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Abstract 

Options on crude oil futures are the most actively traded commodity derivatives. Existing pricing 

models for crude oil derivatives are computationally intensive due to the presence of latent state 

variables. We adopt a class of computationally efficient discrete-time jump models that allow for 

closed-form option valuation, and investigate the economic importance of jumps and dynamic 

jump intensities in the market for crude oil futures and futures options. Including jumps is crucial 

for modeling crude oil futures and futures options, and we find very strong evidence in favor of 

time-varying jump intensities. The main role of jumps and jump risk in the crude oil futures and 

options markets is to capture excess kurtosis in the data. We find that jumps account for a large part 

of the variation in crude oil futures and options prices, and a substantial part of the risk premium is 

due to jumps. Futures data indicate the presence of many small jumps, while option data point 

towards large infrequent jumps.    

JEL Classification: G12; G13. 

Keywords: Crude oil; Futures; Options; Discrete-time models; Jump intensities; Risk 

premiums.  
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1 Introduction 

Crude oil is the single largest commodity in international trade, and the crude oil derivatives market 

constitutes the most liquid commodity derivatives market. In December 2011, WTI and Brent crude oil 

futures accounted for 51.4% of dollar weight in the S&P GSCI commodity index. Nearly 900,000 futures 

and options contracts trade on WTI every day.  

        In order to price and hedge this increasingly important commodity, it is crucial to model crude oil 

futures and options and better understand their dynamics. Surprisingly though, there are relatively few 

studies on pricing crude oil derivatives, especially when compared with the existing literature on equity 

derivatives. Trolle and Schwartz (2009) estimate a continuous-time stochastic volatility model using 

NYMEX crude oil futures and options and find evidence for two, predominantly unspanned, volatility 

factors. They do not consider jump processes, which have been used in other security markets to model 

large movements. Larsson and Nossman (2010) examine the performance of affine jump diffusion models 

with stochastic volatility for modeling the time series of crude oil spot prices. Their results show that 

stochastic volatility alone is not sufficient and jumps are an essential factor to correctly capture the time 

series properties of oil prices. However, they do not use panel data on futures contracts nor option prices. 

Hamilton and Wu (2011) model crude oil futures with an affine term structure model and document 

significant changes in oil futures risk premia since 2005. Pan (2011) studies the relationship of state price 

densities and investor beliefs. Chiarella, Kang, Sklibosios, and To (2012) document a hump-shaped 

volatility structure in the commodity derivatives market. To the best of our knowledge, no existing studies 

have implemented jump models using extensive cross-sections of crude oil derivatives. 

        There is an extensive literature on the modeling of equity derivatives, which mainly focuses on index 

returns and options. This literature includes models with both stochastic volatility and jumps (e.g., see 

Bakshi, Cao, and Chen, 1997; Bates, 1996, 2000, 2006; Pan 2002; Eraker, 2004; Carr and Wu, 2004; 

Santa-Clara and Yan 2010,), as well as GARCH-style jump models (Maheu and McCurdy, 2004; Duan, 

Ritchken and Sun, 2006, Christoffersen, Jacobs, and Ornthanalai, 2012; and Ornthanalai, 2012).  

       The implementation of continuous-time stochastic volatility models with Poisson jumps is complex, 

because the likelihood function is typically not available in closed form, and therefore option pricing in 

the presence of jumps typically relies on complex econometric methods to filter the unobserved state 

variables. For example, Chernov, Gallant, Ghysels, and Tauchen (2003) use an Efficient Method of 
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Moments (EMM) based method, Pan (2002) uses the implied-state Generalized Method of Moments 

(GMM) technique, Eraker, Johannes, and Polson (2003), Eraker (2004), and Li, Wells, and Yu (2007) 

employ Markov Chain Monte Carlo (MCMC) techniques, and Trolle and Schwartz (2009) use the 

Extended Kalman Filter (EKF). This type of estimation is computationally intensive, especially when 

dealing with large data sets. 

        In this paper, we study discrete-time models in which the conditional variance of the normal 

innovation and the conditional jump intensity of a compound Poisson process are governed by GARCH-

type dynamics. We estimate four nested jumps models to investigate the importance of time-varying 

conditional variance and time-varying jump intensity using an extensive panel data set of crude oil futures 

and option prices.  

       For the discrete-time models in this paper, both the conditional jump intensity and the conditional 

variance can be directly computed from the observed shocks using an analytical filter. With the analytical 

filter, filtering the normal component and the jump component is relatively simple and extremely fast, 

even when the jump intensity is time-varying. It takes less than a second to filter 38,024 futures contracts 

using Matlab on a standard PC. Because the variance and the jump intensity dynamic can be updated 

analytically, we can conveniently estimate the model using MLE or NLS estimation. Calculating the 

Implied Volatility Root Mean Squared Error (IVRMSE) of 283,653 option contracts takes about 7 

seconds. 

       We investigate the economic importance of jumps and dynamic jump intensity in the crude oil market 

and compare the fit of the jump models with that of a benchmark GARCH model without jumps. We 

study four jump models with different specifications of jump intensity and conditional variance. The 

DVCJ (dynamic volatility with constant jumps) model is assumed to have constant jump intensities, 

which is consistent with most of the existing continuous-time SVJ literature. The CVDJ (constant 

volatility and dynamic jumps) model has time-varying jump intensity, but the normal innovation to the 

return process is assumed to be homoskedastic. It is related to the constant volatility jump-diffusion 

models of Bates (1991) and Merton (1976). The DVDJ (dynamic volatility and dynamic jumps) model 

contains time-varying jump intensities and a time-varying conditional variance but the dynamics are 

driven by the same dynamic.  The DVSDJ (dynamic volatility with separate dynamic jumps) model is the 

most general model in which both the jump intensity and the conditional variance are time-varying and 

the dynamics are modeled separately. The latter two models are related to the most complex SVJ 

dynamics of Eraker (2004) and Santa-Clara and Yan (2010).   
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       We find strong evidence of the presence of jumps and dynamic jump intensities in the crude oil 

market. During crisis periods, when market risk is high, jumps occur more frequently. Jump models with 

time-varying jump intensities outperform the benchmark model significantly, and in models with time-

varying intensities jumps explain a large part of the variance of the underlying futures data, regardless of 

the data used in estimation.       

     Estimates based on futures data indicate the presence of many small jumps, whereas estimates based 

on option data point towards infrequent large jumps. The implied conditional kurtosis from option-based 

estimates is much larger than that implied by futures data. Contrary to equity index markets, the main role 

of jumps and jump risk in crude oil futures markets is to capture the excess kurtosis in the data, while 

skewness is of second-order importance. 

        The rest of the paper proceeds as follows. Section 2 develops discrete-time pricing models for 

commodity futures. We propose four nested jump models and a benchmark GARCH model. Section 3 

discusses the crude oil futures and options data used in this paper. In Section 4 we explain MLE 

estimation on futures contracts and report the estimation results. Section 5 derives the risk-neutral 

dynamics and the closed form option valuation formula. Section 6 presents estimation results using 

options data, and Section 7 presents results using options and futures jointly in estimation. Section 8 

concludes. 

 

2 Models for Commodity Futures Markets 

In commodity futures markets, we observe futures prices for different maturities, and spot prices are 

considered unobservable. We develop a general class of discrete-time models by first specifying models 

for the unobservable spot price, and then imposing the relationship between the spot price and futures 

prices for different maturities. 

        The relationship between the futures price and the spot price of a commodity is given by  

,ݐሺܨ  ܶሻ ൌ ܵሺݐሻexp ሾܿሺݐ, ܶሻ כ ሺܶ െ  ሻሿ (2.1)ݐ

where ܵሺݐሻ denotes the spot price at time t, ܨሺݐ, ܶሻ is the time t price of the futures contract maturing at 

time T, and ܿሺݐ, ܶሻ denotes the time t forward cost of carry for the futures contract maturing at T.       

Combining this with the expression for the time t+1 futures price maturing at time T, the log futures 

return is given by 
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 log
்,௧ାଵܨ
்,௧ܨ

ൌ log
ܵ௧ାଵ
ܵ௧

൅ ∆ܿሺݐ, ݐ ൅ 1, ܶሻ (2.2) 

where ∆ܿሺݐ, ݐ ൅ 1, ܶሻ captures the cumulative difference of the forward cost of carry between time t and 

t+1 for futures contracts maturing at time T.  

        The forward cost of carry ܿሺݐ, ܶሻ is unobservable. We assume it is deterministic, and extract it from 

the relationship between futures and spots prices following the approach of Gibson and Schwartz (1990). 

We provide details on this method in Appendix A.  Several studies have estimated more general models 

with stochastic cost of carry specifications. We implemented stochastic cost of carry models, but for the 

models under study here the cost of carry model does not seem to substantially affect the results.  

2.1 The Benchmark Model  

We formulate a new class of jump models for commodities markets. To provide a benchmark for these 

models that can capture several important stylized facts of commodity markets, we first consider a 

standard GARCH model. We specify the spot return process  

 log
ܵ௧ାଵ
ܵ௧

ൌ ௧ାଵݎ ൅ ൬ߣ௭ െ
1
2
൰ ݄௭,௧ାଵ ൅  ௧ାଵ (2.3)ݖ

Where ݎ௧ାଵ is the instantaneous risk free rate, ݖ௧ାଵ  is an innovation which is distributed ܰ൫0, ݄௭,௧ାଵ൯, 

݄௭,௧ାଵ is the conditional variance known at time t, and ߣ௭ is the market price of risk associated with the 

normal innovation.  

        Substituting (2.3) into (2.2), we get the benchmark GARCH model for futures returns 

 log
்,௧ାଵܨ
்,௧ܨ

ൌ ௧ାଵݎ ൅ ൬ߣ௭ െ
1
2
൰ ݄௭,௧ାଵ ൅ ඥ݄௭,௧ାଵߝ௭,௧ାଵ ൅ ∆ܿሺݐ, ݐ ൅ 1, ܶሻ (2.4) 

where ߝ௭,௧ାଵ is distributed ܰሺ0,1ሻ. The conditional variance of the normal innovation ݄௭,௧ାଵ is governed 

by a GARCH (1, 1) process, which is specified according to Heston and Nandi (2000).  

 ݄௭,௧ାଵ ൌ ߱௭ ൅ ܾ௭݄௭,௧ ൅ ܽ௭ሺߝ௭,௧ െ ܿ௭ඥ݄௧ሻଶ (2.5) 

GARCH models provide a convenient framework to capture stylized facts in financial markets such as 

conditional heteroskedasticity, volatility clustering, and mean reversion in volatility. These stylized facts 

are also very prominent in commodity futures markets. The GARCH dynamic in (2.5) is different from 

the more conventional GARCH specifications of Engle (1982) and Bollerslev (1986), and is explicitly 
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designed to facilitate option valuation. We discuss the benefits of the specification in (2.5) in more detail 

below.  

       Consistent with other GARCH specifications, the conditional variance ݄௭,௧ାଵ in (2.5) is predictable 

conditional on information available at time t. The unconditional variance is given by ݄ൣܧ௭,௧ାଵ൧ ൌ ሺ߱௭ ൅

ܽ௭ሻ/ሺ1 െ ܾ௭ െ ܽ௭ܿ௭ଶሻ, where ܾ௭ ൅ ܽ௭ܿ௭ଶ is the variance persistence. Further, given a positive estimate for 

ܽ௭, the sign of ܿ௭ determines the correlation between the futures returns and the conditional variance. 

Equivalently, ܿ௭ can be thought of as controlling the skewness or asymmetry of the distribution of log 

returns, with a positive ܿ௭ resulting in a negatively skewed multi-day distribution. 

         

2.2 Filtering the Conditional Variance Using Futures with Different Maturities  

Heston and Nandi (2000) estimate their model using S&P 500 index returns and options. For that 

application, it is straightforward to directly filter the conditional variance ݄௭,௧ାଵ  from the return 

innovations with the GARCH model. Our application is more complex, because we have a cross-section 

of crude oil futures prices with different maturities (eight time series of futures contracts in our case).  

        Consider the following futures return series  

 log
௧ାଵ,்೔ܨ
௧,்೔ܨ

ൌ ௧ାଵݎ ൅ ൬ߣ௜,௭ െ
1
2
൰ ݄௜,௭,௧ାଵ ൅ ඥ݄௜,௭,௧ାଵߝ௜,௭,௧ାଵ ൅ ∆ܿሺݐ, ݐ ൅ 1, ௜ܶሻ (2.6) 

where ݅ ൌ 1, 2, . . ,8 and ௜ܶ represents the maturity date of the futures contract. The number of parameters 

in this model is very large if the parameters for the return and variance dynamics are maturity-specific, 

and the number of parameters increases with the number of futures contracts. Instead, impose the 

restriction that these parameters are the same for all eight maturities. Furthermore, instead of separate 

dynamics for each maturity, consider filtering the volatility using 

 
݄௭,௧ାଵ ൌ ߱௭ ൅ ܾ௭݄௭,௧ ൅ ܽ௭൫ߝଵ,௭,௧ െ ܿ௭ඥ݄௭,௧൯

ଶ
൅ ܽ௭൫ߝଶ,௭,௧ െ ܿ௭ඥ݄௭,௧൯

ଶ
൅  ڮ

൅ ܽ௭൫଼ߝ,௭,௧ െ ܿ௭ඥ݄௭,௧൯
ଶ
 

(2.7) 

Finally, we have to specify the structure of the covariance matrix of the vector of residuals. To keep the 

model as parsimonious as possible and further reduce the number of parameters, we assume that 

covariance matrix of the return innovations is a diagonal matrix, ߝ௭,௧ାଵ ൌ ,ଵ,௭,௧ାଵߝൣ ,ଶ,௭,௧ାଵߝ … ,
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.௭,௧ାଵሿ ~ i,଼ߝ i. d.  ܰሺ0, ܫ଼ ሻ , where ଼ܫ  is the identity matrix. This approach is consistent with the 

assumptions made by Trolle and Schwartz (2009), who use the Kalman filter for estimation. 

2.3 Commodity Futures Returns with Dynamic Jump Intensities 

The futures return process in (2.4)-(2.5) provides a benchmark model that can capture several important 

stylized facts using a simple setup with a single normal innovation. We now provide a much richer class 

of models with jumps in returns and volatilities, and with potentially time-varying jump intensities. 

Futures returns are given by  

 log
ி೟శభ,೅
ி೟,೅

ൌ ௧ାଵݎ ൅ ቀߣ௭ െ
ଵ

ଶ
ቁ ݄௭,௧ାଵ ൅ ൫ߣ௬ െ ൯݄௬,௧ାଵߦ ൅ ௧ାଵݖ ൅ ௧ାଵݕ ൅ ∆ܿሺݐ, ݐ ൅ 1, ܶሻ. (2.8) 

where the notation for ݎ௧ାଵ, ,௭ߣ    ௧ାଵݕ ௧ାଵ and ݄௭,௧ାଵ is the same as in Section 2.1. The jump componentݖ

is specified as a Compound Poisson process denoted as ܬ൫݄௬,௧ାଵ, ,ߠ  ଶ൯. The Compound Poisson structureߜ

assumes that the jump size is independently drawn from a normal distribution with mean ߠ and variance 

ଶߜ . The number of jumps ݊௧ାଵ arriving between times t and t+1 is a Poisson counting process with 

intensity ݄௬,௧ାଵ. The jump component in period t+1 is therefore given by 

௧ାଵݕ  ൌ ෍ ௧ାଵݔ
௝

௡೟శభ

௝ୀ଴

 (2.9) 

where ݔ௧ାଵ
௝ , j = 0,1, 2, … is an i.i.d. sequence of normally distributed random variables, ݔ௧ାଵ

௝ ~ܰሺߠ,  .ଶሻߜ

The conditional expectation of the number of jumps arriving over time interval (t, t+1) equals the jump 

intensity, ܧ௧ሾ݊௧ାଵሿ ൌ ݄௬,௧ାଵ. The conditional mean and variance of the jump component ݕ௧ାଵ are given 

by ݄ߠ௬,௧ାଵ and ሺߠଶ ൅  .ଶሻ݄௬,௧ାଵ respectivelyߜ

        The convexity adjustment terms 
ଵ

ଶ
݄௭,௧ାଵ  and ݄ߦ௬,௧ାଵ ؠ ሺ݁ఏା

ഃమ

మ െ 1ሻ݄௬,௧ାଵ  in (2.6) act as 

compensators to the normal and jump component respectively. The conditional risk premium is given by 

௧ାଵߛ ؠ ௭݄௭,௧ାଵߣ ൅  ௬ denoting the market prices of risks for the normal and jumpߣ ௭ andߣ ௬݄௬,௧ାଵ, withߣ

components. 

 

2.4 Four Jump Models 
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We formulate four nested models with jump dynamics. In the most general model, we assume that both 

the conditional variance of the normal component and the jump intensity are governed by the following 

extended GARCH (1, 1) dynamics. 

 ݄௭,௧ାଵ ൌ ߱௭ ൅ ܾ௭݄௭,௧ ൅
ܽ௭
݄௭,௧

ሺݖ௧ െ ܿ௭݄௭,௧ሻଶ ൅ ݀௭ݕ௧ (2.10) 

 ݄௬,௧ାଵ ൌ ߱௬ ൅ ܾ௬݄௬,௧ ൅
ܽ௬
݄௭,௧

ሺݖ௧ െ ܿ௬݄௭,௧ሻଶ ൅ ݀௬ݕ௧ (2.11) 

where ߱௭, ܽ௭, ܾ௭, ܿ௭, ݀௭, ߱௬, ܽ௬, ܾ௬, ܿ௬, ݀௬ are parameters to be estimated.  

        We refer to this specification as the Dynamic Volatility and Separate Dynamic Jumps (DVSDJ) 

model. It is a very rich and flexible model. First, it allows for jumps in volatility as well as jumps in 

returns. It has been shown in the index option literature that jumps in volatility are useful to explain 

option volatility smiles and smirks (see for example Eraker, Johannes and Polson, 2003; and Eraker, 

2004). Moreover, in (2.10)-(2.11), the normal and jump innovations, ݖ௧ and ݕ௧, enter separately into the 

GARCH updating dynamics. The model therefore allows each type of innovation to impact the variance 

and jump intensity separately. Second, the model is designed to yield closed-form expressions for 

securities prices. Critically, we are able to derive analytical results for option valuation. 

        The specification of ݄௭,௧ାଵ  and ݄௬,௧ାଵ in (2.10)-(2.11) therefore has substantial advantages. One 

potential problem is that the model is richly parameterized. This presumably will not create problems for 

in-sample option valuation, but it may cause the model’s out-of-sample performance to deteriorate. We 

therefore also investigate three nested specifications, which impose restrictions on ݄௭,௧ାଵ and ݄௬,௧ାଵ, and 

greatly reduce the dimension of the parameter space.  

        The first nested model is the Dynamic Volatility and Constant Jumps (DVCJ) model, which imposes 

the following restrictions  

 ܾ௬ ൌ 0, ܽ௬ ൌ 0, ܿ௬ ൌ 0, ݀௬ ൌ 0 (2.12) 

This model maintains the normal component’s GARCH dynamic, but jumps arrive at a constant rate ߱௬, 

regardless of the level of volatility in the market.  

        The second nested model is the Constant Volatility and Dynamic Jumps (CVDJ) model, which 

imposes the restrictions 

 ܾ௭ ൌ 0, ܽ௭ ൌ 0, ܿ௭ ൌ 0, ݀௭ ൌ 0 (2.13) 
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In this model, time-variation in the return distribution is driven by the jump component only. The normal 

component of returns is homoskedastic, with a constant variance equal to ߱௭. 

        In the third nested model, the Dynamic Volatility and Dynamic Jumps (DVDJ) model, ݄௭,௧ାଵand 

݄௬,௧ାଵ are both time-varying but driven by the same dynamic. The conditional jump intensity is affine in 

the conditional variance of the normal component 

 ݄௬,௧ାଵ ൌ ݄݇௭,௧ାଵ (2.14) 

where k is a parameter to be estimated. The DVDJ specification can be written as a special case of the 

DVSDJ model, subject to the following restrictions on the parameters of ݄௬,௧ାଵ 

 ߱௬ ൌ ߱௭݇, ܾ௬ ൌ ܾ௭, ܽ௬ ൌ ܽ௭݇, ܿ௬ ൌ ܿ௭, ݀௬ ൌ ݀௭݇ (2.15) 

The specification of these four models is based on the index returns models in Ornthanalai (2012) and 

Christoffersen, Jacobs, and Ornthanalai (CJO, 2012). We follow the classification of jump models 

proposed in CJO (2012), but the model dynamics in (2.10)-(2.11) are different in a very important way. 

They are designed to yield a closed-form solution for option prices, and in order to do so we have adopted 

a rather simple specification for jumps in volatility. The drawback of this approach is that we cannot 

ensure positive volatility.  

3. Crude Oil Futures and Options Data 

We now discuss the crude oil futures and options data used in the empirical analysis, and present 

summary statistics. 

        We use a data set of Chicago Mercantile Exchange (CME group, formerly NYMEX) crude oil 

futures and options data. We use a sample of daily data from January 2nd, 1990 to December 3rd, 2008. 

The CME crude oil derivatives market is the world’s largest and most liquid commodity derivatives 

market. The range of maturities covered by futures and options and the range of option strike prices are 

also greater than for other commodities (for a discussion see Trolle and Schwartz, 2009, henceforth TS).  

        We screen futures contracts based on patterns in trading activity. Open interest for futures contract 

tends to peak approximately two weeks before expiration. Among futures and options with more than two 

weeks to expiration, the first six monthly contracts tend to be very liquid. For contracts with maturities 

over six months, trading activity is concentrated in the contracts expiring in March, June, September, and 

December. 
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        Following TS (2009), we therefore screen the available futures and options data according to the 

following procedure: discard all futures contracts with 14 or less days to expiration. Among the remaining, 

retain the first six monthly contracts. Furthermore, choose the first two contracts with expiration either in 

March, June, September or December. This procedure leaves us with eight futures contract series which 

we label M1, M2, M3, M4, M5, M6, Q1, and Q2.  

        We include the following options on these eight futures contracts. For each option maturity, we 

consider eleven moneyness intervals: 0.78-0.82, 0.82-0.86, 0.86-0.90, 0.90-0.94, 0.94-0.98, 0.98-1.02, 

1.02-1.06, 1.06-1.10, 1.10-1.14, 1.14-1.18, and 1.18-1.22. Moneyness is defined as option strike divided 

by the price of the underlying futures contract. Among the options within a given moneyness interval, we 

select the one that is closest to the mean of the interval.  

       Our data consist of American options on crude oil futures contracts.1 CME has also introduced 

European-style crude oil options, which are easier to analyze. However, the trading history is much 

shorter and liquidity is much lower than for the American options. Since the pricing formulae are 

designed for European options, we have to convert the American option prices to European option prices. 

We assume that the price of the underlying futures contract follows a geometric Brownian motion. This 

specification allows for very accurate pricing of the American option using the Barone-Adesi and Whaley 

(1987) formula. Inverting this formula yields a log-normal implied volatility, from which we can 

subsequently obtain the European option price using the Black (1976) formula. To minimize the effect of 

errors in the early exercise approximation, we use only OTM and ATM options, i.e., puts with moneyness 

less than one and calls with moneyness greater than one. In addition, we only consider options that have 

open interest in excess of 100 contracts and options with prices larger than 0.10 dollars. 

       This data filtering procedure yields 38,024 futures contracts and 283,653 option contracts observed 

over 4,753 business days. The number of futures contracts is 8 on every day of the sample, while the 

number of option contracts is between 23 and 87.  

       Figure 1 displays the prices of the futures contracts. All prices in this paper are settlement prices.2 To 

avoid cluttering the figure, we only display the futures term structure on Wednesdays. Futures prices 

increase dramatically between 2003 and 2007, and subsequently decline. Consistent with existing studies 

(Trolle and Schwartz (2009), Litzenberger and Rabinowitz (1995)), we find that the crude oil market is on 

                                                            
1 Futures contracts expire on the third business day prior to the 25th calendar day (or the business day right before it 
if the 25th is not a business day) of the month that precedes the delivery month. Options written on futures expire 
three business days prior to the expiration date of the futures. 
2 The CME light, sweet crude oil futures contract trades in units of 1000 barrels. Prices are quoted in US dollars per 
barrel. 
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average in backwardation. Also, the price of long maturity futures contracts such as Q2 is lower than that 

of short maturity futures contracts. Figure 2 plots the daily returns, log
F౪శభ,T
F౪,T

, for the eight (M1, M2, M3, 

M4, M5, M6, Q1, Q2) futures contracts and Panel A of Table 1 provides summary statistics. Table 1 

indicates that futures returns on longer maturities futures contracts, e.g., Q2 futures contracts, are less 

volatile than futures returns for shorter maturity contracts. However, Figure 2 indicates that returns of 

futures contracts with long maturity seem to have more spikes, which can be interpreted as jumps.  

       Table 1 also reports summary statistics for higher moments of the daily futures returns. On average 

across maturities, skewness is -0.91 and kurtosis is 14.77. The daily crude oil futures return series is thus 

skewed towards the left, indicating that there are more negative than positive outlying returns in the crude 

oil market. Moreover, the return series is characterized by a distribution with tails that are significantly 

thicker than a normal distribution. 

       Panel B of Table 1 lists the average number of option contracts across maturity and moneyness. The 

number of option contracts decreases with maturity. Among the 11 moneyness intervals, the number of 

option contracts is highest in the ATM interval. Panel C reports the average option prices. As expected, 

the average price of the option contracts increases as the maturity of underlying futures contracts 

increases. 

       Figure 3 displays the implied ATM log-normal volatilities, and Panel D of Table 1 reports their 

averages by moneyness and maturity. Options with short maturities have higher implied volatilities than 

options with long maturities. Large spikes in the option implied volatilities appear around the end of 1990 

and beginning of 1991, at the time of the first Gulf War, around the September 2001 terrorist attack, the 

second Gulf War in March 2003, and during the financial crisis in 2008.  

       Among the eleven moneyness intervals, the average implied volatilities are lowest for ATM options. 

The data exhibit a smirk for several maturities, but for other maturities it is not clear if the smirk pattern is 

economically significant, or if the data are instead characterized by a smile. These patterns are important 

with respect to the relative role of return skewness and kurtosis for characterizing the option data. Panel D 

of Table 2 suggests that modeling kurtosis may be more critical than capturing skewness for crude oil 

data. This is consistent with the descriptive statistics for the futures data in Table 1. 

   

4.  Evidence from Futures Prices 
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We first discuss how to use maximum likelihood to estimate the models using futures returns. We then 

present parameter estimates for the four proposed models as well as the benchmark GARCH model. 

Subsequently we use the parameter estimates to investigate the models’ most important implications for 

option valuation. 

4.1 Maximum Likelihood Estimation using Futures Data 

We estimate the model parameters using Maximum Likelihood (MLE). The likelihood function for 

returns depends on the normal and Compound Poisson distributions. The conditional density of the ݅th 

returns process in equation (2.8), given that there are ݊௧ାଵ ൌ ݆ jumps occurring between period t and t+1, 

is given by 

 ௧݂൫ܴ௜,௧ାଵห݊௧ାଵ ൌ ݆൯ ൌ
1

ට2ߨ൫݄௭,௧ାଵ ൅ ଶ൯ߜ݆
exp ൭െ

൫ܴ௜,௧ାଵ െ ௜,௧ାଵߤ െ ൯ߠ݆
ଶ

2൫݄௭,௧ାଵ ൅ ଶ൯ߜ݆
൱. (4.1) 

where ܴ௜,௧ାଵ ؠ log
ி೟శభ,೅೔
ி೟,೅೔

 , and  ߤ௜,௧ାଵ ൌ ௧ାଵݎ ൅ ቀߣ௭ െ
ଵ

ଶ
ቁ ݄௭,௧ାଵ ൅ ൫ߣ௬ െ ൯݄௬,௧ାଵߦ ൅ ∆ܿሺݐ, ݐ ൅ 1, ௜ܶሻ. 

The conditional probability density of returns can be derived by summing over the number of jumps 

 ௧݂൫ܴ௜,௧ାଵ൯ ൌ෍ ௧݂ሺܴ௜,௧ାଵ|݊௧ାଵ ൌ ݆ሻ
ஶ

௝ୀଵ
௧ሺ݊௧ାଵݎܲ ൌ ݆ሻ, (4.2) 

where ܲݎ௧ሺ݊௧ାଵ ൌ ݆ሻ ൌ ሺ݄௬,௧ାଵሻ௝݁݌ݔ ሺെ݄௬,௧ାଵሻ/݆!  is the probability of having j jumps which is 

distributed as a Poisson counting process.  

       We can therefore write the log likelihood function as the summation of the log likelihoods for all 

eight futures contracts 

ி௨௧ܮ  ൌ෍෍ ln ሺ ௧݂ሺܴ௜,௧ାଵሻሻ

்ିଵ

௧ୀଵ

଼

௜ୀଵ

 (4.3) 

In estimation we assume that the conditional variance and the jump intensity are equal across maturities. 

This is clearly a simplifying assumption that will worsen the fit, but it is useful for the purpose of 

comparison with option-implied estimates.  

        When implementing maximum likelihood estimation, the summation in (4.2) must be truncated. We 

truncate the summation at 50 jumps per day. We have experimented with increasing the truncation limit 

beyond 50 and found that our results are robust.  
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        Equations (2.9) and (2.10) indicate that we need to separately identify the two unobserved shocks 

 ௧ାଵ and filter the conditional variance ݄௭,௧ାଵ and the conditional jump intensity ݄௬,௧ାଵ whichݕ ௧ାଵ andݖ

enter the likelihood function. The structure of the model allows us to do this using an analytical filter, 

which is discussed in CJO (2012). Using this filter, calculating ݖ௧ାଵ and ݕ௧ାଵ is straightforward and very 

fast. It takes less than a second to filter 38,024 futures contracts and about two seconds to filter 283,653 

option contracts using Matlab on a standard PC.   

4.2 Estimation Results 

Table 2 presents the maximum likelihood parameter estimates for the GARCH benchmark model and the 

four proposed jump models. The results are obtained using all eight futures contracts jointly in estimation 

for the time period 1990-2008. For each jump model, we separate the parameters into two columns. The 

parameters with subscript y are reported in the column labeled “Jump”. The parameters with subscript z 

are reported in the column labeled “Normal”. Under each parameter estimate, we report its standard error 

calculated using the Hessian matrix. Under “Properties”, we report the implied long-run risk premiums 

for the normal and jump components, the percent of total variance captured by the normal and the jump 

component, the average annual volatility, the expected number of jumps per year implied by the 

parameter estimates, and the log likelihood. Some of these properties are discussed in more detail in 

Section 4.3 below. 

       The log-likelihood values of the DVCJ, DVDJ, DVSDJ models are much higher than that of the 

GARCH model. This is not the case for the CVDJ model, which does not nest the GARCH model. To 

examine whether the dynamic volatility jump models significantly improve over the GARCH model, we 

test the null hypothesis of no jumps. To implement this test, we use the standardized likelihood ratio test 

proposed by Hansen (1992, 1994). A likelihood ratio test of the null hypothesis of no jumps does not have 

the usual limiting chi-squared distribution because the jump parameters are unidentified under the null. 

Hansen’s test is able to provide an upper bound to the asymptotic distribution of standardized likelihood 

ratio statistics, even when conventional regularity conditions (for example due to unidentified parameters) 

are violated. We calculate Hansen’s test for each of the DVCJ, DVDJ, DVSDJ models compared with 

GARCH and report the standardized likelihood ratio and the corresponding simulated critical values in 

Table 3. Using Hansen’s standardized LR test, we find that all three dynamic volatility jump models 

significantly improve over the GARCH model, suggesting that the null hypothesis of no jumps is rejected. 

Among the three jump models, the test result for the DVDJ model provides the strongest evidence against 
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the null. These statistical tests strongly suggest that incorporating jumps in addition to dynamic volatility 

helps to improve model performance.  

        The CVDJ model, which has constant conditional variance of the normal component, performs the 

worst among the four jump models, with the lowest log-likelihood. This suggests that this extended 

Merton (1976) jump model, which has constant volatility and a GARCH dynamic for the jump intensity is 

not able to adequately fit the data, which confirms the importance of allowing for time-varying volatility 

in models for commodity futures. In the CVDJ model, it is not surprising that the jump component of 

CVDJ accounts for 63% of the total return variance, because the time variation in the return innovation is 

restricted to the jump intensity. The jump component is relatively more important for this specification 

because jumps are the only source of heteroskedasticity. In summary, the results for the CVDJ model 

suggest that jumps are a useful modeling tool, but that modeling time-varying volatility is at least as 

important. This finding is very similar to results obtained in equity and equity index markets.  

        The DVCJ model improves model fit significantly by adding a simple constant jump component. For 

this specification, the average expected number of jumps is given by ݄ൣܧ௬,௧ାଵ൧ ൌ  ௬. The estimate ofݓ

0.103 implies that jumps arrive at an annual frequency of 0.103x252, or approximately 26. This number 

is much higher than what is usually found in equity index markets, see the summary table in Broadie, 

Chernov, and Johannes (2007). Most existing estimates in equity index markets find between one and 

three jumps per year. This suggests that jumps arrive more frequently in the crude oil market. Part of the 

explanation is that the models identify smaller jumps in crude oil futures as opposed to equity index 

returns. The estimate of the average jump size ߠ in the DVCJ model in Table 2 is -0.0069, which is 

approximately one-fourth of the average jump size in index returns documented in CJO (2012) for a 

model with constant jump size. 

        The results for the DVDJ model indicate that allowing for state-dependent jump intensities can 

further improve model performance. The estimate of k is statistically significant, confirming that the 

arrival rate of jumps depends on the level of volatility. The mean jump size in the DVDJ model is smaller 

(in absolute value) than in the DVCJ model and jumps arrive more frequently, with on average 207 jumps 

per year.  

        The MLE estimates of the DVSDJ model indicate that there are on average 183 jumps per year. The 

likelihood for the most general specification, DVSDJ model, further improves on DVDJ. We run a 

likelihood ratio test to compare DVSDJ with CVDJ and the result is in favor of the unrestricted DVSDJ 

model. 
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        The results for the DVDJ and DVSDJ models indicate that allowing for time-varying jump 

intensities can greatly improve model performance. The average jump arrival frequency for the DVDJ 

and DVSDJ models is significantly lower than for the DVCJ model, but other important model features 

are similar to the DVCJ model.  

 

4.3 Model Implications 

 

We now further discuss the model properties listed at the bottom of Table 2. We report the decomposition 

of the total unconditional return variance into the normal and jump components. The total unconditional 

return variance, ߪଶ, is given by 

ଶߪ  ؠ ௭ଶߪ ൅ ሺߠଶ ൅  ௬ଶ (4.4)ߪଶሻߜ

where ߪ௭ଶ and ߪ௬ଶ are computed as the time series averages of ݄௭,௧ାଵ and ݄௬,௧ାଵ. We report the normal 

contribution and jump contribution to the total return variance in percentages. Overall, the contribution of 

jumps to the total return variance is very high for the CVDJ model, since jumps are the only source of 

heteroskedasticity. For the other three models, the DVDJ and DVSDJ models have higher percentages 

(43.60% and 40.36%) for the jump contribution compared with the DVCJ, which has 15.48% of total 

variance contributed by the jump component. While the likelihood ratio tests indicate that allowing for 

time-varying jump intensities is supported statistically, these findings suggest that this model feature is 

also economically important. 

       The average variance is very similar across models. The left panels in Figure 4 depict the time path of 

the conditional variance and clearly indicate that in fact the entire time path is very similar across models, 

with the exception of the CVDJ model. However, there is one important difference between the models 

with time-varying intensity (DVDJ and DVSDJ) and the DVCJ model. When the variance increases in 

1991 and 2008, the increase is more pronounced for the DVCJ model. The reason for this can be seen in 

the panels on the right in Figure 4. For the DVDJ and DVSDJ models, there is also a sharp increase in the 

jump intensity during those crisis periods. The paths of the jump intensity for the DVDJ and DVSDJ 

models are similar, but the intensity is more variable for the DVSDJ model. 

       The variations in jump intensities affect the risk premiums, which are depicted in Figure 5. For the 

DVCJ model in the first row, the risk premium in the middle panel is constant, and all the time variation 

in the total risk premium in the right panel is due to variation in the normal risk premium. In the case of 

the DVDJ and DVSDJ models, a large amount of the increase in the total risk premium in 1991 and 2008 
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is due to the increase in the jump risk premium. This effect is stronger in the more richly parameterized 

DVSDJ model. For the CVDJ model in the second row, all the time variation in risk premiums is due to 

the jump risk premium. This clearly does not lead to as much time variation in total risk premiums as for 

the other models. 

       Overall, Figure 5 clearly indicates that jump risk premiums are economically important, and that they 

represent a significant component of the total risk premium. Under “Properties” in Table 2 we also report 

the averages of the risk premiums over the sample. On average the jump risk premium is large. For the 

CVDJ model, it is on average larger than the risk premium for the normal component, but this is of course 

due to the model’s restrictive structure. It is also noteworthy that the average risk premiums are very 

similar for the DVCJ and DVSDJ models, which have a very different structure. The jump risk premium 

is relatively smaller in the case of the DVDJ model. 

        Figure 6 applies the analytical filter to decompose futures returns in the jump and normal component 

to infer their relative importance. The middle column contains the filtered jump component and the right 

column contains the filtered normal component. The figures clearly indicate that most of the time, the 

normal component dominates returns. However, in crises, such as the first Gulf War in late 1991, the 

jump component explains more of the movement in returns than the normal component. The 

heteroskedasticity in the normal component is also apparent. The left columns depict the filtered number 

of jumps ݊௧ occurring each day. We find strong evidence for multiple jumps per day in all jump models, 

especially during the first Gulf War, when the DVDJ and DVSDJ models indicate 10 jumps per day.   

        For the purpose of option valuation, the time path of the conditional variance is of paramount 

importance. However, different models often yield variance paths that are nearly similar, as evidenced by 

Figure 4. It is therefore of great interest to inspect differences in the conditional third and fourth moments. 

We now turn to this evidence. The first four conditional moments are given by: 

 
௧ሺܴ௧ାଵሻܧ ؠ ௧ାଵߤ ൌ ௧ାଵݎ ൅ ൬ߣ௭ െ

1
2
൰ ݄௭,௧ାଵ ൅ ൫ߣ௬ െ ൯݄௬,௧ାଵߦ ൅ ∆ܿሺݐ, ݐ ൅ 1, ܶሻ (4.5) 

௧ሺܴ௧ାଵሻݎܸܽ  ൌ ݄௭,௧ାଵ ൅ ሺߠଶ ൅  ଶሻ݄௬,௧ାଵ (4.6)ߜ

௧ሺܴ௧ାଵሻݓ݁݇ܵ  ൌ
ଶߠሺߠ ൅ ଶሻ݄௬,௧ାଵߜ3

൫݄௭,௧ାଵ ൅ ሺߠଶ ൅ ଶሻ݄௬,௧ାଵ൯ߜ
ଷ
ଶ

 (4.7)  
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௧ሺܴ௧ାଵሻݐݎݑܭ  ൌ 3 ൅
ሺߠସ ൅ ଶߜଶߠ6 ൅ ସሻ݄௬,௧ାଵߜ3

൫݄௭,௧ାଵ ൅ ሺߠଶ ൅ ଶሻ݄௬,௧ାଵ൯ߜ
ଶ (4.8) 

where ܵ݇݁ݓ௧ሺܴ௧ାଵሻ and ݐݎݑܭ௧ሺܴ௧ାଵሻ are the conditional skewness and the conditional kurtosis of futures 

returns respectively. From equation (4.7), it is clear that in presence of jumps, when ݄௬,௧ାଵ is positive, the 

sign of the conditional skewness depends on the sign of the mean jump size ߠ . Both skewness and 

kurtosis are critically affected by the parameters ߠ and ߜ. 

        Figure 7 plots the conditional one day ahead skewness in (4.7) and kurtosis in (4.8) for each of the 

four jump models. The estimated average jump size ߠ is negative for all four jump models, and therefore 

the conditional one day ahead skewness is negative. However, skewness is rather small, and interestingly 

it is smaller for the more flexible models. Conditional kurtosis is of the same order of magnitude for the 

DVCJ, DVDJ, and DVSDJ models, but contains more sharp peaks for the DVCJ model. Clearly, for a 

given model outliers in model skewness and kurtosis are related, which is driven by the parameterization. 

 

5. Option Valuation Theory for Crude Oil Futures   

We first characterize the risk-neutral dynamics. Subsequently we derive the closed-form option valuation 

formula.  

5.1 The Equivalent Martingale Measure and Risk-Neutral Dynamics  

The estimates obtained from futures prices in Section 4 are physical parameters. To value crude oil 

options, we need return dynamics under the equivalent martingale or risk-neutral measure. In a 

framework with compound Poisson processes, the futures price can jump to an infinite set of values in a 

single period, and the equivalent martingale measure is therefore not unique. We proceed by specifying 

the conditional Radon-Nikodym derivative 

 

݀ܳ௧ାଵ
݀ ௧ܲାଵ
݀ܳ௧
݀ ௧ܲ

ൌ
exp ሺΛ௭ݖ௧ାଵ ൅ Λ௬ݕ௧ାଵሻ

௧ሾexpܧ ሺΛ௭ݖ௧ାଵ ൅ Λ௬ݕ௧ାଵሻሿ
 (5.1) 

This Radon-Nikodym derivative specifies a risk-neutral probability measure if and only if Λ௭ and Λ௬ are 

determined by  
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 Λ௭ ൅ ௭ߣ ൌ 0 (5.2) 

௬ߣ  െ ቆ݁ఏା
ఋమ

ଶ െ 1ቇ െ ݁ஃ೤ఏା
ஃ೤

మఋమ

ଶ ൫1 െ ݁ሺٿ೤ା଴.ହሻఋ
మାఏ൯ ൌ 0 (5.3) 

The futures return process under the risk-neutral dynamic takes the form 

 log
்,௧ାଵܨ
்,௧ܨ

ൌ ௧ାଵݎ െ
1
2
݄௭,௧ାଵ െ ௬,௧ାଵ݄כ௬ሺ1ሻߦ

כ ൅ ௧ାଵݖ ൅ ௧ାଵݕ
כ ൅ ∆ܿሺݐ, ݐ ൅ 1, ܶሻ (5.4) 

with the following variance and jump intensity dynamics 

 ݄௭,௧ାଵ ൌ ߱௭ ൅ ܾ௭݄௭,௧ ൅
ܽ௭
݄௭,௧

ሺݖ௧ െ ܿ௭݄כ௭,௧ሻଶ ൅ ݀௭ݕ௧
כ  (5.5) 

 ݄௬,௧ାଵ
כ ൌ ߱௬כ ൅ ܾ௬݄௬,௧

כ ൅
ܽ௬כ

݄௭,௧
ሺݖ௧ െ ܿ௬݄כ௭,௧ሻଶ ൅ ݀௬ݕכ௧

 (5.6) כ

where ݄௬,௧ାଵ
כ ൌ ݄௬,௧ାଵߎ  ,ߎ ൌ ݁௸೤ఏା

೰೤
మഃమ

మ כߠ , ൌ ߠ ൅ כሺ1ሻߦ ,ଶߜ௬߉ ൌ ݁ఏ
ାכ

ഃమ

మ െ ௭߉  ,1 ൌ െߣ௭ , ߱௬כ ൌ ߱௬ߎ, 

ܽ௬כ ൌ כ௬, ܿ௭ܽߎ ൌ ܿ௭ െ כ௭,  ܿ௬߉ ൌ ܿ௬ െ כ௭, ݀௬߉ ൌ ௧ାଵݕ ௬, and݀ߎ
כ ሺ݄௬,௧ାଵܬ~

כ , ,כߠ    .ଶሻߜ 

The risk neutral dynamic for the GARCH benchmark model in Section 2.1 is a special case of (5.4)-(5.6) 

with  ݄௬,௧ାଵ
כ ൌ ௧ାଵݕ

כ ൌ 0 

5.2 Closed-form Option Valuation  

Under the risk-neutral measure, the generating function for the asset process in (5.4)-(5.6) takes the 

following form 

 
݂ሺ߮; ,ݐ ܶሻכ ؠ ௧ܧ

ொൣ்ܨఝ൧

ൌ ்,௧ܨ
ఝ ;1ሺ߮ܣሺ݌ݔ݁ ,ݐ ܶሻ ൅ ;1ሺ߮ܤ ,ݐ ܶሻ݄௭,௧ାଵ ൅ ;1ሺ߮ܥ ,ݐ ܶሻ݄௬,௧ାଵ

כ ሻ 
(5.7) 

Here we present the analytical solutions to the affine coefficients 1ܣሺ߮; ,ݐ ܶሻ, 1ܤሺ߮; ,ݐ ܶሻ, and 

;1ሺ߮ܥ ,ݐ ܶሻ. Details on the derivation are provided in Appendix B.        

 

;1ሺ߮ܣ ,ݐ ܶሻ ൌ ௧ାଵݎ߮ ൅ ;1ሺ߮ܣ ݐ ൅ 1, ܶሻ൅1ܤሺ߮; ݐ ൅ 1, ܶሻ߱௭ ൅ ;1ሺ߮ܥ ݐ ൅ 1, ܶሻ߱௬כ

െ
1
2
ሺ1݃݋݈ െ ;1ሺ߮ܤ2 ݐ ൅ 1, ܶሻܽ௭ െ ;1ሺ߮ܥ2 ݐ ൅ 1, ܶሻܽ௬כ ሻ 

(5.8) 



19 
 
 

 

 

;1ሺ߮ܤ ,ݐ ܶሻ ൌ ଵ௭ߤ߮ ൅ ;1ሺ߮ܤ ݐ ൅ 1, ܶሻሺܾ௭ ൅ ܽ௭ܿ௭כଶሻ ൅ ;1ሺ߮ܥ ݐ ൅ 1, ܶሻܽ௬כ ܿ௬כଶ       

൅
൫߮ െ ;1ሺ߮ܤ2 ݐ ൅ 1, ܶሻܽ௭ܿ௭כ െ ;1ሺ߮ܥ2 ݐ ൅ 1, ܶሻܽ௬כ ܿ௬כ൯

ଶ

2ሺ1 െ ;1ሺ߮ܤ2 ݐ ൅ 1, ܶሻܽ௭ െ ;1ሺ߮ܥ2 ݐ ൅ 1, ܶሻܽ௬כ ሻ
 

(5.9) 

;1ሺ߮ܥ  ,ݐ ܶሻ ൌ ܾ௬1ܥሺ߮; ݐ ൅ 1, ܶሻ ൅ ଵ௬ߤ߮ ൅  (5.10) כሻߌ௬ሺߦ

where       ߤଵ௭ ൌ െ
ଵ

ଶ
ଵ௬ߤ , ൌ െߦ௬ሺ1ሻߦ  ,כ௬ሺߌሻכ ൌ ݁ఏ

ାכ௻כ
భ
మ
௻೤כమఋమ െ 1,   

with כߌ ൌ ߮ ൅ ;1ሺ߮ܤ ݐ ൅ 1, ܶሻ݀௭ ൅ ;1ሺ߮ܥ ݐ ൅ 1, ܶሻ݀௬כ   (5.11) 

By imposing the restrictions ݄௬,௧ାଵ
כ ൌ ߱௬כ ൌ ܽ௬כ ൌ 0, (5.7)-(5.11) reduces to the generating function for 

GARCH benchmark model in Section 2.1.              

        With the risk neutral generating function (5.7), we can value European options using the Fourier 

inversion method as in Heston (1993), Heston and Nandi (2000), and Duffie, Pan and Singleton (2000). 

The price of a European call option on a futures contract is given by 

 

,ݐሺܱܥ   ௖ܶ௢, ܶ, ሻܭ ൌ ௧ܧ
ொ ቂ݁ି׬ ௥ሺ௦ሻௗ௦

೅೎೚
೟ ሺܨሺ ௖ܶ௢, ܶሻ െ ሻାቃܭ

ൌ ,ݐሺܨ  ܶሻ ቆ
1
2
൅
1
ߨ
න ܴ݁ ቈ

ሺ݅߮כ௜ఝ݂ିܭ ൅ 1ሻ

ሺ1ሻכ݂߮݅
቉

ஶ

଴
݀߮ቇ

െ ׬ି݁ ௥ሺ௦ሻௗ௦
೅೎೚
೟ ሺܭ

1
2
൅
1
ߨ
න ܴ݁ ቈ

ሺ݅߮ሻכ௜ఝ݂ିܭ

݅߮
቉   ݀

ஶ

଴
߮ሻ 

(5.12) 

where ܱܥ൫ݐ,   ௖ܶ௢, ܶ,  ൯ is the time t price of a European call option expiring at time ௖ܶ௢ with strike K on aܭ

futures contract expiring at time ܶ, and K is the strike price.  

 

6. Estimation using Option Data 

We first discuss the loss function used to estimate the model parameters from option data. Subsequently 

we discuss the empirical results.  

6.1 MLE using Option Data 

It is possible to use the parameter estimates in Table 2 obtained through MLE estimation on futures data 

to compute option prices using the option valuation formulae. However, this procedure exclusively uses 
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historical information and ignores the expectations about the future evolution of the futures prices that are 

embedded in option prices. We therefore study the models’ option valuation performance by maximizing 

the log-likelihood function for the option contracts to match model option values as closely as possible to 

observed market prices.  

        We use a loss function based on implied volatilities, inverting option prices into implied volatilities. 

This results in a cross-section of market data that is of similar magnitude along the moneyness, maturity, 

and time-series dimensions. Option prices differ significantly along these dimensions. Define the model 

error 

௞ݑ  ൌ ௞,௧ߪ െ  ሻሻሻ (6.1)כߠ௞,௧ሺܱ௞,௧ሺ݄௧ሺߪ

where ߪ௞,௧  is the Black (1976) implied volatility of the ݇௧௛  observed option price at time t, and 

 ,ሻሻכߠሻሻሻ is the implied volatility converted from each computed option price, ܱ௞,௧ሺ݄௧ሺכߠ௞,௧ሺܱ௞,௧ሺ݄௧ሺߪ

using the Black (1976) formula. 

        Assuming normality of the implied volatility errors, the log-likelihood function based on options is 

ை௣௧ܮ  ൌ െ
ܰ
2
lnሺ2ߪߨ௨ଶሻ െ

1
2
෍

௞ݑ
ଶ

௨ଶߪ

ே

௞ୀଵ

 (6.2) 

where N = 283,653 is the total number of option contracts. We estimate parameters based on options data 

only by maximizing ܮை௣௧. We report the optimized likelihoods as well as the corresponding volatility root 

mean squared error (IVRMSE) 

ܧܵܯܴܸܫ  ൌ
1
ܶඨ

1
ܰ
෍ሾߪ௞,௧ െ ሻሻሻሿכߠ௞,௧ሺܱ௞,௧ሺ݄௧ሺߪ
௧,௞

ଶ
 (6.3) 

where T = 4,753 is the number of days used in our analysis.  

        Ideally one would fit the model directly to implied Black volatilities. However, since the 

optimization routine requires computing implied volatility from model prices at every function evaluation, 

this approach is extremely slow. We follow TS (2009) and fit the model to option prices scaled by their 

Black (1976) vega, that is, the sensitivities of the option prices to variations in log-normal volatilities.  

This approach is motivated by the approximation ߪ௞,௧ ൎ ܱ௞,௧/Ѵ௞,௧, where Ѵ௜,௧ is the Black (1976) vega 

associated with the ݅௧௛ observed option price at time t. This approximation has been shown to work well 

in existing work. Thanks to the use of the analytical filter, the quasi-closed form option valuation formula, 

and the use of the vega-scaled prices, the optimization problem is feasible with our large data sets.  
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6.2 Empirical Results 

Table 4 reports the MLE estimates on crude oil options for the benchmark GARCH model and the four 

jump models. We report the log likelihood and the IVRMSE for each model at the bottom of the table, as 

well as a number of important model features implied by the parameter estimates. Note that unlike the 

parameters in Table 2, these are risk-neutral parameters.  

       Similar to the estimation results based on crude oil futures data in Table 2, the log-likelihood values 

for the DVCJ, DVDJ, and DVSDJ models are much higher than that of the GARCH model. The CVDJ 

model performs the worst among the four jump models. We find that jump models, except for CVDJ 

model, provide substantial improvements in option pricing performance. Jump models with time-varying 

intensities, DVDJ and DVSDJ, obtain IVRMSEs of 6.83 and 6.75 respectively and outperform the 

GARCH model by approximately 6% and 7%. This result further confirms that incorporating time-

varying jumps in addition to the dynamic volatilities helps to improve model fit. 

       The most striking difference between these estimates and the estimates based on futures returns in 

Table 2 is that the average jump size θ implied by option prices is much larger, and that jumps occur less 

frequently. These findings suggest that jumps implied by crude oil options are larger and rarer events 

comparing with those estimated using crude oil futures returns.  

         

7.  Estimation using Futures and Options Data 

The parameters obtained by minimizing option errors in Section 6 are of substantial interest, and the 

resulting differences in option fit are a useful indicator of the models’ performance. It must also be noted 

that the exercise in Section 6 does not ignore the underlying futures returns, because volatilities and jump 

frequencies are filtered from the futures returns. However, the futures returns do not directly enter the loss 

function. 

        So while this exercise imposes considerable discipline upon the models, it has nevertheless two 

important drawbacks. First, if a model is richly parameterized, only fitting the option data may result in 

overfitting. Second, the price of risk parameters, which are some of the most economically important 

model parameters, cannot be reliably identified using option data only. 

        We therefore follow Bates (1996), who suggests that the most stringent test of an option pricing 

model lies in its ability to jointly fit the option data and the underlying returns. In our case, this means 
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that we have to construct a loss function that contains a crude oil option component as well as a futures 

return component.  

        We first explain how we combine the option data with the underlying futures data to conduct a joint 

likelihood. We then discuss the parameter estimates, and subsequently we compare the most important 

model properties with the properties implied by the physical parameters from Table 2.  

7.1 The Joint Log Likelihood Function 

In previous sections we used MLE to estimate the jump models using futures returns and option implied 

volatilities respectively. The log-likelihood functions for futures and options are defined in equations (4.3) 

and (6.2). To jointly estimate the jump models using the option data and the underlying futures data, we 

maximize the weighted average of the log-likelihoods of futures and options.  

        The number of option contracts in the data set is much larger than the number of futures contracts. 

To ensure that joint parameter estimates are not dominated by options, we assign equal weight to each 

log-likelihood. The resulting weighted joint log-likelihood is 

௃௢௜௡௧ܮ  ൌ
ܯ ൅ ܰ
2

ி௨௧ܮ
ܯ

൅
ܯ ൅ ܰ
2

ை௣௧ܮ
ܰ

 (7.1) 

where M=38,024 is the total number of futures contracts and N=283,653 is the total number of option 

contracts. The joint likelihood function can then be obtained using the results in Sections 4.1 and 6.1.  

7.2 Empirical Estimates and Model Implications 

Table 5 contains the parameter estimates obtained by maximizing the joint log-likelihood function in (7.1) 

for the GARCH model and four jump models. At the bottom of the table, we also report the IVRMSE and 

model properties implied by the parameters such as the long-run risk premium, the percent of total annual 

variance explained by the normal and the jump component, the average annual volatility, and the 

expected number of jumps per year.  

       Similar to the results based on options and the results based on futures, the jump models, except for 

the CVDJ model, outperform the benchmark GARCH model according to both log-likelihood values and 

IVRMSE values. The most richly parameterized jump model, DVSDJ, performs best. 

       The most important conclusion from the parameter estimates is that the structure of the estimated 

jump processes is very different from the jumps estimated from futures returns in Table 2. Results are 

more similar to those based on options in Table 4, in the sense that jumps are larger and more infrequent.       
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The implied expected number of jumps is indeed much smaller than in Table 2. The average number of 

jumps per year implied by the joint estimation of the DVSDJ model is 0.58, while the average number of 

jumps calculated from futures returns is 182 per year. For the DVCJ model, we have on average 0.47 

jumps per year in Table 5, while in Table 2 we have approximately 26 jumps. The implied variance paths 

in the left panels of Figure 8 are very similar to the corresponding variance paths in Figure 4. On the 

contrary, the conditional jump intensities on the right hand side of Figure 8 are of a different order of 

magnitude than those in Figure 4. 

       Large and more infrequent jumps are consistent with larger skewness and kurtosis. The estimates of θ 

are negative for all models, implying negative skewness, but compared to Table 2 they are an order of 

magnitude larger in absolute value. The estimates of the variance of the jump size ߜ are larger for the 

DVCJ and DVSDJ models compared to Table 2. These larger estimates of θ and ߜ indicate the presence 

of fatter tails.  

       Since option prices contain important information about the pricing kernel which is not available 

from underlying futures returns dynamics, the market prices of risk for the normal component and jump 

component are of particular interest. The total risk premiums for the DVCJ, DVDJ and DVSDJ models 

are on average 11.79, 12.81, and 11.77 percent, roughly similar in magnitude, but larger than the implied 

estimates in Table 2.  As a percentage of the total risk premium, the jump risk premium is somewhat 

smaller than in Table 2, but both the normal and the jump components are economically important in 

Table 5. Figure 9 plots the resulting time variation in the conditional normal risk premium, the 

conditional jump risk premium and the total risk premium. 

       Although the DVCJ model has a higher conditional variance than the other jump models and a lower 

occurrence of jumps, its total risk premium has a similar magnitude and dynamic as those of the DVDJ 

and DVSDJ models, but the peaks in the risk premiums are higher. The models with dynamic jump 

intensities, DVDJ and DVSDJ, have higher jump risk premiums as a percentage of the total risk premium. 

The time path of the jump risk premiums is similar in the DVDJ and DVSDJ models.   

       In the models with time-varying jump intensities, DVDJ and DVSDJ, jumps explain approximately 

30% of the total variance, while jumps explain 9.71% of the total variance of the DVCJ model.  The 

relatively more prominent role for jumps is consistent with the findings in Table 2, and overall these 

results confirm the importance of allowing for time-varying jump intensities.        

       Figure 10 plots the sample paths of the number of jumps, as well as that of the filtered jump 

component and normal component. Clearly there a far fewer jumps compared to Figure 6. When jumps 
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happen, they are larger, especially in the case of downward jumps as during the first Gulf war. In those 

instances, jumps are the dominant component of returns. 

       Figure 11 plots the time path of conditional skewness and kurtosis. Consistent with the findings of 

large and infrequent jumps, and the large estimates of θ and ߜ, skewness and kurtosis are larger in 

absolute value compared to Table 7. This is especially the case for kurtosis, confirming that for the 

purpose of modeling options on crude oil futures capturing kurtosis may be more important than 

capturing skewness. 

      Table 6 further investigates the differences in fit between the models. We report IVRMSEs and IV 

bias by moneyness and maturity category. Because of space constraints, we limit ourselves to a 

comparison of the DVSDJ model and the benchmark GARCH model. For all moneyness and maturity 

categories in Panel A of Table 6, the average IVRMSE is significantly lower for the DVSDJ model 

compared to the GARCH model. However, the differences between the models are much larger when 

considering IV bias in Panel B of Table 6. Since RMSEs reflect model bias and variance, we conclude 

that the data may be rather noisy, and that some contracts are poorly fit by both models. The much 

improved bias for the DVSDJ model is therefore very important. 

       Figure 12 further investigates this by depicting the models’ ability to capture the “smiles” and 

“smirks” in the data. We again limit ourselves to a comparison between the benchmark GARCH model 

and the DVSDJ model. The red solid line shows the average actual log-normal volatility smiles and 

smirks. The green dashed line and the blue dotted line show the average of the fitted “smiles” for the 

DVSDJ model and the GARCH model respectively. Both models are estimated on entire option data. 

Averages are taken over a maximum of 4,753 daily observations from January 2, 1990 through December 

3, 2008. Figure 12 clearly demonstrates that the DVSDJ model fits the implied volatility “smiles” vastly 

better than the GARCH model for options on all different maturity futures contracts, in line with the bias 

results in Panel B of Table 6. As maturity increases, the pricing errors of both the GARCH model and the 

DVSDJ model decrease, suggesting that both models fit long maturity options better.  

 

8.  Conclusion 

       We estimate discrete-time jump models for pricing CME crude oil futures and options on futures. 

The most general model allows for a heteroskedastic normal innovation and a jump component with time-

varying jump intensity. We also investigate three other nested models with jumps, as well as a benchmark 
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GARCH model that does not contain a jump component. All models are tractable, providing a quasi-

analytical option valuation formula, and analytical results for filtering the volatility and jump intensity. 

      We find strong evidence for the presence of jumps in the crude oil derivatives market, using futures 

data as well as options data. However, the analysis of futures data favors models with many small jumps, 

and the presence of multiple jumps per day, especially when market risk is high. The analysis of options 

data as well as joint estimation of futures and options favors models with infrequent large jumps.  

      We find strong evidence in favor of time-varying jump intensities. Jump models with dynamic jump 

intensity dramatically improve model performance. This is the case whether or not futures options are 

used in estimation. During crisis periods, when market risk is high, jumps occur more frequently.  

      Jumps account for a large part of the risk premium in crude oil futures, regardless of whether jump 

intensities are time-varying, and regardless of whether futures or options are used in estimation. Jumps in 

the crude oil market contribute significantly to the total variation of underlying returns, more so than in 

equity index markets. The primary purpose of modeling jumps in crude oil markets seems to be to capture 

the excess kurtosis of the distribution, rather than the skewness. 

      In future research, we aim to reconcile the finding of many small jumps based on futures data with the 

finding of infrequent large jumps based on options data. 
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Appendix 

A. The Cost of Carry for Crude Oil 

In commodity markets, the arbitrage relationship between futures and spot prices   

,ݐሺܨ  ܶሻ ൌ ܵሺݐሻ݁௥ሺ்ି௧ሻ (A.1) 

may not hold in many cases because of storage costs and convenience yields. Instead, the following 

relationship applies  

,ݐሺܨ  ܶሻ ൌ ܵሺݐሻ݁ሺ௥ିఋሻሺ்ି௧ሻ (A.2) 

where ܿ ൌ ݎ െ  the forward ߜ denoting the forward interest rate and ݎ is the forward cost of carry, with ߜ

convenience yield net of storage costs. 

        The convenience yield is generally unobservable. Gibson and Schwartz (1990) provide a method to 

compute the convenience yield using two futures prices with different maturities. Their procedure relies 

on the relationship between the futures and the spot price of a commodity (A.2) when there is neither 

interest rate nor convenience yield uncertainty. Due to the absence of spot crude oil contracts, we use the 

closest maturity futures contracts prices as proxy for spot prices. This allows us to determine the monthly 

forward cost of carry by using pairs of different maturity futures prices according to the following 

formula: 

 ܿሺݐ, ௜ܶሻ ൌ ݈݊ ൤
,ݐሺܨ ௜ܶሻ
,ݐሺܨ ଵܶሻ

൨ (A.3) 

where ௜ܶ is the maturity date of the futures contract maturing in i months, with ݅ ൌ 1, 2, 3, 4, 5, 6, 9, 12 in 

our case.   

The difference between time t and t+1 forward cost of carry for a futures contract maturing in ௜ܶ months 

can be calculated as 

 ∆ܿሺݐ, ݐ ൅ 1, ௜ܶሻ ൌ ܿሺݐ ൅ 1, ௜ܶሻ െ ܿሺݐ, ௜ܶሻ (A.4) 

 ∆ܿሺݐ, ݐ ൅ 1, ௜ܶሻ ൌ ݈݊ ൤
ݐሺܨ ൅ 1; ௜ܶሻ
ݐሺܨ ൅ 1; ଵܶሻ

൨ െ ݈݊ ൤
;ݐሺܨ ௜ܶሻ
;ݐሺܨ ଵܶሻ

൨ (A.5) 

For i=1, we have ∆ܿሺݐ, ݐ ൅ 1, ଵܶሻ ൌ 0. 
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B. The Generating Function and the Option Valuation Formula  

We solve for the coefficients ܣሺ߮; ,ݐ ܶሻ, ܤሺ߮; ,ݐ ܶሻ, and ܥሺ߮; ,ݐ ܶሻ in equation (5.7) as in Ingersoll (1987) 

and Heston and Nandi (2000), utilizing the fact that the conditional moment generating function is 

exponential affine in the state variables ݄௭,௧ାଵ and ݄௬,௧ାଵ
כ . 

        Since ்ܵ is known at time T, equation (5.7) requires the terminal condition 

;1ሺ߮ܣ  ܶ, ܶሻ ൌ ;1ሺ߮ܤ ܶ, ܶሻ ൌ ;1ሺ߮ܥ ,ݐ ܶሻ ൌ 0 (B.1) 

Applying the law of iterated expectations to ݂ሺ߮; ,ݐ ܶሻכ, we get 

 

 

݂ሺ߮; ,ݐ ܶሻכ ൌ ௧ܧ
ொሾ݂ሺ߮; ݐ ൅ 1, ܶሻכሿ

ൌ ܵ௧
ఝܧ௧

ொൣ݁݌ݔሺܴ߮௧ାଵ ൅ ;1ሺ߮ܣ ݐ ൅ 1, ܶሻ ൅ ;1ሺ߮ܤ ݐ ൅ 1, ܶሻ݄௭,௧ାଶ

൅ ;1ሺ߮ܥ ݐ ൅ 1, ܶሻ݄௬,௧ାଶ
כ ሻሿ 

(B.2) 

We can rewrite the futures return process in (5.4) as 

 ܴ௧ାଵ ൌ ௧ାଵݎ ൅ ଵ௭݄௭,௧ାଵߤ ൅ ଵ௬݄௬,௧ାଵߤ
כ ൅ ௧ାଵݖ ൅ ௧ାଵݕ

כ ൅ ,ݐሺܥ∆ ݐ ൅ 1, ܶሻ (B.3) 

where ߤଵ௭ ൌ െ
ଵ

ଶ
ଵ௬ߤ , ൌ െߦ௬ሺ1ሻכ. 

        Substituting the futures return process in equation (B.3), the conditional normal variance dynamic 

equation (5.5), and the conditional jump intensity dynamic equation (5.6) into (B.2), we get 

 
݂ሺ߮; ,ݐ ܶሻכ ൌ ܵ௧

ఝܧ௧
ொ ቈ݁݌ݔሺ߮ሺݎ௧ାଵ ൅ ଵ௭݄௭,௧ାଵߤ ൅ ଵ௬݄௬,௧ାଵߤ

כ ൅ ௧ାଵݖ ൅ ௧ାଵݕ
כ ሻ

൅ ;1ሺ߮ܣ ݐ ൅ 1, ܶሻ ൅ ;1ሺ߮ܤ ݐ ൅ 1, ܶሻሺ߱௭ ൅ ܾ௭݄௭,௧ାଵ

൅
ܽ௭

݄௭,௧ାଵ
൫ݖ௧ାଵ െ ܿ௭݄௭,௧ାଵ൯

ଶ
൅ ݀௭ݕ௧ାଵሻ ൅ ;1ሺ߮ܥ ݐ ൅ 1, ܶሻሺ߱௬כ

൅ ܾ௬݄௬,௧ାଵ
כ ൅

ܽ௬כ

݄௭,௧ାଵ
ሺݖ௧ାଵ െ ܿ௬݄כ௭,௧ାଵሻଶ ൅ ݀௬ݕכ௧ାଵ

כ ሻሻ቉ 

 

 

 

(B.4) 

After rearranging terms through completing squares and following some algebra we get 
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݂ሺ߮; ,ݐ ܶሻכ ൌ ܵ௧

ఝܧ௧
ொ ቈ߮ݎ௧ାଵ ൅ ;1ሺ߮ܣ ݐ ൅ 1, ܶሻ ൅ ;1ሺ߮ܤ ݐ ൅ 1, ܶሻ߱௭

൅ ;1ሺ߮ܥ ݐ ൅ 1, ܶሻ߱௬כ ൅ ሺ߮ߤଵ௭ ൅ ሺܾ௭൅ܽ௭ܿ௭ଶሻ1ܤሺ߮; ݐ ൅ 1, ܶሻሻ݄௭,௧ାଵ

൅ ሺ߮ߤଵ௬ ൅ ሺܾ௬ ൅ ܽ௬כ ܿ௬כଶሻ1ܥሺ߮; ݐ ൅ 1, ܶሻሻ݄௬,௧ାଵ
כ

൅ ቀܽ௭1ܤሺ߮; ݐ ൅ 1, ܶሻ ൅ ܽ௬1ܥሺ߮; ݐ ൅ 1, ܶሻቁ כ
௧ାଵݖ
ଶ

݄௭,௧ାଵ

൅ ቀ߮ െ 2ܽ௭ܿ௭1ܤሺ߮; ݐ ൅ 1, ܶሻ െ 2ܽ௬ܿ௬1ܥሺ߮; ݐ ൅ 1, ܶሻቁ ௧ାଵݖ ൅ ሺ߮

൅ ݀௭1ܤሺ߮; ݐ ൅ 1, ܶሻ ൅ ݀௬1ܥכሺ߮; ݐ ൅ 1, ܶሻሻݕ௧ାଵ
כ ቉ 

 

 

 

 

 

 

 

(B.5) 

Where we use the following results for normal and Poisson variables 

௧ܧ 
ொሾexpሺݖߙ௧ାଵ

ଶ ൅ ௧ାଵሻሿݖߚ ൌ exp ሺ
ఈమ௛೥,೟శభ

ଶ൫ଵିଶఉ௛೥,೟శభ൯
െ

ଵ

ଶ
log ሺ1 െ  ௭,௧ାଵ))  (B.6)݄ߚ2

௧ܧ 
ொሾexpሺݕߌ௧ାଵ

כ ሻሿ ൌ exp ሺߦ௬ሺߌሻ݄כ௬,௧ାଵሻ (B.7) 

where ߦ௬ሺߌሻכ ൌ ݁ఏ
ାכ௻כ

భ
మ
௻೤כమఋమ െ 1. 

        Substituting (B.6) and (B.7) into (B.5) and subsequently equating terms in the right hand sides of 

(B.5) and (5.7) gives the analytical solutions for the affine coefficients ܣሺ߮; ,ݐ ܶሻ ;ሺ߮ܤ , ,ݐ ܶሻ , and 

;ሺ߮ܥ ,ݐ ܶሻ in (5.8) and (5.9). 
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Table 1. Summary Statistics 

We report summary statistics for crude oil futures returns and options. M1 (M2, M3, M4, M5, M6) refers 

to futures contracts with expiration in 1 (2, 3, 4, 5, 6) months; Q1 and Q2 refer to the next two futures 

contracts with expiration in either March, June, September or December. Moneyness is defined as the 

option strike divided by the price of the underlying futures contract. The data spans 4,753 trading days 

from January 2, 1990 to December 3, 2008. 

Panel A. Historical Moments of Futures Returns 

   Maturity     

   M1 M2 M3 M4 M5 M6 Q1 Q2 Average 

Mean 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
Variance 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 
Skewness -1.25 -1.16 -1.01 -0.94 -0.87 -0.80 -0.71 -0.51 -0.91 
Kurtosis 23.38 19.50 15.91 14.46 13.21 12.01 10.98 8.66   14.77 

Panel B. Average Number of Option Contracts 

  

Moneyness 

Maturity     

  M1 M2 M3 M4 M5 M6 Q1 Q2 All 

0.78-0.82 443 2122 2765 2867 2790 2559 2504 1738 17788 
0.82-0.86 1087 2907 3340 3424 3293 2974 2883 2007 21915 

Puts 0.86-0.90 1985 3647 3960 4065 3897 3474 3217 2335 26580 
0.90-0.94 3080 4309 4470 4262 4056 3592 3345 2434 29548 
0.94-0.98 4000 4607 4472 4190 4070 3635 3416 2559 30949 
0.98-1.02 4410 4527 4400 4116 3958 3505 3355 2482 30753 
1.02-1.06 4001 4605 4470 4259 3973 3464 3249 2337 30358 
1.06-1.10 3136 4362 4405 4155 3925 3473 3161 2153 28770 

Calls 1.10-1.14 2209 3714 4196 4042 3683 3151 3116 1994 26105 
1.14-1.18 1404 3135 3482 3574 3368 2877 2877 1845 22562 

  1.18-1.22 815 2547 3010 2819 2674 2367 2366 1727 18325 

  All 26570 40482 42970 41773 39687 35071 33489 23611   283653
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Panel C. Average Option Prices  

  

Moneyness 

Maturity     

  M1 M2 M3 M4 M5 M6 Q1 Q2 All 

0.78-0.82 0.27  0.31 0.45 0.58 0.72 0.89 1.11 1.58 0.74 
0.82-0.86 0.26 0.40 0.59 0.75 0.92 1.11 1.36 1.86 0.91 

Puts 0.86-0.90 0.31 0.55 0.78 0.95 1.12 1.33 1.67 2.15 1.11 
0.90-0.94 0.42 0.76 1.04 1.29 1.50 1.78 2.10 2.64 1.44 
0.94-0.98 0.66 1.14 1.51 1.82 2.02 2.31 2.67 3.13 1.91 
0.98-1.02 1.08 1.69 2.09 2.43 2.64 2.96 3.36 3.90 2.52 
1.02-1.06 0.69 1.20 1.59 1.89 2.14 2.43 2.86 3.52 2.04 
1.06-1.10 0.48 0.86 1.18 1.45 1.66 1.91 2.30 2.96 1.60 

Calls 1.10-1.14 0.37 0.68 0.91 1.13 1.30 1.53 1.83 2.51 1.28 
1.14-1.18 0.33 0.54 0.78 0.94 1.06 1.23 1.53 2.14 1.07 

  1.18-1.22 0.32 0.44 0.65 0.86 0.96 1.11 1.33 1.71 0.92 

  All 0.47 0.78 1.05 1.28 1.46 1.69 2.01 2.56   1.41 

Panel D. Average Implied Log-Normal Volatilities  

  

Moneyness 

Maturity     

  M1 M2 M3 M4 M5 M6 Q1 Q2 All 

0.78-0.82 0.57 0.44 0.40 0.37 0.36 0.34 0.32 0.30 0.39
0.82-0.86 0.47 0.41 0.38 0.35 0.33 0.3 2 0.30 0.29 0.36

Puts 0.86-0.90 0.43 0.38 0.35 0.33 0.31 0.30 0.29 0.27 0.33
0.90-0.94 0.39 0.35 0.33 0.31 0.30 0.30 0.28 0.27 0.32
0.94-0.98 0.35 0.33 0.32 0.31 0.30 0.29 0.28 0.26 0.30
0.98-1.02 0.33 0.33 0.32 0.31 0.29 0.29 0.27 0.26 0.30
1.02-1.06 0.35 0.33 0.32 0.31 0.29 0.29 0.27 0.26 0.30
1.06-1.10 0.38 0.34 0.32 0.31 0.29 0.29 0.27 0.26 0.31

Calls 1.10-1.14 0.41 0.36 0.33 0.31 0.30 0.29 0.27 0.26 0.32
1.14-1.18 0.45 0.39 0.36 0.33 0.30 0.29 0.27 0.26 0.33

  1.18-1.22 0.50 0.40 0.37 0.35 0.32 0.31 0.28 0.26 0.35

  All 0.42 0.37 0.34 0.33 0.31 0.30 0.28 0.27   0.33
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Table 2. MLE Estimates using Crude Oil Futures Returns, 1990 – 2008 

We report estimation results from MLE estimation on daily crude oil futures returns from January 2, 1990 to December 3, 2008. Columns labeled “Normal” 

contain estimates of the parameters governing the normal component; columns labeled “Jump” contain parameters governing the jump component. Reported in 

parentheses are standard errors computed using the Hessian matrix.  

Parameters GARCH DVCJ CVDJ DVDJ DVSDJ 
Normal Normal Jump Normal Jump Normal Jump Normal Jump 

λ 7.31E-01 5.27E-01 1.52E-03 9.93E-01 9.75E-04 1.08E+00 1.11E-04 7.66E-01 2.17E-04 
(1.72E-03) (2.22E-04) (2.32E-06) (5.41E-03) (2.87E-06) (3.10E-03) (4.31E-08) (1.42E-03) (3.72E-08) 

w -1.03E-05 -1.50E-05 1.03E-01 1.85E-04 5.52E-03 -1.45E-05 -1.45E-05 3.46E-02 
(1.06E-08) (3.31E-08) (4.69E-04) (5.28E-07) (7.17E-06) (5.66E-08) (1.21E-08) (6.13E-05) 

a 2.01E-05 2.56E-05 3.30E-03 2.81E-05 2.86E-05 2.98E-02 
(4.45E-08) (1.91E-07) (6.46E-06) (7.61E-08) (2.49E-08) (4.89E-05) 

b 9.78E-01 9.81E-01 9.71E-01 9.89E-01 9.85E-01 5.52E-01 
(1.14E-03) (1.18E-03) (1.47E-03) (8.17E-04) (1.12E-03) (1.26E-03) 

c 1.03E+01 6.32E+00 2.81E+00 9.04E+00 9.90E+00 1.82E+02 
(2.14E-02) (9.44E-03) (7.23E-03) (1.96E-02) (1.71E-02) (4.53E-01) 

d -3.71E-04 1.75E-03 5.27E-05 5.85E-05 8.65E-02 
(6.52E-07) (2.29E-06) (8.45E-08) (2.08E-07) (1.28E-04) 

θ -6.87E-03 -8.99E-03 -2.08E-03 -2.18E-03 
(1.29E-05) (3.19E-05) (1.67E-06) (6.97E-06) 

δ 2.54E-02 3.34E-02 1.55E-02 1.59E-02 
(5.02E-05) (4.92E-05) (1.71E-05) (2.24E-05) 

k 3.14E+03 
(7.72E+00) 

Properties 
Risk Premium (%) 9.18 5.16 3.94 4.63 6.49 7.10 2.30 5.33 3.97 
% of Annual Variance 100.00 84.52 15.48 36.93 63.07 56.40 43.60 59.64 40.36 
Ave. Annual Volatility 0.35 0.34 0.36 0.34 0.34 
Exp. No. of Jumps/Yr.  25.9 66.5 206.5 182.8 
Log-Likelihood 11682 11830 11544 11841 11850 
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Table 3. Hansen’s Standardized Likelihood Ratio test 

We report Hansen’s Standardized Likelihood Ratio test and the corresponding simulated critical values for the discrete-

time DVCJ, DVDJ, and DVSDJ jump models. Under the null hypothesis there are no jumps. The log likelihoods are 

calculated using daily crude oil futures returns from January 2, 1990 to December 3, 2008.  *, **, *** and ****represents 

significance at the 20%, 10%, 5% and 1% level or better. 

 

Models DVCJ DVDJ DVSDJ 

Hansen's standardized LR test 4.5946**** 11.5006**** 5.3905**** 
Simulated 20% critical value 1.4400 1.5399 1.6021 
Simulated 10% critical value 1.8731 1.9776 2.0262 
Simulated 5% critical value 2.1269 2.4070 2.3480 
Simulated 1% critical value 2.7016 3.0147 3.1183 
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Table 4. MLE Estimates using Crude Oil Options, 1990-2008 

We report risk-neutral estimation results from MLE estimation on daily crude oil options from January 2, 1990 to December 3, 2008. Columns 

labeled “Normal” contain estimates of the parameters governing the normal component; columns labeled “Jump” contain parameters governing 

the jump component. Reported in parentheses are standard errors computed using the Hessian matrix. 

 

Parameters GARCH DVCJ CVDJ DVDJ DVSDJ 
Normal Normal Jump Normal Jump Normal Jump Normal Jump 

w* -6.23E-06 -1.04E-05 7.68E-04 2.09E-04 5.96E-04 -9.04E-06 -8.98E-06 -6.63E-05 
(4.03E-07) (1.40E-06) (3.76E-05) (1.90E-05) (4.55E-05) (1.04E-06) (5.27E-07) (1.01E-05) 

a* 9.22E-06 1.26E-05 2.05E-03 1.17E-05 1.17E-05 8.41E-05 
(5.91E-07) (2.19E-06) (1.30E-04) (1.09E-06) (2.01E-06) (6.10E-06) 

b 9.76E-01 9.83E-01 9.71E-01 9.84E-01 9.83E-01 9.83E-01 
(1.40E-02) (5.07E-03) (1.53E-02) (5.52E-03) (9.59E-03) (1.31E-02) 

c* 3.27E+00 2.56E+01 1.10E+01 6.80E+00 9.63E+00 2.08E+00 
(5.46E-01) (1.34E+00) (1.63E-01) (7.43E-01) (7.51E-01) (1.91E-01) 

d* 8.56E-05 9.65E-05 6.54E-04 5.67E-05 2.58E-04 
(3.88E-05) (7.47E-06) (6.54E-05) (7.83E-06) (2.90E-05) 

θ * -2.17E-02 -2.14E-02 -2.64E-01 -2.63E-01 
(2.75E-03) (1.94E-03) (7.34E-03) (2.83E-02) 

δ 2.49E-01 3.59E-02 1.44E-02 1.38E-03 
(6.36E-02) (6.78E-04) (1.56E-03) (6.59E-05) 

k* 7.07E+00 
(3.15E-01) 

Properties 
% of Annual Variance 100.00 89.10 10.90 56.37 43.63 66.86 33.14 65.78 34.22 
Ave. Annual Volatility 0.29 0.33 0.31 0.37 0.37 
Exp.  No. of Jumps/Yr. 0.19 23.36 0.65 0.47 
RMSE 7.23 7.13 9.84 6.83 6.75 
Log-Likelihood 335441 346577 255322 358555 359739 
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Table 5. Joint MLE Estimates using Crude Oil Futures and Options, 1990-2008 

We report estimation results from MLE estimation using daily crude oil futures and options from January 2, 1990 to December 3, 2008. Reported 
in parentheses are standard errors computed using the Hessian matrix. 

Parameters GARCH DVCJ CVDJ DVDJ DVSDJ
Normal Normal Jump Normal Jump Normal Jump Normal Jump

λ 1.40E+00 1.09E+00 2.99E-02 2.05E+00 2.90E-03 1.14E+00 4.11E-02 9.61E-01 5.44E-02
(3.25E-01) (7.36E-02) (2.11E-03) (2.08E-01) (2.36E-04) (4.46E-04) (1.04E-05) (2.12E-02) (1.68E-03) 

w -6.28E-06 -1.04E-05 1.88E-03 9.89E-05 2.88E-03 -9.04E-06 -1.33E-05 -1.82E-05
(5.96E-08) (6.46E-07) (6.87E-05) (1.78E-05) (1.57E-04) (4.82E-09) (1.42E-06) (9.63E-07) 

a 9.59E-06 1.27E-05 2.56E-03 1.17E-05 1.66E-05 1.07E-05
(6.88E-08) (5.39E-07) (2.02E-04) (6.38E-09) (1.52E-06) (7.15E-07) 

b 9.87E-01 9.83E-01 9.61E-01 9.84E-01 9.73E-01 9.61E-01
(1.27E-04) (4.25E-03) (8.11E-03) (2.56E-05) (1.32E-02) (5.82E-02) 

c 2.07E+00 2.35E+01 1.80E+01 5.16E+00 2.35E+01 1.61E+02
(5.24E-01) (2.11E-01) (9.67E-01) (1.10E-03) (4.30E-01) (4.36E+00) 

d 8.01E-05 9.43E-05 1.30E-04 7.91E-05 9.09E-06
(6.16E-06) (8.06E-06) (7.86E-08) (1.08E-05) (6.40E-07) 

θ -2.47E-02 -2.00E-02 -2.64E-01 -1.07E-02
(1.54E-03) (2.06E-03) (1.18E-04) (1.07E-03) 

δ 1.44E-01 3.59E-02 1.44E-02 2.63E-01
(1.24E-02) (2.59E-03) (5.86E-06) (8.70E-03) 

k 6.00E+00
(3.65E-03)

Properties 
Risk Premium (%) 14.07 10.37 1.42 5.10 10.55 10.53 2.28 8.60 3.17 

% of Annual Variance 100.00 90.29 9.71 28.88 71.12 70.40 29.60 68.86 31.14 

Ave. Annual Volatility 0.32 0.32 0.29 0.36 0.36 
Exp. No. of Jumps/Yr. 0.47 37.17 0.56 0.58 

RMSE 7.26 7.06 10.05 6.86 6.77 

Log-Likelihood 245031 247921 187131 252327 257467 
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Table 6. IVRMSEs and IV Bias for Crude Oil Options by Moneyness and Maturity  

We report the option implied volatility root mean squared errors (IVRMSEs) and the implied volatility 

bias within each moneyness-maturity category for the GARCH and DVSDJ models. The models are 

estimated using daily crude oil returns and options jointly for the period January 2, 1990 to December 3, 

2008. The pricing errors are defined as the difference between fitted and actual implied volatilities and 

reported in percentage. M1 (M2, M3, M4, M5, M6) means option contracts with expiration in next (2, 3, 

4, 5, 6) month; Q1 and Q2 refers to the next two option contracts with expiration in either March, June, 

September or December. Moneyness is defined as the option strike divided by the price of the underlying 

futures contract.  

Panel A. IVRMSEs for Crude Oil Options by Moneyness and Maturity 

      Maturity 

  Moneyness Model M1 M2 M3 M4 M5 M6 Q1 Q2 

0.78-0.82 GARCH 12.85 9.01 7.89 7.12 6.75 6.18 5.75 5.98 
DVSDJ 9.12 7.87 7.05 6.33 6.14 5.76 5.54 5.68 

0.82-0.86 GARCH 10.88 9.01 8.23 7.56 7.07 6.17 5.88 6.17 
DVSDJ 8.01 7.26 6.96 6.60 6.38 5.87 5.55 5.71 

0.86-0.90 GARCH 9.81 8.82 8.09 7.49 7.02 6.31 6.03 6.48 
Puts DVSDJ 7.52 7.19 7.04 6.71 6.42 5.98 5.76 6.26 

0.90-0.94 GARCH 8.74 8.36 7.61 6.96 6.82 6.22 6.06 6.57 
DVSDJ 7.44 7.27 6.76 6.28 6.23 5.80 5.66 5.69 

0.94-0.98 GARCH 8.42 8.15 7.56 7.06 6.43 6.13 6.13 6.93 
DVSDJ 7.91 7.42 6.90 6.40 5.86 5.59 5.52 5.77 

0.98-1.02 GARCH 8.41 8.09 7.53 7.11 6.32 6.14 6.32 6.98 
DVSDJ 8.38 7.68 7.05 6.54 5.74 5.44 5.57 5.84 

1.02-1.06 GARCH 8.29 8.26 7.53 7.01 6.40 6.28 6.38 6.93 
DVSDJ 8.14 7.84 7.03 6.42 5.72 5.58 5.48 5.58 

1.06-1.10 GARCH 8.49 8.50 7.68 7.09 6.56 6.33 6.38 7.00 
DVSDJ 7.85 7.92 7.06 6.49 5.86 5.60 5.36 5.70 

Calls 1.10-1.14 GARCH 9.24 8.68 7.82 7.17 6.69 6.40 6.62 7.21 
DVSDJ 7.97 7.87 7.25 6.53 5.93 5.77 5.53 6.01 

1.14-1.18 GARCH 10.29 9.01 8.13 7.38 6.64 6.61 6.87 7.72 
DVSDJ 8.53 7.95 7.31 6.75 6.05 5.95 5.88 6.04 

1.18-1.22 GARCH 11.83 9.33 8.21 7.50 6.76 6.71 6.44 7.91 
    DVSDJ 9.44 8.23 7.40 6.87 6.01 5.87 5.47 5.71 
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Panel B. IV Bias for Crude Oil Options by Moneyness and Maturity 

 

         Maturity 

   Moneyness  Model  M1  M2  M3  M4  M5  M6  Q1  Q2 

0.78‐0.82  GARCH  ‐13.82  ‐7.65  ‐5.95  ‐4.72  ‐3.80  ‐3.47  ‐2.24  ‐2.24 

DVSDJ  ‐3.89  0.40  0.47  0.29  0.11  ‐0.19  ‐0.32  ‐1.29 

0.82‐0.86  GARCH  ‐11.51  ‐7.18  ‐5.17  ‐3.64  ‐2.70  ‐2.29  ‐1.14  ‐0.57 

DVSDJ  ‐1.98  ‐0.48  ‐0.28  0.09  0.15  0.05  ‐0.10  ‐0.69 

0.86‐0.90  GARCH  ‐8.59  ‐5.77  ‐3.76  ‐2.30  ‐1.38  ‐0.94  ‐0.15  0.76 

Puts  DVSDJ  ‐2.53  ‐1.41  ‐0.55  ‐0.02  0.22  0.34  0.24  0.43 

0.90‐0.94  GARCH  ‐5.77  ‐4.00  ‐2.73  ‐1.66  ‐0.89  ‐0.48  0.48  1.48 

DVSDJ  ‐3.11  ‐1.79  ‐0.95  ‐0.33  0.00  0.16  0.29  0.25 

0.94‐0.98  GARCH  ‐3.36  ‐3.01  ‐2.22  ‐1.40  ‐0.48  ‐0.01  0.95  2.37 

DVSDJ  ‐3.48  ‐2.24  ‐1.39  ‐0.84  ‐0.28  ‐0.04  0.23  0.70 

0.98‐1.02  GARCH  ‐2.07  ‐2.68  ‐1.98  ‐1.20  ‐0.24  0.24  1.30  2.27 

DVSDJ  ‐3.72  ‐2.63  ‐1.75  ‐1.16  ‐0.48  ‐0.22  0.30  0.77 

1.02‐1.06  GARCH  ‐2.93  ‐2.65  ‐1.90  ‐0.97  ‐0.04  0.53  1.44  2.46 

DVSDJ  ‐3.91  ‐2.62  ‐1.77  ‐1.08  ‐0.49  ‐0.04  0.20  0.30 

1.06‐1.10  GARCH  ‐4.80  ‐3.16  ‐2.01  ‐1.04  ‐0.04  0.41  1.54  2.37 

DVSDJ  ‐3.64  ‐2.46  ‐1.59  ‐1.04  ‐0.49  ‐0.30  0.08  0.25 

Calls  1.10‐1.14  GARCH  ‐7.03  ‐4.52  ‐2.55  ‐1.33  ‐0.03  0.36  1.71  2.28 

DVSDJ  ‐3.65  ‐2.49  ‐1.51  ‐1.03  ‐0.31  ‐0.29  0.35  0.44 

1.14‐1.18  GARCH  ‐9.50  ‐5.66  ‐3.68  ‐1.93  ‐0.50  0.25  1.49  2.67 

DVSDJ  ‐3.58  ‐2.14  ‐1.69  ‐1.03  ‐0.43  ‐0.16  0.30  0.46 

1.18‐1.22  GARCH  ‐12.40  ‐6.39  ‐4.38  ‐3.04  ‐1.36  ‐0.31  1.07  2.45 

      DVSDJ  ‐4.68  ‐1.53  ‐1.45  ‐1.44  ‐0.85  ‐0.49  0.02  0.13 
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Figure 1. Prices of Futures Contracts 

We plot the prices of the M1, M2, M3, M4, M5, M6, Q1, and Q2 futures contracts. The data spans 4,753 

trading dates from January 2, 1990 to December 3, 2008. To avoid cluttering the figure, we only display 

the futures term structures on Wednesdays. 
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Figure 2. Daily Futures Returns 

We plot daily futures returns, ݈݃݋
ி೟శభ,೅
ி೟,೅

, on the M1, M2, M3, M5, M6, Q1, and Q2 futures contracts. The 

data spans 4753 trading dates from January 2, 1990 to December 3, 2008.  
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Figure 3. Implied Log-Normal ATM Volatility of Futures Options 

We plot implied log-normal ATM volatilities of options on the M1, M2, M3, M5, M6, Q1, and Q2 futures 

contracts. Implied volatilities are computed from option prices by inverting the Barone-Adesi and Whaley 

(1987) formula. The data spans 4,753 trading dates from January 2, 1990 to December 3, 2008. 
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Figure 4. Conditional Variance and Jump Intensity Estimated Using Futures Contracts 

We plot the annualized conditional variance, ݄௭,௧ାଵ, in the left column and the annualized conditional 

jump intensity, ݄௬,௧ାଵ, in the right column for four jump models. 
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Figure 5. Risk Premiums Estimated Using Futures Contracts 

We plot the normal risk premium, ߛ௭,௧ ؠ ௬,௧ߛ ,௭݄௭,௧, in the left column, the jump risk premiumߣ ؠ  ,௬݄௬,௧ߣ

in the middle column, and the total risk premium, ߛ௧ ؠ ,௭݄௭ߣ ൅  ௬݄௬,, in the right column for four jumpߣ

models.  
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Figure 6. Decomposition of Daily Futures Returns Estimated Using Futures Contracts 

We plot the filtered number of jumps, ݊௧, in the left column, the filtered jump component, ݕ௧ , in the 

middle column, and the filtered standardized normal component, ݖ௧, in the right column for four jump 

models. Results are obtained using the analytical filter and the MLE estimates from Table 2. 
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Figure 7. Conditional Skewness and Conditional Excess Kurtosis Estimated Using Futures 

Contracts 

This figure plots daily conditional skewness in the left column and conditional excess kurtosis in the right 

column for four jump models. 
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Figure 8. Conditional Variance and Jump Intensity Estimated Using Futures and Option Contracts. 

We plot the annualized conditional variance, ݄௭,௧ାଵ, in the left column and the annualized conditional 

jump intensity, ݄௬,௧ାଵ, in the right column for four jump models. 
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Figure 9. Risk Premiums Estimated Using Futures and Option Contracts 

We plot the normal risk premium, ߛ௭,௧ ؠ ௬,௧ߛ ,௭݄௭,௧, in the left column, the jump risk premiumߣ ؠ  ,௬݄௬,௧ߣ

in the middle column, and the total risk premium, ߛ௧ ؠ ,௭݄௭ߣ ൅  ௬݄௬,, in the right column for four jumpߣ

models. 
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Figure 10. Decomposition of Daily Futures Returns estimated Using Futures and Option Contracts 

We plot the filtered number of jumps, n୲, in the left column, the filtered jump component, ݕ௧ , in the 

middle column, and the filtered standardized normal component, ݖ௧, in the right column for four jump 

models. Results are obtained using the analytical filter and the joint MLE estimates of futures and options 

from Table 5. 
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Figure 11. Conditional Skewness and Conditional Excess Kurtosis Estimated Using Futures and 

Option Contracts  

We plot the daily conditional skewness in the left column and the conditional excess kurtosis in the right 

column for four jump models. The moments are estimated using joint MLE on futures and options data. 
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Figure 12. Average Implied Log-Normal Volatility “Smiles” 

We plot the average implied volatility across moneyness. Moneyness is defined as the option strike 

divided by the price of the underlying futures contract. The red solid line “____” shows the average 

volatility smiles in the option data. The green dashed line “_ _ _” shows the average over time of the 

fitted smiles for the DVSDJ model. The blue dotted line “……” shows the average over time of the fitted 

smile for the GARCH model. Model parameters are from Table 5. Averages are taken over a maximum of 

4,753 daily observations from January 2, 1990 through December 3, 2008. 
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