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1 Introduction

Over-the-counter (OTC) derivatives markets are very large relative to banks’ trading

assets, and the large volume of varied bilateral trades creates an intricate system of

liability linkages between participating banks. Several stylized observations regarding

trade in these markets have drawn the attention of policy makers and the public alike.

Collectively, for the banks participating in OTC derivatives markets, the gross volume

of trade greatly exceeds the net volume. This difference between gross and net volume

is particularly striking for a few large “dealer” banks, which typically hold more than

95% of the aggregate gross positions in the market, but have long and short positions of

nearly equal size. In contrast, medium sized “customer” banks typically have substantial

differences between the size of their long and short positions. These markets are also

segmented; most smaller banks do not participate at all. These trading patterns in OTC

derivatives markets greatly differ from the Walrasian benchmark of centralized trading at

a common price. In this paper, we develop a model of equilibrium entry, trade, and price

determination, in order to formally analyze positive and normative issues surrounding

OTC derivatives markets.

In our model, banks trade OTC derivatives to share an aggregate risk. This trade is

subject to two key trading frictions. First, a fixed entry cost must be paid by participating

banks, since trade in OTC derivaties markets requires specialized capital and expertise.

Second, considerations about risk management limit the size of trades made by any one

trader in a bank with his or her counterparty. We find that with these two trading

frictions, this model leads to a realistic market structure. Our OTC market features in the

aggregate a large gross volume of bilateral trades relative to the net volume of trade. This

gross volume of trade is concentrated in large dealer banks which have low net volume.

In contrast, medium size banks have larger net, and smaller gross, positions, and smaller

banks choose not to participate. Although all banks in our model are endowed with

access to the same trading technology, some large banks endogenously arise as “dealers”,

trading mainly to provide intermediation services, while medium sized banks endogenously

participate as “customers” mainly to share risks. We show that this market structure

arises from a combination of economies of scale, hedging needs, and incentives to provide

intermediation services in the OTC market.

We next consider the link between the degree of trading frictions, and market size

and concentration. We show that in an OTC market such as ours, conditional on entry

patterns, total gross derivatives notionals are non-monotonic in trading frictions. When

frictions are substantial, volume is accordingly low. As frictions decrease, volume and
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gross exposures grow, volume starts exceeding the Walrasian volume, and concentration

of gross notionals in dealer banks increases. Thus, a large aggregate notional concentrated

in a few dealer banks can be seen as a side product of a better risk sharing resulting from

increased market liquidity. When frictions are low enough, the Walrasian outcome of

perfect risk sharing can be achieved with nearly zero excess volume, and hence very low

gross notional exposures.

Finally, we also ask how a planner or policy maker might improve the OTC market

structure. In our model, large banks choose to enter as dealers, going long and short

simultaneously, to capture the trading profits that arise from intermediation. One policy

question is whether private incentives to provide intermediation that arise endogenously

in response to the trading frictions in the OTC market lead to a socially efficient market

outcome. From a social welfare perspective, we show that the liability structure is indeed

too concentrated in large banks: A social planner could improve welfare by removing

some larger dealer banks from the market, and encouraging smaller banks to enter.

In our model, we consider a theoretical financial system composed of a continuum of

financial institutions we call banks. A bank is viewed as a coalition of many risk-averse

agents, called traders. Banks’ coalitions have heterogenous sizes and heterogenous en-

dowments of a non-tradable risky loan portfolio. The size of each bank’s loan portfolio

determines their initial exposure to an aggregate risk factor. Since banks start with dif-

ferent per capita exposures to the aggregate risk factor and and are risk averse, they

would find it optimal to equalize these exposures. While, in our model, banks’ initial

risk exposures are non-tradable, we assume that banks can buy and sell insurance con-

tracts resembling swaps to synthetically alter their exposure to the aggregate risk factor.

Specifically, conditional on their size and initial exposure to aggregate risk, banks first

choose whether to pay a fixed cost in order to enter into an OTC market for swaps.

Next, participating banks trade swaps to share aggregate risk. Finally, banks consolidate

their positions internally, and loans and swap contracts pay off. We first characterize

the equilibrium aggregate and bilateral volume, as well as pricing conditional on entry

patterns. Then, we consider how the joint distribution of participating banks’ sizes and

risk exposures is determined by their equilibrium entry decisions.

Conditional on entry patterns, the traders in each participating bank establish bi-

lateral trading relationships almost surely with every other bank. Risk sharing among

banks through these bilateral relationships is constrained by risk management practices.

Specifically, each trader has a fixed trading capacity: she cannot trade more than a given

amount of swap contracts, either long or short. This trading capacity constraint proxies

for risk-management limits on individual trading desk positions in practice. We assume
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that these trading limits are allocated to the traders in a bank before information about

the risk exposure of each trader’s counterparty is revealed. The restriction that banks

cannot reallocate trading capacity across traders once trade has begun is what effectively

limits risk sharing. We argue that these trading limits are realistic, since in practice banks

typically limit the risk that any one trader can take with line limits. The magnitude and

direction of bilateral exposures in our model financial system then depends on banks’

sizes and pre-trade exposures to the aggregate risk factor, as well as on traders’ capacity

limits.

When the traders from two banks trade, they take their position limits as given bargain

over the terms of that trade. Gains from trade, and hence swap spreads, are determined

by the post-trade risk exposures of the traders’ respective institutions. In particular, the

“sign” of the contract which each trader executes depends on whether their counterparty’s

bank expects a larger or smaller post-trade exposure to the aggregate risk factor than their

own bank. Thus, within a bank, some traders execute long contracts, and some enter short

contracts. At the end of the period, the swap portfolio of a participating bank is made up

of the swap contracts of all its traders. In equilibrium, traders thus share risk within their

banks, and banks share aggregate risk amongst each other through the OTC derivatives

market.

Banks’ decisions to enter the market are driven by two motivations, the strength of

which are determined by their sizes and initial risk exposures. One motivation to enter

is to share aggregate risk. This motivation is strong when a bank’s initial risk exposure

is significantly higher or lower than the market-wide average. A second motivation for

a bank to enter is to capture the trading profits due to the equilibrium price dispersion

across different bilateral trades. These motivations result in the following entry patterns:

Small-sized banks cannot spread the fixed entry cost over many traders, and choose not

to enter. Medium-sized banks only find it optimal to enter the market if their gains from

trading in the OTC market are large enough, which we show occurs when their initial

risk exposure is significantly higher or lower than the market-wide average. They use the

OTC market to take a large net position, either short or long, and in this sense act as

customers. Finally, large-sized banks are willing to enter the swap market irrespective of

their initial risk exposure. If their initial risk exposure is significantly higher or lower than

the market-wide average, they enter as customers for the same reason as the medium-

sized banks do. If their initial exposure is near the market-wide average, they do not

desire much change in their risk exposure, and therefore do not have incentives to enter

as customers. Nevertheless, they enter for a different reason: their size allows them

to conduct sufficiently many offsetting trades for their intermediation profits to cover
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their fixed cost of entry. In this sense, large banks with average risk exposures emerge

endogenously as dealers providing intermediation services in the OTC market.

To fix ideas, we use terminology from the market for Credit Default Swaps (CDS)

in the presentation of our model. In this case, the underlying aggregate risk factor is an

aggregate default risk factor. Banks’ exposures to this factor are determined by the size of

their illiquid loan portfolios. In practice the vast majority of trade in credit is executed via

CDS contracts due to the superior liquidity of the derivative contract. Other underlying

risks might include interest rate risk, or foreign exchange risk, and the model can also be

applied to consider the OTC markets for interest rate and currency swaps.

To provide context for the market structure which arises in our model, we develop

the following stylized facts which describe the OTC market for CDS: First, the market

is large. Second, there appear to be increasing returns to scale: gross CDS notionals

increase more than proportionally with bank size. As a result, the market is highly

concentrated amongst the largest participating banks, and moreover the vast majority of

small banks choose not to even participate in the OTC market. Third, trading behavior

differs amongst banks: larger banks appear to act as dealers, and medium sized banks

as customers. Large banks perform significantly more netting of their long and short

contracts within their CDS portfolios. As a result, these banks have gross notionals

which greatly exceed their net notional. In other words, larger banks tend to have a great

amount of intermediation volume. Larger banks are also less likely to be able to record

their purchases of credit derivatives as guarantees for regulatory purposes. The large

netting benefits and small hedging benefits garnered by large banks are consistent with

these banks acting as intermediaries for medium-sized, customer banks who use credit

derivatives to synthetically alter their net credit exposure. Fourth, consistent with trade

resulting from search and bargaining in an OTC market, prices vary with counterparty

characteristics. Fifth, and finally, all banks which participate in the OTC derivatives

market become interconnected by a complex liability structure.

The paper proceeds as follows. Section 2 surveys the literature, Section 3 presents

stylized facts characterizing the OTC market for CDS, Section 4 presents the economic en-

vironment, Section 5 solves for the equilibrium conditional on entry patterns, and Section

6 studies entry decisions. Finally, Section 7 analyzes efficiency and Section 8 concludes.

2 Related Literature

It is common to model the bilateral trade in OTC markets as being constrained by a

friction. Our paper attempts to describe how certain banks may arise as key intermedi-
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aries, and more generally how the patterns of bilateral trade are determined. By allowing

the system of bilateral trades to arise endogenously as a result of market entry, and by

studying the costs and benefits of a structure in which certain banks play a more impor-

tant role in intermediating trade, we are able to study the costs and benefits of a more

concentrated market structure.1

Several recent papers also consider ideas related to the role of the market structure in

determining trading outcomes in OTC markets. Duffie and Zhu (2010) use a framework

similar to that in Eisenberg and Noe (2001) to show that a central clearing party for CDS

only may not reduce counterparty risk because such a narrow clearinghouse could reduce

cross contract class netting benefits. Babus (2009) studies how the formation of long-term

lending relationships allows agents to economize on costly collateral, and demonstrates the

manner in which star-shaped networks arise endogenously in the corresponding network

formation game. Gofman (2011) emphasizes the role of the bargaining friction in deter-

mining whether trading outcomes are efficient in an exogenously specified OTC trading

system represented by a graph.

The effects of the trading structure on trading outcomes has also been studied in the

literature on systemic risk.2 Allen and Gale (2000) develop a theory of contagion in a

circular system, which they use to consider systemic risk in interbank lending markets.

This framework has been employed by Zawadowski (2011) to consider counterparty risk in

OTC markets. Eisenberg and Noe (2001) also study systemic risk, but use lattice theory

to consider the fragility of a financial system in which liabilities are taken as given. Our

paper differs from the papers discussed above by considering entry.

One of the most commonly employed frictions used to study OTC markets, following

Duffie, Gârleanu, and Pedersen (2005), is the search friction. Kiefer (2010) offers an early

analysis of CDS pricing within this framework. Our paper is unique in that, in contrast to

earlier models, we explicitly consider financial institutions comprised of many traders who

sign derivatives contracts amongst each others, thereby creating liability linkages across

banks. In that sense, our paper is most closely related to Afonso and Lagos (2011), who

develop a different search model in order to explain trading dynamics in the Federal Funds

Market. Their focus is on the dynamics of reserve balances, however they also consider the

importance of intermediation by banks in the reallocation of reserves over the course of the

1The costs of concentration have been a key concern to regulators of OTC derivatives mar-
kets. See, for example, the quarterly reports from the Office of the Comptroller of the
currency at http://www.occ.treas.gov/topics/capital-markets/financial-markets/trading/

derivatives/derivatives-quarterly-report.html, as well as ECB (2009), and Terzi and Ulucay
(2011).

2See Stulz (2011) for a discussion of the potential for systemic risk in CDS markets.
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day. By collapsing all trade dynamics into a single multilateral trading session, our model

becomes sufficiently tractable to analyze endogenous entry, explain empirical patterns of

participation across banks of different sizes, and address normative issues regarding the

size and composition of the market. Li, Rocheteau, and Weill (2011) develop a model

illustrating the role of scarce collateral in OTC markets. One can interpret our trading

capacity limit as a limit on per trader collateral.

3 CDS Stylized Facts

We collect data from the Office of the Comptroller of the currency for the top 25 bank

holding companies in derivatives, and from these Bank Holding Companies’ FR Y-9C

filings, and document the stylized facts which characterize the market for CDS in the

US. The market for CDS is large. In the third quarter of 2011, the top twenty-five

US bank holding companies participating in over-the-counter (OTC) derivatives markets

had $13.58 trillion in assets, and held almost twice as much, or $22.58 trillion, in credit

derivatives notional.

There appear to be increasing returns to scale. That is, if one sorts banks according to

trading asset size, gross notional relative to trading assets is increasing in trading assets.

This can be seen in Figure 1, which graphs gross notional to trading assets, across banked

ranked by trading assets, for the top 25 bank holding companies in derivatives.

The market is also highly concentrated. Figure 2 shows the gross notionals for credit

derivatives for all of the top 25 bank holding companies in derivatives, from 2007 to 2011.

Ninety-five percent of the gross notional in credit derivatives is consistently held by only

five bank holding companies. Clearly there are few dominant bank holding companies,

and many banks which participate to a lesser extent. Considering participation makes the

apparent concentration more extreme. The Federal Reserve Bank of Chicago lists about

14,000 US bank holding companies, while Chen, Fleming, Jackson, Li, and Sarkar (2011)

report that only about 900 bank holding companies worldwide trade in CDS.3

There is significant netting between long and short contracts for the largest banks

and less netting for middle-sized banks. We report statistics for netting of long and short

positions multilaterally, and across contracts. While ISDA master agreements account

only for bilateral netting, the aggregate data we can access does not allow us to disentangle

bilateral relationships. We can verify from the 10-Q’s of individual firms that large banks

3See http://www.chicagofed.org/webpages/banking/financial_institution_reports/bhc_

data.cfm Chen, Fleming, Jackson, Li, and Sarkar (2011) use a detailed data set on three months of CDS
transactions to document the importance of dealer banks, and the relatively higher activity in index
products relative to single name contracts.
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indeed enjoy large netting benefits even when one adheres to the strict definition of netting

according to ISDA.4 Figure 3 plots net to gross notionals for the top 25 bank holding

companies in derivatives and shows that this fraction is on average close to zero for the

largest dealer banks, which appear on the right-hand side. For example, JP Morgan’s net

to gross notional ratio is -0.1%. Middle-sized banks, in the center of the graph, have much

larger net to gross notional ratios. For instance, Bank of New York Mellon has a ratio

close to 100%, meaning that nearly all its CDS positions are going in the same direction.

Most small banks, on the left-hand side of the figure, have zero gross notional in credit

derivatives, which we display using empty bars.

Smaller banks are more likely to be able to report purchased credit derivatives as

guarantees for regulatory purposes than larger banks are. Starting in the first quarter of

2009, and implemented to a greater extent in the second quarter of 2009, bank holding

companies’ FR Y-9C filings report the notional of purchased credit derivatives that are

recognized as a guarantee for regulatory capital purposes. Figure 4 compares the fraction

of purchased credit derivatives from Q2 2009 to Q4 2011 that could be counted as a

guarantee for regulatory purposes for the largest 12 vs. the rest of the top 25 bank holding

companies in derivatives. For the largest 12 bank holding companies in derivatives (the

top half in terms of trading asset size), less than 0.5% of purchased credit derivatives could

be recognized as a guarantee. By contrast, for the smaller holding companies amongst

the top 25, almost 40% of purchased credit derivatives were recognized as a guarantee.

This is consistent with smaller banks on average being more likely to use purchased CDS

to change their credit exposure and to hedge while larger banks simply trade CDS to earn

spreads on intermediation volume.

Prices vary by counterparty. This is apparently true since pricing data from Markit

are composite quotes from multiple sources. Arora, Gandhi, and Longstaff (2012) use

heterogeneity in quotes from multiple dealers to a single customer in order to assess to

what extent counterparty risk is priced. Interestingly, they find that little of the price

dispersion is explained by counterparty risk. This is consistent with spreads being driven

by post trade credit exposures, and by banks’ outside trading options as in our model

with no credit risk. Shachar (2012) also uses data on individual trades, but studies the

impact of dealer exposures on their ability to provide liquidity. This evidence is consistent

with the banks’ preferences and pricing in our model; banks price each contract based on

their pre-trade risk exposure combined with any additional default risk arising from the

4See, for example, the excerpts from the 10-Q’s for Bank of America or Goldman
Sachs in the Financial Times Alphaville at ftalphaville.ft.com/blog/2011/12/21/808181/

do-you-believe-in-netting-part-1/
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rest of their portfolio.

Finally, banks are connected by a complex liability structure. This is why regulators

and the public are concerned about systemic risk. The OTC market for CDS is an opaque

market in which the liability linkages are unknown. In our model, we construct a predicted

liability structure based on banks’ initial size and credit exposures. In this way, one might

use the model to assess likely empirical CDS linkages given observed bank characteristics.

4 The economic environment

We develop our model in three steps. First, we describe the economic environment.

Then, we describe the post-entry equilibrium in section 5. Finally, we consider the joint

distribution for banks’ sizes and pre-trade exposures in the CDS market which results

from equilibrium entry in section 6. Then, after developing the model, and describing its

positive features, we turn to a normative analysis in section 7. Proofs not given in the

text are gathered in the appendix.

4.1 Preferences and endowments

The economy is populated by a unit continuum of risk-averse agents, called traders.

Traders have identical constant absolute risk aversion and are endowed with a technology

to make payment by producing storable consumption good at unit marginal cost.5 To

model the financial system, we assume that traders are organized into a continuum of large

coalitions called banks. Banks are heterogenous along two dimensions: their size, which

we identify with the number of traders in the coalition, and their per capita endowment

of some non-tradeable risky loan portfolio.

Banks’ sizes, denoted by S, are cross-sectionally distributed according to the contin-

uous density ϕ(S) over the support [S,∞), S ≥ 0. The density has thin enough tails, in

that limS→∞ S
3ϕ(S) exists and is finite. Because the economy-wide number of traders is

one, we must have
∫∞
S
Sϕ(S) dS = 1.

Banks’ per capita loan portfolio endowments, denoted by ω, are cross-sectionally dis-

tributed according to a uniform distribution over [0, 1], independently of bank sizes.6 This

5Precisely, if an agent consumes C and produces H, his utility is U{C−H} = − 1
αe
−α(C−H). Given no

wealth effect, an equivalent interpretation is that the agent has a large endowment of storable consumption
good that she uses to make payments.

6The independence assumption clarifies the economic forces at play. Indeed, while there is no re-
lationship between sizes and per-capita endowment in the overall population of banks, entry decisions
endogenously create a correlation between the two in the OTC market. That being said, our model is
flexible enough to handle more general joint distributions of size and per capita endowments. For exam-
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implies in particular that the economy-wide measure of per capita default risk exposure

is equal to one half. The per capita payoff for the bank from its illiquid loan portfolio

is the size of the portfolio, ω, times each loan’s payoff 1 − D, where 1 represents the

face value of the loans and default risk D ∈ [0, 1] is a (non-trivial) random variable with

a twice continuously differentiable moment generating function. Thus, ω represents a

bank’s pre-trade, per-trader’s capita, exposure to the aggregate default risk factor.

Since different banks start with different exposures to the aggregate default risk factor,

D, and have identical risk aversion, they would benefit from equalizing their exposures.

While, in our model, loans are non tradable, we assume that banks can enter an OTC

market to buy and sell derivatives contracts, resembling CDS, against default risk. Thus,

in our model the CDS market allows banks to take synthetic long and short positions in

the aggregate default risk factor.7

4.2 Entry, trading, and payoffs

The economy lasts for three periods. In the first period, each bank chooses whether or

not to pay a fixed cost c > 0 to be active in the OTC market. In the second period,

traders from active banks meet in the OTC market. Finally, in the third period, banks

consolidate the positions of their traders and all payoffs realize.

4.2.1 Inactive banks

Traders in inactive banks consume the per-capita payoff of their loan portfolio endowment,

ω(1−D), with expected utility:8

E [U{ω(1−D)}] ≡ − 1

α
E
[
e−αω(1−D)

]
.

The corresponding certainty-equivalent payoff is:

CEi(ω) = ω − Γ [ω] , where Γ [ω] ≡ 1

α
log
(
E
[
eαωD

])
. (1)

ple, in an earlier version of the paper, we provided a characterization of the post-entry equilibrium when
larger banks have more neutral pre-trade exposures than smaller banks, for example through greater
internal diversification.

7Our analysis applies more generally to OTC trading of credit derivatives contracts, in which coun-
terparties make a fixed-for-floating exchange of cash flow streams, and in which the floating stream is
exposed to aggregate risk. This includes, for examples, interest rate swaps, CDS on sovereign entities,
CDS indices and, to the extent that default risk is correlated across firms, CDS on single firms.

8Given identical concave utility, this is indeed the ex-ante optimal allocation of risk amongst traders
in the bank.
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That is, CEi(ω) is equal to the face value of the loan portfolio endowment, ω, net of the

certainty equivalent cost of bearing its default risk, Γ [ω].

Lemma 1. The certainty equivalent cost bearing default risk, Γ [ω], is twice continuously

differentiable, strictly increasing, Γ′ [ω] > 0, and strictly convex, Γ′′ [ω] > 0.

These intuitive properties follow by taking derivatives. Note that, when D is normally

distributed with mean E[D] and variance V[D], Γ [ω] is the familiar quadratic function:

Γ [ω] = ωE [D] + ω2αV [D]

2
. (2)

The first term is the expected loss ωE [D] upon default. The second term is an additional

cost arising because banks are risk averse and the loss is stochastic.9

4.2.2 Active banks

We now turn to banks who choose to be active in the OTC market. We let N(ω) denote

the measure of traders in active banks with per capita endowment less than ω. We assume

that N(ω) admits a continuous density n(ω), positive almost everywhere. As will become

clear shortly, our model has a natural homogeneity property: two banks with identical

per capita loan portfolio endowments, ω, have identical per capita trading behavior. As

discussed formally after Proposition 1, this implies that after entry, size is no longer a

state variable for the bank, and that the OTC market equilibrium will only depend on

the distribution n(ω).

CDS contracts in the OTC market. In the OTC market, each trader is matched

with probability one with a trader from some other bank to bargain over a CDS contract.

All traders in the population are equally likely to be matched. The probability that a

trader from one bank is matched with a trader from a bank whose per capita endowment

is less than ω̃ ∈ [0, 1] is N(ω̃). When a trader from a bank of type ω (an “ω-trader”) meets

a trader from a bank of type ω̃ (an “ω̃-trader”), they bargain over the terms of a fixed-

for-floating derivative contract resembling a CDS. The ω-trader sells γ(ω, ω̃) contracts to

the ω̃-trader, whereby she promises to make the random payment γ(ω, ω̃)D at the end

of the period, in exchange for the fixed payment γ(ω, ω̃)R(ω, ω̃). If γ(ω, ω̃) > 0 then

the ω-trader sells insurance, and if γ(ω, ω̃) < 0 she buys insurance. Importantly for our

9Clearly, a normal distribution does not satisfy our assumption that D ∈ [0, 1]. It also implies that
Γ [ω] is decreasing for ω negative enough. However, and as will become clear as we progress, our results
only rely on strict convexity and so they continue to hold with a normally distributed D.
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results, we assume that in any bilateral meeting, a trader cannot sign more than a fixed

amount of contracts, k, either long or short.

Taken together, the collection of CDS contracts signed by all banks (ω, ω̃) ∈ [0, 1]2

must therefore satisfy:

γ(ω, ω̃) + γ(ω̃, ω) = 0 (3)

− k ≤ γ(ω, ω̃) ≤ k. (4)

The level of frictions in the CDS market is thus determined by the size of the position

limit, k. We do not model the microfoundations of the trading limit, however we note

that, in practice, traders typically do face line limits.10 For example, Saita (2007) states

that the traditional way to prevent excessive risk taking in a bank “has always been (apart

from direct supervision...) to set notional limits, i.e., limits to the size of the positions

which each desk may take.” Theoretically, one might motivate such limits as stemming

from moral hazard problems , concerns about counterparty risk and allocation of scarce

collateral, or from capital requirement considerations.

Bank’s per capita consumption. A trader in this economy faces two kinds of risk.

The first is idiosyncratic risk over the type of counterparty they will trade with, namely

the size and risk exposure of their counterparty’s bank. The second is aggregate default

risk. But since there is a large number of traders in each bank, traders can diversify their

individual counterparty-type risk so that they are left only with the per capita exposure

to default risk. Specifically, we assume that, at the end of the period, traders of bank

ω get together and consolidate all of their long and short CDS positions. By the law of

large numbers, the per capita consumption in an active bank with per capita endowment

ω and size S is:11

− c
S

+ ω(1−D) + µ

∫ 1

0

γ(ω, ω̃)

(
R(ω, ω̃)−D

)
n(ω̃)dω̃. (5)

10In addition, measures such as DV01 or CS1% which measure positions’ sensitivities to yield and
credit spread changes, as well as risk weighted asset charges, are used to gauge and limit the positions of
a particular desk’s traders.

11As is well known from other models with “large coalition” or “large families,” we could equivalently
assume that traders can buy and sell CDS in two ways: i) with traders from other banks, in a bilateral
OTC market and ii) with traders from the same bank, in an internal competitive market. The internal
competitive market leads to full risk sharing within the bank, just as with the large coalition.
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The first term is the per capita entry cost. The second term is the per capita payout of

the loan portfolio endowment, after default. The third term is the per capita consolidated

amount of fixed payments, γ(ω, ω̃)R(ω, ω̃), and floating payments, γ(ω, ω̃)D, on the port-

folio of contracts signed by all ω-traders. Note in particular that, given random matching,

n(ω̃) represents the fraction of ω-traders who met ω̃-traders. One can see that the position

limit k is indeed crucial. Banks in our model almost surely trade with every other bank

and thus would want to allocate capacity to the “better trades”, thereby achieving full

risk-sharing. Again, we argue that in reality risk management practices aimed to alleviate

standard moral problems prevent such reallocation of trading capacity.

Our assumption that traders consolidate their CDS positions captures some realistic

features of banks in practice. Within a bank, some traders will go long, and some short,

depending on whom they meet and trade with. Because of this, our model is able to

distinguish between gross and net exposure to credit risk resulting from trades in the CDS

market. Furthermore, as will become clear later, despite all banks being endowed with

access to the same trading technology, some banks endogenously become intermediaries in

this market, in the sense that their trades generate a gross exposure that greatly exceeds

their net exposure.

Certainty equivalent payoff. To calculate the certainty equivalent payoff, it is useful

to break down the bank’s per capita consumption in equation (5) into a fixed and a

floating component. Namely, in bank ω, the per capita fixed payment is:

− c
S

+ ω +

∫ 1

0

γ(ω, ω̃)R(ω, ω̃)n(ω̃)dω̃. (6)

Similarly, the per capita floating payment is −g(ω)D, where

g(ω) ≡ ω +

∫ 1

0

γ(ω, ω̃)n(ω̃)dω̃, (7)

is the sum of the initial exposure, ω, and of the exposure acquired in bilateral matches.

The function g(ω) thus represents the bank’s post-trade exposure to default risk.

Just as with inactive banks in equation (1), we find that the per capita certainty

equivalent payoff of an active bank is

CEa(ω, S) = − c
S

+ ω +

∫ 1

0

γ(ω, ω̃)R(ω, ω̃)n(ω̃)dω̃ − Γ [g(ω)] , (8)

the per-capita fixed payment, net of the certainty equivalent cost of bearing the floating
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payment risk.

Bargaining in the OTC market. To determine the terms of trade in a bilateral

meeting, we need to specify the objective function of a trader. To that end, we follow the

literature which allows risk sharing within families, such as in Lucas (1990), Andolfatto

(1996), Shi (1997), Shimer (2010), and others, and assume that a trader’s objective is

to maximize the marginal impact of her decision on her bank’s utility. This assumption

means that a trader is small relative to her institution and that she does not coordinate

her strategy with other traders in the same institution. One could think, for instance,

about a trading desk in which all traders work independently knowing that all risks will

be pooled at the end of the day.

Precisely, when a trader signs γ(ω, ω̃) contracts at a price R(ω, ω̃) per contract, her

marginal impact on her bank’s utility is defined as:

E
[
Λ(ω,D)γ(ω, ω̃)

(
R(ω, ω̃)−D

)]
, where Λ(ω,D) ≡ U ′ {y(S, ω,D)}

E [U ′ {y(S, ω,D)}]
,

and y(S, ω,D) is the bank’s per capita consumption derived in equation (5).

The first term in the expectation, Λ(ω,D), is bank ω’s stochastic discount factor.

Since utility is exponential, there are no wealth effects and so Λ(ω,D) is invariant to

deterministic changes in the level of consumption. In particular, it does not depend on

the entry cost, c/S, and therefore does not depend on size.

The second term is the trader’s contribution to her bank’s consumption: the number

of contracts signed, γ(ω, ω̃), multiplied by the net payment per contract, R(ω, ω̃) − D.

Using the formula for the cost of risk bearing, Γ [g(ω)], the ω-trader’s objective function

can be simplified to:

γ(ω, ω̃)

(
R(ω, ω̃)− Γ′ [g(ω)]

)
. (9)

Note that this can be viewed as the trader’s marginal contribution to the certainty equiv-

alent payoff (8). The expression is intuitive. If the trader sells γ(ω, ω̃) CDS contracts, she

receives the fixed payment R(ω, ω̃) per contract but, at the same time, she increases her

bank’s cost of risk bearing. Since the trader is small relative to her bank, she only has a

marginal impact on the cost of risk bearing, equal to γ(ω, ω̃)Γ′ [g(ω)].

The objective of the other trader in the match, the ω̃-trader, is similarly given by:

γ(ω, ω̃)

(
Γ′ [g(ω̃)]−R(ω, ω̃)

)
, (10)
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where we used the bilateral feasibility constraint of equation (3), stating that γ(ω̃, ω) =

−γ(ω, ω̃). The trading surplus is therefore equal to the sum of (9) and (10):

γ(ω, ω̃)

(
Γ′ [g(ω̃)]− Γ′ [g(ω)]

)
.

We assume that the terms of trade in a bilateral match between an ω-trader and an

ω̃-trader are determined via Nash bargaining, with both traders having equal bargaining

power. The first implication of Nash bargaining is that the terms of trade are (bilaterally)

Pareto optimal, i.e, they must maximize the surplus shown above. Since the marginal

cost of risk bearing, Γ′ [x], is incresasing, this immediately implies that:

γ(ω, ω̃) =


k if g(ω̃) > g(ω)

[−k, k] if g(ω̃) = g(ω)

−k if g(ω̃) < g(ω).

(11)

This is intuitive: if the ω̃-trader expects a larger post-trade exposure than the ω-trader,

g(ω̃) > g(ω), then the ω-trader sells insurance to the ω̃-trader. And vice versa if g(ω̃) <

g(ω). When the post-trade exposures are the same, then any trade in [−k, k] is optimal.

The second implication of Nash bargaining is that the unit price of a CDS, R(ω, ω̃),

is set so that each trader receives exactly one half of the surplus. This implies that:

R(ω, ω̃) =
1

2

(
Γ′ [g(ω)] + Γ′ [g(ω̃)]

)
. (12)

That is, the price is half-way between the two traders’ marginal cost of risk bearing. As is

standard in OTC markets models, prices depend on banks’ infra-marginal characteristics.

In particular, prices are dispersed in the cross-section of matches, and are increasing

functions of traders’ post-trade exposures.

It is important to note that a trader’s reservation value in a match is determined by

her post-trade exposure, which results from the simultaneous trades of all traders in her

institution. This means that, although our model is static, outside options play a key role

in determining prices: if a trader chooses not to trade in a bilateral match, she still enjoys

the benefits created by the trades of all other traders in her institution. This is similar to

the familiar outside option of re-trading later arising in a dynamic models.12

12As mentioned in footnote 11, allowing traders of the same bank to pool their CDS contracts is
essentially equivalent to assuming that, after the OTC market, traders can exchange CDS in a competitive
“intra-bank” market. In that market, the price of a CDS contract is Γ′ [g(ω)]. Thus, the outside option
of a trader in a bilateral match can be viewed as the outside option of re-trading later in the intra-bank
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5 Equilibrium in the OTC market

Conditional on the distribution of traders, n(ω), generated by entry decisions, an equilib-

rium in the OTC market is made up of measurable functions γ(ω, ω̃), R(ω, ω̃), and g(ω)

describing, respectively, CDS contracts, CDS prices, and post-trade exposures, such that:

(i) CDS contracts are feasible: γ(ω, ω̃) satisfies (3) and (4);

(ii) CDS contracts are optimal: γ(ω, ω̃) and R(ω, ω̃) satisfies (11) and (12) given g(ω);

(iii) post-trade exposures are consistent: g(ω) satisfies (7) given γ(ω, ω̃).

5.1 Constrained efficiency

In order to show existence and uniqueness of an equilibrium, it is useful to first analyze

its efficiency properties. To that end, we consider the planning problem of choosing a

collection of CDS contracts, γ(ω, ω̃), in order to minimize the average cost of risk bearing

across banks,

inf

∫ 1

0

Γ [g(ω)]n(ω) dω, (13)

with respect to some bounded measurable γ(ω, ω̃), subject to (3), (4), and (7). Given that

certainty equivalents are quasi-linear, an allocation of risk solves the planning problem

if and only if it is Pareto optimal, in that it cannot be Pareto improved by choosing

another feasible collection of CDS contracts and making consumption transfers. We then

establish:

Proposition 1. The planning problem has at least one solution. All solutions share the

same post-trade risk exposure, g(ω), almost everywhere. Moreover, a collection of CDS

contracts, γ(ω, ω̃), solves the planning problem if and only if it is the basis of an OTC

market equilibrium.

It follows from this proposition that an equilibrium exists. Moreover, the equilibrium

post-trade exposures, g(ω), and bilateral prices, R(ω, ω̃), are uniquely determined. Note

that the Proposition shows that our restriction that CDS contracts only depend on ω

is without much loss of generality. Indeed, if CDS contracts were allowed to depend on

any other bank characteristics, such as size, then the same efficiency result would hold:

equilibrium post-trade exposures would solve a generalized planning problem in which

market.
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CDS contracts are allowed to depend on these characteristics. It is then easy to show

that this generalized planning problem has the same solution as (13), i.e., the planner

would find it strictly optimal to choose post–trade exposures that only depend on ω.13

Therefore, in any equilibrium, post-trade exposures coincide with the unique solution of

(13).

5.2 Equilibrium post-trade exposures: some general results

We now establish elementary properties of the post-trade exposure function. First, we

show that:

Proposition 2. Post-trade exposures are non-decreasing and closer together than pre-

trade exposures:

0 ≤ g(ω̃)− g(ω) ≤ ω̃ − ω, for all ω ≤ ω̃. (14)

The left-hand inequality means that g(ω) is non-decreasing, i.e., banks starting with

low pre-trade exposure end with low post-trade exposures, and vice versa. The right-hand

side inequality is a manifestation of risk-sharing. For example, in the special case of full

risk-sharing, then g(ω̃)−g(ω) = 0 and the inequality is trivially satisfied. With imperfect

risk sharing, we obtain a weaker result: g(ω̃)− g(ω) is smaller than ω̃− ω, but in general

remains larger than zero.

Proposition 3. If g(ω) is increasing at ω, then:

g(ω) = ω + k [1− 2N(ω)] . (15)

If g(ω) is flat at ω then:

g(ω) = E
[
ω
∣∣ω ∈ [ω, ω]

]
+ k [1−N(ω)]− kN(ω), (16)

where the expectation is taken with respect to n(ω), conditional on ω ∈ [ω, ω], and where

ω ≡ inf{ω̃ : g(ω̃) = g(ω)} and ω ≡ sup{ω̃ : g(ω̃) = g(ω)} are the boundary points of the

flat spot surrounding ω.

13Precisely, suppose that CDS contracts depend on the pre-trade exposure, ω, and on some other vector
of characteristics denoted by x. Then, the CDS contracts γ̂(ω, ω̃) ≡

∫
γ(ω, x, ω̃, x̃)n(dx |ω)n(dx̃ | ω̃) are

feasible and generate post-trade exposures ĝ(ω) =
∫
g(ω, x)n(dx |ω). Because the cost of risk-bearing is

convex, the planner prefers γ̂(ω, ω̃) over γ(ω, x, ω̃, x̃), and strictly so if g(ω, x) varies with x.
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The intuition for this result is the following. If g(ω) is strictly increasing at ω, then it

must be that a ω-trader sells k contracts to any trader ω̃ > ω, and purchases k contracts

from any traders ω̃ < ω. Aggregating across all traders in banks ω, the total number of

contracts sold by bank ω is k [1−N(ω)] per-trader. Likewise, the total number of con-

tracts purchased by bank ω is kN(ω) per capita. Adding all contracts sold and subtracting

all contracts purchased, we obtain (15).

Now consider the possibility that g(ω) is flat at ω and define ω and ω as in the

proposition. By construction, all banks in [ω, ω] have the same post-trade exposure.

Therefore, g(ω) must be equal to the average post-trade exposure across all banks in

[ω, ω] which is given in equation (16): the average pre-trade exposure across all banks

in [ω, ω], plus all the contracts sold to ω̃ > ω-traders, minus all the contracts purchased

from ω̃ < ω-traders. The contracts bought and sold among traders in [ω, ω] do not appear

since, by (3), they must net out to zero.

To derive a sufficient condition for a flat spot, differentiate equation (15): g′(ω) =

1 − 2kn(ω). Clearly, if this derivatives turns out negative, then (15) cannot hold, i.e.,

g(ω) cannot be increasing at ω.

Corollary 4. If 2kn(ω) > 1, then g(ω) is flat at ω.

This corollary means that, when n(ω) is large, then the post-trade exposure function

is flat at ω. Intuitively, when there’s a large density of traders in the OTC market with

similar endowments, these traders can find each other so easily that they manage to pool

their risks fully in spite of the frictions they face.

A reasoning by contradiction offers a perhaps more precise intuition. Assume that

n(ω) is large in some interval [ω1, ω2], but that g(ω) is strictly increasing. Then, when

two traders from this interval meet, it is always the case that the low-ω trader sells k

CDS to the high-ω trader. In particular, ω1 sells insurance to all traders in (ω1, ω2], and

ω2 buys insurance from all traders in [ω1, ω2). If there are sufficiently many traders to be

met in [ω1, ω2], then this can imply that g(ω1) > g(ω2), contradicting the property that

g(ω) be non-decreasing.

The above results also provide a heuristic method for constructing the post-trade

exposure function, g(ω), induced by some particular distribution of traders, n(ω). One

starts from the guess that g(ω) is equal to ω + k [1− 2N(ω)], as in equation (15). If this

function turns out to be non-decreasing, then it must be the equal to g(ω). Otherwise, one

needs to “iron” its decreasing spots into flat spots. The levels of the flat spots are given

by (16). The boundaries of the flats spots are pinned down by the continuity conditions

that, at a each boundary point, post-trade exposures must satisfy both (15) and (16).
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5.3 Example: U-shaped and symmetric distributions

To build more intuition, we solve for the equilibrium under the assumption that n(ω) is

U -shaped and symmetric around 1
2
. That is, we assume that n(ω) is decreasing over [0, 1

2
],

increasing over [1
2
, 1] and satisfies n(ω) = n(1− ω). Aside from the fact that it leads to a

closed form solution, this type of distribution is of special interest because, under natural

conditions, it will hold in the entry equilibrium of Section 6.

An example U -shaped and symmetric n(ω) is shown in Figure 5. In interpreting the

figure, one should bear in mind that n(ω) is the product of the number of ω-banks and

of their average size. In particular, a large n(ω) does not imply that ω-banks are large.

In fact, we will show in Section 6 that extreme-ω banks are smaller, on average, while

middle-ω banks are larger. That is, in the entry equilibrium to be described, the shape

of the n(ω) distribution is ultimately driven by the number of banks entering at various

point of the ω spectrum, and not by their sizes.

5.3.1 Post-trade exposures

We focus attention on ω ∈ [0, 1
2
] because the construction over [1

2
, 1] is symmetric. First,

since n(ω) is decreasing over [0, 1
2
] it follows that ω+k [1− 2N(ω)] is increasing over [0, 1

2
]

if and only if it is increasing for ω = 0, that is if and only if 2kn(0) ≤ 1. If that condition

is satisfied then clearly g(ω) is non-dereasing and is given by equation (15). Otherwise,

we guess that g(ω) is first flat over some interval [0, ω], and then increasing over the

subsequent interval [ω, 1
2
]. The boundary ω of the flat spot must satisfy two conditions.

First, the post-trade exposure must be equal to

g(ω) = ω + k [1− 2N(ω)] .

That is, a trader just to the right of ω must buy k contracts from all ω̃ < ω and sell k

contracts to all ω̃ > ω. The second condition is given by Proposition 3, which states that

post-trade exposures in the flat spot must be equal to

g(ω) = E
[
ω
∣∣ω ∈ [0, ω]

]
+ k [1−N(ω)]

Taking the difference between the two we obtain:

H(ω) = 0, where H(ω) ≡
∫ ω

0

(ω − ω̃)n(ω̃) dω̃ − kN(ω)2.
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If there is some ω ∈ (0, 1
2
) such that H(ω) = 0, then we have found the upper boundary

of the flat spot. Otherwise, the post-trade exposures must be flat over the entire interval

[0, 1
2
]. The construction is illustrated in Figure 6, and summarized below:

Proposition 5. Suppose that the distribution of traders, n(ω), is U-shaped and symmetric

around ω = 1
2
. Then, there are ω ∈ [0, 1

2
] and ω = 1 − ω such that, for ω ∈ [0, ω] and

ω ∈ [ω, 1], g(ω) is flat, and for ω ∈ [ω, ω], g(ω) is increasing and equal to g(ω) =

ω + k [1− 2N(ω)]. Moreover:

• if k ≤ 1
2

[n (0)]−1, then g(ω) has no flat spot.

• if 1
2

[n (0)]−1 < k < 1− 2E
[
ω |ω ≤ 1

2

]
, then g(ω) has flat and increasing spots.

• if k > 1− 2E
[
ω |ω ≤ 1

2

]
, then g(ω) is flat everywhere and equal to 1

2
.

5.3.2 CDS contracts

The post-trade exposures of Proposition 5 are implemented with the following collection

of CDS contracts. For all ω ∈ [ω, 1 − ω], the implementation is straightforward: since

g(ω) is increasing, it must be the case that a ω trader buys k contracts from all ω̃ < ω,

and sells k contracts to all ω̃ > ω. Matters are more subtle within the flat spots: indeed,

when two traders (ω, ω̃) in [0, ω]2 or [1 − ω, 1]2 meet, all trades in [−k, k] leave them

indifferent. Yet, they must trade in such a way that their respective institutions wind up

with identical post-trade exposures, g(ω). To find bilaterally feasible contracts delivering

identical post-trade exposures, we guess that, when two traders ω < ω̃ meet, the ω-trader

sells to the ω̃ trader a number of contracts, which we denote by z(ω̃), that only depends

on ω̃. When the ω trader meets a trader ω̃ > ω, he must sell k contracts since in this case

g(ω̃) > g(ω). This guess is illustrated in Figure 7 and means that:

g(ω) = ω − z(ω)N(ω) +

∫ ω

ω

z(ω̃)n(ω̃) dω̃ + k [1−N(ω)]

The first term is the initial exposure. The second term adds up all the contracts purchased

from ω̃ < ω; the third term adds up all the contracts sold to ω̃ ∈ (ω, ω]; and the fourth

term adds up all the contracts sold to ω̃ ∈ (ω, 1]. Taking derivatives delivers an ordinary

differential equation for z(ω), which we can solve explicitly with the terminal condition

z(ω) = k.
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Proposition 6. The post-trade exposures of Proposition 5 are implemented by the follow-

ing CDS contracts. For all ω ∈
[
0, 1

2

]
and ω̃ > ω:

if ω̃ ≤ 1
2

: γ(ω, ω̃) = min {k, z(ω̃)} ;

if ω̃ > 1
2

: γ(ω, ω̃) = min
{
k, z

(
1
2

)}
, where z(ω) ≡

∫ ω
0

(ω − ω̃)n(ω̃) dω̃

N(ω)2
,

All other γ(ω, ω̃) are then uniquely determined by symmetry, γ(1−ω, 1− ω̃) = −γ(ω, ω̃),

and bilateral feasibility, γ(ω, ω̃) + γ(ω̃, ω) = 0.

While bilateral feasibility puts non-trivial restrictions on CDS contracts, there can

be multiple collections of CDS contracts implementing the same equilibrium. The one

proposed above has, however, two appealing features: it is consistent with the intuitive

notion that banks with low exposure sell to banks with high exposures, and it is continuous

at the boundary of the flat spot.

5.3.3 Notionals

We now study banks’ trading behavior across the ω spectrum. We show in particular

that, in our OTC market, traders employed by the same bank execute both long and short

contracts, and as a result a bank’s gross notional can greatly exceed its net notional. For

brevity we only offers a graphical analysis but a precise analytical characterization can

be found in Appendix A.10.1.

Contracts sold and bought. Following some of the measurements performed by the

US Office of the Comptroller of the Currency (OCC), we let the (per-capita) number of

contracts sold and bought by bank ω:

G+(ω) =

∫ 1

ω

γ(ω, ω̃)n(ω̃), and G−(ω) = −
∫ ω

0

γ(ω, ω̃)n(ω̃),

keeping in mind that, with the network of CDS contracts of Proposition 6, γ(ω, ω̃) > 0

for ω̃ > ω, and γ(ω, ω̃) < 0 for ω̃ < ω. The number of contracts sold, G+(ω) in the left

panel, is decreasing over [0, 1] and equal to zero for ω = 1: this reflects the fact that low-ω

banks, with low pre-trade exposure to the aggregate default risk factor, have more risk

bearing capacity, and hence tend to supply more insurance to others than high-ω banks,

with high pre-trade exposures. Note that G+(ω) is positive even for banks ω > 1
2
: that

is, even though banks with ω > 1
2

are net buyers of insurance, g(ω)−ω < 0, their traders

sell insurance when they meet traders of banks ω̃ > ω. Symmetrically, the number of
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contracts sold, G−(ω) in the right panel, is zero for ω = 0, and then is increasing over

[0, 1]. Because banks with high pre-trade exposures to credit risk have less risk bearing

capacity, they demand more insurance from others.

Intermediation. As shown in Figure 10, all banks ω ∈ (0, 1) provide some intermedi-

ation: they simultaneously buy and sell CDS contracts since both G+(ω) and G−(ω) are

positive. A natural measure of intermediation volume is min{G+(ω), G−(ω)}. This mea-

sure provides, for each bank ω, the per-capita volume of fully offsetting CDS contracts.

One sees that this volume is smallest for extreme-ω banks, and largest for middle-ω banks.

Extreme-ω banks play the role of “customer banks” and do not provide much intermedi-

ation. In order to bring their exposures closer to 1
2

most of their traders sign contracts in

the same direction. Middle-ω banks, on the other hand, play the role of “dealer banks”,

who provide more intermediation: they do not need to change their exposure much, and

so they can use their trading capacity to take large offsetting long and short positions.

Gross notional. The gross notional is G+(ω)+G−(ω), the total number of CDS signed.

One sees that the gross notional is largest and the net notional is smallest for middle-ω

dealer banks. Indeed, middle-ω banks lie in an increasing spot of g(ω), so their traders

always use all of their capacity limit, either selling k or purchasing −k. Extreme-ω

customer banks, on the other hand, lie in a flat spot of g(ω), and their traders do not use

all of their capacity when they meet other traders from the same flat spot. This feature of

the equilibrium will be a key driver of some of the cross sectional variation across banks’

trading behavior.

Net notional. The net notional is the difference between contracts sold and purchased,∣∣G+(ω) − G−(ω)
∣∣ =

∣∣g(ω) − ω
∣∣. Clearly, it is lowest for middle-ω dealer banks, which

enter the OTC market with ω ' 1
2

and thus do not need to change their risk exposures

much.

5.3.4 Bilateral prices

As shown in equation (12), in the equilibrium of our CDS market, prices are dispersed.

In particular, the average price faced by a ω bank is:

1

2

(
Γ′ [g(ω)] +

∫ 1

0

Γ′ [g(ω̃)]n(ω̃) dω̃

)
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Thus, the average price faced by a ω-bank is increasing in its post-trade exposure, g(ω). In

particular, banks with high post-trade exposures find it very beneficial to buy insurance,

and so they face higher prices. Conversely, banks with low post-trade exposures do not

find it very costly to provide insurance, and so they trade at lower prices. Note also that

customers with the most risky post trade positions face the highest prices. Since post

trade risk exposure is likely to be related to variables that measure default risk, this is

consistent with the evidence in Arora, Gandhi, and Longstaff (2012), which shows that

counterparty risk is to some extent priced in CDS markets. In our model, the adverse

pricing offered to banks with large post trade risk exposures reflects their large gains from

trade. However, empirically, such variation in the gains from trade may appear to be

related to counterparty credit risk. Thus, what appears to be variation in counterparty

risk may actually be measuring variation in gains from trade.

5.3.5 Market outcomes with vanishing frictions

What is the impact of reducing trading frictions on market outcomes? From Proposition

5 one can easily show that, when k increases, the two flat spots become larger and closer

to 1
2
. This phenomenon reflects better risk sharing and higher welfare. It is intuitive

that welfare improves since the equilibrium allocation is socially efficient conditional on

entry, and since any collection of CDS contracts that is feasible with a lower k is obviously

feasible with a higher k.

According to Proposition 6, the function z(ω), which determines trades in the flat

spot, does not change as k increases. This implies that an extreme-ω bank in the flat

spot [0, ω] or [1− ω, 1], will not change its trades with other banks in the same flat spot.

It will only use its larger capacity to increase its trades with banks outside the flat spot.

Precisely, for such a customer bank, we show in Appendix A.6 that the derivative of gross

notional with respect to k is equal to
[
1−N(ω)

]
< 1. Middle-ω banks in the increasing

spot, however, will increase their trades with all other banks. For such a dealer bank,

the derivative of gross notional with respect to k is larger, and equal to 1. Therefore, our

model has the prediction that, as k grows and the market becomes more efficient, gross

notionals increase for all banks but become more concentrated in dealer banks.

The model also implies that trading volume is non-monotonic in k, in the following

sense. When k is small then mechanically trading volume is small because traders have

little capacity. When k is greater than 1 − 2E
[
ω |ω ≤ 1

2

]
but less than 1, we show in

Appendix A.6 that, for any equilibrium set of CDS contracts, not only that of Proposition

6, the OTC market optimally circumvents frictions by creating excess trading volume,

relative to its Walrasian counterpart. Note that this is in spite of the fact that the post-
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trade exposures are the same as in the Walrasian equilibrium. Finally, when k is large

enough, one can find CDS contracts generating a volume that is arbitrarily close to the

Walrasian volume.

6 Equilibrium entry

In this section we study the entry of banks into the OTC market, thus endogenizing n(ω).

We first characterize entry incentives and offer a general existence result. Next, we provide

conditions under which the equilibrium n(ω) turns out to be U -shaped and symmetric.

Lastly, we show that, with entry, our model explains qualitative empirical relationships

between bank size, net notionals, gross notionals, and intermediation activity. In the

model, entrants to the OTC market must pay a fixed cost. In practice, mass processing

of OTC derivatives order tickets requires a large infrastructure, and trading in derivatives

requires specialized expertise which is costly to acquire. In the CDS market, it is those

banks with a broad client base, which includes smaller banks with loan portfolios as well

as hedge funds with little initial exposure to credit risk, that became dealers. Because

the market depends largely on bilateral relationships, perceived credit risk also plays an

important role in succeeding as a dealer. In our model, the fixed cost implies that only

relatively large banks will enter and trade. Furthermore, large banks which have neutral

exposure essentially have a broad client base of both extreme high and low ω customers.

These banks become the key CDS market dealers in the sense that their balance sheets

have the largest gross positions, and they net the largest amount of long short trades.

6.1 Entry incentives

If the distribution of active banks in the market is n(ω), then the per-capita and before

entry cost certainty equivalent payoff of entering the market is, using (1) and (8),

∆(ω) ≡ Γ [ω]− Γ [g(ω)] +

∫ 1

0

γ(ω, ω̃)R(ω, ω̃)n(ω̃) dω̃.

The first-term is the change in exposure: it is negative if the bank is a net seller of

insurance, and positive if it is a net buyer. The second term is the sum of all CDS premia

collected and paid by the bank. It is positive if the bank is a net seller, and is typically

negative if it is a net buyer. To gain further insights into ∆(ω), we use the decomposition:

∆(ω) = K(ω) +
1

2
F (ω)
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where the function K(ω) is:

K(ω) ≡ Γ [ω]− Γ [g(ω)] +

∫ 1

0

Γ′ [g(ω)] γ(ω, ω̃)n(ω̃) dω̃

= Γ [ω]− Γ [g(ω)] + Γ′ [g(ω)]
(
g(ω)− ω

)
,

because
∫ 1

0
γ(ω, ω̃)n(ω̃) dω̃ = g(ω)− ω. The function F (ω) is:

F (ω) ≡ 2

(∫ 1

0

γ(ω, ω̃)R(ω, ω̃)n(ω̃) dω̃ −
∫ 1

0

Γ′ [g(ω)] γ(ω, ω̃)n(ω̃) dω̃

)
=

∫ 1

0

γ(ω, ω̃)
(
Γ′ [g(ω̃)]− Γ′ [g(ω)]

)
n(ω̃) dω̃

= k

∫ 1

0

∣∣Γ′ [g(ω̃)]− Γ′ [g(ω)]
∣∣n(ω̃) dω̃,

where the first equality follows from using the formula (12) for R(ω, ω̃), and the second

equality follows from the optimality condition (11).

The function K(ω) ≥ 0 represents the per-capita competitive surplus of bank ω. For a

net seller of insurance, g(ω) > ω, K(ω) is simply a producer surplus: the first two terms

represent the utility cost of producing g(ω)− ω units of insurance by changing exposure,

and the last term is the marginal cost of producing this insurance. Vice versa, for a

net buyer of insurance, K(ω) is a consumer surplus. In this sense, the function K(ω)

measures the benchmark entry incentives provided by a frictionless competitive market.

Notice that it is positive if g(ω) 6= ω and zero if g(ω) = ω. In other words, K(ω) only

measures incentives to change exposure and does not account for incentives to provide

intermediation.

The function F (ω) is also positive and measures the frictional surplus of bank ω.

When Γ′ [g(ω̃)] is not equalized across banks, a ω-bank uses its bargaining power to sell

insurance at a price higher than its marginal cost, and to buy insurance at price lower

than its marginal value. The profits thus generated add up to 1
2
F (ω), where the frictional

surplus is multiplied by 1
2

because a trader only has half of the bargaining power. Notice

in particular that, unlike K(ω), the function F (ω) is positive even when g(ω) = ω, and

so it accounts for incentives to provide intermediation.

When D is normally distributed and n(ω) is U -shaped and symmetric, we obtain a

sharper characterization of both functions:

Proposition 7 (Entry Incentives). Suppose that the distribution of active traders, n(ω),

is U-shaped and symmetric, and assume that D is normally distributed. Then both the

competitive surplus, K(ω), and the frictional surplus, F (ω), are U-shaped and symmetric
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around 1
2
.

The proposition means that extreme-ω “customer” banks, who have incentives to

share risk in the market and acquire large net positions, have the greatest incentives to

enter. At the same time, middle-ω “dealer” banks, who acquire small net positions but

large gross positions, have the smallest incentives to enter. Thus, intermediation activity

endogenously has a small profit margin in our model.

Moreover, the U -shape pattern of incentives holds both for the competitive surplus

and for the frictional surplus. The competitive surplus, K(ω), is U -shaped because a bank

has greatest incentives to enter if it either has a large risk bearing capacity (small ω), or

if it has a large need to unwind its risk (large ω). The frictional surplus, F (ω), measures

the average absolute distance between bank ω’s marginal cost of risk bearing and that

of other banks, and so it is minimized for the median bank. With a symmetric n(ω) the

median bank is at ω = 1
2
.

6.2 Equilibrium

Keeping in mind that a bank has to pay a fixed cost c to enter the market, it will enter

if and only if:

∆(ω)− c

S
≥ 0 ⇐⇒ S ≥ Σ(ω) where Σ(ω) ≡ c

∆(ω)
.

Let Ψ(S) be the measure of traders in banks with sizes greater than S. For S ≥ S, Ψ(S) =∫∞
S
xϕ(x) dx, and for S ≤ S, Ψ(S) = 1. Given that sizes and per-capita endowments are

independent in the banks’ cross section, the measure of active traders with endowment ω

is Ψ [Σ(ω)]. The distribution of active traders is, then:

T [n] (ω) =
Ψ [Σ(ω)]∫ 1

0
Ψ [Σ(ω̃)] dω̃

,

where the denominator normalizes the measure of active traders by the total measure of

active traders in the OTC market, keeping in mind that ω is uniformly distributed in the

banks’ cross-section. Note that this is a fixed point equation, since ∆(ω) and thus Σ(ω)

implicitly depend on n(ω).

Proposition 8 (Existence). There exists a continuous function, n, with
∫ 1

0
n(ω̃) dω̃ = 1,

solving the functional equation T [n] = n.

Because our proof applies the Schauder fixed point Theorem, it establishes existence
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but not uniqueness.14

Proposition 7 showed that a U -shaped and symmetric n(ω) maps into a U -shaped

and symmetric ∆(ω) and, therefore, into a hump-shaped and symmetric threshold, Σ(ω).

Since the function Ψ(x) is decreasing, it follows that T [n](ω) is U -shaped and symmet-

ric. Therefore, the operator T preserves the U -shaped and symmetric property. This

immediately implies that:

Corollary 9. If D is normally distributed, there exists an equilibrium n(ω) that is U-

shaped and symmetric.

In the entry equilibrium of Corollary 9, small-sized banks do not enter the OTC market

because their entry cost per capita is too large. Middle-sized banks enter, but only at the

extremes of the ω spectrum, where ∆(ω) is largest. In other words, middle-sized banks

tend to be customers. Large banks enter at all points of the ω spectrum: at the extreme,

as customers, and in the middle, as dealers. This pattern of participation thus implies

that middle-ω dealer banks are, on average, larger than extreme-ω customer banks.

6.3 Empirical implications

In this section we study the implications of our model for a cross-section of banks sorted

by size, and we study the economic forces determining the concentration of gross notional

in the OTC market for CDS’s.

6.3.1 Conditional moments

In section 3, we provided stylized facts about gross and net CDS notional in a cross-

section sorted by trading assets, a natural empirical measure of bank size. To derive

model counterparts of these facts, we calculate population moments conditional on size, for

several variables of interest. Precisely, let n(ω |S) be the distribution of traders conditional

on size,15 and let x(ω) be some cross-sectional variable of interest (price, notional, etc...).

The conditional moment of x(ω) is defined as:

ES [x(ω)] ≡
∫ 1

0

x(ω)n(ω |S) dω,

14A crucial step in applying the Schauder fixed point Theorem is to prove that the set of distributions
generated by the operator T [n] is equicontinuous. What delivers this property in our model is the
observation, from Proposition 2, that the post-trade exposure function g(ω) is Liptchitz with a coefficient
that does not depend on n(ω).

15Note that, since we’re conditioning on a population of banks who have identical size, this distribution
of traders must coincide with the distribution of establishments conditional on size.
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the expectation of x(ω) with respect to the distribution of traders conditional on S. We

obtain:

Proposition 10 (Cross-sectional facts). In an entry equilibrium with a U-shaped and

symmetric n(ω):

• conditional gross notional, ES
[
G+(ω) +G−(ω)

]
, is non-decreasing in S;

• conditional net notional, ES
[
|G+(ω)−G−(ω)|

]
, is non-increasing in S;

• conditional intermediation, ES
[

min{G+(ω), G−(ω)}
]
, is non-decreasing in S;

• conditional price dispersion, ES
[
R(ω, ω̃)2

]
− ES

[
R(ω, ω̃)

]2
, is non-increasing in S.

These results, illustrated in Figure 11, are the model counterparts of the stylized facts

we document using US data from the OCC and bank holding companies’ financial reports.

Just as we normalize by trading assets in the data to control for the mechanical effect

of size on various volume measures, the proposition focuses on “per capita” quantities.

To build intuition, recall that middle-ω banks have the largest gross notional, the small-

est net notional, and the largest intermediation volume. This is because, respectively,

middle-ω banks lie in an increasing post-trade exposure region and thus use all of their

trading capacity, they do not desire a change in their credit exposure since their pre-trade

exposure is near the aggregate of one-half, and for the same reason they conduct a large

amount of offsetting long and short trades in order to earn trading profits on CDS spreads.

Because only large banks can recoup their entry cost by conducting a large enough vol-

ume of intermediation, in the entry equilibrium, these middle-ω banks are predominantly

large. As a result, gross notional increases with size, net notional decreases with size, and

intermediation volume increases with size.

The last result of the proposition is that price dispersion decreases with size. Because

middle-sized banks tend to have extreme ω’s, a large number of middle-sized matches

involve either two low-ω banks, who trade at low prices, or two high-ω banks, who trade

at a high prices. The prevalence of either low-price or high-price matches results in a

large degree of price dispersion. On the other hand, there are more large-sized banks with

middle ω, and therefore more matches at average prices. This effect implies that price

dispersion decreases with size.

It is intuitive large middle-ω banks, which act as dealer banks, should trade with

each other at common prices since they all have similar outside options. Then, these

dealer banks trade with typically smaller banks with more extreme ω’s, i.e., end users or

customers, at heterogeneous prices that depend on the customers’ post trade positions. In
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the earlier work of Duffie, Gârleanu, and Pedersen (2005) and Lagos and Rocheteau (2009),

it is assumed that market makers or dealers trade in a frictionless market at common

prices. In our model, such an inter-dealer market arises endogenously amongst large

banks that are central to the market. One advantage of not assuming a frictionless inter-

dealer market is that, empirically, Arora, Gandhi, and Longstaff (2012) show that there

is substantial heterogeneity across dealers in CDS spreads offered to the same customer.

This seems consistent with the fact that, as in our model, dealer characteristics are also

key determinants of the spread.

6.3.2 Concentration

Taking stock of the above results, our model shows that the concentration of gross expo-

sures in large banks is the result of several forces working in the same direction. First, on

the extensive margin, small banks participate less in the OTC market than large banks:

small-sized banks do not participate, middle-sized banks participate only if their per

capita endowment, ω, is extreme enough. Second, on the intensive margin, middle-sized

banks sign less CDS contracts than larger banks. Some of this intensive margin effect is

purely mechanical: middle-sized banks have less traders, so they sign proportionally less

CDS contracts. But some of the effect arises because middle-sized banks tend to have

extreme ω’s, to lie in a flat spot of g(ω), and to thus find it optimal to use less than their

full trading capacity, k. Large-sized banks tend to have average ω, to lie in an increasing

spot, and to thus use all their trading capacity. This is another channel driving notional

concentration.

Figure 12 shows a heat map of bilateral gross notionals, per capita, across size per-

centiles. Variation along the diagonal of the heat map illustrates that gross notionals are

larger amongst larger banks, as we already knew from Proposition 10. The off-diagonal

vectors of the heat map offer new information: smaller banks trade more with larger

banks than amongst each other. This further illustrates the manner in which, in spite of

our assumption that all matching is random, large banks endogenously emerge as central

counterparties in the OTC market.

7 Welfare

This section shows that, at the margin of the entry equilibrium, a planner can increase

welfare by reducing the entry of middle-ω banks and increasing the entry of extreme-ω

banks.
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7.1 The welfare impact of marginal changes in entry

Consider any pattern of entry characterized by a threshold Σ(ω) > S such that ω-banks

enter if and only if S ≥ Σ(ω). Let M denote the corresponding measure of traders in the

OTC market, and let n(ω) > 0 denote the corresponding distribution of traders. We now

study the impact of changing the measure of traders entering at ω by εδ(ω), for some

small ε > 0 and some continuous function δ(ω). If δ(ω) < 0, then the measure of traders

at ω decreases, and if δ(ω) > 0 it increases. The changes εδ(ω) are engineered by changing

the entry size threshold from Σ(ω) to Σε(ω) such that:

Ψ [Σε(ω)] = Mn(ω) + εδ(ω).

That is, the total measure of traders in banks of size greater than Σε(ω) is equal to

Mn(ω) + εδ(ω).

Without loss of generality, we assume that CDS contracts are efficient conditional on

entry, i.e., they solve the planning problem of Proposition 1. If the planner can transfer

goods (but not assets) across banks at time zero, then δ(ω) increases welfare if and only

if it increases:

W (ε, δ) ≡−
∫ 1

0

(
1−Mn(ω)− εδ(ω)

)
Γ [ω] dω −

∫ 1

0

(
Mn(ω) + εδ(ω)

)
Γ [gε(ω)] dω

− c
∫ 1

0

Φ [Σε(ω)] dω,

where gε(ω) is the post-trade exposure solving the planning problem conditional on the

distribution of traders induced by Mn(ω) + εδ(ω). The first term is the cost of risk

bearing for traders who stay out of the OTC market, and the second term is the cost of

risk bearing for traders who enter. The last term, on the second line, is the sum of all

fixed entry costs incurred by bank establishments, with Φ [S] ≡
∫∞
S
ϕ(x) dx denoting the

measure of banks with sizes greater than S.

To study marginal changes in entry we evaluate the directional derivative W ′(0, δ).

Because post-trade exposures conditional on entry are efficient, an envelope theorem of

Milgrom and Segal (2002) implies that the marginal impact of entry is found by differen-

tiating W (ε, δ) holding the collection of CDS contracts, γ(ω, ω̃), constant.

Proposition 11 (Directional Derivative). The derivative of W (ε, δ) at ε = 0 is:

W ′(0, δ) =

∫ 1

0

δ(ω)

(
− c

Σ(ω)
+K(ω) + F (ω)− 1

2

∫ 1

0

F (ω̃)n(ω̃) dω̃

)
dω, (17)
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where K(ω) and F (ω) are the competitive and frictional surpluses defined in Section 6.1.

The intuition for each term is the following. First δ(ω) creates additional entry costs:

at ω, the marginal bank is of size Σ(ω), so each new ω-trader in this bank must pay a per-

capita entry cost c
Σ(ω)

. Second, entering banks change the exposure of their traders, from

ω to g(ω), and provide risk-sharing services to incumbents. These two effects combined

are measured by K(ω) + F (ω), the sum of the competitive surplus and of the frictional

surplus. Finally, the last term arises because the entry of new banks creates congestion

in the OTC market. Indeed, since the matching function has constant returns to scale,

the total number of matches received by an incumbent stays equal to 1, regardless of

the size of the market. Thus, mechanically, any match creation between incumbents and

entrants results in a corresponding amount of match destruction amongst incumbents.

In particular, and to a first order, there are εδ(ω) new matches between ω-entrants and

incumbents,16 and therefore a corresponding destruction of matches amongst incumbents.

The last term in equation (17) demonstrates that the associated surplus destruction is

equal to half of the average frictional surplus. It is intuitive that this surplus destruction

is proportional to the average frictional surplus because matches amongst incumbents are,

by virtue of random matching, effectively destroyed at random. The multiplication by 1
2

corrects for double counting. Indeed, in the average frictional surplus, k
∫ 1

0

∫ 1

0

∣∣Γ′ [g(ω)]−
Γ′ [g(ω̃)]

∣∣n(ω̃)n(ω) dω̃ dω, the surplus of each incumbents’ match is counted twice: once

at (ω, ω̃) and once at (ω̃, ω).

7.2 Improving upon the entry equilibrium

To see that the distribution of traders resulting from equilibrium entry is inefficient, recall

that the free entry condition can be written:

∆(ω) = K(ω) +
1

2
F (ω) =

c

Σ(ω)
.

Plugging this back into (17), we obtain

W ′(0, δ) =
1

2

∫ 1

0

δ(ω)

(
F (ω)−

∫ 1

0

F (ω̃)n(ω̃) dω̃

)
dω,

a formula with several implications. First, a necessary condition for first-order welfare

improvement is that F (ω) 6= 0 for some positive measure of ω, i.e., some frictional surplus

16To a first order, the probability of matching with an entrant of type ω is εδ(ω)/M , and the measure
of incumbents is M . Multiplying the two, we find that the total number of new matches between type-ω
entrants and incumbents is εδ(ω).
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is still up for grabs in the OTC market. Second, if δ(ω) is proportional to n(ω), then clearly

W ′(0, δ) = 0. In words, the average frictional surplus in matches between entrants and

incumbents exactly offsets the average frictional surplus destroyed in matches amongst

incumbents. This means that, to a first order, there are no welfare gains from changing

the size of the market while keeping its composition, n(ω), the same. In Appendix A.12,

we show that this is, in fact, a global result: an entry equilibrium has a socially optimal

size given n(ω). The intuition is that, when the composition of the market does not

change, entry is equivalent to creating two separate markets with identical n(ω), one

for the incumbents and one for the entrants. Therefore, entry has no externality on

incumbents. Finally, one sees from the formula that W ′(0, δ) increases when banks with

larger-than-average frictional surplus enter, while banks with lower-than-average surplus

exit. When D is normally distributed, we obtain a sharper characterization:

Proposition 12. Assume that D is normally distributed, consider an entry equilibrium

in which n(ω) is U-shaped and symmetric, and assume that Σ(ω) > S for all ω, and that

F (ω) 6= 0 for some positive measure of ω. Then, welfare increases if middle-ω banks exit

and extreme-ω banks enter. Formally, if
∫ 1

0
δ(ω̃) dω̃ = 0, then W ′(0, δ) > 0 when δ(ω) is

U-shaped and symmetric, and W ′(0, δ) < 0 when δ(ω) is hump-shaped and symmetric.

The assumption that
∫ 1

0
δ(ω̃) dω̃ = 0 is without loss of generality because we already

know that changing size without changing the composition does not create a welfare

improvement. The result then follows directly from Proposition 7 in which we showed

that F (ω) is U -shaped and symmetric, i.e., middle-ω banks have lowest frictional surplus.

Now recall that the marginal middle-ω bank is large-sized, while the marginal extreme-ω

bank is middle-sized. Our result thus implies that the planner should subsidize the entry

of small banks, in order to foster entry in the extremes of the ω spectrum. At the same

time, the planner should discourage entry of large banks, in order to foster exit in the

middle of the ω spectrum.

It is important to note that this result does not mean that middle-ω banks should not

enter in the OTC market at all. In our model, any bank, and in particular a middle-ω

bank, always has a positive social value before accounting for the entry cost. To see this,

note that

Lemma 2. For for any n(ω), the frictional surplus created by an entering bank of type ω

is always larger than the congestions it imposes on incumbents:

F (ω)− 1

2

∫ 1

0

F (ω̃)n(ω̃) dω̃ ≥ 0
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with a strict inequality if F (ω) 6= 0 for a positive measure of ω.

The result follows by an application of the first triangle inequality. It implies that,

even for a bank that creates no competitive surplus, K(ω) = 0, the social value of entry

is positive before entry costs. This means that, as long as there is not full risk sharing, it

is socially optimal to have some large enough ω = 1
2

banks entering in the OTC market.

In the entry equilibrium, however, these banks enter too much. Their large size means

that even though they do not gain in utility from altering their exposure to the default

risk factor, their scale allows them to defease the entry cost with a small intermediation

profit on every trade they make. On the other hand, a smaller bank with a high pre-trade

exposure would gain a lot in utility from insuring against default risk, but finds the entry

cost too high given their small scale.

8 Conclusion

The OTC market for CDS’s is very large relative to banks’ trading assets, and gross

notionals are highly concentrated on the balance sheets of just a few large dealer banks.

Moreover, the varied bilateral trades executed by banks’ many traders create an intricate

system of liability linkages. In this paper we have sought to uncover the economic forces

which determine this empirical trading structure in the OTC credit derivatives market.

To this end, we have developed a model in which banks trade credit default swaps in an

OTC market in order to share aggregate credit default risk. The equilibrium distribution

of trades in our model has many realistic features. Gross notionals greatly exceed net

notionals. The market is highly concentrated, and features increasing returns to scale.

Small-sized banks do not participate, middle-sized banks arise as customers which trade

at dispersed prices, whereas a small measure of large banks arise as key dealers and trade

at near common prices. Finally, all banks are connected through the bilateral trades of

participating banks’ many traders. We argue that capturing these positive features gives

credence to our model as a laboratory in which to study the normative features OTC

derivatives markets, as well as the policy questions surrounding them.

We study the key normative features of our theoretical market setup, namely the size

and concentration of the market. We find that the market is not too large in the sense

that a planner could not improve welfare by adding or subtracting banks while leaving

the composition of traders’ pre-trade risk endowment the same. On the other hand, we

also show that in our OTC market, even if frictions decrease enough to enable full risk

sharing, volume and gross notional balances still exceed their Walrasian counterparts. In

this sense, the OTC market is too large, however without trading costs excess volume does
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not reduce welfare. We also consider whether the model OTC market is too concentrated.

Concentration arises in our model market due to optimal bank entry with fixed costs of

participation. We find that the market is indeed too concentrated, in the sense that a

planner would want to remove some large dealer banks and replace them with smaller

customer banks. However, we also show that in our model, as frictions decrease and the

risk allocation improves, not only does volume increase, but concentration increases as

well. Thus, drawing normative conclusions about market concentration involves substan-

tial subtlety.

Finally, we argue that it is important to understand how the characteristic market fea-

tures arise in order to answer the current regulatory questions surrounding OTC deriva-

tives markets. For example, the proposed “Volcker rule” aims to restrict derivatives

trading which is not directly tied to underlying exposures. This may reduce risk taking

by banks. However, one potential side effect is a decline in market intermediation and

liquidity. Another proposed provision in the Dodd Frank Act aims to restrict exposure to

any one counterparty. Are such limits welfare improving? If so, how should each bilateral

limit be determined? Current bankruptcy law and capital requirement regulation seem to

favor banks with large offsetting long and short positions. Moreover, policies such as too-

big-to-fail and FDIC insurance may provide forces for concentrating derivatives trading

in explicitly or implicitly insured institutions. How much of the observed concentration

of gross CDS notionals is due to traditional considerations of economies of scale that we

study, and how much is driven by regulation favoring large dealer banks? In future work,

we plan to address questions such as these using the framework we develop in this paper.
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Figure 1: Increasing Returns to Scale in CDS Markets
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Figure 1 plots gross notional to trading assets by trading assets by trading assets for the top 25 bank

holding companies in derivatives according to the OCC quarterly report on bank trading and derivatives

activities third quarter 2011. Data are from bank holding companies’ FR Y-9C filing from Q3 2011.

Trading assets in thousands.

Figure 2: CDS Market Concentration
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Figure 2 plots gross notionals from 2007-2011 for banks that are among the top 25 bank holding

companies in OTC derivatives during that time period. Data are from the OCC quarterly report on bank

trading and derivatives activities third quarter 2011. Derivatives notionals in millions.
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Figure 3: CDS Net to Gross Notional
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Figure 3 plots net to gross notional for the top 25 bank holding companies in derivatives according to

the OCC quarterly report on bank trading and derivatives activities third quarter 2011. Data are from

bank holding companies’ FR Y-9C filing from Q3 2011. Trading assets in thousands. Empty bars denote

zero gross CDS notional.

Figure 4: Fraction of purchased credit derivatives recorded as guarantee
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Figure 4 plots the fraction of purchased credit derivatives from Q2 2009 to Q4 2011 that could

be counted as a guarantee for regulatory purposes for the larger vs. the smaller top 25 bank holding

companies in derivatives. Data are from bank holding companies’ FR Y-9C filings. Size is measured by

trading assets.
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Figure 5: A U -shaped and symmetric distribution.
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Figure 6: The post-trade exposure function when the traders’ distribution is U -shaped
and symmetric.
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Figure 7: Portfolio of CDS contracts of a bank with pre-trade exposure ω ∈ [0, 1
2 ].
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Figure 10: Gross and net notional.
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A Proofs

A.1 Proof of Lemma 1

The first derivative of Γ(g) is:

Γ′ [g] =
E
[
DeαgD

]
E [eαgD]

,

which is evidently positive since D is positive. The second derivative is:

Γ′′ [g] = α
E
[
D2eαgD

]
E
[
eαgD

]
− E

[
DeαgD

]2
E [eαgD]2

.

The numerator is positive since, by the Cauchy-Schwarz inequality, we have

E
[
DeαgD

]2
= E

[
Deαg/2Deαg/2x

]2
< E

[
D2eαgD

]
E
[
eαgD

]
.

The denominator is, evidently, positive as well. We thus obtain that Γ′′(g) > 0 as claimed.

A.2 Proof of Proposition 1

The planner’s objective is convex, and it constraint set is convex and bounded. Given that
γ(ω, ω̃) is measurable and bounded by k, it belongs to the Hilbert space of square integrable
functions. Existence then follows from an application of Proposition 1.2, Chapter II in Eckland
and Téman (1987). That all solutions of the planning problem share the same post-trade
exposure almost everywhere follows from the strict convexity of the function Γ [g].

To show that any solution of the planning problem is the basis of an equilibrium, consider
the following variational experiment. Starting from a solution, γ(ω, ω̃) and g(ω), consider the
alternative feasible allocation γ(ω, ω̃)+ε∆(ω, ω̃) for some small ε > 0 and some bounded ∆(ω, ω̃)
such that

∆(ω, ω̃) + ∆(ω̃, ω) = 0 (18)

γ(ω, ω̃) = k ⇒ ∆(ω, ω̃) ≤ 0 (19)

γ(ω, ω̃) = −k ⇒ ∆(ω, ω̃) ≥ 0. (20)

The corresponding post-trade exposure is g(ω) + ε
∫ 1

0 ∆(ω, ω̃)n(ω̃) dω̃. The change in the objec-
tive is, up to second-order terms:

δJ =ε

∫ 1

0
n(ω)Γ′ [g(ω)]

∫ 1

0
∆(ω, ω̃)n(ω̃) dω̃ dω

=
ε

2

∫ 1

0

∫ 1

0
Γ′ [g(ω)] ∆(ω, ω̃)n(ω̃)n(ω) dω̃ dω +

ε

2

∫ 1

0

∫ 1

0
Γ′ [g(ω)] ∆(ω, ω̃)n(ω̃)n(ω)dω̃ dω

=
ε

2

∫ 1

0

∫ 1

0
Γ′ [g(ω)] ∆(ω, ω̃)n(ω̃)n(ω) dω̃ dω +

ε

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] ∆(ω̃, ω)n(ω)n(ω̃)dω dω̃
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=
ε

2

∫ 1

0

∫ 1

0
Γ′ [g(ω)] ∆(ω, ω̃)n(ω̃)n(ω) dω̃ dω − ε

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] ∆(ω, ω̃)n(ω)n(ω̃)dω dω̃

=
ε

2

∫ 1

0

∫ 1

0

(
Γ′ [g(ω)]− Γ′ [g(ω̃)]

)
∆(ω, ω̃)n(ω)n(ω̃) dω̃ dω.

where: the first equality follows trivially; the second equality from relabeling ω by ω̃ and vice
versa; the third equality from the fact that ∆(ω, ω̃) + ∆(ω̃, ω) = 0; the fourth equality by
collecting terms. Since we started from a solution to the planning problem, it must be that
δJ ≥ 0. For this inequality to hold for any ∆(ω, ω̃) satisfying (18)-(20), it must be the case that
γ(ω, ω̃) and g(ω) satisfy (11) almost everywhere. Clearly, γ(ω, ω̃) is basis of an equilibrium, after
perhaps modifying it on a measure zero set so that it satisfies (11) everywhere. For brevity we
omit the precise construction of such a modification. The details are available from the authors
upon request.

Conversely, consider any equilibrium γ(ω, ω̃) and g(ω). Given that Γ [g] is convex, the
difference between the planner’s cost for the equilibrium allocation and the planner’s cost for
any other allocation γ̂(ω, ω̃) and ĝ(ω) is smaller than:

J − Ĵ ≤
∫ 1

0
n(ω)Γ′ [g(ω)]

∫ 1

0

(
γ(ω, ω̃)− γ̂(ω, ω̃)

)
n(ω̃)dω̃dω.

Note that, given γ(ω, ω̃) + γ(ω̃, ω) = 0, we have using the same manipulations as before:∫ 1

0

∫ 1

0
Γ′ [g(ω)] γ(ω, ω̃)n(ω̃)n(ω)dω̃ dω =

1

2

∫ 1

0

∫ 1

0

(
Γ′ [g(ω)]− Γ′ [g(ω̃)]

)
γ(ω, ω̃)n(ω)n(ω̃)dω dω̃.

Plugging this back into the expression for J − Ĵ , we obtain:

J − Ĵ ≤
∫ 1

0

∫ 1

ω

(
Γ′ [g(ω)]− Γ′ [g(ω̃)]

)(
γ(ω, ω̃)− γ̂(ω, ω̃)

)
n(ω̃)n(ω)dω̃dω.

Because of (11) the integrand is negative, implying that J ≤ Ĵ and establishing the claim that
γ(ω, ω̃) solves the planner’s problem.

A.3 Proof of Proposition 2

To prove that g(ω) is non-decreasing, suppose, constructing a contradiction, that there are
ω ≤ ω̃ such that g(ω̃) < g(ω). Then, by (11), it must be the case that for any counterparty x,
γ(ω, x) ≤ γ(ω̃, x), i.e., bank ω̃ sells more insurance than bank ω. But since bank ω̃ starts with
weakly larger exposure, ω ≤ ω̃, this implies that g(ω̃) ≥ g(ω), which would be a contradiction.

To prove that post-trade exposures are closer together than pre-trade exposures, consider
again two banks ω ≤ ω̃ and bear in mind that we have just shown that g(ω) ≤ g(ω̃). If
g(ω) = g(ω̃), then the result is trivially true. Otherwise if g(ω) < g(ω̃), then it must be the case
that, for any counterparty x, bank ω̃ sells less insurance than bank ω, i.e. γ(ω̃, x) ≤ γ(ω, x).
Therefore

∫ 1
0 γ(ω̃, x)n(x) dx ≤

∫ 1
0 γ(ω, x)n(x) dx which is, by definition of g(ω), equivalent to

g(ω̃)− ω̃ ≤ g(ω)− ω.
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A.4 Proof of Proposition 3

All ω-traders in [ω, ω] sell k CDS contracts to any trader ω̃ > ω and buy k CDS contracts from
any trader ω̃ < ω. With traders ω̃ ∈ [ω, ω], the number of CDS contracts bought and sold is
indeterminate. For any ω ∈ [ω, ω] we thus have:

g(ω) = g(ω) = g(ω) = ω − kN(ω) +

∫ ω

ω
γ(ω, ω̃)n(ω̃) dω̃ + k [1−N(ω)] .

Now multiply by n(ω) and integrate from ω to ω and note that, by (3) it must be the case that:∫ ω

ω

∫ ω

ω
γ(ω, ω̃)n(ω)n(ω̃)dωdω̃ = 0,

i.e. the net trade across all matches (ω, ω̃) ∈ [ω, ω]2 must be equal to zero. Collecting terms we
obtain expression (16).

A.5 Proof of Proposition 5 and 6

A.5.1 Two preliminary results

First we establish that, when n(ω) is symmetric around 1
2 , the equilibrium is symmetric as well:

Lemma 3. Suppose that the distribution of traders satisfies n(ω) = n(1−ω). Then equilibrium
post-trade exposures are symmetric, i.e. they satisfy g(1−ω) = 1−g(ω), and can be implemented
by a symmetric collection of CDS contract, i.e. such that γ(ω, ω̃) = −γ(1− ω, 1− ω̃).

To see this consider some equilibrium collection of CDS contract, γ(ω, ω̃) and its associated
post-trade exposures, g(ω). Now, the alternative collection of CDS γ̂(ω, ω̃) = −γ(1− ω, 1− ω̃)
is feasible and generates post-trade exposures:

ĝ(ω) = ω −
∫ 1

0
γ(1− ω, 1− ω̃)n(ω̃) dω̃ = ω −

∫ 1

0
γ(1− ω, 1− ω̃)n(1− ω̃) dω̃

= 1−
(

1− ω +

∫ 1

0
γ(1− ω, ω̂)n(ω̂) dω̂

)
= 1− g(1− ω),

where the first equality holds by definition of γ̂(ω, ω̃), the second equality because n(ω̃) =
n(1 − ω̃), and the third equality by change of variables ω̂ = 1 − ω̃. Now it is easy to see that
γ̂(ω, ω̃) satisfies (11). Indeed, ĝ(ω) < ĝ(ω̃) is equivalent to g(1 − ω̃) < g(1 − ω), which implies
from (11) that γ(1− ω̃, 1− ω) = −γ(1− ω, 1− ω̃) = γ̂(ω, ω̃) = k. Since equilibrium post-trade
exposures are uniquely determined, we conclude from this that ĝ(ω) = 1− g(1− ω) = g(ω).

To see that g(ω) can be implemented using a symmetric collection of CDS contract, consider
γ∗(ω, ω̃) = 1

2

(
γ(ω, ω̃) + γ̂(ω, ω̃)

)
, for the same γ̂(ω, ω̃) defined above. By construction, we have

that γ∗(1− ω, 1− ω̃) = −γ∗(ω, ω̃), and g∗(ω) = 1
2

(
g(ω) + ĝ(ω)

)
= g(ω), given that we have just

shown that g(ω) is symmetric.
The second preliminary result concerns the function H(ω):

Lemma 4. Let, for ω ∈ [0, 1
2 ], H(ω) ≡

∫ ω
0 (ω − ω̃)n(ω̃) dω̃ − kN(ω)2.

• if k ≤ 1
2 [n (0)]−1, then H(ω) ≥ 0.
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• if 1
2 [n (0)]−1 < k < 1−2E

[
ω |ω ≤ 1

2

]
, then there is a unique ω ∈ (0, 1

2) such that H(ω) < 0
for ω ∈ (0, ω) and H(ω) > 0 for ω ∈ (ω, 1

2).

• if k ≥ 1− 2E
[
ω |ω ≤ 1

2

]
, then H(ω) ≤ 0.

To prove this result note that H ′(ω) = N(ω) [1− 2kn(ω)] and keep in mind that n(ω) is
non-increasing over [0, 1

2 ]. If 2kn(0) ≤ 1, then H ′(ω) ≥ 0 over [0, 1
2 ]. Given that H(0) = 0, this

establishes the first point of the Lemma. If 2kn(0) > 1, then it follows that H(ω) is initially
decreasing and may subsequently become increasing: therefore, the equation H(ω) = 0 has at
most one solution in (0, 1

2 ]. Such a solution exists if and only if:

H(1
2) ≥ 0⇐⇒ 1

2N
(

1
2

)
−
∫ 1

2

0
ω̃n(ω̃) dω̃ − kN

(
1
2

)2 ≥ 0

⇐⇒ k ≤ 1− 2E
[
ω |ω ≤ 1

2

]
,

since n(ω) symmetric implies N(1
2) = 1

2 .

Lastly, we verify that 1− 2E
[
ω |ω ≤ 1

2

]
≥ 1

2 [n(0)]−1, with an equality if and only if n(ω) is
uniform. This follows from two implications of the fact that n(ω) is non-increasing over [0, 1

2 ].
First,

N(1
2) = 1

2 =

∫ 1
2

0
n(ω) dω ≤ n(0)

2 =⇒ n(0) ≥ 1.

Second, a uniform distribution over [0, 1
2 ] first-order stochastically dominates n(ω |ω ≤ 1

2),
implying that:

E
[
ω |ω ≤ 1

2

]
≤ 1

2 ⇐⇒ 1− E
[
ω |ω ≤ 1

2

]
≥ 1

2 ,

with a strict inequality if and only if n(ω |ω ≤ 1
2), and thus n(ω), is uniform. Combining the

two we obtain the desired inequality.
It follows directly from the Lemma that:

Corollary 13. For ω ∈ (0, 1
2), z(ω) ≤ k if and only if H(ω) ≤ 0.

A.5.2 Proof of the two propositions

Given Lemma 3 it is enough to focus on ω ∈ [0, 1
2 ].

When there is no flat spot. Consider first the case when k ≤ 1
2 [n(0)]−1. Then, by

Lemma 4, it follows that z(ω) ≥ k for all ω ∈ (0, 1
2 ]. Therefore, the candidate CDS contracts

of Proposition 6 are such that γ(ω, ω̃) = k if ω < ω̃. The corresponding post trade exposure
is thus equal to g(ω) = ω + k [1− 2N(ω)]. Note that, since n(ω) is U shaped and symmetric,
the maximum of n(ω) is n(0) and so 2kn(ω) ≤ 1 for all ω. Therefore the function g(ω) is
non-decreasing over [0, 1]. This establishes that the CDS contracts of Proposition 6 are indeed
the basis of an equilibrium.

When there are flat and increasing spots. Now assume that [n(0)]−1 < k < 1 −
2E
[
ω |ω ≤ 1

2

]
and consider some ω ∈ [0, ω]. By Lemma 4, we have that γ(ω, ω̃) = −z(ω) for
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ω̃ < ω, γ(ω, ω̃) = z(ω̃) for ω̃ ∈ (ω, ω), and γ(ω, ω̃) = k for ω̃ ≥ ω. Therefore, the corresponding
post-trade exposure is

g(ω) = ω −
∫ ω

0
z(ω)n(ω̃) dω̃ +

∫ ω

ω
z(ω̃)n(ω̃) dω̃ + k [1−N(ω)] .

Differentiating with respect to ω one directly verifies that g′(ω) = 0 so that g(ω) is flat over [0, 1
2 ].

Next consider ω ∈ (ω, 1
2 ]. By Lemma 4, we have that γ(ω, ω̃) = −k for ω̃ < ω, and γ(ω, ω̃) = k

for ω̃ > ω. Therefore the corresponding post-trade exposure is g(ω) = ω + k [1− 2N(ω)].
Differentiating we obtain that g′(ω) = 1− 2kn(ω), which is positive since, by Lemma 4, it must
be the case that H ′(ω) > 0 for ω ∈ (ω, 1

2 ]. Taken together, this implies that the CDS contracts
of Proposition 6 are indeed the basis of an equilibrium.

When there is full risk sharing. Lastly assume that k ≥ 1 − 2E
[
ω |ω ≤ 1

2

]
. Then

z(ω) ≤ k for all ω ∈ [0, 1
2 ]. For all ω ∈ [0, 1

2 ], g(ω) becomes

g(ω) = ω −
∫ ω

0
z(ω)n(ω̃) dω̃ +

∫ 1
2

ω
z(ω̃)n(ω̃) dω̃ + z(1

2)
[
1−N(1

2)
]
,

i.e., the same as above with ω replaced by 1
2 and k replaced by z(1

2). Taking derivatives show
that g′(ω) = 0 and so g(ω) = g(1

2). Now given that N(1
2) = 1

2 , it follows that g(1
2) = 1

2 and so
the CDS contracts of Proposition 6 are the basis of an equilibrium.

A.6 Proof of the results discussed in Section 5.3.5

The result that ω increases with k follows immediately because ω solves the implicit equation
H(ω) = 0 and because, at ω, the function H(ω) is increasing in ω and decreasing in k. The level
of the flat spot goes up with ω because g(ω) is increasing in [ω, 1− ω].

To study the derivatives of gross notional with respect to k, note that the gross notional of a
bank in the increasing spot is equal to k, since traders go to corner in all meetings. For a bank
in the flat spot, gross notional is equal to:

z(ω)N(ω) +

∫ ω

ω
z(ω̃)n(ω̃) dω̃ + k

[
1−N(ω)

]
.

Taking derivatives with respect to k we obtain:

∂ω

∂k
z(ω)n(ω) +

[
1−N(ω)

]
− kn(ω)

∂ω

∂k

and the result follows because z(ω) = k by construction.
Finally, let us turn to the trading volume. Trivially, when k → 0, volume must also goes to

zero. Now we show that, when k is greater than 1− 2E
[
ω |ω ≤ 1

2

]
but less than one, then the

volume must be greater than its Walrasian counterpart. Suppose towards a contradiction that
volume is exactly equal to the Walrasian counterpart. That is, for any ω, the gross exposure
is equal to the absolute net exposure, |12 − ω|. Since g(ω) = 1

2 = ω +
∫ 1

0 γ(ω, ω̃)n(ω̃) dω̃, this
implies that for ω < 1

2 , we must have γ(ω, ω̃) ≥ 0 and for ω > 1
2 , γ(ω, ω̃) ≤ 0. In other words,

the only way there is no excess trading volume is that any given bank ω only sign CDS contracts
in one direction. But this also means that there cannot be trades amongst (ω, ω̃) ∈ [0, 1

2)2, and
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amongst (ω, ω̃) ∈ (1
2 , 1]2. Therefore, for a ω < 1

2 bank:

1
2 − ω =

∫ 1

1
2

γ(ω, ω̃)n(ω̃) dω̃ ≤ k

2
.

But this inequality can’t hold if ω ' 0 and k is less than one, a contradiction.
Finally we show how to find CDS contracts whose volume is arbitrarily close to the Walrasian

volume, for k large enough. The construction is based on the following intuition: in the absence
of any trading limits, the Walrasian allocation obtains by trading the quantity 1

2 − ω of CDS’s
with the symmetric bank, 1 − ω, and nothing with banks ω̃ 6= 1 − ω. When trading capacity
is large, then approximate Walrasian volume obtains by trading with a small measure of banks
surrounding the symmetric 1−ω bank. Formally let us assume for this argument that n(ω) > 0
eveywhere so that it is bounded below by n > 0. Given some integer I consider the sequence
ωi = 1

2 + i
2I , for i ∈ {1, . . . , I} and the symmetric sequence ω−i = 1 − ωi. Let Ωi ≡ [ωi−1, ωi]

and its symmetric Ω−i ≡ [ω−i, ω−i+1]. The mean endowment in Ωi is ω?i = E
[
ω |ω ∈ Ωi

]
, and

by symmetry the mean endowment in Ω−i is ω?−i = 1− ω?i . Now consider the collection of CDS
contracts γA(ω, ω̃) + γB(ω, ω̃), defined as follows. For ω ∈ Ωi and ω̃ ∈ Ω−i:

γA(ω, ω̃) =
1
2 − ω

?
i(

N(ωi)−N(ωi−1)
) ,

and for ω ∈ Ωi and ω̃ /∈ Ω−i, γA(ω, ω̃) = 0. For ω ∈ Ωi and ω̃ ∈ Ωj ,

γB(ω, ω̃) =
(
ω?j − ω̃

)
−
(
ω?i − ω

)
.

The contracts γA(ω, ω̃) prescribe trades amongst (ω, ω̃) belonging to symmetric intervals Ωi and
Ω−i. They are designed to bring a ω-trader’s exposure close to 1

2 . Namely after conducting
all the trades in γA(ω, ω̃) the exposure of a ω-trader is 1

2 − (ω?i − ω). When I is large enough,
ω ' ω?i and so this exposure is very close to 1

2 . Note that, because the aggregate exposure to
default risk is equal to 1

2 , the average residual exposure ω?i − ω must be equal to zero.
The contracts γB(ω, ω̃) prescribe a ω-trader to swap his residual endowment, ω?i − ω, with

the residual endowment of everyone else. Therefore, he ends up with the average residual
endowment, which is equal to zero as noted above. Taken together, the combined contracts,
γA(ω, ω̃) + γB(ω, ω̃), lead to post trade exposures g(ω) = 1

2 .
Clearly, gross notionals created by γA(ω, ω̃) can be made arbitrarily close to their Walrasian

counterpart for I large enough. Likewise, the gross notionals created by γB(ω, ω̃) can be made
arbitrarily close to zero. Given that N(ωi)−N(ωi−1) > n (ωi − ωi−1) = n/(2I) > 0, choosing k
large enough makes these contracts feasible, establishing the claim.

A.7 Proof of Proposition 7

When D is normally distributed, Γ [x] is quadratic, and so we have the identity:

Γ [y] = Γ [x] + Γ′ [x] (y − x) +
Γ′′

2
(y − x)2 ,
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where Γ′′ = αV [D] is the constant second derivative of Γ [x]. It thus follows that competitive
surplus must be equal to:

K(ω) = Γ [ω]− Γ [g(ω)] + Γ′ [g(ω)]
(
g(ω)− ω

)
=
αV [D]

2

(
g(ω)− ω

)2
.

The property that K(ω) is U-shaped obtains from the fact that g′(ω) ≤ 1 and g(1
2) = 1

2 .
The formula from the frictional surplus is:

F (ω) =

∫ 1

0

∣∣Γ′ [g(ω̃)]− Γ′ [g(ω)]
∣∣n(ω̃) dω̃

=

∫ ω

0

(
Γ′ [g(ω)]− Γ′ [g(ω̃)]

)
n(ω̃) dω̃ +

∫ 1

ω

(
Γ′ [g(ω̃)]− Γ′ [g(ω)]

)
n(ω̃) dω̃.

Now take derivatives

F ′(ω) = Γ′′ [g(ω)] g′(ω)
(
2N(ω)− 1

)
,

which is negative for ω below the median, and positive for ω above the median, which in our
symmetric case is ω = 1

2 .

A.8 Proof of Proposition 8

A.8.1 Preliminaries

To apply the fixed point Theorem, we first need to establish properties of the operators mapping
the distribution of traders, n, to the post-trade exposure function, g, and two the entry payoff,
∆. Consider the set C0([0, 1]) of continuous functions over [0, 1], equipped with the sup norm.
Let N be the set of n ∈ C0([0, 1]) such that n(ω) > 0 almost everywhere and

∫ 1
0 n(ω) dω = 1. Let

G be the set of post-trade exposures functions, g, and let D be the set of entry payoff functions,
∆, generated by distributions in N . Clearly, by Proposition 2, G is a subset of C0([0, 1]), and so
is D. Moreover:

Lemma 5. The sets G and D are equibounded and equicontinuous, and so their closures, Ḡ and
D̄, are compact.

For G, boundedness follows because g(ω) ∈ [0, 1] and equicontinuity because, as shown in
Proposition 2, post-trade exposure are Lipchitz with coefficient 1. For D, boundedness follows
because g is bounded. For equicontinuity, it is enough to show that all ∆ ∈ D are Lipchitz
with a coefficient that is independent of n ∈ N . For this note first that the competitive surplus
K(ω) = Γ [ω] − Γ [g(ω)] + Γ′ [g(ω)]

(
g(ω) − ω

)
is Lipchitz with a coefficient independent of n.

This is because g is Lipchitz with coefficient one, because both Γ [x] and Γ′ [x] are continuously
differentiable, and because the Lipchitz property over a compact is preserved by sum, product,
and composition. So all we need to show is that the frictional surplus is Lipchitz with a coefficient
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that is independent from n. To that end consider ω2 > ω1 and note that:

∣∣F (ω1)− F (ω2)
∣∣ =

∣∣∣∣ ∫ 1

0

(∣∣Γ′ [g(ω̃)]− Γ′ [g(ω2)]
∣∣− ∣∣Γ′ [g(ω̃)]− Γ′ [g(ω1)]

∣∣)n(ω̃) dω̃

∣∣∣∣
≤
∫ 1

0

∣∣∣∣∣∣Γ′ [g(ω̃)]− Γ′ [g(ω2)]
∣∣− ∣∣Γ′ [g(ω̃)]− Γ′ [g(ω1)]

∣∣∣∣∣∣n(ω̃) dω̃

≤
∫ 1

0

∣∣∣∣Γ′ [g(ω2)]− Γ′ [g(ω1)]

∣∣∣∣n(ω̃) dω̃ =

∣∣∣∣Γ′ [g(ω2)]− Γ′ [g(ω1)]

∣∣∣∣,
where the inequality on the third line follows by an application of the reverse triangle inequality.
Since Γ′ [g] is Lipchitz, and since g is Lipchitz with coefficient one, the result follows. The
compactness of Ḡ and D̄ then follows from Arzela-Ascoli Theorem (see Theorem 11.28 in Rudin,
1974).

Next, we establish a first continuity property:

Lemma 6. The operator mapping distributions, n ∈ N , into post-trade exposures, g ∈ G, is
continuous.

To show this result consider some n ∈ N , and let g and γ be the associated equilibrium post-
trade exposures and CDS contracts. Let n(p) be a sequence of distributions converging to n, and
let γ(p) and g(p) be the associated sequences of CDS contracts and post-trade exposures. Keep
in mind that we equipped C0([0, 1]) with the sup norm, so convergence is uniform. Given that Ḡ
is compact, in order to show continuity it is sufficient to show that all convergent subsequences
of g(p) share the same limit, and that this limit is equal to g. Without loss of generality, we
thus assume that g(p) is convergent, and denote its limit by g?. Note that, since all g(p) are
continuous and convergence is uniform, g? must be continuous. By construction, g(p), γ(p) and
n(p) satisfy:

g(p)(ω) = ω +

∫ 1

0
γ(p)(ω, ω̃)n(p)(ω̃) dω̃.

Consider the auxiliary post-trade exposures:

ĝ(p)(ω) ≡ ω +

∫ 1

0
γ(p)(ω, ω̃)n(ω̃) dω̃

g̃(p)(ω) ≡ ω +

∫ 1

0
γ(ω, ω̃)n(p)(ω̃) dω̃.

In words, ĝ(p) is the post-trade exposure generated by γ(p) if the underlying distribution of
traders is n, and g̃(p) is the post-trade exposure generated by γ if the underlying distribution is
n(p). Note that, since γ(p) is bounded by k and since n(p) → n, we have ||ĝ(p) − g(p)|| → 0 and
so ĝ(p) → g?. Likewise, g̃(p) → g.

Let J(g, n) ≡
∫ 1

0 Γ [g(ω)]n(ω) dω be the average cost of risk bearing generated by post-trade
exposures g under distribution n. Recall that (γ, g) solves the planning problem of Proposition
1 given n, i.e., it minimizes J amongst feasible risk allocations. Since (γ(p), ĝ(p)) is feasible for
this planning problem, we must have J(g, n) ≤ J(ĝ(p), n). Going to the limit p→∞, we obtain
by dominated convergence that J(g, n) ≤ J(g?, n). Likewise, g(p) solves the planning problem
given n(p). Since (γ, g̃(p)) is feasible for this planning problem, we must have J(g(p), n(p)) ≤
J(g̃(p), n(p)). Going to the limit p → ∞, we obtain by dominated convergence that J(g?, n) ≤
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J(g, n). Taken together, we thus have that J(g?, n) = J(g, n). Now suppose that g? 6= g. Then
by convexity of Γ[g] we have that for all λ ∈ (0, 1):

J(λg + (1− λ)g?, n) < J(g, n).

But λγ + (1 − λ)γ(p) is feasible, generates post trade exposure λg + (1 − λ)ĝ(p) given n, and
converges to λg + (1− λ)g? as p → ∞. Therefore, for p large enough, J(λg + (1− λ)ĝ(p), n) <
J(g, n), which is impossible given that (γ, g) solves the planning problem. Therefore, g = g?

almost everywhere, since we restricted attention to n such that n(ω) > 0 almost everywhere.
Since g and g? are continuous, we obtain that g = g∗ everywhere.

Next we have the corollary:

Corollary 14. The operator mapping distributions, n ∈ N , into entry-utility functions, ∆ ∈ D,
is continuous.

Note that ∆(ω) = A
(
ω, g(ω), N(ω)

)
+B

(
ω, g, n

)
, where

A(ω, g,N) = Γ [ω]− Γ [g]− Γ′ [g] (ω − g) +
k

2
(2N − 1) Γ′ [g]

B
(
ω, g(·), n(·)

)
= −k

2

∫ ω

0
Γ′ [g(ω̃)]n(ω̃) dω̃ +

k

2

∫ 1

ω
Γ′ [g(ω̃)]n(ω̃) dω̃.

Now given any n(p) → n, we already know that the associated g(p) → g. Note also, that
N (p) → N (uniformly as well). Since A(ω, g,N) is continuous and (ω, g,N) ∈ [0, 1]3, it follows
that A(ω, g(p)(ω), N (p)(ω))→ A(ω, g(ω), N(ω)) uniformly. Likewise, by dominated convergence,
B
(
ω, g(p), n(p)

)
→ B

(
ω, g, n

)
uniformly.

Lastly an important property for what follows is:

Lemma 7 (0 6= D̄). The function ∆(ω) = 0 does not belong to the closure of D.

Towards a contradiction assume it does: there is a sequence n(p) such that the associated
∆(p) → 0. Note that, by strict convexity of Γ [g(ω)], Γ [ω]− Γ [g(ω)] + Γ′ [g(ω)]

(
g(ω)− ω

)
≥ 0,

with an equality if and only if g(ω) = ω. Given that the frictional surplus is non-negative, this
implies that:

Γ [ω]− Γ
[
g(p)(ω)

]
− Γ′

[
g(p)(ω)

] (
ω − g(p)(ω)

)
→ 0,

and that all convergent subsequence of g(p) are such that g(p)(ω)→ ω. Given that Ḡ is compact,
we thus have that g(p)(ω)→ ω uniformly over ω ∈ [0, 1]. Now turning to the last term of ∆(ω)
evaluated at ω = 0, we have:∫ 1

0

(
Γ′
[
g(p)(ω̃)

]
− Γ′

[
g(p)(0)

])
n(p)(ω̃) dω̃ → 0,

where we can remove the absolute value since g(p)(ω) ≥ g(p)(0). In particular, for any ω > 0,
we have that

∫ 1
ω

(
Γ′
[
g(p)(ω̃)

]
− Γ′

[
g(p)(0)

] )
n(p)(ω̃) dω̃ → 0. Given that g(p)(ω̃) ≥ g(p)(ω) for

ω̃ ∈ [ω, 1], this implies in turn that
(
Γ′
[
g(p)(ω)

]
− Γ′

[
g(p)(0)

] )(
1 − N (p)(ω)

)
→ 0. Since

g(p)(ω) → ω, we thus have that N (p)(ω) → 1, i.e., the distribution n(p) converges to a Dirac at
ω = 0. The intuition is simple: the only way ω = 0 has no gain from entering, i.e. ∆(ω) = 0, is
if it only meets traders of her kind, i.e., ω̃ = 0 with probability one. But this means that ω 6= 0

51



must have strictly positive gains from entering. Formally, given that g(p)(ω) converges towards
ω, uniformly over ω ∈ [0, 1], this implies that, for every ω ∈ (0, 1], the last term of ∆(p)(ω)
converges to k

2

∣∣Γ′(0)− Γ′(ω)
∣∣ > 0, which is a contradiction.

A.8.2 Properties of the fixed-point equation

For this section it is convenient to rewrite the fixed-point equation as:

T [n] (ω) =
Υ [∆(ω)]∫ 1

0 Υ [∆(ω̃)] dω̃
, where Υ(x) ≡ Ψ

( c
x

)
. (21)

We start by establishing basic properties of the function Υ(x):

Lemma 8. Let, for x > 0, Υ(x) ≡ Ψ
(
c
x

)
and let Υ(0) = 0. Then the function Υ(x) is bounded,

non-decreasing, continuous, piecewise continuously differentiable with bounded derivative.

The function Υ(x) is bounded and non-deacreasing since Ψ(x) ∈ [0, 1] and non-increasing.
It is obviously continuous for x > 0, and it is also continuous at zero since limS→∞Ψ(S) = 0.
It is differentiable for all x > 0 and x 6= c

S . For x ∈ (0, cS ), Υ′(x) = −c2/x3ϕ(c/x). Note that

limx→0 Υ′(x) = 1
c × limS→∞ S

3ϕ(S), which we assumed exists. Given that ϕ(S) is continuous,

this implies in turns that Ψ′(x) is bounded over
[
0, cS

)
. For x > c

S , Υ′(x) = 0 and is obviously

continuously differentiable and bounded. Moreover,

1

x
Ψ
( c
x

)
=

1

c
× c

x

∫ ∞
c
x

zϕ(z) dz =
1

c
× c

x

∫ x
c

0

1

y3
ϕ

(
1

y

)
dy → 1

c
× lim
S→∞

S3ϕ(S),

where the first equality follows from the definition of Ψ(S), the second equality from the change of
variable y = 1/z, and the third equality follows because of our assumption that limS→∞ S

3ϕ(S)
exists. Therefore, Υ(x) is continuously differentiable at zero, implying that its derivative is
bounded over [0, cS ).

Lemma 9 (Properties of T ). The operator T is continuous and uniformly bounded. The set
T [N ] is included in N and is equicontinuous.

Continuity follows because Υ(x) is continuous, and because, by Corollary 14, the operator
mapping n to ∆ is continuous. For boundedness, note first that the numerator of (21) is positive
and less than one. So all we need to show is that denominator is bounded away from zero. For
this it suffices to show that:

inf
∆∈D̄

∫ 1

0
Υ
[
∆(ω)

]
dω > 0.

Since D̄ is compact by Lemma 5, and since the functional that is minimized is continuous in
∆, it follows that the infimum is achieved for some continuous function ∆∗ ∈ D. By Lemma 7,
∆∗ 6= 0. Since Ψ(x) ≥ 0 with an equality if and only if x = 0, it follows that the infimum is
strictly positive.

Next we show that T [N ] ⊆ N , i.e., that T [n](ω) is continuous, satisfies
∫ 1

0 n(ω) dω = 1,
and n(ω) > 0 almost everywhere. Continuity follows because ∆(ω) and Υ(x) are continuous;∫ 1

0 n(ω) dω = 1 follows by construction. To show that T [n](ω) > 0 almost everywhere, we show
that there is at most one ω? such that T [n](ω?) = 0. Indeed, since Υ(x) = 0 if and only if
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x = 0, T [n](ω?) = 0 implies Υ [∆(ω?)] = ∆(ω?) = K(ω?) = F (ω?) = 0. Because F (ω?) = 0, and
keeping in mind that n(ω) > 0 almost everywhere, it follows that Γ′ [g(ω)] = Γ′ [g(ω?)] and thus
g(ω) = g(ω?) almost everywhere. Since g(ω̃) is continuous, it follows that g(ω) is constant and
equal to

∫ 1
0 ωn(ω) dω. But then K(ω∗) = 0 implies that ω? =

∫ 1
0 ωn(ω) dω, which has a unique

solution.
Turning to equicontinuity, note that since Ψ [x] is piecewise differentiable with bounded

derivatives, it is Lipchitz. Recall from the proof of Lemma 5 that all ∆ ∈ D are Lipchitz with
a coefficient that is independent of n ∈ N . Given that the Lipchitz property is preserved by
composition, this shows that ω 7→ Ψ [∆(ω)] is Lipchitz with a coefficient that is independent
of n ∈ N . Lastly, from argument above, the denominator of T [n](ω) is bounded away from
zero. Taken together, this shows that the function T [n] is Lipchitz with a coefficient that is
independent of n ∈ N .

A.8.3 Applying the Schauder fixed point Theorem

Let M be the uniform upper bound of the operator T we obtained in the proof of Lemma 9.
Consider the closed and bounded set NM of all n ∈ N such that ||n|| ≤ M . Note that N is
convex and that a convex combination of functions bounded by M remains bounded by M .
Therefore, NM is convex as well. Clearly, the operator T maps NM into itself. Moreover, by
Lemma 9, the family T [NM ] is equicontinuous. Taken together all these properties allow to
apply Theorem 17.4 in Stokey and Lucas (1989), establishing the existence of a fixed point.

A.9 Proof of Corollary 9

The result follows by applying the Schauder fixed point Theorem in the set NS of n ∈ NM which
are U-Shaped and symmetric. Clearly, this set is closed and convex. Moreover, when Γ [x] the
operator T maps NS into itself. The results follows.

A.10 Proof of Proposition 10

A.10.1 Preliminary: notional analytics

In this section we establish:

Proposition 15. Suppose that n(ω) is U-shaped, symmetric, positive, and consider the equilib-
rium CDS contracts of Proposition 6. Then:

(i) G+(ω) = G−(1− ω);

(ii) G+(ω) is decreasing and G−(ω) is increasing;

(iii) G+(ω) = G−(ω) if and only if ω = 1
2 ;

(iv) G+(ω) + G−(ω) is weakly hump-shaped and symmetric around 1
2 : it is increasing over

[0, ω), constant over (ω, 1− ω) and decreasing over (1− ω, 1];

(v)
∣∣G+(ω)−G+(ω)

∣∣ is U-shaped and symmetric around 1
2 ;

(vi) min{G+(ω), G−(ω)} is hump-shaped and symmetric around 1
2 .
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Point (i). The first point of the Proposition follows from the fact that γ(ω, ω̃) = −γ(1 −
ω, 1− ω̃).

Point (ii). Given the first point, to prove the second point we only need to show that G+(ω)
is decreasing over [0, 1

2 ], and that G−(ω) is increasing over [0, 1
2 ]. For this weconsider various sub-

cases. If g(ω) is increasing, then G+(ω) = k [1−N(ω)] and so is clearly decreasing. Likewise,
G−(ω) = kN(ω) and is clearly increasing. If g(ω) has flat and possibly increasing spot, i.e. ω ∈
(0, 1

2 ], then for ω ∈ (ω, 1
2 ], G+(ω) = k [1−N(ω)] and G−(ω) = kN(ω), which are respectively

decreasing and increasing. For ω ∈ [0, ω]

G+(ω) =

∫ ω

0
z(ω̃)n(ω̃) dω̃ + k [1−N(ω)] ,

which is decreasing. Likewise, when ω ∈ [0, ω],

G−(ω) = N(ω)z(ω) =

∫ ω
0 (ω − ω̃)n(ω̃) dω̃

N(ω)

Taking derivatives we obtain

dG−

dω
(ω) =

N(ω)2 − n(ω)
∫ ω

0

(
ω − ω̃

)
n(ω̃) dω̃

N(ω)2

≥
ωn(ω)N(ω)− n(ω)

∫ ω
0

(
ω − ω̃

)
n(ω̃) dω̃

N(ω)2
=
n(ω)

∫ ω
0 ω̃n(ω̃) dω̃

N(ω)2
≥ 0

where the second line follows from the fact that n(ω) is decreasing over [0, 1
2 ], implying that

N(ω) ≥ ωn(ω).

Point (iii). The first point implies that G+(1
2) = G−(1

2). This is the unique solution of
G+(ω) = G−(ω) given that G+(ω) is decreasing and G−(ω) is increasing.

Point (iv). Given the first point it is enough to show that G+(ω) +G−(ω) is non-decreasing
over [0, 1

2 ]. If g(ω) is increasing then G+(ω) +G−(ω) = k. Now suppose that g(ω) has a flat and
possibly an increasing spot. For all ω ∈ [ω, 1

2 ], g(ω) is increasing and so G+(ω) + G−(ω) = k.
For ω ∈ [0, ω], the gross exposure is:

G+(ω) +G−(ω) = z(ω)N(ω) +

∫ ω

ω
z(ω̃)n(ω̃) dω̃ + z(ω) [1−N(ω)] .

Now recall:

g(ω) = ω − z(ω)N(ω) +

∫ ω

ω
z(ω̃)n(ω̃) dω̃ + z(ω) [1−N(ω)] .
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This implies:

G+(ω) +G−(ω) = g(ω)− ω + 2z(ω)N(ω) = g(ω)− ω + 2

∫ ω
0 (ω − ω̃)n(ω̃) dω̃

N(ω)

= g(ω) +

∫ ω
0 (ω − 2ω̃)n(ω̃)

N(ω)
,

where the first equality follows from plugging in the expression for z(ω) from Proposition 6.
Taking derivatives with respect to ω we find:

N(ω) (−ωn(ω) +N(ω))− n(ω)
∫ ω

0 (ω − 2ω̃)n(ω̃) dω̃

N(ω)2

=
N(ω)− 2n(ω)

∫ ω
0 (ω − ω̃)n(ω̃) dω̃

N(ω)
≥ n(ω)

N(ω)

(
ω − 2

∫ ω

0
(ω − ω̃) n(ω̃) dω̃

)
,

where the last inequality follows because n(ω) is non-increasing over [0, 1
2 ], and so N(ω) ≥ ωn(ω).

The result follows because the term in parenthesis is equal to zero when ω = 0, and its derivative
is 1− 2N(ω) > 0 over [0, 1

2).

Point (v). Given the fist point it is enough to show that G+(ω)−G−(ω) is decreasing over
[0, 1

2 ]. this note that |G+(ω) − G−(ω)| = |g(ω) − ω|. For ω ∈ [0, 1
2 ], Proposition 2 implies that

g(1
2)− g(ω) ≤ 1

2 −ω. Given symmetry, g(1
2) = 1

2 , so g(ω) ≥ 0 and |G+(ω)−G−(ω)| = g(ω)−ω.
When g(ω) is flat, then clearly this is a decreasing function. When g(ω) is increasing, then
g′(ω) = 1− 2kn(o), and so g′(ω)− 1 = −2kn(ω) < 0.

Point (vi). From Point (ii) and (iii), it follows that, for ω ∈ [0, 1
2 ], min{G+(ω), G−(ω)} =

G+(ω) is increasing.

A.10.2 Proof of the main proposition

The first step is to derive the distribution of traders conditional on size, n(ω |S). Recall that,
the entry threshold at ω, Σ(ω), is a hump-shaped function of ω. This means that, if a bank of
size S is active in the market, then its endowment per capita, ω, must be either small enough
or large enough. Precisely, for S ∈ [Σ(1

2),∞), let ω̄(S) ∈ [0, 1
2 ] be the solution of Σ(ω) = S. For

S ≥ Σ(1
2), let ω̄(S) = 1

2 . Then if a bank of size S ∈ [Σ(1
2),∞) is active in the OTC market,

its endowment per-capita of a bank of size must either belong to [0, ω̄(S)] or [1− ω̄(S), 1]. Now
recall that the endowment per trader is drawn uniformly conditional on S. This implies that
the measure of traders conditional on S must be uniform over its support, that is:

n(ω |S) =
1

2ω̄(S)
if ω ∈ [0, ω̄(S)] ∪ [1− ω̄(S), 1]

and n(ω |S) = 0 otherwise. Clearly, if S′ > S, then n(ω |S′) has puts more mass towards
the middle of the ω spectrum than n(ω |S), because middle-ω banks are predominantly large.
Mathematically, given symmetry, this property can be expressed as follows:

Lemma 10. Consider (S, S′ in [Σ(0),Σ(1
2)]. If S′ > S, then n(ω |S′, ω ≤ 1

2) first order stochas-
tically dominates n(ω |S, ω ≤ 1

2).
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Now consider any function x(ω) that is U-shaped and symmetric and calculate:

ES [x(ω)] =

∫ 1

0
x(ω)n(ω |S) dω = 2

∫ 1
2

0
x(ω)n(ω |S, ω ≤ 1

2) dω,

where the second equality follows because x(ω) is symmetric. Now, given that x(ω) is decreasing
over [0, 1

2 ], it follows from the above lemma that ES [x(ω)] is non-increasing. The opposite is
true if x(ω) is hump-shaped and symmetric. Except for price dispersion, the results then follow

from Proposition 15. For price dispersion, recall that, given that Γ′ [g] = E [D] +αV[D]
2 g and so:

R(ω, ω̃) = E [D] +
αV [D]

2

(
g(ω) + g(ω̃)

)
Given that n(ω |S) is symmetric around 1

2 , ES [g(ω)] = 1
2 and so the conditional mean of CDS

price is:

ES [R(ω, ω̃)] = E [D] +
αV [D]

2
.

The conditional dispersion is, up to some multiplicative constant:

ES
[(
g(ω)− 1

2 + g(ω̃)− 1
2

)2]
= 2ES

[(
g(ω)− 1

2

)2]
= 2

∫ 1
2

0

(
g(ω)− 1

2

)2
n(ω |S, ω ≤ 1

2) dω,

where the first equality follows because ω and ω̃ are drawn independently, and the second equality
follows by symmetry. Now observe that, over [0, 1

2 ], g(ω)− 1
2 is non-decreasing and negative, so

that
(
g(ω)− 1

2

)2
is non-increasing. The result then follows from the Lemma.

A.11 Proof of Proposition 11

We study each terms of W (ε, δ) in turns. To ease exposition, we start with the third term, then
move on to the first term, and finally study the second term.

Derivative of the third term. Note that Σε(ω) = Ψ−1 [Mn(ω) + εδ(ω)] and that the
derivative of Φ ◦Ψ−1[x] is 1/Ψ−1[x]. Therefore, the derivative of the third term is:

−c
∫ 1

0

δ(ω)

Σ(ω)
dω.

Derivative of the first term. The derivative of the first term is, clearly:∫ 1

0
δ(ω)Γ [ω] dω.

Derivative of the second term. For this define δ̄ ≡
∫ 1

0 δ(ω) dω and let

nε(ω) ≡ Mn(ω) + εδ(ω)

M + εδ̄
.
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Recall that, conditional on entry, the equilibrium allocation of risk is efficient. That is, the
second term can be written:

−
(
M + εδ̄

)
× inf
γ(ω,ω̃)

∫ 1

0
nε(ω)Γ

[
ω +

∫ 1

0
γ(ω, ω̃)nε(ω̃)dω̃

]
dω,

By the envelope theorem (see paragraph below for the detailed formal argument), the derivative
of “inf” is equal to the partial derivative of the objective with respect to ε evaluated at the

optimal γ(ω, ω̃). Given that ∂nε(ω)
∂ε

∣∣
ε=0

= δ(ω)−n(ω)δ̄
M , the derivative of the third term is:

− δ̄
∫ 1

0
n(ω)Γ [g(ω)] dω −

∫ 1

0

(
δ(ω)− n(ω)δ̄

)
Γ [g(ω)] dω

−
∫ 1

0
n(ω)Γ′ [g(ω)]

∫ 1

0
γ(ω, ω̃)

(
δ(ω̃)− δ̄n(ω̃)

)
dω̃dω.

Changing the order of integration and using γ(ω, ω̃) = −γ(ω̃, ω) we obtain that the term on the
second line above is:

−
∫ 1

0
n(ω)Γ′ [g(ω)]

∫ 1

0
γ(ω, ω̃)

(
δ(ω̃)− δ̄n(ω̃)

)
dω̃ dω

=

∫ 1

0

(
δ(ω)− δ̄n(ω̃)

) ∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃) dω̃ dω

Some more algebra. Collecting the derivatives of the first, second, and third term we
obtain:

W ′(0, δ) =

∫ 1

0
δ(ω)

(
− c

Σ(ω)
+ Γ [ω]− Γ [g(ω)] +

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃) dω̃

)
dω (22)

− δ̄
∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω)n(ω̃) dωdω̃. (23)

Just as in the calculation of entry incentives, in Section 6.1, we add and subtract
∫ 1

0 Γ′ [g(ω)] γ(ω, ω̃)n(ω̃) dω̃ =
Γ′ [g(ω)]

(
g(ω) − ω

)
to the integral in the first line, (22). We obtain that this integral is equal

to: ∫ 1

0
δ(ω)

(
− c

Σ(ω)
+K(ω) + F (ω)

)
dω.

57



Now moving on to the second line, (23), we note that:∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃)n(ω) dω̃dω

=
1

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃)n(ω) dω̃dω +

1

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃)n(ω) dω̃dω

=
1

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃)n(ω) dω̃dω − 1

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω̃, ω)n(ω̃)n(ω) dω̃dω

=
1

2

∫ 1

0

∫ 1

0
Γ′ [g(ω̃)] γ(ω, ω̃)n(ω̃)n(ω) dω̃dω − 1

2

∫ 1

0

∫ 1

0
Γ′ [g(ω)] γ(ω, ω̃)n(ω)n(ω̃) dωdω̃

=
1

2

∫ 1

0

∫ 1

0

(
Γ′ [g(ω̃)]− Γ′ [g(ω)]

)
γ(ω, ω̃)n(ω̃)n(ω) dω̃dω =

1

2

∫ 1

0
F (ω)n(ω) dω.

where: the first equality follows trivially; the second equality follows from γ(ω̃, ω) = −γ(ω, ω̃);
the third equality from relabeling ω by ω̃ and vice versa; and the last line by collecting terms,
using (11), as well as the definition of the frictional surplus. Collecting all terms we arrive at
the formula of the proposition.

The formal application of the Envelope Theorem. Consider the optimization prob-
lem

K(ε) = min
γ(ω,ω̃)

∫ 1

0
φ(ω, γ, ε) dω, (24)

subject to γ(ω, ω̃) + γ(ω̃, ω) = 0 and γ(ω, ω̃) ∈ [−k, k] and where:

φ(ω, γ, ε) ≡ nε(ω)Γ

[
ω +

∫ 1

0
γ(ω, ω̃)nε(ω̃)dω̃

]
dω

=
Mn(ω) + εδ(ω)

M + εδ̄
Γ

[
ω +

M

M + εδ̄

∫ 1

0
γ(ω, ω̃)n(ω̃) dω̃ +

ε

M + εδ̄

∫ 1

0
γ(ω, ω̃)δ(ω̃) dω̃

]
.

Clearly, both ∂φ
∂ε and ∂2φ

∂ε2
exist. Moreover, since because γ(ω, ω̃), n(ω̃) and δ(ω̃) are bounded,

these derivatives are bounded uniformly in (ω, ε) ∈ [0, 1]2. Therefore, using Theorem 9.42 in
Rudin (1953), we obtain ∂f

∂ε by differentiating
∫ 1

0 φ(ω, γ, ε) dω under the integral sign. Moreover,

since ∂2φ
∂ε2

is bounded uniformly in (ω, ε), it follows that ∂φ
∂ε and thus ∂φ

∂ε is Lipchitz with respect
to ε, with a Lipchitz coefficient that is independent from ω. This allows to apply Theorem 3 in
Milgrom and Segal (2002) and assert that:

K ′(0) = lim
ε→0

∫ 1

0

∂φ

∂ε
(ω, γε, 0) dω,

where γε is, for each ε, a solution of the minimization problem (24). All we need to show is,
therefore, that

lim
ε→0

∫ 1

0

∂φ

∂ε
(ω, γε, 0) dω =

∫ 1

0

∂φ

∂ε
(ω, γ, 0) dω,
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where γ is a solution of the minimization problem when ε = 0. To that end we first take
derivatives with respect to ε:

M

∫ 1

0

∂φ

∂ε
(ω, γε, ε) dω =

∫ 1

0
[δ(ω)− δn(ω)] Γ [g̃ε(ω)] dω

+

∫ 1

0
n(ω)Γ′ [g̃ε(ω)]

(
− δ

∫ 1

0
γε(ω, ω̃)n(ω̃) dω̃ +

∫ 1

0
γε(ω, ω̃)δ(ω̃) dω̃

)
dω,

where g̃ε(ω) ≡ ω+
∫ 1

0 γε(ω, ω̃)n(ω̃) dω̃ is the post-exposure generated by γε(ω, ω̃) if the underlying
distribution of traders is n(ω). Given that nε(ω) → n(ω) uniformly, we know from the proof
of Lemma 6 that g̃ε(ω) → g(ω) uniformly. Given the definition of g̃ε(ω) this also implies that∫ 1

0 γε(ω, ω̃)n(ω̃) dω̃ = g̃ε(ω) − ω → g(ω) − ω =
∫ 1

0 γ(ω, ω̃)n(ω̃) dω̃ uniformly. This implies that
all terms except perhaps the last one converge to their ε = 0 counterparts. To show that the
last term converges as well, rewrite it as:∫ 1

0

∫ 1

0
n(ω)Γ′ [g̃ε(ω)] γε(ω, ω̃)δ(ω̃) dω̃ dω

=

∫ 1

0

∫ 1

0
n(ω)

(
Γ′ [g̃ε(ω)]− Γ′ [g̃ε(ω̃)]

)
γε(ω, ω̃)δ(ω̃) dω̃ dω +

∫ 1

0

∫ 1

0
n(ω)Γ′ [g̃ε(ω̃)] γε(ω, ω̃)δ(ω̃) dω̃ dω

=−
∫ 1

0

∫ 1

0
n(ω)

∣∣∣∣Γ′ [g̃ε(ω)]− Γ′ [g̃ε(ω̃)]

∣∣∣∣kδ(ω̃) dω̃ dω −
∫ 1

0
Γ′ [g̃ε(ω)] δ(ω)

∫ 1

0
γε(ω, ω̃)n(ω̃) dω̃ dω,

where the second line follows from subtracting and adding Γ′ [gε(ω̃)], and the third line follows,
for the first term, from the optimality condition (11) and, for the second term, from the fact
γ(ω, ω̃) = −γ(ω̃, ω) and by switching integrating variables. The result follows because, as noted
before, both g̃ε(ω̃) and

∫ 1
0 γε(ω, ω̃)n(ω̃) dω̃ converge uniformly to their ε = 0 counterparts.

A.11.1 Proof of Lemma 2

Note that

F (ω)− 1

2

∫ 1

0
F (ω̃)n(ω̃) dω̃ = F (ω)− 1

2

∫ 1

0

∫ 1

0

∣∣Γ′ [g(ω̃)]− Γ′ [g(ω̂)]
∣∣n(ω̃)n(ω̂) dω̃ dω̂.

Now, by the first triangle inequality, it follows that:∣∣Γ′ [g(ω̃)]− Γ′ [g(ω̂)]
∣∣ ≤ ∣∣Γ′ [g(ω̃)]− Γ′ [g(ω)]

∣∣+
∣∣Γ′ [g(ω)]− Γ′ [g(ω̂)]

∣∣
which, after substituting in the above, gives:

F (ω)− 1

2

∫ 1

0
F (ω̃)n(ω̃) dω̃ ≥ 0

A.12 Equilibrium market size is socially optimal given n(ω)

Go back to the beginning of Section 7.1 and let the planner choose the number M of traders in
the OTC market, holding market composition n(ω) the same. The corresponding entry threshold
is ΣM (ω) and solves ΣM (ω) = Ψ−1 [Mn(ω)]. Moreover the threshold ΣM (ω) is decreasing in
M because Ψ [S] is decreasing in M . Note as well that there is a maximum market size, M̄ ,
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consistent with n(ω). The maximum size M̄ is attained when the threshold reaches zero for
some ω. When M rises above M̄ , it is no longer possible to increase entry at the extreme and
so it is no longer possible to keep market composition the same. Given that the threshold is
lowest at ω = 0, M̄ solves Ψ [0] = M̄n(0).

For M ∈ (0, M̄ ] the derivative of the welfare function with respect to M is given by the
directional derivative of Proposition 11, evaluated at ΣM (ω) and δ(ω) = n(ω):∫ 1

0
n(ω)

{
Γ [g(ω)]− Γ [ω]− c

ΣM (ω)

}
dω.

Note that g(ω) only depends on n(ω) and, therefore, do not depend on M . Therefore, the
directional derivative only depends on M through ΣM (ω). Given that ΣM (ω) is a decreasing
function of M , the derivative is decreasing, the planning problem is strictly concave in M , and
the first-order condition for optimality is sufficient.
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