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Abstract

To encourage diversity, schools often “reserve” some slots for students of specific
types. Students only care about their school assignments and contractual terms like
tuition, and hence are indifferent among slots within a school. Ad hoc approaches to
resolving indifferences across slots can introduce subtle biases that can be corrected
with more careful market design.

In this paper, we illustrate how affirmative action programs in Chicago and Boston
favor certain groups more than their designs at first suggest. Then, we introduce
a two-sided, many-to-one matching with contracts model in which agents match with
branches that (1) have priorities that vary by slot and (2) fill slots sequentially. In these
matching markets with slot-specific priorities, branches’ choice functions may not sat-
isfy the substitutability conditions typically crucial for matching with contracts. Never-
theless, an embedding into a one-to-one agent–slot matching market shows that stable
outcomes exist and can be found by a cumulative offer mechanism that is strategy-
proof and respects unambiguous improvements in priority. These results suggest an
affirmative action mechanism design that avoids the problems of the current Chicago
and Boston systems.
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1 Introduction

Mechanisms based on the agent-proposing deferred acceptance algorithm of Gale and Shap-

ley (1962) have been adopted widely in the design of centralized school choice programs.1

Deferred acceptance, first proposed for school choice by Abdulkadiroğlu and Sönmez (2003),

is popular in practice because it is

1. stable, guaranteeing that no student ever envies a student with lower priority, and

2. dominant-strategy incentive compatible—strategy-proof —“leveling the playing field”

by eliminating gains to strategic sophistication (Abdulkadiroğlu et al. (2006); Pathak

and Sönmez (2008)).2

Many school districts (e.g., Chicago, Boston, and New York City) are concerned with

issues of student diversity and have thus embedded affirmative action systems into their

school choice programs. However, rendering deferred acceptance compatible with affirmative

action requires modification of the algorithm—and at present, these adjustments are typically

handled in an ad hoc manner.

In this paper, we observe that diversity, financial aid, or other concerns often cause agents’

priorities to vary across a given institution’s slots. We argue that to effectively handle

these slot-specific priority structures, market designers should go beyond the traditional

deferred acceptance algorithm and use a more detailed design approach based on the Kelso

and Crawford (1982)/Hatfield and Milgrom (2005) theory of many-to-one matching with

contracts.

To make this case, we first illustrate how existing ad hoc deferred acceptance implemen-

tations impact student welfare in the Chicago and Boston school choice programs. Then,

1These reforms include assignment of high school students in New York City in 2003 (Abdulkadiroğlu et
al. (2005b, 2009)), assignment of K–12 students to public schools in Boston in 2005 (Abdulkadiroğlu et al.
(2005a)), assignment of high school students to selective enrollment schools in Chicago in 2009 (Pathak and
Sönmez (forthcoming)), and assignment of K–12 students to public schools in Denver in 2012. Perhaps most
significantly, a version of deferred acceptance has been recently been adopted by all (more than 150) local
authorities in England (Pathak and Sönmez (forthcoming)).

2Strategy-proofness is also useful because it enables the collection of true preference data for planning
purposes.
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we introduce a model of matching with slot-specific priorities, which embeds classical pri-

ority matching frameworks (e.g., Balinski and Sönmez (1999); Abdulkadiroğlu and Sönmez

(2003)), models of affirmative action (e.g., Kojima (2012); Hafalir et al. (forthcoming)), and

the cadet–branch matching framework (Sönmez and Switzer (forthcoming); Sönmez (2011)).

We advocate for a specific implementation of the cumulative offer mechanism of Hatfield

and Milgrom (2005) and Hatfield and Kojima (2010), which generalizes agent-proposing de-

ferred acceptance. Previous priority matching models have relied on the existence of agent-

optimal stable outcomes to guarantee that this mechanism is strategy-proof. In markets

with slot-specific priorities, however, agent-optimal stable outcomes may not exist. Never-

theless, as we show, the cumulative offer mechanism is still strategy-proof in such markets;

this observation is perhaps the most surprising theoretical contribution of our work. We

show moreover that the cumulative offer mechanism has two other features essential for ap-

plications: the cumulative offer mechanism yields stable outcomes and respects unambiguous

improvements of agent priority.3

Our work demonstrates that the existence of a plausible mechanism for real-world many-

to-one matching with contracts does not rely on the existence of an agent-optimal stable

outcome. However, we emphasize that the cumulative offer mechanism selects the agent-

optimal stable outcome whenever such an outcome exists. This is important because the

existence of an agent-optimal stable outcome removes all conflict of interest among agents in

the context of stable assignment, and thus is quite useful in applications. The existence of an

agent-optimal stable outcome in our general model may depend on several factors, including

the number of different contractual arrangements agents and institutions may have, and the

precedence order according to which institutions prioritize individual slots above others.4

3These conclusions allow us to re-derive several main results of the innovative Hafalir et al. (forthcoming)
approach to welfare-enhancing affirmative action.

4As we show in an application of our model (Proposition 5), the United States Military Academy cadet–
branch matching mechanism in a sense uses the unique precedence order under which the cumulative offer
mechanism is agent-optimal.
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Finally, we note that our paper also has a methodological contribution: In general, slot-

specific priorities fail the substitutability condition that has so far been key in analysis of most

two-sided matching with contracts models (Kelso and Crawford (1982); Hatfield and Milgrom

(2005); see also Adachi (2000); Fleiner (2003); Echenique and Oviedo (2004)).5 Moreover,

slot-specific priorities may fail the unilateral substitutability condition of Hatfield and Kojima

(2010) that has been central to the analysis of cadet–branch matching (Sönmez and Switzer

(forthcoming); Sönmez (2011)). Nevertheless, the priority structure in our model gives rise

to a naturally associated one-to-one model of agent–slot matching (with contracts). As the

agent–slot matching market is one-to-one, it trivially satisfies the substitutability condition.

It follows that the set of outcomes stable in the agent–slot market (called slot-stable outcomes

to avoid confusion) has an agent-optimal element. We show that each slot-stable outcome

corresponds to a stable outcome6; moreover, we show that the cumulative offer mechanism

in the “true” matching market gives the outcome which corresponds to the agent-optimal

slot-stable outcome in the agent–slot matching market. These relationships are key to our

main results.

The remainder of this paper is organized as follows. In Section 2, we discuss the Chicago

and Boston school choice programs, illustrating the importance of careful design in markets

with slot-specific priorities. We present our model of matching with slot-specific priorities in

Section 3. Then, in Section 4, we introduce the agent–slot matching market and derive key

properties of the cumulative offer mechanism. In Section 5, we revisit the affirmative action

applications and briefly discuss applications to cadet–branch matching. Section 6 concludes.

Most proofs are contained in the Appendix.

5Thus, in particular, our model falls outside of the domain which Echenique (2012) has shown can be
handled with only the Kelso and Crawford (1982) matching with salaries framework (see also Kominers
(2012)).

6The converse result is not true, in general—there may be stable outcomes which are not associated to
slot-stable outcomes.
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2 Motivating Applications

First advocated by Friedman (1955, 1962), school choice programs aim to enable parents

to choose which schools their children attend. There is significant tension between the

proponents of school choice and the proponents of alternative, neighborhood assignment

systems based on students’ home addresses.

The mechanics of producing the assignment of students to school seats received little

attention in school choice debates until Abdulkadiroğlu and Sönmez (2003) showed important

shortcomings of several mechanisms adopted by United States school districts. Of particular

concern was the vulnerability of school choice to preference manipulation: while parents were

allowed to express their preferences on paper, they were implicitly forced to play sophisticated

admission games. Once this flaw became clear, several school districts adopted the (student-

proposing) deferred acceptance mechanism, which was invented by Gale and Shapley (1962)

and proposed as a school choice mechanism by Abdulkadiroğlu and Sönmez (2003).7

Deferred acceptance-based mechanisms have been successful in part because they are

fully flexible regarding the choice of student priorities at schools. In particular, priority

rankings may vary across schools; hence, students can be given the option of school choice

while retaining some priority for their neighborhood schools. Thus, deferred acceptance

mechanisms provide a natural opportunity for policymakers to balance the concerns of both

school choice and neighborhood assignment advocates.

However, deferred acceptance-style mechanisms are designed under the assumption that

student priorities are identical across a given school’s seats. While this assumption is natural

for some school choice applications, it fails in several important cases: admissions to selective

high schools in Chicago; K–12 school admissions in Boston; and public high school admission

in New York. We next describe

• how the Chicago and Boston matching problems differ from the original school choice

model of Abdulkadiroğlu and Sönmez (2003),

7This mechanism is often called the student-optimal stable mechanism.
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• how policymakers in Chicago and Boston sought to transform their problems into direct

applications of the Abdulkadiroğlu and Sönmez (2003) framework, and

• how these transformations introduced significant, yet hidden biases in the underlying

priority structures.

These observations motivate the more general matching model with slot-specific priorities

that we introduce in Section 3.

2.1 Affirmative Action at Chicago’s Selective High Schools

Since 2009, Chicago Public Schools (CPS) has adopted an affirmative action plan based

on socio-economic status (SES). Although CPS initially adopted a version of the Boston

mechanism for selective enrollment high school admissions, they immediately abandoned it

in favor of a deferred acceptance-based approach.8 Under the new assignment plan, the SES

of each student is determined based on home address; students are then divided into four

roughly evenly sized tiers:9 In 2009,

• 135,716 students living in 210 Tier 1 (lowest-SES) tracts had a median family income

of $30,791,

• 136,073 students living in 203 Tier 2 tracts had a median family income of $41,038,

• 136,378 students living in 226 Tier 3 tracts had a median family income of $54,232,

and

• 136,275 students living in 235 Tier 4 (highest-SES) tracts had a median family income

of $76,829.

8Pathak and Sönmez (forthcoming) have presented a detailed account of this midstream reform.
9SES scores are uniform across census tracts, and are based on median family income, average adult

educational attainment, percentage of single-parent households, percentage of owner-occupied homes, and
percentage of non-English speakers.
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Students in Chicago who apply to selective enrollment high schools take an admissions test

as part of their application, and this test is used to determine a composite score.10 Students

from high-SES tiers typically have higher composite scores, and CPS has set aside seats as

reserved for low-SES students in order to prevent the elite schools from becoming inccessible

to children from poorer neighborhoods. In order to implement this objective, CPS adopted

the following priority structure at each of the nine selective enrollment high schools:

• priority for 40% of the seats is determined by students’ composite scores, while

• for each of the four SES tiers t, 15% of the seats are set aside for Tier t students, with

composite score determining relative priority among those students.11

Because these priorities over seats are not uniform within schools, the Abdulkadiroğlu and

Sönmez (2003) school choice model does not fully capture all aspects of the Chicago admis-

sions problem. In order to implement deferred acceptance despite this difficulty, the CPS

matching algorithm treats each selective enrollment high school as five hypothetical schools:

The set Sb of seats at each school b is partitioned into subsets

Sb = So
b ∪ S4

b ∪ S3
b ∪ S2

b ∪ S1
b .

The seats in So
b are “open seats,” for which students’ priorities are determined entirely by

composite scores. Seats in St
b are “reserved” for students of Tier t—they give Tier t students

priority over other students, and use composite scores to rank students within Tier t. Each

set of seats is viewed as a separate “school” within the CPS algorithm. Because seat priorities

are uniform within each set Se
b , the set of hypothetical schools satisfies the Abdulkadiroğlu

and Sönmez (2003) requirement of uniform within-school priorities.

10If two students have the same score, then the younger student is coded by CPS as having a higher
composite score.

11The priority structure we describe here was used in the 2010–2011 CPS match. The CPS priority
structure has been revised slightly for school year 2012-2013. In the new structure, 5% of the seats are
reserved for hand-picking by principals, the fraction of open competition seats is reduced to 28.5%, and the
fraction of reserved seats for each SES tier is increased to 16.625%.
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However, CPS students i submit preferences P i over schools, and are indifferent among

seats at a given school b ∈ B. That is, if we denote a contract representing that i holds a

seat in Se
b by 〈i; se

b〉, then any Tier t student i is indifferent among

〈i; so
b〉 ,

〈
i; s4

b

〉
,
〈
i; s3

b

〉
,
〈
i; s2

b

〉
, and

〈
i; s1

b

〉
,

and prefers all these these contracts to any contract of the form 〈i; se
b′〉 if (and only if) i

prefers school b to school b′ (i.e. bP ib′). As the Abdulkadiroğlu and Sönmez (2003) model

requires that students have strict preferences over schools, the CPS matching algorithm must

convert students’ true preferences P i into strict, “extended” preferences P̃ i over the full set

of hypothetical schools. In practice, CPS does this by assuming that

〈i; so
b〉 P̃ i

〈
i; s4

b

〉
P̃ i
〈
i; s3

b

〉
P̃ i
〈
i; s2

b

〉
P̃ i
〈
i; s1

b

〉
for each student i and school b.12 That is, CPS assumes that students most prefer open seats,

and then rank reserved seats. CPS thus picks for each student the (unique) preference ranking

consistent with the student’s submitted preferences in which the open seats at each school are

ranked immediately above the reserved seats. With this transformation of preferences, the

Chicago problem finally fits within the standard school choice framework of Abdulkadiroğlu

and Sönmez (2003).

Being an affirmative action plan, the priority structure in Chicago is designed so that

students of lower SES tiers receive favorable treatment. What may be less clear is that the

transformation used in the CPS implementation of deferred acceptance provides additional

advantages to low-SES tier students.

To understand this bias, we consider a simple example in which there is only one school.

The CPS matching algorithm first assigns the open seats and subsequently assigns the re-

12Note that as seats in St
b are reserved for Tier t students, the only “relevant” part of this construction is

the fact that 〈i; so
b〉 P̃ i 〈i; st

b〉 for any Tier t student i.
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served seats. Therefore (under the 2010-2011 CPS plan), 40% of the seats are assigned to

the students—from any SES tier—with highest composite scores, and the remaining 60% of

seats are shared evenly among the four SES tiers. Hence, students in each tier have access to

15% of the seats plus some fraction of the open seats depending on their composite scores.

In order to see how this treatment favors students of lower tiers, we consider an alternative

mechanism in which reserved seats are allocated before open competition seats. Under this

counterfactual mechanism:

First, the reserved seats are allocated to the students in each SES tier with the

highest composite scores. Then, the students remaining unassigned are ranked

according to their composite scores and admitted in descending order of score

until all the open seats are filled.

High-SES students’ composite scores dominate low-SES students’ scores throughout the

relevant part of the score distribution—the number of Tier 4 students with score σ high

enough to gain admission is larger than the number of Tier 3 students with score σ, and so

forth. In practice, this means that after the reserved seats are filled, high-SES students fill

most (if not all) of the open seats. Indeed, once the highest-scoring students in each tier are

removed, the score distribution of students vying for the last 40% of seats takes the block

form illustrated in Figure 1. Thus, the open seats first fill only with Tier 4 students, then

fill with both Tiers 4 and 3, and then fill with students from Tiers 4, 3, and 2. Only after

that (if seats remain) do Tier 1 students gain access. Of course, the size of the blocks—and

hence the size of the effect of switching to the counterfactual mechanism—is an empirical

question.

Using actual data from 2010-2011 Chicago school choice admissions program, we now

show that our intuition is accurate and that the magnitude of this effect is substantial.13

13Our data set includes the 2010-2011 quotas for the nine CPS elite public high schools, as well as students’
composite scores and submitted rank-order lists. For our simulations, we assume that students would not
change their submitted preference orders if the counterfactual mechanism were imposed. This assumption
may not be strictly true in practice, because—as Pathak and Sönmez (forthcoming) have discussed—CPS

8



∣∣∣∣∣∣∣∣
Tier 4
Tiers 4 and 3
Tiers 4, 3, and 2
Tiers 4, 3, 2, and 1

Figure 1: Top-scoring students in the truncated distribution come from
Tier 4; the next-highest score block consists only of students from Tiers 4
and 3, and so forth.

Tier 4 Tier 3 Tier 2 Tier 1
Prefer Current 62 50 108 175

Indifferent 3748 4287 4092 3474
Prefer Counterfactual 225 108 43 0

Table 1: Comparison of individual student outcomes.

We compare the outcome of the Chicago match under two alternative scenarios:

1. First we consider the current system, in which all open seats are allocated before

reserved seats.

2. Second we consider the counterfactual in which all open seats are allocated after re-

served seats.

Of the 4270 seats allocated at nine selective high schools, 771 of them change hands between

the two scenarios—what CPS most likely considers a minor coding decision in fact impacts

18% of the seats at Chicago’s selective high schools.

Table 1 shows that Tier 1 students unambiguously prefer the current mechanism; this

confirms that the current implementation particularly benefits low-tier students. The effect

is not uniform for all members of higher SES tiers. Nevertheless, it is consistent with our

simple example in terms of aggregate distribution:

• Of the 151 Tier 2 students who are affected, 108 prefer the current treatment and 43

prefer the counterfactual.

limits the length of students’ preference lists (to 6 < 9), creating incentives for students to “drop” popular
schools from their rankings if the length constraint binds. However, the length constraint binds for only about
50% of students (and binds less for high-scoring students). Moreover if, as evidence presented by Pathak
and Sönmez (2008) suggests, only high-SES students are able to strategize effectively, then our simulation
would likely underestimate the mechanism change’s impact on low-SES students.
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Current Mechanism Effect of Switching
(Open Slots First) (to fill Open Slots Last)

Tier 4 Tier 3 Tier 2 Tier 1 Tier 4 Tier 3 Tier 2 Tier 1
1 105 71 47 43 30 −18 −8 −4
2 95 114 70 60 0 24 −14 −10
3 87 78 86 73 −36 16 35 −15
4 106 93 80 68 −21 9 28 −16
5 210 100 78 78 20 −2 −9 −9
6 121 69 45 49 25 −15 −3 −7
7 655 412 291 272 29 37 −38 −28
8 90 47 36 36 3 7 −5 −5
9 92 129 90 94 −27 5 19 3

TOT 1561 1113 823 773 23 63 5 −91

Table 2: Effect of mechanism change on student body composition at each
of the nine selective high schools.

• Of the 158 Tier 3 students who are affected, 50 prefer the current treatment and 108

prefer the counterfactual.

• And of the 287 Tier 4 students who are affected, 62 prefer the current treatment and

225 prefer the counterfactual.

Table 2 and Figure 2 show how the composition of admitted classes varies between the current

and counterfactual mechanisms. We observe that Tier 1 students benefit from the current

implementation at the expense of students in all three higher tiers. Perhaps surprisingly,

most of the benefit appears to be at the expense of Tier 3 students.14

Finally, Table 3 compares the number of students receiving seats under the counterfac-

tual mechanism to the sizes of schools’ reserved seat blocks. We see that switching to the

counterfactual mechanism can in effect convert reserves into quotas: Consistent with the in-

tuition of our informal, one-school example, Tier 1 students receive no open seats under the

counterfactual mechanism at seven of the nine selective high schools. And again consistent

with our example, we see that in four of the nine schools, even Tier 2 students receive no

open seats under the counterfactual.

14One reason for this might be the availability of high quality outside options for some members of Tier 4.
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Figure 2: Effect of mechanism change on aggregate composition of selec-
tive high schools.

Counterfactual Mechanism
(Open Slots Last)

Tier 4 Tier 3 Tier 2 Tier 1 Reserve/Tier
1 135 53 39 39 39
2 95 138 56 50 50
3 51 94 121 58 48
4 85 102 108 52 52
5 230 98 69 69 69
6 146 54 42 42 42
7 684 449 253 244 244
8 93 54 31 31 31
9 65 134 109 97 60

Table 3: Seat allocations under the counterfactual mechanism, in compar-
ison to the 15% reserve.
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2.2 K–12 Admissions in Boston Public Schools

In the Boston school choice program, the priority of a student for a given school depends on

1. whether the student has a sibling at that school (sibling priority),

2. whether the student lives within the (objectively determined) walk-zone of that school

(walk-zone priority), and

3. a random lottery number used to break ties.

Students with walk-zone priority alone have higher claim for 50% of the seats at their neigh-

borhood schools, but have no priority advantage at other seats. This choice of priority

structure in Boston is not arbitrary—it represents a delicate balance between the interests

of the school choice and neighborhood assignment advocates.

As in the case of Chicago, Boston school choice priorities are not uniform across schools’

seats. And similarly to the Chicago mechanism, the BPS school choice algorithm treats

each school as two hypothetical schools (of half the true capacity), one with walk-zone

priority and one without. To convert student preferences over true schools into preferences

over hypothetical schools, BPS chooses the (unique) ranking consistent with the ranking of

the original schools such that seats with walk-zone priority are ranked above seats without

walk-zone priority. Because of this implementation decision, the BPS school choice program

in fact systematically favors proponents of school choice over proponents of neighborhood

assignment.15 This observation becomes more interesting in light of the recent January 17,

2012 statement by Boston Mayor Thomas M. Menino:

“I’m committing tonight that one year from now Boston will have adopted a

radically different student assignment plan, one that puts a priority on children

attending schools closer to their homes.”16

15The intuition for this fact is much the same as for the case of Chicago: Under the current system, walk-
zone students with lottery numbers high enough to acquire non-walk-zone seats are systematically awarded
walk-zone seats, effectively wasting their high priority draws.

16See transcript at http://articles.boston.com/2012-01-18/metro/30634585 1 boston-police-officers-city-
speech-unemployment-rate.
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The current BPS mechanism design appears to be in conflict with Menino’s statement. This

conflict can be corrected by reversing the order of the two blocks of seats, or by adopting a

more balanced implementation based on the model we develop in this paper.

2.3 Discussion

The current Chicago school choice mechanism’s treatment of low-SES students might well

be consistent with the policy objectives of CPS. However, the current BPS school choice

mechanism appears to be in conflict with Mayor Menino’s stated goal of increasing the

emphasis on neighborhood assignment. In any event, it is clear that ad hoc implementations

of deferred acceptance have introduced implicit biases in both the Chicago and Boston school

choice programs.

The general model we provide in the remainder of this paper encapsulates the Chicago

and Boston school choice settings, and provides machinery which can virtually eliminate the

biases we have illustrated.

3 Basic Model

The applications described in Section 2 motivate a richer school choice model than those

considered in the literature—one that accommodates slot-specific priorities at each school.

School choice, however, is not the only application of matching theory that would benefit

from such a generalization. Motivated by United State Army’s recently introduced branch-

for-service program, Sönmez and Switzer (forthcoming) and Sönmez (2011) have introduced

and analyzed the Army’s cadet-branch matching problem, under which cadets can increase

their priorities at the bottom 25% of slots of each Army branch, in exchange for “bidding”

three additional years of service commitment.

Like in Chicago’s and Boston’s school choice programs, cadet-branch matching relies

upon the possibility of priority variation across slots within branches. Unlike school choice,
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however, each cadet can match with branches under multiple contract terms. Thus, a fully

general model must build on the richer matching with contracts framework (Kelso and Craw-

ford (1982); Hatfield and Milgrom (2005)), in order to go beyond the basic structure of school

choice and cover the Army’s matching problem.

3.1 Agents, Branches, Contracts, and Slots

In a matching problem with slot-specific priorities, there is a set of agents I, a set

of branches B, and a (finite) set of contracts X.17 Each contract x ∈ X is between an

agent i(x) ∈ I and branch b(x) ∈ B.18 We extend the notations i(·) and b(·) to sets of

contracts by setting i(Y ) ≡ ∪y∈Y {i(y)} and b(Y ) ≡ ∪y∈Y {b(y)}. For Y ⊆ X, we denote

Yi ≡ {y ∈ Y : i(y) = i}; analogously, we denote Yb ≡ {y ∈ Y : b(y) = b}.

Each agent i ∈ I has a (linear) preference order P i (with weak order Ri) over contracts

in Xi = {x ∈ X : i(x) = i}. For ease of notation, we assume that each i also ranks a “null

contract” ∅i which represents remaining unmatched (and hence is always available), so that

we may assume that i ranks all the contracts in Xi.
19 We say that the contracts x ∈ Xi for

which ∅iP ix are unacceptable to i.

Each branch b ∈ B has a set Sb of slots; each slot can be assigned contracts in Xb ≡

{x ∈ X : b(x) = b}. Slots s ∈ Sb have (linear) priority orders Πs (with weak orders Γs) over

contracts in Xb. For convenience, we use the convention that Ys ≡ Yb for s ∈ Sb. As with

agents, we assume that each slot s ranks a “null contract” ∅s which represents remaining

unassigned.20 We set S ≡ ∪b∈BSb.

17Here, a branch could represent a branch of the military (as in cadet–branch matching), or a school (as
in the Chicago and Boston examples).

18A contract may have additional “terms” in addition to an agent and a branch. For concreteness, X may
be considered a subset of I ×B × T for some set T of potential contract terms.

19We use the convention that ∅iP ix if x ∈ X \Xi.
20As with agents, we use the convention that ∅sΠsx if x ∈ X \Xs .
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3.2 Choice and the Order of Precedence

We assume that for each b ∈ B, the slots in Sb are ordered according to a (linear) order of

precedence Bb. We denote Sb ≡ {s1
b , . . . , s

qb

b } with qb ≡ |Sb| and the understanding that

s`
b Bb s`+1

b unless otherwise noted. The interpretation of Bb, defined formally in the choice

function construction below, is that if sb Bb s′b then—whenever possible—branch b fills slot

sb before filling s′b.

To simplify our exposition and notation in the sequel, we treat linear orders over contracts

as interchangeable with orders over singleton contract sets.

For any agent i ∈ I and Y ⊆ X, we denote by maxP̄ iY the P̄ i-maximal element of Yi,

using the convention that maxP̄ iY = ∅i if ∅iP̄ iy for all y ∈ Yi. Similarly, we denote by

maxΠ̄sY the Π̄s-maximal element of Ys , using the convention that maxΠ̄sY = ∅s if ∅sΠ̄sy

for all y ∈ Ys .21

Agents have unit demand, that is, they choose at most one contract from a set of

contract offers. We assume also that agents always choose the maximal available contract,

so that the choice Ci(Y ) of an agent i ∈ I from contract set Y ⊆ X is defined by

Ci(Y ) ≡ maxP iY.

Meanwhile, branches b ∈ B may be assigned as many as qb contracts from an offer set

Y ⊆ X—one for each slot in Sb—but may hold no more than one contract with a given

agent. Slots at branch b are filled in the order of precedence Bb:

• First, slot s1
b is assigned the contract x1 which is Πs1

b -maximal among contracts in Y .

• Then, slot s2
b is assigned the contract x2 which is Πs2

b -maximal among contracts in the

set Y \ Yi(x1) of contracts in Y with agents other than i(x1).

• This process continues in sequence, with each slot s`
b being assigned the contract x`

21Here, we use the notations P̄ i and Π̄s because we will sometimes need to maximize over orders other
than P i and Πs .
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which is Πs`
b-maximal among contracts in the set Y \ Yi({x1,...,x`−1}).

Formally, the choice (set) Cb(Y ) of a branch b ∈ B from Y is defined by the following

algorithm:

1. Let H0
b ≡ ∅, and let V 1

b ≡ Y .

2. For each ` = 1, . . . , qb:

(a) Let x` ≡ max
Π

s`
b
V `

b be the Πs`
b-maximal contract in V `

b .

(b) Set H`
b = H`−1

b ∪ {x`} and set V `+1
b = V `

b \ Yi(x`).

3. Set Cb(Y ) = Hqb

b .

We say that a contract x ∈ Y is assigned to slot s`
b ∈ Sb in the computation of Cb(Y ) if

{x} = H`
b \H`−1

b in the running of the algorithm defining Cb(Y ).22

3.3 Stability

An outcome is a set of contracts Y ⊆ X. We follow the Gale and Shapley (1962) tradition

in focusing on match outcomes which are stable in the sense that

• neither agents nor branches wish to unilaterally walk away from their assignments, and

• agents and branches cannot benefit by recontracting outside of the match.

Formally, we say that an outcome Y is stable if it is

1. individually rational—Ci(Y ) = Yi for all i ∈ I and Cb(Y ) = Yb for all b ∈ B—and

2. unblocked—there does not exist a branch b ∈ B and blocking set Z 6= Cb(Y ) such

that Z = Cb(Y ∪ Z) and Zi = Ci(Y ∪ Z) for all i ∈ i(Z).

22If no contract x ∈ Y is assigned to slot s`
b ∈ Sb in the computation of Cb(Y ), then we say that s`

b is
assigned the null contract ∅s`

b
.
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3.4 Conditions on the Structure of Branch Choice

We now discuss the extent to which branch choice functions satisfy the conditions that have

been key to previous analyses of matching with contracts models. For the most part, our

observations are negative23; thus, they help contextualize our results and illustrate some of

the technical difficulties that arise in our general framework.

3.4.1 Substitutability Conditions

Definition. A choice function Cb is substitutable if for all z, z′ ∈ X and Y ⊆ X,

z /∈ Cb(Y ∪ {z}) =⇒ z /∈ Cb(Y ∪ {z, z′}).

Hatfield and Milgrom (2005) introduced this substitutability condition, which generalizes

the earlier gross substitutes condition of Kelso and Crawford (1982). Hatfield and Milgrom

(2005) also showed that substitutability is sufficient to guarantee the existence of stable

outcomes.24

Choice function substitutability is necessary (in the maximal domain sense) for the guar-

anteed existence of stable outcomes in a variety of settings, including many-to-many match-

ing with contracts (Hatfield and Kominers (2010)) and the Ostrovsky (2008) supply chain

matching framework (Hatfield and Kominers (2012)). However, substitutability is not nec-

essary for the guaranteed existence of stable outcomes in settings where agents have unit

demand (Hatfield and Kojima (2008, 2010)). Indeed, as Hatfield and Kojima (2010) showed,

the following condition weaker than substitutability suffices not only for the existence of

23As we show, branch choice functions in general fail both the (Hatfield and Milgrom (2005)) substitutabil-
ity and (Hatfield and Kojima (2010)) unilateral substitutability conditions, and need not satisfy the (Hatfield
and Milgrom (2005)) law aggregate demand.

24The analysis of Hatfield and Milgrom (2005) implicitly assumes irrelevance of rejected contracts,
the requirement that

z /∈ Cb(Y ∪ {z}) =⇒ Cb(Y ) = Cb(Y ∪ {z})

for all b ∈ B, Y ⊆ X, and z ∈ X \ Y (Aygün and Sönmez (2012b)). This condition is naturally satisfied in
most economic environments—including ours. (The fact that all branch choice functions in our setting satisfy
the irrelevance of rejected contracts condition is immediate from the algorithm defining branch choice—see
Lemma D.1 of the Appendix)
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stable outcomes, but also to guarantee that there is no conflict of interest among agents.25

Definition. A choice function Cb is unilaterally substitutable if

z /∈ Cb(Y ∪ {z}) =⇒ z /∈ Cb(Y ∪ {z, z′})

for all z, z′ ∈ X and Y ⊆ X for which i(z) /∈ i(Y ) (i.e. no contract in Y is associated to

agent i(z)).

Unilateral substitutability is a powerful condition; it has been applied in the study of

cadet–branch matching mechanisms (Sönmez and Switzer (forthcoming); Sönmez (2011)).

Although cadet–branch matching arises as a special case of our framework, the choice func-

tions Cb which arise in markets with slot-specific priorities are not unilaterally substitutable,

in general. Our next example illustrates this fact; this also shows (a fortiori) that the branch

choice functions in our framework may be non-substitutable.

Example 1. Let X = {i0, i1, j1}, with B = {b}, I = {i, j}, i(i0) = i = i(i1) and i(j1) = j.26

If b has two slots, s1
b Bb s2

b , with priorities given by

Πs1
b : i0 � ∅s1

b
,

Πs2
b : i1 � j1 � ∅s2

b
,

then Cb fails the unilateral substitutability condition: j1 /∈ Cb({i1, j1}), but j1 ∈ Cb({i0, i1, j1}).

Nevertheless, the choice functions Cb do behave substitutably whenever each agent offers

at most one contract to b.

25As in the work of Hatfield and Milgrom (2005), an irrelevance of rejected contracts condition (which is
naturally satisfied in our setting—see Footnote 24) is implicitly assumed throughout the work of Hatfield
and Kojima (2010) (Aygün and Sönmez (2012a)).

26Clearly (in order for b(·) to be well-defined), we must have b(i0) = b(i1) = b(j1) = b, as |B| = 1.
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Definition. A choice function Cb is weakly substitutable if

z /∈ Cb(Y ∪ {z}) =⇒ z /∈ Cb(Y ∪ {z, z′})

for any z, z′ ∈ Xb and Y ⊆ Xb such that

|Y ∪ {z, z′}| = |i(Y ∪ {z, z′})|. (1)

This weak substitutability condition, first introduced by Hatfield and Kojima (2008), is

in general necessary (in the maximal domain sense) for the guaranteed existence of stable

outcomes (Hatfield and Kojima (2008), Proposition 1).

Proposition 1. Every branch choice function Cb is weakly substitutable.

The choice functions Cb also satisfy the slightly stronger bilateral substitutability condi-

tion introduced by Hatfield and Kojima (2010).

Definition. A choice function Cb is bilaterally substitutable if

z /∈ Cb(Y ∪ {z}) =⇒ z /∈ Cb(Y ∪ {z, z′})

for all z, z′ ∈ X and Y ⊆ X with i(z), i(z′) /∈ i(Y ).

Proposition 2. Every choice function Cb is bilaterally substitutable.

In addition to illustrating some of the structure underlying the choice functions induced

by slot-specific priorities, Proposition 1 is also useful in our proofs. Meanwhile, Proposi-

tion 2 is not used directly in the sequel—as with Example 1, we present Proposition 2 only

to illustrate the relationship between our work and the conditions introduced in the prior

literature.27

27Combining Proposition 2 with Theorem 1 of Hatfield and Kojima (2010) can be used to prove the
existence of stable outcomes in our setting, although (as observed in Footnote 25) this logic implicitly
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3.4.2 The Law of Aggregate Demand

A number of structural results in two-sided matching theory rely on the following mono-

tonicity condition introduced by Hatfield and Milgrom (2005).28

Definition. A choice function Cb satisfies the Law of Aggregate Demand if

Y ′ ⊇ Y =⇒ |Cb(Y ′)| ≥ |Cb(Y )|.

Unfortunately, like the substitutability and unilateral substitutability conditions, the

branch choice functions in our framework may fail to satisfy the law of aggregate demand.

Example 2. Let X = {i0, i1, j0}, with B = {b}, I = {i, j}, i(i0) = i = i(i1) and i(j0) = j.29

If b has two slots, s1
b Bb s2

b , with priorities given by

Πs1
b : i0 � j0 � ∅s1

b
,

Πs2
b : i1 � ∅s2

b
,

then Cb does not satisfy the law aggregate demand:

|Cb({i1, j0})| = |{i1, j0}| = 2 > 1 = |{i0}| = |Cb({i0, i1, j0})|.

4 Basic Theory

We now develop our general theoretical results: In Section 4.1, we associate our original

market to a (one-to-one) matching market in which slots, rather than branches, compete for

requires an irrelevance of rejected contracts condition (Aygün and Sönmez (2012a)). However, as Hatfield
and Kojima (2010) pointed out, the bilateral substitutability condition is not sufficient for the other key
results necessary for matching market design, such as the existence of strategy-proof matching mechanisms.
To obtain these additional results in our framework, we draw upon structures present in our specific model
(see Section 4.1); these structures give rise to a self-contained existence proof, which does not make use of
the bilateral substitutability condition.

28Alkan (2002) and Alkan and Gale (2003) introduced a related cardinal monotonocity condition.
29Clearly (in order for b(·) to be well-defined), we must have b(i0) = b(i1) = b(j0) = b, as |B| = 1.
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contracts. Next, in Section 4.2, we introduce the cumulative offer process and use properties

of the agent–slot matching market to show that the cumulative offer process always identifies

a stable outcome. We then show moreover, in Section 4.3, that the cumulative offer process

selects the agent-optimal stable outcome if such an outcome exists. Finally, in Section 4.4,

we show that the mechanism which selects the cumulative offer process outcome is stable,

strategy-proof, and improvement-respecting.

4.1 Associated Agent–Slot Matching Market

To associate a (one-to-one) agent–slot matching market to our original market, we extend

the contract set X to the set X̃ defined by

X̃ ≡
{
〈x; s〉 : x ∈ X and s ∈ Sb(x)

}
.

Slot priorities Π̃s over contracts in X̃ exactly correspond to the priorities Πs over contracts

in X:

〈x; s〉 Π̃s 〈x′; s〉 ⇐⇒ xΠsx′;

∅sΠ̃s 〈x; s′〉 ⇐⇒ [∅sΠsx or s′ 6= s].

Meawhile, the preferences P̃ i of i ∈ I over contracts in X̃ respect the order P i, while using

orders of precedence to break ties among slots:

〈x; s〉 P̃ i 〈x′; s′〉 ⇐⇒ xP ix′ or [x = x′ and s Bb(x) s′];

∅iP̃ i 〈x; s〉 ⇐⇒ [∅iP ix or i(x) 6= i].
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These extended priorities Π̃s and preferences P̃ i induce choice functions over X̃:

C̃s(Ỹ ) ≡ maxΠ̃s Ỹ ;

C̃i(Ỹ ) ≡ maxP̃ iỸ .

To avoid terminology confusion, we call a set Ỹ ⊆ X̃ a slot-outcome. It is clear that

slot-outcomes Ỹ ⊆ X̃ correspond to outcomes Y ⊆ X according to the natural projection

$ : X̃ → X defined by

$(Ỹ ) ≡ {x : 〈x; s〉 ∈ Ỹ for some s ∈ Sb(x)}.

Our contract set restriction notation extends naturally to slot-outcomes Ỹ :

Ỹi = {〈y; s〉 ∈ Ỹ : i(y) = i}; Ỹs = {〈y; s′〉 ∈ Ỹ : s′ = s}.

Definition. A slot-outcome Ỹ ⊆ X̃ is slot-stable if it is

1. individually rational for agents and slots—C̃i(Ỹ ) = Ỹi for all i ∈ I and C̃s(Ỹ ) =

Ỹs for all s ∈ S—and

2. not blocked at any slot—there does not exist a slot-block 〈z; s〉 ∈ X̃ such that

〈z; s〉 = C̃ i(z)(Ỹ ∪ {〈z; s〉}) and 〈z; s〉 = C̃s(Ỹ ∪ {〈z; s〉}).

By construction, slot-stable outcomes project (under $) to stable outcomes.

Lemma 1. If Ỹ ⊆ X̃ is slot-stable, then $(Ỹ ) is stable.

Theorem 3 of Hatfield and Milgrom (2005) implies that one-to-one matching with con-

tracts markets have stable outcomes. Combining this observation with Lemma 1 shows that

the set of stable outcomes is always nonempty in our framework. In the next section, we

refine this observation by focusing on the stable outcome associated to the slot-outcome of

agent-optimal slot-stable mechanism for the agent–slot market.
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4.2 The Cumulative Offer Process

We now introduce the cumulative offer process for matching with contracts (see Hatfield

and Kojima (2010); Hatfield and Milgrom (2005); Kelso and Crawford (1982)), which gen-

eralizes the agent-proposing deferred acceptance algorithm of Gale and Shapley (1962). We

provide an intuitive description of this algorithm here; a more technical statement is given

in Appendix A.

Definition. In the cumulative offer process, agents propose contracts to branches in a

sequence of steps ` = 1, 2, . . .:

Step 1. Some agent i1 ∈ I proposes his most-preferred contract, x1 ∈ Xi1 . Branch

b(x1) holds x1 if x1 ∈ Cb(x1)({x1}), and rejects x1 otherwise. Set A2
b(x1) =

{x1}, and set A2
b′ = ∅ for each b′ 6= b(x1); these are the sets of contracts

available to branches at the beginning of Step 2.

Step 2. Some agent i2 ∈ I for whom no contract is currently held by any branch

proposes his most-preferred contract which has not yet been rejected, x2 ∈

Xi2 . Branch b(x2) holds the contracts in Cb(x2)(A2
b(x2) ∪ {x2}) and rejects

all other contracts in A2
b(x2) ∪ {x2}; branches b′ 6= b(x2) continue to hold all

contracts they held at the end of Step 1. Set A3
b(x2) = A2

b(x2) ∪{x2}, and set

A3
b′ = A2

b′ for each b′ 6= b(x2).

Step `. Some agent i` ∈ I for whom no contract is currently held by any branch

proposes his most-preferred contract which has not yet been rejected, x` ∈

Xi` . Branch b(x`) holds the contracts in Cb(x`)(A`
b(x`)
∪ {x`}) and rejects

all other contracts in A`
b(x`)
∪ {x`}; branches b′ 6= b(x`) continue to hold all

contracts they held at the end of Step `− 1. Set A`+1
b(x`)

= A`
b(x`)
∪ {x`}, and

set A`+1
b′ = A`

b′ for each b′ 6= b(x`).

If at any time no agent is able to propose a new contract—that is, if all agents for

whom no contracts are on hold have proposed all contracts they find acceptable—
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then the algorithm terminates. The outcome of the cumulative offer pro-

cess is the set of contracts held by branches at the end of the last step before

termination.

In the cumulative offer process, agents propose contracts sequentially. Branches accumu-

late offers, choosing at each step (according to Cb) a set of contracts to hold from the set of

all previous offers. The process terminates with no agents wish to propose contracts.

Note that we do not explicitly specify the order in which agents make proposals. This

is because in our setting, the cumulative offer process outcome is in fact independent of the

order of proposal.30 An analogous order-independence result is known for settings where

priorities induce unilaterally substitutable branch choice functions (Hatfield and Kojima

(2010)). However, as we illustrated in Example 1, slot-specific priorities may not induce uni-

laterally substitutable choice functions. Meanwhile, no order-independence result is known

for the general class of bilaterally substitutable choice functions.31

Our first main result shows that the cumulative offer process outcome has a natural

interpretation: it corresponds to the outcome of the agent-optimal slot-stable slot-outcome

in the agent–slot matching market.

Theorem 1. The slot-outcome of the agent-optimal slot-stable mechanism in the agent–slot

matching market corresponds (under projection $) to the outcome of the cumulative offer

process.

The proof of Theorem 1 proceeds in three steps. First, we show that the contracts “held”

by each slot improve (with respect to slot priority order) over the course of the cumulative

offer process.32 This observation implies that no contract held by a slot s ∈ S at some step

of the cumulative offer process has higher priority than the contract s holds at the end of

30We make this statement concrete in Theorem B.1 of Appendix B.
31Although Hatfield and Kojima (2010) state their cumulative offer process algorithm without attention

to the proposal order, they only prove that the choice of proposal order has no impact on outcomes in the
case of unilaterally substitutable preferences.

32Here, by the contract “held” by a slot s ∈ Sb in step `, we mean the contract assigned to s in the
computation of Cb(A`+1

b ).
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the process; it follows that the cumulative offer process outcome Y is the $-projection of

a slot-stable slot-outcome Ỹ . Then, we demonstrate that agents (weakly) prefer Ỹ to the

agent-optimal slot-stable slot outcome Z̃, which exists by Theorem 3 of Hatfield and Milgrom

(2005). This implies that Ỹ = Z̃, proving Theorem 1 as $(Ỹ ) = Y .

Theorem 1 implies that the cumulative offer process always terminates.33 Moreover, it

shows that the cumulative offer process outcome is stable and somewhat distinguished among

stable outcomes.

Theorem 2. The cumulative offer process produces an outcome which is stable. Moreover,

for any slot-stable Z̃ ⊆ X̃, each agent (weakly) prefers the outcome of the cumulative offer

process to $(Z̃) .

Note that Theorem 2 shows only that agents weakly prefer the cumulative offer process

outcome to any other stable outcome associated to a slot-stable slot-outcome. As not all sta-

ble outcomes are associated to slot-stable slot-outcomes, this need not imply that each agent

prefers the cumulative offer process outcome to all other stable outcomes; we demonstrate

this explicitly in the next section.

4.3 Agent-Optimal Stable Outcomes

We say that an outcome Y ⊆ X Pareto dominates Y ′ ⊆ X if YiR
iY ′i for all i ∈ I, and

YiP
iY ′i for at least one i ∈ I. A stable outcome Y ⊆ X which Pareto dominates all other

stable outcomes is called an agent-optimal stable outcome.34 For general slot-specific

priorities, agent-optimal stable outcomes need not exist, as the following example shows.

Example 3. Let X = {i0, i1, j0, j1, k0, k1}, with B = {b}, I = {i, j, k} and i(h0) = h = i(h1)

for each h ∈ I.35 We suppose that h0P
hh1P

h∅h for each h ∈ I, and that b has two slots,

33This fact can also be observed directly, as the set X is finite, and the full set of contracts available,
∪b∈BA`

b, grows monotonically in `.
34That is, an agent-optimal stable outcome is a stable outcome such that YiR

iY ′i for any agent i ∈ I and
stable outcome Y ′ ⊆ X.

35Clearly (in order for b(·) to be well-defined), we must have b(h0) = b = b(h1) for each h ∈ I, as |B| = 1.
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s1
b Bb s2

b , with slot priorities given by

Πs1
b : i1 � j1 � k1 � i0 � j0 � k0 � ∅s1

b
,

Πs2
b : i0 � i1 � j0 � j1 � k0 � k1 � ∅s2

b
.

In this setting, the outcomes Y ≡ {j1, i0} and Y ′ ≡ {i1, j0} are both stable. However, YiP
iY ′i

while Y ′jP
jYj, so there is no agent-optimal stable outcome.

Here, Y is associated to a slot-stable slot-outcome, but Y ′ is not. As we expect from

Theorem 2, the cumulative offer process produces the former of these two outcomes, Y .

Although matching markets with slot-specific priorities may not have agent-optimal sta-

ble outcomes, the cumulative offer process finds agent-optimal stable outcomes when they

exist.

Theorem 3. If an agent-optimal stable outcome exists, then it is the outcome of the cumu-

lative offer process.

In our proof of Theorem 3, we show that no stable outcome can Pareto dominate the

cumulative offer process outcome. That is: for any stable outcome Y which is not equal to

the outcome Z of the cumulative offer process, there is some agent i ∈ I such that ZiP
iYi.

This quickly implies Theorem 3, as agent-optimal stable outcomes Pareto dominate all other

stable outcomes.

4.4 The Cumulative Offer Mechanism

A mechanism consists of a strategy space S i for each agent i ∈ I, along with an outcome

function ϕΠ :
∏

i∈I S i → X that selects an outcome for each choice of agent strategies. We

confine our attention to direct mechanisms, i.e. mechanisms for which the strategy spaces

correspond to the preference domains: S i = P i, where P i denotes the set of all possible

preference relations for agent i ∈ I. Such mechanisms are entirely determined by their
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outcome functions, hence in the sequel we identify mechanisms with their outcome functions

and use the term “mechanism ϕΠ” to refer to the mechanism with outcome function ϕΠ and

S i = P i (for all i ∈ I). All mechanisms we discuss implicitly depend on the priority profile

under consideration; we often suppress the priority profile from the mechanism notation,

writing “ϕ” instead of “ϕΠ ,” if doing so will not introduce confusion.

In this section, we analyze the cumulative offer mechanism (associated to slot

priorities Π), which selects the outcome obtained by running the cumulative offer process

(with respect to priorities Π and submitted preferences). We denote this mechanism by

ΦΠ :
∏

i∈I P i → X.

4.4.1 Stability and Strategy-Proofness

A mechanism ϕ is stable if it always selects an outcome stable with respect to slot priorities

and input preferences. This condition dates back to Gale and Shapley (1962) and has been

the backbone of the matching market design literature. It captures the natural idea that

a mechanism produces an outcome consistent with the policy objectives reflected in the

priority structure.

We say that a mechanism ϕ is strategy-proof if truthful preference revelation is a dom-

inant strategy for agents i ∈ I, i.e. there is no agent i ∈ I, preference profile P I ∈
∏

j∈I Pj,

and P̄ i 6= P i such that ϕ
(
P̄ i′ , P−i′

)
P iϕ

(
P i′ , P−i′

)
. Similarly, we say that a mechanism ϕ is

group strategy-proof if there is no set of agents I ′ ⊂ I, preference profile P I ∈
∏

j∈I Pj,

and P̄ I′ 6= P I′ such that ϕ
(
P̄ I′ , P−I′

)
P iϕ

(
P I′ , P−I′

)
for all i ∈ I ′. Strategy-proofness condi-

tions have been central to the recent revolution in school choice market design because they

eliminate benefits of strategic sophistication and costly strategic behavior, and enable the

collection of true preference data (Abdulkadiroğlu et al. (2006); Pathak and Sönmez (2008)).

It follows immediately from Theorem 2 that the cumulative offer mechanism is stable.

Meanwhile, Theorem 1 of Hatfield and Kojima (2009) implies that the agent-optimal slot-

stable mechanism is (group) strategy-proof in the agent–slot matching market. Thus, we
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see that the cumulative offer mechanism is (group) strategy-proof, as any P̄ I′ 6= P I′ such

that ϕ
(
P̄ I′ , P−I′

)
P iϕ

(
P I′ , P−I′

)
for all i ∈ I ′ would give rise to a profitable manipulation

( ˜̄P I′ 6= P̃ I′) of the agent-optimal slot-stable mechanism. These observations are summarized

in the following theorem.

Theorem 4. The cumulative offer mechanism ΦΠ is

1. stable, and

2. (group) strategy-proof.

4.4.2 Respect for Unambiguous Improvements

We say that priority profile Π̄ is an unambiguous improvement over priority profile

Π for i ∈ I if

1. for all x ∈ Xi and y ∈ XI\{i}, if xΠsy, then xΠ̄sy; and

2. for all y, z ∈ XI\{i}, yΠsz if and only if yΠ̄sz.

That is, Π̄ is an unambiguous improvement over priority profile Π for i ∈ I if Π̄ is obtained

from Π by increasing the priorities of some of i’s contracts (at some slots) while leaving the

relative priority orders of other agents’ contracts unchanged.

We say that a mechanism ϕ respects unambiguous improvements for i if for any

preference profile P I ,

(ϕΠ̄(P I))iR
i(ϕΠ(P I))i

whenever Π̄ is an unambiguous improvement over Π for i. We say that ϕ respects unam-

biguous improvements if it respects unambiguous improvements for each agent i ∈ I.

While present in the matching literature since the work of Balinski and Sönmez (1999),

respect for unambiguous improvements has not been central to previous debates on real-

28



world market design.36 Nevertheless, respect for improvements is essential in settings like

cadet–branch matching, where agents can influence their priority rankings directly—and may

(in the absence of respect for improvements) take perverse steps to lower their priorities.37

Theorem 5. The cumulative offer mechanism ΦΠ respects unambiguous improvements.

Our proof of Theorem 5 makes use of the fact that the cumulative offer process outcome

is independent of the contract proposal order. In particular, we focus on a proposal order

in which i proposes contracts only when no other agent is able to propose. This choice

of proposal order guarantees that i is always the last agent to propose a contract in the

running of the cumulative offer process (for any priority profile). As Π̄ is an unambiguous

improvement over Π for i, we can show that the last contract i proposes in the cumulative

offer process with priority profile Π̄ must also be proposed in the cumulative offer process

with priority profile Π. This yields the desired result because it implies that i is at least as

well off under the outcome of cumulative offer process with priority profile Π̄ as under the

cumulative offer process with priority profile Π.

As an alternative to this approach to the proof of Theorem 5, we could instead show

that the agent-optimal slot-stable mechanism for the agent–slot matching market satisfies a

condition analogous to respecting unambiguous improvements. Theorem 5 would then follow

from Theorem 1.38

36Respect for improvements is, however, of importance in the growing normative literature on school
choice design. For example, Hatfield et al. (2012) have used this condition in analyzing how school choice
mechanism selection can impact schools’ incentives for self-improvement.

37As Sönmez (2011) has illustrated, the current ROTC cadet–branch matching mechanism does not respect
improvements—it rewards cadets who can lower their priorities to just below the 50-th percentile mark.
Evidence from Service Academy Forums (2012) suggests that cadets have figured this out, and may be
adjusting their training and academic performance accordingly:

“20% in the complete OML [order of merit list] might actually be 28% in the ‘Active Duty’
OML, so make sure you make this mental conversion to the complete OML during your first
three years. Or, just really screw up everything except for GPA, and get yourself into the
55% (from the top = 45%) where you get your choice of Branch... just kidding. But in all
seriousness, why create a system of merit evaluation that takes a top 40% OML cadet and
rewards him/her for purposely sabotaging things to go DOWN in the OML to below the 50%
AD OML line[. . . ]?”

38A natural strengthening of our notion of an unambiguous improvement for i ∈ I would include the
condition that i’s preferred contracts (weakly) increase in priority—formally, for all b ∈ B, s ∈ Sb, and
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5 Further Applications

In this section, we present applications of our theoretical results to the design of affirmative

action programs and cadet–branch matching mechanisms.

5.1 Design of Affirmative Action Mechanisms

We say that a matching problem has agent types if the contract set X is a subset of

I × B × T for some type set T, and for each i ∈ I, Xi = {i} × B × {t} for some t ∈ T,

so that each i is associated to exactly one type t.39 For such a problem, we identify agents

with their types, writing t(i) for the unique type t ∈ T such that Xi = {i} × B × {t}. For

consistency with the prior literature on school choice, we abuse notation slighly by writing i

to denote, for each branch b ∈ B, the unique contract (i, b, t(i)) ∈ (Xi ∩Xb).

Imposing this additional structure on our general model simplifies the form of slot-specific

priorities, rendering branches’ choice functions substitutable.

Proposition 3. In a matching problem with slot-specific priorities and agent types, the

branch choice functions Cb are substitutable and satisfy the law of aggregate demand.

In settings with agent types, substitutability coincides with weak substitutability—this

conclusion obtains whenever |Xi ∩ Xb| ≤ 1 for all i ∈ I and b ∈ B. Thus, Proposition 3

follows directly from Proposition 1.

Combining Proposition 3 with Theorems 15, 3, and 4 of Hatfield and Milgrom (2005)

shows that there exists an agent-optimal stable outcome in any matching problem with slot-

specific priorities and agent types. The following result then follows upon combining this

observation with our Theorems 3, 4, and 5.

x, x′ ∈ (Xi ∩Xb),
if xΠ̄sx′ and x′Πsx, then xP ix′. (2)

As Theorem 5 shows that ΦΠ respects unambiguous improvements, we see a fortiori that ΦΠ respects
unambiguous improvements that satisfy the additional condition (2).

39Note that we may assusme without loss of generality that Xi = {i} × B × {t}, as any case in which
Xi ( {i} ×B × {t} can then be captured by assuming some contracts x ∈ {i} ×B × {t} to be unacceptable
to slots at their associated branches b(x).
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Corollary 1. In a matching problem with slot-specific priorities and agent types, the cumu-

lative offer mechanism ΦΠ is an agent-optimal stable mechanism, which is (group) strategy-

proof and respects unambiguous improvements.

As our discussion in Section 2.1 suggests, decreases in the precedence of slots that rank

agents of type t highly can improve type-t agents’ cumulative offer outcomes. Unfortunately,

while we believe this comparative static should hold in reasonably-sized marketplaces, it may

fail in small markets.40

5.1.1 “Soft” Minority Quotas in School Choice

Many affirmative action programs impose quotas on majority agents. However, as Kojima

(2012) showed, quota policies can have perverse effects: some quota-based affirmative action

policies hurt all minority students under any stable matching mechanism. Despite these

discouraging observations, Hafalir et al. (forthcoming) recently introduced a novel approach

to affirmative action, affirmative action with minority reserves, which compares favorably to

the more standard majority-quota policies.

In the Hafalir et al. (forthcoming) approach, certain slots at each school are reserved

for minorities but convert into regular slots if not claimed by minority students. Formally,

the model of Hafalir et al. (forthcoming) embeds into the framework of matching with slot-

specific priorities as follows: The agents i ∈ I are students and the branches b ∈ B are

schools. Each student i ∈ I as a strict linear preference order P i over schools, and is of

either minority (m) or majority (M) type (i.e. t(i) ∈ {m,M} = T). Each school b ∈ B has

a strict linear “tiebreaker” order πb over students and a number of slots qb corresponding to

its “capacity.”

Under affirmative action with minority reserves, each school b ∈ B has an asso-

ciated minority reserve rm
b ≤ qb such that b prefers any minority applicant to any majority

applicant if the number of minority students admitted is below rm
b (Hafalir et al. (forthcom-

40Example C.1 of Appendix C illustrates this fact.
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ing)). This policy can be implemented by choosing slot-specific priorities Π̄ such that

1. for all ` ≤ rm
b , iΠ̄s`

bi′Π̄s`
b∅s`

b
⇐⇒

(a) t(i) = m and t(i′) = M, or

(b) t(i) = t(i′) and iπbi′;

2. for all ` > rm
b , iΠ̄s`

bi′Π̄s`
b∅s`

b
⇐⇒ iπbi′.

Under affirmative action with majority quotas, meanwhile, each school b ∈ B has

an associated majority quota qM
b ≤ qb such that b cannot admit more than qM

b majority

applicants. This policy can be implemented by choosing slot-specific priorities Π such that

1. for all ` < qb − qM
b ,

(a) iΠs`
bi′Πs`

b∅s`
b
⇐⇒ t(i) = t(i′) = m and iπbi′, and

(b) ∅s`
b
Πs`

bi ⇐⇒ t(i) = M;

2. for all ` ≥ qb − qM
b , iΠs`

bi′Πs`
b∅s`

b
⇐⇒ iπbi′.

With these observations, we may derive two of the main results of Hafalir et al. (forth-

coming) as consequences of our general results for slot-specific priority structures.

Proposition 4 (Hafalir et al. (forthcoming)). 1. In the presence of affirmative action with

minority reserves, the cumulative offer mechanism produces the student-optimal stable

outcome and is (group) strategy-proof.

2. Given a vector qM of majority quotas, set rm
b = qb− qM

b for each b ∈ B, and let Y be an

outcome which is stable under the priorities Π induced by the quotas qM and tiebreaker

order profile π. Either:

(a) Y is stable under the priorities Π̄ induced by reserves rm and tiebreakers π, or

(b) there exists an outcome Z which is stable under priorities Π̄ and Pareto domi-

nates Y .
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Proof. Part 1 follows directly from Proposition 3. Part 2 also follows quickly: By Corollary 1,

we know that (ΦΠ(P I))iR
iYi for each i ∈ I. Meanwhile, Π̄ is an unambiguous (weak)

improvement for each i ∈ I, hence (Φ
Π̄

(P I))iR
i(ΦΠ(P I))i for each i ∈ I, by Theorem 5.

Thus, taking Z ≡ Φ
Π̄

(P I) gives

Zi = (ΦΠ̄(P I))iR
i(ΦΠ(P I))iR

iYi, (3)

for each i ∈ I. Now, if we have Y = ΦΠ(P I) = Φ
Π̄

(P I) = Z, then Y is stable under the

priorities Π̄. Otherwise, there is at least one i ∈ I for whom the identity (3) is strict. In

that case, Z is stable under priorities Π̄ and Pareto dominates Y .

5.1.2 Socioeconomic Affirmative Action in Chicago School Choice

We now demonstrate that our framework embeds the real-world structure of the Chicago

selective high school affirmative action program discussed in Section 2.1. Here, the agents

i ∈ I and branches b ∈ B again correspond to students and schools. Each student i ∈ I has

a strict linear preference order P i over schools, and there are four agent types representing

the different SES tiers: T = {4, 3, 2, 1}.

The top 40% of the qb slots at shool b ∈ B are open slots, assigned based on a strict

linear merit order π∗ over students, which is determined by composite test scores—and

thus uniform across schools. The remaining 60% of the slots at each school b ∈ B feature

socioeconomic reserves: the first 15% of these slots are reserved for students i ∈ I of type

t(i) = 4; the next 15% are reserved for students i ∈ I of type t(i) = 3; and so forth. These

priority structures are illustrated in Figure 3.41

Formally, the set Sb of slots at school b is partitioned into subsets

Sb = So
b ∪ S4

b ∪ S3
b ∪ S2

b ∪ S1
b ,

41Because all the slots in Chicago’s selective high schools are overdemanded, all seats reserved for students
of type t are claimed by students in type t, hence we may assume for expositional simplicity that slots s ∈ St

b

find students of types t′ 6= t unacceptable.
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

4 ∼ 3 ∼ 2 ∼ 1 � ∅ 0 < ` ≤ 40
100
qb

4 � ∅ 40
100
qb < ` ≤ 55

100
qb

3 � ∅ 55
100
qb < ` ≤ 70

100
qb

2 � ∅ 70
100
qb < ` ≤ 85

100
qb

1 � ∅ 85
100
qb < ` ≤ 100

100
qb.

Figure 3: Structure of slot priorities in the Chicago selective high school
match. The top 40% of slots are open slots; the bottom 60% feature
socioeconomic reserves for each of the four student types ({4, 3, 2, 1}).

with So
b consisting of 40

100
qb slots, and each set St

b consisting of 15
100
qb slots.42 The priorities of

slots s ∈ So
b are such that

iΠsi′Πs∅s ⇐⇒ iπ∗i′.

Meanwhile, the priorities of slots s ∈ St
b are such that

iΠsi′Πs∅s ⇐⇒ iπ∗i′

whenever t(i) = t(i′) = t, and ∅sΠsi whenever t(i) 6= t. The order of precedence Bb is such

that

so Bb s4 Bb s3 Bb s2 Bb s1 (4)

for all so ∈ So
b , s4 ∈ S4

b , s3 ∈ S3
b , s2 ∈ S2

b , and s1 ∈ S1
b .43

Tables 1–3 show the effect of switching from the current precedence orders Bb to the

alternate orders, illustrated in Figure 4, in which open slots are filled after reserve slots.

Formally, these counterfactual precedence orders Ib are such that

s4 Ib s3 Ib s2 Ib s1 Ib so

for all so ∈ So
b , s4 ∈ S4

b , s3 ∈ S3
b , s2 ∈ S2

b , and s1 ∈ S1
b .

Our model suggests a natural precedence order which gives rise to priorities in between

42We assume for simplicity that qb is a multiple of 20, so that 15
100qb,

40
100qb ∈ Z.

43Since all slots seSe
b have idential priorities, (4) suffices to specify the precedence order up to equivalence.
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

4 ∼ ∅ 0 < ` ≤ 15
100
qb

3 � ∅ 15
100
qb < ` ≤ 30

100
qb

2 � ∅ 30
100
qb < ` ≤ 45

100
qb

1 � ∅ 45
100
qb < ` ≤ 60

100
qb

4 � 3 ∼ 2 ∼ 1 � ∅ 60
100
qb < ` ≤ 100

100
qb.

Figure 4: Counterfactual slot priority structure for the Chicago selective
high school match. Here, the top 60% of slots feature socioeconomic re-
serves, while the bottom 40% are open.

the current CPS priority structure—under which all open slots are filled first—and the

counterfactual structure discussed in Section 2.1—under which all open slots are filled last.

Instead of filling all the open slots at once, CPS could alternate between filling open slots

and filling reserve slots, in proportion to the total numbers of each slot type available. For

example, intermediate priorities could be designed so as to fill three open slots at each

school, then one of each type of reserved slot at each school, then three more open slots,

then four more reserved slots, and so forth.44 This approach spreads the access to open slots

evenly throughout the priority structure, virtually eliminating the biases of the current CPS

system.45

Simulation results presented in Table 4 show that student outcomes under the intermedi-

ate priorities are almost identical to those arising when all reserved slots are filled before the

open slots (the counterfactual discussed in Section 2.1). While this might at first seem sur-

prising, it is in fact quite natural, given the distribution of CPS students’ test scores. As we

pointed out in Section 2.1, high-SES students’ composite scores dominate low-SES students’

scores throughout the relevant part of the score distribution. As a result, high-SES students

fill the first available open slots, then the highest-scoring low-SES students receive the first

reserved slots. Then, once again, the top of the truncated scoring distribution consists of

high-SES students; these students take the next open slots. The highest-scoring low-SES

44When using this approach, every third block of slots should have only two open slots, so as to maintain
the overall 40%-15%-15%-15%-15% proportions in every block of 20 slots.

45As the number of slots at each school is finite, completely eliminating the bias would require randomizing
the precedence relation to some extent.
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Counterfactual Mechanism Effect of Switching
(Open Slots Last) (to Intermediate Mechanism)

Tier 4 Tier 3 Tier 2 Tier 1 Tier 4 Tier 3 Tier 2 Tier 1
1 135 53 39 39 4 −2 −1 −1
2 95 138 56 50 2 −2 0 0
3 51 94 121 58 −5 4 3 −2
4 85 102 108 52 −2 1 1 0
5 230 98 69 69 −1 2 −1 0
6 146 54 42 42 1 −1 0 0
7 684 449 253 244 −4 3 1 0
8 93 54 31 31 0 0 0 0
9 65 134 109 97 −3 0 0 3

TOT 1584 1176 828 682 −8 5 3 0

Table 4: Comparison between the intermediate mechanism for CPS selec-
tive high school enrollment and the counterfactual discussed in Section 2.1,
in which open slots are filled last.

students who remain unassigned then receive reserved slots, leaving even fewer low-SES stu-

dents with high scores in the pool. This process produces an outcome very similar to that

found when all reserved slots are filled before the open slots.

5.2 Precedence Order Changes in Cadet–Branch Matching

The cadet–branch matching problem studied by Sönmez and Switzer (forthcoming) and

Sönmez (2011) is a slot-specific priority matching problem with contract set X = I × B ×

{t0, t+}. Here, the agents i ∈ I correspond to cadets, who must be assigned to branches of

service b ∈ B. Contracts with term t0 represent standard service contracts; contracts with

term t+ represent the standard contract supplemented with a three-year service extension.

Cadets are ranked according to a strict linear order of merit ranking π∗. The slots of

each branch b ∈ B are partitioned into two sets, S0
b ⊂ Sb and S+

b ⊂ Sb, of sizes (1−λ)qb and

λqb, respectively. Slots s ∈ S0
b are regular slots, whose priority rankings follow the order

of merit list exactly: for any b ∈ B, s ∈ S0
b , i 6= i′ ∈ I, and t, t′ ∈ {t0, t+},

(i, b, t)Πs(i′, b, t′) ⇐⇒ iπ∗i′.

Our results are independent of how regular slots’ relative priorities of contracts (i, b, t) and
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(i, b, t′) are chosen; for concreteness, we follow the military’s convention of assuming that

(i, b, t0)Πs(i, b, t+)

for all slots s ∈ S0
b . Slots s ∈ S+

b are branch-of-choice slots, which give priority to t+

contracts: for any b ∈ B, s ∈ S+
b , and i 6= i′ ∈ I,

(i, b, t+)Πs(i′, b, t0), and

(i, b, t)Πs(i′, b, t) ⇐⇒ iπ∗i′

for any t ∈ {t0, t+}.

In the settings of Sönmez and Switzer (forthcoming) and Sönmez (2011), the branch-of-

choice slots have lowest precedence at each branch. That is, the slots s, s′ ∈ Sb at branch

b ∈ B follow a precedence order Ib such that

s ∈ S0
b and s′ ∈ S+

b =⇒ s Ib s′. (5)

In our model, all precedence orders satisfying condition (5) are equivalent; hence, we identify

the full class of such orders with a “single” precedence order Ib.

Sönmez and Switzer (forthcoming) demonstrated that the branch choice functions in-

duced by precedence order Ib are unilaterally substitutable. This implies the existence of

a cadet-optimal stable outcome, and allowed Sönmez and Switzer (forthcoming) to propose

the use of a cadet-optimal stable mechanism for cadet–branch matching.46

Our next result shows that the structure found by Sönmez and Switzer (forthcoming) is

unique to the specific precedence order the United States military selected: up to equiva-

lence, Ib is the only precedence order which guarantees the existence of cadet-optimal stable

outcomes in general.

46In his discussion of market design for the ROTC cadet–branch match, Sönmez (2011) extended these
results to the case in which more than two distinct contract terms are available.
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Proposition 5. For any cadet–branch matching problem precedence order B 6=I for which

there exists b ∈ B, s ∈ S0
b , and s′ ∈ S+

b such that s′ Bb s, there exists a profile of cadet

preferences under which no outcome stable with respect to the branch choice functions Cb

induced by the slot priorities Πs (s ∈ Sb) and precedence order Bb is cadet-optimal.

6 Conclusion

In this paper, we have studied slot-precedence, a feature of priority structure that is present

in many real-world applications of matching theory but has not been treated formally in the

prior literature. As we have shown, the choice of precedence order has important distribu-

tional implications, but does not affect agents’ strategic incentives. Thus, attention to the

precedence order provides policymakers and market designers an additional degree of free-

dom in the design of priority matching mechanisms. This additional flexibility is particularly

useful for diversity-motivated designs, like affirmative action systems.

Our work also has theoretical implications: We have shown that the existence of agent-

optimal stable outcomes is not necessary for strategy-proof stable matching, and have re-

inforced and expanded the matching with contracts framework. Additionally, our general

model clarifies the relationship between existing models of affirmative action (Kojima (2012);

Hafalir et al. (forthcoming)) and illustrates special structure present in the Army’s specific

choice of priority structure for cadet–branch matching (Sönmez and Switzer (forthcoming);

Sönmez (2011)).

Our model is not the most comprehensive priority matching framework possible, and some

of our substantive results may extend to more general settings. Nevertheless, our slot-specific

priorities framework naturally embeds all of the priority structures currently in application,

at least as far as we are aware. Our focus on slot precedence allows us to conduct comparative

static exercises which uncover hidden biases in priority structure which—whether intentional

or unintentional—affect welfare in real-world school choice programs. Precedence orders also
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induce attractive theoretical structure, which allows us to link our model to the simpler

problem of one-to-one agent–slot matching.
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A Formal Description of the Cumulative Offer Process

The cumulative offer process associated to proposal order A is the following algo-

rithm:

1. Let ` = 0. For each b ∈ B, let D0
b ≡ ∅, and let A1

b ≡ ∅.

2. For each ` = 1, 2, . . .:

(a) Let i be the A`-maximal agent i ∈ I such that i /∈ i(∪b∈BD
`−1
b ) and maxP i(X \

(∪b∈BA
`
b))i 6= ∅i—that is, the agent highest in the proposal order who wants to

propose a new contract—if such an agent exists. (If no such agent exists, then

proceed to Step 3, below.)

i. Let x ≡ maxP i(X \ (∪b∈BA
`
b))i be i’s most preferred contract that has not yet

been proposed.

ii. Let b ≡ b(x). Set D`
b = Cb(A`

b ∪ {x}) and set A`+1
b = A`

b ∪ {x}. For each

b′ 6= b, set D`
b′ = D`−1

b′ and set A`+1
b′ = A`

b′ .

3. Return the outcome

Y ≡

(⋃
b∈B

D`−1
b

)
=

(⋃
b∈B

Cb(A`
b)

)

consisting of contracts held by branches at the point when no agent wants to propose

additional contracts.
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Here, the sets D`−1
b and A`

b denote the sets of contracts held by and available to

branch b at the beginning of cumulative offer process step `. We say that a contract z is

rejected during the cumulative offer process if z ∈ A`
b(z) but z /∈ D`−1

b(z) for some `.

B Proofs Omitted from the Main Text

Proof of Proposition 1

We prove the following auxilarly lemma which directly implies Proposition 1.

Lemma B.1. Suppose that Y ⊆ Y ′ ⊆ Xb, |Y | = |i(Y )|, and |Y ′| = |i(Y ′)|. Then, if y ∈ Y

and y′ ∈ Y are the contracts assigned to s ∈ Sb in the computations of Cb(Y ) and Cb(Y ′),

respectively, we have y′Γsy.

Proof. The hypotheses on Y and Y ′ imply that Yi(x) = {x} for each x ∈ Y and that Y ′i(x′) =

{x′} for each x′ ∈ Y ′. With this observation, the following claim follows quickly.

Claim. Let V `
b (Z) denote the set V `

b defined in step `−1 of the computation of Cb(Z). Then,

V `
b (Y ) ⊆ V `

b (Y ′).

Proof. We proceed by induction. We have V 1
b (Y ) = V 1

b (Y ′) a priori, so we assume that

V `′

b (Y ) ⊆ V `′

b (Y ′) for all `′ < ` + 1 for some ` > 0. We now show that this hypothesis

implies that V `+1
b (Y ) ⊆ V `+1

b (Y ′): Let x′ ≡ max
Π

s`
b

(
V `

b (Y ′)
)
. If x′ ∈ V `

b (Y ), then clearly

x′ = max
Π

s`
b

(
V `

b (Y )
)
; hence,

V `+1
b (Y ) = (V `

b (Y )) \ Yi(x′) = (V `
b (Y )) \ {x′} ⊆ (V `

b (Y ′)) \ {x′} = (V `
b (Y ′)) \ Y ′i(x′) = V `+1

b (Y ′)

as desired. Otherwise, we have x′ /∈ V `
b (Y ), so that

(
max

Π
s`
b

(
V `

b (Y )
))
≡ x 6= x′. As

x ∈ V `
b (Y ) ⊆ V `

b (Y ′) \ {x′}, we have

V `+1
b (Y ) = (V `

b (Y )) \ Yi(x) = (V `
b (Y )) \ {x} ⊆ (V `

b (Y ′)) \ {x′} = (V `
b (Y ′)) \ Y ′i(x′) = V `+1

b (Y ′).
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The claim implies that

(
max

Π
s`
b
V `

b (Y ′)
)

Γs`
b

(
max

Π
s`
b
V `

b (Y )
)

(6)

for all `; this shows the result.

To see that Proposition 1 follows from Lemma B.1, we suppose that (1) holds for some

z, z′ ∈ X and Y ⊆ X, and note that (1) also implies that

|Y ∪ {z}| = |i(Y ∪ {z})|. (7)

Now, given (7), we know that if z /∈ Cb(Y ∪ {z}), then for each s ∈ Sb, the contract

y assigned to s in the computation of Cb(Y ∪ {z}) must be higher-priority than z under

Πs , that is, yΠsz. But then, it follows from (7) and Lemma B.1 that each such s must be

assigned a contract y′ for which

y′ΓsyΠsz

in the computation of Cb(Y ∪ {z, z′}). Thus, we must have z /∈ Cb(Y ∪ {z, z′}). Hence, we

see that each Cb is weakly substitutable.

Proof of Proposition 2

See Appendix D.

Proof of Lemma 1

It is immediate that if $(Ỹ ) is not individually rational, then Ỹ is not individually rational

for agents and slots. Thus, we need only consider the blocking conditions.

For Ỹ ⊆ X̃, suppose that Z ⊆ X is a set of contracts that blocks $(Ỹ ). We fix some

b ∈ b(Z), and observe that there must be a contract z ∈ Zb \$(Ỹ ) for which there is some

step ` of the computation of Cb($(Ỹ ) ∪ Z) such that D`
b \ D`−1

b = {z}. (That is, there
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must exist a contract z ∈ Zb \ $(Ỹ ) which is assigned to the highest-precedence slot, s`
b,

among those slots which are assigned contracts in Zb \ $(Ỹ ) during the computation of

Cb($(Ỹ ) ∪ Z).) We let x ∈ $(Ỹ ) be the (possibly null) contract which is assigned to slot

s`
b in the computation of Cb($(Ỹ )).

It is clear that zΠs`
bx, by construction. Thus, we have

〈
z; s`

b

〉
Π̃s`

b

〈
x; s`

b

〉
. Meanwhile, we

know that zP i(z)($(Ỹ ))i(z) because Z blocks $(Ỹ ). It follows that
〈
z; s`

b

〉
is a slot-block

for Ỹ . Thus, if Ỹ is not blocked at any slot, then $(Ỹ ) is unblocked; the result follows.

Proof of Theorem 1

We prove the following result, which is slightly more general than Theorem 1.

Theorem B.1. For any proposal order A, the slot-outcome of the agent-optimal slot-stable

mehanism in the agent–slot matching market corresponds (under projection $) to the out-

come of the cumulative offer process associated to proposal order A.

Proof. We suppress the dependence on A, as doing so will not introduce confusion.

We begin with a simple lemma which shows that slots’ assigned contracts improve (with

respect to slot priorities) over the course of the cumulative offer process.

Lemma B.2. Fix ` and `′ with ` < `′, and let x` and x`′, with b(x`) = b = b(x`′), be the

contracts assigned to s ∈ Sb in the computations of Cb(A`+1
b ) = D`

b and Cb(A`′+1
b ) = D`′

b ,

respectively. Then, x`′Γsx`.

Proof. The result follows immediately from Lemma B.1, as A`+1
b ⊆ A`′+1

b ⊆ Xb by construc-

tion.

We denote the outcome of the cumulative offer process by Y , and let

Ỹ ≡ {〈y; s〉 : y ∈ Y and s is assigned z in the computation of Cb(z)(Y )}.

By construction, we have $(Ỹ ) = Y .
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Lemma B.3. The slot-outcome Ỹ is slot-stable.

Proof. We suppose that 〈z; s〉 slot-blocks Ỹ , so that

zP i(z)($(Ỹ ))i(z) = Yi(z), (8)

zΠs($(Ỹ ))s = Ys . (9)

Now, by (8) and the fact that Y is the cumulative offer process outcome, we know that z

must be proposed in some step ` of the cumulative offer process. We let ` ≥ ` be the first

step of the cumulative offer process for which no slot s′ ∈ Sb(z) with s′ Bb(z) s is assigned z

in the computation of Cb(z)(A`+1
b(z)) = D`

b(z). (Such a step ` must exist since z /∈ Y .) We let x`

be the contract assigned to s in the computation of Cb(z)(A`+1
b(z)). Since x` 6= z, we know that

x`Πsz. But then, we know by Lemma B.2 that for each `′ ≥ `, the contract x`′ assigned to

s in the computation of Cb(z)(A`′+1
b(z) ) has (weakly) higher Πs-priority than x`, and hence has

(strictly) higher Πs-priority than z: x`′Γsx`Πsz. In particular, then, we must have YsΠsz,

contradicting (9). Thus, there cannot be a slot-contract 〈z; s〉 which slot-blocks Ỹ .

Now, we let Z̃ be the agent-optimal slot-stable slot-outcome. (Such an outcome exists

by Theorem 3 of Hatfield and Milgrom (2005).)

Lemma B.4. For each agent i ∈ I, ỸiR̃
iZ̃i.

Proof. It suffices to show that no contract z ∈ $(Z̃) is ever rejected during the cumulative

offer process. To see this, we suppose the contrary, and consider the first step ` at which

some contract z ∈ $(Z̃) is rejected. We let s ∈ Sb(z) be the slot such that 〈z; s〉 ∈ Z̃, and

let x 6= z be the contract assigned to s in the computation of Cb(z)(A`+1
b(z)).

Now, as z is the first contract in $(Z̃) to be rejected, we know that xP i(x)($(Z̃))i(x).

Moreover, as z /∈ Cb(z)(A`+1
b(z)) and x is assigned to s in the computation of Cb(z)(A`+1

b(z)), we

know that xΠsz. But then, it follows that 〈x; s〉 slot-blocks Z̃, contradicting the fact that

Z̃ is slot-stable.
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Now, by Lemma B.3, we know that Ỹ is slot-stable; it then follows from Lemma B.4

that Ỹ must be the agent-optimal slot-stable slot-outcome. The theorem then follows di-

rectly, as $(Ỹ ) = Y .

Proof of Theorem 2

The result follows immediately from Lemma 1 and Theorem 1, as the agent-proposing de-

ferred acceptance algorithm in the agent–slot matching market yields the agent-optimal

slot-stable slot-outcome, by Theorem 3 of Hatfield and Milgrom (2005).

Proof of Theorem 3

We show Theorem 3 by way of the following more general result.

Theorem B.2. For any stable outcome Y which is not equal to the outcome Z of the cu-

mulative offer process, there is some agent i ∈ I such that ZiP
iYi.

Proof. We suppose to the contrary that there is some stable outcome Y 6= Z such that

YiR
iZi for all i ∈ I. We prove the theorem by considering an alternative proposal order A′

for the cumulative offer process, and showing that the outcome Z ′ of the cumulative offer

process associated to A′ must be (weakly) preferred to Y by all agents.

We now describe the alternative proposal order:47 Let A′ be any order such that at each

step of the cumulative offer process associated to A′,

1. all agents in i(Y ) who wish to propose contracts weakly preferred to those in Y have

the opportunity to propose contracts before any agents in I \ i(Y ) do, and

2. all agents in i(Y ) who wish to propose contracts not weakly preferred to those in Y

are not allowed to propose unless no agents in I \ i(Y ) wish to propose contracts.

Claim. We have Z ′iR
iYi for all i ∈ I.

47For ease of exposition, we do not provide a fully formal specification of A′; nonetheless, our description
directly yields an algorithm to compute such a specification.
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Proof. We observe that if there is some step of the cumulative offer process associated to

A′ at which all contracts in Y are held, then all future proposals will be rejected, and so

the process produces the outcome Z ′ = Y .48 To see this, we observe that no agent in i(Y )

will propose while Y is held. Meanwhile, if at that time some agent i ∈ I \ i(Y ) proposes

a contract x which is held following its proposal, then {x} blocks Y , contradicting the fact

that Y is stable.

Now, we note that by our choice of A′, at any step in the cumulative offer process

associated to A′ when there exists at least one agent i ∈ i(Y ) who wishes to propose a

contract weakly preferred to Yi, some such agent is given the opportunity to propose. It

follows that, if there is no step of the cumulative offer process associated to A′ at which all

contracts in Y are held, then the process must terminate before all contracts in Y have been

proposed. In this case, the process outcome Z ′ must be weakly-preferred to Y by all agents;

combining this fact with our previous observations shows the claim.

Now, by Theorem B.1, Z ′ must be the outcome of the cumulative offer process associated

to the original proposal order—that is, Z ′ = Z. But by the above claim, we then have

Zi = Z ′iR
iYiR

iZi

for all i ∈ I, contradicting the assumption that Z 6= Y .

Theorem 2 shows that the outcome Z of the cumulative offer process is stable. But then,

if there were an agent-optimal stable outcome Y 6= Z, we would have a stable outcome Y

for which YiR
iZi for all i ∈ I, contradicting Theorem B.2.

48Formally, our argument shows that an analogous statement is true under any proposal order; we state
the claim for proposal order A′ because that statement is important in the sequel.
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Proof of Theorem 4

Part 1 is immediate from Theorem 2. Meanwhile, for Part 2, we suppose that there is some

set of agents I ′ ⊂ I and P̄ I′ 6= P I′ such that

ΦΠ

(
P̄ I′ , P−I′

)
P iΦΠ

(
P I′ , P−I′

)
(10)

for all i ∈ I ′. Now, if Z̃ is the outcome of the agent-optimal slot-stable mechanism run on

preferences
( ˜̄P I′ , P̃−I′

)
and Ỹ is the outcome of the agent-optimal slot-stable mechanism run

on preferences
(
P̃ I′ , P̃−I′

)
, then we have Z̃P̃ iỸ for all i ∈ I ′, as we have

$(Z̃) = ΦΠ

(
P̄ I′ , P−I′

)
P iΦΠ

(
P I′ , P−I′

)
= $(Ỹ )

by (10) and Theorem B.1. But this implies that the agent-optimal slot-stable mechanism

is not group strategy-proof (in the agent–slot market), contradicting Theorem 1 of Hatfield

and Kojima (2009).49

Proof of Theorem 5

To see this, we fix an agent i and let Π̄ be an unambiguous improvement over Π for i. We

let A be the proposal order used in computing Φ, and let A′ be the alternative (uniquely

defined) proposal order such that for all `,

j A′` k ⇐⇒ j A` k (for all j, k 6= i)

j A′` i (for all j 6= i),

that is, the order obtained from A by moving i to the bottom of each linear order A`.

49Theorem 1 of Hatfield and Kojima (2009) implies that the agent–slot matching mechanism which selects
the slot-outcome of the agent-optimal slot-stable mechanism is group strategy-proof for agents. To see this,
it suffices to note that both the substitutes condition and the law of aggregate demand hold automatically
(for all preferences) in one-to-one matching markets such as the agent–slot matching market.
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By Theorem B.1, the outcome Φ
Π̄

(P I) is equal to that of the cumulative offer process

associated to A′ under priorities Π̄. Likewise, the outcome ΦΠ(P I) is equal to that of the

cumulative offer process associated to A′ under priorities Π. These observations essentially

prove the result: In any cumulative offer process associated to A′, agent i always proposes

after all other agents’ are unwilling to propose new contracts. Hence, under priority structure

Π̄, there is some contract x which i proposes in the last step before the cumulative offer

process associated to A′ terminates. As Π̄ is an unambiguous improvement over Π for i, we

see that i proposes x in the cumulative offer process associated to A′, under priorities Π.50

It follows that

(ΦΠ̄(P I))i = xRi(ΦΠ(P I))i,

as desired.

Proof of Proposition 3

In any problem with agent types, |Xi∩Xb| = 1 for all i ∈ I and b ∈ B. It follows immediately

that in such a problem,

|Y | = |i(Y )| for all b ∈ B and Y ⊆ Xb. (11)

The substitutability of each branch choice function Cb in the presence of agent types then

follows from Proposition 1, as weak substitutability is equivalent to substitutability under

condition (11). Additionally, we see that in the presence of agent types, each choice function

Cb satisfies the law of aggregate demand, as condition (11) and Lemma B.1 together show

50In the cumulative offer process associated to A′, any contract x′ with i(x′) = i and x′P ix is proposed
before x is proposed. Moreover, by our choice of A′, the process state at the time of the proposal of such a
contract x′ is exactly the same under priorities Π as it is under priorities Π̄. Thus, such x′ must be rejected
under priorities Π, as otherwise Π̄ would not be an unambiguous improvement over Π for i.
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that for all ` and Y ⊆ Y ′, max
Π

s`
b
V `

b (Y ) = ∅s`
b

whenever max
Π

s`
b
V `

b (Y ′) = ∅s`
b
; hence,

|Cb(Y ′)| ≥ |Cb(Y )|.

Proof of Proposition 5

We let b ∈ B be some branch for which Bb 6=Ib, and let ` be the minimal value such that

s`
b ∈ S+

b . As Bb 6=Ib, there are s ∈ S0
b and s′ ∈ S+

b such that s′ Bb s. In particular, then,

there must be some slot s ∈ S0
b for which s`

b Bb s; we let `′ be such that s`′

b is the Bb-minimal

such slot.

We label the cadets in I as i1, i2, . . . by the ranking π∗, so that

imπ∗im
′ ⇐⇒ m ≤ m′.

We assume that

P im =


(im, b, t0) � ∅im m < `

(im, b, t0) � (im, b, t+) � ∅im ` ≤ m ≤ `′

(im, b, t0) � ∅im `′ < m.

Claim. The outcomes

Y ≡ {(im, b, t0) : m < `} ∪ {(im, b, t+) : ` ≤ m < `′} ∪ {(im, b, t0) : `′ ≤ m ≤ |Sb|},

Y ′ ≡ {(im, b, t0) : m < `} ∪ {(im, b, t+) : ` < m ≤ `′} ∪ {(i`, b, t0)} ∪ {(im, b, t0) : `′ < m ≤ |Sb|}

are both stable under the priorities Π and preferences P I .

Proof. Clearly, both Y and Y ′ are individually rational. Thus, it suffices to show that each

is unblocked.

Now under Y , all cadets im for whom m < ` or m ≥ `′ hold their most-preferred contracts.

Thus, any set blocking Y must be a subset of Z∗ ≡ {(im, b, t0) : ` ≤ m < `′}. However, the
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contracts (im, b, t+) are assigned to slots sm
b (` ≤ m < `′) in the computation of Cb(Y ), and

(im, b, t+)Πsm
b (i, b, t0) for all i ∈ I and m with ` ≤ m < `′. It follows that Y = Cb(Y ∪ Z)

for any Z ⊆ Z∗; hence Y is unblocked, as desired. An analogous argument shows that Y ′ is

unblocked.

The result follows directly from the claim, since Yi`′P
i`
′
Y ′

i`′
but Y ′

i`
P i`Yi` .

C Example Omitted from the Main Text

Example C.1. Let X = {ib, ib′ , i′b, i′b′ , i′′b , i′′b′ , jb, jb′}, with B = {b, b′}, I = {i, i′, i′′, j}, i(hb) =

h = i(hb′) for each h ∈ I, and b(hb′′) = b′′ for each h ∈ I and b′′ ∈ B. We suppose that there

are two types of agents—T = {i, j}—and that t(i) = t(i′) = t(i′′) = i, while t(j) = j. We

suppose that agents have preferences

P i : ib � ib′ � ∅i,

P i′ : i′b � ∅i′ ,

P i′′ : i′′b′ � ∅i′′

P j : jb � jb′ � ∅j.

We suppose further that b has two slots, s1
b Bb s2

b , with priorities given by

Πs1
b : ib � i′b � i′′b � jb � ∅s1

b
,

Πs2
b : ib � jb � i′b � i′′b � ∅s2

b
,

and that b′ has one slot, s1
b′ , with priority order identical to Πs2

b ,

Πs1
b′ : ib � jb � i′b � i′′b � ∅s2

b
.

In this example, the cumulative offer process outcome is {ib, jb, i′′b′}. If the precedence
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of slots s1
b and s2

b were reversed, however, the cumulative offer process outcome would be

{ib, i′b, jb′}; hence i′′ is made worse off following a decrease in the precedence of a slot that

favors agents of type i = t(i′′).

D Proof of Proposition 2

We first prove a lemma which shows that branch choice functions satisfy the irrelevance of

rejected contracts property of Aygün and Sönmez (2012b,a).

Lemma D.1. If z′ /∈ Cb(Y ∪{z, z′}), for some z, z′ ∈ X and Y ⊆ X, then Cb(Y ∪{z, z′}) =

Cb(Y ∪ {z}).

Proof. We suppose that z′ /∈ Cb(Y ∪ {z, z′}), and show the following claim.

Claim. Let V `
b (Z) denote the set V `

b defined in step `−1 of the computation of Cb(Z). Then,

V `
b (Y ∪ {z, z′}) = V `

b (Y ∪ {z}) ∪ {z′}.

Proof. We proceed by induction. We have V 1
b (Y ∪ {z, z′}) = V 1

b (Y ∪ {z})∪ {z′} a priori, so

we assume that V `′

b (Y ∪ {z, z′}) = V `′

b (Y ∪ {z}) ∪ {z′} for all `′ < `+ 1 for some ` > 0. We

now show that this hypothesis implies that V `+1
b (Y ∪ {z, z′}) = V `+1

b (Y ∪ {z}) ∪ {z′}: Let

x′ ≡ max
Π

s`
b

(
V `

b (Y ∪ {z, z′})
)
. As z′ /∈ Cb(Y ∪ {z, z′}), we must have x′ 6= z′; hence,

x′ = max
Π

s`
b

(
V `

b (Y ∪ {z, z′}) \ {z′}
)

= max
Π

s`
b

(
V `

b (Y ∪ {z})
)

(12)

by the inductive hypothesis. It then follows that

V `+1
b (Y ∪ {z, z′}) = V `

b (Y ∪ {z, z′}) \ {x′}

=
(
V `

b (Y ∪ {z}) ∪ {z′}
)
\ {x′}

=
(
V `

b (Y ∪ {z}) \ {x′}
)
∪ {z′}

= V `+1
b (Y ∪ {z}) ∪ {z′},
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where the second equality follows from the inductive hypothesis, and the fourth equality

follows from (12). This completes our induction.

The claim implies the desired result, as it shows that

Cb(Y ∪ {z, z′}) = (Y ∪ {z, z′}) \ V qb

b (Y ∪ {z, z′})

= (Y ∪ {z, z′}) \ (V qb

b (Y ∪ {z}) ∪ {z′})

= (Y ∪ {z}) \ (V qb

b (Y ∪ {z})) = Cb(Y ∪ {z}).

Now, we suppose that i(z), i(z′) /∈ i(Y ), and that z /∈ Cb(Y ∪ {z}). Supposing that

z ∈ Cb(Y ∪{z, z′}), we see by Lemma D.1 that z′ ∈ Cb(Y ∪{z, z′}). This implies immediately

that i(z) 6= i(z′), as no branch ever selects two contracts with the same agent.

Claim. For each ` with 1 ≤ ` ≤ qbb, let z` and y` be the contracts assigned to s`
b in the

computation of Cb(Y ∪ {z, z′}) and Cb(Y ∪ {z}), respectively. We have z`Γs`
by`.

Proof. Let H`
b(Z) denote the set H`

b defined in step ` of the computation of Cb(Z). We pro-

ceed by double induction: Clearly, either z1 = max
Π

s1
b

(Y ∪ {z, z′}) = max
Π

s1
b

(Y ∪ {z}) = y1

or z1 = max
Π

s1
b

(Y ∪ {z, z′}) = z′, so z1Γs`
by1 and i(H1

b (Y ∪{z, z′})) ⊆ i(H1
b (Y ∪{z})∪{z′}).

Thus, we suppose that z`′Γs`′
b y`′ and i(H`′

b (Y ∪{z, z′})) ⊆ i(H`′

b (Y ∪{z})∪{z′}) for all `′ < `.

We have

z` = max
Π

s`
b

(
V `

b (Y ∪ {z, z′})
)

= max
Π

s`
b

(
(Y ∪ {z, z′}) \

(
Yi(H`−1

b (Y ∪{z,z′}))

))
,

y` = max
Π

s`
b

(
V `

b (Y ∪ {z})
)

= max
Π

s`
b

(
(Y ∪ {z}) \

(
Yi(H`−1

b (Y ∪{z}))

))
.
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Since i(z′) /∈ i(Y ) and i(z) 6= i(z′), we have

(
(Y ∪ {z}) \

(
Yi(H`−1

b (Y ∪{z}))

))
=
(

(Y ∪ {z}) \
(
Yi(H`−1

b (Y ∪{z})∪{z′})

))
⊆
(

(Y ∪ {z}) \
(
Yi(H`−1

b (Y ∪{z,z′}))

))
⊆
(

(Y ∪ {z, z′}) \
(
Yi(H`−1

b (Y ∪{z,z′}))

))
, (13)

where the first inclusion follows from the hypothesis that i(H`−1
b (Y ∪ {z, z′})) ⊆ i(H`−1

b (Y ∪

{z}) ∪ {z′}).

The inclusion (13) implies that z`Γs`
by`. This observation completes the first part of

the induction. Moreover, it quickly yields the second part. To see this, we observe that if

i(z`) /∈ i(H`−1
b (Y ∪ {z})), then either z` = z′ or z` = y`, as z`Γs`

by` and i(z′) /∈ i(Y ∪ {z}).

In either case, we have i(H`
b(Y ∪ {z, z′})) ⊆ i(H`

b(Y ∪ {z}) ∪ {z′}). And finally, if i(z`) ∈

i(H`−1
b (Y ∪ {z})), then

i(H`
b(Y ∪ {z, z′})) = (i(H`−1

b (Y ∪ {z, z′})) ∪ {i(z`)})

⊆ (i(H`−1
b (Y ∪ {z}) ∪ {z′}) ∪ {i(z`)})

= (i(H`−1
b (Y ∪ {z})) ∪ {i(z′)} ∪ {i(z`)})

= (i(H`−1
b (Y ∪ {z})) ∪ {i(z′)})

⊆ (i(H`
b(Y ∪ {z})) ∪ {i(z′)}) = (i(H`

b(Y ∪ {z}) ∪ {z′})),

so the induction is complete.51

Now, if z /∈ Cb(Y ∪ {z}), we know that for each s ∈ Sb, the contract y assigned to s

in the computation of Cb(Y ∪ {z}) must be higher-priority than z under Πs , that is, yΠsz.

The preceding claim then shows that each such s must be assigned a contract y′ in the

computation of Cb(Y ∪{z, z′}) for which y′ΓsyΠsz. Thus, we must have z /∈ Cb(Y ∪{z, z′}),

contradicting our supposition to the contrary.

51Here, the first inclusion follows from the inductive hypothesis.
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