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Abstract

There is enormous variation in medical treatment across physicians, hospitals and regions but
designing reforms to lower costs and maintain quality requires identifying specific instances of
inefficient spending. We develop a measure of the efficiency of health care delivery based on the
frequency of negative CT scans for pulmonary embolism. Our model shows how to transform the
fraction of negative tests into a measure of medical care efficiency that links directly to welfare.
We apply our model using a 20% sample of Medicare claims data from 2000-2009; the empirical
assignment of testing outcomes is validated using chart and billing data from two large hospitals.
We find that 80% of doctors are performing too many tests, in the sense that on the margin they
perform tests even if the costs exceed the benefits. If all doctors tested only when the benefits
exceeded the costs, the proportion of patients given a chest CT in our sample would fall by 15%,
from 3.63% to 3.08%. The financial savings would be about $66 per person tested, while the
medical benefits due to reduced mortality risk from treatment of false positives would be $242
per person tested; together, these factors would roughly double the welfare increase from testing
over a world with no overtreatment. We also find that more experienced doctors and doctors in
regions with lower spending overall are less likely to overtest.
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1 Introduction

There is enormous variation in medical treatment across physicians, hospitals and regions but de-

signing reforms to lower costs and maintain quality of care requires identifying specific instances

of inefficient spending. Many have argued that current medical practice involves large amounts

of wasteful spending, with little cross-sectional correlation between regional health spending and

quality of care (Wennberg, Cooper, et al. 1996). And yet, there is a growing body of evidence

that higher spending, resource intensive hospitals and regions do achieve better health outcomes at

least in the context of high acuity, emergency care (Doyle 2007 and Doyle et al. 2012). Untargeted

cuts may lead to worse outcomes, underscoring the importance of identifying specific instances of

wasteful spending.

In this paper, we develop a measure of the efficiency of medical resource utilization based on the

frequency of negative CT scans for pulmonary embolism. A doctor who performs many negative

CT scans, which have little ex post value for improving patient health, is likely over-using this

test. The optimal fraction of negative tests may vary across doctors depending on the ex ante

propensity of the patient population to develop a given condition and the benefits of treatment if a

test is positive. Given this patient heterogeneity, our model shows how to transform the fraction of

negative tests into a measure of medical care efficiency that links directly to welfare. Our model can

be estimated using only claims data (as opposed to more detailed chart data) which makes it possible

to study overuse in the full population of medicare beneficiaries. This large sample size allows us to

investigate the determinants of overuse: we study how medical training, reimbursement, malpractice

law, hospital characteristics (for-profit and teaching hospitals) and regional characteristics such as

spending impact the efficiency of medical care delivery.

We build on the theoretical framework of Chandra and Staiger (2011) (hereafter CS) who use a

structural model to estimate the medical returns to heart attack treatment and decompose variation

in utilization into differences in physician skill, patient population, and propensity to over-use med-

ical intervention. CS assume that doctors treat if the net benefits exceed a doctor-specific threshold

τd and in structural estimation they seek to recover τd. A value of τd < 0 would indicate that a

doctor is willing to treat even if the net benefits of doing so are negative; i.e. it would indicate

overtreatment.

In most contexts, measuring overuse requires estimates of the effect of treatment on the treated

for each patient; ideally, this parameter would be estimated using randomized variation or credible
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instruments. CS argue that reliable estimates can be obtained using detailed chart data to control

for all patient characteristics observable to doctors, but such data is typically only available in

limited samples.

A key insight of this paper is the adaptation of this model to the context of medical testing,

where in the case of chest CT scans, the ex post value of the test to the patient is partially observable

in insurance claims records based on whether the test leads to the diagnosis being tested for. This

innovation allows us to develop a doctor-specific measure of care overuse in a large, national sample

of physicians and patients. We can then examine the correlates and determinants of care overuse, by

estimating the relationship between a physician’s utilization threshold and his training or practice

environment.

We apply our model using a 20% sample of Medicare claims data from 2000-2009 which we

validate by comparing billing data with patient records at two large hospitals in Boston. Given

our measure of inefficient testing, we investigate many questions about the determinants of effective

medical care. In reduced form regressions of the indicator for negative tests on doctor and regional

characteristics, we find that less experienced doctors and higher spending regions are more likely to

order negative tests.

In our structural model, we find that nearly 80% of doctors are overtesting in the sense that

for their marginal patient, the costs of testing exceed the benefits. We find that the reduced form

results are reflected in the structural model: less experienced doctors and higher spending regions

are more likely to overtest. We also use the model to conduct several welfare analyses. If all doctors

behaved optimally, the total benefits to patients from chest CTs would roughly double and spending

on CT scans and patient admissions would fall by 12%.

The paper is organized as follows. Section 2 provides some background on chest CT scans and

especially chest CT scans for pulmonary embolism, the test which is the focus of our analysis.

Section 3 describes the data available to us and the assumptions needed to identify positive and

negative tests. Section 4 reports the reduced form results from a regression of the indicator for a

positive test on covariates and describes limitations of the reduced form approach. Section 5 lays out

our structural model of testing behavior, and derives an equation relating the indicator for positive

and negative tests to the threshold τd described above which indicates whether or not a doctor is

an overtester. Section 6 describes how we estimate the model and reports some results. Section 7

examines the robustness of the structural model, section 8 conducts the various welfare exercises
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described and section 9 concludes.

2 Context

We study testing behavior in the context of chest CT scans performed in the emergency room (ER)

to detect pulmonary embolism. A pulmonary embolism occurs when a substance, most commonly

a blood clot that originates in a vein, travels through the bloodstream into an artery of the lung

and blocks blood flow through the lung. It is a serious and relatively common condition, with an

estimated 600,000 cases of PE per year in the United States (Rahimtoola and Bergin 2005). Left

untreated, the mortality rate from a pulmonary embolism depends on the severity and has been

estimated to be 2.5% within three months for a mild PE (Lessler, Isserman, Agarwal, Palevsky,

and Pines 2010), with most of the risk concentrated within the first hours after onset of symptoms

(Rahimtoola and Bergin 2005). Accurate diagnosis of PE is necessary for appropriate follow-up

treatment; even high risk patients are unlikely to be treated presumptively.

This test has a number of attractive features for our purposes: it is a frequently performed test;

it introduces significant health risks and financial costs; a positive test is almost always followed up

with immediate treatment, observable in Medicare claims records; and a negative test provides little

information to the physician about alternative diagnoses or potential treatments. We discuss each

of these features in more detail below.

2.1 CT indications and guidelines

The symptoms of pulmonary embolism are both common and nonspecific: shortness of breath, chest

pain, or bloody cough. Hence, there is a broad population of patients who may be considered for a PE

evaluation. Practice guidelines recommend that physicians also consider several additional factors

before determining whether to pursue a workup for PE, including the following: an alternative

diagnosis is less likely than PE, the patient has an elevated heart rate, patient was immobilized for

at least three days or underwent surgery in the previous month, or the patient has a history of deep

vein thrombosis or pulmonary embolism. Because PE is an acute event with a sudden onset, the

workup must be completed emergently and knowing the results of previous CT scans is not a critical

part of the evaluation of PE.

Despite these guidelines, many argue that PE CT scans are widely overused (Coco and O’Gurek

2012, Mamlouk, vanSonnenberg, Gosalia, Drachman, Gridley, Zamora, Casola, and Ornstein 2010
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and Costantino et al. 2008). The American College of Radiology targeted PE CT in one of its

five recommendations for reducing the misuse of imaging, as part of the Choosing Wisely campaign

aimed to reduce overuse of medical services (American College of Radiology 2012). The nonspecific

symptoms and significant mortality risk likely both contribute to the overuse, particularly in the

ER setting.

A CT angiogram is the standard diagnostic tool for pulmonary embolism. The average allowed

charge in the Medicare data is around $320 per PE CT when the bill is not rolled into a capitation

payment. It should be noted though that the emergency medicine physician with the responsibility

of deciding whether to order a CT scan receives no direct financial remuneration from the scan’s

performance. Payment goes to the radiologist for interpreting the scan, and to the hospital for the

technician and capital investment required to perform the scan. The emergency room doctor has, at

best, a diffuse incentive to ensure the hospital’s financial health, but he receives no direct payments

from Medicare or the hospital for ordering a scan.

In addition to this financial cost, testing comes with small but important medical risks. There

is an estimated 0.02% chance of a severe reaction to the contrast, which then carries a 10.5% risk

of death (Lessler et al. 2010). In addition, radiation exposure may increase downstream cancer

risk, although the additional lifetime cancer risk is minimal for the elderly Medicare population

in this study. Lastly, false positive CT scans may lead to additional unnecessary treatment with

anticoagulants, which carries its own financial costs and significant risk of internal bleeding.

We can identify testing for a PE in the Medicare claims data, using bills submitted by radiologists

for the interpretation of chest CTs with contrast on the same day as an ER visit. Note that while

diagnosis of PE is the most common purpose of a chest CT performed in the emergency care setting,

there are a small handful of other indications, including pleural effusion, chest and lung cancers,

pneumonia, and traumas. For this reason, we exclude patients from the sample who are coded with

a diagnosis related to pleural effusion, chest or lung cancer, and trauma from the sample. Because

a chest x-ray is typically the more appropriate diagnostic tool for pneumonia (rather than chest CT

scan), and it is not uncommon to screen pneumonia patients for pulmonary embolism, we do not

exclude pneumonia diagnoses from our baseline sample. Section 7.1 discusses alternative indications

for chest CTs in more detail, and probes the robustness of our estimation to these assumptions.
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2.2 Identifying positive CT scans

In addition to identifying CT scans in billing data, we also need to code the testing outcome, i.e.

whether or not the scan detected a pulmonary embolism. Patients with acute pulmonary embolism

are typically admitted to the hospital for monitoring and to begin a course of blood thinners or

placement of a venous filter to reduce clotting risk. Thus, we identify positive tests on the basis of

Medicare Part A hospital claims that include a diagnosis code for pulmonary embolism among any

of the diagnoses associated with the hospital stay.

We have validated this model of identifying positive tests by using cross-referenced patient

chart and hospital billing data from two large tertiary care hospitals (hereafter LTC hospitals).

In particular, we may undercount positive tests in the Medicare claims data for two reasons: if

patients with PE are not admitted to the hospital; or if patients with PE are admitted but their

inpatient bill does not include a diagnosis of pulmonary embolism.

In LTC hospitals sample, we found that 90% of patients who test positive for PE in the emergency

room were admitted within 1 day. Patients with very mild PE’s may occasionally be discharged

and treated with blood thinning agents as outpatients if the PE appeared small on the scan and the

patient has no other complicating health conditions; this likely accounts for most of the cases where

a test is coded as positive on the basis of patient chart data but no inpatient admission is recorded.

Note that this suggests that we are undercounting positive tests precisely for the patient group for

whom the benefits of treatment are the lowest.

Amongst patients with positive PE CT scans recorded in chart data who are subsequently

admitted to the hospital, 87% have a diagnosis of pulmonary embolism recorded on the bill for their

inpatient hospital stay. PE may not be recorded on the bill for two main reasons: the patient may

have other medical conditions that are treated during the hospital stay and are reimbursed at a

higher rate, such that there is no billing incentive to include PE amongst the inpatient diagnoses;

or, the bill may simply be incorrectly coded. In total, 21% of patients diagnosed with PE in the ER

do not have an inpatient claim with a PE diagnosis.

Of patients with a negative PE CT scan recorded in their emergency room chart, 1.5% have a

diagnosis of pulmonary embolism recorded on the bill for an ensuing hospital stay. In the claims

data, we would mistakenly attribute this diagnosis to the ER workup. This error could occur if

the patient develops a PE later in their hospital course and receives a subsequent positive CT test,

a plausible mechanism given that the immobilization frequently associated with hospital stays is a
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risk factor for PEs; alternatively, these PE diagnoses could indicate billing errors.

Taken together, these data suggest that of the 6% of CT tests that we code as positive in the

Medicare data, 20% of the patients had negative findings on their initial ER PE CT. Of the 94% of

tests we code as negative, 1.1% of the patients had positive ER CTs. The overall rate of positive tests

is almost exactly equal to what it would be if no such coding mistakes were made, since these two

types of coding errors offset each other. This suggests that the limitations of this coding algorithm

should not contribute to overstatements of the degree of over-testing in our Medicare sample.

3 Data

3.1 Medicare Claims

We combine data from four sources: Medicare claims records, the American Hospital Association

annual survey, the American Medical Association Masterfile, and the Medicare Physician Identifica-

tion and the Eligibility Registry. Using a 20% sample of Medicare Part B claims from 2000 through

2009, we identify patients evaluated in an emergency room on the basis of physician submitted bills.

Using physician identifiers, we track the behavior of all doctors who routinely evaluate Medicare

patients in the emergency room.

In the sample of Medicare patients evaluated in the emergency room, we measure whether each

patient was tested with a chest CT scan within one day of their emergency room evaluation using

Medicare Part B bills for following CPT codes: 71260, 71270, and 71275. This is the primary

measure of testing used in our analysis. We indicate a patient as having a positive test if they

are admitted to the hospital with a diagnosis of pulmonary embolism indicated as a primary or

secondary diagnosis code on the Medicare Part A bill for their hospital stay.

In addition to measuring whether patients were tested and the testing outcome, we also document

a number of characteristics that allow us to predict the patient’s propensity to be diagnosed with

a PE, including age, race, sex, and medical comorbodities. In addition to including a standard set

of 30 medical comorbidities (following Elixhauser et al. 1998), we include several measures that

are specific to PE risk.1 These include whether the patient was admitted to the hospital within

1Conditions are defined using a 1-year inpatient medical history, based on Medicare Part A institutional claims.
These diagnosis include: coronary heart failure, valvular disease, pulmonary circulation disorder, peripheral vascular
disorder, hypertension, paralysis, other neurological disorders, chronic pulmonary disease, diabetes without chronic
complications, diabetes with chronic complications, hypothyroidism, renal failure, liver disease, chronic peptic ulcer,
HIV and AIDS, lymphoma, metastatic cancer, solid tumor without metastasis, rheumatoid arthritis, coagulation
deficiency, obesity, weight loss, fluid and electrolyte disorder, blood loss anemia, deficiency anemias, alcohol abuse,
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the past year with a diagnosis of pulmonary embolism, thoracic aortic dissection, abdominal aortic

dissection, deep vein thrombosis, and any cause admission to the hospital within 7 days or 30 days.

Comorbidities are defined using a one year history of inpatient Medicare claims.

3.2 Physician, Hospital, and Regional Data

After using the Medicare claims data to estimate the testing threshold used by each doctor and

hospital, we explore predictors of over-testing by linking testing thresholds to physician, hospital,

and regional characteristics.

We draw physician data from two sources, the Medicare Physician Identification and Eligibility

Registry (MPIER) and the American Medical Association Masterfile (AMA data). The MPIER and

AMA both identify the medical school and graduation year for each physician, which we have linked

to the US News & World Report medical school rankings. We bin schools according to whether

they are typically ranked in the top 50 for either primary care or research rankings. In addition,

we observe the physician’s specialty choice, and present some results limited to emergency medicine

specialists.

Hospital characteristics are drawn from the American Hospital Association Annual Survey. We

use these data to observe whether the physician typically practices at a for profit hospital or an

academic hospital, defined as a hospital with a board certified residency program.

Data on state tort reform is from Avraham (2011) Database of State Tort Law Reforms. We use

this database to measure whether a state has enacted malpractice damage caps on award amounts,

or joint and several liability reform. These data allow a difference-in-differences style analysis of

how practice patterns change when state’s limit physician’s exposure to malpractice risk.

Lastly, we identify the hospital referral region (HRRs) in which each patient is treated. HRRs are

regional health care markets defined by the Dartmouth atlas to reflect areas within which patients

commonly travel to receive tertiary care. There are 306 HRRs in total. Using data from the

Dartmouth Atlas, we link each HRR to measures of the overall intensity of treatment of Medicare

patients, including spending per beneficiary and measures of end of life care.

drug abuse, psychoses, depression.
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3.3 Summary Statistics

There are over 6 million emergency room visit evaluations in our dataset, after excluding patients

with trauma, chest cancer, and pleural effusion diagnoses. Of these patients evaluated in the ER for

any reason, 2.2% of them are tested with a chest CT scan with contrast. Amongst tested patients,

6.4% of them receive a positive test, i.e. are admitted to the hospital within 24 hours with a diagnosis

of pulmonary embolism.

Summary statistics are reported in Table 1, with results reported separately for patients who do

not receive a CT scan (column A), patients who receive a negative test (column B), and patients

with a positive test (column C). We observe the testing behavior of over 65,000 physicians, with an

average of over 90 ER patients per physician.

Patient demographics are similar across the untested and tested patient groups. The average age

is 78 years in the untested sample and slightly lower at 77 in the sample of patients with negative

or positive tests. Patients who test negative are more than twice as likely to have a history of

pulmonary embolism as untested patients; patients with positive tests are 7 times more likely to

have a history of pulmonary embolism.

Patients with negative tests are evaluated by doctors with 7 months less experience on average

than patients with positive tests. They are also more likely to have been treated in a slightly higher

spending region, with regional average per beneficiary spending 1.5% higher amongst negative tested

patients. 36% of patients are evaluated by a doctor who sees a plurality of his patients at an

academic medical center, and 31% of patients are evaluated by a physician who attended a top 50

ranked research medical school; these fractions do not vary much across patient groups.

4 Reduced Form Estimation

4.1 Reduced form model

Reduced form regressions estimate the relationship between a doctor’s testing outcomes and his

training, experience, and practice environment. The idea is that a doctor who orders many tests

that turn out to be negative likely has a low threshold for when it is worthwhile to test. The

regressions are estimated over the sample of tested patients, and they take the following form:

Zid = a1 + a2Yd + a3Xi + εid (1)
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Zid is the testing outcome for patient i evaluated by doctor d; it equals one if the patient is diagnosed

with a pulmonary embolism. Yd is a vector of doctor characteristics, including his experience

and training and the type of hospital and region that he practices in. Xi is a vector of patient

characteristics. Standard errors are clustered by hospital referral region.

Some variability in testing outcomes may be introduced by differences in the patient characteris-

tics; for example, a doctor who sees more patients with a history of deep vein thrombosis is likely to

both test more and receive more positive test results. Each patient has an array of characteristics,

some observable by the econometrician, others observable only to the doctor, that contributes to

his risk for pulmonary embolism. If conditional on the observables controlled for in the regression,

each doctor faces the same distribution of patients, then we can attribute conditional differences

in testing behavior to the physician’s testing propensity to differences in the testing threshold. We

show that the results presented here are similar across specifications that vary in how richly pa-

tient characteristics are controlled for, providing some evidence that conditional heterogeneity in

the patient population is not driving the observed differences in testing outcomes.

There are a three main limitations of the reduced form approach. First, if there remain unob-

servable differences across doctors in their patients’ ex ante risk for pulmonary embolism, then we

may mistakenly attribute differences in the patient’s risk profile to the doctor’s testing threshold.

The structural model addresses this concern allowing different doctors to treat patient populations

that unobservably differ, on average, in their ex ante risk. In refinements to the basic structural

model, we further relax this assumption by allowing doctors to face not just different unobservable

patient characteristics on average but also heteroskedastic distributions of unobservable patient risk.

Second, the above regression assumes that the benefits of treatment do not vary across doctors

and patients, so that there would be no reason for doctors to differ in their testing behavior once

we’ve conditioned on the patient’s risk of having a PE. In the structural model, we allow for the

fact that patient characteristics may impact the benefits from treating a PE.

Lastly, while the reduced form model allows us to estimate differences in testing thresholds

under the assumptions outlined above, it does not allow welfare analysis. We cannot distinguish

doctors that are over- or under-testing, nor make any normative statements about whether changes

to the testing rates would be welfare enhancing. Using calibrated assumptions about the value of

testing and treatment drawn from the medical literature, the structural model does allow for the

identification of over-testers.
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4.2 Reduced form results

Regression results are reported in Table 5. Results are highly consistent across all specifications (with

one exception, noted below); we focus on column 4 in describing the results, since this includes data

from all physicians and years, along with the richest set of controls including state fixed effects,

patient comorbidities and pulmonary embolism risk factors.

Doctor experience, defined as the number of years since graduating medical school, is strongly

correlated with the probability that the patient has a positive CT scan. The finding suggests that

every 10 additional practice years of the ordering physician is associated with a 0.43 percentage

point increase in a positive CT finding, from a mean of 6.4 percent positive tests, significant at the

1% level.

The experience profile is further unpacked in Figure 1, where we see that doctors with 0-4

years of experience are most likely to order a CT scan that turns out to be negative for pulmonary

embolism. Rates of positive tests steadily improve until the doctor has 20-29 years of experience,

which is statistically indistinguishable from 30-39 years of experience. Very old doctors with 40 or

more years experience begin ordering more negative tests again, although due to the small sample

of physicians still practicing at that age, the estimate is imprecise.

Note that due to the high degree of correlation between age and experience (or alternatively,

cohort and experience), we do not have sufficient power to statistically distinguish these mechanisms

in the data. We observe fewer than five CT scans per in-sample doctor, on average, so despite the

panel structure of the data, we cannot estimate a precise experience profile after controlling for

physician fixed effects. However, the strong correlation between experience (or age) and testing

behavior is suggestive of two possible mechanisms: a strong learning effect, where doctors raise

their testing threshold over time or learn to distinguish more finely between low- and high-risk

patients; or, a notably different practice style by physician cohort, where older physicians or those

born in earlier years are less inclined to pursue testing for low-risk patients.

Average medical spending within the HRR is also strongly related to the probability that a

tested patient has a pulmonary embolism. This data is merged from the Dartmouth Atlas, and

gives the average spending per Medicare beneficiary, adjusted for age, race, sex, and price, from

2003–2009. In column 4, a ten percent increase in regional spending levels is associated with 0.43

percentage point decline in the probability of a positive test amongst tested patients, significant at

the 1% level. This finding provides suggestive evidence that some of the raw variation in Medicare
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spending across regions may be driven by differences in wasteful spending.

There is also evidence that in difference-in-differences estimation, controlling for time and state

fixed effects, the enactment of joint and several liability reform in a state is associated with an

increase in the rate of positive tests for PE. This evidence supports a defensive medicine mechanism,

whereby the threat of a lawsuit makes physicians more likely to order a test on patients with low

expected benefits. We are currently working on estimating the structural model to identify panel

variation in physician or hospital’s testing behavior over time. This will allow us to extend the

difference-in-differences identification strategy to the analysis of the structural model results.

Lastly, we find no significant impact of whether the physician typically practices at an academic

hospital, physician gender, or physician’s medical school quality. These coefficients are imprecisely

estimated and not statistically distinguishable from zero in any of the reduced form specifications.

5 Model of Testing Behavior

We will now develop a model of physician’s testing decisions and test outcomes that allows us to

identify whether doctors are under- or overusing medical tests. A doctor must decide whether or not

to test each patient he evaluates in the emergency room with a chest CT, and the econometrician

observes both whether each patient is tested and the outcome of each performed test (positive or

negative). This framework is adapted from Chandra and Staiger (2011).

The starting point for our model is the assumption that doctors test a patient only if the

perceived net benefits of testing given all of the information available to them at the time exceed a

doctor-specific threshold value. Let Bid denote the net benefits if doctor d tests patient i and let τd

denote this threshold. Then we assume that doctors test if and only if Bid ≥ τd. If τd equals 0, then

doctors are behaving efficiently because they test only when the net benefits exceed 0. If τd > 0,

doctors are undertesting, i.e. there are some patients with positive net benefits who they decide not

to test; if τd < 0 then doctors are overtesting, i.e. there are some patients with negative net benefits

who they test anyway.

The goal of the model will be to recover the threshold values τd based on the observed testing

decisions (whether or not an evaluated patient is given a chest CT) and the observed rate of negative

tests. We will show as in CS that the threshold variables τd can be recovered from a regression of

the net benefits of testing on doctor fixed effects conditioning on a flexible function of the propensity

to test. A key advantage of investigating the efficient use of medical testing as opposed to medical
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treatment (as in CS) is that doctor threshold parameters, τd, can be recovered without separately

estimating the net benefits of treatment for each patient. It is sufficient to know whether the test was

positive or negative even if the net benefits are allowed to vary flexibly based on patient’s medical

histories.

The key simplifying assumption we make to evaluate the net benefits of testing is that a negative

test has no value. This assumption is not true in general for all tests: a negative test may rule out

one treatment thus justifying treatment for an alternative, or a negative test might prevent an

otherwise costly treatment. However, in our setting—CT scans for pulmonary embolism—a positive

test is followed by an inpatient admission and treatment with blood thinners while a negative test

does not suggest any further interventions or testing for related problems.

To motivate the full model, consider first a simplified case where the net benefits of testing are

equal to the probability of a positive test, qid, and assume there is no heterogeneity in the benefits

of treatment across patients who tested positive. The probability of a positive test may vary with

observable patient characteristics: qid = xidβ + ηid, where ηid are factors observable to the doctor

but not to the econometrician and are distributed i.i.d. across doctors and patients. For example,

ηid might include symptoms reported by the patient such as chest pain. For now, we assume that

ηid is i.i.d. across doctors and patients.2 Further, assume that the costs of testing are a known

constant c. Doctors will test if qid − c ≥ τd.

Under these assumptions, we could estimate the equation P (test) = f(xidβ − τd − c) and im-

mediately recover τd. In other words, if doctor A tests more patients than doctor B, conditional on

observable patient characteristics, then we can immediately infer that doctor A has a lower testing

threshold. We would not need to observe testing outcomes to recover τd.

This basic model assumes that there are no unobservable differences in patient mix across physi-

cians. This is a strong assumption in the medical context where the rich variation in patient risk

across doctors is thought to be difficult to observe from claims data. For this reason, we augment the

model by allowing the probability of a positive test to vary across doctors, conditional on observed

patient characteristics. In particular, we assume that the probability of a positive test is given by:

qid = xidβ + αd + ηid (2)

2This is all we do in this draft. We can in principle estimate a model with heteroskedastic η provided we make a
parametric assumption about ηid (e.g. that it is normally distributed)—this allows some doctors to do a better job of
deciding which patients to test given observable x’s as opposed to just having different thresholds.
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where xid are observed patient characteristics, αd are doctor level fixed effects, and ηid are factors

observable to the doctor but unobservable to the econometrician which impact the likelihood that

a test is positive.

In this model, P (test) = f(xidβ + αd − τd − c), so the testing equation is only sufficient to

identify θd = αd − τd: we cannot tell if a given doctor tests a lot given observables because she is

an overtester (small τd) or because he has a patient population which is particularly predisposed to

pulmonary embolysm (large αd). All is not lost however because we can distinguish αd and τd if we

also observe the number of positive tests for a given doctor. If a doctor tests more patients given

observables because they have a large αd (as opposed to a small τd), then they should also produce

more positive tests.

That is the fundamental intuition of our model. Let us now lay out a more complete version.

Given the assumption that negative tests are not ex post medically valuable, the net benefits of

testing are given by the the doctor’s perceived probability of a positive test (qid) times the net

utility conditional on treatment NUid minus the cost of testing, cid. Together, these assumptions

imply that doctor d tests patient i if and only if:

qidNUid − cid ≥ τd (3)

We assume that net utility of treatment, given the patient has tested positive, is given by:

NUid = NU id + x̃idδ (4)

where NU id is a known component of net utility which we compute directly for each patient based

on their medical history and x̃id includes observables which may impact net utility but whose

relationship to net utility is estimated in the model.

Define θd = NU idαd − τd. Plugging our specifications for the probability of a positive test and

for net utility into the testing equation and rearranging yields the final form of the testing equation:

xidβ +
θd + αdx̃idδ − c̃id
NU id + x̃idδ

+ ηid ≥ 0 (5)

This yields a standard semiparametric binary choice model of testing. We next show how the

threshold parameters τd can be recovered from a regression of the frequency of positive tests on
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doctor fixed effects controlling for the propensity estimated from the testing equation. We denote

this testing propensity by Iid ≡ xidβ+ θd+αdxidδ−c̃id
NU id+x̃idδ

. From equation 5, we can compute the expected

benefits conditional on testing, which are given by:

E(Bid|Tid = 1) = τd + (NU + x̃idδ)Iid + (NU + x̃idδ)g(Iid) (6)

where g(Iid) = E(ηid| − ηid ≤ Iid) is an (unknown) function of Iid.

Let Zid be an indicator for whether a test was positive or negative. If doctors have rational

expectations, we must have E(qid|Tid = 1) = E(Zid|Tid = 1). Given these rational expectations and

equation 3, we can write the expected benefits as E(Bid|Tid = 1) = (NU+ x̃idδ)E(Zid|Tid = 1)−cid.

Plugging this into equation 6 and rearranging yields:

E(Zid|Tid = 1) =
τd + cid

NU + x̃idδ
+ Iid + g(Iid) (7)

This equation implies that we can recover the testing thresholds τd (relative to a normalization)

from a regression of the observed testing outcome (positive or negative) on doctor fixed effects,

controlling for the estimated propensity to test Iid.

Intuitively, imagine that doctor A and doctor B have observably similar patients and the same

propensity to test. This might be because they have comparable tendencies to overtest, i.e. the

same testing threshold τd, in which case they must also have comparable αd’s; in this case, we would

observe the same rates of positive test results amongst tested patients of both doctor A and doctor

B. Alternatively, it might be that doctor A overtests relative to doctor B (τA¡τB) but doctor A also

has a less suitable patient population (αA¡αb), so that on net he has the same propensity to test as

doctor B. In this later case, we should observe fewer positive tests for doctor A. Thus, in equation

7, we see that controlling for the propensity to test, a doctor with fewer positive tests will have a

smaller τd since only a (relative) overtester would have the same propensity to test for a less suitable

patient population.

Note additionally that it is sufficient to observe only whether the test is positive or negative and

not the patient-specific benefits of treatment because heterogeneity in the net utility of treatment

conditional on a positive test can also be recovered from the testing equation. This is because the

impact of the net utility of treatment on the testing decision should scale with the likelihood of a

positive test. If we observe that doctors are differentially inclined to test patients with large x’s
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when other observable factors make a positive test more likely (controlling for the direct impact of

x on the frequency of positive tests), this suggests that net utility varies with x.3

As noted above, the estimation of equation 7 only allows the identification of testing thresholds

τd up to a constant normalization. From this equation, we cannot directly recover the absolute

magnitudes of τd—we can say whether doctor A appears to have a higher threshold than doctor B

for deciding which patients to test, but we cannot say whether both doctors are testing too little

(meaning doctor B is doing relatively better), whether doctor A is testing too little and doctor

B testing too much, or whether both doctors are testing too much (meaning doctor A is doing

relatively better). In section 6.2, we discuss how we can determine the appropriate normalization

for the estimated τd and thus determine which physicians are over-testing and which are under-

testing.

Equation 7 motivates the reduced form exercise in the previous section of regressing the indicator

for a positive test on doctor, hospital and regional variables controlling for patient characteristics.

In particular, if we controlled in a sufficiently flexible way for all patients, if there were no doctor

level unobservable variables which impacted the probability of a positive test (αd = 0), and if any

variation in net utility across patients were completely observable and did not need to be estimated

(δ = 0), then the reduced form exercise would recover exactly the same parameters as a regression

of the τd thresholds on covariates scaled by NU .

6 Calibration and Estimation of the Structural Model

6.1 Calibration of Parameters

To estimate the model laid out in Section 5, we need to determine the values of cid and NUid for each

patient. An important cost of overtesting comes from the fact that tests have both type I and type

II errors, so overtesting leads to unnecessary treatment which can have adverse consequences. CT

scans, as with many other medical tests, can generate both false positive and false negative results

(Stein, Fowler, Goodman, Gottschalk, Hales, Hull, Kenneth V. Leeper, John Popovich, Quinn, Sos,

Sostman, Tapson, Wakefield, Weg, and Woodard 2006). In this section, we extend the model to

explicitly include false positives and negatives, and then describe our calibration.

3A somewhat subtle point is that only because of heterogeneity in τd can we separately identify heterogeneity in net
utility (which scales with αd) from non-linearities in the function relaxing the propensity to consume to the probability
of testing. Thus, δ is only separately identified when equations 6 and 7 are estimated jointly.
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Let s denote the sensitivity of the test (one minus the probability of a false negative) and fp

denote the probability of a false positive (one minus the specificity). Let PEid denote the event

that patient i actually has a PE. As before, Zid is an indicator which is 1 if a test is positive. MBid

denotes the medical benefits of treatment if the patient has a PE, MCid denotes the medical costs

of treatment and CTid denotes the financial cost of treatment. Then the (known) component of the

net utility of a positive test is given by:

NU id = P (PEid|Zid = 1)(MBid −MCid) + (1− P (PEid|Zid = 1))(−MCid)− CTid (8)

Applying Bayes’ Rule and the law of total probability we can rewrite this in terms of s and fp

as:

NU id =
s(qid − fp)
qid(s− fp)

(MBid −MCid) + (1− s(qid − fp)
qid(s− fp)

)(−MCid)− CTid) (9)

We can therefore write the net benefits of testing as:

Bid = qid(NU + xidδ)− cid

=
s(qid − fp)

(s− fp)
(MBid −MCid) + (qid −

s(qid − fp)
(s− fp)

)(−MCid)− CTidqid + qidxidδ − cid(10)

Let N̂U id = s
s−fpMBid −MCid −CTid and ĉid = cid + s·fp

s−fpMBid. Then we can rewrite the net

benefits of testing as:

Bid = qid(N̂U id + xidδ)− ĉid (11)

which is exactly the definition of net benefits in Section 5. Conditional on whether or not testing

and treatment are observed, false positives and false negatives impact only marginal benefits; that

is, the costs of testing are paid if a test is done and the costs of treatment are paid if treatment

is performed, but the marginal benefits of treatment accrue only if the patient actually has the

underlying condition. If there are more false positives, the marginal benefits of any observed positive

test will be smaller.

We calibrate these parameters using the values in Table 3. Note that our calibration of both the

medical benefits and the medical cost of treatment depend on an estimate of the value of a statistical

life (VSL). To the extent that we use a higher VSL, the cost of treatment and the cost of testing

cid will be proportionately less important (and so testing will be more desirable). In our baseline
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estimates, we use a VSL computed as a function of life-expectancy given age where remaining years

are valued at $100,000 per life year. This yields an average in our sample of about $1 million per

patient. (In forthcoming results, we show that our main results are not altered by using values at

the lower or upper end of VSL estimates–$1 million and $7 million respectively.)

6.2 Who is an overtester?

As noted in Section 5, equation 6 only allows us to recover the relative values of τd—we also need

to determine an appropriate normalization in order to identify which doctors are overtesters and

which are undertesters. In other words, let τ∗d denote the true τ ’s and τ̂d the τ ’s estimated from the

model. We know that τ∗d = K + τ̂d and we want to determine the constant K.

To do so, we examine expected benefits for “marginal patients”. The expected benefits for

the average patient will be greater than the threshold value for τd since doctors test if and only

if Bid ≥ τd. But by computing expected benefits for patients whose doctors are just indifferent

between testing and not testing, we can recover τd (which by definition is equal to the expected

net benefits for the marginal patient). Formally, note that ηid is bounded since qid ∈ [0, 1]. Thus,

there exists a value I such that, for Iid < I, patient i cannot be tested. Further, at I, we know that

ηid = η. In other words,

lim
I→I

g(Iid) = lim
I→I

E(ηid|ηid ≥ −I) = −I (12)

From, equation 7, this implies that: (NU + xidδ) ̂E(Zid|Tid = 1)− cid = τd among patients with

Iid = I. Thus, we proceed as follows. We identify marginal patients as patients in the lowest 5

percentiles of Iid. We compute (NU + xidδ) ̂E(Zid|Tid = 1) − cid for those patients, which gives us

estimates τ̂∗d = τd+vid of the absolute magnitude of τ for each of the marginal patients. This implies

that τ̂∗d = K + τ̂d − vid so we can then regress τ̂∗d on the estimated τ̂d to recover the constant K

which allows us to appropriately normalize τ and determine for which doctors τd < 0.

6.3 Structural Estimation

We use a generalized method of moments estimator to estimate the structural model. The testing

equation 5 defines a semiparametric binary choice model which we estimate using Klein and Spady’s

binary choice estimator Klein and Spady (1993). Let tid denote the indicator for whether patient

i was tested and let g denote the probability that patient i is tested given index X ′iβ. The log

likelihood is given by:
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L(β, g) =
∑
i

[ti ln g(X ′iβ) + (1− ti)(1− ln g(X ′iβ))] (13)

The idea of the Klein-Spady estimator is to approximate g using a “leave-one-out” estimator

which predicts the probability of testing for a given patient giving more weight to patients with

nearby indices Iid = X ′idβ. Specifically, we substitute for g using:

ĝ−i,d =

∑
j 6=i k

(
(Xj−Xi)

′β
h

)
ti∑

j 6=i k
(
(Xj−Xi)′β

h

) (14)

We use a 4th-order Gaussian Kernel and empirically select for the smallest bandwidth such that

ĝ is a monotonic function of the index X ′iβ.

Because of the large number of fixed effects in the model (over 7,000), it is infeasible to simulta-

neously estimate all parameters. Instead, we split the sample into 10 subsamples and estimate each

subsample individually. To make sure our estimates are comparable across samples, we include the

five doctors with the most patients in every subsample. The doctor with the most patients provides

the normalization θ1 = 0 and in all samples after the first the relative values of doctors 2-5 are fixed

so that the normalization remains the same.

We construct moments from the first order condition of the likelihood function in equation

13 with ĝ substituted for g. Additional moments are constructed from the regression equation 7.

In particular, for each regressor, we construct 1
N

∑
i xi(yi − xiβ) where the regressors include the

doctor fixed effects normalized by N̂U id + x̃idδ. Finally, we impose the additional constraint that

θd = N̂U idαd − τd.

6.4 Structural Results

Figure 2 shows the relationship between the underlying estimated propensity to be tested and the

observed probability of testing. As we might expect, this function is convex for large values: for

most patients a single warning sign is not worrying, but in the presence of several other warning

signs the marginal impact on the likelihood of testing increases.

Table 4 reports the marginal effects from estimation of the testing equation. Column (2) shows

the coefficients from a linear probability model in which testing is regressed on covariates along with

the standard errors of those estimates. The two sets of estimates are very similar. Older patients

are substantially less likely to be tested. Black and hispanic patients are less likely to be tested.
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Patients who have had a pulmonary embolism in the past are 2 percentage points more likely to be

tested (compared to a mean of 3.6% tested in our data). Likewise, several other comorbidity indices

we include predict increased testing.

Next, we consider the distribution of τd resulting from estimation of equation 7. The distribution

of the resulting raw τd is shown in Figure 3. These initial estimates imply that 80% of doctors in

our sample are in this sense “overtesters”. The distribution is non-normal because many of the

overtesters have 1 or 0 observed positive tests. This means their estimated τ is substantially less

than 0, but measured imprecisely. The apparently missing mass between 0 and -3000 reflects the

fact that a small in magnitude by negative τ is only possible for doctors with a very large number

of tests since it can only result from a non-zero number of positive tests which is nonetheless a

small fraction of overall tests. This point underscores the need to correct for the variance in τ when

constructing the empirical distribution.

We do this using the “empirical Bayes” techniques. That is, we assume that τ̂d = τd + vd where

τ̂d gives our estimated τ and τd the true value. In this framework, the best linear predictor of the

fixed effect τd (which is also an estimate of the posterior mean under normality) is given by:

τEB =
V ar(τEBd )τ̂d

V ar(τEBd ) + V ar(vd)
+

V ar(vd)τ̂d
V ar(τEBd ) + V ar(vd)

(15)

where τ̂d is the mean of the estimated values. We estimate the appropriate scaling factor via

random effects estimation of equation 7. The resulting distribution of τEB is graphed in Figure 4.

The adjusted τs are all less than 0 and nearly all lie between -$400 and -$900. Taking the adjusted

τs literally would imply that everyone in our sample is an overtester. This conclusion is too strong:

because positive tests are so rare, we have only imprecise estimates for each doctor; with more

information, the posterior distribution in figure 4 would be more diffuse. Nonetheless, this analysis

suggests that at least 80% of doctors are overtesters.

Table 5 replicates our reduced form analysis in a structural setting. We regress the estimated τEB

parameters on the potential determinants of inefficient testing. We again find that more experienced

doctors and doctors in lower spending regions are less likely to overtest. A 10-year increase in

doctor experience is associated with an $80 increase in the testing threshold (where a larger value is

associated with less overtesting). A 10% increase in regional spending correlates with a $170 decline

in the testing thresholds - so doctors in higher spending regions are more likely to overtest. Column
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(1) of table 5 uses the full sample of doctors and column (2) considers only emergency room doctors

- there is little difference between the two samples (Column (3) is discussed in the next section).

7 Robustness of Structural Model

7.1 Testing for Multiple Conditions

An important caveat to our above analysis is that claims data is only sufficient to identify CPT

codes for “chest CT with contrast”; we cannot isolate CT scans that follow the PE testing protocol

specifically. Although tests for PE are the primary indication for chest CTs in the emergency room

setting, there are other possibilities. Because of this limitation, some of the tests we have labeled

as “negative” since the patient is not diagnosed with pulmonary embolism may in fact be tests

performed for a different indication.

There are four main alternative indications for CT scans in an emergency room setting: trauma,

lung or chest cancers, pleural effusion, and pneumonia. In the case of trauma, pleural effusion,

and cancer workups, we distinguish these indications on the basis of diagnosis codes recorded on

the same day as the ER evaluation. In case of pneumonia, we demonstrate the robustness of our

structural model to considering this alternative diagnosis as an indication of a “positive” test result.

We exclude from the sample patients with diagnosis codes related to trauma (such as fractures,

injury, motor vehicle accidents), when these codes are associated with bills on the same day as the

patient’s emergency room evaluation. Chest CTs for these patients are likely aiming to assess damage

from a trauma rather than a pulmonary embolism. In a detailed sample of patient records from

chest CT scans performed in the emergency room of a large hospital, diagnosis codes associated with

the radiology bills readily distinguished traumas from other scanning indication. In our Medicare

sample, the fraction of total chest CTs performed on trauma patients is 17%, and we exclude these

patients from our analysis.

It is unusual for a cancer diagnosis to be made for the first time in emergency room, but patients

with worsening symptoms as a result of tumor growth or metastasis or occasional new diagnoses

may be seen. CT scanning is routinely used to diagnose and stage cancers. In our sample of detailed

emergency room chest CT records from the large hospital, fewer than 1% of the scans were used to

diagnose or stage cancers. In the Medicare data, we exclude those patients with cancer indicated

on their visit to the emergency room or associated inpatient visit as a robustness check.
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Chest CTs can be used to guide a procedure to treat patients with pleural effusion, which is

typically first diagnosed with a chest X-ray. Because a chest CT is not commonly a diagnostic

test for pleural effusion but rather an input into the treatment of the disease, we can exclude

patients from the sample with diagnoses of pleural effusion indicated on either their Medicare Part

B bills submitted the same day as the emergency room evaluation or any ensuing inpatient stay

bill. Since some patients are diagnosed with both pleural effusion and pulmonary embolism, and in

these patients the chest CT was likely serving a diagnostic role, we do not exclude pleural effusion

patients with a diagnosis of pulmonary embolism. These sample restrictions will tend to overstate

the rate of positive testing and bias us away from finding evidence of over-testing, since we may be

excluding some pleural effusion patients who are being tested for pulmonary embolism but have a

negative test result.

Together, these exclusions for patients with trauma, cancer, or pleural effusion remove 32% of

patients receiving chest CTs from our sample. Results presented above are qualitatively similar

when these patients are included.

Finally, chest CTs can be used to diagnose pneumonia. In the absence of any clinical suspicion

for an alternative diagnosis such as pulmonary embolism, pneumonia can be accurately diagnosed

with less medical risk and financial cost with an x-ray. For this reason, we do not conside pneumonia

as a positive testing outcome from a chest CT in our baseline model. If there are patients with a

low but non-zero probability of having a pulmonary embolism and a very low probability of having

pneumonia, then it is possible that a physician will use a chest CT in an instance where a chest

x-ray would not be ordered in the absence of the CT option. In addtion, despite the fact that

clinical guidelines and evidence suggest that x-rays are a sufficiently accurate diagnostic instrument

for pneumonia, some physicians may prefer to use the more detailed CT image to diagnose very

mild pneumonia cases. In these cases, it would be appropriate to code pneumonia as part of the

value of the CT test–i.e. a diagnosis where treatment benefits the patient (has positive NU) that

would not have been arrived at through other means.

For this reason, we consider an extension of the above model in which multiple outcomes are

permitted. We consider this extension in the simplest case of the model, where δ = 0 so no

heterogeneity in NU is permitted. More precisely, suppose there are k possible outcomes which can

be detected by the CT scan. Then we can write the doctors decision of whether or not to test as

given by:
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∑
k

qkidNUk − cid ≥ τd (16)

where qkid is the probability of a positive test for condition k and is given by:

qkid = xkidβ + αkd + ηkid (17)

We show in Appendix B that this implies we can recover τ from a regression of the indicators

for a positive test for each condition weighted by the utility of a positive test on τd, cid and an

appropriately defined testing propensity.

∑
k

NUkE(Zkid|Tid = 1) = τd + cid + Iid + g(Iid) (18)

In particular, we estimate this equation allowing for pneumonia as an alternative positive test.

As with pulmonary embolism, positive tests are identified using inpatient diagnosis codes amongst

patients who are admitted to the hospital following their emergency room evaluation.

Assuming that either a chest x-ray or chest CT would always be performed when in the case

of clinical suspicion of pneumonia, the value of the chest CT derives solely from the increased

probability of diagnosing a pulmonary embolism when the CT is utilized and the cost of the test is

simply the additional financial and medical costs of performing a CT, over and above the costs of

performing an x-ray. Since the health costs and financial costs of an x-ray are much, much lower

than the costs of a CT scan (machinery is comparatively inexpensive, faster to interpret, radiation

dose is much lower, and there is no risk of a contrast reaction), this cost adjustment is minor. We

also assume that the net utility associated with using a chest CT to diagnose pneumonia is bounded

by the cost of a chest x-ray, which could alternatively have been used to make the diagnosis. Chest

x-rays are reimbursed at around $30 per scan in the Medicare claims data. The results in Column

3 of Table 5 show that allowing for heterogeneity in pneumonia diagnoses across doctors has little

impact on our conclusions.
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7.2 Differences in Doctor Discernment

The model so far has assumed that doctors differ only in the cost-benefit threshold τd they use to

determine whether to test. Specifically, we have assumed that ηid is i.i.d. across doctors which

implies that doctors do not systematically differ in their ability to recognize patients who will test

positive given unobservable factors.

We can relax this assumption by considering a parametric version of our model in which ηid is

allowed to vary across doctors. Intuitively, some doctors may have no additional information beyond

what is observable to the econometrician. For these doctors, V ar(ηid) = 0. At the other extreme,

some doctors may know with near certainty which patients will test positive - for these doctors,

qid ∼ 0, 1 and ηid has larger variance.

We want the model to allow for the possibility that doctors with more discernment (understood

as a higher variance in η) test less. For this to be the case with a normally distributed η, it must

be that many patients would be tested were η = 0. To allow for this possibility, we add a bernoulli

term vid = A with probability p to the model. We can think of this term as something like “chest

pain reported” which is observable to all doctors makes it more likely that patients will be tested,

but is not observable to the econometrician. The model is thus exactly like the one in the previous

section with ηid replaced by ηid + vid and relaxing the assumption that ηid is homoskedastic.

The estimating equations for this model are given in Appendix A. We are currently working on

estimating this model variation; results are not reported in the current draft.

7.3 Misweighting Observable Characteristics

The model above also assumes that the only “error” doctors can make is to test patients if the costs

exceed the benefits. (Of course, this is an error from the perspective of maximizing social welfare,

but perhaps not from the perspective of the doctor if he has a different objective function).

In this section, we consider the alternative possibility that doctor’s systematically misweight

observable characteristics in deciding whether to test. That is, assume that doctors’ belief about

the probability of a positive test is given by:

q′id = xidβ
′ + αd + ηid (19)
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while the actual probability remains:

qid = xidβ + αd + ηid (20)

With this change, the derivation of the model in Section 5 continues to hold, except for the

assumption that doctors have rational expectations. That is, it is no longer the case that E(q′id|Tid =

1) = E(qid|Tid = 1) = E(Zid|Tid = 1). Instead we have: E(Zid|Tid = 1) = E(q′id|Tid = 1)+xid(β−β′)

which yields the equation:

E(Zid|Tid = 1) =
τd + cid

NU + x̃idδ
+ xid(β − β′) + Iid + g(Iid) (21)

This equation allows us to recover τd and β − β′. So we can test both whether doctors are

overtesting in the threshold sense or testing the wrong patients because they misweight patient

characteristics. Intuitively, non-zero coefficients on the x’s imply that they still have explanatory

power in predicting positive tests even after conditioning on doctors’ decisions of whether or not to

test. Using this model we can simulate how welfare would change if doctors appropriately weighted

observables in deciding which patients to test.

Estimation of this variation on the model is forthcoming, but results are not reported in this

draft.

8 Simulations and Welfare

8.1 Welfare Cost of Overtesting

Given the estimated taus, we can simulate how testing behavior would differ if all doctors tested

only when expected benefits exceeded costs. To perform this simulation, we must first determine the

relative magnitude of τEB and the other variables included in our testing model. This relationship

is not identified from what we have estimated so far: τEB is expressed in dollars, while the variables

in the testing equation are in units of whatever normalization was imposed in that equation (which

in our case was the impact on testing of being in age bracket 80-85). To determine the appropriate

scaling of τEB, we re-estimate the structural model directly including our empirical Bayes estimate

τEB as a variable in our testing equation with coefficient normalized to -1.4 This allows us to

4The empirical Bayes values are required here because we are effectively putting τd on the right-hand side of an
estimating equation, so the coefficient on the unadjusted values would be severely biased due to measurement error.
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re-estimate all of the other parameter values in units of τEB.]

We simulate how testing behavior would change if no doctors overtested. We find that the

fraction of patients given a chest CT in our sample would drop from 3.63% to 3.08%. As shown

in Table 6, the total dollar spending on CT scans - including both the financial cost of the test

and the cost of admitting patients who tested positive - would fall by 11.4%. The medical benefits

would increase by 27% due to the fact that a larger ratio of true positives to false positives would

substantially increase the value of treatment conditional on testing relative to the medical hazards

posed by treatment. Together, these factors imply that the total net benefits of testing would nearly

double.

9 Conclusion

While it is commonly believed that the health care system includes significant wasted resources on

services that have low medical returns and high costs, there is little consensus on how this waste

could be reduced. Constructing public policy to reduce wasteful spending requires us to first identify

instances of overspending, and second, to identify the conditions driving the overuse behavior. This

paper works to bridge this gap by precisely estimating the amount of wasteful spending in one

specific context, emergency room CTs to diagnose pulmonary embolism, and then exploring the

determinants of that variation in wasteful spending across physicians, regions, and hospitals.

By estimating a structural model of physician testing behavior, we find that 80% of doctors

evaluating emergency room patients are performing too many tests, i.e. they are testing patients

for whom the medical risks and financial costs of the test exceed the expected medical benefits of

treatment. Less experienced physicians and those practicing in high-spending regions (as measured

by the Dartmouth Atlas) are more likely to perform wasteful tests. If all doctors adopted the optimal

testing strategy, testing only when expected benefits exceed expected costs, 15% fewer chest CT

scans would be performed and the welfare associated with CT tests for pulmonary embolism would

roughly double.

These findings provide support for the hypothesis that overuse of medical services despite nega-

tive net benefits is a pervasive driver of health care spending. By measuring physician-level prefer-

ences for under- or over-testing, we are able to further explore the training and environmental factors

that contribute to overuse. Future work could pair this framework for estimating the overuse of di-

In a linear model, the empirical Bayes measurement error correction would be exact.
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agnostic testing with experimental or quasi-experimental variation in physician’s training or practice

environment; together, these estimates could more directly inform policy by causally identifying how

these changes to a physician’s education or training affect his propensity to over-test. More gener-

ally, the doctor-specific measure of overtesting we develop can serve as a “left-hand side” variable

in any analysis seeking to understand the determinants of efficient medical care.
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Table 1: Summary Statistics

A.#Untested#patients B.#Patients#with#
negative#tests

C.#Patients#with#
positive#tests

Patient#characteristics
Age 77.6 76.8 76.7
Female 0.59 0.59 0.59
White 0.86 0.89 0.90
Black 0.10 0.08 0.09
History<of<PE 0.003 0.006 0.02

Doctor,#hospital#and#region#characteristics
Physician<experience 16.6 16.0 16.6

(9.0) (9.0) (9.0)
HRR<avg<spending<(in<$) 57,040 56,880 56,041

(7380) (7220) (7070)
Academic<hospital 0.36 0.35 0.36
Top<50<research<med.<school 0.31 0.3 0.31
Top<50<primary<med.<school 0.29 0.28 0.29
No.<of<observations 6,119,406 133,878 8,604

Notes:<Table<reports<means<and<standard<deviations<(in<parenthesis).<Data<is<from<the<Medicare<
claims<2000S2009,<the<American<Hospital<Association<annual<survey,<the<American<Medical<
Association<masterfile,<and<the<Dartmouth<Atlas.
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Table 2: Reduced form relationship between positive tests and doctor characteristics

Independent variables (1) (2) (3) (4) (5) (6)

Doctor experience (in years) 0.00050** 0.00054** 0.00054** 0.00054** 0.00052** 0.00052**

(0.00008) (0.00008) (0.00008) (0.00008) (0.00009) (0.00009)

Top 50 research med school 0.00277 0.00384 0.00311 0.00354 0.00356 0.00387

(0.00220) (0.00220) (0.00210) (0.00207) (0.00241) (0.00240)

Top 50 primary care med. school -0.00004 -0.00136 0.00045 -0.00056 0.00341 -0.0003

(0.00222) (0.00221) (0.00212) (0.00210) (0.00240) (0.00238)

Female doctor -0.00245 -0.00251

(0.00149) (0.00148)

Academic hospital 0.00152 -0.00020  -.000082 -0.00222  -.00046  -0.00173

(0.00179) (0.00177) (0.00168) (0.00168) (0.00189) (0.00191)

For profit hospital -0.00453 -0.00450* -0.00422 -0.00496* -0.00580* -0.00696**

(0.00244) (0.00248) (0.00240) (0.00235) (0.00257) (0.00258)

Log(avg HRR spend. per benef.) -0.05544** -0.04239** -0.05819** -0.05399** -0.05229** -0.05230**

(0.00940) (0.01242) (0.00893) (0.01218) (0.00923) (0.01255)

Per capita income (in thousands) 0.00008 0.00033* 0.00000 0.00035* 0.00000 0.00000

(0.00016) (0.00017) (0.00016) (0.00016) (0.00016) (0.00017)

Malpractice damage caps -0.00218 0.00261 -0.00219 0.00323 -0.00246 0.00325

(0.00141) (0.00424) (0.00211) (0.00340) (0.00236) (0.00417)

Joint & several liability reform 0.00164 0.01084* 0.00200 0.00969* 0.00215 0.0088

(0.00211) (0.00424) (0.00217) (0.00458) (0.00239) (0.00499)

Controls for comorbidities No No Yes Yes Yes Yes

Region fixed effects None State None State None State

Physician sample All doctors All doctors All doctors All doctors EM doctors EM doctors

No. of observations 144,244 142,487 142,487 142,487 116,603 115,176

No. of doctors 32,921 32,921 32,921 32,921 24,273 24,273

Even numbered columns include state fixed effects.

Columns 3 through 6 also include controls for Elixhauser comorbidities and pulmonary embolism  risk factors. 

Columns 5 and 6 restrict to patients who are evaluated by a physician who specailizes in emergency medicine.

Dependent variable: positive chest CT scan

Notes: Table reports results from 6 reduced form regressions of whether a patient receives a positive test on 

physician, region, and hospital characteristics, and patient control variables.  An observation is a patient tested with 

a chest CT scan within one day of a submitted emergency room bill.  All regressions include controls for patients 

race, sex, and one-year age bins. Standard errors are clustered at the hospital referral region level. Data is from the 

Medicare claims 2000-2009, the American Hospital Association annual survey, the American Medical Association 

masterfile, and the Dartmouth Atlas.  ** denotes statistical significance at the 1% level; * at the 5% level.
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Table 3: Calibrating the model

Parameter Value Definition Source
s 0.83 test(sensitivity Lesler(et(al.,(2009
fp 0.05 false(positive( Stein(et(al.,(2006

MBid 0.025VSL medical(benefit(of(testing Lesler(et(al.,(2009
MCid 0.0017VSL medical(cost(of(testing Lesler(et(al.,(2009
cid $300 financial(cost(of(testing estimated(from(Medicare(claims
CT $2,800 financial(cost(of(PE(treatment estimated(from(Medicare(claims
VSL 1,500,000* value(of(a(statistical(life Murphy(&(Topel,(2006

*We(allow(VSL(to(vary(with(age(according(to(the(schedule(in(Murphy(&(Topel((2006).((It(is($1.5(
million(for(a(75(yearPold,(and(declines(by(approximately($100,000(per(year.
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Table 4: Estimates of the testing equation for the structural model

Independent'variables:'Patient'characteristics (1) (2)
Age(70+74 +0.0003 +0.0008

(0.0005)
Age(75+79 +0.0022 +0.0029**

(0.0005)
Age(80+84 +0.0050 +0.0047**

(0.0005)
Age(85+89 +0.0045 +0.0068**

(0.0005)
Age(90+94 +0.0095 +0.0119**

(0.0006)
Age(95+99 +0.0195 +0.0165**

(0.0009)
Black +0.0151 +0.0130**

(0.0038)
Hispanic +0.0111 +0.0082**

(0.0005)
Asian +0.0030 +0.0003

(0.0016)
Native(American +0.0023 0.0003

(0.0015)
Other(race +0.0069 +0.0061**

(0.0012)
Unkown(race +0.0044 +0.0023

(0.0028)
Female 0.0029 0.0032**

(0.0003)
History(of(pulmonary(embolism 0.0205 0.0283**

(0.0023)
History(of(thoracic(aortic(disection 0.0106 0.0114**

(0.0019)
History(of(other(aortic(disection 0.0081 0.0122**

(0.0027)
History(of(deep(vein(thrombosis 0.0055 0.0035**

(0.0008)
Previously(admitted(within(30(days 0.0044 0.0036**

(0.0008)
Previously(admitted(within(7(days 0.0107 0.0113**

(0.0012)

Notes:(Table(reports(results(from(structural(model((column(1)(and(an(OLS(regression((column(2)(of(

whether(an(ER(patient(is(evaluated(with(a(chest(CT(on(a(vector(of(patient(characteristics.(Patients(

are(excluded(if(their(evaluating(physician(ordered(fewer(than(10(CT(scans(in(the(full(sample,(or(

fewer(than(4(CT(scans(after(imposing(exclusions((see(section(2.2).(Observation(is(a(patient(

evaluated(in(the(ER;(there(are(2,010,951(ER(evaluations(from(6828(doctors.(Standard(errors(are(in(

parentheses.((**(denotes(statistical(significance(at(the(1%(level;(*(at(the(5%(level.

Dependent'variable:'Chest'CT'test'
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Table 5: Regressions of testing threshold on physician characteristics and practice environment

Independent'variables (1) (2) (3)
Doctor+experience+(in+years) 8.79** 7.28 7.99**

(3.53) (3.85) (3.53)
Log(avg+HRR+spend.+per+benef.) B1746** B1447** B1731**

(243) (263) (243)
Academic+hospital 60 61 58

(58) (63) (58)
Top+50+research+med+school 96 29 95

(85) (89) (85)
Top+50+primary+care+med.+school 58 B27 B58

(87) (92) (87)

Adjust+for+pneumonia+diagnoses? No No Yes
Physician+sample All+doctors EM+doctors All+doctors

Column+2+restricts+the+sample+to+emergency+medicine+specialized+physicians.
Column+3+accountes+for+the+value+of+chest+CT+scans+in+diagnosing+pneumonia.

Dependent'variable:'physician's'testing'threshold

Notes:+Table+reports+results+from+3+separate+regressions+of+a+physician's+testing+threshold+
on++his+experience,+regional+spending,+practice+environment,+and+training.++The+testing+
thresholds+are+estimated+from+the+structural+model+outlined+in+Section+4.++There+are+6828+
physician+observations.+Standard+errors+are+in+parentheses.+**+denotes+statistical+
significance+at+the+1%+level;+*+at+the+5%+level.
Column+1+reports+results+from+the+baseline+specification+described+in+the+text+over+the+full+
sample+of+patients+and+doctors.
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Table 6: Patient welfare with observed testing thresholds vs. in simulations with no over-testing

Actual'testing'
behavior

Simulated'behavior'
with'no'over6testing

Welfare'metric (1) (2)
Percent+of+patients+tested+with+chest+CT 0.0364 0.0308
Number+of+patients+tested+with+chest+CT 73079 62039
Total+financial+costs+of+testing+(millions) 36.1 32.0
Total+medical+benefits+of+testing+(millions) 55.2 70.2
Net+benefits+of+testing+(millions) 19.1 38.2
Costs+per+test 494.5 437.9
Benefits+per+test 756 1131.1
Net+benefits+per+test 261.6 615.3

Notes:+This+table+presents+results+from+the+welfare+simulations+detailed+in+Section+8.++Column+1+
describes+testing+behavior+and+outcomes+given+physician's+observed+testing+thresholds.++Column+2+
presents+simulated+results+estimating+testing+behavior+and+benefits+in+a+counterfactual+world+in+
which+no+physician+overLtests.
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Figure 1: Relationship between positive tests and physician experience
Figure'1:'Reduced'form'relationship'between'of'positive'tests'and'doctor'experience'

'

Notes:'This'figure'plots'coefficients'from'a'regression'of'whether'the'patient'tested'
positive'for'PE'on'physician'experience'bins,'controlling'for'patient'age,'race,'sex,'
comorbidities,'risk'factors'for'pulmonary'embolism,'state'fixed'effects,'as'well'as'
regional'Medicare'spending,'teaching'hospital'status,'and'physician'medical'school'
quality.''The'30G39'year'experience'group'is'the'omitted'category'and'thus'
normalized'to'zero.'Error'bars'represent'the'95%'confidence'interval.'An'
observation'is'a'patient'who'receives'a'chest'CT'within'one'day'of'an'emergency'
room'evaluation.''There'are'142,487'observations.'
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Figure 2: Relationship between estimated testing propensity and probability of testing

!
Notes:!This!figure!plots!the!predicted!testing!propensity!estimated!by!equation!(4)!
and!reported!in!Table!4,!column!1,!on!the!x?axis!against!the!probability!that!the!
patient!receives!a!CT!scan.!!!
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Figure 3: Histogram of estimated testing thresholds, τ

'
Notes:'This'figure'plots'a'histogram'of'the'values'of'tau,'the'physician’s'testing'
threshold,'estimated'from'the'structural'model,'following'equation'6.'Results'are'
plotted'for'each'of'the'6,828'physicians'in'the'sample.'
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Figure 4: Histogram of Bayesian adjusted estimated testing thresholds, τ

!
Notes:!This!figure!plots!a!histogram!of!the!values!of!τ,!the!physician’s!testing!
threshold,!after&applying&the&Bayesian&shrinkage&estimator.&!Results!are!plotted!for!
each!of!the!6,828!physicians!in!the!sample.!
!
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A Heteroskedastic Model (differential discernment)

We want the model to allow for the possibility that doctors with more discernment (understood as

a higher variance in η) test less. For this to be the case with a normally distributed η, it must be

that many patients would be tested were η = 0. To allow for this possibility, we add a bernoulli

term vid = A w/ probability p to the model. We can think of this term as something like “chest

pain reported” which is observable to all doctors makes it more likely that patients will be tested

but is not observable to the econometrician. The model is thus exactly like the one in the previous

section with ηid replaced by ηid + vid and relaxing the assumption that ηid is homoskedastic.

Now, rewriting, we know that a doctor will test a patient if:

xidβ +
θd + αdxidδ − ĉid

ˆNUid + xidδ
+ vid + ηid ≥ 0 (22)

So the testing probability becomes:

P (Tid = 1) = P (vid + ηid ≥ −Iid)

= pP (ηid ≥ −Iid −A) + (1− p)P (ηid ≥ −Iid)

= pΦ

(
−Iid −A
σ2η(d)

)
+ (1− p)Φ

(
−Iid
σ2η(d)

)
(23)

Following exactly the same steps as the previous section gives:

E(Zid|Tid = 1) =
τd + ĉid
ˆNUid + xidδ

+ Iid + g(Iid, d) (24)

where g(Iid, d) = E(ηid + vid| − (ηid + vid) ≤ Iid). We can write this as:

g(Iid, d) = E(ηid + vid| − (ηid + vid) ≤ Iid)

= pE(ηid +A| − (ηid +A) ≤ Iid) + (1− p)E(ηid| − ηid ≤ Iid)

= pA+ pE(ηid|ηid ≥ −Iid −A) + (1− p)E(ηid|ηid ≥ −Iid)

= pA+ p
φ
(
−Iid−A
σ(d)

)
1− Φ

(
−Iid−A
σ(d)

)σ(d) + (1− p)
φ
(
−Iid
σ(d)

)
1− Φ

(
−Iid
σ(d)

)σ(d) (25)
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B Testing with Multiple Outcomes

Suppose there are k possible outcomes which can be detected by the CT scan. Then we can write

the doctor’s decision of whether or not to test as given by:

∑
k

qkidNUk − cid ≥ τd (26)

where qkid is the probability of a positive test for condition k and is given by:

qkid = xkidβ + αkd + ηkid (27)

Define θd =
∑

kNUkα
k
d − τd. Plugging our specifications for the probability of a positive test into

the testing equation yields:

∑
k

NUkx
k
idβ + θd − cid +

∑
k

NUkη
k
id ≥ 0 (28)

As above define: Iid ≡
∑

kNUkx
k
idβ+θd−cid.5. From equation 28, we can compute the expected

benefits conditional on testing, which are given by:

E(Bid|Tid = 1) = τd + Iid + g(Iid) (29)

where g(Iid) = E(η̃id| − η̃id ≤ Iid) is an (unknown) function of Iid and η̃id =
∑

kNUkη
k
id.

Let Zkid be an indicator for whether a test for condition k is positive or negative. If doctors have

rational expectations, we must have E(qkid|Tid = 1) = E(Zkid|Tid = 1). Given these rational expecta-

tions and equation 3, we can write the expected benefits as E(Bid|Tid = 1) =
∑

kNUkE(Zkid|Tid =

1)− cid. Plugging this into equation 6 and rearranging yields:

∑
k

NUkE(Zkid|Tid = 1) = τd + cid + Iid + g(Iid) (30)

5Note that in the single outcome case, we normalized the testing equation by NU to eliminate heteroskedasticity.
In this case, it is more convenient to keep NU in the testing equation and in the propensity Iid - this normalization
is the reason the equations outlined here with k = 1 do not match exactly with the equations in the single-outcome
case with δ = 0
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