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Abstract 

We test three functional forms that relate land values and temperatures in a Ricardian 

model of US agriculture: a quadratic relationship based on average seasonal 

temperature and precipitations, a non-linear relationship based on degree days and a 

flexible functional form in which average seasonal temperatures are interacted with 

dummies. Results obtained using growing season average temperature and degree days 

are not significantly different. We do not find evidence of a threshold if we include 

degree days above 34 °C. Cold degree days instead matter and should not be omitted. 

Models that use a quadratic specification of average temperatures perform better than 

models that use degree days. This is in line with the agronomic literature. Degree days 

should be used to estimate the duration of phenological events rather than yields. 

Estimates of uniform +2 °C and +4 °C warming indicate that warming is significantly 

harmful for agriculture in the East of the US. The use of a more flexible functional form 

reveals that the relationship between temperatures and land values is flatter than in the 

quadratic. Seasons, within and outside the growing season, significantly affect land 

values and allow separating beneficial and harmful effects of warming more effectively. 
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1 Introduction 

A large literature uses agro-economic models to examine the relationship between crop yields, crop 

profitability and climate (Adams et al. 1990; Rosenzweig and Parry 1994; Adams et al. 1995; Reilly et al. 

2003). A problem with agro-economic models is that farmers’ decisions are poorly modeled, adaptation 

is limited and they only cover major crops. 

Mendelsohn, Nordhaus, and Shaw 1994 (MNS) argue that a cross-section analysis of farmers that 

operate under different climates is able to provide a more accurate description of the relationship 

between climate and long-run agricultural profitability. MNS use a hedonic econometric model in which 

land values – a measure of long-term farm profitability – are regressed on climatic and other control 

variables. The method has been used to study impacts on US agriculture by Mendelsohn and Dinar 

(2003), Schlenker, Hanemann, and Fisher (2005; 2006), Massetti and Mendelsohn (2011; 2012). The 

hedonic method has been applied in many countries. 

One area of disagreement in the literature concerns the functional form used to introduce climate 

variables in the hedonic model. 

MNS use January, April, July and October climatologies (i.e. 30-year averages) of mean monthly 

temperature and precipitation data to characterize a quadratic climate surface at county-level. They 

argue that the quadratic functional form is sufficient to capture a non-linear response of land values to 

temperatures and precipitations.  

The use of monthly mean quadratic temperature variables is instead criticized by Schlenker, Hanemann, 

and Fisher 2006 (SHF). SHF argue that a quadratic function does not capture severe impacts of 

abnormally high temperatures on crop yields, and thus on profits and land values. SHF suggest using 

climatologies of growing season degree days (DD) between 8 and 32 °C and above 34 °C instead of 

monthly temperatures in the four seasons. Growing season DD are calculated by summing daily mean 

temperatures that fall within a given interval over the whole growing season (from April 1st to 

September 30
th

 in SHF study). For example, 8-32 °C DD are computed as follows: days with mean 

temperature t below 8 °C contribute with zero DD, days with temperature between 8-32°C contribute 

with t-8 DD. Analogously, a day with mean temperature above 34 C contributes with t-34 DD to the 

definition of 34 °C DD. By separating days with temperatures that are beneficial (between 8 and 32°C) 

from days with temperatures that are harmful (above 34°C) SHF try to capture the different effect of 

warming at different temperature levels. 

SHF show that the model that uses a quadratic function of 8-32 °C DD during the growing season and 

controls for the number of degree days above 34 °C performs better than the model that uses monthly 

temperatures. In particular, counties that record days with mean temperature above 34 °C have 

significantly lower land values, ceteris paribus. This implies that global warming, especially if 

concentrated during summer time and in counties where temperatures are already close to 34 °C may 

be very harmful to US agriculture. 



The work by SHF raises three intriguing questions. First is the quadratic functional form capable of 

reproducing the relationship between climate and yields that emerges in the agronomic literature? 

Second, is the quadratic able to capture “threshold” effects of heat on crop yields and on land values? 

Third, does climate outside the growing season – both temperature and precipitations - matter or is 

irrelevant, as postulated by SHF? 

In this paper we address those three questions. We test three functional forms: a quadratic relationship 

based on average seasonal temperature and precipitations, a non-linear relationship based on degree 

days and a flexible functional form in which average seasonal temperatures are interacted with 

dummies to allow a different response of land values at different climates. We assess strengths and 

weaknesses of these models in light of the econometric evidence and in light of the agronomic 

literature. We also test if climate outside the growing season matters and what are the implications of 

not including it in the hedonic model. 

We closely follow SHF in setting up our model. We pool together county-level land values, county-level 

climate variable and other control variables over four US Agricultural Census years (1982-2002). As SHF 

we focus on counties east of the 100
th

 meridian in the US. We use instead different climate data. 

We build a unique climate dataset for US counties using the North American Regional Reanalysis (NARR) 

“Merge” dataset prepared for the National Climatic Data Center.
1
 The NARR dataset provides a high 

spatial (32 km) and temporal (3 hour) analyses of North America and adjacent oceans and land masses 

from October 1978 to December 2011. With this data we can compute degree days using actual mean 

daily temperatures instead of deriving them from mean monthly temperatures using smoothing 

techniques, as in SHF. Our data is therefore qualitatively superior to that used by SHF. 

The rest of the paper is structured as follows. Section 2 surveys the agronomic literature that estimates 

the relationship between temperature and crop yields and presents descriptive statistics of climate data 

to assess the merits of using degree days instead of average seasonal temperatures. Section 3 illustrates 

the models that are empirically tested and data. Section 4 presents and discusses results. Conclusions 

follow. 

2 Climate and land values 

Mendelsohn, Nordhaus, and Shaw (1994) (MNS) is the first study that uses the variation of climate and 

of land values to estimate the welfare impact of climate change on agriculture.
2
 They use a hedonic 

method that is often called “Ricardian” because it relies on the fact that land values reflect the long-

                                                           
1
 See http://nomads.ncdc.noaa.gov/docs/ncdc-narrdsi-6175-final.pdf for further information. 

2
 Johnson (1970) used a similar method to study how climate affects the productivity of land in the United States. 

Johnson was not interested in climate change because at the time it was not yet a concern. Johnson was rather 

interested in finding the value of methods to change weather, which apparently were attracting a lot of interest at 

the end of the ‘60s. 



term profitability of land as first suggested by Ricardo.
3
 MNS regress US agricultural land values on 

climate, soil, geographic characteristics and other socio-economic variables. A general Ricardian 

equation is built as follows: 

 ��,� = ββββ	ℎ(
�) + 
��,� + ��� + ��,� 	. (1) 

Where � is the land value per hectare at time t for observation i, ℎ(∙) is a generic function of the vector 

of climate variables, � is a set of socio-economic variables that vary over time, � is a set of geographic 

and soil characteristics and � is assumed to be a random component. The long-run relationship between 

climate (a long-run average of weather) and land values is captured by the coefficient  � . Estimates of � 

provide information on the sensitivity of land values to climate and can be used to estimate the welfare 

impact of climate change. 

MNS describe climate using a quadratic functional form for average temperature and precipitations in 

four representative months: 

 ��,� = �� + ∑ ��,���,�� + ∑ ��,���,��� + ∑ ��,���,�� + ∑ ��,���,��� + 
��,� + ��� + ��,� , (2) 

where � =  	January, April, July, October	1. Other Ricardian analysis of US agriculture use average 

temperature and precipitations over the four seasons (Massetti and Mendelsohn 2011; 2012). 

Ricardian studies that use a seasonal characterization of climate find that warming in spring and in 

autumn is beneficial for farmers because they have a longer growing season. Warming in winters and in 

summers lowers instead land values. Cold winter days kill bugs. If winter becomes warmer, farmers 

must spend more in pesticides to protect their crops, lowering profits and land values. Hot summer days 

are harmful for crops because they suffer from heat stress. 

Schlenker, Hanemann, and Fisher (2006) (SHF) claim that a quadratic, seasonal model does not 

characterize well the agronomic relationship between heat and crop growth. SHF argue that crops 

respond to the overall amount of heat they receive during the growing season, no matter when. In 

                                                           
3
 In a more formal language, the Ricardian method assumes that the value per hectare of farmland in location i (2�) is equal to the discounted value of future profits from farm operations: 

��,� =3 45��,67�,689�,6, 
� , ��,6, ��: − <�,69�,�= >?6@AB
6C�  

where ��,6 denotes the set of farm output prices. 7�,6 denotes farm output, which is a function of a set of inputs 9�,6, of climate conditions 
� , of a set ��,6 of socio-economic drivers that might change over time – e.g. density of 

population and income per capita – and a set of variables that do not change over time – e.g. elevation, soil 

characteristics, distance from metropolitan areas. <�,6 collects input prices. >?6 is the discount factor. 

Profit maximizing farmers will chose the vector of inputs 9�,6 to maximize the expected value of farmland per 

hectare. The choice of inputs should be considered here in a broad sense: farmers can choose what farm type they 

have, whether to irrigate or not and, what crops to grow and the amount of fertilizers and other inputs. It is 

possible to solve the maximization problem of the farmer and show that land values ultimately depend on a set of 

exogenous variables: ��,� =D8
� , ��,� , ��: 



particular, they argue that crops grow well when temperatures are within a mild range. Within this 

interval plant growth is linear in temperature. Outside of this mild temperature interval the effect of 

temperature on crop growth is strongly non-linear. Crops do not grow at all if it is too cold and they 

grow much less if it is too hot because they suffer from heat stress. 

In order to capture these relationships SHF suggest replacing seasonal temperatures with climatologies 

of degree days over the growing season. Degree days (DD) are equal to the sum of daily mean 

temperatures within a given time interval R during the growing season. There are several ways to 

calculate DD. SHF do not include days with mean temperature below 8 °C and cap DD at 32 °C (see 

Figure 1). Denoting with @@8-32�,? the contribution of day I ∈ < in location i to 8-32 °C DD (DD8-32L) 
they calculate degree days as follows: 

 

@@8-32�,? = M 0		if						P�,? ≤ 8P� − 8	if				8R	P�,? ≤ 32													24			if				P�,? > 32																 
UU8-32� = 5 @@�,??∈V  

(3) 

 

where we omitted the time subscript for ease of notation. In order to capture the effect of very hot days 

on land values SHF also use degree days above 34 °C (DD34), calculated as follows: 

 @@34�,? = W0															if				P�,?≤	34P� − 34				if				P�,?>	34 

UU34� = 5 @@34�,??∈V  

(4) 

 

DD are calculated for all years during a 30-year time period and then averaged to obtain climatologies. 

SHF transform the Ricardian model described in Equation (1) using climatologies of DD8-32 and DD34 

together with total growing season mean precipitations: 

 ��,� = �� + ��UU8-32� + ��UU8-32�� + ��UU34� + ���� + ����� + 
��,� + ��� + ��,� (5) 

In summary, SHF argue that: (1) degree days between 8 and 32 °C are better than average temperature; 

(2) degree days should be capped at 32 °C; (3) the effect of degree days rises linearly from 8 to 32 °C and 

then falls precipitously after 34 °C; (4) cold degree days do not matter; (5) seasons (spring summer fall) 

within the growing season do not matter; (6) all that matters is degree days over a fixed growing season 

(winter or non-growing season does not matter). 

The model used by SHF is certainly attractive and raises legitimate doubts on the ability of a simple 

quadratic functional form to describe the relationship between climate and land values. It also raises the 

question of whether seasons within the growing season matter and if climate outside the growing 

season affects or not agricultural productivity. 



 

Notes. Left panel: the solid red line indicates the contribution of mean daily temperature to the total sum of degree days; the dashed black line 

indicates how each day contributes to the standard seasonal average. The underlying distribution of mean daily temperatures from 1981 to 

2010 from April 1
st
 to September 31

st
 is from the NARR dataset. Only grid-points east of the 100

th
 meridian (22,300,380 data points). Blue bars 

indicate days with temperature below 8°C (5% of total); yellow bars indicate days above 32°C and below 34°C (1% of total); red bars indicate 

days above 34°C (0.18% of total). Range: from -17.4 to 39.3°C; mean: 20.9°C; median: 22.2°C. Right panel: scatter plot of mean temperature 

between April and September and degree days calculated at counties’ centroids for 2351 US counties east of the 100th meridian. The R-

squared of the linear fit is in excess of 0.999. 

Figure 1. Degree days and distribution of mean daily temperatures east of the 100
th

 meridian in the US. 

Before testing the degree days model against the quadratic model using our climate dataset we 

highlight several problems of the model used by SHF. First, we raise doubts on the relevance of DD 

compared to average seasonal temperature and we highlight several problems that emerge when using 

DD. Second, using evidence from agronomic studies we question the validity of assuming that heat 

affects crop yields linearly between 8 and 32 °C and then precipitously reduces yields when temperature 

is above 34 °C. Third, using data on present planting and harvesting dates, we argue that a rigid 

definition of the growing season is problematic and climate outside the growing season matters. 

2.1 Are degree days better than average temperature? 

Despite looking a sophisticated measure of temperature, degree days, as used by SHF, have a lot in 

common with mean seasonal temperatures. Let us consider for example the case in which daily mean 

temperatures are always between 8 and 32 °C during the growing season.
4
 In this case, the estimated 

coefficient of degree days in a Ricardian model would be equal to the coefficient of mean growing 

season temperature, after one subtracts 8 from average temperature and multiply by 183 (the number 

of days between April 1
st

 and September 30
th

) with a correction term in the intercept.
5
 

                                                           
4
 The same would apply to other temperature thresholds. The wider is the temperature interval, the closer degree 

days are to mean seasonal temperature. 
5
 If daily mean temperature is always between 8 and 32 °C during the growing season we have: 

UU� = 5 @�,??∈V = 5 8P�,? − 8:?∈V = 5 P�,? − <8?∈V = <(P�̅ − 8) 

where P�̅ is the average temperature during season R. 



If there are many days below 8°C or above 32°C degree days and average seasonal temperature diverge. 

However, this happens under fairly rare circumstances in the East of the US, as illustrated by Figure 1. 

Even rarer is the case in which counties east of the 100
th

 meridian have mean (over 1981-2010) daily 

temperatures outside the 8-32 °C interval. The 30-year average mean daily temperature in Iowa City, 

Iowa, USA, at the center of the “corn belt” is always between 8°C and 32°C from the beginning of April 

to October. 

It should therefore be of no surprise that the correlation between 8-32 °C degree days and mean 

growing season temperature is in excess of 0.999, as shown in the right panel of Figure 1. Thus, using 

8-32 °C degree days or average seasonal temperature is expected to make little difference in Ricardian 

models. 

The only advantage of using degree days seems to be the possibility to control for days with abnormally 

high temperatures. Extremely high temperatures, especially if unexpected, clearly damage crops. It is 

therefore legitimate to understand how relevant this phenomenon is. 

Our data shows that the number of degree days in the East of the US is extremely limited. 54% of 

counties never experience mean daily temperatures above 34 °C (Figure 1 and Figure 2). If they record 

mean daily temperatures above 34 °C it is only for brief intervals of time. The 90
th

 percentile of the 

distribution is equal to 0.31. Only a handful of counties (2%) has more than one day during the growing 

season with temperature equal or higher than 35 °C. It is important to stress that we are considering 

climatologies over thirty years. Therefore it is highly probable that for the vast majority of counties 

degree days above 34 °C appear as a result of a heat wave occurring once or twice from 1981 to 2010. It 

is very likely that degree days capture inter-annual variance rather than average conditions. However, if 

variance is the variable of interest, more appropriate measurements of inter-annual variation should be 

used instead of degree days. 

It is also questionable if a very brief exposition to high temperatures is sufficient to determine a sudden 

drop of productivity. Experiments cited in Section 2.2 use constantly high temperatures over weeks to 

assess the impact of extreme heat on crop yields. Field observations suggest that crop yields drop due to 

prolonged heat waves and droughts, rather than as a consequence of one single very hot day in which 

temperature may be only a fraction of a degree above the 34 °C threshold. 

It seems that there are no apparent benefits of using degree days instead of average seasonal 

temperatures. Quite the opposite, there are several disadvantages, especially in the specific formulation 

of degree days used by SHF. 

First, the influence of days with temperature below 8 °C within the growing season – much more 

frequent (30 times more) than days with temperatures above 34 °C (see Figure 1) – is lost. Agronomic 

studies clearly show that cold days are harmful because they shorten the growing season and sudden 

freezing temperatures kill crops. 



 
Notes. 1981-2010 climatologies of degree days for US counties east of the 100

th
 meridian. Source: own calculations based on the NARR Merge 

dataset. Degree days calculated for all grid-points of the NARR Merge dataset. County-level degree days obtained using a weighted average of 

the four closest grid-points to counties’ centroids. 

Figure 2. The spatial distribution of 8-32 ° degree days (left panel) and of 34 °C degree days (right panel). 

 
Source: (USDA 2010). 

Table 1. Planting and harvesting dates for major crops in the East of the US.  

Crop
State

% of total harvest 

acres
Begin Peak End Begin Peak End

Corn Iowa 17% 19-Apr Apr 25 - May 18 26-May 21-Sep Oct 5 - Nov 9 21-Nov

Illinois  15% 14-Apr Apr 21 - May 23 5-Jun 14-Sep Sep 23 - Nov 5 20-Nov

Cotton Texas  47% 22-Mar Apr 8 - Jun 7 20-Jun 10-Aug Sep 13 - Dec 21 11-Jan

Georgia  13% 23-Apr May 2 - May 31 11-Jun 23-Sep Oct 10 - Dec 2 18-Dec

Sorghum Kansas  46% 22-Mar Apr 8 - Jun 7 20-Jun 10-Aug Sep 13 - Dec 21 11-Jan

Texas  37% 23-Apr May 2 - May 31 11-Jun 23-Sep Oct 10 - Dec 2 18-Dec

Soybeans Iowa 12% 2-May May 8 - Jun 2 16-Jun 21-Sep Sep 28 - Oct 20 31-Oct

Illinois  12% 2-May May 8 - Jun 12 24-Jun 19-Sep Sep 26 - Oct 26 7-Nov

Spring Wheat North Dakota  49% 16-Apr Apr 24 - May 25 3-Jun 1-Aug Aug 8 - Sep 13 25-Sep

Montana  18% 6-Apr Apr 14 - May 12 18-May 30-Jul Aug 7 - Sep 6 13-Sep

Winter Wheat Kansas 26% 10-Sep Sep 15 - Oct 20 1-Nov 15-Jun Jun 20 - Jul 5 15-Jul

Oklahoma  10% 3-Sep Sep 15 - Oct 22 6-Nov 1-Jun Jun 6 - Jun 27 3-Jul

Usual Planting dates Usual Harvesting dates



Second, the choice to truncate degree days at 32 °C is questionable and has some unintended 

consequences: days with temperature in excess of 32 °C – supposedly harmful for agriculture – 

contribute with 24 °C to DD8-32 – supposedly beneficial for agriculture. This also leads to some double 

counting: days with temperature above 34 °C contribute with 24 °C to DD8-32 and also to DD34. 

Third, calculating degree days as in SHF requires many arbitrary choices. The upper and lower thresholds 

are crop-specific and the length of the growing season is fixed. It is then difficult to use degree days in 

studies that span a large number of crops and climate regions (Kurukulasuriya et al. 2006). 

Finally, a major obstacle towards using degree days is the large amount of weather observations 

needed: in order to get climatologies of degree days daily mean temperature for 30 years are needed, 

for each observation. Computing degree days from raw data is clearly a cumbersome task, if possible at 

all. 

In fact SHF do not use a dataset with daily mean temperatures. They estimate mean temperatures using 

a smoothing technique based on monthly maximum and minimum temperatures, borrowed from Thom 

(1966). One potential problem with this method is that it relies on the assumption that daily 

temperatures are normally distributed within the maximum and minimum monthly temperature 

corridor. The analysis of the NARR Merge dataset reveals instead that temperatures are not distributed 

normally within days nor they are within the growing season. The temperature distribution is positively 

skewed. Assuming a symmetric distribution leads to overestimate the number of hot days. This might 

explain why the number of DD34 in SHF is equal to 2.37, much higher than the value of 0.17 that we find 

in the NARR Merge dataset. Interestingly, SHF do not find any county with zero DD34 (compared to 54% 

counties with zero DD34 in the NARR Merge dataset). Normality assumptions used by SHF might also 

explain why we find that the highest number of DD34 is equal to 7.5 while in SHF is equal to 5.7. 

2.2 Is the effect of temperature on crops positive and largely linear up to 

34 °C and then precipitously negative? 

DHF’s claim that DD8-32 are better than average seasonal temperatures and that a quadratic functional 

form does not represent well the relationship between climate and crop development rests on the 

assumption that warming is largely time-separable, it improves yields linearly until 32 °C and then 

precipitously reduces yields. These assumptions are derived from several agronomic studies but mainly 

from an interpretation of data from agronomic experiments by Grobellaar (1963) summarized in Ritchie 

and NeSmith (1991, Fig. 2-3 and Fig. 2-4, pp. 9-13). We argue that the interpretation that SHF give to 

Ritchie and NeSmiths’ data is incorrect. 

Fig- 2-3 in Ritchie and NeSmith (1991) illustrates the inverse duration of appearance of the fifth leaf of 

maize. The agronomic literature pays great attention to leaves development because leaves affect the 

amount of energy that the plant captures through photosynthesis, ultimately determining plant growth. 

Maize plants were grown in an artificial environment with identical temperature until the appearance of 

the fourth leaf and then placed in environments with constant temperature ranging from 5 to 40 °C. 

With temperatures below 8 °C the fifth leaf did not appear. With temperatures between 8 °C and 33 °C 



the number of days needed for the fifth leaf to appear decreases linearly. With temperature higher than 

33 °C the number of days for leaf appearance starts increasing quickly and when temperature is 

approximately equal to 40 °C the plant does not develop the fifth leaf. 

At first sight, panel (a) of Figure 2-3 confirms the intuition of SHF that very high temperatures have a 

sharp negative effect on plants. However, this interpretation is only partially correct. Panel (a) of Figure 

2-3 describes the relationship between temperature and the inverse duration of leaf growth rather than 

the relationship between temperature and the size of the leaf, a better indicator of the effect of 

temperature on plant development, described by panel (c) of Figure 2-3. Development is jointly 

determined by the growth rate and by the duration of growth. 

Experimental data reveals that the growth rate of the leaf peaks when temperature is between 22 and 

32 °C, as described in panel (b) of Figure 2-3. At low temperatures a low growth rate is compensated by 

a long duration. At medium temperatures the growth rate increases but the duration decreases. At very 

high temperatures both the growth rate and the duration decrease. Thus: 

As with individual leaf sizes, the product of the rate and duration usually leads to larger 

leaf size, grain size, or grain number when the temperature at which the crop is growing 

are considerably below [33 °C]. Respiration rate is often given as the reason for low 

yields at high temperatures without any consideration being given to how high 

temperatures reduce growth duration. (Ritchie and NeSmith 1991, p. 11) 

Panel (c) illustrates the joint effect of growth rate and duration on leaf development. The relationship 

between temperature and leaf development is approximately quadratic, with a maximum at around 

13 °C. As temperature increases beyond 33 °C, the marginal impact on leaf development is expected to 

increase because both the growth rate and the duration of growth decrease. Data reported by Ritchie 

and NeSmith (1991) clearly indicate that heat affects plant development gradually. 

The existence of a quadratic relationship between heat and plant development is somehow confirmed 

by SHF. While saying that temperatures between 8 and 32 °C are equally beneficial to plant growth, SHF 

in fact use a quadratic functional form to describe the relationship between degree days and land 

values. They find a significant hill-shaped relationship indicating that too much heat during the growing 

season is harmful, even without accounting for extreme temperatures. 

Farmers and agronomists use degree days, but not to predict yields. They use degree days to predict the 

timing of different stages of plants growth in order to schedule agricultural management activities 

(Swan et al. 1987; McMaster and Wilhelm 1997; Miller, Lanier, and Brandt 2001):  

Particularly in the areas of crop phenology and development, the concept of heat units, 

measured in growing degree-days (GDD, °C-day), has vastly improved description and 

prediction of phenological events compared to other approaches such as time of year or 

number of days. (McMaster and Wilhelm 1997) 



Degree days predict the actual stage of development of the plant more accurately that average 

temperature: 

It’s tough to predict plant growth based on the calendar because temperatures can vary 

greatly from year to year. Instead, growing degree days, which are based on actual 

temperatures, are a simple and accurate way to predict when a certain plant stage will 

occur. (Miller, Lanier, and Brandt 2001) 

2.3 Do seasons matter? 

By using degree days over April-September SHF assume that the time sequence with which crops receive 

heat does not matter. What matters is the total amount of heat received during the growing season. The 

same applies to rainfall. Furthermore, temperatures and precipitations from October to March are 

assumed to be irrelevant for explaining land values. 

This is a strong assumption and is at odds with the preoccupation of farmers to obtain the right amount 

of heat and moisture at particular moments of plants growth. For example, dry conditions during 

harvest are highly desirable. Too much rainfall in spring creates problems for planting summer crops. 

By fixing the length of the growing season SHF are not able to capture the beneficial effect of warming in 

spring and fall. By fixing the end of the growing season in September, they do not recognize that usual 

harvesting dates for many important crops fall in October and November (Errore. L'origine riferimento 

non è stata trovata.). 

The notion that winter temperatures and rainfall do not affect land values is also not supported by facts. 

For example, winter wheat is planted in the fall, goes into dormancy during the winter, and is harvested 

for grain the following spring.
6
 Under optimal weather condition, winter wheat in the Southern Great 

Plains is harvested in fall and again in late winter and early spring (USDA 2010). Rainfall in winter is 

important because it replenishes aquifers and builds soil moisture. 

Therefore, a functional form based on degree days does not seem to be the best alternative to a 

quadratic formulation. Of course, this does not mean that the quadratic is the best functional shape. In 

the next section we introduce a more flexible functional form that we use to test the quadratic model. 

3 Models and data 

3.1 Models 

We test three broad families of models. The first class of models uses degree days, the second uses 

average temperatures using a quadratic specification and the third uses a flexible functional form 

obtained by interacting dummies with average temperatures and precipitations. 

                                                           
6
 In 2009, winter wheat accounted for 69% of all wheat produced in the US (USDA 2010). 



The dependent variable is always the logarithm of the value of land and buildings per hectare in county i 

at time t: Y�,�  . 

The first model that we test uses only DD8-32 and a quadratic functional form and average growing 

season precipitations (P) (model 1): 

 Y�,� = �� + ��UU8-32� + ��UU8-32�� + ���� + ����� + 
��,� + ��� + ��,� (6) 

We then add DD34 (model 3) and then using the squared root (model 4). Models 9 and 10 use degree 

days and average monthly precipitations in April-June and July-September.
7
 

A further robustness test considers warm and cold degree days, respectively above and below 8 °C, 

without any truncation: 

 Z@@8�,? = W8 − P� 		if						P�,? ≤ 80			if				P�,? > 8  


UU8� = 5 Z@@8�,??∈V  

(7) 

 @@8�,? = WtL − 8		if      tL,[ > 80   if    tL,[ ≤ 8  

UU8� = 5 @@8�,?[∈\  

(8) 

The models that use average temperatures follow the standard Ricardian formulation as in equation 2. 

In order to allow comparison with coefficients of DD8-32 we subtract 8 °C from average temperature 

and we multiply by 183, the number of days between April 1
st

 and September 30
th

: 

 Y�,� = �� + ��](�^ − 8)183` + �2](�^ − 8)183`2 + 
��,� + ��� + ��,�	 (9) 

where �� = ∑ PabaC� 6⁄  , being Pa the average monthly temperature climatology for month m during 

1981-2010. We build analogously monthly means over different seasonal intervals. 

In models 5 and 6 we introduce DD34 linearly and then using the squared root. When then include 

seasonal detail to the models and we converge to the model illustrated in Equation 2. 

In the flexible models we interact dummies with temperatures. We use 1 °C temperature interval 

dummies for the models that focus only on April-September and 2 °C interval dummies for the models 

that consider the four seasons.
8
 We use 1 cm interval dummies for the models that include the flexible 

specification also for rainfall. The model with temperature and precipitation dummies during April-

September reads as follows: 
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 We indicate the number of months over degree days and temperatures are calculated using calendar numbers 1, 

2, … , 12. 
8
 Robustness tests that use different temperature intervals show that results with 1 °C and 2 °C temperature 

intervals are preferable because allow for sufficiently high flexibility while still preserving sufficient variance across 

counties with similar temperatures. Within seasons, especially in Summer, there is less variance across counties 

and therefore the wider temperature interval is preferable. 



 Y�,� = �� + 5 ��@P�,��^� + 5 �e@fe,��^e + 
��,� + ��� + ��,�	 (10) 

where @P�,� = 1 if � ≤ �� R ��g�, otherwise @P�,� = 0, with  � = 1,… , i (the same holds for 

precipitations). The models with four seasons are built analogously. 

We estimate a semi-log pooled model with year fixed effects and weights equal to farmland, as in 

Massetti and Mendelsohn (2011).
9
 We estimate all models with and without state fixed effects. 

We estimate percentage impacts from climate change using two representative uniform warming 

scenarios of +2 °C and +4 °C. For simplicity, precipitations are assumed not to change. This is clearly not 

realistic and spatially and temporally detailed scenarios generated General Circulation Models could 

provide a more accurate estimate of the expected impact of climate change. However, this goes beyond 

the scope of this paper. While losing detail and realism, the analysis gains in transparency. 

The transformation of temperature variables with climate change is straightforward for the models that 

use mean seasonal temperatures. In order to calculate degree days with the new climate we start from 

raw data, augment it by 2 or 4 °C and recalculate degree days for each grid-point, in each year from 

1981 to 2010 and then we average over years. The percentage change of land values in the East is 

obtained by subtracting the predicted value of land using transformed temperature variables in each 

county from the predicted value of land using 1981-2010 climate, by summing over all counties and by 

dividing by the sum over all counties of the predicted value of land calculated with 1981-2000 

temperature.
10

 For the model with growing season mean temperature dummies the percentage impact 

of temperature change tc in county i is equal to: 

 

∆���� = 5 �6@P�,� 					for	� = 1,… , i − (PZ − 1)�g(�kl�)
6C�  

 ∆���� = PZ	��@P�,� 					for	� > 	i − (PZ − 1)	 
(11) 

We then use the percentage impact at county level and sum over all counties with weights equal to 

farmland in each county. We proceed analogously for the model with seasonal temperature dummies. 

3.2 Data 

We build a balanced panel using US Agricultural Census data for 1982, 1987, 1992, 1997 and 2002. We 

use time varying socio-economic variables: income per capita, population density, population density 

squared, residential house price index. We control for a set of geographic, time invariant characteristics 

at counties centroids: latitude, elevation, and distance from major metropolitan areas. We use USGS 

data to estimate the average annual surface and ground water use per hectare of farmland during 1982-

2002. Finally, we control for some important soil characteristics: salinity, percentage of soil subject to 

flooding, percentage of land with low drainage, soil erodibility, and average slope length factor, 
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 SHF estimate a model without year dummies. 

10
 We multiply the exponential of predicted log land values by >mf 0.5	(Yp� − Y�)�1 as in Cameron and Trivedi 

(2009, p. 108). 



percentage of sand and of clay, minimum available water capacity, and permeability.
11

 Climate data is 

from the NARR Merge dataset. We compute degree days at grid level, then calculate climatologies by 

averaging over 1981-2010 and then we attribute degree days to counties by interpolating the four 

closest grid points to each county’s centroid.12 We cover 2,351 out of 2,471 counties east of the 100th 

meridian. 

4 Results 

4.1 8-32 °C degree days vs mean seasonal temperature 

We start by comparing a model in which DD8-32 and average temperature (modified as discussed 

above), both over April-September, enter with a quadratic functional form. Monthly mean precipitations 

over April-September also enter following a quadratic specification. Table 2 reveals that all climate 

coefficients are highly significant. The relationship between temperature and land values is concave as 

expected. Also the relationship between precipitations and land values is solidly concave. Coefficients of 

DD8-32 and of modified average temperature are almost identical, as all other climate coefficients. This 

provides additional evidence of the strong similarity between DD8-32 and mean temperatures in the 

east of the US. 

Estimates of both +2°C and +4°C warming are almost identical using degree days or average 

temperatures. Warming is significantly harmful for agricultural land east of the 100
th

 meridian. A 

scenario of uniform 4°C warming – close to what predicted at global level by many long-term baseline 

emission scenarios – reduces land values by roughly 50%. 

It is legitimate to be concerned about the possibility that land values are affected by state-specific 

policies and factors not included within the set of regressors. For this reason we estimate all models 

with and without state fixed effects. Table 1 reveals that fixed effects move the optimal temperature 

level to the right. Warming is less harmful in the models that use fixed effects. 

As in SHF we use the Morgan-Granger-Newbold (MGN) significance test to assess the forecasting 

accuracy of the models (Diebold and Mariano 1995). We use the coldest 80% of counties to estimate the 

Ricardian function and we forecast land values of the remaining counties included in our panel. We 

reject the null hypothesis of equal forecasting accuracy in favor of the model that uses mean seasonal 

temperature with a t-statistic equal to 9.9. 

Overall, our results indicate that there is no advantage from using DD8-32 instead than average growing 

season temperature. The fine and costly high temporal resolution detail is lost when all degree days are 

lumped together. 
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 All signs of control variables behaves as expected. A full set of regression results is available from the authors. 
12

 Robustness tests done averaging all grid points that fall within a county confirm our results. 



 
Notes: Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1; 95% bootstrap confidence intervals for climate change impacts in 

brackets. All climate variables from April to September. DD8-32 in °C. We subtract 8 °C to average seasonal temperature and multiply by 183. 

Precipitations in cm/month. 

Table 2. Degree days 8-32 and average seasonal temperature. 

4.2 Degree days above 34 °C 

The next set of models that we assess (3 through 6) tests the importance of including DD34. In models 3 

and 4 DD34 enters first linearly and then with the square root, as in SHF. Model  5 uses DD8 and a linear 

specification for DD34. Model 6 uses average temperatures and DD8. 

We find that the variable DD34 is significant but positive when it enters with a linear specification while 

it is negative, but not significant, when it enters with the squared root. These results raise doubts about 

the validity of using DD34 as a cut-off point beyond which land values decline precipitously. 

What are the implications of adding DD34 for aggregate impacts of +2 °C and +4 °C warming? Impacts of 

+2 °C warming do not significantly change when we include the variable DD34. With +4 °C impacts are 

lower when DD34 enters linearly and slightly higher when it enters as squared root. However, bootstrap 

confidence intervals of +4 °C warming show that the models become unstable because they generate 

some very high positive impacts. 

With fixed effects the variable DD34 is never significant. This means that the fixed effect absorbs the 

impact of the variable, which has a very clear regional distribution (Figure 2). For this reason state fixed 

effects also make the models more stable. 

DD8-32 AV TEMP DD8-32 AV TEMP

(1) (2) (1-FE) (2-FE)

DD8-324-9 0.000283*** 0.000283***

[6.22e-05] [0.000104]

DD8-324-9 sq. -2.26e-07*** -1.87e-07***

[1.41e-08] [2.27e-08]

T4-9 0.000300*** 0.000298***

[5.34e-05] [8.75e-05]

T4-9 sq. -2.21e-07*** -1.80e-07***

[1.26e-08] [1.98e-08]

P4-9 0.240*** 0.252*** 0.335*** 0.341***

[0.0296] [0.0294] [0.0337] [0.0338]

P4-9 sq -0.0135*** -0.0141*** -0.0179*** -0.0180***

[0.00156] [0.00155] [0.00177] [0.00178]

State fixed effects No No Yes Yes

Adjusted R
2

0.777 0.776 0.827 0.827

Impact of +2°C -26.4% -26.2% -20.7% -20.0%

[ -30% , -23% ] [ -29.8% , -23% ] [ -26.1% , -15.4% ] [ -25.4% , -14.6% ]

Impact of +4°C -46.9% -47.8% -38.6% -38.6%

[ -51.3% , -42% ] [ -52.3% , -42.7% ] [ -46.3% , -29.8% ] [ -46.8% , -30.2% ]



 
Notes: Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1; 95% bootstrap confidence intervals for climate change impacts in brackets. All climate variables from April to September. 

DD8-32 and DD34 in °C. We subtract 8 °C to average seasonal temperature and multiply by 183. Precipitations in cm/month. 

Table 3. Degree days above 34°C. 

DD8-32 & DD34
DD8-32 &

DD34 SQRT

DD>8 &

DD34
AV TEMP & DD34 DD8-32 & DD34

DD8-32 &

DD34 SQRT

DD>8 &

DD34
AV TEMP & DD34

(3) (4) (5) (6) (3-FE) (4-FE) (5-FE) (6-FE)

DD8-324-9 0.000305*** 0.000273*** 0.000269** 0.000290***

[6.44e-05] [6.38e-05] [0.000106] [0.000106]

DD8-324-9 sq. -2.38e-07*** -2.18e-07*** -1.77e-07*** -1.94e-07***

[1.56e-08] [1.59e-08] [2.44e-08] [2.45e-08]

T4-9 0.000338*** 0.000289***

[5.56e-05] [9.03e-05]

T4-9 sq. -2.41e-07*** -1.74e-07***

[1.42e-08] [2.17e-08]

DD344-9 0.0116* 0.0183** 0.0190*** -0.00918 -0.00480 -0.00511

[0.00697] [0.00717] [0.00716] [0.00732] [0.00756] [0.00755]

DD344-9 sq. root -0.0172 0.0124

[0.0151] [0.0167]

DD32-344-9

DD84-9 0.000268*** 0.000233**

[6.40e-05] [0.000105]

DD84-9 sq -2.27e-07*** -1.65e-07***

[1.55e-08] [2.39e-08]

P4-9 0.231*** 0.248*** 0.236*** 0.236*** 0.343*** 0.330*** 0.347*** 0.346***

[0.0302] [0.0305] [0.0303] [0.0301] [0.0340] [0.0341] [0.0342] [0.0342]

P4-9 sq -0.0131*** -0.0139*** -0.0133*** -0.0133*** -0.0182*** -0.0177*** -0.0183*** -0.0182***

[0.00159] [0.00160] [0.00159] [0.00158] [0.00179] [0.00180] [0.00179] [0.00179]

State fixed effects No No No No Yes Yes Yes Yes

Adjusted R
2

0.777 0.777 0.777 0.777 0.827 0.827 0.827 0.827

Impact of +2°C -25.7% -26.4% -25.0% -25.1% -20.8% -20.8% -20.1% -20.0%

[ -29.8% , -20.1% ] [ -29.9% , -23.1% ] [ -29.3% , -19.5% ] [ -29.6% , -19.5% ] [ -26.2% , -14.7% ] [ -25.8% , -15.8% ] [ -25.3% , -14% ] [ -25.4% , -14.1% ]

Impact of +4°C -40.6% -47.3% -37.1% -36.9% -41.1% -38.4% -39.8% -39.8%

[ -52.6% , 145.1% ] [ -52.2% , -41.7% ] [ -51.4% , 259% ] [ -51.5% , 277.1% ] [ -49.6% , -7% ] [ -46.6% , -29% ] [ -48.8% , -4% ] [ -48.3% , -8.5% ]



 
Notes: Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1; 95% bootstrap confidence intervals for climate change impacts in 

brackets. DD8-32 and DD34 in °C. We subtract 8 °C to average seasonal temperature and multiply by 183. Precipitations in cm/month. 

Table 4. Degree days below 8°C. 

The MGN forecasting test reveals that model 2 (average seasonal temperature) has greater forecasting 

accuracy of all models that use DD34. Therefore, we find no evidence of a temperature threshold at 

34 °C beyond which land values in the East start declining precipitously. Our results are in accordance 

with the agronomic literature and with many other Ricardian studies: high temperatures are harmful, 

but there are no threshold effects. 

4.3 Cold degree days 

So far we have not controlled for the effect on land values of cold days during the growing season. 

However, if abnormally high warm days are expected to be harmful, so should be abnormally cold days. 

Cold days reduce the length of the growing season and freezing temperatures kill crops. For this reason 

we add degree days below 8 °C (CDD8) to models 3 and 6. We find that cold degree days significantly 

and consistently reduce land values, with or without state fixed effects. 

Including cold degree days reduces the negative impact of warming in models that use DD8-32 and 

average growing season temperature (models 1 and 2), more markedly when state fixed effects are not 

included. 

The MGN forecasting test reveals that model 1, without including cold degree days, has greater 

forecasting accuracy than model 7, which includes CDD8. Interestingly we find that model 8, in which we 

include both the quadratic of average seasonal temperature and CDD8 has greater forecasting accuracy 

DD8-32 & CDD8 AV TEMP & CDD8 DD8-32 & CDD8 AV TEMP & CDD8

(7) (8) (7-FE) (8-FE)

DD8-324-9 -0.00119*** -0.000769***

[0.000161] [0.000203]

DD8-324-9 sq. 4.12e-08 -1.20e-08

[3.13e-08] [3.91e-08]

T4-9 -0.00128*** -0.000876***

[0.000153] [0.000197]

T4-9 sq. 6.31e-08** 1.28e-08

[2.95e-08] [3.72e-08]

CDD84-9 -0.00669*** -0.00815*** -0.00469*** -0.00588***

[0.000637] [0.000709] [0.000728] [0.000836]

P4-9 0.213*** 0.216*** 0.314*** 0.318***

[0.0297] [0.0296] [0.0342] [0.0343]

P4-9 sq -0.0119*** -0.0120*** -0.0169*** -0.0170***

[0.00157] [0.00156] [0.00180] [0.00180]

State fixed effects No No Yes Yes

Adjusted R
2

0.777 0.781 0.828 0.828

Impact of +2°C -22.5% -22.2% -20.3% -19.9%

[ -26.7% , -18.6% ] [ -26.6% , -17.8% ] [ -25.3% , -14.6% ] [ -25.2% , -14.9% ]

Impact of +4°C -40.5% -40.7% -37.3% -37.4%

[ -46.5% , -34% ] [ -47.3% , -33.9% ] [ -45.3% , -28.4% ] [ -45.5% , -28.5% ]



than model 1. This means that the quadratic may underestimate the benefits of warming counties with 

many cold degree days. 

4.4 Flexible functional form during April-September 

One problem with the construction of degree days as in SHF is the arbitrariness of different cut-off 

points. Crops have different sensitivities to temperature. Some are more resistant than others to high or 

low temperatures. It is hard to motivate the decision of using a curt-off point instead of another. If one 

wants to test the robustness of the quadratic functional form it is better to reduce the structure 

imposed on the data rather than increasing it. The model in which we interact average seasonal 

temperatures with dummies for each 1 °C temperature interval (equation 10) allows full flexibility and 

reveals important insights. 

The growing season temperature dummies model reveals that the marginal impact of warming is 

negative, as in the quadratic formulation, but the relationship is less concave, almost linear. This 

resembles the functional form of panel c of Figure 2-3 in Ritchie and NeSmith (1991). This functional 

shape does not change whether we include state fixed effects or not (top row of Figure 3). The 

functional shape is confirmed if we include dummies also for precipitations or not (bottom row of Figure 

3). The impact of uniform warming is still significantly negative, but is lower than in the quadratic model 

(Table 5).
13

 

The flexible models have greater forecasting accuracy than the quadratic models and the flexible model 

with both temperature and precipitation dummies has the greatest accuracy of all. 

4.5 Seasons 

The last question that we address is if seasons, within and outside the growing season, starting in April 

and ending in September, matter or not. 

We find that seasons are significantly different within the growing season, both when we use degree 

days and seasonal average temperatures, with or without sate fixed effects (Table 6). Warming in spring 

is beneficial while it is harmful in summer. Also precipitations have marked seasonal patterns. Higher 

rainfall in spring is beneficial while in summer it is harmful. Summer is usually the wettest season in 

most regions in the East (see Figure 4). Impacts of warming are significantly negative, but lower than in 

the models that do not separate spring from summer. 

According to the MGN forecasting test the models with spring and summer temperature and 

precipitations have greatest forecasting accuracy than the relative counterparts in which the growing 

season is not split in two (model 10 against model 1 and model 12 against model 2). We reject the 

hypothesis of equal forecasting in favor of the model that uses seasonal average temperatures with a t-

statistic equal to 8.69. 
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 We use the coefficient of the dummy associated to the highest temperature level to forecast climate change for 

the hottest counties. 



 

Notes. Top row: average April-September temperatures interacted with dummies for 1°C intervals, with (left) and without (right) state fixed 

effects. Bottom row: average April-September temperatures interacted with dummies for 1°C intervals and average April-September 

precipitations interacted with dummies for 1 cm intervals, without state fixed effects. Temperature and precipitations distribution of grid-

points east of the 100
th

 meridian from the NARR Merge model. Tick dashed lines limit the 95% confidence interval. The figures also display the 

marginal impact of 1°C warming and of 1 cm of additional precipitations using the quadratic models 13, 13-FE and 14 illustrated in Table 6. 

Figure 3. Flexible models with distinct spring and summer seasons. 

 
Notes: 95% robust confidence intervals for climate change impacts in brackets 

Table 5. Impact of +2° and +4°C uniform warming in the flexible models. 

+2°C +4°C +2°C +4°C

April-September

Temperature only -14.9% -30.6% -14.8% -29.8%

[ -19.6% , -10.3% ] [ -39.4% , -21.7% ] [ -19.7% , -9.9% ] [ -39.3% , -20.4% ]

Temp. and precip. -14.4% -29.6% -14.9% -30.1%

[ -19% , -9.8% ] [ -38.4% , -20.8% ] [ -19.8% , -10.1% ] [ -39.5% , -20.7% ]

4 seasons (DJF)

Temperature only -17.0% -31.3% -13.5% -24.8%

[ -24.1% , -10% ] [ -44.8% , -17.7% ] [ -20.2% , -6.8% ] [ -37.5% , -12% ]

No state fixed effects State fixed effects



 
Notes: Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1; 95% bootstrap confidence intervals for climate change impacts in brackets. Degree days in °C. We subtract 8 °C to average 

seasonal temperature and multiply by 91 (months 4-6) or 92 (months 7-9). Precipitations in cm/month. 

Table 6. Spring and summer. 

DD 2 SEAS. T DD 2 SEAS. T&P DD 2 SEAS. T DD 2 SEAS. T&P DD 2 SEAS. T DD 2 SEAS. T&P DD 2 SEAS. T DD 2 SEAS. T&P

(9) (10) (11) (12) (9-FE) (10-FE) (11-FE) (12-FE)

DD8-324-6 0.00721*** 0.00608*** 0.00685*** 0.00589***

[0.000310] [0.000300] [0.000433] [0.000441]

DD8-324-6 sq. -2.53e-06*** -1.91e-06*** -2.65e-06*** -2.10e-06***

[1.34e-07] [1.24e-07] [1.72e-07] [1.79e-07]

DD8-327-9 -0.00569*** -0.00368*** -0.00642*** -0.00512***

[0.000409] [0.000384] [0.000529] [0.000530]

DD8-327-9 sq. 8.00e-07*** 3.88e-08 1.24e-06*** 7.01e-07***

[1.35e-07] [1.24e-07] [1.68e-07] [1.73e-07]

T4-6 0.00747*** 0.00633*** 0.00643*** 0.00567***

[0.000281] [0.000285] [0.000368] [0.000398]

T4-6 sq. -2.72e-06*** -2.11e-06*** -2.56e-06*** -2.10e-06***

[1.22e-07] [1.19e-07] [1.49e-07] [1.66e-07]

T7-9 -0.00936*** -0.00708*** -0.00873*** -0.00747***

[0.000467] [0.000464] [0.000589] [0.000625]

T7-9 sq. 2.00e-06*** 1.18e-06*** 2.00e-06*** 1.49e-06***

[1.49e-07] [1.47e-07] [1.82e-07] [1.98e-07]

P4-9 0.0270 -0.0716* 0.0662 0.00546

[0.0363] [0.0369] [0.0413] [0.0428]

P4-9 sq -0.00321* 0.00182 -0.00578*** -0.00286

[0.00188] [0.00192] [0.00209] [0.00217]

P4-6 0.358*** 0.262*** 0.213*** 0.153***

[0.0298] [0.0309] [0.0367] [0.0389]

P4-6 sq. -0.0170*** -0.0125*** -0.0102*** -0.00734***

[0.00141] [0.00146] [0.00168] [0.00178]

P7-9 -0.157*** -0.163*** -0.102*** -0.110***

[0.0182] [0.0179] [0.0253] [0.0256]

P7-9 sq. 0.00548*** 0.00610*** 0.00240** 0.00287**

[0.000904] [0.000890] [0.00122] [0.00123]

State fixed effects No No No No Yes Yes Yes Yes

Adjusted R
2

0.803 0.812 0.808 0.814 0.835 0.837 0.836 0.838

Impact of +2°C -23.2% -24.0% -21.7% -22.7% -21.2% -23.3% -21.8% -23.6%

[ -26.7% , -19.6% ] [ -27.4% , -20.7% ] [ -25.4% , -17.9% ] [ -26.7% , -19.2% ] [ -26.1% , -16% ] [ -28.2% , -18.3% ] [ -27% , -16.9% ] [ -28.9% , -18.3% ]

Impact of +4°C -41.4% -43.4% -39.5% -42.5% -39.3% -42.5% -40.2% -43.3%

[ -46.5% , -36.4% ] [ -48.4% , -38.8% ] [ -44.7% , -34% ] [ -47.6% , -37.6% ] [ -47.2% , -31.2% ] [ -49.6% , -34.1% ] [ -47.5% , -31.6% ] [ -50.8% , -35.4% ]



Also climate outside the growing seasons significantly affects land values. Table 7 reports results of a 

standard Ricardian model with four seasons and shows that virtually all temperature and precipitation 

coefficients are highly significant. We find that warming in spring and in summer is beneficial because it 

extends the growing season while warming in summer is harmful because increases heat stress while 

warming in winter is harmful because increases expenditures for pests control. The model with the 

subdivision in seasons starting in December explains a higher fraction of the variance in land value and 

has a higher number of significant climate coefficients. Impacts from 2 °C and +4 °C of warming are 

significantly negative but lower than in the models with only two seasons. 

All models with four seasons have greater forecasting accuracy than model 15, with two seasons. 

However, the model in which winter is January-February-March has greater forecasting accuracy than 

the model in which winter is December-January-February (we reject the null hypothesis of equality in 

favor of model 15 with a t-statistic equal to 2.26). 

We also test a model with seasonal dummies interacted with temperature and precipitations, in this 

case only without fixed effects. Figure 4 reports the marginal impact of temperature and precipitation 

separately for the four seasons. Also in this case we find that the flexible model confirms the sign of the 

seasonal marginal impacts found with the quadratic model but at the same time indicates that the 

functional form might be flatter than what implied by the quadratic. Impacts of warming are however 

higher than what predicted by the quadratic model with four seasons and very similar to what found 

using the flexible model without separating Spring and Summer during the growing season. 

4.6 Aggregate and regional impacts of warming 

The right panel of Figure 6 shows that warming from +2 to + 4 °C has generally a lower marginal impact 

on land values than warming from the present climate to + 2 °C. Interestingly, the models with DD34 do 

not make the aggregate response of land values to warming convex (models 5 and 6). In general, we find 

that the relationship between US land value in the East and temperatures is concave. The only models 

that show a convex response are those that separate among seasons (models 16-20). 

Figure 6 and Figure 5 summarize predicted impacts for +2 and +4 °C across all models, for six regions. 

Warming is significantly harmful for all regions, with the highest negative impacts in the South. 

5 Conclusions 

Ricardian models have traditionally used a quadratic specification of temperature and precipitations for 

the four seasons to estimate the impact of climate change on agricultural land values. 

Schlenker, Hanemann, and Fisher (2006) (SHF) argued that the quadratic functional form does not 

reflect well sharp non-linear responses of crop yields to very high temperatures. They suggest using 

degree days instead than average temperatures in order to separate the beneficial and the harmful 

effect of warming more effectively. They also argue that climate outside the growing season – defined 

as April-September in the East of the US – does not affect land values. 



 

Notes: Robust standard errors in brackets; *** p<0.01, ** p<0.05, * p<0.1; 95% bootstrap confidence intervals for climate change impacts in 

brackets. We subtract 8 °C to average seasonal temperature and multiply by 91 (months 3-5 and 4-6), by 92 (months 6-8, 7-9, 9-11, 10-12) or by 

90 (months 12-2, 1-3). Precipitations in cm/month. 

Table 7. Four seasons. 

AV TEMP 4 SEAS. 

T

AV TEMP 4 SEAS. 

T&P

AV TEMP 4 SEAS. 

T

AV TEMP 4 SEAS. 

T&P

AV TEMP 4 SEAS. 

DJF

AV TEMP 4 SEAS. 

DJF

(13) (14) (13-FE) (13-FE) (15) (15-FE)

T1-3 -0.00328*** -0.00304*** -0.00200*** -0.00257*** T12-2 -0.00186*** -0.00170***

[0.000244] [0.000272] [0.000294] [0.000297] [0.000237] [0.000266]

T1-3 sq. -2.63e-07** -8.41e-08 5.05e-07*** 4.88e-07*** T12-2 sq. 2.89e-07*** 5.16e-07***

[1.05e-07] [1.24e-07] [1.37e-07] [1.40e-07] [9.20e-08] [9.56e-08]

T4-6 0.00287*** 0.00309*** 0.00582*** 0.00524*** T3-5 0.00422*** 0.00242***

[0.000185] [0.000193] [0.000400] [0.000405] [0.000220] [0.000246]

T4-6 sq. 2.24e-07* 2.47e-08 -2.34e-06*** -1.96e-06*** T3-5 sq. -1.75e-06*** -1.20e-06***

[1.35e-07] [1.56e-07] [1.81e-07] [1.87e-07] [1.51e-07] [1.62e-07]

T7-9 -0.00718*** -0.00554*** -0.00708*** -0.00587*** T6-8 -0.00726*** -0.00648***

[0.000519] [0.000585] [0.000630] [0.000644] [0.000547] [0.000629]

T7-9 sq. 1.44e-06*** 8.03e-07*** 1.60e-06*** 1.11e-06*** T6-8 sq. 9.76e-07*** 1.01e-06***

[1.64e-07] [1.78e-07] [1.91e-07] [1.98e-07] [1.63e-07] [1.93e-07]

T10-12 0.00287*** 0.00309*** 0.00249*** 0.00332*** T9-11 0.00358*** 0.00465***

[0.000185] [0.000193] [0.000203] [0.000209] [0.000287] [0.000283]

T10-12 sq. 2.24e-07* 2.47e-08 -7.49e-07*** -5.77e-07*** T9-11 sq. -3.01e-07 -8.22e-07***

[1.35e-07] [1.56e-07] [1.76e-07] [1.80e-07] [2.45e-07] [2.60e-07]

p. Apr-Sept -0.0390 0.0557

[0.0386] [0.0419]

P. Apr-Sept sq 0.00108 -0.00464**

[0.00199] [0.00213]

p1-3 -0.0137 0.0934*** P12-2 0.00183* 0.00174

[0.0192] [0.0242] [0.00102] [0.00151]

P1-3 sq. 0.00144 -0.00247** P12-2 sq. 1.33e-05** 1.79e-05**

[0.000989] [0.00121] [5.79e-06] [8.43e-06]

P4-6 0.261*** 0.213*** P3-5 0.0264*** 0.0300***

[0.0338] [0.0406] [0.00343] [0.00403]

P4-6 sq. -0.0111*** -0.00860*** P3-5 sq. -0.000145*** -0.000148***

[0.00157] [0.00184] [1.68e-05] [1.99e-05]

P7-9 -0.146*** -0.104*** P6-8 -0.0224*** -0.0173***

[0.0198] [0.0264] [0.00223] [0.00318]

P7-9 sq. 0.00505*** 0.00223* P6-8 sq. 8.93e-05*** 6.00e-05***

[0.00102] [0.00129] [1.04e-05] [1.44e-05]

P10-12 -0.0149 -0.123*** P9-11 0.00832*** -0.00165

[0.0210] [0.0273] [0.00255] [0.00288]

P10-12 sq. -3.72e-05 0.00471*** P9-11 sq. -6.29e-05*** -8.71e-06

[0.00109] [0.00136] [1.50e-05] [1.69e-05]

State FE No No Yes Yes State FE No Yes

Adjusted R
2

0.815 0.821 0.841 0.845 Adjusted R
2

0.824 0.847

Impact of +2°C -13.2% -13.2% -16.1% -13.5% Impact of +2°C -10.7% -11.5%

[ -19.8% , -6.4% ] [ -20.7% , -5.4% ] [ -22.9% , -9% ] [ -19.8% , -5.6% ] [ -17.9% , -3% ] [ -17.6% , -4.3% ]

Impact of +4°C -27.1% -28.8% -33.3% -29.3% Impact of +4°C -22.9% -24.2%

[ -38.2% , -14.7% ] [ -40.1% , -15.8% ] [ -43.6% , -22.4% ] [ -39.8% , -16.4% ] [ -34.5% , -9.4% ] [ -35.1% , -10.2% ]



 

Notes. Seasonal temperatures interacted with dummies for 2 °C intervals and seasonal precipitations interacted with dummies for 1 cm 

intervals, without state fixed effects. DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September, 

October, November. Temperature and precipitations distribution of grid-points east of the 100
th

 meridian from the NARR Merge model. Tick 

dashed lines limit the 95% confidence interval. The figures also display the marginal impact of 1 °C warming and of 1 cm of additional 

precipitations using the quadratic models 10 and 10-FE and 11 illustrated in Table 6. 

Figure 4. Flexible models with four seasons. 



 

Notes. Left panel: models 1-12 as in Table 2, Table 3, Table 4 and Table 6. Model 13: Spring and summer temperature flexible model (Figure 3, 

top row). Model 14: Spring and summer temperature and precipitations flexible model (Figure 3, bottom row). Model 15: four seasons flexible 

model (Figure 4). 

Figure 5. Summary of impacts on regional land values of uniform +2°C and +4°C warming. 



 

Notes. Left panel: models 1-12 as in Table 2, Table 3, Table 4 and Table 6. Model 13: Spring and summer temperature flexible model (Figure 3, 

top row). Model 14: Spring and summer temperature and precipitations flexible model (Figure 3, bottom row). Model 15: four seasons flexible 

model (Figure 4). Right panel: impact of +2°C warming from 1981-2010 climatologies and impact of additional 2°C uniform warming (from +2°C 

to +4°C with respect to 1981-2010 climatologies). 

Figure 6. Summary of impacts of uniform +2°C and +4°C warming on land values in the East. 

We show that SHF model has several weaknesses by using a more accurate weather dataset, by using 

evidence from the agronomic literature and by testing several competing models econometrically. 

First, the fact that degree days between 8 and 32 °C appear to significantly affect land values in SHF 

work is due to the fact that they are highly correlated with mean seasonal temperature (in excess of 

.999). However, several tests show that models that use a quadratic specification of the mean 

temperature over the growing season are more accurate than models that use degree days. Using 

average seasonal temperatures is a win-win solution: more accuracy at lower cost. 

Second, evidence on the importance of controlling for degree days above 34 °C is mixed and fragile at 

best. We use the Morgan-Granger-Newbold a significance test to assess the forecast accuracy of the 

model with degree days against the model with seasonal climate. We find that the model with seasonal 

average temperature performs better than the model with degree days, even after accounting for very 

hot days. 

These results are in accordance with the agronomic literature, which suggests that heat affects yields 

gradually. Controlled laboratory experiments that assess the impact of constant and prolonged exposure 

to temperatures show that the duration of growth is linearly affected by temperatures until 30-34 °C. 

After that the duration declines precipitously. However, the relationship between temperatures and 

plant development is rather quadratic. In fact, degree days are used by farmers to estimate different 

stages of plant growth, in order to plan management activities rather than forecasting yields. Degree 

days are appropriate to assess the duration of different stages of plant growth not yields. 

Third, cold degree days are important because they reduce the length of the growing season and 

unexpected freezing temperatures may kill crops. Therefore they should be included in the analysis. 



Fourth, seasons within and outside the growing season significantly affect land values. Furthermore, 

fixing the growing season is arbitrary because different crops have different planting and harvesting 

dates. Winter wheat, for example, grows in fall and in early spring. Our econometric estimates confirm 

this intuition. Virtually all seasonal coefficients are significant, with the expected signs: warming is 

beneficial in spring and fall because it extends the growing season; warming is harmful in summer and in 

winter because it increases heat stress and it requires higher use of pesticides to control for bugs, 

respectively. 

Despite these shortcomings, SHF raise an important question: what is the best functional form to 

describe the relationship between land values and temperatures? We answer this question by 

estimating a set of flexible models in which we interact mean seasonal temperatures with dummies for 

1 °C and 2 °C temperature intervals. 

Our results show that the flexible models generate marginal effects with the same sign of the quadratic 

model although the relationship between temperatures and land values appears to be flatter than in the 

quadratic model. 

We estimate impacts of climate change using two representative uniform warming scenarios of +2 °C 

and +4 °C, with no precipitation change. We find that the use of degree days does not explain high 

negative impacts in the East; impacts estimated using mean seasonal temperatures are virtually 

identical. We also find that the relationship between uniform warming and land values in the East 

appears to be concave, or at most linear, in all the models that we test. 

Our analysis consistently shows that the cost of dealing with data necessary to generate degree days is 

not motivated by any benefit. Quite the opposite, we find a number of flaws in the degree days model 

that discourage its use. This is particularly important for those that want to study impacts of climate 

change on agriculture in areas of the world in which daily temperatures are not easily available or not 

available at all.  
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