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Abstract

Efficiency and symmetric treatment of agents are the primary goals of re-

source allocation in environments without transfers. Focusing on ordinal mech-

anisms in which no small group of agents can substantially change the allocation

of others, we first show that uniform randomizations over deterministic efficient

mechanisms are asymptotically ordinally efficient, that is, efficient ex ante. This

implies that ordinal efficiency and ex-post Pareto efficiency become equivalent

in large markets, and that many standard mechanisms are asymptotically or-

dinally efficient. Second, we show that all asymptotically ordinally efficient,

symmetric, and asymptotically strategy-proof mechanisms lead to the same al-

locations in large markets.
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1 Introduction

Efficiency and symmetric treatment of participants (fairness) are the primary goals

of allocation of resources in environments without monetary transfers such as assign-

ing school seats to students and allocating university and public housing. In these

examples – and in our model – there are many agents relative to the number of

object types (also referred to as objects), each object type is represented by one or

more indivisible copies, and each agent consumes at most one object copy.1 Agents

are indifferent among copies of the same object and have strict preferences among

objects. Because object copies are indivisible, fair allocation mechanisms allocate

objects randomly. Following the standard practice, we focus on mechanisms that are:

(i) ordinal, that is, the random allocation depends only on agents’ reports of their

ordinal preferences over objects, and (ii) regular, that is, no small group of agents

can substantially impact allocations of other agents.2

We know little about efficient and fair allocations in large finite markets with-

out transfers. Prior literature established asymptotic efficiency of two mechanisms:

Bogomolnaia and Moulin (2001) showed that an eating procedure they introduced

and termed Probabilistic Serial is efficient, and Che and Kojima (2010) showed that

a mechanism that randomly orders agents and then lets them pick objects in turn

(Random Priority) is asymptotically equivalent to Probabilistic Serial, and thus also

asymptotically efficient.

The present paper provides a criterion to establish asymptotic efficiency of mech-
1See for instance Abdulkadiroğlu and Sönmez (2003) for school seat assignment and Chen and

Sönmez (2002) for housing allocation. In school seat assignment, the number of students is large
relative to the number of schools; in allocation of university housing, e.g. at Harvard, MIT, or
UCLA, the set of rooms is partitioned into a small number of categories, and rooms in the same
category are treated as identical.

2The literature focused on ordinal mechanisms because (a) real-life no-transfer mechanisms are
typically ordinal, (b) learning and reporting one’s preferences over sure outcomes is simpler than
learning and reporting one’s cardinal utilities, and (c) ordinal preferences over sure outcomes do
not rely on agents’ attitudes towards risk. For analysis that incorporates cardinal utilities see
Hylland and Zeckhauser (1979) and Makowski, Ostroy, and Segal (1999). Regularity is a standard
requirement in the study of large markets; see e.g. Champsaur and Laroque (1982).
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anisms (Theorem 1), and shows that there is a unique way to achieve symmetric and

asymptotically efficient allocations in an asymptotically strategy-proof way (Theorem

2). The first of these results implies that many known mechanisms are asymptoti-

cally efficient; in large markets there are no efficiency reasons to favor some of them

over others. The second result establishes outcome equivalence of a large class of

mechanisms, both known and unknown. The ongoing efforts to construct new mech-

anisms for large markets cannot succeed without relaxing some of the assumptions of

Theorem 2.

Before discussing the results in more detail, let us review the standard concepts

they rely on. The natural efficiency criterion in ordinal settings postulates that an

allocation is efficient if no group of agents can advantageously swap equal-size prob-

ability shares in objects, and no agent can advantageously swap a probability share

in an object for an equal-size share in an object that is unallocated with positive

probability.3 We primarily study a natural asymptotic counterpart of this criterion:

a mechanism is asymptotically efficient if the maximum size of advantageous swaps

vanishes as the market becomes large. The baseline fairness criterion is symmetric,

or equal, treatment of equal agents: an allocation is symmetric if any two agents who

reported the same preference ranking are allocated objects according to the same dis-

tribution. A mechanism is strategy-proof if reporting preferences truthfully first-order

stochastically dominates any other strategy. A mechanism is asymptotically strategy-

proof if it is approximately strategy-proof, and the approximation error vanishes as

the market becomes large.4

3Equivalently, an allocation is efficient if no other allocation first-order stochastically dominates
it. This efficiency concept – known as ordinal efficiency or first-order-stochastic-dominance efficiency
– was introduced by Bogomolnaia and Moulin (2001).

4 Strategy-proofness in ordinal settings has been studied by Gibbard (1978), Roth and Roth-
blum (1999), and Bogomolnaia and Moulin (2001). Asymptotic strategy-proofness is a weak in-
centive compatibility condition that has been intensively studied since – building on a seminal
analysis of asymptotic incentives by Roberts and Postlewaite (1976) –Hammond (1979), Champsaur
and Laroque (1982), and Jackson (1992) proved it for the Walrasian mechanism in large exchange
economies. In our context, the case for restricting attention to strategy-proof mechanisms was made
by Abdulkadiroğlu and Sönmez (2003) and Ergin and Sönmez (2006), while Azevedo and Budish
(2011) review the literature on asymptotic strategy-proofness and make a general case in favor of
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Our first main result, Theorem 1, establishes that uniform randomizations over

Pareto-efficient deterministic mechanisms are asymptotically efficient. Thus, for in-

stance, uniform randomizations over any Trading Cycle mechanisms of Pycia and

Ünver (2009) are asymptotically efficient.5 As mentioned above, prior literature es-

tablished asymptotic efficiency of Probabilistic Serial (Bogomolnaia and Moulin, 2001)

and Random Priority (Che and Kojima, 2010).

One consequence of Theorem 1 is an equivalence of efficiency and ex-post Pareto

efficiency in large markets. A random allocation is called ex-post Pareto efficient

if it can be represented as a randomization over efficient deterministic allocations.

Bogomolnaia and Moulin (2001) pointed out that ex post Pareto efficient mechanisms

do not need to be efficient. It turns out that in large markets the two concepts become

equivalent when we restrict attention to uniform randomizations.6

Our second main result, Theorem 2, establishes that all asymptotically efficient,

symmetric, and asymptotically strategy-proof mechanisms are asymptotically equiva-

lent that is the maximum difference in probability shares in an object an agent obtains

under any two mechanisms vanishes as the market becomes large. Since it is straight-

forward to see that any uniform randomization over Trading Cycle mechanisms is

regular, symmetric, and strategy-proof, Theorems 1 and 2 taken together imply that

all such randomizations are asymptotically equivalent. The allocational equivalence

is a strong argument in favor of choosing among these mechanisms primarily on the

basis of market-specific considerations, such as tradition or simplicity.

Theorem 2 provides a natural benchmark for the study of large market mecha-

imposing this requirement.
5Trading Cycles have been extended to the setting with copies by Pycia and Ünver, 2011.
6In a continuum economy setting in which each agent is identified with a profile of cardinal utilities

over objects and a profile of lottery tickets, Miralles (2008) shows that if the conditional probability
measure of agents’ cardinal utilities is the same irrespective of the conditioning set of lottery tickets
then ex-post Pareto efficiency and ordinal efficiency coincide for anonymous mechanisms. In contrast,
we impose no assumptions on the distribution of agents’ types. Manea (2009) shows that Random
Priority may fail to be efficient in environments in which both the number of object types and
the number of agents are large; hence also the above equivalence fails in his setting. For other
negative results on the relation of efficiency and ex post Pareto efficiency see McLennan (2002) and
Abdulkadiroğlu and Sönmez (2003).
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nisms: to break away from the large market equivalence one needs to relax one of its

assumptions. One important message from this theorem is that – in large markets –

we cannot substantially improve upon the mechanisms we already know and use.7

While Theorem 2 likely is the first general result showing that all natural large

market mechanisms coincide, the equivalence of some important special mechanisms

has been proved before. Abdulkadiroğlu and Sönmez (1998) proved that Random

Priority and the Core from Random Endowments (a uniform randomization over

Gale’s Top Trading Cycles) are equivalent in environments in which each object has

a single copy.8 In the large market setting of the present paper, Che and Kojima

(2010) showed asymptotic equivalence of two mechanisms: Random Priority and

Probabilistic Serial. Theorem 2 shows that the equivalence of these two mechanisms

is not a coincidence but rather a fundamental property of allocation in large markets.

2 Model

A finite economy consists of a finite set of agents N , a finite set of objects Θ (also

referred to as object types), and a finite set of object copies O. By |a| we denote the

number of copies of object a ∈ Θ. To avoid trivialities, we assume that each object

is represented by at least one copy.

Agents have unit demands and strict preferences over objects.9 We sometimes

refer to an agent’s preference ranking as the type of the agent. P denotes the set

of preference rankings, and PN is the set of preference profiles. We assume that Θ

contains the null object � (“outside option”), and we assume that it is not scarce,

|�| ≥ |N |. An object is called acceptable if it is preferred to �.

We can interchangeably talk about allocating objects and allocating copies; one

natural interpretation is that object types represent schools, and object copies rep-
7For ongoing efforts to construct new mechanisms, see for instance Featherstone (2011).
8Carroll (2010) and Pathak and Sethuraman (2010) proved analogous results in environments

with multiple copies.
9By � we denote the weak-preference counterpart of a strict preference ranking �.
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resent seats in these schools. We study random allocations. An allocation µ is given

by probabilities µ (i, a) ∈ [0, 1] that agent i is assigned object a. An allocation is

deterministic if µ (i, a) ∈ {0, 1} for all i ∈ N , a ∈ Θ.10 All allocations studied in this

paper are assumed to be feasible in the following sense

�

i∈N

µ (i, a) ≤ |a| for every a ∈ Θ,

�

a∈Θ

µ (i, a) = 1 for every i ∈ N.

The set of these random allocations is denoted by M. A mechanism φ : PN →M is

a mapping from the set of profiles of preferences over objects to the set of allocations.

We are primarily concerned with large but finite markets. To study them let us fix

a sequence of finite economies �Nq, Θ, Oq�q=1,2,... in which the set of object types, Θ,

is fixed while the set of agents Nq grows in q; we assume throughout that |Nq|→∞

as q →∞. As discussed in the introduction, similar or more restrictive assumptions

are standard in the study of large markets. To avoid repetition, in the sequel we refer

to �Nq, Θ, Oq� as the q-economy, and we assume that allocations µq and mechanisms

φq are defined on q-economies. The number of copies of object a in the q-economy

is denoted by |a|q, and the set of random allocations in the q-economy is denoted by

Mq. Notice that we do not impose any assumptions on the sequence of sets of object

copies, Oq; in particular, we do not need to restrict attention to replica economies.11

We study mechanisms φq in which the effect of reports of any small groups of

agents other than j on the allocation of an agent j vanishes as q → ∞. Formally, a

sequence of mechanisms φq is regular if for every � > 0 there is δ > 0 such that for
10A random allocation needs to be implemented as a lottery over deterministic allocations; Hylland

and Zeckhauser (1979) and Bogomolnaia and Moulin (2001) showed how to implement random
allocations. The implementation relies on Birkhoff and von Neumann’s theorem.

11Some of our results rely on additional assumptions on the ratio |a|q / |Nq|, and we explicitly
impose these assumptions when needed.
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any preference profiles �Nq ,��Nq
and any agent j ∈ Nq such that ��j=�j, if

|{i ∈ Nq| ��i �=�i}|
|Nq|

< δ, (1)

then

max
a∈Θ

���φq

�
�Nq

�
(j, a)− φq

�
��Nq

�
(j, a)

��� < �. (2)

Regularity is a natural assumption; Champsaur and Laroque (1982) directly addresses

the need for such an assumption. As the following remark illustrates, known mecha-

nisms are regular.

Remark 1. Regularity of known mechanisms is straightforward to demonstrate. Take,

for instance, Random Priority (Abdulkadiroğlu and Sönmez, 1998). To allocate ob-

jects, Random Priority first draws an ordering of agents from a uniform distribution

over orderings, and then in turn allocates the first agent a copy of her most preferred

object, allocates the second agent a copy of his most preferred object that still has

unallocated copies, etc. This mechanism is regular provided for each object a ∈ Θ

there is δ > 0 such that

lim inf
q→∞

|a|q /Nq > η. (3)

The proof fixes � < η and has three steps.12

Step 1. Fix a priority ordering of agents. Conditional on this ordering, all al-

locations are deterministic. A change of preferences by �Nq agents can change the

allocation of another agent j only if j takes one of the last �Nq copies of an object

under at least one of the two preferences rankings submitted by the agents changing

their preferences.

Step 2. The probability an agent takes one of the last � copies of an object a under

a preference profile vanishes as q →∞. Indeed, fix q and an ordering of agents other
12To see why assumption (3) is needed for regularity, consider an object a ∈ Θ and a sequence of

economies such that |a|q = 1. If the preference profile �Nq is such that only two agents are interested
in object a then a change of preferences by one of them has a large impact on the allocation of the
other, violating regularity.
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than j ∈ Nq, and consider probabilities conditional on such an ordering. If a is the

favorite object for j then j would take it as long as it is available, and the conditional

probability j takes one of the last �Nq copies of a is bounded above by �Nq

|a|q−�Nq
(and

for large q is bounded above by �
η−�). If there are objects (“better objects”) that agent

j prefers over a then j can take one of the last �Nq copies of a only after these better

objects are exhausted; the probability of this happening is bounded above by �
η .

Step 3. By Step 2, the probability agent j takes one of the last �Nq copies of an

object under one of two profiles of Step 1 is bounded above by 2 |Θ| �
η−� uniformly

over agents and preference profiles. The regularity claim is thus true.

A similar argument shows that uniform randomizations over Hierarchical Ex-

change mechanisms of Pápai (2000) or Trading Cycles of Pycia and Ünver (2009)

(extended to the setting with object copies by Pycia and Ünver (2011)) are regular

provided the number of object copies satisfies condition (3).

3 Efficiency

The natural efficiency concept in our ordinal setting is the ordinal efficiency of Bogo-

molnaia and Moulin (2001): an allocation is efficient if agents cannot trade probability

shares, and if no object is wasted.13 Formally, an allocation µ is efficient with re-

spect to preference profile � iff (i) there is no cycle of agents i0, i1, ..., in and objects

a0, a1, ..., an such that µ (ik, ak) > 0 and ak+1 �ik ak (that is agents i0, ..., in cannot

trade probability shares), and (ii) if a �i b and µ (i, b) > 0, then all copies of a are

allocated with probability 1 (that is no copy of a is wasted). This concept of efficiency

naturally extends the concept of efficiency from deterministic allocations to random

allocations. A mechanism φ is efficient if φ (�N) is efficient for all preference profiles

�N .
13This concept is also known as first-order-stochastic-dominance efficiency because – in finite

settings – efficiency of an allocation µ is equivalent to the lack of another allocation that first order
stochastically dominates µ.
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To define the asymptotic counterpart of this efficiency concept let us say that, for

any � > 0, a random allocation µ is �-efficient with respect to a preference profile

� iff (i) there is no cycle of agents i0, i1, ..., in and objects a0, a1, ..., an such that

µ (ik, ak) > � and ak+1 �ik ak (that is agents i0, ..., in cannot trade probability shares

larger than �), and (ii) if a �i b and µ (i, b) > �, then all copies of a are allocated with

probability at least 1 − � (that is no more than � of a is wasted). Given a sequence

of preference profiles �Nq , a sequence of allocations µq is asymptotically efficient if

for each q = 1, 2, ... there are positive � (q)
q→∞→ 0 such that µq is � (q)-efficient with

respect to �Nq .

Which mechanisms are asymptotically efficient in large economies? We know some

asymptotically efficient mechanisms: Bogomolnaia and Moulin (2001) constructed one

such mechanism they called Probabilistic Serial. Recently, Che and Kojima (2010)

showed that Random Priority is asymptotically equivalent to Probabilistic Serial; it

is easy to see that their result implies that Random Priority is asymptotically efficient

in the above sense.

The question remained open for other mechanisms. Many of the random mech-

anisms used in practice are obtained by uniformly randomizing over deterministic

mechanisms. The main result of this section addresses this question for this large

class of mechanisms. A mechanism φ : PN →M is a uniform randomization if there

exists a mechanism ψ : PN →M such that

φ
�
�(1,...,|N |)

�
(i, a) =

�

σ:N
1−1→ N

1

|N |!ψ
�
�(σ(1),...,σ(|N |))

�
(σ (i) , a)

In general, the component mechanism ψ can be random. We say that ψ is ex-post

Pareto efficient if, for each preference profile �N , the allocation ψ (�N) is equal to

a mixture over efficient deterministic allocations. When ψ is ex-post Pareto efficient

we say that φ is a uniform randomization over efficient deterministic mechanisms.

A special case of interest is when ψ is an efficient deterministic mechanism. For
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instance, if ψ is a serial dictatorship then φ is Random Priority. Other examples

include randomizations over subsets of Papai’s Hierarchical Exchange or Pycia and

Unver’s Trading Cycles.

Theorem 1. Regular sequences of uniform randomizations over efficient determin-

istic mechanisms are asymptotically efficient.

This result shows that all the above-mentioned mechanisms are asymptotically

efficient. This result also shows that in large markets efficiency and ex-post Pareto

efficiency become equivalent provided the randomization is uniform. This is in con-

trast to finite markets in which — following the pioneering work of Bogomolnaia and

Moulin 2001 — it was well understood that ex-post Pareto efficiency is a weaker

concept than efficiency.14

We sketch the proof below omitting some calculations provided in Appendix A.

The key step in the proof is to use regularity to conclude that it is enough to prove

the theorem for a carefully chosen subset of sequences of preference profiles �q. We

construct this set as follows. A sequence of preference-profiles �Nq has full support

if there exists δ > 0 and q̄ such that for any q > q̄, and for any ranking of objects

�∈ P, the proportion of agents whose �Nq -ranking agrees with � is above δ. Full

support holds true uniformly on a class of sequences if they have full support with

the same δ and q̄. Full support implies that, as q grows, any preference ranking is

represented by a non-vanishing fraction of agents.15

Let φ be a uniform randomization over Pareto-efficient deterministic mechanisms.

Let us thus fix a sequence of preference profiles �Nq ; regularity allows us to assume

that this sequence has full support (see the first lemma in Appendix A for a detailed

argument; this is the only use of regularity in the proof). To prove asymptotic
14See also McLennan (2002) and Abdulkadiroğlu and Sönmez (2003).
15In a continuum economy, the counterpart of full support says that every ordering is represented

with positive probability; in other words the distribution of orderings has full support. Our ob-
servations on full-support profiles remain valid if the assumption of non-vanishing representation is
imposed only for ranking of objects � in which all non-null objects are acceptable.
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ordinal efficiency we need to show that the allocations µq = φ
�
�Nq

�
are � (q)-ordinally

efficient for some �(q) → 0 as q →∞. By way of contradiction, assume that there is

� > 0 and a sequence of qn →∞ such that the allocations in the qn-economies are not

�-efficient. For any a ∈ Θ, symmetry of the uniform randomization implies that the

probability µqn (i, a) is the same for all agents i of a particular type �∈ P. Because

there is a finite number of agent and object types, the compactness of [0, 1] allows us

also to further subsample the sequence qn and assume that µqn (i, a) converges to a

constant µ∞ (�, a) ∈ [0, 1].

We may assume that either condition (i) or condition (ii) fails for all qn. Let us

consider the case condition (i) fails for all qn; the proof in the remaining case follows

the same steps. For each qn there is a cycle of agents i0, ..., im and objects a0, ..., am

such that ik gets a higher-than-� probability of ak, and ak+1 �ik ak (subscripts modulo

m + 1). Note we can have m ≤ |P| for each qn. By subsampling qn we can get m and

preference rankings �ik , k = 1, ...,m to be independent of qn, and then µ∞ (�ik , ak) ≥

�.

By assumption there exist weights λk,q, k = 1, ..., Kq and Pareto-efficient determin-

istic mechanisms ψk,q such that φq puts probability λk,q

|Nq |! on ψk,q ◦σ for all k = 1, ..., Kq

and bijections σ : Nq → Nq. Denote by Mq the random matrix that puts probability
λk,q

|Nq |! on the 0− 1 matrix ψk,q ◦σ
�
�Nq

�
indexed by i ∈ Nq and a ∈ Θ. Notice that the

mean of Mq (i, a) equals µq (i, a); the mean converges to µ∞ (�i, a) as q →∞.

A simple computation provided in the second lemma of Appendix A shows that

for any agents i and j of the same preference type, and for any object a, the covariance

between random variables Mq (i, a) and Mq (j, a) converges to zero as q →∞. We can

thus apply the weak law of large numbers to random variables Mq (i, a) and conclude

that for any �̃ > 0 and q large enough, the proportion of agents of type �k is within

�̃ of µ∞ (�k, ak) with probability at least 1 − �̃. This implies that there are some

agents i1, ..., im of types �1, ...,�m (respectively) who are allocated objects a1, ..., am

(respectively) by some mechanism ψk,q ◦ σ. This, however, contradicts the Pareto
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efficiency of ψk,q and concludes the proof.

4 Equivalence

As argued in the introduction, the natural postulates for allocation are efficiency,

symmetry, and strategy-proofness. Unfortunately, we know that in finite markets

no mechanism satisfies these three properties, see Bogomolnaia and Moulin (2001).

Requiring only that the properties are satisfied in an asymptotic sense, we address

the question of what mechanisms satisfy the three properties in large markets.

Let us first review the definitions of the standard concepts of symmetry and

strategy-proofness. Symmetry is a basic fairness property of an allocation, and is

also known as equal treatment of equals. Given preference profile �N , a random al-

location µ is symmetric if any two agents i and j who submitted the same ranking of

objects, �i=�j, are allocated the same distributions over objects, µ (i, ·) = µ (j, ·). A

random mechanism φ is strategy-proof if for any agent i ∈ N and any profile of pref-

erences �N , the allocation agent i obtains by reporting the truth, φ
�
�i,�N−{i}

�
(i, ·),

first-order stochastically dominates the allocation the agent can get by reporting an-

other preference ranking ��i, that is

�

b�ia

φ
�
�i,�N−{i}

�
(i, b) ≥

�

b�ia

φ
�
��i,�N−{i}

�
(i, b) , ∀a ∈ Θ.

This is the standard concept of strategy-proofness introduced by Gibbard (1977). We

further say that a random mechanism φ is �-strategy-proof if for any agent i ∈ N and

any profile of preferences �N ,

�

b�ia

φ
�
�i,�N−{i}

�
(i, b) ≥

�

b�ia

φ
�
��i,�N−{i}

�
(i, b)− �, ∀a ∈ Θ,��i∈ P.

A sequence of random mechanisms φq is asymptotically strategy-proof if for each
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q = 1, 2, ... there are positive � (q)
q→∞→ 0 such that µq is � (q)-strategy-proof. Footnote

4 discusses the literature on asymptotic strategy-proofness.

Theorem 2. If two regular sequences of random mechanisms φq and φ�q are asymp-

totically efficient, symmetric, and asymptotically strategy-proof, then they are asymp-

totically equivalent, that is

max
�Nq∈Pq ,i∈Nq ,a∈Θ

��φq

�
�Nq

�
(i, a)− φ

�
q

�
�Nq

�
(i, a)

�� → 0 as q →∞.

Theorem 2 has important ramifications for the ongoing work to construct improved

allocation mechanisms: we cannot improve upon the allocations of mechanisms we

already know without relaxing the requirement of (approximate) strategy-proofness or

of symmetry. Featherstone (2011) provides an important example of such an ongoing

work.16

Theorem 2 also immediately implies the following.

Corollary 1. All asymptotically strategy-proof sequences of uniform randomizations

over Pareto-efficient deterministic mechanisms are asymptotically equivalent.

As a heuristic for why Theorem 2 is true let us consider a setting with a continuum

of agents and assume that the mass of agents of type �, denoted |N (�)|, is strictly

positive for all �∈ P . Let |a| be the total mass of object a. One way to understand

the continuum setting is as a limit of finite economies. This limit is well-defined

provided we assume that (i) the sequence of preference profiles �Nq is such that for

each preference type �∈ P, the ratio |{i∈Nq |�i=�}|
|Nq | converges to a constant |N (�)|,

16The above results allow us to also obtain new insights into the strategy-proofness properties
of Probabilistic Serial. Kojima and Manea (2010) showed that agents have incentives to report
preferences truthfully in Probabilistic Serial if the number of copies is large enough relative to a
measure of variability of an agent’s utility, and Che and Kojima (2010) showed asymptotic strategy-
proofness of Probabilistic Serial provided the number of copies has asymptotically the same rate
of growth as |Nq|. Like Che and Kojima (2010), our results do not rely on assumptions on an
agent’s utility. The results allow us to relax Che and Kojima’s assumption on the number of object
copies, as well as to show that no assumption on the number of copies is needed for asymptotic
strategy-proofness at full-support preference profile sequences.
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and that |a|q
|Nq | converges to a positive constant |a|. Because of symmetry of φ and

φ�, knowing the total mass of object a allocated to agents of type � is equivalent

to knowing the probability an agent of type � obtains object a. We will refer to

this probability as µ (i, a) or µ (�, a). A key role in our argument is played by the

following strong fairness requirement introduced by Foley (1967).17 An allocation

µ is envy-free if any agent i first-order stochastically prefers his allocation over the

allocation of any other agent j, that is

�

b�ia

µ (i, b) ≥
�

b�ia

µ (j, b) , ∀a ∈ Θ.

Since m (�) > 0 for all types �, regularity, symmetry and asymptotic strategy-

proofness of the sequence of mechanisms φq allow us to conclude that the limit allo-

cation (µ (�, a))�∈P×Θ is envy-free. Thus, proving that there is a unique envy-free and

efficient allocation is a step towards proving a weak version of Theorem 2 (weakened

by the imposition of the additional restrictive assumptions listed above).18

To prove that efficiency and envy-freeness fully determine an allocation when

|N (�)| > 0 for all �∈ P, first note that there are constants ta > 0, a ∈ Θ, such that

µ (i, a) > 0 imply ta =
�

b�a µ (i, b). Indeed, take i, j such that µ (i, a) , µ (j, a) > 0.

Consider agent i� who ranks a first and otherwise ranks objects as agent i does; no

envy and efficiency imply µ (i�, a) =
�

b�ia
µ (i, b). Similarly, for agent j� who ranks

17In the proof of Theorem 2 in the appendix we use asymptotic envy-freeness, a concept defined
in Jackson and Kremer (2007) who noted its relation to incentive compatibility.

18The argument presented here can be used to prove a weak form of Theorem 2 in which we
add assumption (b), and we restrict attention to convergence for preference profile sequences such
that (a) obtains and |N (�)| > 0 for all �∈ P. Indeed, symmetry implies that φq

�
�Nq

�
(i, a)

is fully determined by �Nq , object a, and the preference type � of agent i; we can thus write
φq

�
�Nq

�
(�i, a) = φq

�
�Nq

�
(i, a). Full-support of �Nq ensures that φq (�, a) is well-defined for any

� and large q. At each preference profile along the sequence of profiles �Nq , the mechanism is given
by

�
φ

�
�Nq

�
(�, a)

�
�∈P,a∈Θ

∈ [0, 1]P×Θ. Given compactness of this latter set, to show that two
mechanisms φq and φ�q coincide asymptotically along �Nq it is enough to show that every conver-
gent subsequence of

�
φ

�
�Nq

�
(�, a)

�
�∈P,a∈Θ

converges to the same limit. We can thus consider a
subsequence

�
φ

�
�Nq

�
(�, a)

�
�∈P,a∈Θ

that converges to a limit (µ (�, a))�∈P×Θ. To prove the weak
version of the theorem it is then enough to show that µ (�, a) are uniquely determined by efficiency
and envy-freeness.
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a first and otherwise ranks objects as agent j does, µ (j�, a) =
�

b�ja µ (j, b). Finally,

no envy further implies that µ (i�, a) = µ (j�, a), proving the claim. We refer to indices

ta as time and say that object a is not exhausted at all times t < ta and exhausted

at all times t ≥ ta.19

Our assumptions uniquely determine agent-object pairs (i, a) such that µ (i, a) >

0. To see this first note that efficiency and envy-freeness imply that agents i ranking

a first get it with positive probability, µ (i, a) = ta > 0. No envy then implies that

µ (i, a) > 0 for all agents who rank a above all objects b that are not exhausted at

time ta. Let us denote the set of such types by N (a). The definition of times tak
then

implies that for i ∈ N (a) we have

µ (i, a) = ta − t
�
a (4)

where t�a equals 0 if agent i ranks a first and otherwise equals tb for the object b that

is �i-worst among objects �i ranks above a. Furthermore, only agents from N (a)

get a with positive probability. Indeed, if agent i ranks a below some object b non-

exhausted at ta, and µ (i, a) > 0 then: (i) agent i gets object b � a with probability

below 1; (ii) consider agent j that ranks a first and b second and observe that agent

j gets a with positive probability because tb > ta > 0. Equation (4) implies that j

gets b with positive probability. Now (i) and (ii) imply that agents i and j have a

profitable trade, a contradiction showing that µ (i, a) > 0 iff i ∈ N (a).

To conclude the proof let us rename the objects so that

0 < ta1 ≤ ta2 ≤ ... ≤ ta|Θ| .

19This choice of terminology is motivated by parallels to the “eating-in-time” terminology of the
Probabilistic Serial mechanism of Bogomolnaia and Moulin (2001).
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The efficiency then implies that

ta1 = min

�
|a1|

|N (a1)|
, 1

�
, ta2 = min

�
ta1 +

|a2|− ta1 |{i ∈ N (a2) | i ranks a2 first}|
|N (a2)|

, 1

�
,

and, proceeding in this way by induction, we can pin down all values ta, thus uniquely

determining allocation µ.

5 Comments on assumptions

We study regular mechanisms; the case for regularity has been made in the large

market literature by, for instance, Champsaur and Laroque (1982). However, the

gist of our results remain valid for all mechanisms, not only regular ones. If we drop

the regularity assumption, the analogues of our results remain true for full-support

sequences of preference profiles. In fact, the proofs of our results show that the

results are true for full-support sequences of profiles whether or not the mechanism

is regular, and we then employ regularity to extend the results to any preference

profiles. Regularity is thus a dispensable assumption because full-support sequences

are typical. Indeed, full-support sequences have asymptotically full measure in the

following sense: a set S of sequences of preference profiles is asymptotically full-

measure if for every � > 0 there exists a sequence of sets Sq ⊂ Pq of preference

profiles in q-economies such that for q large enough the ratio |Sq |
|Pq | > 1 − �, and all

sequences of profiles from Sq are in the set of sequences S.

Proposition 1. Asymptotically full-support profiles have asymptotically full-measure.

Proof. Let Sδ
q ⊂ Pq be the set of preference profiles such that, for any ranking of

objects � in the q-economy, the proportion of agents whose ranking agrees with � to

|Nq| is above δ. Take � > 0 and notice that for q large enough there exists δ (�) > 0

such that
˛̨
˛Sδ(�)

q

˛̨
˛

|Pq | > 1− �. To complete the proof it is enough to set Sq = Sδ(�)
q .

Another assumption we can relax is symmetry. While the heuristic argument for
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Theorem 2 made substantial use of symmetry, the formal argument from Appendix

B does not, and this argument remains valid when Theorem 2 is strengthened by

relaxing the symmetry assumption to its asymptotic counterpart.20

6 Conclusion

Theorem 1 shows that – in ordinal settings – many known mechanisms are asymp-

totically efficient, and Theorem 2 establishes that effectively there is only one way

to allocate objects in an efficient, symmetric, and strategy-proof way. Thus, in large

markets, the choice among ordinal mechanisms needs to be based on criteria other

than efficiency or fairness. This has important implications for ongoing efforts to

construct new ordinal mechanisms.

In the current paper, we study the canonical single-unit assignment model. In Liu

and Pycia [2011], we extended the results to multi-unit environments.21

A Proof of Theorem 1

The only elements missing in the proof of Theorem 1 in the main text are the following

two lemmas:

Lemma 1. If φ is regular and φ
�
�Nq

�
is asymptotically efficient for full-support

sequences
�
�Nq

�
q=1,2,...

, then φ is asymptotically efficient.

Proof. Fix δ > 0 and a large positive integer q̄, and let Sδ,q̄ be the class of

sequences of preference profiles �Nq such that for all q > q̄, each ranking �∈ P is
20Given a sequence of preference profiles �Nq , a sequence of random allocations µq is asymptoti-

cally symmetric if

max
i,j∈Nq such that�i=�j , a∈Θ

|µq (i, a)− µq (j, a)|→ 0 as q →∞.

A mechanism is asymptotically symmetric if the convergence is uniform across preference profiles.
21Cf Kojima (2009), Budish, Che, Kojima, and Milgrom (2011), and Pycia (2011a) for models

of multiple unit assignment. In a follow up work, Heo (2011) extended Lemma 3 to the non-strict
preference environment of Katta and Sethuraman (2006).
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represented in �Nq by at least a fraction δ of agents. The asymptotic efficiency of

φq

�
�Nq

�
obtains uniformly on Sδ,q̄. Indeed, if not then there would exist � > 0 and

a sequence of sequences of preference profiles
�
�k

Nq

�

q=1,2,...
indexed by k = 1, 2, ...

such that no φq

�
�q

Nq

�
is �-ordinally efficient; a contradiction because the sequence

of profiles
�
�q

Nq

�

q=1,2,...
belongs to Sδ,q̄ and in particular has full-support.

To finish the proof, take any sequence of profiles �Nq ∈ PNq . There is a sequence

of profiles
�
��Nq

�

q=1,2,...
∈ Sδ,q̄ such that (1) is satisfied. The uniform asymptotic

efficiency on Sδ,q̄ and inequality (2) imply that φq

�
�Nq

�
satisfies conditions (i)-(ii)

of �-efficiency uniformly on �Nq ∈ PNq , for large q (the � in �-efficiency needs to be

slightly larger than � in (2), e.g. twice the size). By taking � → 0 we prove the claim.

QED

Lemma 2. Let λk,q > 0, k = 1, ..., Kq, add-up to 1, let ψk,q be Pareto-efficient deter-

ministic mechanisms, and let Mq put probability λk,q

|Nq |! on ψk,q ◦ σ for all k = 1, ..., Kq

and bijections σ : Nq → Nq. Then, for any agents i and j of the same preference type,

and for any object a, the correlation between random variables Mq (i, a) and Mq (j, a)

converges to zero as q → ∞. The convergence is uniform on any class of uniformly

asymptotically full-support profiles.

Proof. Fix q, a preference profile in PNq , and an ordering �∈ P. Denote by na

the number of agents of type � getting a under the fixed preference profile, and let

n =
�

a∈Θ na. The covariance between two agents i and j of type � getting a (that

is, the covariance between Mq (i, a) and Mq (j, a)) is the average of such covariances

conditional on the profile of numbers na, a ∈ Θ. The symmetry among agents of the

same preference type implies that conditional on a profile of na, a ∈ Θ, the covariance

between Mq (i, a) and Mq (j, a) is

na

n

na − 1

n− 1

�
1− na

n

�2
+ 2

na

n

�
n− na

n− 1

� �
1− na

n

� �
0− na

n

�
+

+

�
n− na

n

� �
n− 1− na

n− 1

� �
0− na

n

�2
=

na (na − n)

n2 (n− 1)
∈

�
− 1

4 (n− 1)
, 0

�
.

18



The covariance thus converges to 0 as q → ∞ because n, the number of agents of

type �, grows to infinity along asymptotically full-support profiles. The uniform

convergence claim is straightforward. QED

B Proof of Theorem 2

In the proof we will use the ingenious construction of the Probabilistic Serial mecha-

nism of Bogomolnaia and Moulin (2001); this mechanism is both efficient and envy-

free. Probabilistic Serial treats copies of an object type as a pool of probability shares

of the object type. Given preference profile �N , the random allocation produced by

Probabilistic Serial can be determined through an “eating” procedure in which each

agent “eats” probability shares of the best acceptable and available object with speed

1 at every time t ∈ [0, 1]; an object a is available at time t if its initial endowment

θ−1 (a) is larger than the sum of shares that have been eaten by time t.

Formally, at time t = 0, the total quantity of available shares of object type a ∈ Θ

is Qa (0) = |θ−1 (a)|, and for times t ∈ [0, 1) we define the set of available objects

A (t) ⊆ Θ and the available quantity Qa (t) of probability shares of object a ∈ Θ

through the following system of integral equations

A (t) = {a ∈ Θ|Qa (t) > 0} ,

Qa (t) = Qa (0) −
ˆ t

0

|{i ∈ N | a ∈ A (τ) and ∀b ∈ A (τ) a �i b}| dτ.

We say that agent i eats from object a at time t iff a ∈ A (t) and ∀b ∈ A (t) , a �i b.

If stopped at time t, the eating procedure allocates object a ∈ Θ to agent i ∈ N with

probability

ψ
t (i, a) =

ˆ t

0

χ (i eats from a at time τ) dτ,

where the Boolean function χ (statement) takes value 1 if the statement is true and

0 otherwise. The allocation ψ (i, a) of Probabilistic Serial is given by the eating

19



procedure stopped at time 1; that is ψ = ψ1.

The continuity of the functions Qa implies that for any time T ∈ [0, 1) and any

η > 0 sufficiently small, any agent i eats the same object for all t ∈ [T, T + η).

In the eating procedure there are some critical times when one or more objects get

exhausted. At this time some of the available quantity functions Qa have kinks; at

other times their slope is constant.22

Before proving Theorem 2, let us also define asymptotic envy-freeness. First, given

an � > 0 and preference profile �Nq , let us say that an allocation µ is �-envy free if

�

b�ia

µ (i, b) + � ≥
�

b�ia

µ (j, b) , ∀a ∈ Θ, ∀i, j ∈ Nq.

Given a sequence of preference profiles �Nq , we say that a sequence of allocations

µq is asymptotically envy free if there are positive �q → 0 such that µq is �q-envy

free. We say that a sequence of mechanisms φq is asymptotically envy-free if there

are positive � (q)
q→∞→ 0 such that allocations φq

�
�Nq

�
are �q-envy free for all �Nq .

Lemma 3. Fix a full-support sequence of preference profiles. If a sequence of random

allocations µq is asymptotically efficient and asymptotically envy-free, then it coincides

asymptotically with the allocations of Probabilistic Serial. Moreover, if a sequence of

mechanisms φq is asymptotically efficient, symmetric, and asymptotically envy-free,

and a class of profile sequences S has uniformly full support, then φq converges to

Probabilistic Serial uniformly on this class, that is

max
(�Nq)q=1,2,...

∈S, i∈Nq , a∈Θ

��φq

�
�Nq

�
(i, a)− φ

�
q

�
�Nq

�
(i, a)

�� → 0 as q →∞.

Proof. Fix any sequence of full-support preference profiles �Nq and an asymptot-

ically efficient and asymptotically envy-free sequence of allocations µq. Asymptotic
22This structure of quantity functions Qa implies that we can define the allocation of Probabilistic

Serial through a system of difference equations; such definitions are given in Bogomolnaia and Moulin
(2001), and, for the environment with copies, in Kojima and Manea (2010).
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efficiency implies that for any small � > 0 and large M > 0 there is q̄ such that for

q ≥ q̄, the allocations are �
M2 -efficient, and, in particular, there are no two agents

who could swap probability shares of size �
M2 in some two objects. By asymptotic

envy-freeness we can assume that for q ≥ q̄ each agent i’s allocation �
M2 -first order

stochastically dominates allocations of any other agent j in agent i’s preferences, that

is
�

b�ia

µq (i, b)−
�

b�ia

µq (j, b) ≥ − �

M2
for all a ∈ Θ.

We fix q ≥ q̄ and, to economize on notation, we drop the q-subscript when referring

to this fixed economy N = Nq and its allocation µ = µq. We also drop the preference

argument when referring to the allocation of Probabilistic Serial ψ.

To prove the lemma it is enough to show that

�

a��ia

µ (i, a�) ≥
�

a��ia

ψ
t (i, a�)− �

M
(5)

for all t ∈ [0, 1], agents i, and objects a ∈ Θ. Indeed, this set of inequalities for t = 1,

together with efficiency of the Probabilistic Serial ψ1, imply that |µ (i, a)− ψ1 (i, a)| <

� for all i and a, provided M ≥ |Θ|.

By way of contradiction, assume the above inequality fails for some time, agent,

and object. Let T be the infimum of t ∈ [0, 1] such that there exists i ∈ N and

b ∈ Θ such that
�

a�ib
µ (i, a) <

�
a�ib

ψt (i, a)− �
M . Since there are a finite number

of agents and objects, there is an agent and object for which the infimum is realized;

let us fix such an agent and such an object and call them i and b, respectively. Let us

assume that b is the highest ranked object in i’s preferences for which the infimum is

realized.

Step 1. Inequalities (5) are satisfied at t = T because the mapping t �→ ψt (i, a)

is continuous and the inequalities are satisfied for t ∈ [0, T ). In particular, the cutoff

time T belongs to [0, 1).

Step 2. At time T of the eating procedure, agent i must be eating from b. Indeed,
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if i is eating from an object a �i b at T , then ψT (a�) = 0 for all objects a� ≺i a,

and hence if (5) is violated for agent i and object b then it is violated for agent i and

object a. This would contradict the assumption that i ranks b above all other objects

for which the infimum T is realized. If i is eating from an object a ≺i b at time T

then
�

a��ib
µ (i, a�) ≥

�
a��ib

ψT (i, a�)− �
M =

�
a��ib

ψt (i, a�)− �
M for t just above T ,

again contrary to T being the infimum of t at which (5) is violated for i and b.

Step 3. Agent i gets object b or better with probability T− �
M , that is

�
a��ib

µ (i, a�) =

T − �
M . Indeed, by Step 2, agent i is eating from b at time T in the eating proce-

dure, and thus
�

a��ib
ψT (i, a�) = T . Because (5) is satisfied for t = T , we get

�
a��ib

µ (i, a�) ≥
�

a��ib
ψT (i, a�) − �

M = T − �
M . The inequality is binding because

functions t �→ ψt (i, a�) are continuous in t and T is the infimum of times at which (5)

is violated.

Step 4. If b is the favorite object of agent j ∈ N , then µ (j, b) ∈
�
T − �

M , T − �
M + �

M2

�
.

Indeed, by Step 1, the top choice object b is still available at time t in the eating

procedure, and thus ψT (j, b) = T . Because (5) is satisfied at time T we thus get

µ (j, b) ≥ T − �
M . Furthermore, envy-freeness of µ implies that µ (j, b) ≤ T − �

M + �
M2

as otherwise the outcome of agent i would not �
M2 -first-order stochastically dominate

for agent i the outcome of agent j .

Step 5. If b is the favorite object of agent j ∈ N , then ψ1 (j, b) > T . Indeed,

if not, then in the eating procedure b would be exhausted at time T , contrary to i

eating b at time T and thus at some times t > T .

Step 6. There is an agent k ∈ N such that µ (k, b) > ψ1 (k, b) + 3�
M2 . Indeed, by

the asymptotic full-support assumption at least a fraction δ of agents ranks b as their

first choice. Steps 3 and 4 imply that under µ these agents get at least (M−1)�
M2 less b

than they get under ψ. Because δ > 0 and is independent of M , for M large enough

the �
M2 -efficiency of µ implies that there must be another agent k who gets 3�

M2 more

b under µ than under ψ1.

Step 7. There is an object c �= b that agent k from Step 6 ranks just above b.
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Indeed, the claim follows from Steps 4, 5, and 6.

Let us fix agent k and object c satisfying Steps 6 and 7.

Step 8. Under µ, agent k gets object b or better with probability strictly higher

than T− �
M + 3�

M2 . Indeed, Step 1 and the availability of object b at time T in the eating

procedure imply that
�

a�kc µ (k, a) ≥
�

a�kc ψT (k, a) − �
M = T − ψT (k, b) − �

M ≥

T − ψ1 (k, b)− �
M . The claim then follows from Step 6.

To conclude the proof, notice that by the asymptotic full support assumption,

there exists an agent j who ranks objects in the same way as agent k except that

i puts b first. By Step 6, µ (k, b) >
�

M2 , and thus the lack of swaps of size �
M2 (the

consequence of �
M2 -efficiency of µ) implies that

�
a�kb µ (j, a) <

�
M2 . Step 4 thus

implies that under µ the probability j gets object c or better is between T − �
M and

T − �
M + 2�

M2 , and, by Step 8, it is smaller than the probability k gets these objects.

This contradicts envy-freeness of µ. The contradiction proves (5), and the first part

of the lemma.

An examination of the above argument shows that the choice of �, M , and q̄ can

be made uniformly for µq = φq

�
�Nq

�
on a class of preference profile sequences with

uniformly full-support, proving the second part of the lemma.

Proof of Theorem 2. First note that it is enough to prove the result assuming that

φ�q are Probabilistic Serial. Second, notice that regularity, symmetry, and asymptotic

strategy-proofness imply that φq

�
�Nq

�
is asymptotically envy free for all �Nq . The

above lemma shows a uniform convergence of φ
�
�Nq

�
to Probabilistic Serial for all

sequences of preference profiles �Nq such that for some δ > 0 and positive integer q̄,

for all q > q̄ each ranking �∈ P is represented in �Nq by at least fraction δ of agents.

Let us then fix any sequence of profiles �Nq , and derive the convergence for �Nq from

the regularity of φq and the convergence for asymptotically full-support sequences of

profiles ��Nq
such that (1) is satisfied. The convergence is uniform across preference

profiles, proving Theorem 2. QED
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