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ABSTRACT

I study predictive effects of teachers and schools on test scores in fourth through eighth grade

and outcomes later in life such as college attendance and earnings. The predictive effects have the

following form: predict the fraction of a classroom attending college at age 20 given the test score

for a different classroom in the same school with the same teacher, and given the test score for a

classroom in the same school with a different teacher. I would like to have predictive effects that

condition on averages over many classrooms, with and without the same teacher. I set up a factor

model which, under certain assumptions, makes this feasible. Administrative school district data

in combination with tax data were used to calculate estimates and do inference.
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PREDICTIVE EFFECTS OF TEACHERS AND SCHOOLS

ON TEST SCORES, COLLEGE ATTENDANCE, AND EARNINGS

1. INTRODUCTION

The outcome data are based on elementary and middle school classrooms, grades four through

eight. For a classroom, there is an average score based on a math or reading test given near the

end of the school year. There are also later outcome measures for that classroom. These measures

include the fraction of the classroom that is attending college at age 20, and the average earnings

of the classroom at age 28. The classrooms can be grouped by schools, and, within a school, can

be grouped by teacher.

The goal of the paper is to provide predictive effects of teachers and schools on these outcomes.

My predictive effects have the following form: predict the fraction of a classroom attending college

at age 20 given the test score for a different classroom in the same school with the same teacher,

and given the test score for a classroom in the same school with a different teacher. I would like

to have predictive effects that condition on averages over many classrooms, with and without the

same teacher. I set up a factor model which, under certain assumptions, makes this feasible.

These predictive effects can be based on residuals, where first we form predictions based on

observed variables (X) such as class size, years of teacher experience, lagged test scores, and parent

characteristics. The residuals are the prediction errors. Then the teacher and school effects that I

measure in these residuals correspond to unmeasured (latent) variables, or, more precisely, to the

parts of those latent variables that are not predictable using the observed variables in X. I am

interested in these latent variables because they may be related to unmeasured characteristics of

teachers and schools that have a causal effect on outcomes, in the sense of unmeasured inputs in

a production function. After setting up the factor model, I discuss how it could be related, under

random assignment assumptions, to a production function.
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2. METHODS

Let Yij,h denote outcome h for classroom j in school i. Let Xij denote a K × 1 vector of

predictor variables such as class size, years of teacher experience, and an average of test scores

from a previous year for members of the classroom. We shall work with residuals of the form

Uij,h = Yij,h − X ′
ijαh, where αh is defined to solve a prediction problem, which will be discussed

below. Let Uij denote the H×1 vector formed from the outcome residuals for classroom j in school

i. Components of Uij are the residuals based on outcomes such as classroom average test score

(ts), the fraction of the classroom attending college at age 20 (co), and the average earnings of the

classroom at age 28 (ea).

I treat the schools as if they were a random sample from some unknown distribution, so that

the schools are exchangeable. I only use a school i if there is at least one pair of classrooms with the

same teacher and at least one pair of classrooms with different teachers. Within school i, form the

set of classrooms such that for each one there is at least one other with the same teacher. Assign

equal probability to each of these classrooms, choose one at random, and denote it by A. Assign

equal probability to each of the other classrooms that have the same teacher as A. Choose one

at random and denote it by B. Assign equal probabilities to all the classrooms that have teachers

different from that of classroom A. Choose one at random and denote it by C. The prediction

problems I consider fit into the following framework:

θ = arg min
d∈RJ

E[Wig(UiA, UiB , UiC , d)], (1)

where g is a given function. For example,

g(UiA, UiB , UiC , d) = (UiA,co − d0 − d1UiB,ts − d2U
2
iB,ts − d3UiC,ts − d4U

2
iC,ts)

2, (2)

with Uij,co equal to the residual corresponding to attending college at age 20 and Uij,ts equal to the

residual corresponding to the test score. Then θ gives the coefficients in the (weighted) minimum

mean-square-error linear predictor:

E∗(UiA,co | 1, UiB,ts, U
2
iB,ts, UiC,ts, U

2
iC,ts) = θ0 + θ1UiB,ts + θ2U

2
iB,ts + θ3UiC,ts + θ4U

2
iC,ts. (3)
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An alternative could use the absolute value of the error instead of the squared error in (2), in which

case θ would give the coefficients in the (weighted) minimum mean-absolute-error linear predictor.

The nonnegative scalar Wi allows for a weight in forming the moments. Wi = 0 unless school i has

at least two classrooms with the same teacher and at least two classrooms with different teachers,

so that the random vector (A,B,C) is well defined. The nonzero values of Wi could, for example,

be the number of classrooms in school i with teachers who have at least two classrooms.

My estimator for θ is a sample counterpart of the minimization problem in (1). To make this

explicit, let N = {1, 2, . . .} denote the positive integers, and let Si ⊂ N denote the set of classrooms

in school i. For each classroom a ∈ Si there is a teacher, denoted by q(a) ∈ N . We can partition

Si into subsets Sit with the same teacher: Si = ∪t∈NSit, where Sit = {a ∈ Si : q(a) = t}. Use

iterated expectations to evaluate the expectation in (1), and simplify notation by dropping the i

subscript:

E[Wg(UA, UB , UC , d)] = E
[

E[Wg(UA, UB , UC , d) |W,U, S]
]

.

The outer expectation corresponds to our treatment of the schools as a random sample from some

unknown distribution (so that (Wi, Ui, Si) is i.i.d. from some unknown distribution). We shall eval-

uate explicitly the inner expectation, which is over classes within the same school, given outcomes

for each of the classes. Conditional on (W,U, S) = (w, u, s):

E[Wg(UA, UB , UC , d) | (W,U, S) = (w, u, s)] = E[m(A,B,C)|(W,U, S) = (w, u, s)],

with m(A,B,C) = wg(uA, uB , uC , d).

E[m(A,B,C) | q(A) = t, (W,U, S) = (w, u, s)]

=
1

|st|

∑

a∈st

[

∑

b∈st−{a}

∑

c∈s−st

m(a, b, c)/[(|st| − 1)(|s| − |st|)]

]

,

where |s| denotes the number of elements in the set s, so that |st| is the number of classes taught

by teacher t. Only condition on values for t such that |st| > 1. Only condition on values for s such

that there is at least one pair of classrooms with different teachers, so that |s| − |st| > 0.
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Apply iterated expectations:

E[m(A,B,C) | (W,U, S) = (w, u, s)]

=

(

∑

t:|st|>1

|st|

)−1
∑

t:|st|>1

|st|E[m(A,B,C) | q(A) = t, (W,U, S) = (w, u, s)]

=

(

∑

t:|st|>1

|st|

)−1
∑

t:|st|>1

∑

a∈st

∑

b∈st−{a}

∑

c∈s−st

m(a, b, c)/[(|st| − 1)(|s| − |st|)].

Now we can use these results to form our estimator. Let αh be defined to solve a prediction

problem such as

αh = arg min
d∈RK

E

(

∑

j∈Si

(Yij,h − X ′
ijd)2

)

(h = 1, . . . ,H). (4)

The sample analog for (4) is

α̂h = arg min
d∈RK

1

I

I
∑

i=1

(

∑

j∈Si

(Yij,h − X ′
ijd)2

)

(h = 1, . . . ,H), (4′)

providing the estimated residuals Ûij,h = Yij,h − X ′
ij α̂h. The sample analog for (1) is

θ̂ = arg min
d∈RJ

1

I

I
∑

i=1

Wi

(

∑

t:|Sit|>1

|Sit|

)−1

×

∑

t:|Sit|>1

∑

a∈Sit

∑

b∈Sit−{a}

∑

c∈Si−Sit

g(Ûia, Ûib, Ûic, d)/[(|Sit| − 1)(|Si| − |Sit|)].

The Appendix shows how the computation simplifies in a special case, which includes (2) and (3).

For inference, I shall use bootstrap methods, based on treating the schools as a random sample

from some unknown distribution. This does not impose any structure on the covariances within a

school.

Within a school, we can form a partition of the classrooms: Si = ∪L
l=1S

l
i, for example by

subject and grade. We can apply our analysis separately within each cell of the partition. It may

be useful to have a compact summary of the results. One way to do this is to define (Al, Bl, C l)
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for each cell l = 1, . . . , L of the partition. Assign a nonnegative weight W l
i to cell l in school i,

which is zero unless Sl
i contains at least one pair of classrooms with the same teacher and one pair

of classrooms with different teachers. For the nonzero values, we could use

W l
i =

∑

t:|Sl

it
|>1

|Sl
it|. (5)

Only use a school i if
∑L

l=1 W l
i > 0. If W l

i > 0, form the set of classrooms in Sl
i such that for each

one there is at least one other with the same teacher. Assign equal probability to each of these

classrooms, choose one at random, and denote it by Al. Assign equal probability to each of the

other classrooms in Sl
i that have the same teacher as Al. Choose one at random and denote it by

Bl. Assign equal probabilities to all of the classrooms in Sl
i that have teachers different from that

of classroom Al. Choose one at random and denote it by C l. ((Al, Bl, C l) is undefined if W l
i = 0).

The new prediction problem is

θ = arg min
d∈RJ

E[

L
∑

l=1

W l
i g(UiAl , UiBl , UiCl , d)], (1′)

2.1 Factor Model .

These predictive effects condition on a single score for a different classroom with the same

teacher, and a single score for a classroom with a different teacher. A factor model can provide

predictive effects that condition on averages over many classrooms, with and without the same

teacher, and can provide a limit as the number of such classrooms tends to infinity. Let ZiA,T

denote unmeasured characteristics of the teacher for classroom A in school i, and let Zi,S denote

unmeasured characteristics of the school. Define

Fin + Gin = E[hn(UiA) |ZiA,T , Zi,S ], Fin = E[hn(UiA) |Zi,S ] (n = 1, . . . , N),

where hn( · ) is a given function, such as hn(UiA) = Un
iA,ts. Assume that

E[hn(UiA) |ZiA,T , Zi,S ] = E[hn(UiB) |ZiA,T , Zi,S ], E[hn(UiA) |Zi,S ] = E[hn(UiC) |Zi,S ].
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Assume that UiA and UiB are independent conditional on the latent variables ZiA,T , Zi,S. Then

Cov(hn(UiA), hp(UiB)) = E[Cov(hn(UiA), hp(UiB) |ZiA,T , Zi,S)]

+ Cov(E[hn(UiA) |ZiA,T , Zi,S ], E[hp(UiA) |ZiA,T , Zi,S])

= Cov(Fin + Gin, Fip + Gip) (n, p = 1, . . . , N).

Likewise, assume that UiA and UiC are independent conditional on Zi,S, which implies that

Cov(hn(UiA), hp(UiC)) = Cov(Fin, Fip) (n, p = 1, . . . , N).

Note that

E(Fin + Gin |Zi,S) = E
[

E[hn(UiA) |ZiA,T , Zi,S] |Zi,S

]

= E[hn(UiA) |Zi,S ] = Fin,

so that E[Gin |Zi,S] = 0, which implies that

Cov(Gin, Fip) = 0 (n, p = 1, . . . , N).

So we can obtain the moments Cov(Fin, Fip) and Cov(Gin, Gip) from Cov(hn(UiA), hp(UiB)) and

Cov(hn(UiA), hp(UiC))

Let M be a subset of {1, . . . , N}. Note that

E∗[hn(UiA) | 1, {Fip, Gip}p∈M ] = E∗[E[hn(UiA) |ZiA,T , Zi,S] | 1, {Fip, Gip}p∈M ]

= E∗[Fin + Gin | 1, {Fip, Gip}p∈M ]

= E∗[Fin | 1, {Fip}p∈M ] + E∗[Gin | 1, {Gip}p∈M ].

So the slope coefficents in the linear predictor E∗[hn(UiA) | 1, {Gip, Fip}p∈M ] can be obtained from

Cov(hn(UiA), hp(UiB)) and Cov(hn(UiA), hp(UiC)) for p ∈ M .

2.2 Production Function.

There are connections between the factor model and a production function, under random

assignment assumptions. To be specific, consider the college attendance outcome UiA,co, and let g

denote the production function:

UiA,co = g(ZiA,CL, ZiA,T , Zi,S).
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The inputs ZiA,T and Zi,S are, as above, unmeasured characteristics of the teacher and the school

for classroom A in school i. There is an additional input, ZiA,CL, which corresponds to unmeasured

characteristics of the students in classroom A. Simplify notation by writing the function as

Uco = g(ZCL, ZT , ZS).

Let Z = Z1×Z2×Z3 denote the domain of the input arguments, so we can consider counterfactual

outcomes g(z) for any point z = (z1, z2, z3) ∈ Z. At any such point, g(z) is a random variable with

Eg(z1, z2, z3) = ḡ(z1, z2, z3).

Let Z = (ZCL, ZT , ZS). If Z is independent of {g(z)}z∈Z , then Eg(Z) = Eḡ(Z). Define

ḡ1(z2, z3) = Eḡ(ZCL, z2, z3) for (z2, z3) ∈ Z2 ×Z3.

As above, define the factor Fco + Gco = E(Uco |ZT , ZS). If ZCL is independent of (ZT , ZS), then

Fco + Gco = E(Uco |ZT , ZS) = ḡ1(ZT , ZS),

providing a connection between this factor and the production function. Define

ḡ1,2(z3) = Eḡ(ZCL, ZT , z3) for z3 ∈ Z3.

As above, define the factor Fco = E(Uco |ZS). If (ZCL, ZT ) is independent of ZS , then

Fco = E(Uco |ZS) = ḡ1,2(ZS),

providing a connection between this factor and the production function.

Now suppose that data on later outcomes are not (yet) available for a teacher, but data on

test scores for multiple classrooms with that teacher are available. How can we connect Uco =

g(ZCL, ZT , ZS) to the test score data? Define the factors

Fn + Gn = E[hn(Uts) |ZT , ZS ], Fn = E[hn(Uts) |ZS ] (n = 1, . . . , J),
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where hn( · ) is a given function, such as hn(Uts) = Un
ts. Then the linear predictor of Uco given

these factors equals the linear predictor of ḡ1(ZT , ZS):

E∗(Uco | 1, {Fn, Gn}
J
n=1) = E∗[E(Uco |ZT , ZS) | 1, {Fn, Gn}

J
n=1]

= E∗(Fco + Gco | 1, {Fn, Gn}
J
n=1)

= E∗[ḡ1(ZT , ZS) | 1, {Fn, Gn}
J
n=1].

This provides a connection between the production function for Uco and a linear predictor based

on factors derived from test scores.

For notation, use

E∗(Uco | 1, {Fn, Gn}
J
n=1) = γ0 +

J
∑

n=1

γn(Fn + Gn) +

J
∑

n=1

γJ+nFn.

Define

h
(J)
F+G(Uts) =

J
∑

n=1

γnhn(Uts), h
(J)
F (Uts) =

J
∑

n=1

γJ+nhn(Uts).

Then

E∗(Uco | 1, {Fn, Gn}
J
n=1) = γ0 + E[h

(J)
F+G(Uts) |ZT , ZS ] + E[h

(J)
F (Uts) |ZS ].

This implies the following lower bound on the mean-square error for linear prediction of Uco from

factors based on test scores:

MSE(J) = min
d∈R2J+1

E[Uco − d0 −
J

∑

n=1

dn(Fn + Gn) −
J

∑

n=1

dJ+nFn]2

≥ min
rF+G( · ),rF ( · )

E
[

Uco − E[rF+G(Uts) |ZT , ZS ] − E[rF (Uts) |ZS ]
]2

= MSE∗.

The second minimization is over (square-integrable) functions rF+G and rF . Under suitable as-

sumptions, we can construct a sequence of functions {hJ,n}
J
n=1 so that MSE(J) → MSE∗ as J → ∞.
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3. EMPIRICAL RESULTS

The work of Chetty, Friedman, and Rockoff (2011) is pathbreaking in measuring teacher ef-

fects on later outcomes such as college attendance and earnings. They combine two databases:

administrative school district records and information on those students and their parents from

U.S. tax records. The school records are for a large, urban school district, covering the school years

1988–1989 through 2008–2009 and grades 3–8. Test scores are available for English language arts

and for math from spring 1989 to spring 2009. The scores are normalized within year and grade to

have mean 0 and standard deviation 1. The student records are linked to classrooms and teachers.

Individual earnings data are obtained from W-2 forms, which are available from 1999 to 2010.

College attendance is based on 1098-T forms, which colleges and other postsecondary institutions

are required to file reporting tuition payments and scholarships for every student.

Chetty, Friedman, and Rockoff conduct most of their analysis of long-term impacts using a

dataset collapsed to class means. This dataset with class means was used to obtain the results

below. Yij,ts is the average test score for the class. Yij,co is the per cent of the classroom attending

college at age 20, and Yij,ea is the average earnings of the classroom at age 28, expressed in 2010

dollars.

I shall use (weighted) minimum mean-square-error linear predictors, as in (2) and (3). The

partition in (1′) is by subject (math and reading) and grade (4, 5, 6, 7, 8), giving L = 2 × 5 = 10

cells, with weights W l
i as in (5). In the lower grades, students may have the same teacher for math

and reading, so putting math and reading classes in separate cells helps to ensure that different

classes do not have students in common. Likewise, different classes could have students in common

because, for example, there is overlap between a fourth grade class in one year and a fifth grade

class in the following year. We avoid this overlap by only making comparisons for classrooms within

the same subject and grade.

There are 118, 439 classrooms in 917 schools. Of these schools, 866 satisfy the condition that
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∑10
l=1 W l

i > 0. Consider the linear predictor for college attendance in (3):

E∗(UiA,co | 1, UiB,ts, U
2
iB,ts, UiC,ts, U

2
iC,ts) = θ0 + θ1UiB,ts + θ2U

2
iB,ts + θ3UiC,ts + θ4U

2
iC,ts. (3)

If Xij only includes a constant (Xij = 1), then the estimates (with standard errors in parentheses)

are

θ̂1 = 13.34 (.37), θ̂2 = 2.26 (.31), θ̂3 = 7.84 (.31), θ̂4 = .64 (.22).

I construct an index using a quadratic function of the test score from another class with the same

teacher:

Indexco
iB,ts = θ1UiB,ts + θ2U

2
iB,ts,

and use it to obtain a predictive effect in standard deviation units:

θco
B,ts = (Var(Indexco

iB,ts))
1/2.

Likewise, the index for another class with a different teacher, same school, is

Indexco
iC,ts = θ3UiC,ts + θ4U

2
iC,ts,

with predictive effect in standard deviation units

θco
C,ts = (Var(Indexco

iC,ts))
1/2.

The estimates of these predictive effects are

θ̂co
B,ts = 9.00 (.29), θ̂co

C,ts = 5.16 (.22).

The predictive effect for same teacher is larger than that for same school: a 9.0 percentage point

increase in college attendance versus 5.2 percentage points.

The coefficients θ are defined as solutions to the minimization problem in (1′). The minimized

value of the objective function provides a population value for mean square error. Likewise, there

is a mean square error using just a constant to form the linear predictor E∗(UiA,co | 1). Let 1−R2
co
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denote the ratio of these mean square errors, so that R2
co gives the proportional reduction in mean

square error due to including a quadratic in UiB,ts and a quadratic in UiC,ts in the linear predictor

for UiA,co. The estimate (with standard error) is R̂2
co = .30 (.015).

Now let Xij be the baseline control vector used by Chetty, Friedman, and Rockoff. It includes

the following classroom-level variables: school year and grade indicators, class-type indicators (hon-

ors, remedial), class size, indicators for teacher experience, and cubics in class and school-grade

means of lagged test scores in math and English each interacted with grade. It also includes

class and school-year means of the following student characteristics: ethnicity, gender, age, lagged

suspensions, lagged absences, and indicators for grade repetition, special education, and limited

English. This gives

θ̂1 = 1.28 (.20), θ̂2 = −2.42 (.51), θ̂3 = .92 (.16), θ̂4 = −2.42 (.40),

with predictive effects in standard deviation units:

θ̂co
B,ts = .31 (.04), θ̂co

C,ts = .27 (.03),

and R̂2
co = .002 (.0004).

The controls matter a lot. This relates to the difficulty in attaching causal interpretations

to these predictive effects. This has been emphasized in Rothstein (2010). The issue has been

addressed in Kane and Staiger (2008), using a dataset with random assignment of teachers to

classrooms, and in Chetty, Friedman, and Rockoff (2011), who look at effects based on changes

in teaching staff. The predictive effect on college attendance of a one standard deviation increase

in the index for a different class with the same teacher is .31 percentage points. The predictive

effect of a one standard deviation increase in the index for another class with a different teacher,

same school, is .27 percentage points. So the observable control variables account for much of the

predictive effects.

These predictive effects condition on a single score for a different classroom with the same

teacher, and a single score for a classroom with a different teacher. I would like to have predictive
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effects that condition on averages over many classrooms, with and without the same teacher, and

consider a limit as the number of such classrooms tends to infinity. This is feasible under the

assumptions of the factor model. For notation, let

E∗(UiA,co | 1, Fi1, Gi1, Fi2, Gi2) = γ0 + γ1(Fi1 + Gi1) + γ2(Fi2 + Gi2) + γ3Fi1 + γ4Fi2, (6)

where

Fi1 + Gi1 = E(UiB,ts |ZiA,T , Zi,S), Fi1 = E(UiC,ts |Zi,S) (7)

Fi2 + Gi2 = E(U2
iB,ts |ZiA,T , Zi,S), Fi2 = E(U2

iC,ts |Zi,S),

ZiA,T denotes characteristics of the teacher of classroom A, and Zi,S denotes characteristics of the

school of classroom A. I construct an index using the (limiting) average over other classes with the

same teacher of a quadratic function of the test score:

Indexco
i,F+G|F,ts = γ1(Fi1 + Gi1) + γ2(Fi2 + Gi2),

and use it to obtain a predictive effect in standard deviation units:

γco
F+G|F,ts = (Var(Indexco

i,F+G|F,ts))
1/2.

Likewise, using the (limiting) average over classes with a different teacher, same school:

Indexco
i,F |F+G,ts = γ3Fi1 + γ4Fi2,

with predictive effect in standard deviation units:

γco
F |F+G,ts = (Var(Indexco

i,F |F+G,ts))
1/2.

With the baseline controls in X, the factor model estimates give

γ̂1 = 1.70 (.72), γ̂2 = 1.56 (3.17), γ̂3 = 9.98 (2.54), γ̂4 = −60.68 (10.79),
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with predictive effects

γ̂co
F+G|F,ts = .18 (.067), γ̂co

F |F+G,ts = 1.16 (.16),

and R̂2
co = .013 (.003). Consider an average of the test score index across classes that share a

teacher with class A. A standard deviation increase in this average corresponds to a predicted

increase in college attendance for each student in class A of .18 percentage points. This is a partial

predictive effect, holding constant the average of the score index across classes, in the same school,

which do not share a teacher with class A. The (partial) predictive effect for the average over

classes with a different teacher is a considerably larger increase of 1.16 percentage points.

An alternative measure of predictive effects can be based on an index formed from the differ-

ences within a school:

Gi1 = E(UiB,ts |ZiA,T , Zi,S) − E(UiC,ts |Zi,S), (8)

Gi2 = E(U2
iB,ts |ZiA,T , Zi,S) − E(U2

iC,ts |Zi,S).

The alternative indices are

Alt Indexco
iG,ts = γ1Gi1 + γ2Gi2, Alt Indexco

iF,ts = (γ1 + γ3)Fi1 + (γ2 + γ4)Fi2,

with predictive effects in standard deviation units:

γco
G,ts = (Var(Alt Indexco

iG,ts))
1/2, γco

F,ts = (Var(Alt Indexco
iF,ts))

1/2.

The estimates of these alternative predictive effects are

γ̂co
G,ts = .16 (.059), γ̂co

F,ts = 1.19 (.14),

quite close to the estimates using the original definitions. This closeness is because most of the test

score variation is within schools (as we shall see below), and because (γ̂1 + γ̂3) and (γ̂2 + γ̂4) are

relatively close to γ̂3 and γ̂4.
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So far we have used a (quadratic) function of the test score in predicting college attendance. We

can also use college attendance for other classes, and the factor model provides a way to condition

on averages over many classrooms, with and without the same teacher. For notation, let

Fi3 + Gi3 = E(UiB,co |ZiA,T , Zi,S), Fi3 = E(UiC,co |Zi,S).

Then Fi3 +Gi3 corresponds to an average of UiB,co over many classrooms other than A that share a

teacher with A, and Fi3 corresponds to an average of UiC,co over many classrooms that do not share

a teacher with A but are in the same school. The optimal linear predictor for college attendance is

E∗(UiA,co | 1, {Fin, Gin}
3
n=1) = Fi3 + Gi3.

The predictive effects in standard deviation units are

γco
G,co = (Var(Gi3))

1/2, γco
F,co = (Var(Fi3))

1/2

(with γco
F+G,co = [(γco

G,co)
2 + (γco

F,co)
2]1/2).

With the baseline controls in X, the factor model estimates imply the predictive effects

γ̂co
G,co = .99 (.22), γ̂co

F,co = 3.71 (.11),

and R̂2
co = .134 (.007) (with γ̂co

F+G,co = 3.84 (.12)). If we could average the college attendance

over many classes that share a teacher with class A, then a one standard deviation increase would

correspond to a very substantial increase of 3.84 percentage points for college attendance of class

A. If we base the predictive effect on the difference within a school:

Gi3 = E(UiB,co |ZiA,T , Zi,S) − E(UiC,co |Zi,S),

then a standard deviation increase in Gi3 corresponds to an increase of .99 percentage points for

college attendance of class A. It is clear that basing the predictions for college attendance just on

the test scores looses a great deal of information.
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In parallel with the optimal linear predictor of college attendance, the optimal linear predictor

for the test score is

E∗(UiA,ts | 1, {Fin, Gin}
3
n=1) = Fi1 + Gi1.

The predictive effects are

γts
G,ts = (Var(Gi1))

1/2, γts
F,ts = (Var(Fi1))

1/2.

With the baseline controls in X, the estimates are

γ̂ts
G,ts = .087 (.002), γts

F,ts = .052 (.002),

and R̂2
ts = .260 (.006) (with γ̂ts

F+G,ts = .101 (.002)). Consider an average of the test score index

across other classes that share a teacher with class A. A standard deviation increase in this average

corresponds to a predicted increase in score for each student in class A of .101, where the units are

standard deviations in the distribution of scores for individual students. If we base the predictive

effect on the difference within a school:

Gi1 = E(UiB,ts |ZiA,T , Zi,S) − E(UiC,ts |Zi,S),

then a standard deviation increase in this difference corresponds to a predicted increase in score

for each student in class A of .087.

Now consider using the quadratic specification in (3) to obtain a linear predictor for UiA,ea,

the residuals corresponding to earnings at age 28:

E∗(UiA,ea | 1, UiB,ts, U
2
iB,ts, UiC,ts, U

2
iC,ts) = θ0 + θ1UiB,ts + θ2U

2
iB,ts + θ3UiC,ts + θ4U

2
iC,ts.

With the baseline controls in X, the estimates are

θ̂1 = 697 (270), θ̂2 = −430 (586), θ̂3 = 383 (179), θ̂4 = −955 (284),

with predictive effects (in standard deviation units):

θ̂ea
B,ts = 149 (54), θ̂ea

C,ts = 118 (32),
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and R̂2
ea = .002 (.001). These results are based on fewer classrooms, 14236 instead of 118439,

because only some of the students have reached the age of 28 by 2010. There are 524 schools,

of which 364 satisfy the condition that
∑10

l=1 W l
i > 0. The results are less precise, but the point

estimates give a predictive effect of $149 for a standard deviation increase in the test score index

for a different class with the same teacher. The predictive effect is $118 for a standard deviation

increase in the test score index for another class with a different teacher, same school.

For notation in the factor model, let

E∗(UiA,ea | 1, Fi1, Gi1, Fi2, Gi2) = γ0 + γ1(Fi1 + Gi1) + γ2(Fi2 + Gi2) + γ3Fi1 + γ4Fi2, (9)

where the factors are based on the test score, as in (7). With the baseline controls in X, the factor

model estimates give

γ̂1 = 586 (1277), γ̂2 = 4424 (5885), γ̂3 = 2457 (2242), γ̂4 = −16027 (7961),

with predictive effects

γ̂ea
F+G|F,ts = 218 (165), γ̂ea

F |F+G,ts = 473 (189),

and R̂2
ea = .009 (.004). There is a predictive effect of $218 for a standard deviation increase in the

average of the test score index over different classes with the same teacher. The predictive effect

is $473 for a standard deviation increase in the average of the test score index over classes with

different teachers, same school. The alternative predictive effects, based on differencing within a

school as in (8), are

γ̂ea
G,ts = 186 (111), γ̂ea

F,ts = 400 (85).

Chetty, Friedman, and Rockoff link students to their parents by finding the earliest 1040 form

from 1996–2010 on which the student was claimed as a dependent. They construct an index of

parent characteristics by using fitted values from a regression of test scores on mother’s age at

child’s birth, indicators for parent’s 401(k) contributions and home ownership, and an indicator for

the parent’s marital status interacted with a quartic in parent’s household income. A second index
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is constructed in the same way, using fitted values from a regression of college attendance on parent

characteristics. Repeating the analysis above with these two measures of parent characteristics

added to the baseline control vector gives the following predictive effects for college attendance

based on test scores:

γ̂co
F+G|F,ts = .14 (.063), γ̂co

F |F+G,ts = .83 (.13), γ̂co
G,ts = .13 (.055), γ̂co

F,ts = .87 (.10),

which are somewhat lower than the results above using the baseline controls. The predictive effects

for earnings are

γ̂ea
F+G|F,ts = 224 (127), γ̂ea

F |F+G,ts = 317 (153), γ̂ea
G,ts = 196 (95), γ̂ea

F,ts = 282 (75).

Compared with the results using the baseline controls, the teacher components of $224 and $196

are about the same (before: $218 and $186), but the school components of $317 and $282 are

substantially lower (before: $473 and $400).

With the parent characteristics added to the baseline control vector, the predictive effects for

college attendance based on the college attendance of other classes are

γ̂co
G,co = .79 (.23), γ̂co

F,co = 2.70 (.08),

and R̂2
co = .080 (.005) (with γ̂co

F+G,co = 2.81 (.10)). There are substantial reductions in the pre-

dictive effects and in R̂2
co. The predictive effects for test scores based on the test scores of other

classes are

γ̂ts
G,ts = .087 (.002), γ̂ts

F,ts = .052 (.002),

and R̂2
ts = .261 (.006). Here the results are not affected by adding the parent characteristics.

Sensitivity Analysis. I have repeated the analysis without using the quadratic terms, so that the

linear predictors for UiA,co and UiA,ea condition on Gi1 and Fi1, dropping Gi2 and Fi2. With the

baseline controls in X, this gives

γ̂co
F+G|F,ts = .18 (.069), γ̂co

F |F+G,ts = .65 (.14), γ̂ea
F+G|F,ts = 145 (98), γ̂ea

F |F+G,ts = 193 (125).
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The school components are lower: .65 versus 1.16 percentage points and $193 versus $473.

Now consider a partition in (1′) just by subject (math and reading) instead of by subject and

grade. There are L = 2 cells with weights W l
i as in (5). With the baseline controls in X and

without using the quadratic terms, this gives

γ̂co
F+G|F,ts = .32 (.058), γ̂co

F |F+G,ts = .34 (.18), γ̂ea
F+G|F,ts = 251 (89), γ̂ea

F |F+G,ts = 145 (126).

This gives substantially higher teacher components and lower school components, both in predicting

college attendance and earnings.

There are corresponding results for the linear predictors of UiA,co and UiA,ea conditional on

UiB,ts and UiC,ts, dropping the quadratic terms U2
iB,ts and U2

iC,ts. With the baseline controls in

X, with the partition on subject and grade, this gives

θ̂co
B,ts = .25 (.041), θ̂co

C,ts = .18 (.033), θ̂co
B,ts − θ̂co

C,ts = .075 (.029),

θ̂ea
B,ts = 148 (57), θ̂ea

C,ts = 68 (36), θ̂ea
B,ts − θ̂ea

C,ts = 80 (57).

With the partition just on subject,

θ̂co
B,ts = .20 (.038), θ̂co

C,ts = .062 (.027), θ̂co
B,ts − θ̂co

C,ts = .14 (.027),

θ̂ea
B,ts = 121 (53), θ̂ea

C,ts = 26 (22), θ̂ea
B,ts − θ̂ea

C,ts = 95 (64).

Finally, consider predictive effects in the factor model that do not partial on the school. So in

predicting college attendance,

E∗(UiA,co | 1, Fi1 + Gi1) = γ0 + γ1(Fi1 + Gi1), γco
F+G,ts = γ1(Var(Fi1 + Gi1))

1/2,

with a similar definition for γea
F+G,ts. With the baseline controls in X, without the quadratic terms,

with the partition on subject and grade, this gives

γ̂co
F+G,ts = .51 (.083), γ̂ea

F+G,ts = 254 (95).

The predictive effect on college attendance is considerably larger than the partial effect that controls

for school: .51 versus γ̂co
F+G|F,ts = .18 percentage points. The predictive effect on earnings is also
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larger than the partial effect: $254 versus γ̂ea
F+G|F,ts = $145. However, if the partition is just on

subject, then γ̂co
F+G,ts = .42 (.080), γ̂ea

F+G,ts = 203 (91). So here the predictive effect for earnings

is smaller than the partial predictive effect: $203 versus γ̂ea
F+G|F,ts = $251 (89).

4. DISCUSSION

The predictive effects are substantially reduced when the baseline controls are used in X to

form the residuals (compared with using X = 1). With the baseline controls, the predictive effect

for college attendance of a standard deviation increase in the test score index for a different class

with the same teacher is .31 percentage points; for a class with a different teacher, same school, it

is .27 percentage points. Under the factor model, the comparable results using (limiting) averages

of the test score index over different classes with the same teacher and over classes with different

teachers, same school, are .18 and 1.16 percentage points. With the parent characteristics added

to the baseline controls, the predictive effects are .14 and .83 percentage points.

I have also constructed predictive effects based on the college attendance of other classes in

the same school, with and without the same teacher. The factor model provides a predictive effect

for college attendance of a one standard deviation increase in the (limiting) average of college

attendance for other classes with the same teacher. This gives 3.84 percentage points. A one

standard deviation increase in the average of college attendance for classes with a different teacher,

same school, is 3.71 percentage points. If we difference these averages within schools, a standard

deviation increase in the difference gives .99 percentage points. The R2 estimate is .13 whereas

basing the predictions just on test scores gives R2 estimates of .01. The teacher effect of .99

percentage points could reflect skills that are relevant for college attendance but are not measured

by the test scores. These could be some combination of skills students bring to the class (not

captured in X) and skills developed during the class, in part due to the contribution of the teacher.

With the parent characteristics added to the baseline controls, the corresponding results are 2.81,

2.70, and .79 percentage points, with an R2 estimate of .08. So including parent characteristics

19



gives a substantial reduction in predictive effects based on the college attendance of other classes.

The factor model provides a predictive effect for individual test scores of a one standard

deviation increase in the average scores for other classes with the same teacher. This is .101,

where the units are standard deviations in the distribution of scores for individual students. A one

standard deviation increase in the average score for classes with a different teacher, same school,

gives an increase of .052 in individual scores. If we difference these averages within schools, a

standard deviation increase in the difference gives a predicted increase in individual scores of .087.

These results are not affected by adding the parent characteristics to the baseline controls.

The predictive effect for earnings of a standard deviation increase in the test score index for a

different class with the same teacher is $149; for a class with a different teacher, same school, it is

$118. Under the factor model, the comparable results using averages of the test score index over

different classes with the same teacher and over classes with different teachers, same school, are

$218 and $473. The standard errors here are substantial: $165 and $189.

Much of the related literature uses factor models based on test scores to estimate teacher

effects. Examples include McCaffrey, Lockwood, Koretz, Louis, and Hamilton (2004), Nye, Kon-

stantopoulos, and Hedges (2004), Rockoff (2004), Rivkin, Hanushek, and Kain (2005), Aaronson,

Barrow, and Sander (2007), Kane and Staiger (2008), Kane, Rockoff, and Staiger (2008), Jacob,

Lefgren, and Sims (2010), Hanushek and Rivken (2010), and Staiger and Rockoff (2010). A typical

finding is that a one standard deviation increase in the teacher factor corresponds to an increase

in individual scores on the order of .1, where the units are standard deviations in the distribution

of scores for individual students. My results agree with that.

Chetty, Friedman, and Rockoff (2011) provide estimates of teacher effects on college attendance

and earnings. In their Table 5 with percent attending college at age 20, the coefficient (standard

error) on teacher value added is 4.92 (0.65). The standard deviation of teacher value added is

about .1, giving a teacher effect of .492 (.065) percentage points. In Appendix Table 7, allowing for

school-year fixed effects gives .26 (.05) percentage points. The comparable results for me are the

ones that partition just by subject (math and reading) instead of by subject and grade. This gives
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γ̂co
F+G,ts = .42 (.080) percentage points when I do not partial on school, and γ̂co

F+G|F,ts = .32 (.058)

percentage points when I do. In their Table 6 with earnings at age 28, the coefficient (standard

error) on teacher value added is 1, 815 (729), giving a teacher effect of $182 (73). In Appendix

Table 7, allowing for school-year fixed effects gives a teacher effect of $194 (67). I obtain γ̂ea
F+G,ts

= $203 (91) when I do not partial on school and γ̂ea
F+G|F,ts = $251 (89) when I do.
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APPENDIX

Suppose that (1) has the following form:

θ = arg min
d∈RJ

E
[

Wi[r1(UiA) − r2(UiB, UiC)′d]2
]

,

where r1 and r2 are given functions. For example, r1(UiA) = UiA,co and r2(UiB , UiC)′d is a quadratic

polynomial. Then θ satisfies the linear equation

E[Wir2(UiB , UiC)r2(UiB , UiC)′]θ = E[Wir2(UiB , UiC)r1(UiA)]. (10)

Now suppose that the components of r2 have the form

r2p(UiB, UiC) = r2p1(UiB) · r2p2(UiC) (p = 1, . . . , P ). (11)

This holds if r2(UiB , UiC)′d is a polynomial. In this case, the expectations in (10) require evaluating

terms of the form

E(WiV1iAV2iBV3iC), (12)

where V1iA = q1(UiA), V2iB = q2(UiB), V3iC = q3(UiC), and the q’s are given functions. The

sample analog for a term of this form is

1

I

I
∑

i=1

Wi

(

∑

t:|Sit|>1

|Sit|

)−1

×

∑

t:|Sit|>1

∑

a∈Sit

∑

b∈Sit−{a}

∑

c∈Si−Sit

V̂1iaV̂2ibV̂3ic/[(|Sit| − 1)(|Si| − |Sit|)]

(with, for example, V̂1ia = q1(Ûia)). The triple sum over (a, b, c) can be simplified:
∑

a∈Sit

∑

b∈Sit−{a}

∑

c∈Si−Sit

V̂1iaV̂2ibV̂3ic

=
∑

a∈Sit

V̂1ia

[(

∑

a∈Sit

V̂2ia

)

− V̂2ia

]

·

[

∑

a∈Si

V̂3ia −
∑

a∈Sit

V̂3ia

]

=

[

∑

a∈Sit

V̂1ia

∑

a∈Sit

V̂2ia −
∑

a∈Sit

V̂1iaV̂2ia

]

·

[

∑

a∈Si

V̂3ia −
∑

a∈Sit

V̂3ia

]

.
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