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Abstract

The government acting as an insurer of last resort can cause moral hazard if agents respond

by taking on more risk or reducing private insurance coverage, thinking they will be bailed out.

Theoretically, ex ante measures can ameliorate this problem, but it is not known how effective

actual policies are in reducing ex post government spending. Using instrumental variables and

detailed building codes data, I show that stricter building codes reduce the amount of money

spent by the federal government following a hurricane. Specifically, I find that raising the

required wind speed a building must withstand by 1 mile per hour decreases the amount of

money subsequently spent by the federal government by 2.2%− 4% or $14,000− $25,600

per affected zip code during a hurricane. I also show that this decrease is entirely driven by

reduced aid to homeowners as opposed to renters.

1 Introduction

This paper examines whether ex ante regulation reduces ex post public spending. It is well-
established in the theoretical literature that the possibility of government bailouts can lead to ineffi-
ciently high risk-taking in settings ranging from banking to disaster assistance (e.g., Kaplow, 1991;
Hellmann et al., 2000; Raschky and Weck-Hannemann, 2007; Farhi and Tirole, 2012). While ex

ante risk regulation has the potential to reduce such moral hazard in theory, the extent to which
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actual regulations do so is not known. I shed light on this question by estimating the effect of
building codes on federal disaster aid following a hurricane, providing what is, to my knowledge,
the first empirical evidence pertaining to whether stricter building codes are effective at reducing
ex post federal aid spending.

A particular concern with ex ante risk regulation is that it is often an endogenous response to
risk-taking. For example, the higher capital requirements established by the Basel Accords were
motivated by what regulators viewed as excessive risk-taking by banks. The advantage of my
setting is that I am able to identify a plausibly exogenous source of variation in building code
strength. Specifically, I instrument for building code strictness using physical measures of hurri-
cane risk, which I construct with historic hurricane records. I show that historic wind speeds are
highly correlated with building code strictness but are unlikely to be correlated with unobserved
determinants of federal aid. Although historic hurricane risk is also correlated with actual wind
speeds experienced during the study period, there is still substantial residual variation in the latter.
In other words, there are areas with historically high (low) hurricane risk that experience low (high)
wind speeds. This variation allows me to identify the effect of building codes on aid separately
from the effect of actual wind speeds.

I estimate the relationship between building code strictness, as measured by the "wind load,"
and federal disaster aid in the aftermath of four hurricanes that hit Florida in 2004. I find that
increasing the wind speed that a building must withstand by 1 mile per hour reduces federal disaster
spending in a given zip code by an estimated 2.2%− 4% or $14,000− $25,600. The estimated
reduction per housing unit is about $5.5 per hurricane. The spending reduction is entirely driven by
a reduction in aid given to homeowners; transfers to renters are unaffected by building codes. To
the extent that federal spending is proportional to damages, this finding also implies that building
codes reduce damages, which are often very hard to measure. Unfortunately, data on damages
and the costs of complying with the building codes are not systematically collected; thus, I cannot
provide a full welfare analysis of building codes. However, a back of the envelope calculation
suggests that, in order for stricter building codes to be cost-effective, damage reductions would
have to be substantial and/or the costs of sturdier buildings would have to be implausibly small.

A key contribution of this paper is to highlight a previously ignored justification for mandatory
building codes: moral hazard. A type of moral hazard that has been dubbed "charity hazard"
arises when individuals expose themselves to excessive risk because they expect to be bailed out
by the government. In the case of building codes, individuals may underinvest in protection against
hazards because they expect some of the losses to be covered by the government. The first-best
policy may be for the government to credibly commit to not bailing out individuals after their
home is destroyed or to mandate private insurance coverage. I develop a simple model to show
that building codes are a good alternative or complement in cases in which the government cannot
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credibly commit to not bailing out victims of a natural disaster, where individuals are myopic or
underestimate the probability of a disaster, or where insurance mandates are infeasible or not easily
enforced.

Despite the theoretical conclusion that building codes reduce damages and federal aid spend-
ing, there are several reasons why building codes may not lead to lower disaster aid spending in
practice. First, if a building code is poorly designed or not enforced, it may not reduce damages.
Second, the aid process has been shown to be heavily influenced by politics (Downton and Pielke,
2001; Garrett and Sobel, 2003). In particular, Garrett and Sobel (2003) estimate that as much as
half of all disaster aid is politically motivated. In the extreme case, actual damages may matter
little for aid spending. Third, households may respond to stricter building codes by reducing in-
surance coverage. In this case, the total amount of damages eligible for federal aid, which covers
only uninsured losses, may increase even if total damages fall. Thus, whether building codes are
effective at reducing ex post aid is ultimately an empirical question.

In addition to addressing the broad question of the effect of ex ante regulation on ex post gov-
ernment spending, considering the effectiveness of building codes is important in its own right.
Extreme weather events represent a large and growing source of negative economic shocks. Larger
population densities, ecosystem alteration, and movements of the population to hazardous areas
are causing real damages from natural disasters to rise (Board on Natural Disasters, 1999). In
2005 dollars, insured losses have exceeded $10 billion per year worldwide every year since 1987,
reaching $49 billion in 2004 (Kunreuther and Michel-Kerjan, 2007).1 Damages are likely to con-
tinue growing as climate change is expected to increase the number and intensity of extreme events
(e.g., Meehl et al., 2007; Schneider et al., 2007). Munich Re, a company specializing in disasters,
estimates that worldwide damages will exceed $300 billion a year by 2050, a 750 percent increase
in real terms (Freeman et al., 2003).

Correspondingly, government spending on natural disaster relief is also on the rise. In the
1980s, US disaster aid averaged $730 million per year (2009 dollars). In the 1990s and 2000s,
that figure climbed to $3.5 billion and $9.2 billion per year, respectively. Between 1957 and
2009, US federal disaster aid increased by 8% annually, on average.2 Furthermore, as Deryugina
(2012) points out, this figure is certainly an underestimate because it does not reflect increased
government spending via other transfer programs, such as unemployment insurance and Medicaid,
caused by natural disasters. Both the trends in damages and in government aid spending highlight
the importance of finding effective policy solutions.

To my knowledge, no study has considered the effect of building codes on disaster relief spend-

1Uninsured losses are difficult to estimate, but a reasonable rule of thumb is that they are about as large as the
insured losses in developed countries and about ten times larger in developing ones.

2Author calculations based on data from http://www.peripresdecusa.org/mainframe.htm, ac-
cessed January 15, 2013.
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ing, and only two studies have examined the relationship between newer building codes and dam-
ages (Fronstin and Holtmann, 1994; Dehring and Halek, 2013). However, these studies cannot
quantify the strength of the newer building codes. As a result, their viability as a basis for drawing
policy conclusions is extremely limited.

The rest of the paper is organized as follows. Section 2 outlines a simple conceptual framework
to illustrate the potential interaction of building codes and federal disaster aid. Section 3 describes
hurricanes, the history of building codes in Florida, and the data used for analysis. Section 4
outlines the empirical framework. Section 5 presents the results, and Section 6 concludes.

2 Conceptual Framework

I begin by outlining a simple conceptual framework that demonstrates the interaction between ex

post disaster transfers from the government and ex ante mitigation efforts chosen by households.
I then discuss how the government can counteract the moral hazard that arises when it cannot
credibly commit to not providing ex post aid.

The simple model presented below is adapted from Kaplow (1991), who shows that the pres-
ence of government aid reduces incentives to mitigate and insure damages.3 Intuitively, this cir-
cumstance arises because households take into account the effect of mitigation on the reductions
in their own costs following a disaster, rather than the social cost, some of which is borne by the
government. This situation can thus be viewed as one where the household’s behavior imposes a
negative externality on society because the household does not consider the full social cost when
making its mitigation decisions.

Unlike Kaplow, I assume that mitigation measures reduce the damage caused by a natural
hazard rather than its probability, and I allow ex post government transfers to depend on the level
of damages rather than holding them fixed. Because I am not considering the optimal amount of
federal aid, I also ignore taxation. However, in characterizing the solution when ex post aid is
present as suboptimal, I am implicitly assuming that government transfers are socially costly.

Let m be the amount of money spent on ex ante mitigation by a household. The probability
that a natural disaster occurs over the relevant time period is π . If the disaster occurs, damages are
given by the function D(m), where D(m)> 0, D′(m)< 0, and D′′(m)> 0 for all m. I assume that
the household has access to actuarially fair insurance, so the premium paid is equal to the expected
payout. The household pays a premium equal to πI, where I is the amount of insurance purchased.

The household’s pre-disaster wealth is w0. The household’s (concave) utility function is given
by U(w). I denote utility in the state with and without the disaster by Ud and U0, respectively. I

3Kelly and Kleffner (2003) show that reduced incentives to mitigate also arise in a setting with a monopolistic
insurer.
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begin with the case of no government aid. The optimal level of mitigation, m∗, is the solution to
the following equation:

maxm,IπU(w0−D(m)−m+ I−πI)+(1−π)U(w0−m−πI) =

maxm,IπUd +(1−π)U0

Taking the first-order condition with respect to I gives:

π(1−π)U ′l +(1−π)(−π)U ′0 = 0

It is clear that the household will choose to have equal marginal utility, and thus wealth, in each
state of the world.

The first-order condition with respect to m is a slightly more complicated expression:

πU ′l (−D′(m)−1)+(1−π)U ′0(−1) = 0

Recognizing that U ′0 =U ′l at the optimum, the optimal level of mitigation, m∗, is given by:

D′(m∗) =
π−1

π
−1

When aid is present, the government gives a transfer to the affected household when a disaster
occurs. The transfer is a fraction of damages, αD, where 0 < α < 1.4 When the household expects
that some of the damages will be compensated by the government, its problem becomes:

maxm,IπU(w0−D(m)−m+αD(m)+ I−πI)+(1−π)U(w0−m−πI)

The household’s solution to this problem will not correspond to the previous solution of m∗.
Mechanically, this occurs because of the extra term αD(m) in the case where ex post aid is given.
Intuitively, only 1−α of total damages matters to the household now, reducing the incentive to
mitigate damages.

It is easy to show that, when deciding how much insurance to purchase, the household will
again equalize marginal utility and thus wealth in each state of the world. However, this will not
necessarily translate to the same amount of insurance as in the first case because of the presence of
government transfers and possible changes in mitigation expenditure.

4In practice, the government does not compensate for damages that are covered by insurance. However, incorpo-
rating this into the model would make it too cumbersome for the purposes of this paper. Not compensating for insured
losses in this model would only strengthen the result, by providing an additional incentives to reduce insurance cover-
age.
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From the household’s point of view, the optimal amount of mitigation when ex post transfers
are present, denoted by mT , is given by:

D′(mT ) =
π−1

π
−1

1−α

Because π−1
π
− 1 < 0 and 1−α > 0,

π−1
π
−1

1−α
< π−1

π
− 1. Recall that the slope of D(m) is as-

sumed to be strictly increasing in m. Thus, mT < m∗. In other words, in the case with government
transfers, the household spends too little on mitigating damages. Intuitively, this is because the
introduction of government transfers raises wealth and lowers marginal utility in the state of the
world in which the disaster occurs. Because the household wants to smooth consumption, it re-
sponds by reducing mitigation spending, which raises the wealth in the state of the world in which
the disaster does not occur. Subsequently, damages caused by the disaster will be higher, as will
the federal expenditure on ex post aid.

Although this model focuses on mitigation expenditure, it is broadly applicable to any situation
in which agents make decisions about risk exposure and where risk reduction is costly. As in this
case, the presence of ex post government aid, assumed to be available for free to the agent, will
lead her to reduce expenditure on risk reduction.

In this simple model, the government can reach the no-aid solution simply by mandating a level
of mitigation expenditure that is equal to or greater than m∗. More realistically, the government
can mandate protection measures that correspond to the desired level of mitigation expenditure, as
in the case of building codes. In addition to decreasing the amount of damages sustained during a
disaster, such a policy has the added benefit of lowering ex post government spending on aid, thus
reducing the total cost of public funds and the total social cost.5 However, with heterogeneity in
risk preferences or in other dimensions, a simple floor on mitigation expenditure will not result in
the first-best outcome. Nevertheless, establishing such a floor can improve on a situation in which
the household is free to choose any mitigation expenditure it desires.

The government can also reach the first-best outcome in this model by mandating that all
households purchase full insurance. Because the government does not in practice compensate
for damages that are covered by insurance, this would completely eliminate ex post transfers and,
assuming the insurance is actuarially fair, achieve the socially optimal level of mitigation. Other
problems with this solution might include adverse selection and administrative costs.

Comparing mandating insurance with instituting building codes in a more realistic model is
beyond the scope of this paper. However, some relevant considerations are worth discussing here.
First, enforcing building codes may be cheaper than enforcing insurance requirements, as the for-

5Although total social costs would also be lowered by this mandate in the model, in practice social costs may be
higher if compliance costs are high.
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mer need to be checked once and provide protection for the entire duration of the structure’s life,
while the latter need to be checked continuously.6 Second, as with health insurance, political
constraints may prevent implementing an insurance mandate. The penalty for not having insur-
ance needs to be high enough for most households to choose to insure; otherwise, moral hazard
will continue to be a problem, as some households conclude that it is more beneficial to pay the
penalty. However, implementing the optimal penalty level may also be politically difficult.

The model presented above also assumes that insurance is actuarially fair. In practice, home-
owner insurance loads are among the highest in any insurance markets (of the Insurance Commis-
sioner", 2004; Hunter, 2012). In this case, mandating full insurance might not be efficient. Finally,
evidence suggests that homeowners are myopic and underestimate disaster risk. This leads them
both to underinsure and to underinvest in protective measures (Kunreuther, 2000). In general, peo-
ple seem to undervalue preventative measures: Healy and Malhotra (2009) provide evidence that
voters reward politicians for ex post but not ex ante spending and estimate that an additional $1
spent on preparedness reduces expected future damages by about $15. As a result, homeowners
may not choose the first-best level of mitigation even when forced to buy full insurance. Kunreuther
(1996) suggests that a hybrid model of insurance and building codes may optimal for overcoming
the issues related to disaster preparedness.

3 Background and Data

3.1 Hurricanes and Federal Disaster Aid

Hurricanes that affect the United States form in the Atlantic Ocean. Warm humid air over the ocean
creates storms known as "tropical disturbances." If circulating winds develop, the disturbances
become tropical cyclones. Prevailing winds and currents move cyclones across the ocean, where
they gain or lose strength based on atmospheric and surface conditions. When a cyclone encounters
cold water or land, it loses strength and gradually dissipates. Sometimes a circular area with low
internal wind speeds, called the "eye," develops in the system’s center. Although the entire storm
system can span a few hundred miles, the perimeter of the eye (the "eyewall") is where the strongest
winds are found. Wind intensity declines quickly further from the eyewall (or the center of the
storm, if there is no eye). The outer parts of the hurricane are called "spiral bands." These are
characterized by heavy rains but typically do not have hurricane-force winds.

Atlantic hurricanes are classified by maximum 1-minute sustained wind speeds using the Saffir-
Simpson Hurricane Scale. A storm is considered a hurricane if maximum 1-minute sustained wind
speeds exceed 74 miles per hour. Category 3 and higher hurricanes have wind speeds greater than

6Requiring individuals to provide proof of insurance when filing taxes may lower these costs.
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111 mph and are called "major hurricanes." Category 1 and 2 hurricanes are "minor hurricanes,"
characterized by maximum wind speeds of 74− 110 mph. A tropical storm is a cyclone with
wind speeds of 39− 73 miles per hour. Cyclones with lower wind speeds are called "tropical
depressions." Hurricanes that make landfall cause widespread wind and flood damage: Physical
damages from hurricanes in the US have averaged $4.4 billion per landfalling hurricane (in 2008
dollars) or $7.4 billion per year between 1970 and 2005 and $2.2 billion per hurricane or $3.7
billion per year if 2005 is excluded.7

I focus on four hurricanes and one tropical storm that hit Florida in 2004: Hurricanes Charley,
Frances, Ivan, and Jeanne, and Tropical Storm Bonnie. It was an exceptional year in that four major
hurricanes struck Florida. Charley, Ivan, and Frances were among the most destructive hurricanes
in recent years, trailing only Hurricane Andrew in 1992. In the US, they caused $14 billion, $13
billion, and $9 billion in estimated damages, respectively (all in 2004 dollars). Hurricane Jeanne
was estimated to have caused about $6.9 billion in damages. Tropical Storm Bonnie made landfall
only a day before Hurricane Charley, making it hard to estimate its damages separately. They were
likely relatively small, as Bonnie was much weaker than a hurricane. However, the subsequent
disaster declaration combines Charley and Bonnie; therefore, I use wind data from both storms.

Federal disaster aid is made available to a county if the state’s governor requests it and provides
evidence that the state cannot cope with the disaster on its own. The final decision about whether
to declare a major disaster is made by the US president. In practice, few such requests are denied.
Once such a request is approved, federal money can be used to repair public structures, clean up
debris, and make grants and loans to individuals and businesses. The Federal Emergency Manage-
ment Agency (FEMA) also provides personnel, legal help, counseling, and special unemployment
insurance for people who become unemployed as a result of the disaster. All four hurricanes that
hit Florida in 2004 were declared major disasters.

3.2 Building Codes

Broadly, a building code is a set of requirements that a building must meet, with clauses ranging
from ensuring structural integrity to fire protection measures. In addition to the benefit of building
codes I identify in Section 2, there are two other generally accepted justifications for mandatory
building codes. The first is that people do not take into account how building construction af-
fects neighbors. For example, a household may choose to forego hurricane roof straps because
it do not take into account the possibility that a blown-off roof damages their neighbor’s house.
Building codes can thus be seen as a tool for resolving negative externalities. The second reason
for mandating building codes is that it may be very costly for individuals to assess the quality

7Author calculations using data from Nordhaus (2006).
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of a building. In this case, despite their inflexibility, building codes are the best solution given
information acquisition costs.

Building codes in the United States are not regulated at the federal level. While most states now
follow a single building code, some leave it up to individual counties and cities. Most states with a
single building code use the provisions of the International Building Code (IBC) and International
Residential Code (IRC), developed by the International Code Council (ICC) and updated every
three years. These codes are complex sets of requirements that are functions of local attributes,
including exposure to natural hazards. The hurricane-related provisions in the IBC and IRC are
developed by the American Society of Civil Engineers (ASCE) and are included in a broader set
of guidelines called "Minimum Design Loads for Buildings and Other Structures" (or ASCE 7).

Quantifying the strictness of the ASCE’s hurricane provisions would be a daunting task. Luck-
ily, ASCE 7 provides maps of wind speeds that a building in a given area should be able to with-
stand ("wind loads"). The wind loads translate into specific design features, including the type of
glass used for windows (to withstand wind-borne debris), whether a building needs to have roof
trusses or hurricane straps installed, and the type of roofing material that can be used (to lower the
roof’s risk of being torn off by wind). The wind loads also govern requirements for vent coverings,
storm shutters, and doors. Because quantifying all components of the building code is not feasible,
I rely on wind loads as a proxy for the strictness of a building code. In addition to simplifying
the statistical analysis, using the wind load as a measure of the strength of the building code also
makes it more straightforward to interpret the findings and draw policy conclusions from them.8

I focus on the relationship between building codes and federal disaster spending in Florida.
Prior to 2001, Florida did not have a uniform building code. In 2001, it adopted a slightly modified
version of the ICC codes and has continued to use the updated versions of the codes since then. In
addition to adopting the ICC building codes, Florida adopted the wind maps published in ASCE
7. Although ASCE 7 is updated periodically, the wind maps remained unchanged from 1995 to
2010.9

New building codes typically apply to new buildings only. Older buildings must update to
comply with a more recent building code only if they undergo significant renovations. However, it
is also likely that ASCE 7 wind loads are to some extent correlated with building codes that were
in place prior to the adoption of ICC codes in 2001. Thus, my estimates are likely to capture more
than just the short-run effects of stricter building codes.

8For example, Dehring and Halek (2013) estimate hurricane damage to houses built before and after a building
code change. However, because they cannot quantify the strength of building codes, their ability to draw general
policy conclusions is limited.

9The 1997 and 2003 IBC codes use ASCE 7-98, the 2006 IBC uses ASCE 7-05, and the 2009 IBC uses ASCE
7-10. The wind loads and wind speed boundaries are identical for ASCE 7-05, ASCE 7-02, ASCE 7-98, and ASCE
7-95.
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3.3 Data

Data on wind loads come from the Applied Technology Council, which provides them for ASCE
7-10, ASCE 7-05, and ASCE 7-93, published in 2010, 2005, and 1993, respectively. The versions
of ASCE 7 published in 1995 and 1998 specify the same wind loads as ASCE 7-05. Data were
manually downloaded for every 0.01 degrees latitude and longitude to provide a comprehensive
wind load map.10 I then map the wind load points into zip code boundaries using zip code maps
from the 2000 Census.11 Finally, I average the wind load within a zip code to create a zip-level
measure of building code strictness.

Data on actual wind speeds come from the National Oceanic and Atmospheric Administration’s
(NOAA) H*Wind dataset, which provides detailed wind speed grids for recent hurricanes in six-
hour intervals. For each hurricane, H*Wind contains a set of vectors that can be used to calculate
wind speed magnitudes and direction for multiple points on a grid around the storm center. I use
data for the four hurricanes and one tropical storm that hit Florida in 2004: Hurricanes Charley,
Frances, Ivan, and Jeanne, and Tropical Storm Bonnie.12 I compute the wind speed corresponding
to each vector location and map that location into zip code boundaries using the 2000 Census zip
code maps. For each hurricane, I then compute the average wind speed in a zip code to arrive at a
zip-level measure of hurricane strength.

Data on federal disaster aid come from FEMA through a Freedom Of Information Act request.
I obtain aid information for disaster declarations associated with each of the hurricanes above.13

The final dataset consists of the total amount of aid given to individuals by zip code and disaster
declaration, as well as by ownership status (renter or owner). The total amount of individual aid
given as part of these four declarations is slightly over $1 billion. About two-thirds of that amount
was given to owners and one-third was given to renters. The total amount given to public assistance
for the four declarations totalled about $2.5 billion.14

Finally, I use the historic Best Tracks (HURDAT) dataset, also from NOAA, to calculate a zip
code’s hurricane history to use as an instrument for the wind load.15 The data are less detailed
than those provided by H*Wind: they contain only the location of the storm center and the wind
speed, also in six-hour intervals. The spatial extent of the storm is thus not observable. However,
unlike H*Wind, which covers only recent hurricanes, Best Tracks data are provided for each North

10Retrieved from http://www.atcouncil.org/windspeed/ in August 2012.
11Available from http://www.census.gov/geo/www/cob/z52000.html, accessed August 2012.
12The H*Wind datasets are available from http://www.aoml.noaa.gov/hrd/data_sub/wind2004.

html, accessed August 2012.
13Specifically, I request data for disaster declarations 1539 (Charley and Bonnie), 1545 (Frances), 1551 (Ivan), and

1561 (Jeanne).
14Public assistance data are available only at the county level; therefore, I do not use them in my analysis.
15Available from http://www.ncdc.noaa.gov/oa/ibtracs/index.php?name=wmo-data. Ac-

cessed August 2012.
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Atlantic hurricane and tropical storm since 1851. To calculate which zip codes were affected by
a particular storm, I assume that its path is linear between consecutive storm locations. I also
assume that the storm spans all zip codes within 5 kilometers of the path center. I then calculate
the maximum historic wind speed and other hurricane-related metrics for each zip code to create
instrumental variables for the wind load. I defer detailed discussion of instrument creation to
Section 4.2.

Table 1 presents summary statistics for the zip codes in my sample. The wind load averages
118 miles per hour (mph) and ranges from 99 mph to 150 mph. The actual wind speeds average
48 mph and range from 3 mph to 120 mph. The historic maximum wind speed averages 78 mph
with a standard deviation of 7. Taken together, these summary statistics indicate that the zip codes
in my sample are exposed to hurricanes relatively frequently.

Individual assistance across the four hurricanes averages about $640,000 per zip code with a
standard deviation of $1.3 million. Homeowners in an average affected zip code receive about
$410,000, while renters receive slightly over half of that amount or $240,000. It is not immedi-
ately clear whether this difference occurs because fewer renters than homeowners apply for aid or
because renters qualify for less aid, although the latter factor almost certainly plays a role.

Because of the skewness of the individual assistance variable, I use its log for regression anal-
ysis. I create two related measures: the log of the individual assistance amount and the log of
the individual assistance amount plus 1. The latter measure avoids dropping zeros. Because only
39 observations (out of 1,761) do not receive any assistance, the choice of transformation does
not substantially affect my estimates when examining total assistance for both owners and renters.
However, because renters are less likely to receive assistance than owners are, the specific trans-
formation matters more when I consider renters and owners separately.

Figure 1 shows a map of the wind loads for Florida zip codes. Lighter areas represent higher
wind loads. In general, areas that are closer to the coast generally have higher wind loads; by itself,
however, proximity to the coast does not predict the wind load. The highest wind loads are found
in the south of Florida, where hurricane exposure is greatest and storms tend to be the strongest.
All parts of Florida are considered to be at some risk for hurricanes; thus, the lowest wind load in
the state is 99 mph.

4 Empirical Framework

4.1 OLS

What happens to federal disaster spending at locations with a higher wind load, all else equal,
including the actual wind speed of the hurricane? I begin to answer this question with a simple
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regression of federal disaster aid on the wind load:

Log(aidzh) = βWLz +
10

∑
i=2

λi1[WSzh = i]+
10

∑
i=2

θi1[Dz = i]+ρAgez +αh + εzh

where z indexes zip codes and h indexes hurricanes. The dependent variable is Log(aidzh), the log
of federal dollars given to individuals in zip code z for hurricane h, and WLz is the wind load for
zip code z. Variable 1[WSzh = i] is an indicator equal to 1 if the zip code’s actual wind speed during
hurricane h is in the ith decile (relative to other zip codes in the sample).16 Similarly, 1[Dz = i] is
an indicator equal to 1 if the zip code’s distance to the coastline is in the ith decile. The variable
Agez is the median age of the housing stock in the zip code. Finally, αh is a set of four disaster
declaration fixed effects, corresponding to each of the four hurricanes.

The coefficient of interest is β , which shows the relationship between the wind load and federal
aid, holding constant the actual wind speed.17 Because some zip codes are affected by more than
one hurricane in 2004, all standard errors in this and subsequent specifications are clustered at the
zip code level.

The above specification assumes that changes in federal aid are linear in the wind load. I also
allow for non-linearities in the relationship:

Log(aidzh) = β21[WLz = 2]+β31[WLz = 3]+β41[WLz = 4]+β51[WLz = 5]

+
10

∑
i=2

λi1[WSzh = i]+
10

∑
i=2

θi1[Dz = i]+ρAgez +αh + εzh

where 1[WLz = i] is an indicator equal to 1 if the zip code’s wind load quintile is i.
One seemingly important variable left out of the specifications above is housing prices. Its

omission could affect the analysis in two ways. First, homes that are closer to the coast are more
expensive, more prone to experiencing high wind speeds, and are located in zip codes with higher
wind loads. Not accounting for housing prices in this case might lead to a spurious relationship
between disaster aid and wind loads. I address this concern by flexibly controlling for the distance
from the zip code to the coastline in the above specifications, and I show that including these
controls does not substantially affect my results.

Second, because of stricter building code requirements, homes in zip codes with higher wind
loads are also more expensive to build and may sell at a higher price for that reason. While

16My results are very robust to controlling for a fifth polynomial of wind speeds instead of wind speed deciles.
17Ideally, I would also exploit intertemporal variation in building code strength. Unfortunately, wind loads did not

change during my sample period: the first significant change since 1995 occurs in 2010, in ASCE 7-10. The effect of
these changes is important to analyze in the future, but it is too soon to detect their impact at this point.
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stricter building codes may reduce the fraction of the home value destroyed by the hurricane, it is
theoretically possible that they raise the total amount of damages. If the amount of federal aid is
proportional to the total level of damages, stricter building codes could actually increase federal
spending. In this case, more expensive housing is a direct consequence of stricter building codes.
Controlling for housing prices would then make building codes appear to be more beneficial for
reducing federal spending than they really are. Because I want to capture the full effect of building
codes on federal disaster spending, I do not include housing prices in my preferred specification.
However, I show that my results are robust to controlling for housing prices (using 2000 Census
data).

4.2 2SLS

If OLS estimates are to appropriately reflect the causal effect of building codes on federal aid, there
must be no unobservables that covary with the wind load and affect federal aid at the zip code level.
This assumption is potentially problematic, as areas with higher wind loads may also sustain higher
damages for a given wind speed, for example because they are also located in flood-prone areas.
In general, if the ASCE bases its wind loads on damage determinants other than wind speed, an
endogeneity problem can arise, in which case the OLS estimates will be biased. ASCE determines
appropriate wind loads through modeling the risk of a range of wind speeds, using historic records
and simulations. Because it is a national organization, it is not likely to use hard-to-observe local
attributes in establishing the wind loads. Flood-related provisions in building codes are treated
separately from those related to high wind exposure, and thus flood risk is unlikely to affect the
wind load of a given location.

A larger concern is that the ASCE wind loads may be based on hurricanes that are relatively
recent and could have directly affected the building stock in a particular zip code. For example,
it is likely that 1992’s hurricane Andrew was used in determining the appropriate wind loads for
nearby areas. In addition, Hurricane Andrew destroyed a lot of housing. Thus, areas affected by
Hurricane Andrew are likely to have higher wind loads and newer housing stock. OLS estimates
would then conflate the effect of stricter building codes with the effect of newer housing stock
(which could lead to lower or higher aid ex post).

I address the endogeneity concerns outlined above by instrumenting for wind loads with his-
toric wind speeds and number of storms in the area, variables that reflect a zip code’s hurricane
risk but that should not reflect other unobserved determinants of damage. The variation I exploit
in the paper is that some areas with low wind loads/hurricane risk happened to experience high
wind speeds during the 2004 hurricanes, while some areas with high wind loads/hurricane risk
happened to experience low wind speeds at that time, due to the random nature of hurricanes. To
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minimize the probability of picking up the effect of a newer housing stock as a result of more
recent hurricanes, I do not use data from storms that occurred after 1950 and I omit a zip code’s
own hurricane record from the construction of the instruments. I also control for the median age
of the housing stock directly, using 2000 Census data. The necessary and sufficient identifica-
tion assumption is that the historic hurricane record of a zip code’s neighbors is uncorrelated with
unobserved determinants of damages and/or federal aid.

To construct the instruments, I first calculate the maximum and average wind speeds each zip
code is exposed to between 1851 and 1950. I also compute the number of tropical depressions,
tropical storms, and Category 1-4 hurricanes for each zip code over the same time period.18 To
minimize endogeneity concerns, I only use the hurricane experience of nearby zip codes in con-
structing the risk measure. Specifically, for each zip code, I compute the weighted maximum and
average wind speeds of all zip codes within 500 miles, using 1

distance+1 as the weight.19 I also com-
pute the weighted total numbers of each storm type using the same procedure. To allow the wind
load to vary flexibly with the maximum wind speed measure, I transform the latter into quintile
indicators.

The first stage of the IV analysis is given by:

WLz =
5

∑
i=2

δi1[WHz = i]+
4

∑
i=1

σiNumCatiz +σ5NumT Sz +σ6NumT Dz

+
10

∑
i=2

λi1[WSzh = i]+
10

∑
i=2

θi1[Dz = i]+ρAgez +αh +υzh

where 1[WHz = i] is an indicator equal to 1 if the zip code’s historic maximum wind speed is in the
ith quintile (relative to other zip codes in the sample). The variable NumCatiz is the total number of
category i hurricanes between 1851 and 1950 (calculated across the zip code’s neighbors). NumT Sz

and NumT Dz represent the weighted total number of tropical storms and tropical depressions,
respectively.

The second stage of the IV analysis is given by:

Log(aidzh) = βŴLz +
10

∑
i=2

λi1[WSzh = i]+
10

∑
i=2

θi1[Dz = i]+ρAgez +αh + εzh

where ŴLz is the predicted wind load from the first stage.
Of course, the maximum wind speed and number of storm variables described above are not

18See Section 3.1 for definitions of storm types and hurricane categories.
19This may include zip codes outside Florida.
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the only possible valid instruments. My results are robust to a large number of variations in the
instrument set, including omitting the number of Category 1− 4 hurricanes, tropical storms, and
tropical depressions from the IV analysis. In addition, using the average instead of the maximum
historic wind speeds to instrument for the wind load does not affect my results.

A question important for interpretation is whether the instruments are picking up the effect of
building codes or simply of hurricane risk. In other words, it may be that the building codes are
weakly binding binding: individuals are making choices about what kinds of homes to build based
on the historic hurricane risk in the area in the exact same way as the designers of the building
codes. This would affect the mechanism through which hurricane risk affects building patterns,
but not the policy conclusions. As long as there is variation in the sturdiness of the buildings
created by the historic hurricane risk, policy conclusions about the effect of strenthening building
codes on federal aid spending can be drawn.

5 Results

I now present and discuss the results of the analysis described above. In addition to examining the
wind loads in levels, I replicate my estimates with the log of the wind load as a robustness check.

I begin with the first-stage estimates, shown in Table 2. Because many of the instruments
are highly correlated, some of the coefficient signs are counterintuitive. The strongest consistent
predictors of wind loads are the number of hurricanes in each category. The first-stage F-statistics
range from 184 to 199, indicating that in combination the instruments are extremely strong. This
is not surprising, as the ASCE 7 wind loads should be determined primarily by an area’s historic
hurricane record. Using only historic wind quintiles does not change the strength of the instruments
or the second-stage conclusions. But because wind speed loads are likely functions of several
moments of historic wind speeds, I use the more comprehensive set of instruments in my preferred
estimates.20

In Table 3, I show the OLS estimates of the effect of building codes on federal spending. Panel
A shows the relationship between building codes and the log of total aid amount, while Panel B
uses the log of total aid amount plus one as the dependent variable, which adds 23 observations
that did not receive any federal aid. All of the estimates are highly significant and robust across
the different specifications. The OLS estimate in Column 1 implies that increasing the wind load
by 1 mph reduces the amount of federal aid by 3.4%−4.8%. Adding controls for housing prices
lowers the estimate somewhat to 2.4%− 3.5%. The point estimates for the housing values are
consistently negative, suggesting that some of the building code effects are captured by the housing
price variable. At the mean amount of federal disaster aid ($640,000), the preferred specification

20A full set of results is available from the author upon request.
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(Column 1) corresponds to an estimated spending reduction of $21,800− $30,700 per zip code
and hurricane.

The log-log specifications in Columns 3 and 4 show that a 1% increase in the wind load is
associated with a 3.1-4.3% decrease in federal aid, holding 2004 wind speeds constant. The es-
timates in Panel B are again slightly larger, suggesting a reduction of 4.3%− 5.9%. Because the
mean wind load is about 120, these estimates are close to the OLS at the mean level of federal aid.
The preferred specification, which does not control for housing prices, implies that a 1% increase
in the wind load leads to a reduction in spending of about $19,900− $27,500 per zip code and
hurricane.

Table 4 shows the 2SLS estimates for the effect of building codes on federal spending. The
estimates are smaller than the correponding OLS ones: most of the OLS point estimates in Panel
A fall slightly out of the 95% confidence interval for the corresponding 2SLS estimates. The
downward bias of the OLS estimates suggests that the wind load is negatively correlated with
unobservable determinants of damage/aid and that instrumenting is necessary. The 2SLS estimates
confirm that stricter building codes reduce the amount of money spent by the federal government
on disaster aid. Specifically, a 1 mph increase in the wind load reduces federal aid by 1.1−2.2%,
while a one percent increase in the wind load reduces it by 1.3− 2.7%. Again, the semi-log
and log-log estimates are very similar. The dollar amounts corresponding to the linear and log
specifications without housing price controls in Panel A are $14,000 and $17,300, respectively.

I also estimate the reduction in aid per housing unit, using 2000 Census data to establish the
number of housing units. Table 5 shows the OLS estimates, and Table 6 shows the 2SLS estimates.
As before, the OLS estimates are slightly larger in absolute value. The 2SLS estimates show that
increasing the wind load of a zip code decreases the amount spent per housing unit by 2.4%−
4.1% when zip codes receiving no aid are excluded (Panel A) and by 4.0%−5.9% when they are
included (Panel B). Relative to the mean aid level of $133, a 4.1% reduction corresponds to $5.5
per housing unit.

Table 7 shows the nonlinear effect of building codes, estimating the average reduction in spend-
ing for the following four wind load categories: 106−112 mph, 112−121 mph, 121−129 mph,
and 129− 150 mph. Columns 1 and 2 show the OLS estimates, which indicate some nonlineari-
ties: Wind loads of 106−112 do not provide more protection than wind loads of 99−106, while
wind loads of 112− 121 and 121− 129 are substantially more effective. However, wind loads of
129− 150 do not appear to reduce federal spending more than wind loads of 121− 129 and may
actually lead to more spending: in Column 2, the coefficient on the 129− 150 mph wind load
differs from the coefficient on 121− 129 mph wind load at the 10% level. CHECK - still true?
The corresponding coefficients in Column 1 are not statistically different from each other.

The statistical difference in Column 2 could occur for several reasons. For one, the extra
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building requirements for higher wind loads in this range may not reduce physical destruction to
a significant degree. However, if these requirements cost substantially more to implement, they
could actually increase monetary damages, resulting in more federal aid. In addition, people may
respond to stricter building codes by reducing insurance coverage. If this reduction is nonlinear,
we may see an increase in federal aid for some ranges of the wind load, even if monetary damages
are not higher.

Table 8 shows nonlinear 2SLS estimates. Unfortunately, even with many instruments, the first
stage is not strong enough in this case (all of the F-statistics are below 3), so I cannot draw reliable
conclusions from this set of results.

Tables 9 and 10 show the OLS and 2SLS estimates for renters, respectively. Although some of
the OLS estimates suggest that building codes slightly reduce the amount of aid given to renters, the
2SLS estimates do not support this finding and are in some cases positive. Overall, stricter building
codes do not appear to lead to a significantly higher amount of aid given to renters. This makes
sense in the context of disaster aid, as renters are never compensated for damages to their dwellings.
However, they do in some cases qualify for temporary living assistance. This suggests that building
codes reduce damages, but not necessarily the probability that a structure or a neighborhood is
temporarily uninhabitable. Alternatively, it could be that rental homes and apartments are less
likely to have been built to code by 2004 or that building codes are less effective for multi-family
buildings.

Finally, Tables 11 and 12 show the OLS and 2SLS estimates for owners, respectively. Both
sets of estimates show that stricter building codes have a large negative effect on federal spending
for owner assistance. A 1 mph higher wind load reduces federal aid to owners by 3.2%− 4.2%
according to the OLS results and by 2.2%− 3.2% according to the 2SLS results. The estimates
using the log of the wind load instead of the level are very similar at the mean wind load. As
before, including zip codes that receive no aid in the analysis (Panel B) raises the estimated effect
of building codes.

It is important to keep in mind that the level of observation is zip code by hurricane. Thus, the
figures above correspond to amounts expected to be saved in a relatively small geographic area.
A back-of-the envelope calculation can provide a more informative estimate. Overall, 1,616 zip
codes received some disaster aid during the 2004 hurricane season, implying that the total savings
from 1 mph increases in building code strictness were around $22.6 million in that year. Of course,
not all of these zip codes were equally affected by the hurricanes. Assuming that the savings would
be realized only in zip codes that experienced above-median wind speeds would halve the savings
estimate to about $11.3 million.

The year 2004 was also unusual in that four hurricanes made landfall in Florida. The average
Florida zip code in my sample experienced only 1.5 hurricanes that were Category 1 or higher
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between 1851 and 1950, although a few experience as many as 20.21 In this case, which is certainly
a lower bound, my estimates would imply that increasing the strictness of all building codes by 1
mph would result in savings of about $34 million over 100 years.

The benefits of stricter building codes are almost certainly heterogeneous across zip codes,
with benefits being highest for zip codes in which hurricanes are frequent. This will be reflected in
future estimates of the benefits of building codes. In addition, damage reductions should also be
taken into account. Finally, these estimated reductions must be weighed against the cost of making
all the homes in a zip code comply with a stricter building code.

6 Conclusion

I estimate the effect of an ex ante government policy on ex post aid. I find that stricter building
codes in Florida led to a substantial reduction in federal disaster spending in the exceptional 2004
hurricane season. Specifically, a 1 mile per hour increase in the wind load for a zip code reduced
federal disaster aid by an estimated $14,000. All of the decrease can be attributed to lower aid for
homeowners: the amount of aid given to renters is not affected.

The policy implications of this analysis are applicable only to the case in which the govern-
ment’s main concern is reducing ex post aid. I observe neither the costs of the stricter building
codes nor the amount by which they reduce damages. Thus, I cannot carry out a complete cost-
benefit analysis. However, the estimated reduction of $5.5 per housing unit per hurricane suggests
that in order for building code improvements to be cost-effective, damage reductions have to be
substantial and/or the costs of making a building sturdier have to be very low. It is unlikely that the
latter is true, but there is unfortunately little empirical evidence available on damage reductions.

In addition, my estimates are for only one hurricane season. Because housing is durable, the
long-run spending reductions from stricter building codes are larger. Finally, it is almost certain
that many buildings in the affected zip codes did not conform to the ICC’s building codes as of
2004, as Florida adopted them only in 2001. Because I compare spending reductions across zip
codes, my analysis should be valid as long as stricter building codes do not result in relatively
less construction in areas with higher wind loads. If stricter building codes depress construction
activity more in higher wind load areas, my results are likely an underestimate of the potential for
stricter building codes to reduce federal disaster aid. However, they are a valid estimate of the
outcome of stricter building codes, because any changes in construction are a direct consequence
of the building codes.

Because building codes are set at the state level, I do not claim that the stricter building codes
were implemented in order to reduce federal disaster aid. It is possible that the state government

21This count is significantly larger if I also include tropical storms. To be conservative, however, I exclude them.
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was concerned about its own expenditure on disaster aid, which is not observable to me. Alterna-
tively, the reductions in ex post disaster aid may be an unintended consequence of stricter building
codes. In either case, my research suggests that it is important to incorporate such reductions into
future policy considerations.

An important omission from the analysis is the interaction between building codes and in-
surance. As shown in previous studies, insurance and self-insurance may be substitutes (Ehrlich
and Becker, 1972). In other words, people may have responded to the stricter building codes by
reducing their insurance coverage. In my setting, any such reduction was not enough to offset
the damage-reducing effect of building codes (otherwise aid spending would have remained un-
changed or increased). However, this represents an important area for future research.
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Source: Applied Technology Council, ASCE 7-98

Figure 1: Florida Wind Loads



Table 1: Summary statistics
(1) (2) (3) (4) (5)

Mean Std. Dev. Min Max Obs

Wind load (ASCE 7-05, mph) 117.9 12.8 99.2 150 1,637
Observed wind speed (mph) 48.3 17.5 2.9 120 1,639
Max historic wind speed (mph) 77.5 6.6 66.3 96 1,608

Individual Assistance (IA), all (dollars) 640,506 1,306,666 0 17,326,102 1,639
IA per housing unit, all (dollars) 133.2 475.0 0 14,480 1,639
IA, owners (dollars) 414,123 815,719 0 11,762,763 1,624
IA, renters (dollars) 242,628 576,492 0 7,429,017 1,538
Log IA, all 12.0 1.9 2.8 17 1,616
Log (IA + 1), all 11.8 2.4 0 17 1,639
Log (IA per housing unit), all 3.4 2.0 -6 10 1,616

Unit of observation is zip code by hurricane. The data contain 795 unique zip codes. The number of zip code by
hurricane observations for each variable is given in Column 5.
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Table 2: First stage regressions
(1) (2) (3) (4) (5) (6)

Wind load Log wind load

2nd quint. of hist. wind speeds = 1 -2.61*** -2.61*** -2.86*** -0.02*** -0.02*** -0.03***
(0.58) (0.58) (0.57) (0.00) (0.00) (0.00)

3rd quint. of hist. wind speeds = 1 -3.05*** -3.05*** -3.27*** -0.03*** -0.03*** -0.03***
(0.70) (0.70) (0.70) (0.01) (0.01) (0.01)

4th quint. of hist. wind speeds = 1 -0.70 -0.70 -0.75 -0.01 -0.01 -0.01
(0.77) (0.77) (0.75) (0.01) (0.01) (0.01)

5th quint. of hist. wind speeds = 1 5.80*** 5.80*** 5.62*** 0.04*** 0.04*** 0.04***
(1.78) (1.78) (1.75) (0.01) (0.01) (0.01)

Num. tropical depressions -8.04*** -8.04*** -7.16*** -0.07*** -0.07*** -0.06***
(1.47) (1.47) (1.43) (0.01) (0.01) (0.01)

Num. tropical storms -0.96** -0.96** -0.99** -0.01** -0.01** -0.01**
(0.45) (0.45) (0.42) (0.00) (0.00) (0.00)

Num. Cat. 1 hurricanes 4.46*** 4.46*** 4.13*** 0.04*** 0.04*** 0.04***
(1.66) (1.66) (1.60) (0.01) (0.01) (0.01)

Num. Cat. 2 hurricanes -8.40*** -8.40*** -7.74*** -0.07*** -0.07*** -0.07***
(1.86) (1.86) (1.83) (0.02) (0.02) (0.01)

Num. Cat. 3 hurricanes 35.79*** 35.79*** 35.15*** 0.30*** 0.30*** 0.30***
(4.86) (4.86) (4.82) (0.04) (0.04) (0.04)

Num. Cat. 4 hurricanes 14.64** 14.64** 15.10** 0.09* 0.09* 0.09**
(6.04) (6.04) (5.95) (0.05) (0.05) (0.05)

First-stage partial F 199.03 199.03 195.55 187.62 187.62 183.97
Observations 1,601 1,601 1,601 1,601 1,601 1,601
R-squared 0.90 0.90 0.90 0.90 0.90 0.90
Housing Price No No Yes No No Yes
Housing Age Yes Yes Yes Yes Yes Yes

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for actual wind
speeds.

24



Table 3: The effect of building codes on federal spending, OLS
(1) (2) (3) (4)

Panel A: Log of total aid

Wind load -0.034*** -0.024***
(0.005) (0.005)

Log of wind load -4.329*** -3.118***
(0.652) (0.665)

Median year built -0.038*** -0.022*** -0.038*** -0.022***
(0.007) (0.007) (0.007) (0.007)

Log of median housing value -0.884*** -0.879***
(0.143) (0.142)

Observations 1,608 1,608 1,608 1,608
R-squared 0.435 0.460 0.436 0.461

Panel B: Log of (total aid + 1)

Wind load -0.048*** -0.035***
(0.008) (0.008)

Log of wind load -5.926*** -4.347***
(0.930) (0.916)

Median year built -0.033*** -0.013* -0.033*** -0.013
(0.008) (0.008) (0.008) (0.008)

Log of median housing value -1.091*** -1.095***
(0.194) (0.194)

Observations 1,631 1,631 1,631 1,631
R-squared 0.380 0.406 0.380 0.406

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed.
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Table 4: The effect of building codes on federal spending, 2SLS
(1) (2) (3) (4)

Panel A: Log of total aid

Wind load -0.022*** -0.011*
(0.006) (0.006)

Log of wind load -2.679*** -1.349*
(0.759) (0.799)

Median year built -0.038*** -0.020*** -0.038*** -0.020***
(0.007) (0.007) (0.007) (0.007)

Log of median housing value -0.976*** -0.976***
(0.150) (0.150)

Observations 1,579 1,579 1,579 1,579
R-squared 0.432 0.458 0.433 0.459
First-stage partial F 198.069 194.712 188.079 184.139

Panel B: Log of (total aid + 1)

Wind load -0.040*** -0.027***
(0.009) (0.009)

Log of wind load -4.888*** -3.286***
(1.132) (1.147)

Median year built -0.034*** -0.013 -0.034*** -0.013
(0.008) (0.008) (0.008) (0.008)

Log of median housing value -1.130*** -1.132***
(0.201) (0.200)

Observations 1,601 1,601 1,601 1,601
R-squared 0.380 0.405 0.380 0.405
First-stage partial F 199.030 195.549 187.616 183.968

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed. The instruments for wind load are quintiles of spatially weighted maximum wind speed and the number
of tropical depressions, tropical storms, and Category 1-4 hurricanes for the time period 1851-1950.
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Table 5: The effect of building codes on federal spending, OLS
(1) (2) (3) (4)

Panel A: Log of aid per housing unit

Wind load -0.051*** -0.036***
(0.005) (0.005)

Log of wind load -6.350*** -4.488***
(0.645) (0.626)

Median year built -0.037*** -0.012** -0.036*** -0.012**
(0.006) (0.006) (0.006) (0.006)

Log of median housing value -1.353*** -1.351***
(0.144) (0.144)

Observations 1,608 1,608 1,608 1,608
R-squared 0.492 0.549 0.493 0.550

Panel B: Log of (aid per housing unit + 1)

Wind load -0.066*** -0.047***
(0.008) (0.007)

Log of wind load -8.048*** -5.812***
(0.923) (0.895)

Median year built -0.031*** -0.003 -0.031*** -0.003
(0.007) (0.007) (0.007) (0.007)

Log of median housing value -1.544*** -1.551***
(0.185) (0.185)

Observations 1,631 1,631 1,631 1,631
R-squared 0.424 0.474 0.423 0.474

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed.
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Table 6: The effect of building codes on federal spending per housing unit, 2SLS
(1) (2) (3) (4)

Panel A: Log of aid per housing unit

Wind load -0.041*** -0.024***
(0.006) (0.006)

Log of wind load -5.045*** -2.994***
(0.743) (0.737)

Median year built -0.038*** -0.011* -0.038*** -0.011*
(0.006) (0.006) (0.006) (0.006)

Log of median housing value -1.474*** -1.476***
(0.144) (0.143)

Observations 1,579 1,579 1,579 1,579
R-squared 0.492 0.554 0.493 0.555
First-stage partial F 198.069 194.712 188.079 184.139

Panel B: Log of (aid per housing unit + 1)

Wind load -0.059*** -0.040***
(0.009) (0.009)

Log of wind load -7.283*** -4.963***
(1.139) (1.124)

Median year built -0.034*** -0.004 -0.033*** -0.003
(0.007) (0.007) (0.007) (0.007)

Log of median housing value -1.610*** -1.615***
(0.183) (0.182)

Observations 1,601 1,601 1,601 1,601
R-squared 0.426 0.478 0.425 0.478
First-stage partial F 199.030 195.549 187.616 183.968

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed. The instruments for wind load are quintiles of spatially weighted maximum wind speed and the number
of tropical depressions, tropical storms, and Category 1-4 hurricanes for the time period 1851-1950.

28



Table 7: The nonlinear effects of building codes, OLS
(1) (2) (3) (4)

Log of total aid Log of (total aid + 1)

Wind load = 106-112 -0.101 0.002 0.083 0.210
(0.153) (0.151) (0.173) (0.175)

Wind load = 112-121 -0.596*** -0.563*** -0.387* -0.339
(0.175) (0.179) (0.213) (0.223)

Wind load = 121-129 -1.236*** -1.130*** -1.057*** -0.919***
(0.211) (0.206) (0.248) (0.248)

Wind load = 129-150 -1.382*** -1.003*** -1.661*** -1.191***
(0.203) (0.210) (0.273) (0.273)

Median year built -0.036*** -0.019*** -0.030*** -0.009
(0.007) (0.007) (0.008) (0.008)

Log of median housing value -0.944*** -1.119***
(0.142) (0.194)

Observations 1,608 1,608 1,631 1,631
R-squared 0.447 0.474 0.387 0.413

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed. Omitted category is wind load of 99-106.

Table 8: The nonlinear effect of building codes on federal spending, 2SLS
(1) (2) (3) (4)

Log of total aid Log of (total aid + 1)

Wind load = 106-112 -1.896 -1.076 -1.366 -0.312
(1.444) (1.393) (1.696) (1.633)

Wind load = 112-121 0.545 0.346 1.827 1.638
(1.073) (0.932) (1.295) (1.158)

Wind load = 121-129 -0.231 -0.036 0.321 0.576
(0.735) (0.657) (0.845) (0.762)

Wind load = 129-150 -1.028 -0.575 -0.932 -0.360
(0.766) (0.724) (0.895) (0.846)

Median year built -0.046*** -0.028** -0.039*** -0.017
(0.011) (0.012) (0.013) (0.014)

Log of median housing value -0.803*** -0.900***
(0.201) (0.254)

Observations 1,579 1,579 1,601 1,601
R-squared 0.232 0.371 0.197 0.322
First-stage partial F 2.076 1.631 2.092 1.639

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed. The instruments for wind load are quintiles of spatially weighted maximum wind speed and the number
of tropical depressions, tropical storms, and Category 1-4 hurricanes for the time period 1851-1950.
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Table 9: The effect of building codes on federal spending, renters, OLS
(1) (2) (3) (4)

Panel A: Log of aid to renters

Wind load -0.003 0.004
(0.006) (0.006)

Log of wind load -0.513 0.329
(0.787) (0.806)

Median year built -0.059*** -0.048*** -0.059*** -0.048***
(0.008) (0.009) (0.008) (0.009)

Log of median housing value -0.650*** -0.643***
(0.152) (0.152)

Observations 1,470 1,470 1,470 1,470
R-squared 0.370 0.382 0.370 0.381

Panel B: Log of (aid to renters + 1)

Wind load -0.018** -0.006
(0.009) (0.009)

Log of wind load -2.234** -0.810
(1.048) (1.081)

Median year built -0.079*** -0.061*** -0.079*** -0.061***
(0.011) (0.011) (0.011) (0.011)

Log of median housing value -1.074*** -1.069***
(0.232) (0.231)

Observations 1,532 1,532 1,532 1,532
R-squared 0.316 0.332 0.316 0.332

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed.
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Table 10: The effect of building codes on federal spending, renters, 2SLS
(1) (2) (3) (4)

Panel A: Log of aid to renters

Wind load 0.009 0.016**
(0.007) (0.007)

Log of wind load 1.202 2.156**
(0.885) (0.916)

Median year built -0.058*** -0.046*** -0.058*** -0.046***
(0.008) (0.009) (0.008) (0.009)

Log of median housing value -0.731*** -0.736***
(0.158) (0.159)

Observations 1,445 1,445 1,445 1,445
R-squared 0.371 0.382 0.370 0.381
First-stage partial F 197.983 191.030 188.681 182.546

Panel B: Log of (aid to renters + 1)

Wind load 0.003 0.016
(0.010) (0.010)

Log of wind load 0.498 2.137*
(1.220) (1.289)

Median year built -0.078*** -0.057*** -0.078*** -0.057***
(0.011) (0.011) (0.011) (0.011)

Log of median housing value -1.231*** -1.235***
(0.242) (0.242)

Observations 1,505 1,505 1,505 1,505
R-squared 0.313 0.329 0.312 0.329
First-stage partial F 197.203 192.428 187.928 183.510

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed. The instruments for wind load are quintiles of spatially weighted maximum wind speed and the number
of tropical depressions, tropical storms, and Category 1-4 hurricanes for the time period 1851-1950.
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Table 11: The effect of building codes on federal spending, owners, OLS
(1) (2) (3) (4)

Panel A: Log of aid to owners

Wind load -0.042*** -0.032***
(0.005) (0.005)

Log of wind load -5.303*** -4.093***
(0.602) (0.613)

Median year built -0.024*** -0.009 -0.024*** -0.009
(0.006) (0.006) (0.006) (0.006)

Log of median housing value -0.856*** -0.852***
(0.138) (0.138)

Observations 1,593 1,593 1,593 1,593
R-squared 0.452 0.477 0.454 0.479

Panel B: Log of (aid to owners + 1)

Wind load -0.057*** -0.044***
(0.007) (0.007)

Log of wind load -6.992*** -5.494***
(0.855) (0.861)

Median year built -0.026*** -0.007 -0.026*** -0.007
(0.007) (0.007) (0.007) (0.007)

Log of median housing value -1.026*** -1.030***
(0.191) (0.190)

Observations 1,616 1,616 1,616 1,616
R-squared 0.388 0.412 0.388 0.413

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed.
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Table 12: The effect of building codes on federal spending, owners, 2SLS
(1) (2) (3) (4)

Panel A: Log of aid to owners

Wind load -0.032*** -0.022***
(0.006) (0.006)

Log of wind load -4.067*** -2.762***
(0.718) (0.752)

Median year built -0.025*** -0.008 -0.025*** -0.008
(0.006) (0.006) (0.006) (0.006)

Log of median housing value -0.931*** -0.929***
(0.144) (0.144)

Observations 1,566 1,566 1,566 1,566
R-squared 0.452 0.479 0.454 0.480
First-stage partial F 202.334 204.452 191.283 191.680

Panel B: Log of (aid to owners + 1)

Wind load -0.046*** -0.034***
(0.008) (0.008)

Log of wind load -5.751*** -4.202***
(0.972) (1.010)

Median year built -0.027*** -0.007 -0.027*** -0.007
(0.007) (0.007) (0.007) (0.007)

Log of median housing value -1.077*** -1.077***
(0.198) (0.197)

Observations 1,588 1,588 1,588 1,588
R-squared 0.389 0.412 0.389 0.413
First-stage partial F 198.591 198.979 187.053 186.106

Standard errors (clustered by zip code) in parentheses. Significance levels: *10 percent, ** 5 percent, *** 1 percent.
All specifications include declaration fixed effects, distance from the coast bins, and flexible controls for the actual
wind speed. The instruments for wind load are quintiles of spatially weighted maximum wind speed and the number
of tropical depressions, tropical storms, and Category 1-4 hurricanes for the time period 1851-1950.
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