully characterizes the strategies chosen by period 2 buyers. Moreover, it

states the interesting fact that buyers in period 1 must make a non-offer that is accepted by no

seller type with positive probability. The key of the proof is to reveal that the expected profit

functions must look like in figures 5 (b) and 6.

Proposition 2 In any mixed strategy equilibrium, the following two must hold:

(i) Period 2 buyers mix between exactly two prices that result in the two cutoffs given by

k2 =
B(1− δ)

Aδ − δ + 1− A
2

, k2 =
B(1− δ2)

Aδ2 − δ2 + 1− A
2

,

where k2 is chosen with probability q ≡
A
2
−(1−δ)

δ(Aδ+1−δ) .

(ii) Period 1 buyers mix between 0 and cutoffs that lie between k2 and k2 where 0 is chosen with

positive probability.

Proof. We have organized the proof in three steps. First, we show in step 1 that buyers in period

2 mix between exactly two prices and the first part of (ii). Step 2 discusses the second part of (ii),

i.e. that there must be non-offers with positive probability in period 1. Finally, in step 3 we can

pin down the exact values of k2 and k2.

Step 1: Period 2 buyers mix between exactly two prices resulting in cutoffs k2, k2 and period 1

cutoffs must be in {0} ∪ [k2, k2] .

First, note that with T = 3, buyers in period 1 and 2 must mix between at least two cutoffs. The

reason is that if buyers in period 1 would play pure strategies, then there is a unique price at which

buyers in period 2 make zero profits, i.e. the unique Bertrand equilibrium in that period contains

only pure strategies of the buyers. If buyers in period 2 played pure strategies in equilibrium,

then the same argument holds for period 1 expected profits. Since we have already established in

Theorem 3 that if δ > 1− A
2 there cannot be pure strategy equilibria, there must be mixing in both

periods.

Let us first consider the continuation game in period 2 given beliefs about the current cutoffs

represented by the cdf K1. With T = 3, the indifference condition of the seller in period T − 1 (3)

can be written as

p2(k2) = (1− δ)k2 + δ(Ak2 +B)
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which represents the price that is accepted by all seller types in [0, k2] and rejected by all other

seller types in period 2. Then, buyers’ expected profits in period 2 (conditional on receiving the

good), if they choose a price of p2(k2), are given by

π2(k2;K1) =

∫ k2

0

(∫ c

0

1

1− k1
dK1(k1)

)
(Ac+ (1− δ)B − k2(δA+ 1− δ))dc.

Note that π2 is continuous and at the smallest element km1 < 1 in the support of K1, for all ε small

enough we have

∂π2

∂k2
(k2;K1)

∣∣
k2=km1 +ε

=

∫ km1 +ε

0

1

1− k1
dK1(k1)(1− δ) (B + (km1 + ε)(A− 1))

−
∫ km1 +ε

km1

(∫ c

0

1

1− k1
dK1(k1)

)
dc(Aδ + 1− δ)

>

∫ km1 +ε

0

1

1− k1
dK1(k1) [(1− δ) (B + km1 (A− 1))− ε(2(Aδ + 1− δ)−A)]

> 0,

so in equilibrium, period 2 buyers do not choose prices that result in a cutoff type smaller or equal

to km1 with positive probability since if they did increasing the price a little bit would be a profitable

deviation for any buyer. In particular, in any equilibrium, seller types close to zero trade in period

2, that is in the continuation game starting at period 2 it must hold that K2(k2) = 0 for small k2.

Let us now analyze the behavior of agents in period 1. By the Reverse-Skimming Property and

(2), we have that in period 1, a price of

p1(k1) = δ

[(∫ 1

k1

p2(k2)dK2(k2)

)
+K2(k1)p2(k1)

]
+ k1(1− δ) (13)

is accepted by types in [0, k1] and rejected by all other seller types. By Proposition 1, buyers in

period 2 can only mix between discretely many cutoffs, so the support of K2 is discrete and p1(·)
is piecewise linear, continuous and by lemma 5, it is also weakly convex. Buyers’ expected profits

in period 1 if they choose a price of p1(k1) are given by

π1(k1; 0) = k1 ·
(
A

2
k1 +B − p1(k1)

)
.

π1(·) is continuous, piecewise quadratic and at any period 2 cutoff it has a “downward” kink (that

is the slope is dropping discontinuously) because of the convexity of p1. Hence, in equilibrium,

period 1 expected profits must qualitatively look like one of the graphs in figure 5. Note that for

small k1, p1(k1) = δ
∫ 1
k1
p2(k2)dK2(k2) + k1(1 − δ) because K2(k2) = 0 for small k2. Hence, the

parabola most to the left must be open above because A
2 − (1 − δ) > 0. We have already argued

that buyers must mix between at least two prices in every period, so we can exclude the possibility

of the expected profit function in period 1 having a shape as in figure 5 (c). Hence, one can see
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Figure 5: Possible shapes of buyers’ profits in period 1

that there exist period 2 cutoffs 0 < k2 ≤ k2 < 1 such that period 1 buyers choose only prices with

positive probability that are in {0} ∪ [k2, k2].

Using these insights about π1, we can conclude that π2 is piecewise quadratic on [0, 1] \ [k2, k2]

where the coefficient in front of (k2)2 is negative as a multiple of A
2 − (1− δ)− δA < 0. Hence, all

pieces of π2 are open below. At every cutoff that is chosen with positive probability in period 1, π2

has a kink. Hence, period 2 expected profits are qualitatively as in figure 6. Note however, that π2

does not have to be piecewise quadratic in [k2, k2] as in figure 6.
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Figure 6: Qualitative shapes of buyers’ expected profits in period 2

Next, we will argue that π1 must look like in figure 5 (b). Let us first assume that none of the

pieces of π1 is constant and equal to zero as is the case in figure 5 (a). Then, in a mixed strategy

equilibrium, buyers in period 1 mix between exactly two prices that result in cutoff types 0 and

k1 = k2 = k2, respectively. Moreover, k1 must be a cutoff type in period 2, because it corresponds

to a kink of π1. Thus, we can conclude π1(k1) = π2(k1) = 0 and π2(k) ≤ 0 for all k ≥ k1. In

addition, π2 has its only kink at k1, so buyers do not mix between prices in period 2, but choose

a price with probability one that results in a cutoff k1. This contradicts Theorem 3. Hence, there

cannot be an equilibrium where none of the pieces of π1 is constant and equal to zero. Finally, we

can conclude that period 2 buyers must mix between exactly two cutoffs {k2, k2} only. This can be

seen as follows: One can infer directly from Proposition 1 (ii) that period 2 buyers do not choose

prices that result in cutoffs in (k2, k2). Moreover, because π1(k) = 0 on {0} ∪ [k2, k2] only, π2 can

have kinks in that region only. Hence, π2(k2) = π2(k2) = 0, π2(k) ≤ 0 for k ≥ k2 and the fact
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that π2 is piece-wise quadratic on [0, k2] ∪ [k2, 1] with parabolas that are open below imply that

π2(k) > 0 for k ∈ (0, k2) and π2(k) < 0 for k ∈ (k2, 1].

Thus, in any equilibrium the support of K1 is a subset of {0} ∪ [k2, k2] and the support of K2 is

{k2, k2} for some k2, k2 ∈ (0, 1]. Let K2(k2) = q and K1(0) = r, noting that we already know from

Lemma 6 that q =
δ−1+A

2
δ(1−δ+δA) 6= 0.

Step 2: In any mixed strategy equilibrium, there must be non-offers with positive probability in

period 1, i.e. r > 0.

Let us assume r = 0 and let us denote the smallest element in the support of K1 by k < 1. Note

that Ak+(1−δ)B−k(δA+(1−δ)) = (1−δ)(k(A−1)+B) ≥ (1−δ)B(1−k) which is strictly positive

for B > 0 and k < 1. Hence, there exists an ε > 0 such that Ak+(1−δ)B−(k+ε)(δA+(1−δ)) > 0.

Then, π2(k + ε) > 0 which is a contradiction to k2 < k being in the support of K2.

Step 3: k2 = B(1−δ)
Aδ−δ+1−A

2

and k2 = B(1−δ2)

Aδ2−δ2+1−A
2

In equilibrium, it must hold that π2(k2) = 0, that is∫ k2

0
Ac+ (1− δ)B − k2(δA+ 1− δ)dc = k2 ·

(
A

2
k2 + (1− δ)B − k2(δA+ 1− δ)

)
= 0

which is equivalent to k2 = B(1−δ)
Aδ−δ+1−A

2

. For k2, we use that π1(k2) = 0 since this is equivalent to

k2 ·
(
A

2
k2 + (1− δ2)B − δ(δ(A− 1) + 1)k2 − (1− δ)k2

)
= 0

because K2(k2) = 1. Hence, k2 = B(1−δ2)

Aδ2−δ2+1−A
2

.

Even though the equilibrium strategy in period 1 is not unique, all equilibrium strategies have

some properties in common. In particular, the expected cutoff type is constant across equilibria as

the following lemma shows.

Proposition 3 (Constant Expected Cutoff) Let T = 3 and δ > 1 − A
2 . In any mixed strategy

equilibrium, the expected period 1 cutoff is constant. In particular,

∫ k2

0
kdK1(k) =

(1− k2)
(

1− δ
1+δk2

)
1− k2 ·

(1+δ)(1−δ+Aδ)−A
2

(1+δ)(1−δ+Aδ)

+
1 + 2δ

1 + δ
k2 − 1. (14)

Moreover, the following must hold∫ k2

0

1

1− k
dK1(k) =

1

1− k2 ·
(1+δ)(1−δ+Aδ)−A

2
(1+δ)(1−δ+Aδ)

. (15)
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These statements follow from the fact that π2(k2) = 0 and π2(K) ≤ 0 for all K ≥ k2. The

key of the proof is to apply Fubini’s theorem and to note that the zero profit condition at k2 is a

function of
∫ k2

0
1

1−kdK1(k) and
∫ k2

0 kdK1(k) and that the second condition, that expected profits

are non-positive for cutoffs greater than k2, pins down
∫ k2

0
1

1−kdK1(k) uniquely. The economic

intuition is that given that π2(k2) = 0, a buyer’s period 2 expected profit for prices that result in

higher cutoffs than k2 should only depend on the average distribution of remaining types given by

the density f(c) =
∫

1
1−k1

dK1 since k1 < k2 with probability one. Note that the conditions we have

found are necessary but not sufficient for PBE outcomes with private offers. In particular, with

the above period 2 outcomes, π1(k2) = 0 must not be satisfied. As a last step, we prove that with

private offers, a PBE indeed exists by constructing an equilibrium in which the buyers in period 1

mix between exactly two cutoffs.

Proposition 4 (Existence) For T = 3 and δ > 1− A
2 , a PBE always exists.
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Figure 7: Profits in period 1 and 2 with T = 3 and v(c) = 0.5 + 0.5c

Figure 7 illustrates for v(c) = 0.5+0.5c the expected profit functions π1 and π2 in the equilibrium

that we have constructed in the proof of proposition 4 in the appendix. It highlights how period 1

cutoffs must corresponds to kinks of π2 and period 2 cutoffs must correspond to kinks of π1. This

is, however, not a unique equilibrium. In particular, there can potentially be equilibria in which

period 1 buyers mix between {0} and prices in (k2, k2), so that (14) and (15) are satisfied.

5 Efficiency of Dark versus Transparent Markets

Given the multiplicity of equilibria with private offers and the difficulty of constructing equilibria

we will focus our efficiency comparisons on the linear case with T = 3. We believe our results likely

generalize beyond this case but our inability to obtaining a tractable characterization prevents us

from formally establishing such results. The main reason we think the result extends is that the
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economic force behind the results does not depend on the model being linear or the horizon being

short. The driver for our result is that private offers lack the signaling value of public offers and

hence sellers are always more willing to accept a private offer. Since the inefficiency arises because

there is too little trade, eliminating the possibility to signal for the seller helps to generate more

trade, which in turn increases efficiency.

First, we show that with private offers, there is more trade after each period. Since the expected

cutoff is constant in periods 1 and 2, this result holds for all perfect Bayesian equilibria in the

private offers case.

Proposition 5 (Expected Trade) Let T = 3. Expected trade up to period 1 and 2, respectively, is

always greater with private offers than with public offers.

In period 1, there is more trade because, sellers are more inclined to accept a price offer with

private offers than with public offers because they do not have a signaling incentive with private

offers. In order to keep the period 1 supply small enough, so that period 1 buyers do not make

positive expected profits with high price offers, period 2 buyers must set relatively high prices in

period 2. This creates high period 2 cutoffs. On the other hand, period 1 buyers must make

non-offers with a positive but small probability in order to cap period 2 expected profits without

decreasing the expected trade in period 1 too much. This proposition points to the fact that

with private offers efficiency is enhanced. However, the expected total surplus also depends on the

second moment of cutoffs generated by the mixed strategies of buyers, so that an additional step

is necessary in order to establish a clean welfare comparison. Let G(x) = A−1
2 x2 +Bx. Then, with

public offers, total expected surplus is given by

V (δ, A,B,public) =

∫ k∗1

0
(A− 1)c+Bdc+ δ

∫ k∗2

k∗1

(A− 1)c+Bdc+ δ2

∫ 1

k∗2

(A− 1)c+Bdc

= (1− δ)G(k∗1) + δ(1− δ)G(k∗2) + δ2G(1).

and with private offers, total expected social surplus is given by

V (δ, A,B,private) =

∫ 1

0

∫ 1

0

∫ k1

0
(A− 1)c+Bdc+ δ

∫ max{k1,k2}

k1

(A− 1)c+Bdc

+δ2

∫ 1

max{k1,k2}
(A− 1)c+Bdc dK1(k1) dK2(k2)

=

∫ 1

0

∫ 1

0
(1− δ)G(k1) + δ(1− δ)G(max{k1, k2}) dK1(k1) dK2(k2) + δ2G(1)

if period 1 cutoffs and period 2 cutoffs are distributed according to K1 and K2, respectively. Note

that if A−1 > 0, then it would follow immediately that private offers are more efficient by Jensen’s

inequality. For A − 1 < 0 we need an additional technical step in order to prove the result. Since
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we assume A+B = 1 throughout this paper, we are in the case in which A− 1 < 0. We will argue,

however, in chapter 6 that this result holds in greater generality.

Theorem 4 (Efficiency) With T = 3, linear valuations and uniformly distributed costs, the unique

equilibrium with public offers is weakly Pareto-dominated by any equilibrium with private offers.

If δ > 1 − A
2 , then the unique equilibrium with public offers is strictly Pareto-dominated by any

equilibrium with private offers.

This theorem is a very clear-cut statement. No matter which equilibrium agents end up playing

in the private offer environment, the equilibrium outcome will lead to higher efficiency than in the

unique equilibrium of the public offer environment. Hence, at least with linear valuations and uni-

formly distributed types, the opaque environment strictly dominates the transparent environment.

Additionally, it would be natural to ask whether efficiency gains are monotone in the type or

discount factors. The following graphs illustrate the welfare comparison for the equilibrium with

private offers in which buyers mix between exactly two prices in each period.
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Figure 8: Social surplus ratio V (private)
V (public) if buyers mix between 2 prices in both periods

The next proposition follows immediately from figure 8.

Proposition 6 i) The efficiency gains from making offers privately are generally non-monotonic

in the type.

ii) The average gains are generally non-monotonic in δ.

It is striking that in figure 8 (a), there seems to be a discontinuity in the welfare comparison

at 1 − A
2 when we consider the private offer equilibrium in which all buyers mix between exactly

two prices. There is indeed a discontinuity for all equilibria. Let us therefore look at the limit as

δ → 1 − A
2 . One can easily show (simply by calculation) that in the limit, the expected period 1
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cutoff with private offers EK1 [k1] ( if period 1 buyers mix according to K1) is equal to k2 which is

greater than the public offer period 1 cutoff k∗1:

lim
δ→1−A

2

k2 = lim
δ→1−A

2

EK1 [k1] > lim
δ→1−A

2

k∗1.

Moreover, with private offers, the period 2 cutoff is k2 with probability one, i.e. buyers do not mix

in the limit, and k2 is equal to the public offer period 2 cutoff k∗2:

lim
δ→1−A

2

k2 = lim
δ→1−A

2

k∗2 and lim
δ→1−A

2

q = 0.

Hence, in the limit, there is strictly less expected trade in period 1 with public offers and period 2

cutoffs and prices coincide with both information structures. In the limit, period 1 expected profits

with private offers are zero for all cutoffs smaller than k2, i.e. period 1 buyers are indifferent between

all prices lower than p1(k2). The reason is that the marginal revenue from increasing the price is

A/2 and the marginal cost is 1− δ = A
2 . Hence, there is a rich set of period 1 buyer strategies that

constitute an equilibrium. It includes the PBE resulting in the public offer PBE outcome (k∗1, k
∗
2),

as well as the limiting private offer PBEs, i.e. the continuity of the correspondence that maps δ to

the set of PBEs is not violated, but the smallest equilibrium efficiency level with private offers for

δ > 1− A
2 is strictly bounded away from the efficiency level resulting from the public offer PBE. As

an illustrative example, Figure 5 depicts the expected profit functions π1(k) for private and public

offers and π2(k) for public offers.
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Figure 9: Profits as δ → 1− A
2 with T = 3 and v(c) = 0.5 + 0.5c

6 Robustness and discussion

In this section, we discuss the role and restrictiveness of the assumptions that we have made

throughout the paper. First, we examine the assumption that there are strictly positive gains from

trade for all types c < 1 and no gains from trade for the highest type c = 1. Moreover, for the main
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results of the paper, we have assumed that the number of periods before T is fixed and we were

interested in how the equilibria change as the seller becomes more patient, i.e. as δ changes. A

related question to ask is how public and private offer equilibria relate to each other if the length of

periods become smaller. We will conclude this section by presenting an analogue to theorems 1 and

2 as the commitment level changes. In particular, we show that for small levels of commitment,

there is never a pure strategy equilibrium with private offers.

6.1 Gap at the top v(1) > 1

Throughout the paper, we have assumed that v(1) = 1. This assumption together with continuity

and monotonicity of v(c) guarantees that in equilibrium, in each period t < T , there is a positive

mass of high type sellers who do not want to sell. The reason is that the highest type c = 1 never

wants to trade with buyers who are only willing to pay a price equal to the expected valuation of the

good which is always smaller than 1. Hence, there is no price with which buyers make non-negative

expected profit and which all seller types should accept. As a result, we did not have to worry

about off-equilibrium beliefs of the buyers about the seller type when an offer that is supposed to

be accepted by everyone is rejected. This type of freedom in choice of off-equilibrium beliefs can

lead to a huge multiplicity of equilibria.

Nevertheless, all results can easily be generalized to settings with v(1) > 1 if one of the following

two conditions is additionally satisfied.

1. Either we need that the adverse selection problem is severe enough to guarantee that trade

does not end with probability one before period T − 1 or

2. we need some restrictions on off-equilibrium beliefs.

In order to make the adverse selection problem strong enough, we have to restrict attention to

high discount factors [δ, 1] for some δ since if the seller is patient enough he does not want to sell

off the good too quickly. Hence, the equilibrium we characterized is the unique one. One possible

restrictions on off-equilibrium beliefs that would sustain our equilibrium construction would be, for

example, that if an offer that should be accepted by all seller types is rejected, then the belief of

buyers in future periods coincide with the beliefs of buyers at the beginning of the period in which

this off-equilibrium deviation took place. That way, it is never profitable for the seller to reject the

equilibrium offer.

Finally, note that making these alternative assumptions, our results indeed extend to cases in

which A + B > 1. However, the extremely cumbersome computations would obscure the main

ideas of the paper if we only assumed A+B ≥ 1. In figure 8 we have included some examples with

A+B > 1 as an illustration.
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6.2 No Gap at the bottom (v(0) = 0)

We made the assumption that v(0) > 0 to make sure that there is always some trade in period 1. If

we have no gap at the bottom then it is possible for trade to completely unravel in all periods before

information is revealed. The following lemma shows this effect in a setting with linear valuations

and uniform cost distribution. It is interesting to note that this result holds true with both private

and public offers and for all δ.

Proposition 7 (No gap case) Let us assume B = 0, A > 1 and F (c) = c. With private and with

public offers, the unique equilibrium outcome is that no seller type trades before T .

6.3 High frequency of trade

One natural question to ask is how public and private offers differ as commitment goes to zero.

Let us therefore consider a setting with a finite time horizon T , periods of length ∆ and δ = e−r∆

where r is the rate at which sellers discount. We are interested in the case ∆ → 0. The existence

of pure strategy equilibria is an immediate corollary of theorem 1.

Corollary 1 For any ∆ > 0 there exists a pure strategy equilibrium with public offers.

Moreover, using a similar argument as in theorem 2, one can show the following theorem.

Theorem 5 If f(c), v′(c) > 0 for all c ∈ [0, 1], then there exists a ∆∗ so that for all ∆ < ∆∗ there

is no pure strategy equilibrium with private offers.

The intuition for this result is, that the non-existence of pure strategy equilibria with private

offers is driven by the high elasticity of the supply curve faced by buyers. Locally, this elasticity

only depends on the discounting from one period to the next period because the cutoff seller’s

trade-off is only between buying today or tomorrow. Hence, the number of periods is not essential

for the marginal net benefit of deviating, but rather the marginal time preference of the seller.

Appendix

A Proofs

A.1 Model

Proof. (Lemma 1; Reverse-Skimming Property) We show that in an arbitrary period t ≤ T − 1

the Reverse-Skimming property holds. First note, that with private offers, the strategy of period

t buyers is independent of the price history while with public offers, it may be a function of past

prices. Let us fix a history of prices (ps)s≤t−1 and strategies of buyers (that are functions of
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past prices with public offers). The benefit of a buyer of type c of waiting until a future period

τ < T − 1 and accepting a price pτ (in the support of the pricing strategy of period τ buyers)

instead of accepting today’s price pt is given by δτ−t(pτ − c)− (pt− c) is increasing in c. For period

T − 1, δT−1−t(v(c)− c)− (pt − c) is also increasing in c. Hence, if a seller of type c accepts today’s

price, then every type c′ < c must also be willing to accept today’s offer. Hence, buyers in every

period accept offers according to a cutoff strategy kt(p).

Proof. (Lemma 2; Inverse supply) (i) (Private offers) With private offers, beliefs of buyers are

independent of price histories. Hence, the continuation game in an equilibrium is unaffected by

past offers. We argue by backward induction.

Base of induction: In period T-1, a seller of type c accepts an offer p if and only if p ≥ δv(c) +

(1 − δ)c ≡ pT−1(c). pT−1 is increasing and continuous because v is increasing and continuous.

Hence, pT−1(kT−1) is the unique price that results in a cutoff kT−1 in period T − 1.

Induction hypothesis: Let us now assume, there exists an increasing and continuous inverse

supply function pt+s(·) = k−1
t+s(·) (s > 0, s + t ≤ T − 1) for periods after t. Hence, the pricing

strategies of buyers in periods t+ 1, . . . , T −1 can be mapped one-to-one to distributions of cutoffs.

We denote the cdfs of cutoffs that result from the pricing strategies in the continuation game after

period t by Ks, s = t+ 1, . . . , T − 1.

Induction step: In period t, the continuation payoff of a seller c who rejects an offer in period t

is given by

V (c) =
∑T−t

u=1

(
δu
(∏t+u−1

v=t+1 Kv(c)
)
·
∫ 1
c (pt+u(kt+u)− c)dKt+u(kt+u)

)
+

δT−t+1(v(c)− c)
(∏T−1

u=t+1Ku(c)
)

+ c

= δ
[(∫ 1

c pt+1(kt+1)dKt+1(kt+1)
)

+Kt+1(c)pt+1(c)
]

+ (1− δ)c.

(16)

Since pt+1 is increasing, V (c) is increasing and continuous and pt(c) = V (c) defines an inverse

demand function, i.e. pt(k) is the unique price that results in a cutoff k.

(ii) (Public offers) We show first that an inverse supply function pt(·) exists in every equilibrium

and that the following statement about arbitrary continuation games must hold. Let us consider an

arbitrary continuation game after period t that results in cutoffs (kt+1, . . . , kT−1), i.e. ks = ks(ps)

(s = t+ 1, . . . , T − 1) if ps is the highest price offer in period s, then these cutoffs do not have to be

monotone over time. However, there is no trade in a period s if ks < ks′ for s′ < s, so the price in

that period does not affect the continuation payoff of any seller type. Let ui ∈ {1, 2, . . . } be such

that (kt, kt+u1 , . . . , kt+
∑n
i=1 ui

) be the largest subsequence with kt+1 ≤ kt+1+u1 ≤ · · · ≤ kt+
∑n
i=0 ui

(u0 = 1). Then, we show that

p
t+

∑j
i=1 ui

(
k
t+

∑j
i=1 ui

)
= δuj+1p

t+
∑j+1
i=1 ui

(
k
t+

∑j+1
i=1 ui

)
+ (1− δuj+1) k

t+
∑j+1
i=1 ui

(17)
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for all i = 1, . . . n− 1. We again argue by backward induction.

Base of induction: First, note that in period T − 1, independently of the history, sellers of type

c accept a price offer p if p > δv(c) + (1− δ)c ≡ pT−1(c) and reject the price p if p < pT−1. Hence,

pT−1(kT−1) is the unique price that results in a cutoff type kT−1. pT−1 is continuous and increasing.

Induction hypothesis: There exist inverse supply functions ps(k) for all periods s ≤ t + 1 and

(17) holds.

Induction step: Now, we will show that for every kt there exists a unique pt(kt) that results in

a cutoff kt and that if the cutoff kt ∈
[
k
t+

∑j
i=0 ui

, k
t+

∑j+1
i=0 ui

)
, then

pt(kt) = δ
∑j+1
i=0 uip

t+
∑j+1
i=0 ui

(
k
t+

∑j+1
i=0 ui

)
+
(

1− δ
∑j+1
i=0 ui

)
kt. (18)

Let us take an arbitrary pt that results in a cutoff kt in equilibrium. Then, given this cutoff, buyers

form consistent beliefs and a continuation game with cutoffs (kt+1, . . . , kT−1) is realized. For a

seller of type c ∈
[
k
t+

∑j
i=0 ui

, k
t+

∑j+1
i=0 ui

)
, the continuation payoff if she rejects the offer pt is given

by

δ
∑j+1
i=0 uip

t+
∑j+1
i=0 ui

(
k
t+

∑j+1
i=0 ui

)
+
(

1− δ
∑j+1
i=0 ui

)
c.

By the induction hypothesis, this continuation payoff is continuous in c on the whole type space

and increasing in c. (In particular, it is piecewise linear with kinks at future cutoffs.) Thus, pt must

be equalt to this continuation payoff for type kt. Hence, in equilibrium, there is only one price pt

that is accepted by all seller types c < kt and rejected by all seller types c > kt and (18) must hold.

This concludes the induction.

Next, we show the second part of the lemma. Let us assume that in a pure strategy equilibrium

(k1, . . . , kT−1) there is a period t in which kt < kt−1, i.e. the period t buyers make non-offers

that are not accepted by any remaining types. Then, if instead of offering pt(kt), they would offer

pt(kt−1) future beliefs of buyers and hence, the continuation game remains unchanged. Moreover,

for previous periods s < t the price offer in period s is irrelevant since all seller types smaller than

ks−1 trade in period s − 1 anyway. Hence, one can transform the equilibrium to an equilibrium

(k′1, . . . , k
′
T−1) that results in the same outcome and such that k′1 ≤ · · · ≤ k′T−1. In this equilibrium,

for all t p′t(k
′
t) = p′t+1(k′t+1) + (1− δ)k′t if p′t is the inverse supply function in this equilibrium.

A.2 Public Offers

Proof. (Theorem 1) (i): It remains to show that the functions c∗t (·) inductively defined for t =

1, . . . , T − 1 by (??) and (??) are left-continuous.
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Step 1: If π(k; kt−1) is left-continuous in k, then c∗t is increasing

First note, that because of left-continuity of πt(·; kt−1), we either have πt(c
∗
t (kt−1), kt−1) > 0 or

πt(c
∗
t (kt−1), kt−1) = 0. Moreover, note that πt(k; kt−1) is always differentiable in kt−1. Let us

consider an arbitrary kt−1 and an infinitesimal increase in kt−1. If πt(c
∗
t (kt−1), kt−1) > 0, there

exists an ε > 0 so that πt(c
∗
t (kt−1), kt−1 + γ) > 0 for all γ < ε. Hence, c∗t (kt−1 + γ) > c∗t (kt−1) for

all γ < ε. On the other hand, if πt(c
∗
t (kt−1), kt−1) = 0, then

∂

∂kt−1
πT (k; kt−1)

∣∣
k=c∗t (kt−1)

=
f(kt−1)

1− F (kt−1)
·

[
1

1− F (kt−1)

∫ c∗t (kt−1)

kt−1

(v(c)− pt(c∗t (kt−1)))f(c)dc− (v(kt−1)− pt(c∗t (kt−1)))

]

= − f(kt−1)

1− F (kt−1)
(v(kt−1)− pt(c∗t (kt−1))) > 0

because if we had v(kt−1)−pt(c∗t (kt−1)) ≥ 0, then
∫ c∗t (kt−1)
kt−1

(v(c)−pt(c∗t (kt−1)))f(c)dc > 0 because v

is increasing and this is a contradiction to the zero-profit assumption πt(c
∗
t (kt−1), kt−1) = 0. Hence,

c∗t (·) is increasing at kt−1.

Step 2: c∗t (·), pt(·) and πt(·; kt−1) are left-continuous

We argue by backward induction in t. pT−1(·) is left-continuous because v is continuous and hence,

πT−1(kT−2; k) is left-continuous in k. (It is even continuous.) Let k
(n)
T−2 ↑ kT−2. Then, c∗T−1(k

(n)
T−2) ≤

c∗T−1(kT−2) for all n and c∗T−1(k
(n)
T−2) is an increasing sequence by step 1. Hence, limn→∞ c

∗
T−1(k

(n)
T−2)

exists. We will show next that limn→∞ c
∗
T−1(k

(n)
T−2) = c∗T−1(kT−2). Therefore, consider an arbitrary

sequence k(m) ↑ c∗T−1(kT−2) such that πT−1(k(m); kT−2) > 0 (which must exist by definition of c∗T−1).

Then, for any m, there exists an n(m) such that πT−1(k(m); k
(n)
T−2) > 0 for all n ≥ n(m) because

πT−1(k; ·) is continuous for all k. Hence, k(m) ≤ c∗T−1(k
(n(m))
T−2 ) ≤ c∗T−1(kT−2) = limm→∞ k

(m).

Hence, limn→∞ c
∗
T−1(k

(n)
T−2) = limm→∞ c

∗
T−1(k

(n(m))
T−2 ) = c∗T−1(kT−2) and thus, c∗T−1(·), pT−2(·) and

πT−2(·; kT−3) are left-continuous.

Let now assume that ct+1(·), pt(·) and πt(·; kt−1) are left-continuous. Hence, c∗t (·) is increasing by

step 1. The rest of the argument works analogously to above, so that c∗t (·), pt−1(·) and πt−1(·; kt−2)

are left-continuous for all t.

(ii) is proven in the main part of the paper.

A.3 Private Offers

Proof. (Theorem 2) (i) We need to show that any pure strategy equilibrium with private offers is

a pure strategy equilibrium with public offers. Let us fix a pure strategy equilibrium with private

offers. First, note that buyers are making nonnegative expected profits in equilibrium and given

the buyers’ strategies and beliefs, the seller applies the same acceptance rule with public offers.

34



However, with public offers, the price is more sensitive to a change in cutoffs. Hence, if a deviation

from the equilibrium prices was not profitable with private offers, it is certainly not profitable with

public offers.

(ii) Let us denote for a given δ the set of all possible equilibrium cutoffs of a private offer game

by PEprivate(δ) and for a public offer game by PEpublic(δ), respectively. Let us assume that for any

δ∗ there exists a δ > δ∗ such that (k∗1(δ), . . . , k∗T (δ)) ∈ PEprivate(δ). Hence, there exists a sequence

δn →n→∞ 1 and a corresponding sequence (k∗1(δn), . . . , k∗T (δn)) ∈ PEprivate(δn). Let us define a

function δ 7→ (k1(δ), . . . , kT (δ)) such that kt(δn) = k∗t (δn) for all t and infinitely many n (which is

possible because k∗t (δ)→δ→1 0 for all t) and kt increasing, continuously differentiable and kt−1 < kt

for all t. Recall that by (11) at any equilibrium (k∗1, . . . , k
∗
T−1) ∈ PEprivate(δ) the marginal profit

of buyers at time t < T − 1 is given by (11), i.e. with private offers

∂

∂kt
πt(k

∗
t ; k
∗
t−1) =

F (k∗t )− F (k∗t−1)

1− F (k∗t−1)

[
f(k∗t )

(
v(k∗t )

F (k∗t )− F (k∗t−1)
−

E[v(c)|[k∗t−1, k
∗
t ]]

F (k∗t )− F (k∗t−1)

)
− (1− δ)

]
by the zero profit condition (10). Note that since kt(·) are continuously differentiable, by applying

l’Hopital’s lemma twice, we can write

lim
δ→1

v(kt(δ))(F (kt(δ))− F (kt−1(δ)))−
∫ kt(δ)
kt−1(δ) v(c)f(c)dc

(F (kt(δ))− F (kt−1(δ)))2

= lim
δ→1

v′(kt(δ))
∂kt(δ)
∂δ (F (kt(δ))− F (kt−1(δ)))− v(kt(δ))f(kt−1(δ))∂kt−1(δ)

∂δ + v(kt−1(δ))f(kt−1(δ))∂kt−1(δ)
∂δ

2(F (kt(δ))− F (kt−1(δ)))
(
f(kt(δ))

∂kt(δ)
∂δ − f(kt−1(δ))∂kt−1(δ)

∂δ

)
= lim

δ→1

v′(kt(δ))
∂kt(δ)
∂δ

2
(
f(kt(δ))

∂kt(δ)
∂δ − f(kt−1(δ))∂kt−1(δ)

∂δ

)
+

f(kt−1(δ))∂kt−1(δ)
∂δ

f(kt(δ))
∂kt(δ)
∂δ − f(kt−1(δ))∂kt−1(δ)

∂δ

· v(kt−1(δ))− v(kt(δ))

2(F (kt(δ))− F (kt−1(δ)))

= lim
δ→1

v′(kt(δ))
∂kt(δ)
∂δ

2
(
f(kt(δ))

∂kt(δ)
∂δ − f(kt−1(δ))∂kt−1(δ)

∂δ

)
+

f(kt−1(δ))∂kt−1(δ)
∂δ

f(kt(δ))
∂kt(δ)
∂δ − f(kt−1(δ))∂kt−1(δ)

∂δ

·
v′(kt−1(δ))∂kt−1(δ)

∂δ − v′(kt(δ))∂kt(δ)∂δ

2
(
f(kt(δ))

∂kt(δ)
∂δ − f(kt−1(δ)∂kt−1(δ)

∂δ )
)

=
v′(0)∂kt(1)

∂δ

2f(0)
(
∂kt(1)
∂δ −

∂kt−1(1)
∂δ

) − f(0)∂kt−1(1)
∂δ · v′(0)

(
∂kt(1)
∂δ −

∂kt−1(1)
∂δ

)
2f(0)2

(
∂kt(1)
∂δ −

∂kt−1(1)
∂δ

)2

=
v′(0)

2f(0)
> 0

if f(0) ≥ 0, because the equilibrium cutoffs converge all to 0 as n→∞. We can conclude

lim
δ→1

[
f(k∗t )

(
v(kt)

F (kt)− F (kt−1)
− E[v(c)|[kt−1, kt]]

F (kt)− F (kt−1)

)
− (1− δ)

]
> 0.
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Thus, there exists a n∗ such that for all n > n∗ (k∗1(δn), . . . , k∗T−1(δn)) 6∈ PEPrivate(δn) which is a

contradiction. Hence, there must exist a δ∗ < 1 such that for all δ > δ∗, there does not exist a pure

strategy equilibrium with private offers.

Proof. (Theorem 3 and Proposition 1) We have already shown above that with public offers

there is a unique pure strategy equilibrium, while with private offers, there exists a pure strategy

equilibrium if and only if δ < 1− A
2 . In the following, we analyze mixed strategy equilibria in the

private offer case. In particular, we show that for δ < δ∗ there are no mixed strategy PBEs. First,

we show that there cannot be “too much” mixing in a mixed strategy equilibrium in the private

offer case.

Lemma 6 (Mixing in period 1) If δ < 1 − A
2 , buyers in period 1 mix at most between countably

many cutoffs. If δ > 1 − A
2 and expected period 1 profit π1(k; 0) = 0 for all k ∈ (a, b), then any

k ∈ (a, b) cannot be in the support of K2, . . . ,KT since it must hold that K2(k) =
δ−1+A

2

δ ∂
∂k2

p2(k)
.

Proof. (Lemma 6) In period 1, expected profit is given by

π1(k1; 0) = k1 ·
[
A

2
k1 +B − p1(k1)

]
.

If buyers mix between all cutoffs k ∈ (a, b), then it must hold that δ
(∫ 1

k1
p2(k2)dK2(k2) +K2(k1)p2(k1)

)
+

k1(1− δ) = A
2 k1 +B or equivalently

δ

(∫ 1

k1

p2(k2)dK2(k2) +K2(k1)p2(k1)

)
+ k1(1− δ) =

(
δ −

(
1− A

2

))
k1 +B.

Note that the left hand side of the identity must be nondecreasing in k1, so if δ < 1− A
2 , then there

cannot be mixing on (a, b) in period 1. If δ ≥ 1− A
2 , then the left hand side is differentiable, so the

right hand side must be differentiable, so that

K2(k) =
δ −

(
1− A

2

)
δ ∂
∂k2

p2(k)

on k ∈ (a, b). Since K2 is a cdf, ∂
∂k2

p2(k) cannot be increasing on (a, b), so that by lemma 5 ∂
∂k2

p2(k)

must be constant on (a, b). This implies that the support of K2 is disjoint from (a, b) and because
∂
∂k2

p2(k) must be constant on (a, b), also the intersection of the supports of K3, . . . ,KT−1 and (a, b)

must be empty.

Lemma 7 (Discrete mixing in periods t > 1) In any period t > 1, buyers mix between at most

countably many cutoffs, that is K2, . . . ,KT−1 are step functions.
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Proof. (Lemma 7) Let us argue by induction. If buyers in period t mix between more than

countably many cutoffs, then there exists an interval (a, b) such that πt(kt) = 0 for all kt ∈ (a, b)

and we have on (a, b) that
∫ kt

0

∫ c
0

1
1−kdK

m
t−1(k) (Ac+B − pt(kt)) dc = 0. After applying integration

by parts and setting H(kt) ≡
∫ kt

0

(∫ c
0

∫ x
0

1
1−kdK

m
t−1(k)dx

)
dc, one can see that this is equivalent to

the ordinal differential equation

AH ′(kt)kt −AH(kT ) = H ′(kt) (pt(kt)−B) .

Thus, we can conclude that

H(kt) ≡
∫ kt

0

(∫ c

0

∫ x

0

1

1− k
dKm

t−1(k)dx

)
dc = const · exp

(∫ kt

0

1

z − pt(z)−B
A

dz

)

and by Fubini’s Theorem H(kt) =
∫ kt

0
kt−k

2(1−k)dK
m
t−1(k) which is increasing because kt−k

2(1−k) > 0 for

0 < k < kt. Thus, the cdf Km
t−1(k) must be strictly increasing everywhere on (a, b). By lemma 6,

buyers in period 2 cannot mix on an interval (a, b) and an induction argument shows that there

cannot be mixing on an interval in any period t > 1.

Hence, for δ < 1− A
2 , the pure strategy equilibrium is the unique equilibrium while for δ > 1− A

2

all mixed strategy equilibria can only have discrete mixing in periods t > 1 and if there is mixing on

an interval (a, b) in period 1, then no cutoff in (a, b) is chosen with positive probability in periods

t > 1.

Let us assume that there exists a mixed equilibrium for δ < 1− A
2 and let us denote the smallest

period in which buyers use a mixed strategy by t. Then, buyers’ expected profit in period t is given

by

πt(kt; kt−1) =
kt − kt−1

1− kt−1
·
(
B − pt(kt) +A

kt + kt−1

2

)
and it is piece-wise quadratic where by lemma 5 the coefficient in front of the quadratic part of

πt(kt) is given by

A

2
− 1 + δ +

T−t−1∑
s=2

δs

t+s−1∏
u=t+1

Ku(kt)

 · (1−Kt+s(kt)) + δT−t−1 · (1−A) ·

 T−1∏
u=t+1

Ku(kt)


=

A

2
− 1 + δ −

T−t−1∑
s=2

δs−1(1− δ)

t+s−1∏
u=t+1

Ku(kt)

− δT−t−1 (1− δ(1−A))

 T−1∏
u=t+1

Ku(kt)

 < 0

which is decreasing in kt. Hence, buyers in period t must play a pure strategy in equilibrium which

is a contradiction.
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Proof. (Proposition 3) First, note that in any equilibrium it must hold that π2(k2) = 0 and for all

K > k2, π2(K) ≤ 0, i.e.∫ k2

0

∫ c

0

1

1− k
dK1(k)(Ac+B − ((1− δ +Aδ)k2 + δB))dc = 0∫ K

0

∫ c

0

1

1− k
dK1(k)(Ac+B − ((1− δ +Aδ)K + δB))dc ≤ 0 ∀ K > k2.

Let us first simplify the first equality. By applying Fubini’s Theorem and then, noting that k2−k
1−k =

1 + k2−1
1−k and k

2
2−k2

1−k = 1 + k + k
2
2−1

1−k , we can deduce

∫ k2

0

∫ c

0

1

1− k
dK1(k)(Ac+B − ((1− δ +Aδ)k2 + δB))dc

=
A

2

∫ k2

0

k
2
2 − k2

1− k
dK1(k) + ((1− δ)B − (1− δ +Aδ)k2)

∫ k2

0

k2 − k
1− k

dK1(k)

=
A

2
+ (1− δ)B − (1− δ +Aδ)k2 +

A

2

∫ k2

0
kdK1(k)

+

∫ k2

0

1

1− k
dK1(k)

((
k

2
2 − 1

) A
2

+ (k2 − 1)((1− δ)B − (1− δ +Aδ)k2)

)
=

A

2
·

(
1− 1 + 2δ

1 + δ
k2 +

∫ k2

0
kdK1(k) + (k2 − 1)

(
1− δ

1 + δ
k2

)∫ k2

0

1

1− k
dK1(k)

)
.

Thus, in equilibrium, the following must hold

1− 1 + 2δ

1 + δ
k2 +

∫ k2

0
kdK1(k) = (1− k2)

(
1− δ

1 + δ
k2

)∫ k2

0

1

1− k
dK1(k). (19)

In order to simplify the second inequality, we can use that π2(k2) = 0, and see that for K > k2∫ K

0

∫ c

0

1

1− k
dK1(k)(Ac+B(1− δ)− (1− δ +Aδ)K)dc

=

∫ k2

0

∫ c

0

1

1− k
dK1(k)dc(k2 −K)(1− δ +Aδ) +

∫ K

k2

∫ k2

0

1

1− k
dK1(k)(Ac+B(1− δ)− (1− δ +Aδ)K)dc

= (K − k2)


∫ k2

0

1

1− k
dK1(k)

A2 k2 +B(1− δ)−
(

1− δ +Aδ − A

2

)
︸ ︷︷ ︸

>0

K


−
∫ k2

0

∫ c

0

1

1− k
dK1(k)dc(1− δ +Aδ)

]

is quadratic in K and the parabola is open below. The parabola has a zero at k2 and we will show

in the following that it cannot have another zero. If π2(k′) = 0 for a k′ > k2, then π2 is positive
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on (k2, k
′) which cannot hold in equilibrium. If the parabola (if it was extended to values smaller

than k2) has a zero at a k′ < k2 and if the support of K1 does not contain (k2 − ε, k2) for a ε > 0,

then π2(k) > 0 for k ∈ (k2 − ε, k2) which leads to a contradiction. Finally, if there is continuous

mixing on some (k2 − ε, k2), then since the slope from the right of π2 is negative at π2, the slope

from the left must also be negative because

∂

∂k2
π2(k2) =

∂

∂k2

∫ k2

0

∫ c

0

1

1− k
dK1(k)(Ac− (1− δ +Aδ)k2 +B(1− δ))dc

=

∫ k2

0

1

1− k
dK1(k)(1− δ)(Ak2 − k2 +B)− (1− δ +Aδ)

∫ k

0

∫ c

0

1

1− k
dK1(k)dc

and k2(A− 1) +B > 0. This again cannot hold in equilibrium. As a result, the parabola can only

have one zero k2 and it follows from by plugging in the value of k2 calculated in proposition 2 that∫ k2

0
1

1−kdK1(k)
(
A
2 k2 +B(1− δ)

)
−
∫ k2

0

∫ c
0

1
1−kdK1(k)dc(1− δ +Aδ)∫ k2

0
1

1−kdK1(k)(1− δ +Aδ − A
2 )

= k2

⇔ A

2
k2 +B(1− δ)−

∫ k2

0

∫ c
0

1
1−kdK1(k)dc(1− δ +Aδ)∫ k2

0
1

1−kdK1(k)
=
B(1− δ2)

(
1− δ − A

2 +Aδ
)(

1− δ2 − A
2 +Aδ2

)
⇔ (1− δ)B ·

A
2(

1− δ2 − A
2 +Aδ2

)
(1− δ +Aδ)

=

∫ k2

0

∫ c
0

1
1−kdK1(k)dc∫ k2

0
1

1−kdK1(k)

⇔ k2 ·
A
2

1− δ2 +Aδ +Aδ2
=

1 + (k2 − 1)
∫ k2

0
1

1−kdK1(k)∫ k2

0
1

1−kdK1(k)

⇔
∫ k2

0

1

1− k
dK1(k) =

1
A
2
k2

1−δ2+Aδ+Aδ2 − k2 + 1

This proves (15). Plugging (15) into (19), shows (14).

Proof. (Proposition 4) Let us assume that buyers in period 1 mix between cutoffs {0, k1} only

with k1 ∈ (0, 1), K1(k1 = 0) = r and K1(k1 = k1) = 1− r for some r ∈ (0, 1). Then expected profit

in period 2 is given by

π2(k2) =


r · k2 ·

(
A
2 k2 + (1− δ)B − k2 (1− δ + δA)

)
if k2 < k1

(r − 1) k1

1−k1

(
A
2 k1 + (1− δ)B − k2 (1− δ + δA)

)
+k2

(
A
2 k2 + (1− δ)B − k2 (1− δ + δA)

) (
r + 1

1−k1
(1− r)

)
if k2 > k1.

Note that both parts are quadratic in k2 and that π2 is continuous everywhere. Moreover, note

that in both parts the coefficient in front of (k2)2 is negative. The first part is equal to zero if

k2 ∈
{

0, B(1−δ)
1−δ+δA−A

2

}
and the second part must only have one zero in equilibrium, i.e. it must hold
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that the discriminant is zero.[
(1− δ)B

(
r + 1

1−k1
(1− r)

)
− (r − 1) k1

1−k1
(1− δ + δA)

]2
=

(2A− 4 + 4δ(1−A))
(
r + 1

1−k1
(1− r)

)
(r − 1) k1

1−k1

(
A
2 k1 + (1− δ)B

) (20)

and the null is at

k2 = −
(1− δ)B

(
r + 1

1−k1
(1− r)

)
− (r − 1) k1

1−k1
(1− δ + δA)

(A− 2 + 2δ(1−A))
(
r + 1

1−k1
(1− r)

) . (21)

If we denote the two zeros of π2 by k2 ≡ B(1−δ)
1−δ+δA−A

2

and k2, then it must hold

0 ≤ k2 < k1 < k2 ≤ 1,

if we want to make sure that there is mixing in period 2. Hence, we have K2

(
k2 = k2

)
= q and

K2

(
k2 = k2

)
= 1− q and expected profit in period 1 is given by

π1(k1) =


k1

[(
A
2 − (1− δ)

)
k1 +B(1− δ2)− δ

[
qk2 (Aδ + 1− δ) + (1− q)k2 (Aδ + 1− δ)

]]
if k1 < k2

k1

[(
A
2 − (1− δ)

)
k1 +B(1− δ2)− δ

[
qk1 (Aδ + 1− δ) + (1− q)k2 (Aδ + 1− δ)

]]
if k2 < k1 < k2

k1

[(
A
2 − (1− δ)

)
k1 +B(1− δ2)− δk1 (Aδ + 1− δ)

]
if k2 < k1

As we have shown above, in equilibrium we must have q =
δ−1+A

2
δ(Aδ+1−δ) , k2 = B(1−δ)

1−δ+δA−A
2

and k2 =

B(1−δ2)

Aδ2−δ2+1−A
2

and k1, r must solve the system of equations given by (21) and (20). Indeed we can

find a solution r and

k1 =
2B(1− δ)(−2δ3 + 2δ3A+ 4δ2A− 2δ2 + 2δ −A+ 2)

(−2δ2 + 2δ2A+ 2δA−A+ 2)(−2δ2 + 2δ2A+ 2−A)

such that 0 ≤ k2 < k1 < k2 ≤ 1.

A.4 Efficiency of Dark versus Transparent Markets

Proof. (Proposition 5) In period 1, we can easily calculate the difference between the expected

cutoff with private offers and the private offer period 1 cutoff using (8), (9), Proposition 3 and
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Proposition 2 and see that it is positive:

∫ k2

0
kdK1(k)− k∗1 =

(1− B(1−δ2)

Aδ2−δ2+1−A
2

)

(
1− δ

1+δ
B(1−δ2)

Aδ2−δ2+1−A
2

)
1− k2 ·

(1+δ)(1−δ+Aδ)−A
2

(1+δ)(1−δ+Aδ)

+
1 + 2δ

1 + δ

B(1− δ2)

Aδ2 − δ2 + 1− A
2

− 1

− 2B · (Aδ − 2δ + 2−A) · (1− δ)
2(1− δ)(1−A)(Aδ − 2δ + 2) +A2

=
(1−A)(1− δ)(−4 + 4A−A2 + 8δ − 6Aδ + 2A2δ − 4δ2 + 2Aδ2 + 2A2δ2)

(2−A− 2δ2 + 2Aδ2)(4− 4A+A2 − 8δ + 10Aδ − 2A2δ + 4δ2 − 6Aδ2 + 2A2δ2)

=
1

2
k2 ·

2A(1− δ)− (A− 1)2(1− δ)2 − 3(1− δ)2 + δ2A

(4− 4A+A2)(1− 2δ + δ2) + 2Aδ − 2Aδ2 +A2δ2

≥ 1

2
k2 ·

(1− δ)2 − (A− 1)2(1− δ)2 + δ2A

(4− 4A+A2)(1− 2δ + δ2) + 2Aδ − 2Aδ2 +A2δ2
> 0.

for δ > 1− A
2 and A+B = 1. In period 2, the difference between the cutoffs in the two information

structures is given by∫ 1

0
kdK2(k)− k∗2 = qk2 + (1− q)k2 −

2B · (Aδ − 2δ + 2) · (1− δ)
2(1− δ)(1−A)(Aδ − 2δ + 2) +A2

=
A
2 − (1− δ)

δ(Aδ + 1− δ)
B(1− δ)

Aδ − δ + 1− A
2

+

(
1−

A
2 − (1− δ)

δ(Aδ + 1− δ)

)
B(1− δ2)

Aδ2 − δ2 + 1− A
2

− 2B · (Aδ − 2δ + 2) · (1− δ)
2(1− δ)(1−A)(Aδ − 2δ + 2) +A2

= − A2B(−1 + δ)(−2 +A+ 2δ)

(1− δ +Aδ)(2−A− 2δ + 2Aδ)((1− δ)2(2−A)2 + 2Aδ(1− δ) +A2δ2)
.

Note that this function is zero if and only if the numerator is zero which is a quadratic function

in δ. It is easy to check that the numerator is zero if and only if δ ∈
{

1− A
2 , 1
}

. Hence, we can

conclude that the function is positive in
[
1− A

2 , 1
]

because it is positive at δ = 1− A
4 and there are

no singularities for δ ∈ [0, 1].

Proof. (Theorem 4) The key of the proof for
∫ 1

0 G(k1)dK1(k1) ≥ G(k∗1) is to note that G(x) =
A−1

2 x2 + Bx is increasing for A− 1 > 0, G(0) = 0 and to calculate the certainty equivalent of the

cutoffs in the private offers case. Given that with private offers, period 1 cutoffs are in [0, k2] and

given that they are given by lemma 3,∫ 1

0
G(k1)dK1(k1) ≥ G(k2)

k2

∫ 1

0
k1dK1(k1)

=
(1−A)2(1− δ)(1 + 2δ)(1− δ2 +Aδ2)

(2−A− 2δ2 + 2Aδ2)2

≥ G(k∗1) =
2(2−A)B2(1− δ)2(2−A− 4δ + 4Aδ + 2δ2 − 3Aδ2 +A2δ2)

((2−A)2(1− δ)2 + 2Aδ − 2Aδ2 +A2δ2)2
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for A+B = 1. In period 2, it holds that∫ 1

0

∫ 1

0
G(max{k1, k2})dK1(k1)dK2(k2) ≤

∫ 1

0
G(k2)dK2(k2) = qG(k2) + (1− q)G(k2)

and in [k2, k2] we have

qG(k2) + (1− q)G(k2) = (1−A)2(1− δ) ·
[

4− 2A+ 2A2 −A3 + δ(−8 + 12A− 5A2 +A3)

(1− δ +Aδ)(2−A− 2δ + 2Aδ)2(2−A− 2δ2 + 2Aδ2)
+

δ2(−6A+ 7A2 −A3) + δ3(8− 16A+ 8A2) + δ4(−4 + 12A− 12A2 + 4A3))

(1− δ +Aδ)(2−A− 2δ + 2Aδ)2(2−A− 2δ2 + 2Aδ2)

]
≥ G(k∗2) = 2(1−A)2(1− δ)(2− 2δ +Aδ) ·

2− 2A+A2 − 4δ + 5Aδ −A2δ + 2δ2 − 3Aδ2 +A2δ2

4− 4A+A2 − 8δ + 10Aδ − 2A2δ + 4δ2 − 6Aδ2 + 2A2δ2)2
.

Hence we can conclude that V (δ, A,B, public) ≥ V (δ, A,B, private).

A.5 Robustness and Discussion

Proof. (Proposition 7) If B = 0, then we can assume 1 < A and A
2 < 1 − δ2 + δ2A. With public

offers, the best response function in period 2 is given by

k2(k1) =


A
2

1−δ−A
2

+δA
k1 if k1 < 1− 2(1− δ)A−1

A

1 otherwise
.

and expected profit in period 1 is given by π1(k1; k2(·)) = k1·
((

A
2 − (1− δ)

)
k1 − δ(1− δ + δA)k2(k1)

)
.

Hence, it is easy to check that k1 = 0 maximizes π1 because

A

2
− (1− δ)− δ(1− δ + δA)

A
2

1− δ − A
2 + δA

< δA− δ(1− δ + δA)
A
2

1− δ − A
2 + δA

< 0.

With private offers, the only equilibrium candidate is the one without trade in periods 1 and 2.

This is an equilibrium because

π1(k1; 0) = k2
1 ·
(
A

2
− (1− δ2)− δ2A

)
and

π2(k2; 0) = k2
2 ·
(
A

2
− (1− δ)− δA

)
which is maximized by k1 = 0 and k2 = 0.

Proof. (Theorem 5) Analogously to the proof of theorem 2, we argue by contradiction. Let

us assume that there exists a sequence ∆n → 0 so that there exists a pure strategy equilibrium

with private offers for all ∆n. For any ∆, let us denote equilibrium cutoffs with private offers by
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(k∗∆, k
∗
2∆ . . . , k

∗
T−∆) ≡ (k∗∆(∆), k∗2∆(∆) . . . , k∗T−∆(∆)). Let t∆ be a multiple of ∆. A period t buyer’s

expected profit with t ∈ (t∆, t∆ + ∆] is given by

πt(k
∗
t∆
, k∗t∆−∆) =

F (k∗t∆)− F (k∗t∆−∆)

1− F (k∗t∆−∆)
·
[
E[v(c)|[k∗t∆−∆, k

∗
t∆

]]− pt∆(k∗t∆)
]
.

Then, for t∆ < (T − 1)∆ marginal expected profit of buyers is given by

∂

∂kt∆
πt(kt∆ ; k∗t∆−∆)

∣∣
kt∆=k∗t∆

=
F (k∗t∆)− F (k∗t∆−∆)

1− F (k∗t∆−∆)
·[

f(k∗t∆)

(
v(k∗t∆)

F (k∗t∆)− F (k∗t∆−∆)
−

E[v(c)|[k∗t∆−∆, k
∗
t∆

]]

F (k∗t∆)− F (k∗t∆−∆)

)
− (1− e−r∆)

]

Let us consider an arbitrary subsequences ∆n(m) → 0 so that limm→∞ k
∗
t∆n(m)

−∆n(m)
≡ c and

limm→∞ k
∗
t∆n(m)

≡ c exist. Note that c ≥ c. If c > c, then for all t ∈ (t∆n(m)
, t∆n(m)

+ ∆n(m)]

lim
m→∞

∂

∂kt∆n(m)

πt(kt∆n(m)
; k∗t∆n(m)

−∆n(m)
)
∣∣
kt∆n(m)

=k∗t∆n(m)

=
f(c) (v(c)− E[v(c)|[c, c]])

1− F (c)
> 0,

so there must exist an m large enough such that there is a profitable deviation for buyers in periods

t < (T − 1)∆n(m), i.e. such that (k∗∆n(m)
, . . . , k∗T−∆n(m)

) is not an equilibrium with private offers

which is a contradiction. If c = c, then by L’Hopital’s lemma, we can show analogously to theorem

2 that

v(k∗t∆n(m)
)(F (k∗t∆n(m)

)− F (k∗t∆n(m)
−∆n(m)

))−
∫ k∗t∆n(m)

k∗t∆n(m)
−∆n(m)

v(c)f(c)dc

(F (k∗t∆n(m)
)− F (k∗t∆n(m)

−∆n(m)
))2

→m→∞
v′(0)

2f(0)
> 0

because f(0) ≥ 0 and v′(0) > 0. 16 We can conclude that in the limit m → ∞, the marginal

expected profit converges to a strictly positive number. Hence, for sufficiently large m, there is a

profitable deviation for buyers.
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