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Abstract

In many assignment problems items arrive stochastically over time. When items
are scarce, agents form an overloaded waiting list and items are dynamically allo-
cated as they arrive; two examples are public housing and organs for transplant.
Even when all the scarce items are allocated, there is the efficiency question of how
to assign the right items to the right agents. I develop a model in which impatient
agents with heterogeneous preferences wait to be assigned scarce heterogeneous items
that arrive stochastically over time. Social welfare is maximized when agents are ap-
propriately matched to items, but an individual impatient agent may misreport her
preferences to receive an earlier mismatched item. To incentivize an agent to avoid
mismatch, the policy needs to provide the agent with a (stochastic) guarantee of
future assignment, which I model as putting the agents in a priority buffer-queue. I
first consider a standard queue-based allocation policy and derive its welfare proper-
ties. To determine the optimal policy, I formulate the dynamic assignment problem
as a dynamic mechanism design problem without transfers. The resulting optimal
incentive compatible policy uses a buffer-queue of a new queueing policy, the uniform
wait queue, to minimize the probability of mismatching agents. Finally, I derive a
policy which uses a simple rule: giving equal priority to every agent who declines
a mismatched item (a SIRO buffer-queue). This policy is optimal in a class of ro-
bust mechanisms and has several good properties that make it a compelling market
design policy recommendation.
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1 Introduction

From nursery schools to nursing homes, waiting lists are a common tool for allocating

scarce goods that are not allocated (entirely) by price1. If the demand for the good

exceeds its supply so much that some people waiting will never be assigned, I will say

that the system is overloaded. For example, the Chicago public housing authority presides

over approximately 20,000 apartments. When one of these apartments becomes vacant it

is assigned to the next applicant on the waiting list of 60,000 applicants who the housing

authority allows to register at any given time.2

The Chicago public housing authority thus faces a dynamic allocation problem in an

overloaded system. In a dynamic matching problem, agents with heterogeneous prefer-

ences are to be allocated heterogeneous items that arrive stochastically over time, without

the use of monetary transfers. The stochastic arrival adds two elements to the standard

discrete allocation problem. First, unlike common assignment problems, items are al-

located dynamically as they arrive. Second, an agent’s allocation needs to specify not

only the item she receives, but also the time at which she receives it. In this paper, I

introduce the dynamic allocation problem described above and solve it by presenting new

and efficient dynamic allocation mechanisms.

To make proper use of its limited housing stock, the public housing authority should

not only make sure that all apartments are assigned, but also try to match apartment

locations to the preferences of applicants. The stock of public housing apartments is

spread throughout the city, some in the northern part of the city and some in the south.
1For example, many teams in the National Football League ration their limited supply of season tickets

by a waiting list, instead of increasing the price to clear the market.
2The Chicago public authority currently does not accept new applicants to its waiting list. From time

to time the authority admits new applicants to its waiting list through a lottery. Once registered, the
eligibility of the applicant is verified and a priority class is determined (for disaster victims or domestic
violence victims), as well as the appropriate number of rooms (based on the family size). Some applicants
(but not all) are allowed to indicate a geographic preference area. Applicants are offered units based on
a priority system. They are removed from the waiting list if they refuse a unit without good cause, or if
they refuse a second unit (with or without cause).
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Applicants have different location preferences, so assigning each apartment as it becomes

available to the next person in line may be inefficient, since it can assign an applicant

who prefers a northern apartment to a southern one, and vice versa.

To efficiently allocate apartments the public housing agency needs to account for the

applicants’ preferences, which the public housing authority cannot verify. Preferences of

applicants can arise for diverse reasons, such as work location or proximity to family and

friends, and so they may not be observable to the housing authority if it does not elicit

preference information or allow choice. But apartments arrive over time3 and applicants

are assigned both an apartment at a certain location as well as an interval of waiting time.

It is socially efficient for an applicant to decline an apartment that does not suit her very

well, allowing it to be assigned to an applicant who prefers it, as one of the two will have

to keep waiting in any event. However, if the waiting time is long, an applicant who

considers only her own waiting cost may prefer to take an earlier mismatched apartment

rather than wait for an apartment she prefers.

To illustrate the model, let us suppose apartments differ only by location, north or

south. An apartment and an applicant are said to be mismatched if the applicant would

prefer the other location. Apartments become available stochastically over time, and so

the allocation needs to be determined sequentially. Suppose that a northern apartment

arrives. The mechanism approaches applicants sequentially, trying to find a northern

applicant to whom the current northern apartment should be assigned. Not knowing

the applicants’ preferences, the mechanism may first offer the apartment to a southern

applicant (e.g. offer the apartment first to the applicant next on the waiting list, whose

locational preferences are not known, and who may accept or reject it). To avoid mis-

matching a southern applicant (who could choose to accept the northern apartment), the

mechanism needs to offer a southern applicant an acceptable alternative: if the applicant
3Public housing apartments are made available to new applicants only when current tenants decide

to vacate their apartment, for details see Kaplan (1984, 1986).
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declines the current (northern) apartment, she gets a claim over apartments that will ar-

rive in the future. For example, an applicant who declines the current northern apartment

might be promised the next southern apartment to arrive. The southern applicant thus

faces a choice between accepting the current northern apartment or declining it in order

to get a southern apartment after some extra wait, and will prefer to decline the current

northern apartment if the waiting time is below some threshold.

After the mismatched applicant declines the item, the mechanism is free to continue

searching for an applicant who prefers the apartment. The mechanism may encounter

numerous mismatched applicants before finding an applicant who prefers the apartment,

and mismatched applicants accumulate in a “buffer-queue”, each holding a guarantee for

future assignment. The mechanism is constrained by past guarantees made to applicants

in the buffer-queue. For example, if the next southern apartment to arrive is already

committed to an applicant in the buffer-queue, the mechanism can at best promise to give

the next applicant who chooses to enter the buffer-queue the second southern apartment

to arrive. As the buffer-queue grows large the mechanism is bound by more commitments

to applicants. When the buffer-queue is “full” (i.e. the mechanism cannot make an offer

that would incentivize a mismatched applicant to decline an apartment), the mechanism is

forced to assign the apartment to the next applicant, resulting in a potential misallocation.

In this paper, I set up a model to study the general problem of matching items to agents

in an overloaded waiting list. I show that the dynamics of the assignment mechanisms

can be captured by a relatively simple Markov chain. The states of the Markov chain

correspond to possible states of the buffer-queue, each state describing the information

the mechanism holds on agents who reported their type but have not yet been assigned.

Transition between states occurs when an item arrives or an agent is asked to report her

type.

The agent’s incentive constraint to report truthfully is given by this Markov chain. The
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paper considers mechanisms where the agent’s report determines whether she immediately

gets the current item or whether she will take a position in the buffer-queue and receive her

preferred item after some additional wait. Her position in the buffer-queue is a guarantee

of future assignment computed by the random evolution of the system, as specified by

the Markov chain. An agent will report to be mismatched if she prefers this stochastic

assignment over the immediate mismatched item. The assignment policy of the buffer-

queue determines the “size” of the buffer-queue, or how many agents are willing to join

before the buffer-queue is full.

The social planner’s problem can be greatly simplified when the system is overloaded

and agents have identical waiting costs: welfare is maximized by minimizing the prob-

ability of misallocating an item. In each period, one agent is assigned an item and the

rest have to wait. Since the system can only shift waiting costs between agents,4 the sum

of waiting costs is constant across assignments. Assuming that agents join the waiting

list exogenously when they become eligible, I am able to abstract from the agents’ arrival

process. The Markov chain describing the buffer-queue is a full description of the policy

and allows me to calculate welfare. Welfare is determined by the probability that the

system misallocates an item, which in turn can be calculated by the probability that the

buffer-queue is full and the system is forced to give an item to the next agent at random.

To illustrate this analysis, I first use the model to calculate the welfare of a common

policy with separate waiting lists for two items, in which agents are allowed to decline

mismatched items. I show that this can be modeled as a buffer-queue policy where

the assignment policy is “First In First Out” (FIFO). Using the Ergodic distribution of

the Markov chain, I calculate the misallocation probability and determine the resulting

welfare. I also show that welfare is fully determined by the size of the buffer-queue. The

policy that maximizes welfare will therefore be given by a queueing policy that generates
4Throughout the paper I assume that the mechanism must assign each item in the period it arrives.
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a buffer-queue with the maximal number of acceptable positions.

I continue to generalize the analysis and derive the optimal buffer-queue policy. By

the previous steps, the problem of finding the welfare maximizing policy can be reduced

to finding the policy for the buffer-queue that maximizes its incentive compatible size.

A position in the buffer-queue is acceptable if the expected wait is below some critical

wait threshold. While the expected wait at a given position depends on the policy in

a complicated manner, I use Little’s Law to show that the expected wait at a random

position depends only on the probability that the buffer-queue is full. This implies that

decreasing the expected wait from one position would necessarily increase it at another

position. Thus, to make as many positions as possible acceptable, the expected wait

should be spread equally between the different positions. I show how this can be done in

the two-item case by introducing a new queueing policy, the Uniform Wait (UW) queueing

policy. An agent who joins the uniform wait queue faces the same expected waiting time,

regardless of the number of agents already on the queue. Under the UW policy, the

buffer-queue can hold almost twice as many agents as the FIFO buffer-queue, eliminating

about a third of the misallocation.

While the UW policy is optimal, it relies heavily on the exact specification of the

environment. The mechanism designer needs to know the precise parameters of the en-

vironment, and a mechanism set for the wrong parameters performs poorly. In addition,

the UW mechanism incentivizes agents to report truthfully only when the agents have

correct beliefs: while the agent joining first gets the item after a below average wait if no

other agents join, she faces a long wait if other agents join behind her. The first agent thus

faces a gamble, which she accepts if she has correct beliefs but will prefer to mismatch

under pessimistic beliefs. This also implies that the mechanism is not ex-post incentive

compatible, as when the queue becomes long the agent in the first position would prefer

an immediate mismatch to a position in the buffer-queue.
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I therefore introduce the “Service In Random Order” (SIRO) buffer-queue policy, and

show that it is an approximately optimal, simple and parameter-free mechanism. Under

the SIRO policy, each agent in the buffer-queue has an equal probability of receiving an

arriving item, regardless of her position in the queue. I show that the SIRO policy is the

optimal solution when the designer is required to choose a robust mechanism, and that

this policy has a number of other appealing properties.

The SIRO policy strictly improves upon the FIFO policy by giving to the marginal

agent greater incentive to join the queue, as being in the last position in a SIRO queue

denotes a higher probability of receiving an assignment than does being the last position

in the FIFO queue. Moreover, SIRO is ex-post incentive compatible when agents are

homogenous. SIRO is simple to implement and agents will converge to truth-telling when

following simple learning dynamics. Finally, I advocate for the SIRO policy, showing

that it achieves close to the optimal welfare under the specification of the model, and

outperforms both the FIFO and the UW policies in more general environments.

Many real-life assignment problems have a dynamic component, and the use of wait-

ing lists is common, but the literature on dynamic allocation problems without monetary

transfers is limited. The market design literature mainly focuses on static allocation prob-

lems, such as school choice, where all items and agents are allocated at once. As far as

I know this paper is the first to model the dynamic matching problem in waiting lists.5

The recent literature on dynamic mechanism design considers dynamic allocation prob-

lems where monetary transfers are allowed,6 whereas this paper focuses on the matching

between agents and items when monetary transfers are not allowed. The queueing litera-

ture studies the allocation of waiting time to agents, focusing on the case where all items
5Ünver (2010) investigates the dynamic kidney exchange problem under full information, where

patient-donor pairs, whose type is known to the mechanism, arrive over time. See also Abdulkadiroglu
and Loerscher (2007); Kurino (2009); Kennes, Monte, and Tumennasan (2011) for other dynamic consid-
erations in market design.

6For a review of the dynamic mechanism design literature see Bergemann and Said (2010).
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are homogenous.7 The focus of this paper is matching between agents and items when

agents have heterogeneous valuations over items and can misreport their preferences.89 It

is also distinct from discrete allocation problems in that the allocation occurs dynamically

over time.10

The remainder of the paper is organized as follows. Section 2 sets up the model. Sec-

tion 3 proceeds to illustrate the model by analyzing a common waiting list policy—holding

parallel waiting lists and allowing agents to decline items. This analysis is generalized

in section 4, where I present the optimal mechanism—the Uniform Wait (UW) buffer-

queue mechanism. Section 5 presents the Service In Random Order (SIRO) buffer-queue

mechanism and shows that it is an optimal parameter-free mechanism.

2 A model for overloaded waiting lists

In this section we set up a simple model in which agents with heterogeneous preferences

join an overloaded waiting list to receive heterogeneous items. We show that if all agents

have equal costs of waiting, welfare is determined purely by the matching between agents

and items. This enables us to abstract away from the arrival process of agents. In the

following sections we show how this model allows us to achieve a tractable analysis of
7The queueing literature considers the case where agents strategically choose between servers to min-

imize their waiting time (see Bell and Stidham Jr (1983)), but assumes that agents’ preferences are fully
captured by their waiting time. This paper adds to this literature by allowing agents to have hetero-
geneous valuations for service at different servers. In addition, this paper not only considers a fixed
queueing policy, but also derives the optimal policy.

8Caldentey, Kaplan, and Weiss (2009) investigate the matching rates between multiple servers and
multiple customer classes when each server is compatible with only a subset of the customer classes, but
they do not allow customers to choose servers. In this paper agents choose with which server they are
compatible, and the agents’ choice is allowed to depend on the expected wait for each server. Also see
Kaplan (1988); Adan and Weiss (2010); Talreja and Whitt (2008)

9Su and Zenios (2006); Zenios (1999) model the waiting list for kidney transplants and investigate
how to prevent agents from declining low quality kidneys. This paper considers horizontal preferences
where it is socially efficient for agents to decline low value items, as these items are of high value to other
agents.

10Barzel (1974) considers the allocation through queues as a static allocation problem in which agents
are allocated items as well as a non-stochastic waiting time. In this paper I show that stochastic fluctu-
ations in waiting time cause misallocation of items.
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assignment mechanisms.

Agents exogenously11 arrive and join the waiting list, each waiting to be allocated a

single item. The waiting list is overloaded12, that is there at leastM agents on the waiting

list at any time. Agents have private preferences over items given by their private type α

or β. We refer to the non-preferred other item as the mismatched item. Agents receive a

value of 1 from their preferred item and a lower value v < 1 from their mismatched item.

All agents are risk neutral and pay a waiting cost c per period until they are assigned an

item and removed from the system. The initial probability that an agent on the waiting

list is of type α is pα (otherwise, of type β with probability pβ = 1− pα). We denote the

set of agents by A.

Every period t ≥ 0 a single item xt ∈ {A,B} arrives. The probability that the item

xt is of kind A is pA (otherwise it is of kind B with probability pB = 1− pA).13 Each item

must be assigned in the period in which it arrives:

Definition 1. An allocation is an injection µ : {t ≥ 0} → A allocating each item xt to a

distinct agent a = µ(t).

The designer’s aim is to implement an allocation that would maximizes the total

utility gains generated by the limited supply of items. While an individual agent’s utility

depends both on the waiting costs and the value of item assigned, the goal of the designer

is only to maximizes the assignment value by matching agents to their preferred items:
11While this assumption is unsuitable for a queue, it is a reasonable approximation for a waiting list.

In a typical queue agents signal their value for items by costly waiting in line (Barzel (1974)). However,
in a waiting list agents do not bear any additional cost from being on the waiting list (Lindsay and
Feigenbaum (1984); Cullis and Jones (1986)). In many of the applications of interest signing up to the
list is almost costless, and agents join the waiting list despite having a low probability of getting any
assignment (Kaplan (1988); Su and Zenios (2005)). I therefore abstract away from incentives to join the
waiting list and assume that agents will join the waiting list when they exogenously become eligible to
join.

12Long waiting lists are common in practice. For example, the Chicago public housing authority
currently does not accept new applicants, as the 60,000 person waiting list is full. The waiting list for
kidney transplants is growing from year to year, and currently holds more than 80,000 patients.

13I assume that arrival rates are i.i.d. over time for simplicity. In the context of public housing Kaplan
(1986) justifies this assumption by observing that the move-out (of current tenants) process is a Poisson
process.
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Claim 2. For any finite time horizon and under any overloaded arrival process the differ-

ence in sum of agents’ utilities between allocations depends only on the matching of item

kinds and agent types.

This and other omitted proofs can be found in the appendix.

We say that misallocation happened in period t if agent a = µ(t) was assigned xt

which is a’s mismatched item. Given the previous result the aim of the social planer is

maximize welfare by minimizing misallocation. Since every misallocated item generates a

utility of v instead of 1 the long run welfare loss from misallocation is defined as follows:

Definition 3. The long run welfare loss from misallocation under an allocation µ is

(1− v)ξ,

where ξ = lim infT→∞
1
T

∑T
t=t0

ξt is the long run average probability of misallocation.

We will focus on the case pA = pα, that is there is an equal proportion of agents as

of their preferred items. In this case there is no structural mismatch and the welfare

loss from misallocation results only from the preference revelation problem. When there

are at least M � 0 agents on the waiting list at any given time a mechanism with full

information would assign almost every item to an agent who prefers it, as shown by the

following result (proven in section 3.3):

Proposition 4. Suppose that pA = pα and that the waiting list holds at least M agents

at any given period. Then a mechanism with full information can achieve an expected

misallocation probability of ξFB ≤ 1
2M

.

The mechanism designer’s goal is therefore to find a matching agent for each arriving

item. When an item xt arrives the mechanism knows the history: the items that arrived in

previous periods, the agents who were assigned items, agents who reported their type to
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the mechanism (i.e. made a choice) and agents who joined the system but did not report

their type (i.e. they did not make any choice yet). Information about past assignments is

irrelevant, as agents who were assigned items are gone from the system. All agents who

did not make a choice are interchangeable14. We assume that the mechanism encodes all

of the relevant information using a state space S, and each history is mapped to a state

s ∈ S.

Given the information state s ∈ S the mechanism can take two possible actions. The

mechanism can either allocate the current item to an agent or solicit more information

by asking an agent to report her type. When the mechanism assigns the item xt to agent

a ∈ A the period ends. We set a = µ(xt), remove a from the system, and start the next

period by drawing the item xt+1. If the mechanism decides to solicits more information

another agent will be asked to report her type. Agents choose which report to make, and

can either reveal their true type or misreport to induce a more preferred allocation. Given

the report of the agent the state is updated to s′ and the period continues. Given the new

state s′ the mechanism again decides between soliciting more information and making an

assignment.

Within a period the mechanism may sequentially ask multiple agents to report their

type, and sequentially updating the state. The state s is randomly updated according to

the reported types, until reaching a state s ∈ S in which the mechanism decides to assign

xt and the period ends. We require that with probability 1 every period ends after asking

a finite number of agents.

We capture the state of the world by ωt ∈ {A,B}N × {α, β}N, giving the sequence of

future item kinds and the sequence of agent types.15 We assume that all agents report
14The past waiting time of each agents does not provide any relevant information. Since past waiting

costs are sunk and do not affect the current value of allocation. Therefore the period in which an agent
arrived does not provide any information about the current valuation of the agent. The United Network
for Organ Sharing (UNOS) allocates liver transplants to patients on the current severity of their disease,
ignoring the waiting time of patients.

15We use the fact that all unapproached agents are symmetric and encode the types of agents in the
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their type truthfully, and describe the mechanism by a deterministic state machine whose

transitions depend on ωt.

Definition 5. A dynamic mechanism is defined by a state space S and a transition

function

T : st × ωt 7→ a× st+1 × ωt+1

The transition function T describes that when the mechanism starts period t at a

history corresponding to state st and the state of the world is ωt the item xt will be assigned

to agent a = µ(t) and next period will start with state st+1 ∈ S. The mechanism may

solicit the type of finitely many agents within period t, and ωt+1 encodes the information

in the state of the world that the mechanism did not learn yet. Given an initial state s and

an initial state of the world ω0 the transition function produces a complete assignment µ.

The transition function T therefore defines a deterministic mechanismM : ω0 × s 7→ µ.

Note that if we do not impose any incentive constraints a mechanism that perfectly

matches all items is straightforward: keep asking a new agent until a matching agent is

found to receive the item. Proposition 8 shows that a similar policy can be implemented

when the waiting list is finite, and that the rate of misallocation converges to 0 as the

waiting list becomes more overloaded.

A simple example of a mechanism is the sequential assignment which does not allow

agents to express their preferences, assigning the k-th item to the k-th agent on the

waiting list. This policy can be described by a trivial Markov chain with a trivial state

space S = {φ}, as regardless of history the item is always assigned to the agent at the

head of the waiting list. At any period t a random item is assigned to an agent with a

randomly drawn type, so the misallocation probability in every period as well as in the

order in which they are asked. That is (α, β, β, ...) denotes that the first agent asked will be an α and
the second and third agents asked will be β.
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long run is:

ξRand = pApβ + pBpα

= 2p(1− p)

and the welfare loss from this policy will amount to (1− v)2p(1− p).

While this policy is clearly suboptimal, it is often used in practice. In many public

housing authorities applicants cannot choose their apartments, and an agent who declines

an apartment is penalized by removal from the waiting list,16 resulting in a random as-

signment of applicants within a category. While the public housing authority separates

candidates into different categories and matches the categories to apartments, the alloca-

tion does not consider the agents’ private information, for instance location preferences.

For example, the housing authority matches the family size to the number of rooms of the

apartment, but it does not assign families to their preferred neighborhood or allow them

to be located next to friends and family. The welfare loss from this random assignment

can be substantial. For example, if there is equal supply and demand of apartments in

two geographic locations in the city and agents value a mismatched apartment at 70% of

the value of their preferred apartment then this policy will lead to a loss 15% of welfare.

In the following sections we consider the class of policies that offer agents a choice

between immediate assignment or waiting in a buffer-queue for the preferred item. We

continue our analysis by considering a common waiting list policy that allows agents to

express their preferences. The analysis will introduce the principles that we will subse-

quently use to derive the policy that minimizes misallocation and maximizes welfare.
16The housing authority allows agents to decline housing only with “cause”, for example a physical

disability.
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3 Benchmark policy – FIFO

In this section we show how the model can be used to analyze a common waiting list

policy—allowing to decline items and keep their place in line. The analysis in this section

serves two functions. First, we show how a common policy can be described within the

model and calculate its welfare. Second, the analysis allows us to present the tools that

will later be generalized and used to derive the optimal policy.

We start from a description of the policy as an indirect mechanism. There are two

infinite parallel waiting lists, one for A and one for B, both listing in order all agents

that will ever join the waiting list in order of arrival. Initially every agent on the waiting

list is of type α with probability pα and of type β with probability pβ = 1 − pα. Every

period one item of a random kind arrives, with prob pA an A item arrives and with prob

pB = 1 − pA a B item arrives. Items are offered to agents on the waiting list according

to a First In First Out (FIFO) order. When an agent is offered an item she can either

take the item and be removed from the system, or decline the item and keep her place

in the waiting list for the other item17. Declined items are offered to the next agent on

the waiting lists until an agent takes the item. The period ends when the item is taken.

All agents pay c for every period they spend on the waiting list, and get a value of 1

from their matching item (A for α types, B for β) or a value of v from their mismatched

item (B for α, A for β). That is, the payoff an agents who waited w periods and got his

matching item is 1 − c × w. Agents know their position in the waiting list when they

decide whether to take or decline an item.

In this section we will show how this mechanism can be described as a dynamic direct

mechanism and follow up on the previous analysis to derive its welfare properties.
17When preferences are stationary, an agent who declined an item will decline it again in the future,

and therefore it does not matter whether an agent that declined a B is removed from the B waiting list.
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3.1 The agent’s decision

Assuming that there is no cost to sign up to a waiting list, agents should always sign

up for both waiting lists. The first time an agent faces a choice when she is offered

an item. When an agent is offered her preferred item she will always take it. When

offered a mismatched item the agent needs to choose between taking the mismatched

item immediately, or declining it and incurring an extra wait to get a preferred item. The

agent will decline a mismatched item only if the expected extra wait for a preferred item

is short enough.

Consider an α agent who is offered a B when she is k-th in line for an A. Taking the

mismatched B item immediately will yield utility of

Uα(current B) = v

and the value of being the k-th in line for an A is

E [Uα(wait for A | k-th in A line)] = 1− c · k
pA

as the agent will get an A item that will give her a value of 1, but she will have to wait

till the k-th A item will arrive, which takes in expectation k × 1
pA

periods.

Therefore, an α agent will be willing to decline a B when her position is k if and only

if18

1− c · k
pA
≥ v

which is true when

k ≤ Kα ≡ bpA
1− v
c
c

Note that 1−v
c

is the expected waiting time that will make the agent indifferent between

18We assume that agents decline the mismatched item when they are indifferent.
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her matching item and an immediate mismatch, and pA transforms waiting time units

from periods to A-arrivals.

As more α agents who decline B items accumulate to wait for an A item, the longer

extra wait another declining agent will have to incur if she declines a B as well. The

agent’s impatience dictates a maximal number Kα = bpA 1−v
c
c of α agents who declined

a B and are still waiting for an A, and likewise a maximal number Kβ = bpB 1−v
c
c of β

agents who declined an A and are still waiting for a B.

3.2 The Markovian model

To calculate the welfare of this policy we need to know the probability that a B item will

be allocated to an α agent. By the previous section, this depends on the probability of

accumulatingKα agents that declined a B. In this section we give a Markovian model that

will capture the dynamics of the system and will allow us to calculate the misallocation

probability.

A few observations allow us to get a simple representation of the system dynamics.

First, when the policy allows to decline items any agent that becomes eligible to join

the waiting list will join both the A and B waiting lists. Therefore the same agents will

be on the two lists in the same order, except for agents who declined an item. At any

point in time we can split the agents that are still unmatched into two categories: agents

who weren’t ever offered an item, which we will refer to as new agents, and agents who

previously declined an item, which we will refer to as waiting agents.

We can describe the system by two sets of queues. The offer queue holds all the

new agents in the order of their arrival, representing the identical part of both waiting

lists. The two assignment queues, one for A and one for B, hold waiting agents who

previously declined an item. The assignment queues represent the front of the waiting

lists, containing agents that are at the front of one of the waiting lists and were removed
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from the other waiting list after declining an item. When an A item arrives it will first

be offered to the agent at the front of the A assignment queue (who is the agent at the

head of the A waiting list). If the A assignment queue is empty, the item will then be

offered to the agent at the head of the offer queue. When there are k ≥ 0 agents on the

B assignment queue, the agent at the head of the offer queue is given a choice between

taking the current A item, or being placed in the k+1 position in the B assignment queue

(which is the k + 1 position in the B waiting list).

An example will be helpful to illustrate the dynamics of the mechanism. Consider the

system at the beginning of period t where there are no unassigned agents that declined an

item and both assignment queues are empty (i.e. the A and B waiting lists are identical).

Let the first agents on the offer queue be of types α, α, β, α, α, α, . . . and assume that

Kα = 3. Assume that a B item arrives in period t. As the assignment queue is empty,

the B item is offered to the first agent in the offer queue (who is the first agent on the B

waiting list). This agent is an α type, and since Kα ≥ 1 she chooses to decline the B and

take the first position in the A assignment queue19. The B item will then be offered to

the next agent in the offer queue, who is another α type. Since Kα ≥ 2 the agent declines

the B item and takes the second position in the A assignment queue. The B item will

then be offered to the next agent in the offer queue, who turns out to be a β type. The

β agent takes the B item, ending period t.

Assume that in period t + 1 an A item arrives. This item will be assigned to the

first agent in the A assignment queue, ending period t with one α agent left in the A

assignment queue.

Assume that in period t + 2 another B item arrives. As the B assignment queue is

empty, the B is offered to the agent at the head of the offer queue. This agent is of type

α. As Kα ≥ 2 this α agent chooses to decline the B item and take the second position
19Note that this agent keeps the same place on the A waiting list, the “move” to the assignment queue

represents that she is no longer on the B waiting list.
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Figure 3.1: Illustration of the waiting list as an offer-queue and an assignment-queue.

in the A assignment queue. The B item is then offered to the following agent, who is an

α as well. Since Kα ≥ 3 this α agent chooses to decline the B item and take the third

position in the A assignment queue. Still in period t+ 2, the B item is then offered to the

following agent in the offer queue, who is also an α. Since Kα < 4 this α agent will take

the B item instead of the fourth position in the A assignment queue. Period t + 2 ends

with the last α agent taking the B and 3 α agents waiting on the A assignment queue.

To analyze this mechanism we first represent it as a dynamic revelation mechanism.

When an agent declines an item and joins the assignment queue she reveals her type to

the mechanism. In the beginning of every period the mechanism knows the identity of

the agents in the assignment queue, and knows nothing, beyond the prior distribution,

about the agents in the offer queue. The mechanism learns the kind of item that arrived

and seeks a matching agent. If the assignment queue for the object holds an agent, who

must be a matching type, the system allocates the item to the agent at the head of the

assignment queue. If the item’s assignment queue is empty the mechanism approaches a

new agent a that is at the head of the offer queue and asks her to report her type. If the

agent a reports to be of a matching type she is allocated the item and the period ends. If
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the agent a reports to be a mismatched type the mechanism checks the number of agents

in the assignment queue for the other item. If the length of the assignment queue is less

than K (the respective Kα or Kβ we calculated), the mechanism puts the agent at the

end of the assignment queue and proceeds to approach another new agent from the offer

queue. If the length of the assignment queue is K the agent is allocated the item even

though this produces a mismatch.

Using this description we have the following result:

Proposition 6. The assignment probabilities under the FIFO waiting list where agents

are allowed to decline items and keep their place in line can be given by a Markovian

transition model with the state space

S = {−Kβ, . . . ,−1, 0, 1, 2, . . . , Kα}

where k ≥ 0 indicates k agents of type α waiting in the A assignment queue and k ≤ 0

indicate |k| agents of type β waiting in the B assignment queue.

The transition probabilities P are given by:

P (s = l|st−1 = k) =



pA k > 0, l = k − 1

pBp
l−k
α pβ k ≥ 0, k ≤ l < Kα, l 6= 0

pBp
l−k
α (pα + pβ) k ≥ 0, l = Kα

pApα + pBpβ k = l = 0

pB k < 0, l = k + 1

pAp
l−k
β pα k ≤ 0, k ≥ l ≥ −Kβ, l 6= 0

pAp
l−k
β (pβ + pα) k ≤ 0, l = −Kβ

This Markov chain representation allows us to calculate the probability that an item
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will be assigned to a mismatched agent. Each transition of this system captures the events

from the beginning of period t until the assignment of xt that ends the period. Since an

α agent is assigned a B item only when the assignment queue is full all transitions that

assign a B item to an α agent must end in state s = Kα. We can calculate the probability

of misallocation directly from the ergodic distribution of this chain, but it will be useful

to give another Markovian representation that captures the offer process within a period.

Let us consider a larger state space Ŝ that describes the system at any point when

a new agent is offered the item. In addition to the previously defined states we include

sets of states SA and SB which represent the system in the middle of a period during the

process of offering an A or B item to new agents. A state (k,B) ∈ SB indicates that there

are k agents in the A assignment queue, the B assignment queue is empty and the current

B item is about to be offered to the first agent in the offer queue. A state (−k,A) ∈ SA

indicates that there are k agents in the B assignment queue, the A assignment queue is

empty and the current A item is about to be offered to the first agent in the offer queue.

The previously defined states are relabeled as (k, φ) ∈ Sφ ∼= S that indicates for k ≥ 0

that there are k agents in the A assignment queue, the B assignment queue is empty and

there is no current item to assign (the period ended, and the next item did not arrive yet).

For k ≤ 0 the state (k, φ) ∈ Sφ indicates that there are |k| agents in the B assignment

queue, the A assignment queue is empty and there is no current item to assign.

Every period begins and ends in a state in Sφ. We move from a state in Sφ when an

item arrives. Suppose that the state is (k, φ) for 0 < k < Kα. If an A item arrives it is

assigned to the first agent in the A assignment queue, the system moves to state (k−1, φ)

and the period ends. If a B item arrives the system moves to state (k,B). The transitions

from state (k,B) will depend on the type of the first agent in the offer queue. If the first

agent on the offer queue is of type β she will take the current item, the system moves to

state (k, φ) and the period ends. If the first agent on the offer queue is of type α she will
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decline the item and join the A assignment queue, the system moves to state (k + 1, B)

and the period continues.

The complete state space is given by

Ŝ = Sφ ∪ SA ∪ SB

= {(k, φ)| −Kβ ≤ k ≤ Kα} ∪ {(−k,A) | 0 ≤ k ≤ Kβ} ∪ {(k,B) | 0 ≤ k ≤ Kα}

The transitions of the system are given by:

P (u|(k, φ)) =


pA u = (k − 1, φ)

pB u = (k,B)

k > 0

P (u|(−k, φ)) =


pA u = (−k,A)

pB u = (−(k − 1), φ)

k > 0

P (u|(0, φ)) =


pA u = (0, A)

pB u = (0, B)

P (u|(k,B)) =


pα u = (k + 1, B)

pβ u = (k, φ)

0 ≤ k < Kα

P (u|(Kα, B)) =

{
pα + pβ u = (Kα, φ)

P (u|(k,A)) =


pα u = (k, φ)

pβ u = (−(k + 1, A)

−Kβ < k ≤ 0

P (u|(−Kβ, A)) =

{
pα + pβ u = (−Kβ, φ)

The Markov chain on Ŝ is depicted in figure 3.2. It can give us the distribution over S

if we limit attention to visits to Sφ states. For calculation purposes, the system Ŝ has the
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Figure 3.2: The Markov chain for the state space Ŝ

advantage that all moves are between adjacent states. The system Ŝ also enables us to

capture the system at the point at which an agent makes the decision whether to decline

or accept an item. Using the state space Ŝ and flow equations on the Markov chain we

derive the stationary distribution which describes the long run behavior of the system:

Lemma 7. The Markov chain is ergodic and its stationary distribution is

π(k) =


(
pα
pA

)k
pBπ(0) k > 0(

pβ
pB

)|k|
pAπ(0) k < 0

and

π(0) =


1
2

1
pBKα+pAKβ+1

pA = pα

1
2

pA−pα
pApβ

(
pβ
pB

)Kβ−pBpα( pαpA )Kα pA 6= pα

3.3 Misallocation probability

From the stationary distribution calculated in the previous section we can find the mis-

allocation probability. Misallocation happens only when a new agent on the offer queue

takes the current item despite it being the mismatched item. When a new agent is offered
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an item the system is in a state s ∈ SA∪SB. Denote by π̃B(k) the stationary probabilities

of the state (k,B) conditional on being in one of the states s ∈ SA ∪ SB, and likewise for

π̃A(−k). An α agent will take a mismatched item only in the state (Kα, B). A β agent

will take a mismatched item only in the state (−Kβ, A). Therefore:

Corollary. The probability of misallocation under the FIFO policy is

ξFIFO = pαπ̃
B(Kα) + pβπ̃

A(−Kβ)

and if pα = pA = p the probability of misallocation simplifies to

ξFIFO =
2p(1− p)

(1− p)Kα + pKβ + 1

This formula has a clear interpretation. Randomly assigning the items would yield

a mismatch probability of 2p(1 − p). In most states the system is able to sort the two

types, and allocate the item to the next agent in the offer queue only if that agent is of a

matching type. However, when the assignment queue is full the system randomly allocates

the item to the next agent, regardless of her type. The greater Kα, Kβ are, the longer the

assignment queue can be, and the less likely it is that the system will have to randomly

allocate the item to the next agent. The denominator in the expression increases as the

assignment queues can grow longer, reducing the probability of misallocation.

The previous analysis implies that we should evaluate the policy by its implied proba-

bility of misallocation. To isolate the welfare loss from the preference revelation problem

we compare the welfare under this policy to the welfare a mechanism with full informa-

tion can achieve. When the waiting list is infinite the system can allocate each item to

a matching agent with probability 1. Using the tools we developed to analyze the dual

list policy we can show that this will be approximately true even when the waiting list is

finite, but long:

23



Proposition 8. Suppose that the waiting list is finite, but includes at least M agents at

any point in time and pα = pA = p. Under full information the system can achieve a

stationary mismatch probability

ξFB ≤ 1

2M

Proof. Under full information the system will have to mismatch an agent only after the

entire waiting list was exhausted and no matching agent was found. Consider the policy

that requires a mismatched agent to decline an item, unless there already areM−1 agents

in the assignment queue. As there are at least M agents in the system this policy never

exhausts the waiting list. We can analyze this police using the same Markovian model as

above by setting Kα = Kβ = M − 1. We find that

ξFB ≤ 2p(1− p)
(1− p)Kα + pKβ + 1

=
2p(1− p)

(1− p)(M − 1) + p(M − 1) + 1

≤ 1

2

1

M

The last proposition means that even when the wait-list is finite, but large, the mis-

allocation will be negligible under full information. In other words, misallocation in the

system is fundamentally due to the preference revelation problem. We give the welfare of

the FIFO policy in terms of how close to the optimal we get, that is how much welfare

loss we get relative to the benchmark of no mismatch.

Proposition 9. The welfare loss from mismatch is under the FIFO policy is:

WFLFIFO = (1− v)ξFIFO

= (1− v)
2p(1− p)

(1− p)Kα + pKβ + 1
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where Kα = bp1−v
c
c and Kβ = b(1− p)1−v

c
c

Corollary 10. As c→ 0 the misallocation probability under FIFO goes to 0, and welfare

approaches first best.

4 Optimal policy

We now turn to consider more general policies and seek the optimal policy. We follow the

construction from the previous section and describe mechanisms by their representation

as an offer queue and assignment queues. Since all agents in the offer queue are symmetric

we can ignore the policy of the offer queue. We consider the class of policies generated by

different queueing policies for the assignment queues. Let (M, Kα, Kβ) denote a mech-

anism that places mismatched agents in the assignment queues if they are not full and

assigns the item to the next agent in the offer queue otherwise. We refer to Kα as the size

of the A assignment queue, it is the maximal number of agents in the A assignment

queue (and respectively for Kβ). The A assignment queue is full when it holds Kα agents

( and respectively Kβ agents for B).

Definition 11. A buffer-queue mechanism (M, Kα, Kβ) is given by two assignment

queues with arbitrary queueing policies and maximal size Kα, Kβ, such that:

• If the item’s assignment queue is not empty, the arriving item xt is assigned to an

agent on the assignment queue.

• If the item’s assignment queue is empty, the mechanism asks a new agent to report

her type. If the agent reports a mismatched type and the opposite assignment queue

is not full, the agent is put on the queue and the mechanism continues to ask another

agent. Otherwise, the agent is assigned the current item and the period ends.

The assignment queue serves as a buffer queue. When the mechanism gets an item it

starts searching for a matching agent. If the assignment queue for the item is empty the
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mechanism approaches new agents from the offer queue one by one, asking if they are a

matching agent. When the mechanism approaches a mismatched agent the mechanism

avoids misallocation by putting the agent in the assignment queue buffer and continuing

the search for a matching agent. When the assignment queue is full, so that it is not

incentive compatible for an agent to decline a mismatched item and join the assignment

queue, the mechanism is forced to allocate the item to the next agent, who is mismatched

with probability given by the prior. Misallocation only occurs when the assignment queue

is full. Thus, the probability of mismatch can be derived from the probability that the

assignment queue buffer is full.

In the previous section we essentially proved the following result:

Theorem 12. The probability of misallocation in a (M, Kα, Kβ) mechanism is

ξM =
2p(1− p)

(1− p)Kα + pKβ + 1

Given theorem 12 we reduce the problem of finding the mechanism that maximizes

welfare to the problem of finding the policy that gives maximal Kα, Kβ. The limit on the

size Kα, Kβ is the incentive compatibility constraint of the agents. In section 3 we have

shown how Kα, Kβ are calculated from the agent’s maximization problem given a policy

for the assignment queue. In this section we proceed to find the incentive compatible

policy that would give us the maximal Kα, Kβ.

Notice that we can choose Kα independently of Kβ. The constraint on Kα is the

incentive compatibility constraint, which we formally define below. It requires that α

agents prefer to join the A assignment queue rather than be immediately mismatched

with a B item. The value of joining the assignment queue depends on the stochastic

evolution of the A assignment queue that determines the expected delay until the agent

is assigned her matching item. The policy for the B assignment queue will be in effect
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only once the A assignment queue is empty, so the policy of the B assignment queue does

not affect the expected wait of agents in the A queue. Therefore the incentives of agents

to join the A assignment queue are independent of the policy for the B assignment queue

and we can analyze them independently. Hence, we can find the optimal mechanism by

finding the optimal queue policy for each assignment queue separately.

We consider a class of queueing policies to allow for general assignment policies – an

arriving item will not necessarily be offered to the first agent in the queue. Instead of

determining the size of the queue from the agent’s decision to join, we specify a size for

the queue and ask whether it is incentive compatible for agents to join.

Definition 13. A 〈K,ϕ〉 queuing policy is given by a maximal size of the queue K ∈ N

and non-negative assignment probabilities ϕ = {ϕ(k, i)}1≤i≤k≤K such that
∑k

i=1 ϕ(k, i) =

1. If an item arrives when there are 1 ≤ k ≤ K agents in the queue it will be allocated

to the agent in position i with probability ϕ(k, i). Agents join the end of the queue and

move a position forward if an agent in front of them was assigned.

This class of policies includes and extends common queueing policies. By setting

ϕ(k, i) =


1 i = 1

0 i > 1

we get the familiar First In First Out (FIFO) queueing policy with the queue length

limited to K. The policy we analyzed in section 3 is equivalent to FIFO policies for both

assignment queues with K determined by the agents’ decision. By setting

ϕ(k, i) =


1 i = k

0 i < k

we get the Last In First Out (LIFO) queueing policy.
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Before we turn to give the conditions required for incentive compatibility of a 〈K,ϕ〉

policy we describe the value of taking a position in the queue. To simplify notation we

consider the policy for the A assignment queue, that is A is the matching item, B is

the mismatched item and α agents can join the assignment buffer-queue instead of being

mismatched.

A position in the A assignment queue gives the α agent a stochastic distribution over

the waiting time until she receives a matching A item. As in the previous section, we

describe the stochastic transition using the state space Ŝα = {0, K} × {φ,B}, which is

a restriction of the full state space of the mechanism. (k,B) denotes the state in which

there are k agents of type α in the queue and the system is searching for a β agent to

be assigned the current B item. The α agents that the mechanism encounters during the

search will join the queue. The period ends when the current item is allocated, which

happens either when an approached agent is a β or when the queue is full and the item

is allocated to the next agent, α or β. When the item is allocated the system moves to

a state (k, φ), which represents that there is no item to allocate and k is the number of

agents that ended up in the queue. The system moves from a (k, φ) state by receiving

an item. A B item moves the system to search for a β agent, represented by a move to

(k,B). An A item will be allocated to an agent in the queue, according to ϕ(k, ·) and the

system moves to (k − 1, φ).

We denote the expected value to an agent who is in position i in the queue when the

system is in state (k, φ) (i.e. there are k agents in the assignment queue) by g(k, i), and

the expected value to an agent who is in position i in the queue when the system is in

state (k,B) (i.e. there are k agents in the assignment queue and the mechanism is making

offers) by gB(k, i). The valuations are given as the solution to the dynamic programing

equations:
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g(k, i) = pB · gB(k, i) + pA · ϕ(k, i) · 1 +

+pA ·

(
i−1∑
j=1

ϕ(k, j)

)
(g(k − 1, i− 1)− c)

+pA ·

(
k∑

j=i+1

ϕ(k, j)

)
(g(k − 1, i)− c)

gB(k, i) =


pβ · (g(k, i)− c) + pα · gB(k + 1, i) k < K

g(k, i)− c k = K

When a B item arrives the agent in position i stays in the same position, but other agents

may join the queue. When an A item arrives there are three options. With probability

ϕ(k, i) the agent gets assigned the item, getting a value of 1 and no wait. If an agent

j ≤ i gets assigned the item, the agent in position i moves to position i−1 out of a queue

of k − 1 agents. If an agent j > i gets assigned the item, the agent in position i stays in

position i but out of k − 1 agents. When another agent is assigned a period passes and

the waiting agent incurs a cost of waiting c.

Assuming that agents have correct beliefs over the evolution of the system, an agent’s

valuation for joining a queue of length k − 1 is given by gB(k, k). The agent always joins

the last position in the queue, so if there were k− 1 agents in the queue before she joined

she can take the k-th position of k agents. After the agent joins the queue the system will

proceed to search for another β agent to take the item, and the agent takes into account

the possibility that other agents may join the queue after her before the end of the period.

The following incentive compatibility constraint is represents the requirement that

agents choose to join the queue (for every position) instead of taking an immediate mis-

match:

Definition 14. A 〈K,ϕ〉 queueing policy is incentive compatible if every position 1 ≤
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k ≤ K in the queue is acceptable, that is

gB(k, k) ≥ v

The mechanism designer’s problem is thus reduced to finding the incentive compat-

ible 〈K,ϕ〉 policy for which K is maximal. To directly check that a policy is incentive

compatible one has to solve the dynamic equations to determine gB(k, k) and verify that

the IC constraint is satisfied for each k. In the following we adopt a simpler approach by

first providing a bound on K using the expected IC constraint: If an agent is willing to

join the queue for each position she must be also willing to join a random position in the

queue.

Proposition 15. Suppose that pα = pA = p. There is no incentive compatible 〈K,ϕ〉

policy such that K > K∗, where K∗ =
⌊
2p1−v

c

⌋
− 1.

To prove this, we use the following simplification. We decompose the utility of taking

a position k as gB(k, k) = 1− c×wk, where wk is the expected waiting time for an agent

who joins the queue at position k. The condition for incentive compatibility is equivalent

to wk ≤ 1−v
c

for every wk. We can calculate each wk from K and ϕ by solving the dynamic

programing equations, but we can get a much simpler expression by looking at E[wk], the

expected waiting time for an agent who enters the queue at a random position.

Lemma 16. Suppose that pα = pA = p then we have that

E[wk] =
K + 1

2p

independently of ϕ.

Proof. Restrict attention to the time when the queue is not empty. Notice that the choice

of ϕ does not affect the number of agents in the queue, and we can use the calculations

30



from the proof of lemma7 to get the stationary distribution of the number of agents in

the queue. When pA = pα = p the stationary distribution of the number of agents in the

queue is

π̂(k) =
1

K

By Little’s Law the expected waiting time for a randomly chosen α agent in the system

is equal to the expected number of agents waiting divided by the arrival rate at which

new α agents join the queue, which is equal to the rate pA at which α agents get assigned

and leave the queue. Therefore we have:

E[wk] =
K∑
k=1

k · π̂(k)/p =
K(K + 1)

2

1

K
/p =

K + 1

2p

Using this lemma we can prove our result:

Proof. Consider an incentive compatible 〈K,ϕ〉 queue with maximal size K. From the IC

constraints we have that for every k

wk ≤
1− v
c

The IC constraint must also hold in expectation:

E[wk] ≤
1− v
c

so
K + 1

2p
≤ 1− v

c

or
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Figure 4.1: Expected waiting time per position wk under FIFO and UW forK = 5, p = 1
2
.

The green line denotes 1−v
c

= 6 = K+1
2p

.

K ≤
⌊

2p
1− v
c

⌋
− 1

yielding the required result.

Can we achieve an incentive compatible queue with K = K∗? Suppose that K∗ =

2p1−v
c
− 1 is an integer, and consider a 〈K∗, ϕ〉 policy. From the lemma we know that

E[wk] = 1−v
c
. For the IC to hold for every k we must have wk ≤ 1−v

c
, so we must have

that for each k the expected wait is wk = 1−v
c
.

Definition 17. The K uniform wait (UWK) queue is a 〈K,ϕ〉 policy where the expected

wait for an agent who joins the last position is independent of the number agents already

on the queue, that is, an agent that joins the queue in position 1 ≤ k ≤ K faces the same

expected wait of wk = K+1
2p

.

Theorem 18. Setting the policy of the assignment queues to be UW [K∗α] and UW [K∗β]
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Figure 4.2: Welfare loss under the FIFO and UW policies. Parameters: c = 0.1, p = 1
2
.

for K∗α =
⌊
2p1−v

c

⌋
−1, K∗β =

⌊
2(1− p)1−v

c

⌋
−1 gives the minimal misallocation probability

ξOPT =
2p(1− p)

(1− p)K∗α + pK∗β + 1

and highest welfare out of all incentive compatible queue-based policies.

4.1 Designing a Uniform Wait Queue

How can we achieve a uniform wait queue? Consider the FIFO (first in first out) queue

with a limit size of K = 2p1−v
c
− 1, which is a 〈K,ϕ〉 policy where ϕ(k, i) =


1 i = 1

0 i > 1

,

that is the item is always assigned to the first agent in the queue. The expected waiting

time for an agent joining the queue at position k is wk = k
p
, and the vector of normalized

waiting times p · ~w = (pw1, . . . , pwK) is:

p · ~wFIFO = (1, 2, 3, . . . , K)
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Under this queuing policy the agents who join the last positions in the queue face a longer

waiting time than the average waiting time K+1
2p

= 1−v
c
, violating their IC constraint. The

agents who join the first positions in the queue face a waiting time that is strictly lower

than average, and their IC constraint is slack.

Consider the LIFO (last in first out) queue with a limit size of K = 2p1−v
c
− 1, which

is a 〈K,ϕ〉 policy where ϕ(k, i) =


1 i = k

0 i < k

, that is, the item is always assigned to the

last agent in the queue. The expected waiting time for an agent joining the queue at

position k is wk = K−k+1
p

, and the vector of normalized waiting times is:

p · ~wLIFO = (K,K − 1, . . . , 3, 2, 1)

Under LIFO the agents who join the first positions in the queue face a longer waiting

time than the average waiting time K+1
2p

= 1−v
c
, violating their IC constraint. The agents

who join the last positions in the queue face a waiting time that is strictly lower than

average, and their IC constraint is slack.

To satisfy the IC constraints of all agents we would like to have an “intermediate”

policy, which gives agents a waiting time between FIFO and LIFO. We can calculate

the uniform wait policy by exploiting the fact that agents only move forward in the

queue. Since the first position never moves up wk is determined only by ϕ(k, 1). We will

sequentially choose ϕ(k, i) to ensure that wk = K+1
2p

.

The following algorithm can calculate such an intermediate policy that would give a

UW queue. We start by setting ϕ0(k, 1) = 1 for all k ≤ K, giving us the FIFO policy
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ϕ0 =



1

1 0

1 0 0

1 0 0 0

1 0 0 0 0


Under this queueing policy we have p · w1 = 1 < E[p · wk] = K+1

2
. We vary ϕ

continuously by choosing x ∈ [2, K + 1] and setting

ϕ1(k, 1){x} =


1 k + 1 < x

0 x < k − 1

x− k o/w

ϕ1(k, 2){x} = 1− ϕ(k, 1)

Notice that w1 depends only on the values of {ϕ(k, 1)}Kk=1. For x = K we get the FIFO

queue policy and p · w1 = 1. For x = 1 that we get that {ϕ1(k, 1){x}}Kk=1 have the

same values as in the LIFO queue policy, implying that p · w1 = K . Since w1 varies

continuously with x there is some x1 ∈ [1, K] such that w1 = K+1
2

. The resulting ϕ1 will

look something like this:

ϕ1 =



1

1 0

x1 1− x1 0

0 1 0 0

0 1 0 0 0


If under the updated ϕ we still have that p · w2 <

K+1
2

we start increasing w2 by shifting
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probability from ϕ(k, 2) to ϕ(k, 3) in an analogous way to the previous stage. Let x2 be

the value for which p · w2 = K+1
2

, and we find that

ϕ2 =



1

1 0

x1 1− x1 0

0 x2 1− x2 0

0 0 1 0 0


Notice that we still have p · w1 = K+1

2
since we didn’t change any of the ϕ(k, 1).

Continuing in an analogous manner, we obtain w3, w4 and the full ϕUW [5].

Example 19. The UW [2] queue policy is a 〈K,ϕ〉 policy with K = 2 and

ϕ =

 1

1
3−p

2−p
3−p


k×i

and has an expected wait of wk = 1.5/p for all k.

Example 20. The UW [3] queue policy is a 〈K,ϕ〉 policy with K = 3 and

ϕ =


1

1
2−p

1−p
2−p

0 1
2

1
2


k×i

and has an expected wait of wk = 2/p for all k.

Notice that to implement a uniform wait queue the designer needs to know the pa-

rameters of the environment. The assignment probabilities of UW [3] do not match the

assignment probabilities of UW [2] in the overlapping range k ≤ 2. The designer needs

to select a queue size K and implement the assignment probabilities for that specific K.
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Even for a fixed K, the assignment probabilities depend on the arrival probability p.

Under the UW policy an agent’s decision to join the assignment queue depends on her

belief about the decisions of agents that follow her in the queue. Under the FIFO queue

policy the waiting time of an agent is independent of the number of agents behind her

in the queue, but under UW the policy shifts assignment probabilities when more agents

join the queue. For example, an agent joining the first position in the UW [2] queue knows

that the mechanism will make an offer to the agent behind her in the offer queue. If the

agent behind her accepts the B item, leaving her alone in the assignment queue, she will

have a conditional expected wait of 3
2p
− 1

2
, which is shorter than the average wait 3

2p
. To

balance her expected wait, she has a longer conditional expected wait of 3
2p

+ 1−p
2p

if the

agent behind her joins the queue. An agent with rational expectation will join the queue,

given the expected waiting time of p×
(

3
2p
− 1

2

)
+ (1−p)×

(
3
2p

+ 1−p
2p

)
= 3

2p
, even though

she will regret this decision if the agent behind her ends up joining the queue as well.

When the mechanism is the UW policy for the correct parameters p and 1−v
c

and all

agents have correct beliefs the agents’ decision is simple—they join the assignment queue

whenever it is not full. However, this heavily depends on having the right parameter

specification. If the mechanism is a UW for misspecified parameters the agents play a

game—the decision whether to join the queue at position k depends on the probability

that the following agents will join the queue.

5 Robust design

The aim of this section is to present a simpler policy, service in random order (SIRO),

and show that it is the optimal policy in a “robust” sense. We aim to address two concerns

about the uniform wait (UW ) mechanism, which we derived in the previous section. First,

to implement the UW mechanism the designer must know the precise parameters of the

environment . Second, the UW policy is incentive compatible for agents only under the
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assumption that agents hold the exact specified probabilistic beliefs.

The following example illustrates that a UW policy tailored for a certain environment

performs poorly in different, albeit similar, environments.

Example 21. Assume that p = 1/2, making the A and B assignment queues symmetric.

Consider the mechanism that implements a queueing policy UW [4] for both assignment

queues, given by
〈
4, ϕUW [4]

〉
with

ϕUW [4] =



1 0 0 0

6
7

1
7

0 0

0 4
5

1
5

0

0 0 6
11

5
11


This policy is optimal when p = 1/2 and agents are willing to wait up to 1−v

p c
= 5 periods,

giving a misallocation probability of 1
10
. Suppose that the designer was slightly wrong and

1−v
c

= 4.5, so the UW [4] policy is not incentive compatible. Under this policy the agents

play a game, where the possible strategies are whether to join each one of the potential

queue positions 1, 2, 3, 4. The unique symmetric equilibrium of this game is that agents

join positions 1, 2, but accept a mismatched item instead of joining positions 3, 4. Thus

the policy UW [4] would yield a buffer of size K = 2 and a misallocation probability of

1
6
, which is the same as a FIFO policy would yield. A UW [3] policy could have given a

buffer size of K = 3 and misallocation probability of 1
8
.

Note that preventing agents from joining position 4 on the UW [4] queue does not

produce a UW [3] queue, as the two policies have different assignment probabilities ϕ(k, i)

for k ≤ 3.

The following example shows that UW can perform worse than FIFO, if used for

misspecified parameters.
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Example 22. Consider a designer that, mistakenly, believes that p = 9/10 and that

agents are willing to wait up to 1−v
p c

= 31
3
. The UW [5] for the A assignment queue under

these parameters is given by
〈
5, ϕUW [5]

〉
with

ϕUW [5] =



1 0 0 0 0

1 0 0 0 0

40
61

21
61

0 0 0

0 90
241

35860
65311

21
271

0

0 0 0 20
39

19
39


This queueing policy is optimal given these beliefs, but assume that the correct proba-

bility is p = 2/3 and 1−v
c

= 4.5. Under these parameters it is not incentive compatible for

agents to join all positions of the UW [5] queue. It is a symmetric trembling hand perfect

equilibrium for agents to join the queue when offered positions 1, 2, 4, 5, while accepting

the mismatched item when offered position 3. Thus the UW [5] would have a maximal

buffer-queue size of 2, whereas the FIFO policy would yield a maximal buffer-queue size

of 3.

These two examples show that in order to use the UW policy the designer must know

the correct parameters. But even if the designer knows the correct parameters, the optimal

mechanism will be incentive compatibility only if the agents have correct beliefs, as the

expected wait in the UW queue depends on whether other agents will join the queue as

well. Under UW an agent that joins position 1 will have a shorter than average wait

if an item arrives before other agents join. To balance this and ensure that w1 = K+1
2p

,

the mechanism gives the agent in position 1 have a longer than average wait when other

agents join before an item arrives. A pessimistic agent who overstates the probability

that other agents will join the queue after her will thus be unwilling to join.

The FIFO policy is simple, parameter free and does not rely on agents holding correct
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beliefs. However, as we saw in the previous section, the FIFO policy is inefficient, as the

waiting time is spread unequally between the different positions. The Service In Random

Order (SIRO) policy, which can be implemented by ϕ(k, i) = 1
k
, is a simple and parameter

free policy policy as well. In this section we show that SIRO outperforms the FIFO

policy, and show that SIRO is scalable-optimal (as we define below).

We start by considering α agents who hold general beliefs. We assume that agents have

correct beliefs on the item arrival probabilities, i.e. agents know the true probabilities

pA, pB. But following Wilson (1987); Bergemann and Morris (2005), we allow the agents

to hold arbitrary beliefs about the types of agents that are behind them in the offer queue.

We denote by σ(a) the probability the agents assigns to agent a = 1, 2, 3... being of type

α, where a = 1 is the immediately successor in the offer queue20 and so on. The belief σ is

not restricted to be i.i.d., as we allow σ(1) 6= σ(2). An agent decides whether to join the

assignment queue at a certain position based on the valuation of the position given her

beliefs σ at the time she is offered an item. Given a belief σ the subjective value of being

in position i out of k agents in the queue when the next agent in the offer queue is a is

denoted by gσ,a(k, i) and similarly gBσ,a(k, i) when the system is still searching to allocate

a B item. Note the two added subscripts. The value depends on the belief about future

joining rates σ. Since we consider joining rates that are no longer stationary, the value

of positions is no longer stationary. The subscript a denotes the next agent who will be

offered to join the assignment queue, tracking the position in the offer queue reached.

Given a 〈K,ϕ〉 policy the valuations are the solution to the dynamic programing

equations:
20Note that all agents have the same belief at the time they are being offered an item.
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gσ,a(k, i) = pB · gBσ,a(k, i) + pA · ϕ(k, i) · 1 +

+pA ·

(
i−1∑
j=1

ϕ(k, j)

)
(ga,σ(k − 1, i− 1)− c)

+pA ·

(
k∑

j=i+1

ϕ(k, j)

)
(ga,σ(k − 1, i)− c)

gBσ,a(k, i) =


(1− σ(a)) · (ga,σ(k, i)− c) + σ(a) · gBa+1,σ(k + 1, i) k < K

ga,σ(k, i)− c k = K

Note that for any sequence σ(·) the values gBσ,a(k, i), gσ,a(k, i) are well defined21. To simplify

notation we denote gBσ (k, i) = gBσ,1(k, i). Using this notation we form a robust incentive

constraint:

Definition 23. A 〈K,ϕ〉 policy is Belief Free Incentive Compatible (Bf-IC) if for all

positions 1 ≤ k ≤ K and all beliefs σ we have

gBσ (k, k) ≥ v

By requiring Bf-IC instead of IC we make the mechanism “parameter free” for the

participating agents.

The UW [K∗] policy does not satisfy Bf-IC . For illustration, suppose that K∗ = 2. As

we saw in the previous section, agents are willing to join the first position in the UW [2]

queue because they are willing to accept a lottery between a short waiting time if they

are alone in the queue and a longer waiting time if another agent joins the queue. If an
21The mechanism can make offers to at most K agents from the offer queue before drawing another

object. When the mechanism draws an object, there is a positive and constant probability that the next
K items are all matching items and all agents in the assignment queue will be assigned. Therefore, the
expected wait must be finite for every σ. Furthermore, this implies that the probability that agent a is
made an offer before the current agent is assigned decreases at an exponential rate as a→∞. Combining,
we find that gBσ,a(k, i) is well defined.
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agent is offered position 1 and she believes that σ(1) = 1, that is that the agent behind

her is an α agent who will join the assignment queue, the agent will evaluate this offer as

being offered position i = 1 out of k = 2 agents in the queue. Under the UW [2] policy,

even under the true beliefs gB(2, 1) < v. So under the beliefs σ(a) =


1 a = 1

pα a > 1

the

agent will mismatch instead of joining the first position.

Definition 24. A mechanism is weakly regret free if for every k, i and belief σ position

i out of k is acceptable, that is:

gBσ (k, i) ≥ v

For the queue policy to be Bf-IC it must be that every position in the queue is accept-

able.

Lemma 25. A 〈K,ϕ〉 policy is Bf-IC if and only if it is weakly regret free.

Proof. If all positions are acceptable then in particular the policy Bf-IC. To prove the

opposite direction, let 〈K,ϕ〉 be a Bf-IC policy, and consider any belief σ and position k, i.

Construct a new belief σ′(a) =


1 a ≤ k − i

σ (a− (k − i)) a > k − i
. From the Bf-IC condition

we have that v ≤ gBσ′(i, i) = gBσ (k, i).

Remark 26. The FIFO policy satisfies Bf-IC whenever it satisfies IC, as the value of a

position in the FIFO queue is independent of the number of agents in the queue.

We now turn to relax the information required from the mechanism designer. We

ask for a “one size fits all” mechanism, which does not depend on the parameters of

the situation. A scalable mechanism is a specification of the buffer-queue policy for any

number of agents in the queue. The mechanism is allowed to tailor the mechanism to the

parameters of the environment only by restricting access to the buffer-queue.
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Definition 27. A scalable queue policy is (〈ϕ〉 , Kϕ(v)), where ϕ = {ϕ(k, i)}1≤i≤k<∞

specifies assignment probabilities for any length of the queue such that ϕ(k,i)
ϕ(k,j)

= ϕ(k′,i)
ϕ(k,j)

whenever i, j ≤ min {k, k′}, and Kϕ(v) specifies the last position at which agents are

allowed to join.

Definition 28. A scalable queue policy (〈ϕ〉 , Kϕ(v)) is Bf-IC if for every v the policy

〈Kϕ(v), ϕ〉 is Bf-IC.

A scalable mechanism can be also viewed as a series of mechanisms {〈K,ϕK〉}∞K=1

such that ϕK(k, i) = ϕK′(k, i) for any k, i ≤ min(K,K ′). From examples 19 and 20 we

can see that the sequence
{〈
K,ϕUW [K]

〉}∞
K=1

is not a scalable queue policy. In contrast,

the FIFO policy is scalable:

Example 29. FIFO is a scalable Bf-IC policy with ϕ(k, i) =


1 i = 1

0 i > 1

and Kϕ(v) =

⌊
pA

1−v
c

⌋
.

The designer would like to select a scalable policy that would have the maximal the

queue length Kϕ(v), but the designer does not know v. Given a prior over the relative

probabilities of v = v1, v2 the designer can compare policies ϕ, ϕ′ such that Kϕ(v1) >

Kϕ′(v1) but Kϕ(v2) < Kϕ′(v2), by weighing the benefits and the probabilities of v1, v2.

Without a prior there is no clear comparison between the two policies. Different policies

are optimal for different values of v, as there is no scalable policy that would perform as

well as UW [2] when the degenerate prior is v = 1 − c × 3
2p

and as well as UW [3] when

the degenerate prior is v = 1 − c × 2
p
. But while the mechanism designer may not know

the distribution of v, we do know that the misallocation probability decreases in K with

a decreasing marginal effect. That is, the gain from increasing the queue size from K = 1

to K = 2 is greater than the gain from increasing the queue size from K = 11 to K = 12.

If the designer does not have any evidence suggesting that v1 is more probable than v2
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Figure 5.1: Expected waiting time per position wk under FIFO, UW [5] and SIRO[4]
for p = 1

2
. The green line denotes 1−v

c
= 6 = K+1

2p
. Under the SIRO policy the maximal

buffer size will be 4, compared to 5 under UW and 3 under FIFO.

or vice versa he should choose the policy ϕ that maximizes min {Kϕ(v1), Kϕ(v2)}. We

therefore set up the following optimality condition:

Definition 30. A policy (〈ϕ〉 , Kϕ(v)) is scalable-optimal if it is scalable Bf-IC and there

is no other scalable Bf-IC policy
(
〈ϕ′〉 , K ′

ϕ′(v)
)
and K̄ such that for all v ≤ 1

min
{
K

′

ϕ′(v), K̄
}
≥ min

{
Kϕ(v), K̄

}
with strict inequality for some v.22

In other words, a scalable-optimal mechanism requires the minimal amount of patience

from agents to get a queue of size K conditional on requiring the minimal amount of
22A scalable-optimal strategy is a winning strategy for player 1 in the following game:

1. Player 1 chooses a scalable Bf-IC (〈ϕ〉 ,Kϕ(v))

2. Player 2 chooses a scalable Bf-IC (〈ϕ′〉 ,Kϕ′(v)) and a v1

3. Player 1 chooses v2

Player 2 wins if min {Kϕ′(v1),Kϕ′(v2)} ≥ min {Kϕ(v1),Kϕ(v2)} and Kϕ′(v1) > Kϕ(v1), otherwise player
1 wins.

44



Figure 5.2: Welfare loss under the FIFO,UW and SIRO policies. Parameters: c =
0.1, p = 1

2
.

patience for 1, . . . , K − 1. We find that the unique scalable-optimal policy is a simple

queueing policy:

Theorem 31. The unique scalable-optimal policy is the Service In Random Order (SIRO)

queue policy, in which ϕ(k, i) = 1
k
for all k.

6 Conclusion

This paper presents an analysis of the allocative efficiency of waiting lists. In congested

systems where agents have homogenous waiting costs, the allocative efficiency depends

only on the probability of misallocation. I consider a class of dynamic direct-revelation

buffer-queue policies and show that common policies can be represented as mechanisms in

this class. Welfare under a buffer-queue mechanism is shown to have a simple form: the

size of the buffer-queue, i.e. the number of agents waiting for their preferred item that the

mechanism can simultaneously hold, determines the probability of misallocation. When

the buffer-queue is full the mechanism is forced to allocate items at random, as it cannot
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incentivize agents to decline mismatched items. Maximizing the size of the buffer-queue

will therefore minimize the probability of misallocation. For a given policy, the size of the

buffer-queue is determined by the incentive compatibility constraint—agents are willing

to decline a mismatched item only if their wait for a preferred item is below a threshold,

but the mechanism can offer only a limited number of agents their preferred items within

a short wait.

Using this analysis I am able to derive the optimal policy. The size of buffer-queue

is maximized by equalizing the waiting time of agents who join different positions in the

buffer-queue. The Uniform Wait (UW) queueing policy is introduced and shown to give

the maximal welfare. While the UW policy is optimal, its performance is sensitive to the

specification of the environment and the beliefs of the agents. The Service In Random

Order (SIRO) policy, which gives all agents in the buffer-queue equal probability to of

obtaining arriving item, is shown to be a robust and approximately optimal policy. The

SIRO policy extends the size of the buffer-queue by offering higher incentives for the last

agent to join, and achieves close to the optimal level of welfare.

Misallocation in waiting lists can cause substantial welfare losses. Allowing agents to

express their preferences is essential to minimize misallocation, but it may not be enough.

To safely allow agents to express their preferences, the mechanism should not penalize

agents who decline items. This paper shows that simply allowing agents who decline

items to keep their place in line greatly improves welfare and generates an approximately

efficient allocation when agents are patient. When agents are impatient the SIRO policy

generates greater welfare by making it safe for more agents to decline mismatched items,

thus allowing more items to go to the agents who value them the most.
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A FIFO with discounting

If δ < 1 we have that:

Uα(A(k)) =
∞∑
t=k

(PA)k(1− PA)t−k
(
t− 1

k − 1

)
Uα(A|t) =

=

(
δPA

1− δ (1− PA)

)k
× 1− c

1− δ

(
1−

(
δPA

1− δ (1− PA)

)k)

whereA(k) denotes the k-th item that will arrive in the future, and (PA)k(1−PA)t−k
(
t−1
k−1

)
is the probability that the arrival of the k-th item will be in t periods. An α agent will

be willing to decline a B item if

Uα(A(k)) ≥ Uα(b)

which is true when

k ≤
log
(
c+v(1−δ)
c+1−δ

)
log
(

δpA
1−δ(1−pA)

)
B Omitted Proofs

Proof. (Claim 2) Consider an arbitrary allocation µ under some exogenous arrival process

χ : A → {t ≥ 0} which specifies the arrival time of each agent a. Assume the world ends

after period T and denote by AT = {a ∈ A|χ(a) ≤ T} the set of agents that arrived

before period T , and by A(µ) = µ({t0 ≤ t ≤ T}) the set of agents that were assigned

under µ before time T . The sum of agents utilities from 0 to T under µ is

WF0,T =
T∑
t=0

((1− ξt) · 1 + ξt · v − c · (t− χ(µ(t))))−
∑

a∈AT \A(µ)

c · (T − χ(a))
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where the first summation is over the utilities of agents that get assigned under µ and

the second summation is over the utilities of agents of unassigned agents. Define the

misallocation indicator ξt to take a value 1 if the agent a = µ(t) got a mismatched item

and ξt = 0 if a = µ(t) got a preferred item. Rewriting, we get that

WF0,T =
T∑
t=0

((1− ξt) · 1 + ξt · v) +
T∑
t=0

c · (T − t)−
∑
a∈AT

c · (T − χ(a))

Since the last two arguments do not depend on µ they will cancel out when we take

difference between the welfare under two allocations µ, µ′. Therefore the relative welfare

of an assignment depends only on the matching between item kinds and agent types.

Proof. (Proposition 6) Let T : st × ωt 7→ a × st+1 × ωt+1 be the transition function

of the waiting list policy, as defined in section 2. ωt describes future item arrivals and

unapproached agents, which are on the offer queue. As noted above in section 2 the

distribution of ωt is independent of the history. The dependence on information revealed

in previous rounds is fully captured by the state of the assignment queue, as all agents

that were previously approached by the mechanism are are yet unassigned are in the

assignment queues.

When there is a positive number of agents in the A assignment queue only B items get

offered to agents in the offer queue. When a B item is offered to a new agent that agent

never joins the B assignment queue. Therefore no agents join the B assignment queue

while the A assignment queue is not empty, and vice versa. Therefore the state space S

includes only configurations of assignment queues where one of the queues is empty. By

the agent’s decision we know that the size of each assignment queue is bounded. Thus

the state space of the mechanism is equivalent to S = {−Kβ, . . . ,−1, 0, 1, 2, . . . , Kα} ,

where s > 0 indicates the number of agents in the A assignment queue and that the B
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assignment queue is empty and similarly for s < 0.

The distribution of ωt yields the Markovian transition function P . Suppose there are

k > 0 α agents in the A assignment queue at the beginning of period t. With probability

pA an A item arrives. The A item is assigned to the first agent in the A assignment queue

and the period ends with k − 1 agents in the A assignment queue. With probability pB

a B item arrives. The B item is offered to the new agent who is first in the offer queue.

With probability pα the new agent will be an α and join the A assignment queue. The

system will continue offering to agents until either a new agent will be a β agent, or until

the A assignment queue has Kα agents and the next agent will take the B regardless of

her type. Thus the probability of adding l−k agents to the A assignment queue is pl−kα pβ

when the assignment queue did not fill up, and pl−kα (pβ + pα) = pl−kα when the queue fills

up. The rest of the transition probabilities are similarly derived.

Proof. (Lemma 7) It is clear that all states in the Markov chain on Ŝ are recurrent. Let

us denote the stationary distribution by π, where π(k) is the stationary probability of

state (k, φ) and πB(k) is the stationary probability of (k,B) (and likewise for πA). The

balance equations for k > 0 are:

π(k) = pAπ(k + 1) + pβπ
B(k)

πB(k) = pαπ
B(k − 1) + pBπ(k)

The flow through the cut between s ≤ k and s ≥ k + 1 needs to be zero (see figure

B.1), so we get the equation23

pAπ(k + 1) = pαπ
B(k)

23See Caldentey, Kaplan, and Weiss (2009).
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Figure B.1: The cut between s ≤ 1 and s ≥ 2

Together we get that for k > 0

π(k) = pAπ(k + 1) + pβ
pA
pα
π(k + 1)

= pA
pα + pβ
pα

π(k + 1)

=
pA
pα
π(k + 1)

πB(k) =
pA
pα
π(k + 1)

= π(k)

from the balance equations for (0, B) we get

πB(0) = pBπ(0)

Therefore, for k > 0

π(k) = pB

(
pα
pA

)k
π(0)

We get π(0) by normalizing the total probability to 1. When pA = pα = p we have
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1 =
Kα∑
k=1

(
π(k) + πB(k)

)
+

Kβ∑
k=1

(
π(−k) + πA(−k)

)
+ π(0) + πB(0) + πA(0)

= 2
Kα∑
k=1

pBπ(0) + 2

Kβ∑
k=1

pAπ(0) + π(0) + pBπ(0) + pAπ(0)

= 2 π(0) (pBKα + pAKβ + 1)

implying that

π(0) =
1

2

1

(1− p)Kα + pKβ + 1

When pA 6= pα

1 =
Kα∑
k=1

(π(k) + πx(k)) +

Kβ∑
k=1

(π(−k) + πx(−k)) + π(0) + πB(0) + πA(0)

= 2
Kα∑
k=0

pB

(
pα
pA

)k
π(0) + 2

Kβ∑
k=0

pA

(
pβ
pB

)k
π(0)

= 2π(0)

pB pα
(
pα
pA

)Kα
− pA

pα − pA
+ pA

pβ

(
pβ
pB

)Kβ
− pB

pβ − pB


= 2π(0)

pApβ

(
pβ
pB

)Kβ
− pBpα

(
pα
pA

)Kα
pA − pα

implying that

π(0) =
1

2

pA − pα

pApβ

(
pβ
pB

)Kβ
− pBpα

(
pα
pA

)Kα
, which converges to the former expression when pα → pA.

Proof. (Theorem 31) We build the scalable-optimal queueing policy by induction on K̄,

maximizing the set
{
v|Kϕ(v) ≥ K̄

}
at each stage. Without loss of generality we assume
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that
{
v|Kϕ(v) ≥ K̄

}
= {v|v ≤ vϕ(K)} where vϕ(K) = max {v | 〈K,ϕ〉 is Bf-IC for v},

since a policy 〈K,ϕ〉 that is Bf-IC for v is also Bf-IC for any v′ ≤ v.24 Therefore, the

scalable optimal policy is given by the ϕ that maximizes {vϕ(K)}∞K=1 under the lexico-

graphic ordering. Since vϕ(K) depends only on {ϕ(k, i)}1≤i≤k≤K we derive ϕ inductively

row by row, optimizing ϕ(K, ·) given {ϕ(k, i)}1≤i≤k≤K−1.

Under all assignment probabilities ϕ we have ϕ(1, 1) = 1 and vϕ(1) = 1 − c
p
. To get

the scalable-optimal policy we need to set ϕ(2, ·) to maximize vϕ(2). By lemma 25 we can

write vϕ(2) = infσ mink,i g
B
σ (k, i). Holding σ fixed, let us define ϕ(2, 1) = x, ϕ(2, 2) = 1−x

and search for 0 ≤ x∗ ≤ 1 that maximizes the minimal gBσ (k, i). Since gBσ (2, 1) is increasing

in x and gBσ (2, 2) is decreasing in x the minimum of the two will be maximized by setting

x∗ = 1
2
and gBσ (2, 1) = gBσ (2, 2). Note that x∗ = 1

2
independently of σ and setting x = 1

2

also gives gBσ (1, 1) ≤ gBσ (2, 1). Since vϕ(2) ≤ infσ mini g
B
σ (2, i) we have thus showed that

ϕ(2, 1) = ϕ(2, 2) = 1
2
yields the maximal vϕ(2).

We now continue by induction on K. Assume that ϕ(k, i) = 1
k
for all i ≤ k ≤ K − 1,

and we need to show that setting ϕ(K, i) = 1
K

maximizes vϕ(K) . Fix σ and denote

ϕ(K,K) = x. Since ϕ(K − 1, i) = ϕ(K − 1, j) for all i, j ≤ K − 1 we have that ϕ(K, j) =

1−x
K−1 . As we did for K = 2, we find the x∗ that maximizes infσ mini g

B
σ (K, i) and show

that it is optimal.

Denote by w(k, i) the expected waiting time the agent in position (K,K) at the be-

ginning of a period (before an item arrives). The expected wait w(K, q + 1) is given

by:

w(K,K) = pB · (w(K,K) + 1) + pA · (x× 0 + (1− x)× (w(K − 1, K − 1) + 1))

From position (K − 1, K − 1) the agent can only reach positions (k, i) with i ≤ K − 1,

since agents only move positions ahead in the queue. Once in position (K − 1, K − 1)

24Wlog the set {v | 〈K,ϕ〉 is Bf-IC for v} is closed since we defined Bf-IC using weak inequalities.
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the agent will visit positions (k, i) for i ≤ k < K − 1 until she either gets assigned an

item, or she returns to a some position (K, i). Let η > 0 denote the expected time from

when the agent reaches position (K − 1, K − 1) until she either gets assigned or moves to

some position (K, i). Let ρ < 1 be the probability that the agent will reach some position

(K, i) before getting assigned. Notice that η, ρ are independent of {ϕ(K, i)}i=1..K . By

symmetry, w(k, i) = w(k, j) for all i, j ≤ K − 1. Therefore we can write :

w(K − 1, K − 1) = η + ρ (w(K,K − 1) + 1)

Finally, by the dynamic equations:

w(K,K − 1) = pB(w(K,K − 1) + 1) +

+pA(
1− x
K − 1

× 0 + (1− 1− x
K − 1

)× (w(K − 1, K − 1) + 1)

where we again used that by symmetry w(K − 1, K − 1) = w(K − 1, K − 2).

Solving these equations and taking derivatives with respect to x gives

d

dx
w(K,K) = − (K − 1)2(1− ρ)(pAη + ρ)

pA ((K − 1)(1− ρ) + ρ(1− x))2
< 0

and
d

dx
w(K,K − 1) =

(K − 1)(pAη + ρ)

pA ((K − 1)(1− ρ) + ρ(1− x))2
> 0

implying that gBσ (K,K) is increasing with x (waiting time decreases with x) and

gBσ (K, i) is decreasing with x for i ≤ K − 1. By choosing x = 1
K

we get that gBσ (K, i) =

gBσ (K, j) for all i, j ≤ K, which gives us the unique maximum of mini≤K g
B
σ (K, i). Since

under ϕ(K, i) = 1
K

we also have that gBσ (k, i) ≥ gBσ (K, i) for all i ≤ k ≤ K, it follows

that ϕ(K, i) = 1
K

maximizes mini,k g
B
σ (k, i). Since this was true for any σ we have that

ϕ(K, i) = 1
K

is the unique maximizer of vϕ(K) = infσ mini,k g
B
σ (k, i).
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This shows that SIRO produces the lexicographical maximum {vϕ(K)}∞K=1 and is

therefore the scalable optimal policy.
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