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Abstract

Comparative advantage and trade costs shape the geography of cross-border supply
chains and trade flows. To quantify these forces, we build a model of trade with multi-
stage production that features technology differences both across and within individual
production stages. We estimate technology and trade costs in the model via simulated
method of moments, matching bilateral shipments of final and intermediate goods for
sixteen countries. Using the estimated model, we investigate the extent to which supply
chains magnify trade elasticities and respond to changes in trade costs or productivity.
We find no magnification effects for moderate changes in trade costs, but relatively
large adjustments in supply chains.
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In a global supply chain, sequential production stages are ‘sliced up’ and allocated across

countries to minimize total production costs. Comparative advantage and trade costs gov-

ern the allocation of stages to countries. First, countries differ in the cost with which

they perform individual production stages. Some countries have comparative advantage in

downstream production stages (e.g., manufacturing assembly in China), while others have

comparative advantage in upstream stages (e.g., production of disk drives in Japan). Sec-

ond, as inputs are shipped from country to country through the chain, producers incur trade

costs. Often these costs are paid multiple times as goods travel back and forth across bor-

ders. Further, the burden of these trade costs is large: ad valorem costs are paid on the

gross value of goods shipped, but cost savings from moving marginal production stages only

apply to a fraction of that gross value.

In this paper, we build a quantitative model of trade with cross-border supply chains to

study the role of comparative advantage and trade costs in shaping production fragmentation

and trade patterns. As in Yi (2003, 2010), the production of each good requires a discrete

number of stages, which must be performed in sequence.1 These stages are allocated across

countries to minimize production costs, given both bilateral trade frictions and differences

in technologies across countries and stages. In contrast to workhorse Ricardian models,

such as Eaton and Kortum (2002), that emphasize comparative advantage across goods, the

multi-stage model features comparative advantage across and within individual production

stages.

We develop a new methodology to quantify the role of technology and trade costs in

shaping world trade flows and fragmentation. Specifically, we estimate technology and trade

costs via simulated method of moments by minimizing deviations between final and interme-

diate trade shares in the model and data. This estimation procedure is typically infeasible

when the number of unknowns is high, but we overcome this problem by applying econo-

metric techniques from the discrete choice literature.2 Because we ask the model to match

observed trade flows, we are able to estimate both trade costs and productivity as free pa-

rameters. This allows a tighter mapping between theory and data than previous calibration

procedures.3 Not only does this facilitate comparison between the multi-stage model and

1Related models with a discrete number of stages include Markusen and Venables (2007) and Baldwin and
Venables (2010). Costinot, Vogel, and Wang (forthcoming) develop a model with a continuum of production
stages, building on Dixit and Grossman (1982) and Sanyal (1983). Arkolakis and Ramanarayanan (2009)
and Bridgman (2008, 2012) also work with models that feature vertical specialization.

2We discuss this issue further in Section 3.2.2 and Appendix C.
3E.g. Yi (2010) calibrates a related multi-stage model for the US and two Canadian regions using a

mixture of data (on production, labor allocations, income, etc.) and parameter restrictions. Productivity
is assumed equal across stages of production, which implies that comparative advantage across production
stages is absent. We do not need to impose these restrictions on technology differences. Further, we are able
to estimate trade costs, unlike Yi (2010) who measures trade costs based on auxiliary data.
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competing alternatives, but it also paves the way for use of the multi-stage model in future

applications.

We estimate the model using manufacturing trade data for 15 industrial and emerging

market countries, plus a composite rest-of-the-world region, in 2004.4 Our estimates show

that there are large differences in manufacturing technology levels across countries and stages;

for example, we find that China has a strong comparative advantage in downstream (stage 2)

production, whereas the U.S. has a comparative advantage in upstream (stage 1) production.

Differences in comparative advantage induce specialization in the product mix of a country’s

exports. Our estimates of downstream/upstream comparative advantage are therefore, not

surprisingly, strongly (but not perfectly) correlated with the share of intermediates in a

country’s total exports.

We apply the estimated model in three quantitative exercises that advance our under-

standing of how trade costs and technology shape cross-border fragmentation and bilateral

trade flows. First, we examine the role of multi-stage production in explaining the stylized

fact that the elasticity of trade to trade barriers is high. Yi (2003) first pointed out that

multi-stage production inflates the effect of tariffs on trade, while Yi (2010) argues that it

also increases the influence of country borders on trade. Somewhat surprisingly, we conclude

that fragmentation of production does not play an important role in inflating the trade

elasticity.

Our main insight is that, in our model, the trade elasticity is a function of the level

of trade costs. Because our estimates of trade costs are relatively high, breaking up the

production process is costly, and therefore occurs relatively infrequently.5 Hence, a given

decline in trade costs does not produce amplified cost savings for most goods traded. As

a consequence, the trade elasticity is not significantly inflated relative to a world without

fragmentation. To demonstrate the role of the level of trade costs, we show that the trade

elasticity is higher (in absolute value) in counterfactuals where the level of trade costs is

significantly lower. An implication of our work is that structural estimates of trade costs

obtained via models that do not take into account multi-stage production are, to a first

approximation, unbiased.

Second, we examine the response of fragmentation and real wages to a uniform decline

in geographic barriers to trade, perhaps due to improvements in transportation technology.

4It is straightforward to extend our procedure to allow for more sectors and/or stages, or to vary the
number of countries. Because the estimation procedure is computationally costly, one needs to trade off
these dimensions in practice. We have opted here for relatively few stages and a high level of aggregation to
maximize country coverage, which allows richer cross-country analysis of counterfactual experiments.

5Our estimates of trade costs, which capture both observable and unobservable trade costs, are in line
with the standard estimates in the literature.
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Production becomes more fragmented as trade costs decline. For the median country, a

10 percent decline in trade frictions increases the share of foreign value added in domestic

final goods production by 1.5 percentage points. The ratio of value added to gross trade

for the world also falls by 2.5 percentage points. Changes in foreign sourcing and value-

added to import ratios are particularly large for nearby countries, consistent with time-series

evidence [Johnson and Noguera (2012b)]. For the median country, the real wage gain is 2

percent. Overall, the aggregate response of trade and real wages is very similar in our model

compared to a model with only one stage of production.6 This mainly reflects the finding

that the trade elasticities are similar across models. Thus, our model yields macro-level

responses comparable to more standard models, despite important differences in micro-level

adjustment mechanisms.

Third, we examine the response of production chains and trade patterns to changes in

productivity in one country. We present results for a scenario in which productivity doubles

in China, with emphasis on studying how this change spills over and reorganizes production

chains within Asia. Mirroring the finding above, production sharing is mainly concentrated

among China’s Asian neighbors.

The rest of the paper proceeds as follows. Section 1 lays out the many-country, multi-

stage model and presents a solution procedure. Section 2 discusses some important features

of the model. Section 3 describes how we estimate technology and trade costs, as well as

how we calculate value added trade flows. Section 4 presents our estimates, while Section 5

presents our counter-factual analysis. Section 6 concludes.

1 Framework

We start this section by laying out the basic elements of the framework. We assume there

are two sectors of the economy, which we refer to as manufacturing and non-manufacturing

(including agriculture, natural resources, and services). The manufacturing sector features a

discrete multi-stage production process, similar to the models by Yi (2003, 2010). The non-

manufacturing sector features standard Ricardian production and trade, drawing on Eaton

and Kortum (2003). After presenting the elements of the model, we discuss how we solve

the model numerically, since the the model does not admit analytical solution.

6Specifically, we benchmark our results against a similar liberalization exercise in a two-sector version of
the Eaton-Kortum model with input-output linkages developed by Caliendo and Parro (2012).
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1.1 Production

Consider a world economy with many countries and two sectors. Countries are indexed by

i, j, k ∈ {1, . . . , C} and sectors are denoted by s ∈ {m,n}, standing for manfuacturing and

non-manufacturing respectively. Within each sector, there is a unit continuum of goods,

indexed by z and both sectors operate under perfect competition. By way of notation, we

generally put country labels in the superscript. We put good and sector labels in parentheses,

so that (z, s) denotes good z in sector s.

Manufacturing In the manufacturing sector, each good requires two stages to produce,

and subscripts on each variable denote production stages. Production in stage 1 uses labor

and a composite input, and we assume the production function for good z in sector m is:

qi1(z,m) = T i1(z,m)Θ(m)X i(z,m)θ(m)li1(z,m)1−θ(m), (1)

where T i1(z,m) is the good-specific productivity of country i in manufacturing stage 1,

li1(z,m) and X i(z,m) are the quantities of labor and the composite input used in production,

θ(m) is the share of the composite input in production, and Θ(m) = (1− θ(m))1−θ(m) θ(m)θ

is a constant normalization.

The output of the first stage is an input that is used in stage 2 production of manufactured

good z. Production in stage 2 combines the first stage input and labor, with the production

function given by:

qi2(z,m) = T i2(z,m)Θ(m)xi1(z,m)θ(m)li2(z,m)1−θ(m), (2)

where T i2(z,m) is productivity in stage 2, xi1(z,m) is the quantity of the stage 1 input used,

li2(z,m) is labor used, θ(m) is again the cost share attached to the stage 1 input, and Θ(m)

is the same normalization as above.7

Output in each stage may be produced in any location, but every time output is shipped

it incurs an bilateral sector-specific iceberg transportation cost τ ij(m).8

7We do not explicitly include capital as a produced factor in the model. This implies that differences in
capital are captured in the productivity term in our estimation. In computing counterfactuals, we implicitly
hold all factors fixed. Including endogenous capital stocks, as in Yi (2003), would be a straightforward
extension.

8Two points are worth noting here. First, we do not assume that the cost is stage-specific. Extensions in
which trade costs for final and intermediate goods differ would allow one to consider the effects of input-tariff
liberalization. Second, we assume that trade costs are ad valorem. Extensions with per unit trade costs,
as in Irarrazabal, Moxnes, and Opromolla (2012), would give rise to differences in trade costs across stages
because the gross value per unit shipped differs across stages.
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Non-manufacturing In the non-manufacturing sector, each good is produced using one

stage. Production requires labor and a composite input, and we assume for simplicity the that

the composite input is the same composite input used by manufacturing. The production

function for good z in sector n is then:

qi(z, n) = T i(z, n)Θ(n)X i(z, n)θ(n)li(z, n)1−θ(n). (3)

The notation here is the same as above, though here we drop the stage subscripts. Note here

also that we allow the share of inputs in production to differ from that in the manufacturing

sector.

As is standard, each non-manufacturing good can be produced in any location and ship-

ping from source to destination incurs iceberg cost τ ij(n), which may differ from shipping

costs for manufactured goods.

1.2 Aggregation

Within each sector, goods are aggregated to form non-traded composites, which are sold

to final consumers and used to form the composite input used in stage 1.9 The composite

goods, denoted Qi(s), are Cobb-Douglas combinations individual goods:

Qi(s) = exp

(∫ 1

0

log(q̃i(z, s))dz

)
, (4)

where q̃i(z, s) is the quantity of each good in sector s purchased (from low cost sources at

home or abroad) by country i. For manufacturing, q̃i(z,m) represents purchases of stage 2

goods.

These sector-level composite goods are combined to form an aggregate final good and

the composite input used by all producers in the non-manufacturing sector and stage 1 pro-

ducers in manufacturing. We assume that the aggregate final good is given by: F i =

AF i(m)αF i(n)1−α, where F i(s) denotes the amount of the composite good in sector s

that is sold to final consumers and A = (1− α)1−α αα. Similarly, the composite input

is given by: X i = BX i(m)βX i(n)1−β, with X i =
∑

s

[∫ 1

0
X i(z, s)dz

]
in equilibrium and

B = (1− β)1−β ββ.10 Finally, adding up requires that: Qi(s) = F i(s) +X i(s).

9One can think of this aggregation step as a third production stage, with zero value added. Because there
is zero value added, one can alternatively write down the model with aggregation explicitly incorporated
into preferences and production functions.

10Note that we assume the composite input is not sector-specific.

6



1.3 Households

Consumers supply labor inelastically to firms and consume the composite final good Fi.

In effect, they therefore have Cobb-Douglas preferences over stage 2 goods. The consumer

budget constraint is: wiLi = P i
FF

i + TBi, where wi is the wage, Li is the labor endowment,

P i
F is the price of the final composite, and TBi is the nominal trade balance. The trade

balance appears here in the budget constraint, since we treat it as an exogenous nominal

transfer necessary to equate income and expenditure for each country.

1.4 Solving the Model

To estimate and simulate the model, we solve a discrete approximation of the continuum

model described above. We assume that there are a large number (R) of goods within each

sector, and let r = {1, . . . , R} index discrete products.

We describe the solution to the model by walking through a three step numerical proce-

dure here. First, given wages wi, we determine prices and sourcing decisions for each good.

Second, given prices and this assignment, we find equilibrium quantities produced of each

good. Third, given prices and quantities, we compute labor demand and check whether this

matches labor supply in each country.

1.4.1 Prices and Sourcing Decisions

Given wages, we can describe the optimal sourcing decisions for each destination market.

For non-manufacuting, this amounts to determining who the low cost suppliers are for each

good to each destination. For manufacturing, we need to solve for the optimal assignment

of stages to countries for production of all goods purchased by each destination.11 We solve

both problems by comparing prices across alternative sources, or alternative allocations of

stages to countries for manufactured goods, for delivery of a given good to each destination,

and picking the assignment that minimizes costs.

For manufacturing, this takes the form of a nested minimization problem:

p̃k2 (r,m) = min
j
τ jk(m)pj2 (r,m) , with pj2 (r,m) =

(wj)
1−θ(m) (

p̃j1 (r,m)
)θ(m)

T j2 (r,m)

and p̃j1 (r,m) = min
i
τ ij(m)pi1(r,m), with pi1(r,m) =

(wi)
1−θ(m)

(P i
X)

θ(m)

T i1 (r,m)
,

(5)

11To be clear, the assignment of stages to countries for each good depends on the destination at which
that good is consumed.
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where the price of the composite intermediate input is given by P i
X (which we define below).

To be clear, p̃k2 (r,m) is the realized price of stage 2 output of good r in manufacturing

(i.e., the price at which k actually purchases good (r,m)). It is equal the minimum over

τ jk(m)pj2(r,m), the possible prices at which each country j could deliver the stage 2 good

if j chooses the minimum cost source for stage 1. These prices are in turn a function of

the cost of stage 1 inputs in each source j, where the low cost supplier of stage 1 goods

delivers inputs to country j at price p̃j1 (r,m). This input supply price is the minimum over

delivered prices from alternative source countries (i): τ ij(m)pi1(r,m). Finally, those input

supply prices depend on the composite input price in country i, which itself is a function of

the realized prices of stage 2 output in country i.

For non-manufacturing, the minimization problem is simpler due to the ‘one-stage’ struc-

ture:

p̃k (r, n) = min
j
τ jk(n)pj (r, n) , with pj (r, n) =

(wj)
1−θ(n)

(P i
X)

θ(n)

T i (r, n)
. (6)

Prices in both sectors depend on the price of the composite input. This composite input

price is given by: P i
X = P i(m)βP i(n)1−β, where P i(s) denotes the price of the composite

good in each sector. These composite goods prices themselves are given by:

P i(m) = exp

(
1

R

∑
r

log(p̃k2 (r,m))

)
, (7)

P i(n) = exp

(
1

R

∑
r

log(p̃k (r, n))

)
, (8)

where these price indexes are discrete approximations to a price index defined for the con-

tinuum of goods in each sector.12

Starting with a guess for the composite input prices P i
X , we can solve the minimization

problem for prices {p̃j1 (r,m) , p̃k2 (r,m) , p̃k (r, n)}. We then use these prices to update the

value of P i
X , and solve for an updated set of prices. We iterate on this fixed point problem

to convergence. Having converged on a value for P i
X , we can easily compute the solution for

equilibrium prices, as well as the allocation of stages to countries for manufactured goods.

For manufacturing, we denote the set of countries to which country i is the low cost supplier

for a particular stage of each good as: {Ωi
1 (r,m) ,Ωi

2 (r,m)}. And Ωi (r, n) denotes the set

of low cost suppiers to i for non-manufactured good r.

12The continuum price indexes take the form: log
(
P i(m)

)
=
∫ 1

0
log(p̃k (z,m))dz and log

(
P i(n)

)
=∫ 1

0
log(p̃k (z, n))dz.
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1.4.2 Quantities Supplied and Demanded

Given the prices obtained in the previous step, we can compute production of goods at

each stage in each country by working backwards from final demand. Total demand for the

sector-level composite goods is given by:

P k(m)Qk(m) = αP k
FF

k + βP k
XX

k (9)

P k(n)Qk(n) = (1− α)P k
FF

k + (1− β)P k
XX

k. (10)

Since we have taken the wage as given and observe the trade balance, we know P k
FF

k =

wkLk − TBi. However, we do not directly observe expenditure on the composite input

P k
XX

k. We therefore need to solve for this value.

Given P k
FF

k and a guess for Xk, we can compute P k(s)Qk(s) for both sectors. This

allows us to solve for demand for stage 2 goods in manufacturing and demand for individual

goods in non-manufacturing in each destination.

Starting with manufacturing, demand for individual stage 2 goods in destination k is

given by:

q̃k(r,m) =
1
R
P k(m)Qk(m)

p̃k2 (r,m)
, (11)

where again p̃k2 (r,m) is the delivered price from the actual source that supplies market k.

Tracing these demands back to the countries that supply those goods, we can compute the

quantity of stage 2 goods produced in each source j as:

qj2(r,m) =
∑

k∈Ωj
2(r,m)

τ jk(m)q̃k(r,m). (12)

Then, given this stage 2 production in country j, demand for stage 1 inputs in country j is:

xj1(r,m) =
θ(s)pj2(r,m)qj2(r,m)

p̃j1 (r,m)
. (13)

These input demands allow us to then solve for the quantity of each stage 1 good supplied

by country i as:

qi1(r,m) =
∑

j∈Ωi
1(r,m)

τ ij(m)xj1(r,m). (14)

Turning to non-manufacturing, demand for individual goods in destination k is given by:

q̃k(r, n) =
1
R
P k(n)Qk(n)

p̃k (r, n)
, (15)
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where p̃k (r, n) is the delivered price from the actual source that supplies market k in the

non-manufacturing sector.

Finally, given stage 1 production in the manufacturing sector and production in the

non-manufacturing sector, we can compute demand for the composite input:

X i =
1

P i
X

[∑
r

θ(m)pi1(r,m)qi1(r,m) +
∑
r

θ(n)pi(r, n)qi(r, n)

]
(16)

This gives us an updated value for purchases of the composite input X i, and hence updated

values for the total amount of the composite goods supplied in each sector P k(s)Qk(s). We

iterate on this fixed point problem to convergence.

1.4.3 Labor Market Clearing

The candidate solution above involved a guess for wages, so we need to check whether this

guess clears the labor market. We can calculate total labor demand from both stages in

manufacturing as:

li1 (r,m) = (1− θ(m))
pi1 (r,m) qi1 (r,m)

wi
(17)

li2 (r,m) = (1− θ(m))
pi2 (r,m) qi2 (r,m)

wi
. (18)

And labor demand in non-manufacturing is:

li (r, n) = (1− θ(n))
pi1 (r, n) qi1 (r, n)

wi
(19)

Then total labor demand is: LiD (w) =
∑

r l
i (r, n) +

∑
r [li1 (r,m) + li2 (r,m)], where we have

made total labor demand explicitly a function of the wage vector. The equilibrium wage

vector then sets labor demand equal to labor supply: LiD = Li for i = 2, .., N (where market

1 is dropped appealing to Walras’ law). We choose w1 as the numeraire.

2 Discussion

In this section, we comment on three aspects of the model. First, we comment on the

mix between sequential multistage versus roundabout production in the model. Second,

we briefly describe how this production structure can be represented in an input-output

accounting framework, with details in the appendix. Third, we review intuition about the

elasticity of trade to trade costs in models with multi-stage production.
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2.1 Snakes and Spiders

Within the manufacturing sector, the model mixes sequential, multi-stage production with a

roundabout input loop, so that input use consists of stage 1 inputs and the composite input.

In contrast, for the non-manufacturing sector, there is only a roundabout input loop. We

illustrate the basic set-up in a closed economy in Figure 1.

Borrowing terminology from Baldwin and Venables (2010), we can think of the manufac-

turing technology as characterized by recursive ‘snakes’ and ‘spiders.’ To isolate the ‘snake’

part of the model, suppose that we were to set the share of the composite input in stage 1 to

zero in the manufacturing sector. In that case, we would re-write the first stage production

function as qi1(z,m) = T i1(z,m)li1(z,m). And the stage 2 output would be used to satisfy

final demand and as an input in the non-manufacturing sector. This would turn the man-

ufacturing sector into a continuum of two-stage ‘snakes’ – similar to the model analyzed in

Yi (2003).

In the full model, a ‘spider’ production process links the two ends of the ‘snakes’ in

manufacturing.13 Output from the second stage is aggregated and included in the composite

input that is fed back into the first stage of the production process. Because the composite

input links ends of the sequential production process, it converts the two-stage process into

a multi-stage process with an effectively infinite number of production stages, where some

fraction of output is drawn out at each stage to satisfy final demand. Not only does the spider

link the ends of the sequential production process, it also links the production process across

sectors. Manufactures uses non-manufactures in production (and vice versa) because the

composite input is made from all goods. Put differently, inputs flow across sectors through

spiders, while inputs flow within the manfuacturing sector both via snakes and spiders.

2.2 Input-Output Accounting in the Model

In the model, there are input-output linkages across production stages, sectors, and countries.

These linkages can be represented in the form of a model-based global input-output (IO)

table. Analogous to data-based IO tables, this model-based IO table records information on

bilateral shipments of final and intermediate goods across sectors and countries.

The chief difference between the model-based IO table and data-based tables is that we

can split input shipments that occur between stages 1 and 2 in manufacturing from input

shipments for use in forming the composite input. In a sense, we observe input linkages

at higher resolution in the model than we do in the data. Therefore, we adapt the model-

based IO accounting framework to take this into account. The key modification is that we

13Within the non-manufacturing sector, inputs obviously flow through a spider only.
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introduce two rows/columns in the IO table for manufacturing, corresponding to production

stages. We discuss the resulting model-based IO table at length in Appendix A. Having

constructed this IO table, we can use it to construct measures of value-added trade in the

model. We describe two measures along these lines in Section 3.3.

2.3 Elasticity of Trade to Trade Costs

In the model with multi-stage production above, the elasticity of trade flows to trade costs

depends on the level of trade costs. We discuss this relationship at length in simulations of

the model below, but pause here to develop some intuition for this result. There are two

observations that underpin our interpretation of the trade elasticity.

First, as trade costs rise in the multi-stage model, it becomes increasingly costly to split

up manufacturing production stages across countries. Therefore, as trade costs increase,

stages are more often co-located, which implies that the model behaves more like a standard

‘one-stage’ multi-sector Ricardian model. That is, we expect the model to behave like a

multi-sector extension of the Eaton and Kortum (2002).14 Since the single-stage model

features a constant partial (i.e., holding prices fixed) elasticity of trade to changes in trade

costs, the multi-stage model will also feature a near constant partial trade elasticity at high

levels of trade costs. At high levels of trade costs, the multi-stage model will also generate

changes in trade and welfare that are similar to the Ricardian benchmark, as we highlight

below in discussion of our empirical results.

Second, as trade costs fall in the multi-stage model, it becomes increasingly attractive

to split up discrete production stages across borders to take advantage of cost differences.

The ability to substitute over the location of individual stages of the production process,

rather than simply over entire goods themselves, tends to amplify the sensitivity of trade to

changes in trade costs.

One force for amplification arises because trade costs are incurred multiple times when

inputs are shipped abroad and then embodied in imported final goods. For example, if a

good that is exported uses an imported input, then one pays ad valorem costs on the input

twice – once when it is imported, and again when it is exported embodied in final good. Yi

(2010) refers this as the ‘multiple border crossing’ force.

A second force for amplification arises because agents evaluate the burden of trade costs

relative to the cost savings on shifting the location of a single stage of the production process.

The benefits of moving the location of a single stage depend on that stage’s share in total

value added (equivalently, the value of the final good), and benefits are lower when the share

14Specifically, we use the model by Caliendo and Parro (2012) as a benchmark against which to evaluate
our results.
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in total value added is also low. The trade costs incurred in shifting a production stage are

thus perceived to be more burdensome when total value added in the marginal stage is low.

Yi (2010) refers to this as the ‘effective rate of protection’ force.

At intermediate levels of trade costs, the model economy features both standard Ricar-

dian trade, where consumers substitute across entire goods, and trade through multi-stage

production chains in which agents substitute over production locations for each stage. There-

fore, the aggregate model elasticity of trade to trade costs depends on the mix of Ricardian

vs. multi-stage multistage trade. As trade costs fall, the share of trade via multi-stage

production chains rises, and the elasticity of trade to trade costs does as well.

3 Mapping the Model to Data

In this section, we discuss how we fit the model presented in Section 1 to data. We begin

by presenting our data source. We then discuss how we calibrate a subset of the parameters

of the model and estimate the remainder via simulated method of moments. We conclude

the section by describing how we use the model-based and data-based input-output tables

to compute measures of trade in value added.

3.1 Data

Our data source is the GTAP 7.1 Data Base assembled by the Global Trade Analysis Project

at Purdue University, which includes trade, production, and input-output data for 2004.15

While the underlying data includes more than 90 countries, we cannot use this fine country

detail due to computational constraints. Therefore, we retain 15 major countries – United

States, China, Japan, Germany, Italy, India, Great Britain, France, Canada, Spain, Brazil,

Australia, Russia, Mexico, and South Korea – and aggregate the remaining countries to form

a composite rest-of-the-world region.16 Further, there are 57 sectors in the underlying data.

In the data, we have information on 6 objects for each country: yi is a 57 × 1 vector of

total gross production, f ii is a 57 × 1 vector of domestic final expenditure (which includes

consumption, investment, and government purchases), f Ii is a 57×1 vector of domestic final

import expenditure, Aii is a 57× 57 domestic input-output matrix, AIi is a 57× 57 import

input-output matrix, and {xij} is a collection of 57× 1 bilateral export vectors for exports

from i to j.

15See the GTAP website at http://www.gtap.agecon.purdue.edu for documentation of the source data.
This is the same dataset used in Johnson and Noguera (2012a).

16Because we have input-output data for the countries that comprise the rest-of-the-world region, we can
aggregate them in a way that preserves basic input-output identities for the world as a whole.
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Using these data, we compute bilateral final and intermediate input shipments using a

proportionality assumption. To write this out, let us define InterIj = AIjdiag(yj) to be

the matrix of imported intermediate use with (s, s′) elements equal to the value of imported

sector s inputs used by sector s′ in country j. For pairs i 6= j, we compute disaggregate final

bilateral and intermediate goods shipments as: Interij(s, s′) = InterIj(s, s′)
(

xij(s)∑
k 6=j x

kj(s)

)
and Finalij(s) = f Ij(s)

(
xij(s)∑

k 6=j x
kj(s)

)
. For each country buying from itself, shipments are

reported directly in the data, with Finalii(s) = f ii(s) and Interii(s, s′) equal to the (s, s′)

element of Aiidiag(yi).

We aggregate these final and intermediate shipments to the two-sector level – manu-

facturing and non-manufacturing – to estimate the model.17 For reference, we will use

bilateral final and intermediate goods shipments for the manufacturing sector to estimate

the model below, which are defined as: Finalij(m) =
∑

s∈m Final
ij(s) and Interij(m) =∑

s∈m
∑

s′ Inter
ij(s, s′). Rewriting these as shares of destination expenditure, we obtain:

Fshareij(m) = Finalij(m)∑
k Final

kj(m)
and Ishareij(m) = Interij(m)∑

k Inter
kj(m)

.

Due to the proportionality assumptions used above, aggregate final and intermediate

import shares differ across partners due to differences in the composition of trade across

partners.18 For example, Fshareij will be high (relative to Fsharekj) when country j’s

imports from country i are high (relative to country k) in sectors that account for a large

share of total final import demand. The fact that composition drives bilateral variation in

trade shares raises the concern that our trade shares understate the true extent of variation in

the data.19 To check our trade shares, we can compare them to trade shares in an alternative

database (the WIOD database) that does not use the proportionality assumption to estimate

bilateral final and intermediate shipments.20 For both Fshareij and Ishareij, the correlation

between trade shares in our data and this alternative data is above 0.99. Thus, at the

aggregate level at which we use the data, the proportionality assumption appears innocuous.

17Manufacturing covers sectors 27-42 in the GTAP data. Non-manufacturing covers all other sectors,
including agriculture, natural resources, food products, and services.

18There are large differences in the extent to which individual manufacturing sectors are used as inter-
mediate versus final goods. These patterns are broadly sensible. For example, the textiles sector tends to
be heavily used as an intermediate input, while the apparel sector tends to be dominated by final goods.
More generally, machinery and transport equipment tend to be used relatively intensively as final goods.
While chemicals, paper/wood products, metals and metal products, and mineral products all tend to be
used intensively as intermediate inputs.

19To the extent that they do, they exert a conservative bias on our results, pushing the behavior of the
multi-stage model closer to Ricardian models that typically assume identical bilateral sourcing patterns for
final and intermediate goods within each sector.

20The WIOD database uses a modified Broad Economic Categories (BEC) classification to assign HS 6-
digit categories to final or intermediate end use, corresponding to final vs. intermediate classifications in the
national accounts. See http://www.wiod.org/.
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3.2 Fitting the Model

There are a number of free parameters, including technology levels {T i1(r, s), T i1(r, s)}, trade

costs τ ij(s), and several share parameters in production functions and preferences {θ(s), α, β}.
We mix calibration and estimation in pinning down these parameters.

3.2.1 Calibrated Parameters

We calibrate {θ(s), α, β} to match ratios for ‘typical’ countries in the data. The parameter

θ(s) governs the value added to output ratio in each sector.21 We therefore set θ(s) to match

the median value added to output ratio across countries in each sector. These median values

are: θ(m) = 0.67 and θ(n) = 0.43.22 These imply that the value added to output ratio is

0.24 lower for manufactures than non-manufactures.

The parameter α is also straightforward to calibrate, since it is the share of manufactures

in final expenditure. We also set this value equal to the median across countries, given by

α = 0.18. Finally, β governs the extent to which manufactures versus non-manufactures are

used in forming the composite input. As we describe in Appendix B, we choose β to match

inter-sectoral flows for the world economy as a whole. This yields a value β = 0.2. Note that

β and α are quite similar, so manufactures and non-manufactures receive similar weights in

the composite input and final demand.

3.2.2 Estimation via Simulated Method of Moments

Parameters The remaining unknown parameters are technology levels and trade costs.

For technology levels, we assume that countries draw productivity from country, stage,

and sector specific Fréchet distributions, where draws are assumed to be independent across

countries/stages/sectors.23 We parameterize these distributions with a common shape pa-

rameter κ, and location parameters {T i1(s), T i2(s)} for sector s in country i. We set κ = 4.12,

guided by Simonovska and Waugh (2011), and normalize T 1
1 (s) = T 1

2 (s) = 1, so that tech-

nology levels are measured relative to country 1.

We parameterize trade costs by assuming that bilateral trade costs are a power function

in distance. Specifically, we estimate a function of the form: τ ij(s) = τ(s) (dij)
ρ

(s), where

21To see this, note that value added in manufacturing is equal to the wage bill for each good r: vai(r,m) =
wili1(r,m) + wili2(r,m) = (1 − θ(m))[p1(r,m)qi1(r,m) + p2(r,m)qi2(r,m)]. Adding up across goods yields:

1− θ(m) = vai(m)
p1(r,m)qi1(r,m)+p2(r,m)qi2(r,m)

.
22The input share for manufactures varies from roughly 0.57 to 0.78 across countries, with most countries

between 0.6 and 0.7. The input share for non-manufactures varies from 0.37 to 0.55.
23We have experimented with allowing draws to be correlated across stages for individual goods. The

parameter governing this correlation is weakly identified by the data and introducing this correlation does
not materially affect the results.
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dij is the distance between country i and country j, τ(s) is a level parameter, and ρ(s) is

the elasticity of trade costs to distance. We set trade costs on domestic shipments to one in

all countries (τii(s) = 1).

The unknown parameters are then Θ = {T i1(m), T i2(m), T i(n), τ(m), τ(n), ρ(m), ρ(n)}.
As the computational requirements for estimating the full set of parameters is very high,

we estimate a restricted version of the full model. Specifically, we restrict trade costs and

techologies in the non-manufacturing sector, and this allows us to estimate the model using

manufacturing trade only.24 Two assumptions are required. First, we restrict T i (n) to be

equal to the geometric mean of T i1(m) and T i2(m). Second, we assume that trade costs are

equal in both sectors, i.e., τ ij(m) = τ ij(n) = τ (dij)
ρ
. This reduces the set of parameters to

be estimated to be Θ̃ = {T i1(m), T i2(m), τ, ρ}.

Moments We estimate Θ̃ by matching the simulated data to measured shipments of man-

ufactured final and intermediate goods across countries. We generate simulated data taking

final expenditure in each market P i
FF

i and relative wages wi as given and set equal to values

in the data (with w1 = 1 as a normalization).25

Given calibrated parameters {κ, θ (s) , α, β}, relative wages, and final expenditure, we

choose starting values of Θ̃ and draw productivities for each good and sector. Given these

parameters, we solve the model following the procedure in Section 1.4. Using the simulated

data from the model, we then compute a vector of moments which we match to analogous

moments in the data.

We form the first set of moments using trade shares for final manufactured goods. Ship-

ments of final manufactured goods from i to j are:

Finalij(m) =
1

R

∑
r

I
(
j ∈ Ωi

2(r,m)
)
α(m)P j

FF
j,

where α(m)P j
FF

j is total expenditure on manufactured goods in j and 1
R

∑
r I (j ∈ Ωi

2(r,m))

is the share of stage 2 goods that i supplies to country j. The share of source i in country j

final expenditure on manufactures is: Fshareij = Finalij(m)∑
k Final

kj(m)
.26

24In a previous draft, we estimated a version of the model above using data for goods (including agriculture,
natural resources, and manufacturing) and services sectors. To estimate that alternative model, we assumed
that goods were produced with a multi-stage production process and that the services sector was non-traded
(i.e., had infinite trade costs). Similar to the approach in this draft, this allowed us to use goods trade data
only in estimation. The core results we report below are very similar using this alternative strategy.

25We compute total expenditure in each market by dividing observed final expenditure on goods value by
α. We also observe the trade surplus for goods TBi in the data. Since the consumer budget constraint is
given by wiLi = P iFF

i + TBi, then we back out wages as: wi =
(
P iFF

i + Si
)
/Li. We use 2004 population

data from the Penn World Table 7.1 to proxy for labor endowment Li.
26Note that in the model, these trade shares are identical to the trade shares for all stage 2 output,
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The second set of moments consists of trade shares for manufactured inputs. Input

shipments from country i to j include both stage 1 goods and stage 2 goods destined for the

composite input. Input shipments from i to j of sector m goods are:

Interij(m) =
∑
r

I
(
j ∈ Ωi

1(r,m)
)

[θ(m)pj2(r,m)qj2(r,m)] +
1

R

∑
r

I
(
j ∈ Ωi

2(r,m)
)

[βP j
MM

j].

Then the share of inputs from source i in country j’s total purchases of manufactured inputs

in destination j is: Ishareij = Interij(m)∑
k Inter

kj(m)
.

These final and intermediate trade shares correspond to data shares defined in Section

3.1. Since the final and intermediate trade shares sum to one, we only use off diagonal trade

shares (i 6= j), in total 2 (N2 −N) moments. We denote the log difference between actual

and simulated moments µij (Θ) = lnmij − ln m̂ij (Θ), and stack all µij’s in a column vector

M (Θ).

Procedure Our estimation procedure is based on the moment condition E
[
M
(

Θ̃0

)]
= 0,

where Θ̃0 is the true value of Θ̃. Hence, we estimate a ˆ̃Θ that satisfies:

arg min
Θ̃

{
M
(

Θ̃
)′
M
(

Θ̃
)}

Since we have 2N variables and 2 (N2 −N) moments, the model is over identified.

This minimization problem is not straightforward to solve numerically, since the simulated

moments are not continuous in the underlying parameters. In Appendix C, we show that the

expressions for the trade shares can be re-written in such a way that they resemble choice

probabilities from the discrete choice literature. We can therefore employ a technique to

smooth the objective function from McFadden (1989). With this smoothing, we can turn to

standard numerical routines to solve the minimization problem.

3.3 Value Added in Trade

In evaluation of the model, we report responses of trade measured in both gross and value-

added terms. Value-added measures serve as convenient summary statistics regarding the

nature of changes in supply chains in the counter-factual episodes that we examine. Further,

measures of trade in value added have received attention in a number of recent contribu-

including output dedicated for intermediate use. So they can alternatively be computed using total stage 2
trade flows.
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tions.27 We are therefore interested in the extent to which the model we estimate is capable of

helping us interpret stylized facts documented in this literature. We focus on two alterantive

metrics of value-added trade.

First, we compute the amount of value added from each source country embodied in final

goods produced by a given country, which we refer to here as ‘value added inputs.’ This type

of metric has been used by Erumban, Los, Stehrer, Timmer, and de Vries (2012a, 2012b)

to describe how ‘slices’ of manufacturing production chains are allocated across countries.

Increases in the share of foreign value added in final goods production imply that larger

slices of the value chain are located abroad.

Second, we compute the amount of value added from each source country consumed in

each destination, which we refer to as ‘value-added exports’ as in Johnson and Noguera

(2012a). In the aggregate, the ratio of value-added exports to gross exports is a convenient

summary statistic for the extent of double-counting in trade data. This double-counting is

a marker for production fragmentation. For example, increased use of imported inputs in

production of exports is associated with declines in the ratio of value-added exports to gross

exports. At the bilateral level, value-added exports can be thought of as capturing country

j’s demand for value added from country i. Changes in bilateral value-added relative to

gross trade are therefore associated with changes in reduced form demand linkages between

countries.

The common element in both calculations is the observation that multiplying the Leontief

inverse of the global input-output matrix by a vector of final goods returns the amount of

gross output (by country and sector) needed to produce those final goods. These gross output

requirements can then easily be converted to value added requirements, by multiplying by

value added to output ratios. We describe the details regarding how we compute these

measures in both the model and data in Appendix D.

4 Estimation Results

In this section, we present our estimates for technology and trade cost parameters, and

discuss model fit. We also evaluate the magnitude of the partial elasticity of bilateral trade

to trade costs in our model.

27Among others, see work by Trefler and Zhu (2010), Daudin, Rifflart, and Schweisguth (2011), Erumban,
Los, Stehrer, Timmer, and de Vries (2012a, 2012b), Johnson and Noguera (2012a, 2012b, 2012c), and
Koopman, Wang, and Wei (2012).
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4.1 Technology and Trade Costs

Technology We present estimates for technology levels by stage for the 15 countries and

the composite region in Table 1. The first two columns present the geometric means T i1(z,m)

and T i2(z,m) in each country, expressed relative to relative to the United States.28 The final

column computes the ratio of mean technololgy in stage 2 relative to stage 1 in each country.

The estimates indicate that most countries have technology levels lower than the U.S.

level. We plot the estimated aggregate technology level for each country – computed as

the geometric mean of the stage technology levels in Table 1 – against income per capita

in Figure 2. As expected, average technology levels are highly correlated with income per

capita.

Based on examination of Table 1, it is evident that productivity levels are correlated

across stages. Countries with high absolute productivity in stage 1 tend to also have high

absolute productivity in stage 2. Despite this correlation, there are sizable differences in rel-

ative stage productivities across countries. To be clear about interpretation, the final column

Table 1 measures relative productivity in each country compared to relative productivity in

the U.S. Numbers greater than one indicate that a country has a comparative advantage

in stage 2 (downstream) production relative to the U.S. Scanning the table, the U.S. and

Australia have a comparative advantage in upstream production, while China, India, and

South Korea all have a strong comparative advantage in downstream production. Other

countries lie between the these extremes.

Trade Costs Turning to estimated trade costs, we assumed that the trade cost function

took the form: τ ij = τ (dij)
ρ
. Our estimate of the elasticity of trade costs to distance is

ρ = 0.29, and the level parameter is τ = .26.29 For the country pair separated by the median

distance in our data (8400km), these estimates imply that international trade costs are 3.57

times (257% higher than) domestic trade costs: τmedian = exp (ln τ + ρ ln(8400)) = 3.57.

These costs are large, but in line with standard estimates in the literature.30

28Since T in(z,m) is drawn from a Fréchet, the unweighted geometric mean is given by exp(γ/κ)T in(m)1/κ,
where γ here is the Euler-Mascheroni constant. Since we normalize each country relative to the U.S., the

numbers reported in the table are effectively
(
T i
n(m)

TUS
n (m)

)1/κ
.

29This magnitude of this level parameter is not directly interpretable since it depends on the units in which
we measure distance. Therefore, we focus on total implied trade costs, which are interpretable as costs of
international relative to domestic trade.

30For example, Eaton and Kortum (2002) return estimated distance costs of roughly 300% for country
pairs in the 3000 to 6000 mile distance range. Anderson and van Wincoop argue trade costs are equivalent
to an ad-valorem tax of 170% for a representative rich country.
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Model Fit Before turning to detailed analysis of the model, we quickly summarize how

the model fits various moments in the data. We start by examining how the model fits the

moments that we have targeted in estimation – intermediate and final goods trade shares –

in Figure 3, the true trade shares are on the x-axis and simulated trade shares are on the

y-axis (both log scales).31 The model generally fits these trade shares well. In Figure 4, we

plot the share of final goods exports in total exports for each country, in the data as well as in

the model. For most countries, the model is able to match their export composition, e.g. the

relatively high share of final goods in Mexican and Chinese exports. The final goods share

is also highly correlated with the estimated T i2 (m) /T i1 (m), showing that identification of

comparative advantage partly comes from variation in the final goods share across countries.

Turning to untargeted moments, we are able to reproduce variation in bilateral measurs

of value added trade. In the top panel of Figure 5, we plot value added input shares – the

share of value added from each bilateral source country in production of final goods for a

given country. In the bottom panel of Figure 5, we plot value added to export ratios.32

The model does an excellent job at replicating bilateral sourcing of value added. The

model also generates a positive correlation between value added to export ratios in actual

and simulated data, though the overall fit here is not as tight. The dimension on which

the model misses is in generating value added to export ratios near/above one, which are

observed in the actual data but not the simulated data.

Finally, we report several reduced form correlations between bilateral trade and distance

that are helpful for interpreting counterfactuals below. To do this, we estimate a simple

gravity regression of the form:

log yij = χi + χj + δ lnDistanceij + eij, (20)

where where yij is either actual or simulated total bilateral exports (Exportsij) or VAX

ratios (V AExportsij/Exportsij), and χi and χj are exporter and importer fixed effects.33

We present the results in Table 2. Not surprisingly, the model is able to reproduce the

well known dampening effect of distance on trade, producing a distance coefficient of −1.12,

slightly larger than the −0.99 in the actual data. Further, the model reproduces the positive

correlation between value added to export ratios and distance, though the magnitude is

31The cluster of points in the upper right corner is the share of each country’s purchases from itself. Not
surprisingly, these own shares are uniformly large.

32In both figures, we include domestic as well as cross-border transactions. The cluster of points in the
upper right of the top panel is the share of domestic value added in final goods production for each country.
We include these domestic transactions because these are important moments for the model to replicate in
order to generate the correct degree of aggregate openness for each country.

33In estimating this regression, we include exports to/from the rest of the world. Results are virtually
identical if we exclude these flows.
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somewhat smaller in the simulated than actual data.34

4.2 The Trade Elasticity

Yi (2003, 2010) argues that the elasticity of trade to changes in trade costs is magnified in

multi-stage models, and suggests that this magnification is important for understanding the

response of world trade to multilateral tariff liberalization and the large effect of borders on

trade. We seek to quantify these magnification effects (if any) in our estimated model.

In standard models that generate CES import demand, the elasticity of bilateral trade

to trade costs, ∂ lnExportsij/∂ ln τ ij , is constant and equal to a structural parameter – e.g.

equal to the Fréchet parameter in Eaton and Kortum (2002) or the CES demand elasticity

in Anderson and van Wincoop (2003). In our model, we can calculate ∂ lnExportsij/∂ ln τ ij

using the chain rule:

∂ lnExportsij

∂ ln τ ij
=

∂ lnExportsij

∂ lnDistanceij

/
∂ ln τ ij

∂ lnDistanceij
. (21)

Using this equation and our simulated data, we can compute the partial elasticity of

exports to trade costs implied by our model. In our simulated data, the first term – the

elasticity of exports to distance – is −1.12 (see Table 2). Further, we have structurally

estimated the the second term – the elasticity of trade barriers to distance (ρ) – to be 0.29.

This implies that the the partial elasticity of exports to trade costs is −3.86 in our model.

Recall that the single-stage elasticity is κ = 4.12. Therefore, we conclude that the trade

elasticity is not magnified in our estimated model. In other words, supply chains seem to

have a limited role in explaining the trade elasticity, compared to standard models.35

Looking at this result in another way, this finding suggests that standard gravity co-

efficients measuring the elasticity of exports with respect to distance are not inflated in

the presence of multi-stage production. Rearranging (21), the distance elasticity of trade

is ∂ lnExportsij

∂ lnDistanceij
=
(
∂ lnExportsij

∂ ln τ ij

)(
∂ ln τ ij

∂ lnDistanceij

)
. If the trade elasticity is not inflated, then

the estimated distance coefficient will not be inflated either. Rather, it will reflect the true

fundamental elasticity of trade costs with respect to distance.

34Johnson and Noguera (2012b) present and discuss this correlation of VAX ratios and distance at length.
35Note that even with zero fragmentation, our model would not produce a trade elasticity precisely equal

to κ = 4.12. If we were to restrict our model to disallow fragmentation and force both stages for each good
to be located in the same country, then the productivity with which output would be produced would be a
combination of productivities in the first and second stage, given by T i2(z,m)T i1(z,m)θ(m) for good z. Despite
the fact that T i2(z,m) and T i1(z,m) are drawn from Fréchet distributions, this composite productivity is not
distributed Fréchet. Therefore, even in this special case, the model would not yield an aggregate trade
elasticity equal to the Fréchet parameter.
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A potential concern is that, as the Frechet parameter κ is not identified by our data, we

must rely on an estimate from external sources. Therefore, we would like to know whether

we get magnification of the trade elasticity for other values of κ. In a simple robustness

check, we estimate the model based on κ = 8, and then calculate the two elasticities in

equation (21), as before. This gives us ρ = 0.14 and a distance elasticity of -1.09, implying

an elasticity of exports to trade costs of -7.8. Our results are therefore robust to alternative

choices of κ.36

We pick these results up again in Section 5.2.1, where we explore why our findings differ

from Yi (2003, 2010) in greater detail.

5 Technology and Trade Cost Counterfactuals

We now turn to analysis of several counterfactuals in the model. We start with a scenario in

which we lower trade costs across all partners. We then examine a large positive productivity

shock in China. Both counterfactuals will help us understand how fragmentation responds to

various shocks, as well as why we do not find evidence of magnification of the trade elasticity.

5.1 A Single-Stage Benchmark

To evaluate the extent to which the multi-stage model delivers responses (e.g., changes in

trade or welfare) that differ from single-stage models, we need to specify an appropriate

single-stage benchmark. Because the multi-stage model does not strictly nest a single-stage

Ricardian model, the construction of such a benchmark requires some care. Our approach

is to use a version of the multi-sector Eaton-Kortum style model developed by Caliendo and

Parro (2012) that is calibrated to match our simulated data.

Following Dekle, Eaton, and Kortum (2008) and Caliendo and Parro (2012), we only

need a few key parameters to run counterfactuals.37 These parameters include bilateral

trade shares, income, sector-level production and expenditure, sector-level input cost shares,

and the trade surplus in an initial equilibrium, plus a value for the Fréchet shape parameter.

We obtain these values using our simulated data. This means that we run counterfactuals in

this single-stage model starting from an equilibrium that is observationally equivalent in key

36A higher κ implies that the estimated level of trade costs is lower. This does not, however, mean that
supply chains are more common (relative to when κ = 4.12). Lower trade costs means that fragmentation is
more profitable. On the other hand, a higher κ means that there is less heterogeneity in efficiency, so that
that fragmentation is less profitable. The two forces cancel out, so that the magnitude of fragmentation is
invariant to the choice of κ.

37Importantly, we do not need information about the trade cost function and technology parameters to
solve for counterfactuals in the model.
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dimensions to our estimated multi-stage model.38 For each counterfactual, we then feed the

same change in parameter values through our multi-stage model and this alternative single

stage model. For reference, we describe the exact specification, calibration, and solution

procedure for this single-stage model in Appendix E.

5.2 Reductions in Trade Costs

Starting from the baseline estimated equilibrium, we first analyze the case where every bilat-

eral trade barrier in manufacturing declines, e.g. due to due to improvements in transporta-

tion technology.39 We open the analysis by studying how the level of trade costs influences

the extent to which the trade elasticity is magnified in a multi-stage model. We then turn

to examining the response of gross trade, fragmenatation and value added trade, and real

wages to a 10% change in trade costs. In both sets of analysis, we highlight similarities and

differences between results for the multi-stage and single-stage benchmark models.

5.2.1 Magnification Effects and the Level of Trade Costs

In Section 4.2, we argued that our estimated model does not produce a significantly magnified

elasticity of trade to changes in trade costs, which seems to contradict findings in Yi (2003,

2010). This result bears further examination.

In this section, we argue that a key reason we do not find large magnification effects is

that the degree of magnification depends on the level of trade costs. Our structural estimates

of international trade costs are relatively high, which implies that breaking up the production

process is relatively costly, and therefore occurs relatively infrequently. This limits the extent

of magnification in our baseline equilibrium.

Distance Elasticity of Trade Recalling Section 4.2, the trade elasticity can be decom-

posed into ∂ lnExportsij/∂ lnDistanceij and ∂ ln τ ij/∂ lnDistanceij, which equals ρ in our

structural model. Holding ρ constant, magnification in the trade elasticity is equivalent

to magnification in the distance elasticity of trade. Therefore, we would like to show that

|∂ lnExportsij/∂ lnDistanceij| increases as the level of trade costs declines in the multi-stage

case, but is constant in the single-stage case.

38Our simulated data naturally includes information about shipments between production stages. We
discard this information in calibrating the Caliendo-Parro model, since the meaning of a production stage is
undefined in that model.

39Prior to running counterfacutals, we exogenously close aggregate trade imbalances in the multi-stage
model. We use this balanced trade equilibrium data to parameterize the single-stage model.
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To do this, we estimate ∂ lnExportsij/∂ lnDistanceij in simulated data for different

levels of trade costs in the multi-stage model. This amounts to re-estimating Equation 20

for multiple cross-sections of simulated data, where each cross-section is obtained by re-

simulating the model for a different level of trade costs. Note that as we change the level of

trade costs, we hold relative trade costs across bilateral trade partners constant.40 Starting

from our baseline equilibrium, we reduce the level of trade costs by around 200 percentage

points, taking the mean bilateral trade cost in the model from near 250% to 50%. To

illustrate the non-linear response in the model, we also increase trade costs by around 150

percentage points, relative to the baseline.

We plot the resulting distance coefficients against the mean bilateral trade cost in Figure

6. The solid line indicates distance elasticities for the multi-stage multistage model. The

dotted line represents the implied trade elasticity for the single-stage benchmark model,

which features a constant trade elasticity and hence distance elasticity. The vertical dotted

line indices the baseline equilibrum, where average iceberg costs are near 250%.

As trade costs fall, the absolute value of the distance elasticity increases in the multistage

case. This is the same thing as saying that the absolute value of the trade elasticity rises. As

we lower trade costs, this increase is initially gradual, but accelerates sharply as average trade

costs fall to around 150%. With ad valorem trade costs at 50%, the multistage elasticity is

inflated by roughly 13% relative to the baseline elasticity. In other words, a lower level of

trade costs make trade more sensitive to distance in a world with multistage production.

To shed light on the mechanism driving this result, we plot the share of goods for which

production stages are collocated – meaning that both stages 1 and 2 are produced in the

same location – in Figure 7. In the baseline equilibrium (vertical dotted line), 70% of

goods are collocated, indicating that the magnitude of fragmentation is not large enough to

significantly inflate the trade elasticity. As trade costs fall, stages are more often fragmented

across countries, and so the effective trade elasticity rises.

One final point to note in Figures 6 and 7 is that both the distance elasticity and the

share of goods with collocated stages are non-linear in the level of trade costs. These non-

linearities are obviously linked. Fragmentation becomes more sensitive to changes in trade

40In lowering the level of trade costs by large amounts, we run into a subtle technical constraint in analyzing
the resulting data. As the level of trade costs falls, country pairs with initially low trade costs may hit the
lower bound of τ ij = 1. Once at this bound, we cannot lower trade costs further for these pairs. As a result,
we start to distort relative distances in the data when we proceed to lower trade costs among all other pairs
(i.e., pairs not at the lower bound). To estimate gravity coefficients using a constant set of relative distances
and trade costs at different absolute levels of trade costs, we drop these country pairs for which the lower
bound is attained from all regressions (both the high and low trade cost regressions). Because we drop some
countries here, the reduced form gravity coefficient is somewhat higher than in our full data set, which is
reflected in a slightly larger initial absolute value at the highest level of trade costs in Figure 6.
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costs as the level of trade costs falls, which implies larger extensive margin changes in trade

in response to further changes in trade costs and larger trade elasticities. This also explains

why the trade elasticity is roughly constant for higher levels of trade costs (i.e. to the right

of the vertical dotted line)

Bilateral Trade Elasticities Thus far, we have focused primarily on the average partial

equilibrium elasticity of trade with respect to trade costs. That is, the elasticity that one

would obtain from running Armington or Eaton-Kortum gravity-style regressions. Impor-

tantly, this elasticity is estimated under the assumption that the trade elasticity is constant

and common to all countries.

This constant elasticity assumption does not hold in our model: trade elasticities are

heterogeneous across countries and country pairs in the multi-stage model. This follows

directly from the observation above that trade elasticities depend on the level of trade costs.

For particular countries or country pairs that have relatively low trade costs (e.g., nearby

countries like the U.S. and Canada), we may expect to find larger trade elasticities.

To illustrate this heterogeneity, we calculate the elasticity of trade for individual country

pairs for the same set of trade costs changes that we examine above. To be precise, for each

level of trade costs, we compute the elasticity of bilateral trade for a country pair for an

additional 10% reduction in global trade costs.

In Figure 8, we plot the resulting trade elasticities for U.S. exports to Canada, Mexico,

Japan, and Germany. The horizontal axis shows the level of trade costs for the country-pair.

The vertical dotted line in each figure then depicts the elasticity of trade to trade costs for

a 10% change in trade cost starting from the baseline equilibrium. Note that the level of

trade costs corresponding to the dotted vertical line differs across countries, since the level

of trade costs is different across bilateral pairs in the baseline equilibrium. The vertical axis

depicts the elasticity of bilateral exports.

In the figure, we plot bilateral elasticities for both the multi-stage and benchmark single-

stage Ricardian model. An important point to note in interpreting these elasticities is that

these are general equilibrium, not partial equilibrium, elasticities. As we lower the level

of trade costs in this experiment, wages and price levels are changing, and these changes

influence trade. Therefore, despite the fact that the partial equilibrium elasticity in the

single-stage Ricardian model is constant, the general equilibrium elasticity actually declines

as the level of trade costs falls. Therefore, the key information in the graphs is measured by

the divergence between the size of the elasticities between the multi-stage and single-stage

models.

Two points stand out in the figures. First, in the baseline equilibrium, the multi-stage
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elasticities are virtually identical to the single-stage elasticities in all cases, even for exports

to Canada. This implies that the response of bilateral trade to changes in trade costs is quite

similar in the multi-stage and single-stage models near the baseline equilibrium, a point we

return to below.

Second, the elasticities slowly diverge as the level of trade costs falls, with the level of

τ ij ≈ 2 marking the point of divergence in elasticities across all the country pairs. At this

point, the multi-stage elasticity stops falling and starts increasing for all country pairs. As is

evident, the elasticity in the single-stage Ricardian model continues to fall beyond this point.

The divergence between these two elasticities marks the point where multi-stage elasticity

magnification effects start to overwhelm the tendency for elasticities to fall in Ricardian

models, leading the elasticity to start rising. An important point to note about this inflection

point is that magnification occurs earlier for countries with relatively low initial trade costs

(i.e., Canada and Mexico), as compared to Japan and Germany.

Comparison to Yi (2003, 2010) In sum, the finding that the level of trade costs matters

for magnification helps explain why our results differ from Yi (2003, 2010). Our methodology

captures both observable and unobservable trade costs, and therefore points to relatively

high trade cost estimates, consistent with evidence surveyed by Anderson and van Wincoop

(2004). In contrast, Yi (2003, 2010) uses data on observable trade costs, which are much

smaller.41 For example, Yi (2010) estimates that measurable tariff and distribution costs

are in the range of 10-40% for US-Canada trade. Our estimates instead suggest that total

observable plus unobservable trade costs are near 138% for US-Canada trade. Yi (2003)

analyzes tariff liberalization starting with initial tariffs near 15%. Our estimates instead put

average trade costs (multilateral barriers, roughly speaking) near 250%.

At low levels of trade costs in the range used by Yi (2003, 2010), we do find that our model

is capable of generating substantial magnification. However, this low level of trade costs is

far too low to rationalize the observed home bias and concentration in trade flows observed

in the data. Therefore, we believe our results pointing to the lack of magnification provide a

more reasonable guide for interpreting estimated trade elasticities for representative country

samples. That said, it is possible to detect amplification effects at current levels of trade

costs for particular sectors or country-pairs with low trade costs.

41It is natural to ask how the low level of trade costs assumed in Yi’s analysis yield realistic levels of trade.
In Yi (2003), one reason is that the model is calibrated to two symmetric countries. For example, suppose
that we examine a symmetric two-country Ricardian model, and let us assume for simplicity that relative
wages are equal to one and constant (e.g., set in an outside, freely traded sector). With Frchet productivity

distributions, then the share of imports in GDP is given by: τ−n

1+τ−n . If n ∈ (3, 6), then one needs trade costs
between 20-44% to achieve an import share of 0.25. In our model and data, even very small countries exhibit
extreme home bias, which requires much higher trade costs.
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5.2.2 Gross Trade, Value Added Trade, and Real Wages

We now turn to exploring the response of gross trade, value added trade, and real wages to

a 10% decrease in global trade costs from the baseline equilibrium.

Figure 9 depicts changes in gross trade in both the multi-stage and benchmark single-stage

model. Given the findings in the previous section regarding the similarity of trade elasticities

across models near the baseline equilibrium, it is not surprising that trade responses are very

similar across the two models. Overall, the median increase in exports (imports) is 27% (28%)

percent.

Turning to trade measured in value added terms, we plot responses for two measures – the

share of foreign value added in final goods production and the value-added to export ratio –

in Figure 10. Lower trade costs lead to higher foreign shares in final goods production and

lower value added to export ratios. For the median country, the foreign value added input

share increases by 1.5 percentage points, while the VAX ratio decreases by 2.5 percentage

points. The fall in the global VAX ratio, i.e. the change in world value added trade relative

to gross trade, is also 2.5 percentage points. To set this magnitude in context, Johnson and

Noguera (2012b) find that the global VAX ratio declined by 6 percentage points during the

period 1995-2005. Thus, modest declines in global trade costs could account for nearly half

of this change.

Looking at bilateral changes in value added to export ratios, we find that declines tend

to be larger among nearby partners. To illustrate this, we plot changes in aggregate bilateral

VAX ratios in Figure 11. While VAX ratios fall for most (though not all) bilateral pairs,

declines tend to be largest for countries separated by short distances, in the lower left part

of the figure. The dependence of these changes on distance is also consistent with patterns

documented in Johnson and Noguera (2012b). The most surprising aspect of this result is

that these differential changes arise following a global reductions in trade cost. They do not

require trade costs reductions to be larger for nearby partners.

Finally, we plot changes in real wages, wi/P i
F , in Figure 12. Real wages increase by 2% for

the median country, and the response is very similar across the single- and multi-stage case.

Again, this reflects the finding that the trade elasticities are similar across models near the

baseline equilibrium. There is, however, considerable heterogeneity across countries. Overall,

real wages increase more in markets with higher initial import shares, since imported goods

have a larger share of the price index in these countries.

In sum, the model generates changes in value-added trade following modest reductions

in global trade costs that are qualitatively and quantitatively consistent with time-series

evidence. Moreover, responses for gross trade and real wages are quite similar in single-stage

and multi-stage models. This is a consequence of the fact that estimated trade costs are
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relatively high, which implies that the amplification effects of vertical cross-border production

are weak. That said, the mechanics of adjustment and shuffling of the allocation of stages to

countries in the multi-stage model are of course different than substitution across goods in the

single-stage model. In other words, the same macro-behavior disguise different underlying

micro-behavior.

5.3 Changes in Technology

We now turn to investigating how improvements in local technology in one country induce

changes in global production chains. We focus on one experiment here: productivity growth

in China. Starting with our estimated model, we increase both TCHN1 and TCHN2 by two log

points, which brings Chinese technology to a level higher than Mexico but somewhat lower

than South Korea.

Figure 13 illustrates the changes in value added to export ratios and the share of foreign

value added in final goods production following the change in Chinese technology. The

largest adjustment occurs within China itself, where the VAX ratio rises and the foreign

value added sourcing share falls. Both adjustments reflect the fact that China sources a

larger fraction of inputs from itself.

Nearby countries – such as Japan, Australia and South Korea – experience the opposite

adjustment. For those countries, VAX ratios fall and foreign value-added input shares rise, as

China supplies more intermediate inputs into production in the Asian region. For European

countries and the U.S., the adjustments are generally small. In Figure 14, we plot changes

in foreign value-added input shares by country on the vertical axis against distance from

China on the horizontal axis. The takeaway from both figures is that adjustments in the

production chain are mostly confined to proximate trading partners. As in the case of the

decline in trade costs above, this again reflects the predominantly local scope of production

chains.

6 Conclusion

Despite substantial academic and policy interest in the rise of global supply chains, few

quantitative models incorporate discrete, multi-stage production processes. In contrast, this

paper puts the decision to collocate or fragment production stages at center stage. This

allows us to quantify the role of technology and trade costs in driving fragmentation, as well

as the role of fragmentation in magnifying trade elasticities. We find that while elasticity

magnification effects are small in our estimated model, these effects depend on the initial
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level of trade costs. As a result, magnification effects can be substantial for countries or

country pairs with initially low levels of trade costs. We also find fairly large changes in

supply chains following global reductions in trade costs, and show that the model can help

us interpret changes in both gross and value added trade.

In addition to the questions we address in this paper, our model and estimation strategy

is well suited to address many other interesting questions. Maintaining our focus on under-

standing trade elasticities, we think it would be worthwhile to extend the empirical exercises

in several directions.

First, anecdotal evidence suggests that sourcing decisions are ‘sticky’, in the sense that

it is difficult for firms to adjust their production chains in response to shocks. The resulting

sluggish adjustment in the allocation of stages to countries, wherein sourcing patterns adjust

more in the long run than in the short run, implies that short run and long run elasticities

diverge from one another. Our model can be used to quantify these differences.

Second, while we presented results for a ‘small’ (10%) change in global trade costs,

we think it would be useful to revisit the model’s predictions for ‘large’ changes – e.g.,

movements toward free trade and/or autarky. Near our estimated baseline equilibrium, the

model behaves much like a two-sector, single-stage Ricardian model. As we raise trade costs,

this similarity continues to hold, since fragmentation becomes even less common. However,

as we lower trade costs, fragmentation becomes more common, making our model look less

like the single-stage Ricardian benchmark. Therefore, further analysis of large liberalization

exercises – whether among subsets of countries or for the world as a whole – would shed new

light on dimensions where the multi-stage view of production leads to conclusions regarding

trade elasticities and welfare that differ from the alternative single-stage view of production.

Third, while we found no aggregate magnification effects in our baseline equilibrium, there

is substantial heterogeneity in how quickly magnification effects kick in across countries and

country pairs, due to the dependence of trade elasticities on the level of trade costs. This

type of heterogeneity may have important implications for quantifying the effects of trade

policy changes and regional integration initiatives. For example, this logic suggests that

the effects of trade agreements on trade would differ across trading partners, with trade

agreements having larger effects for country pairs with initially low levels of trade costs.

Further, it suggests that regional integration initiatives may have larger effects on trade

than non-regional ones, since by definition geographic trade frictions are lower for intra-

regional trade than for extra-regional trade. In both cases, multi-stage production could

play a key role in explaining growth in bilateral or regional trade.
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Table 1: Estimated Technology

Stage 1 Stage 2 Stage2
Stage1

United States 1 1 1
China 0.20 0.52 2.61
Japan 0.67 1.19 1.77
Germany 0.69 1.37 1.98
Italy 0.65 1.07 1.64
India 0.10 0.31 3.01
United Kingdom 0.63 1.01 1.60
France 0.59 0.97 1.63
Canada 0.58 0.87 1.51
Spain 0.53 0.83 1.56
Brazil 0.26 0.43 1.66
Australia 0.64 0.69 1.06
Russia 0.25 0.36 1.43
Mexico 0.35 0.61 1.75
South Korea 0.39 0.92 2.39
Rest of World 0.16 0.93 5.75

Note: Columns labeled Stage 1 and Stage 2 report the geo-
metric mean of the Fréchet distribution for each manufacturing

stage: exp(γ/κ)T
1/κ
n , where γ is the Euler-Mascheroni constant

and κ = 4.12 as in our simulated model. Average technology levels
are normalized to one in the U.S. in both stages. Relative pro-
ductivities Stage2

Stage1 therefore measure comparative advantage across
stages relative to U.S. comparative advantage.

Table 2: Distance and Trade in Data and Model

log (Exportsij) log (V AX ij)

Data Model Data Model

Log Distance -0.99*** -1.12*** 0.20*** 0.14***
(0.05) (0.02) (0.02) (0.01)

R2 0.90 0.99 0.60 0.94
N 240 240 240 240

All regressions include exporter and importer fixed effects. Robust standard
errors in parentheses.
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Figure 1: Diagram of Production Process in a Closed Economy
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Figure 2: Aggregate Technology and Income per Capita
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Average technology is an unweighted mean of the Stage 1 and Stage 2 technology estimates reported
in Table 1. Income per capita is nominal expenditure at market exchange rates divided by population.
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Figure 3: Trade Shares in Data and Model
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Figure 4: Final Relative to Total Exports in Data and Model
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Figure 5: Bilateral Value Added Trade in Data and Model
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Figure 6: The Gravity Distance Coefficient and the Level of Trade Costs
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Figure 7: The Share Goods with Collocated Production Stages
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Figure 8: United States Bilateral Export Elasticities
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Figure 9: Gross Trade Responses to 10% Reduction in Trade Costs
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Figure 10: Value Added Trade Responses to 10% Reduction in Trade Costs in Multi-Stage
Model
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Figure 11: Value Added to Export Ratio Changes by Distance in Response to 10% Reduction
in Trade Costs in Multi-Stage Model
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Figure 12: Real Wage Response to 10% Reduction in Trade Costs
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Figure 13: Value Added Trade Responses to Increase in Chinese Technology in Multi-Stage
Model
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Figure 14: Changes in Foreign Value Added Inputs in Response to Increase in Chinese
Technology in Multi-Stage Model
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A Multi-Stage Input-Output Framework

In this appendix, we describe how we set up the model-based input-output accounting frame-
work. To start, it is helpful to define notation here for values of bilateral shipments and gross
output. Using the letter y to denote prices times delivered quantities, then we can write bi-
lateral shipments as:

yij1 (r,m) ≡ I
(
j ∈ Ωi

1(r,m)
)
p̃j1(r,m)xj1(r,m), (22)

yij2 (r,m) ≡ I
(
j ∈ Ωi

2(r,m)
)
p̃j2(r,m)q̃j(r,m), (23)

yij(r, n) ≡ I
(
j ∈ Ωi

2(r, n)
)
p̃j(r, n)q̃j(r, n), (24)

where the indicator functions I(·) take the value 1 when country i is the low cost supplier
to country j for a particular good/stage. Using this notation, we can then aggregate across
goods and destinations as necessary. Denoting manufacturing stages by k, we can define total
production by good yik(r,m), total bilateral shipments by sector yijk (m), and total production
by sector yik(m) as:

yik(r,m) ≡
∑
j

yijk (r,m) (25)

yijk (m) ≡
∑
r

yijk (r,m) (26)

yik(m) ≡
∑
j

∑
r

yijk (r,m). (27)

We define yi(r, n), yij(s), and yi(n) analogously for non-manufacturing, dropping the stage
subscripts.

Manufacturing We start with market clearing condition for stage 1 output in manufac-
turing. Note that bilateral shipments of stage 1 inputs can be written as:

yij1 (m) =
∑
r

I
(
j ∈ Ωi

1(r,m)
)
p̃j1(r,m)xj1(r,m)

=
∑
r

I
(
j ∈ Ωi

1(r,m)
)
θ(m)yj2(r,m),

(28)
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where the second line uses the fact that p̃j1(r,m)xj1(r,m) = θ(m)yj2(r,m). Then the market
clearing condition for stage 1 output can be written as:

yi1(m) =
∑
j

yij1 (m)

=
∑
j

[
yij1 (m)

yj2(m)

]
yj2(m)

=
∑
j

[
θ(m)

∑
r

I
(
j ∈ Ωi

1(r,m)
)(yj2(r,m)

yj2(m)

)]
yj2(m).

(29)

In the second line, the ratio
yij1 (r,m)

yj2(m)
records the share of stage 1 inputs from country i used

by country j as a share of stage 2 output. The third line says that this ratio is equal to the
Cobb-Douglas input cost share times the weighted count of goods in which country i is the
low cost supplier of stage 1 inputs to country j, where the weights equal the share of country
j’s stage 2 production of each good in total stage 2 production in j.

Turning to stage 2 output, we need to divide this output across uses since it is both
absorbed as a final good and used to form the composite input. We can break down output
as follows:

yij2 (r,m) = I
(
j ∈ Ωi

2(r,m)
)
p̃j2(r,m)q̃j(r,m)

= I
(
j ∈ Ωi

2(r,m)
) P j(m)Qj(m)

R

=
I (j ∈ Ωi

2(r,m))

R

[
αP j

FF
j + βP j

XX
j
]

=
I (j ∈ Ωi

2(r,m))

R

[
αP j

FF
j + βθ(m)yj1(m) + βθ(n)yj(n)

]
,

(30)

where the last line uses the fact that P j
XX

j = θ(m)yj1(m) + θ(n)yj(n). The last line breaks
down stage 2 shipments into final use and intermediate use by sector.

Then the full sector-level market clearing conditions for stage 2 output are given by:

yi2(m) =
∑
j

yij2 (m)

=
∑
j

∑
r

yij2 (r,m)

=
∑
j

[∑
r I (j ∈ Ωi

2(r,m))

R

] [
αP j

FF
j + βθ(m)yj1(m) + βθ(n)yj(n)

]
.

(31)

The ratio

[∑
r I(j∈Ωi

2(r,m))
R

]
is the fraction of stage 2 goods for which i is the low cost supplier

to country j in sector m. For shorthand, we define Rij(m) ≡
∑

r I (j ∈ Ωi
2(r,m)), so then

this fraction is given by: Rij(m)
R

.
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Non-manufacturing For the non-manufacturing sector, bilateral shipments can be bro-
ken down as:

yij(r, n) = I
(
j ∈ Ωi(r, n)

)
p̃j(r, n)q̃j(r, n)

= I
(
j ∈ Ωi

2(r, n)
) P j(n)Qj(n)

R

=
I (j ∈ Ωi

2(r, n))

R

[
(1− α)P j

FF
j + (1− β)P j

XX
j
]

=
I (j ∈ Ωi

2(r, n))

R

[
(1− α)P j

FF
j + (1− β)θ(m)yj1(m) + (1− β)θ(n)yj(n)

]
.

(32)

So the full market clearing condition for non-manufacturing is:

yi(n) =
∑
j

yij(n)

=
∑
j

∑
r

yij(r, n)

=
∑
j

[∑
r I (j ∈ Ωi(r, n))

R

][
(1−α)P j

FF
j+(1−β)θ(m)yj1(m)+(1−β)θ(n)yj(n)

]
.

(33)

Using the same shorthand as above, we re-write the ratio

[∑
r I(j∈Ωi(r,n))

R

]
as Rij(n)

R
.

Input-Output Table With these market clearing conditions, we can set up the input-
output table. The component pieces are bilateral input use matrices Aij and bilateral final
goods shipments, which we will denote f ij. The input use matrices have four rows/columns,
corresponding to stages and sectors, and take the form:

Aij =


0

yij1 (m)

yj2(m)
0

Rij
2 (m)

R
βθ(m) 0

Rij
2 (m)

R
βθ(n)

Rij
2 (n)

R
(1− β)θ(m) 0

Rij
2 (n)

R
(1− β)θ(n)

 ,

with
yij1 (m)

yj2(m)
= θ(m)

∑
r

I
(
j ∈ Ωi

1(r,m)
)(yj2(r,m)

yj2(m)

)
.

(34)

The ordering of rows/columns is (sector m, stage 1), (sector m, stage 2), and sector n.
These bilateral matrices can be arrayed to form the 4N × 4N dimensional global input-

output matrix:

A ≡


A11 A12 . . . A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 . . . ANN

 (35)
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Then we can organize the use of stage 2 goods as final goods in vector form as:

f ij =

 0
Rij

2 (m)

R
αP j

FF
j

Rij
2 (n)

R
(1− α)P j

FF
j

 . (36)

And let F be the 4N × N matrix of all f ij vectors, where destinations j are arrayed along
columns and source countries i are stacked vertically. And defining ι as a N × 1 column of
ones, note that Fι is the vector of final goods produced by source i.

Finally, let us assemble output by stage and sector into vectors:

yi =

yi1(m)
yi2(m)
yi(n)

 . (37)

And let us stack these vertically to form an 4N × 1 dimensional vector Y .
Given this set-up, the standard input-output accounting identity holds: Y = AY + Fι.

We will use this input-output system to compute different model-based measures of trade in
value added.

B Calibration of the Composite Input Aggregator

This appendix discusses our basis for calibrating the weight of manufacturing and non-
manufacturing goods in the composite intermediate input, i.e., the parameter β. To pick a
value for this parameter, we lay out an approach to choosing a value for β that is appropriate
in a closed economy. We then use data for the world economy as a whole to calibrate β,
which is by definition closed. Because we focus on a closed economy here, we suppress the
country superscript on variables below.

Using notation similar to Section A, we can write total gross output in manufacturing
as: y(m) = y1(m) + y2(m). In the closed economy, all stage 2 goods are produced and
use domestic stage 1 goods as inputs. Therefore, y1(m) = θ(m)y2(m). Using this fact, we
re-write gross output as: y(m) = (1+θ(m))y2(m). This links stage two output to observable
sector level output y(m) and a parameter θ(m) that can be measured from data. This is the
first useful accounting identity.

The second useful accounting identity is the market clearing for stage 2 goods from sector
1: y2(m) = αPFF + βPXX in the closed economy. We then recall that total purchases of
the composite intermediate inputs are given by: PXX = θ(m)y1(m) + θ(n)y(n). Combining
these yields:

y2(m) = αPFF + βθ(m)y1(m) + βθ(n)y(n). (38)

Recall that in our data, final purchases are observed at the sector level, so αPFF is data. We
can also link y2(m) and y1(m) to data on gross output at the sector level, as in the previous
paragraph. Finally, gross output in the non-manufacturing sector y(n) is also observable.
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This leaves us with one equation in one unknown β:

(1 + θ(1))−1y(m) = αPFF + βθ(m)

[
θ(m)

1 + θ(m)
y(m) + βθ(n)

]
y(n). (39)

We pick β guided by this equation. To implement the calibration for the world, we
aggregate all countries in our data to form the composite input-output table for the world,
which records sector-to-sector sales of inputs, gross output, and final demand by sector. Using
this data, we compute the sector-level input shares (i.e., {θ(m), θ(n)}) that are consistent
with this world-level data, which happen to be nearly identical to cross-country median input
shares. Plugging in these values along with values for final demand and gross output into
the equation and solving yields a value of β ≈ 0.2.

C Smoothing the Objective Function

In this section, we show how to calculate approximated simulated moments that are smooth
in the parameter vector. This allows us to use standard gradient based optimization methods
when minimizing the objective function.42

Our approach to simulating the trade shares borrows from the discrete choice literature,
building on the observation that the trade shares are mathematically equivalent to choice
probabilities. We use the logit-smoothed AR simulator to compute the trade shares (see
McFadden (1989) and Train (2009)).

The first step in performing this transformation is to note that the indicator functions
in the expressions for Finalij(m) and Interij(m) (see Section 3.2.2) can be re-written as
statements about supply prices from alternative sources. Country j buys output for a par-
ticular stage from country i if i is the low cost supplier, which means that: I (j ∈ Ωi

1(r,m)) =

I
(
pij1 (r,m) < pkj1 (r,m),∀k 6= i

)
and I (j ∈ Ωi

2(r,m)) = I
(
pij2 (r,m) < pkj2 (r,m),∀k 6= i

)
. For

example, the final trade shares can be written as: Fshareij = 1
R

∑
r I
(
pij2 (r,m) < pkj2 (r,m),∀k 6= i

)
.

The second step then approximates the indicator function with the logit function, as in:

Fshareij =
1

R

∑
r

e−p
ij
2 (r,m)/λ∑

k e
−pkj2 (r,m)/λ

, (40)

where λ is a scale factor.
Similarly, we can approximate the input trade shares as:

Inshareij =
∑
r

I
(
j∈Ωi

1(r,m)
)[θ(s)yj2(r,m)

Inj(m)

]
+

1

R

∑
r

I
(
j∈Ωi

2(r,m)
)[β(m)P j

MM
j

Inj(m)

]

=
∑
r

e−p
ij
1 (r,m)/λ∑

k e
−pkj1 (r,m)/λ

[
θ(s)yj2(r,m)

Inj(m)

]
+

e−p
ij
2 (r,m)/λ∑

k e
−pkj2 (r,m)/λ

[
β(1)P j

MM
j

Inj(m)

]
.

(41)

42Gradient techniques are helpful to us, since the parameter space has relatively high dimensionality. We
attempted to use non-gradient methods initially, but they generally performed poorly (i.e., were both slow
and had difficulty finding the minimum).
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The scale factor λ determines the degree of smoothing. As λ → 0, the logit function
converges to the indicator function and the smoothed trade shares approach the exact trade
shares (in the discrete model). There is little guidance on the appropriate level of λ in
general. By trial and error, we find that λ = 0.02 yields a very good approximation to the
exact trade shares. Finally, we also need to choose R which yields an acceptable trade-off
between simulation accuracy and computing time. In Monte Carlo simulations, we have
found that the empirical model is able to recover the true parameters of the model when
R = 20, 000, so we use this value.

D Measuring Value Added in Trade

This appendix discusses how we compute value added trade in the data and model. As a
preliminary step, we discuss how we assemble the data-based global input-output table.

Data-Based Global Input-Outut Table Using the data set described in Section 3.1,

we define Mshareji to be a 57× 57 matrix with elements xji(s)∑
j x

ji(s)
along the diagonal. Then,

for i 6= j, bilateral input-output matrices bilateral input-output matrices Āji and final ex-
penditure vectors f̄ ji are given by: Āji = MsharejiAIi and f̄ ji(s) = Msharejif Ii. Together
with the domestic input-output matrices Aii and domestic final goods sourcing f ii, we then
assemble the data as follows.

We stack the production data for all countries to form an 57N × 1 vector of gross output
Ȳ , we combine the input output matrices to form a 57N × 57N global input-output matrix
Ā, and we arrange the final expenditure vectors f̄ ij into 57N × N matrix F̄ . For all these
variables, we use the bar notation to make clear that these are data, since similar objects
(without the bars) are defined for the model in Appendix A. With these definitions, we can
write the input-output identity in the data as: Ȳ = ĀȲ + F̄ ι.

Value Added Inputs Starting with the data, we compute value-added inputs for final
output from the goods sector as follows. We construct total final goods shipped from each
country as F̄ ι, and then reshape the resulting vector into corresponding 57 × 1 vectors of
final goods shipped from each country, which we write f̄ i. Zeroing out elements of these
vectors corresponding to services sectors, we get modified vectors f̄ i,goods. Then we arrange
the collection of f̄ i,goods for all countries to form a 57N × N block diagonal matrix F̄ V AI ,
and compute foreign value added in final output in the goods sector as:

V AInputs ≡ R̄(I − Ā)−1F̄ V AI , (42)

where R̄ is a N × 57N block diagonal matrix with row vectors of value added to output
ratios for each country along the diagonal.

To explain this calculation, note that (I − Ā)−1F̄V AI returns a 57N × N matrix where
column j is the vector of output needed to produce final goods shipped from j to all destina-
tions. To compute value added embodied in those goods, we multiply by sector-level value
added to output ratios and sum across sectors, where both operations are accomplished si-
multaneously via pre-multiplication by R̄. The ij elements of the resulting matrix are the
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amount of value added from country i embodied in final goods produced in country j. For
example, it measures the amount of Mexican value added in final goods produced in the
United States. We construct value added inputs in the model in an identical way, but slide
in model-based definitions for the input-output matrix, final goods production, and value
added to output ratios.43 We denote the resulting values V AInputs.

Value Added Exports The procedure for computing value added exports is similar to
that above, except that final goods are distinguished according to the destination in which
they are consumed. We express value added exports for the goods sector in matrix form as:

V AExports = R̄V AX(I − Ā)−1F̄ , (43)

where here R̄V AX takes the same form as R̄, but replaces all value added to output ratios
for services with zeros. The ij elements of V AExports record the amount of value added
from the goods sector in country i that is absorbed in destination j, embodied in the final
goods that j consumes. As above, we can construct the model-equivalent measures using an
identical formula with values from the model-based input-output framework substituted for
values from data, denoting resulting values V AExports.

E Benchmark Ricardian Trade Model with Input-Output

Linkages

In this appendix, we describe the model that we use in Section 4 to evaluate how the multi-
stage model differs from a benchmark two-sector Ricardian model. The benchmark model
we use is a special case of the model in Caliendo and Parro (2012), which itself is based on
Eaton and Kortum (2002).44 Therefore, we refer to it at the EK/CP model. For brevity,
we describe the key equilibrium conditions here, and refer the reader to Caliendo and Parro
(2012) for a complete description of the underlying model.

To define the equilibrium concisely, we need to introduce some new notation. First, we
define gross expenditure Ei(s) to be total spending on final goods plus intermediates goods
from sector s. Second, we define sector-level trade balances as TBi(s). Otherwise, the
notation used here matches that use in the main text, with modification in the meaning of
variables as necessary. For example, ci(s) denotes unit costs and P i(s) denotes an aggregate
price level of an aggregate of sector s goods, but the functional forms are different here than
in the main text reflecting differences between this model and the multi-stage model. For a

43One point to note is that value added to output ratios in the model are pinned down by parameters,
equal to 1− θ(s) in each sector and common to all countries by assumption.

44It is a special case both in that we consider two sectors only, and in that we restrict the value of a
number of parameters in ways that are consistent with our multi-stage model.
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two sector economy, the equilibrium of the EK/CP model can be written concisely as:

ci(m) = (wi)1−θ(m)
[
P i(m)γ

i(m)P i(n)1−γi(m)
]θ(m)

(44)

ci(n) = (wi)1−θ(m)
[
P i(m)γ

i(n)P i(n)1−γi(n)
]θ(n)

(45)

P i(m) =

[∑
j

T j(m)
(
cj(m)τ ji(m)

)−κ̄]−1/κ̄(m)

(46)

P i(n) =

[∑
j

T j(n)
(
cj(n)τ ji(n)

)−κ̄]−1/κ̄(n)

(47)

πij(m) = T i(m)

[
ci(m)τ ij(m)

P j(m)

]−κ̄(m)

(48)

πij(n) = T i(n)

[
ci(n)τ ij(n)

P j(n)

]−κ̄(n)

(49)

Ei(m) =
∑
s

γi(s)θ(s)
[
Ei(s) + TBi(s)

]
+ αP i

FF
i (50)

Ei(n) =
∑
s

(1− γi(s))θ(s)
[
Ei(s) + TBi(s)

]
+ (1− α)P i

FF
i (51)

TBi(m) =
∑
j

πij(m)Ej(m)− Ei(m) (52)

TBi(n) =
∑
j

πij(n)Ej(n)− Ei(n) (53)

TBi = TBi(m) + TBi(n) (54)

P i
FF

i = wiLi − TBi, (55)

There are several new parameters here. The parameter γi(s) is a Cobb-Douglas input share,
where γi(s) is the share of total spending on intermediate inputs that sector s in country i
dedicates to inputs from sector m. The parameter κ̄(s) is a sector-specific trade elasticity.
We describe how we assign values to these parameters below. The remaining parameters
θ(s) and α are defined as in the main text, and they they not vary across countries by
assumption.

Following Dekle, Eaton, and Kortum (2008) and Caliendo and Parro (2012), the system
of equations can be re-written in terms of changes relative to an initial equilibrium. To do
this, we define variables x̂ = x′

x
, where x′ is the value of a variable in the new equilibrium
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and x is the value in the initial equilibrium. This yields equilibrium conditions:

ĉi(m) = (ŵi)1−θ(m)
[
P̂ i(m)γ

i(m)P̂ i(n)1−γi(m)
]θ(m)

(56)

ĉi(n) = (ŵi)1−θ(n)
[
P̂ i(m)γ(n)P̂ i(n)1−γ(n)

]θ(n)

(57)

P̂ i(m) =

[∑
j

πji(m)T̂ j(m)
(
ĉj(m)τ̂ ji(m)

)−κ̄]−1/κ̄(m)

(58)

P̂ i(n) =

[∑
j

πji(n)T̂ j(n)
(
ĉj(n)τ̂ ji(n)

)−κ̄]−1/κ̄(n)

(59)

π̂ij(m) = T̂ i(m)

[
ĉi(m)τ̂ ij(m)

P̂ j(m)

]−κ̄(m)

(60)

π̂ij(n) = T̂ i(n)

[
ĉi(n)τ̂ ij(n)

P̂ j(n)

]−κ̄(n)

(61)

Ei(m)Êi(m) =
∑
s

γi(s)θ(s)
[
Ei(s)Êi(s) + TBi(s) ˆTB

i
(s)
]

+ αP i
FF

iP̂ i
FF

i (62)

Ei(n)Êi(n) =
∑
s

(1− γi(s))θ(s)
[
Ei(s)Êi(s) + TBi(s) ˆTB

i
(s)
]

+ (1− α)P i
FF

iP̂ i
FF

i (63)

TBi(m) ˆTB
i
(m) =

∑
j

πij(m)Ej(m)π̂ij(m)Êj(m)− Ei(m)Êi(m) (64)

TBi(n) ˆTB
i
(n) =

∑
j

πij(n)Ej(n)π̂ij(n)Êj(n)− Ei(n)Êi(n) (65)

TBi ˆTB
i

= TBi(m) ˆTB
i
(m) + TBi(n) ˆTB

i
(n) (66)

P i
FF

iP̂ i
FF

i = wiLiŵiL̂i − TBi ˆTB
i
. (67)

In all simulations, we assume that labor input is fixed in all countries L̂i = 1. As in
Caliendo and Parro, we treat changes in trade costs (τ̂ ij(s)), technology (T̂ j(s)), and aggre-

gate trade balances ( ˆTB
i
) as exogenous forcing variables. This leaves 10 + 2N2 endogenous

variables {ŵi, P̂ i
FF

i, {ĉi(s)P̂ i(s), Êi(s), ˆTB
i
(s), {π̂ij(s)}j}s}i and 10 + 2N2 equations, before

choosing a normalization.45

To solve for these endogenous variables, we need parameters {α, {κ̄(s), γi(s), θ(s)}s} and
values for {wiLi, P i

FF
i, TBi, {Ei(s), TBi(s), {πij(s)}j}s}i in an initial equilibrium. We set

these parameters based on our the simulated data generated by the multi-stage model –
i.e., we treat predicted equilibrium values from our estimated model as ‘data’, which implies
that we start simulations from the same equilibrium in our multi-stage model and this

45Note that we treat nominal final expenditure P iFF
i as one variable, hence the wide-hat notation on P̂ iFF

i.
We do not need to separate the final price level and real final expenditure to compute the counterfactuals
that interest us.
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alternative benchmark model. Recall that we estimated the benchmark model allowing
for unbalanced trade. To perform counterfactuals, we exogenously close trade balances in
the multi-stage model, and then evaluate counterfactuals relative to this balanced trade
equilibrium. This implies that P i

FF
i = wiLi and TBi = 0 in our initial equilibium. So

we need only need {P i
FF

i, {Ei(s), TBi(s), {πij(s)}j}s}i in the balanced trade equilibirum of
the multi-stage model, plus the structural parameters {α, {κ̄(s), γi(s), θ(s)}s}, to compute
changes in equilibrium variables in the EK/CP model. We now describe the details regarding
how we obtain values for these parameters.

Reading values for {P i
FF

i, {Ei(s), TBi(s), {πij(s)}j}s}i from our simulated data is com-
pletely straightforward. Further, θ(s), α} are set to the same values as in the multi-stage
model. The parameter γi(m) for sector m (the multi-stage sector) is equal to the value of
inputs from sector m used by sector m as a share of total input use by sector m. Total input
use by sector m is equal to use of stage 1 inputs by stage 2, which are equal to θ(m)yi2(m),
plus use of the composite input, which is equal to θ(m)yi1(m).46 Then all stage 1 inputs
used by stage 2 in sector m originate from sector m, but only a fraction (β) of the composite
input originates from sector m. This implies that:

γi(m) =
θ(m)yi2(m) + βθ(m)yi1(m)

θ(m)yi2(m) + θ(m)yi1(m)

The value of this parameter varies across countries to the extent that the mix of stage 1
versus stage 2 output varies across countries. Turning to γi(n), sector n uses sector m inputs
only embodied in the composite input, and the composite input itself is the only input in

production. Therefore, γi(n) = βθ(n)y2(n)
θ(n)y2(n)

= β, where θ(n)y2(n) is equal to the value of
the composite input used by sector n. Note that this parameter then does not vary across
countries in our model.

Finally, turning to the values for κ̄(s), we note that these values correspond to the
elasticity of log bilateral trade to log bilateral trade costs in this EK/CP model. Therefore, we
obtain them by regressing simulated bilateral trade in each sector from the multi-stage model
on estimated log bilateral trade costs. For reference, this returns estimates κ̄(m) = 3.85 and
κ̄(s) = 4.08.

46The notation here is defined in Appendix A.
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