Designing for Diversity in Matching

Scott Duke Kominers
Becker Friedman Institute
University of Chicago

Tayfun Sönmez
Department of Economics
Boston College

September 26, 2012

Abstract

To encourage diversity, schools often “reserve” some slots for students of specific types. Students only care about their school assignments and contractual terms like tuition, and hence are indifferent among slots within a school. Ad hoc approaches to resolving indifferences across slots can introduce subtle biases that can be corrected with more careful market design.

In this paper, we illustrate how affirmative action programs in Chicago and Boston favor certain groups more than their designs at first suggest. Then, we introduce a two-sided, many-to-one matching with contracts model in which agents match with branches that (1) have priorities that vary by slot and (2) fill slots sequentially. In these matching markets with slot-specific priorities, branches’ choice functions may not satisfy the substitutability conditions typically crucial for matching with contracts. Nevertheless, an embedding into a one-to-one agent–slot matching market shows that stable outcomes exist and can be found by a cumulative offer mechanism that is strategy-proof and respects unambiguous improvements in priority. These results suggest an affirmative action mechanism design that avoids the problems of the current Chicago and Boston systems.

JEL classification: C78, D63, D78.

Keywords: Market Design, Matching with Contracts, Stability, Strategy-Proofness, School Choice, Affirmative Action.

The authors are deeply grateful to Parag Pathak for his comments and for providing access to data from the Chicago public school choice program. They appreciate the helpful suggestions of Samson Alva, Gadi Barlevy, Marco Bassetto, Gary Becker, Eric Budish, Steven Durlauf, Drew Fudenberg, Jason Hartline, John William Hatfield, Ellen Kominers, Sonia Jaffe, Jonathan Levin, Robert Lucas, Paul Milgrom, Roger Myerson, Yusuke Narita, Derek Neal, Alexandru Nichifor, Philip Reny, Assaf Romm, Alvin Roth, Peter Troyan, Harald Uhlig, Alexander Westkamp, E. Glen Weyl, members of the “Inequality: Measurement, Interpretation, and Policy” Working Group, and seminar audiences at Chicago, Haifa, St. Andrews, the Federal Reserve Bank of Chicago, the Econometric Society Meetings, and GAMES2012. Kominers gratefully acknowledges the support of an AMS–Simons travel grant and the Human Capital and Economic Opportunity Working Group sponsored by the Institute for New Economic Thinking, as well as the hospitality of the Harvard Program for Evolutionary Dynamics.
1 Introduction

Mechanisms based on the *agent-proposing deferred acceptance algorithm* of Gale and Shapley (1962) have been adopted widely in the design of centralized school choice programs.\(^1\) Deferred acceptance, first proposed for school choice by Abdulkadiroğlu and Sönmez (2003), is popular in practice because it is

1. *stable*, guaranteeing that no student ever envies a student with lower priority, and

2. dominant-strategy incentive compatible—*strategy-proof*—“leveling the playing field” by eliminating gains to strategic sophistication (Abdulkadiroğlu et al. (2006); Pathak and Sönmez (2008)).\(^2\)

Many school districts (e.g., Chicago, Boston, and New York City) are concerned with issues of student diversity and have thus embedded affirmative action systems into their school choice programs. However, rendering deferred acceptance compatible with affirmative action requires modification of the algorithm—and at present, these adjustments are typically handled in an *ad hoc* manner.

In this paper, we observe that diversity, financial aid, or other concerns often cause agents’ priorities to vary across a given institution’s slots. We argue that to effectively handle these *slot-specific priority* structures, market designers should go beyond the traditional deferred acceptance algorithm and use a more detailed design approach based on the Kelso and Crawford (1982)/Hatfield and Milgrom (2005) theory of *many-to-one matching with contracts*.

To make this case, we first illustrate how existing *ad hoc* deferred acceptance implementations impact student welfare in the Chicago and Boston school choice programs. Then,

\(^1\)These reforms include assignment of high school students in New York City in 2003 (Abdulkadiroğlu et al. (2005b, 2009)), assignment of K–12 students to public schools in Boston in 2005 (Abdulkadiroğlu et al. (2005a)), assignment of high school students to selective enrollment schools in Chicago in 2009 (Pathak and Sönmez (forthcoming)), and assignment of K–12 students to public schools in Denver in 2012. Perhaps most significantly, a version of deferred acceptance has been recently been adopted by all (more than 150) local authorities in England (Pathak and Sönmez (forthcoming)).

\(^2\)Strategy-proofness is also useful because it enables the collection of true preference data for planning purposes.
we introduce a model of matching with slot-specific priorities, which embeds classical priority matching frameworks (e.g., Balinski and Sönmez (1999); Abdulkadiroğlu and Sönmez (2003)), models of affirmative action (e.g., Kojima (2012); Hafalir et al. (forthcoming)), and the cadet–branch matching framework (Sönmez and Switzer (forthcoming); Sönmez (2011)).

We advocate for a specific implementation of the cumulative offer mechanism of Hatfield and Milgrom (2005) and Hatfield and Kojima (2010), which generalizes agent-proposing deferred acceptance. Previous priority matching models have relied on the existence of agent-optimal stable outcomes to guarantee that this mechanism is strategy-proof. In markets with slot-specific priorities, however, agent-optimal stable outcomes may not exist. Nevertheless, as we show, the cumulative offer mechanism is still strategy-proof in such markets; this observation is perhaps the most surprising theoretical contribution of our work. We show moreover that the cumulative offer mechanism has two other features essential for applications: the cumulative offer mechanism yields stable outcomes and respects unambiguous improvements of agent priority.³

Our work demonstrates that the existence of a plausible mechanism for real-world many-to-one matching with contracts does not rely on the existence of an agent-optimal stable outcome. However, we emphasize that the cumulative offer mechanism selects the agent-optimal stable outcome whenever such an outcome exists. This is important because the existence of an agent-optimal stable outcome removes all conflict of interest among agents in the context of stable assignment, and thus is quite useful in applications. The existence of an agent-optimal stable outcome in our general model may depend on several factors, including the number of different contractual arrangements agents and institutions may have, and the precedence order according to which institutions prioritize individual slots above others.⁴

³These conclusions allow us to re-derive several main results of the innovative Hafalir et al. (forthcoming) approach to welfare-enhancing affirmative action.
⁴As we show in an application of our model (Proposition 5), the United States Military Academy cadet–branch matching mechanism in a sense uses the unique precedence order under which the cumulative offer mechanism is agent-optimal.
Finally, we note that our paper also has a methodological contribution: In general, slot-specific priorities fail the substitutability condition that has so far been key in analysis of most two-sided matching with contracts models (Kelso and Crawford (1982); Hatfield and Milgrom (2005); see also Adachi (2000); Fleiner (2003); Echenique and Oviedo (2004)). Moreover, slot-specific priorities may fail the unilateral substitutability condition of Hatfield and Kojima (2010) that has been central to the analysis of cadet–branch matching (Sönmez and Switzer (forthcoming); Sönmez (2011)). Nevertheless, the priority structure in our model gives rise to a naturally associated one-to-one model of agent–slot matching (with contracts). As the agent–slot matching market is one-to-one, it trivially satisfies the substitutability condition. It follows that the set of outcomes stable in the agent–slot market (called slot-stable outcomes to avoid confusion) has an agent-optimal element. We show that each slot-stable outcome corresponds to a stable outcome; moreover, we show that the cumulative offer mechanism in the “true” matching market gives the outcome which corresponds to the agent-optimal slot-stable outcome in the agent–slot matching market. These relationships are key to our main results.

The remainder of this paper is organized as follows. In Section 2, we discuss the Chicago and Boston school choice programs, illustrating the importance of careful design in markets with slot-specific priorities. We present our model of matching with slot-specific priorities in Section 3. Then, in Section 4, we introduce the agent–slot matching market and derive key properties of the cumulative offer mechanism. In Section 5, we revisit the affirmative action applications and briefly discuss applications to cadet–branch matching. Section 6 concludes. Most proofs are contained in the Appendix.

Thus, in particular, our model falls outside of the domain which Echenique (2012) has shown can be handled with only the Kelso and Crawford (1982) matching with salaries framework (see also Kominers (2012)).

The converse result is not true, in general—there may be stable outcomes which are not associated to slot-stable outcomes.
2 Motivating Applications

First advocated by Friedman (1955, 1962), school choice programs aim to enable parents to choose which schools their children attend. There is significant tension between the proponents of school choice and the proponents of alternative, neighborhood assignment systems based on students’ home addresses.

The mechanics of producing the assignment of students to school seats received little attention in school choice debates until Abdulkadiroğlu and Sönmez (2003) showed important shortcomings of several mechanisms adopted by United States school districts. Of particular concern was the vulnerability of school choice to preference manipulation: while parents were allowed to express their preferences on paper, they were implicitly forced to play sophisticated admission games. Once this flaw became clear, several school districts adopted the (student-proposing) deferred acceptance mechanism, which was invented by Gale and Shapley (1962) and proposed as a school choice mechanism by Abdulkadiroğlu and Sönmez (2003).7

Deferred acceptance-based mechanisms have been successful in part because they are fully flexible regarding the choice of student priorities at schools. In particular, priority rankings may vary across schools; hence, students can be given the option of school choice while retaining some priority for their neighborhood schools. Thus, deferred acceptance mechanisms provide a natural opportunity for policymakers to balance the concerns of both school choice and neighborhood assignment advocates.

However, deferred acceptance-style mechanisms are designed under the assumption that student priorities are identical across a given school’s seats. While this assumption is natural for some school choice applications, it fails in several important cases: admissions to selective high schools in Chicago; K–12 school admissions in Boston; and public high school admission in New York. We next describe

• how the Chicago and Boston matching problems differ from the original school choice model of Abdulkadiroğlu and Sönmez (2003),

7This mechanism is often called the \textit{student-optimal stable mechanism}.
• how policymakers in Chicago and Boston sought to transform their problems into direct applications of the Abdulkadiroğlu and Sönmez (2003) framework, and

• how these transformations introduced significant, yet hidden biases in the underlying priority structures.

These observations motivate the more general matching model with slot-specific priorities that we introduce in Section 3.

2.1 Affirmative Action at Chicago’s Selective High Schools

Since 2009, Chicago Public Schools (CPS) has adopted an affirmative action plan based on socio-economic status (SES). Although CPS initially adopted a version of the Boston mechanism for selective enrollment high school admissions, they immediately abandoned it in favor of a deferred acceptance-based approach.\(^8\) Under the new assignment plan, the SES of each student is determined based on home address; students are then divided into four roughly evenly sized tiers:\(^9\) In 2009,

• 135,716 students living in 210 Tier 1 (lowest-SES) tracts had a median family income of $30,791,

• 136,073 students living in 203 Tier 2 tracts had a median family income of $41,038,

• 136,378 students living in 226 Tier 3 tracts had a median family income of $54,232, and

• 136,275 students living in 235 Tier 4 (highest-SES) tracts had a median family income of $76,829.

\(^8\)Pathak and Sönmez (forthcoming) have presented a detailed account of this midstream reform.

\(^9\)SES scores are uniform across census tracts, and are based on median family income, average adult educational attainment, percentage of single-parent households, percentage of owner-occupied homes, and percentage of non-English speakers.
Students in Chicago who apply to selective enrollment high schools take an admissions test as part of their application, and this test is used to determine a composite score.10 Students from high-SES tiers typically have higher composite scores, and CPS has set aside seats as reserved for low-SES students in order to prevent the elite schools from becoming inaccessible to children from poorer neighborhoods. In order to implement this objective, CPS adopted the following priority structure at each of the nine selective enrollment high schools:

- priority for 40\% of the seats is determined by students’ composite scores, while
- for each of the four SES tiers t, 15\% of the seats are set aside for Tier t students, with composite score determining relative priority among those students.11

Because these priorities over seats are not uniform within schools, the Abdulkadiroğlu and Sönmez (2003) school choice model does not fully capture all aspects of the Chicago admissions problem. In order to implement deferred acceptance despite this difficulty, the CPS matching algorithm treats each selective enrollment high school as five hypothetical schools: The set S_b of seats at each school b is partitioned into subsets

$$S_b = S^o_b \cup S^4_b \cup S^3_b \cup S^2_b \cup S^1_b.$$

The seats in S^o_b are “open seats,” for which students’ priorities are determined entirely by composite scores. Seats in S^t_b are “reserved” for students of Tier t—they give Tier t students priority over other students, and use composite scores to rank students within Tier t. Each set of seats is viewed as a separate “school” within the CPS algorithm. Because seat priorities are uniform within each set S^t_b, the set of hypothetical schools satisfies the Abdulkadiroğlu and Sönmez (2003) requirement of uniform within-school priorities.

10If two students have the same score, then the younger student is coded by CPS as having a higher composite score.

11The priority structure we describe here was used in the 2010–2011 CPS match. The CPS priority structure has been revised slightly for school year 2012-2013. In the new structure, 5\% of the seats are reserved for hand-picking by principals, the fraction of open competition seats is reduced to 28.5\%, and the fraction of reserved seats for each SES tier is increased to 16.625\%.

6
However, CPS students i submit preferences P^i over schools, and are indifferent among seats at a given school $b \in B$. That is, if we denote a contract representing that i holds a seat in S_b^* by $\langle i; s_b^* \rangle$, then any Tier t student i is indifferent among

$$\langle i; s_b^* \rangle, \quad \langle i; s_b^4 \rangle, \quad \langle i; s_b^3 \rangle, \quad \langle i; s_b^2 \rangle, \quad \text{and} \quad \langle i; s_b^1 \rangle,$$

and prefers all these these contracts to any contract of the form $\langle i; s_b^{*'} \rangle$ if (and only if) i prefers school b to school b' (i.e. bP^ib'). As the Abdulkadiroğlu and Sönmez (2003) model requires that students have strict preferences over schools, the CPS matching algorithm must convert students’ true preferences P^i into strict, “extended” preferences \tilde{P}^i over the full set of hypothetical schools. In practice, CPS does this by assuming that

$$\langle i; s_b^* \rangle \tilde{P}^i \langle i; s_b^4 \rangle \tilde{P}^i \langle i; s_b^3 \rangle \tilde{P}^i \langle i; s_b^2 \rangle \tilde{P}^i \langle i; s_b^1 \rangle$$

for each student i and school b.12 That is, CPS assumes that students most prefer open seats, and then rank reserved seats. CPS thus picks for each student the (unique) preference ranking consistent with the student’s submitted preferences in which the open seats at each school are ranked immediately above the reserved seats. With this transformation of preferences, the Chicago problem finally fits within the standard school choice framework of Abdulkadiroğlu and Sönmez (2003).

Being an affirmative action plan, the priority structure in Chicago is designed so that students of lower SES tiers receive favorable treatment. What may be less clear is that the transformation used in the CPS implementation of deferred acceptance provides additional advantages to low-SES tier students.

To understand this bias, we consider a simple example in which there is only one school. The CPS matching algorithm first assigns the open seats and subsequently assigns the re-

12Note that as seats in S_b^* are reserved for Tier t students, the only “relevant” part of this construction is the fact that $\langle i; s_b^* \rangle \tilde{P}^i \langle i; s_b^1 \rangle$ for any Tier t student i.

served seats. Therefore (under the 2010-2011 CPS plan), 40% of the seats are assigned to the students—from any SES tier—with highest composite scores, and the remaining 60% of seats are shared evenly among the four SES tiers. Hence, students in each tier have access to 15% of the seats plus some fraction of the open seats depending on their composite scores. In order to see how this treatment favors students of lower tiers, we consider an alternative mechanism in which reserved seats are allocated before open competition seats. Under this counterfactual mechanism:

First, the reserved seats are allocated to the students in each SES tier with the highest composite scores. Then, the students remaining unassigned are ranked according to their composite scores and admitted in descending order of score until all the open seats are filled.

High-SES students’ composite scores dominate low-SES students’ scores throughout the relevant part of the score distribution—the number of Tier 4 students with score σ high enough to gain admission is larger than the number of Tier 3 students with score σ, and so forth. In practice, this means that after the reserved seats are filled, high-SES students fill most (if not all) of the open seats. Indeed, once the highest-scoring students in each tier are removed, the score distribution of students vying for the last 40% of seats takes the block form illustrated in Figure 1. Thus, the open seats first fill only with Tier 4 students, then fill with both Tiers 4 and 3, and then fill with students from Tiers 4, 3, and 2. Only after that (if seats remain) do Tier 1 students gain access. Of course, the size of the blocks—and hence the size of the effect of switching to the counterfactual mechanism—is an empirical question.

Using actual data from 2010-2011 Chicago school choice admissions program, we now show that our intuition is accurate and that the magnitude of this effect is substantial.13

13Our data set includes the 2010-2011 quotas for the nine CPS elite public high schools, as well as students’ composite scores and submitted rank-order lists. For our simulations, we assume that students would not change their submitted preference orders if the counterfactual mechanism were imposed. This assumption may not be strictly true in practice, because—as Pathak and Sönmez (forthcoming) have discussed—CPS
Figure 1: Top-scoring students in the truncated distribution come from Tier 4; the next-highest score block consists only of students from Tiers 4 and 3, and so forth.

<table>
<thead>
<tr>
<th>Tier 4</th>
<th>Tier 3</th>
<th>Tier 2</th>
<th>Tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefer Current</td>
<td>62 50 108 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indifferent</td>
<td>3748 4287 4092 3474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefer Counterfactual</td>
<td>225 108 43 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of individual student outcomes.

We compare the outcome of the Chicago match under two alternative scenarios:

1. First we consider the current system, in which all open seats are allocated before reserved seats.

2. Second we consider the counterfactual in which all open seats are allocated after reserved seats.

Of the 4270 seats allocated at nine selective high schools, 771 of them change hands between the two scenarios—what CPS most likely considers a minor coding decision in fact impacts 18% of the seats at Chicago’s selective high schools.

Table 1 shows that Tier 1 students unambiguously prefer the current mechanism; this confirms that the current implementation particularly benefits low-tier students. The effect is not uniform for all members of higher SES tiers. Nevertheless, it is consistent with our simple example in terms of aggregate distribution:

- Of the 151 Tier 2 students who are affected, 108 prefer the current treatment and 43 prefer the counterfactual.

limits the length of students’ preference lists (to 6 < 9), creating incentives for students to “drop” popular schools from their rankings if the length constraint binds. However, the length constraint binds for only about 50% of students (and binds less for high-scoring students). Moreover if, as evidence presented by Pathak and Sönmez (2008) suggests, only high-SES students are able to strategize effectively, then our simulation would likely underestimate the mechanism change’s impact on low-SES students.
Table 2: Effect of mechanism change on student body composition at each of the nine selective high schools.

- Of the 158 Tier 3 students who are affected, 50 prefer the current treatment and 108 prefer the counterfactual.

- And of the 287 Tier 4 students who are affected, 62 prefer the current treatment and 225 prefer the counterfactual.

Table 2 and Figure 2 show how the composition of admitted classes varies between the current and counterfactual mechanisms. We observe that Tier 1 students benefit from the current implementation at the expense of students in all three higher tiers. Perhaps surprisingly, most of the benefit appears to be at the expense of Tier 3 students.14

Finally, Table 3 compares the number of students receiving seats under the counterfactual mechanism to the sizes of schools’ reserved seat blocks. We see that switching to the counterfactual mechanism can in effect convert reserves into quotas: Consistent with the intuition of our informal, one-school example, Tier 1 students receive no open seats under the counterfactual mechanism at seven of the nine selective high schools. And again consistent with our example, we see that in four of the nine schools, even Tier 2 students receive no open seats under the counterfactual.

14One reason for this might be the availability of high quality outside options for some members of Tier 4.
Figure 2: Effect of mechanism change on aggregate composition of selective high schools.

Table 3: Seat allocations under the counterfactual mechanism, in comparison to the 15% reserve.
2.2 K–12 Admissions in Boston Public Schools

In the Boston school choice program, the priority of a student for a given school depends on

1. whether the student has a sibling at that school (sibling priority),

2. whether the student lives within the (objectively determined) walk-zone of that school (walk-zone priority), and

3. a random lottery number used to break ties.

Students with walk-zone priority alone have higher claim for 50% of the seats at their neighborhood schools, but have no priority advantage at other seats. This choice of priority structure in Boston is not arbitrary—it represents a delicate balance between the interests of the school choice and neighborhood assignment advocates.

As in the case of Chicago, Boston school choice priorities are not uniform across schools’ seats. And similarly to the Chicago mechanism, the BPS school choice algorithm treats each school as two hypothetical schools (of half the true capacity), one with walk-zone priority and one without. To convert student preferences over true schools into preferences over hypothetical schools, BPS chooses the (unique) ranking consistent with the ranking of the original schools such that seats with walk-zone priority are ranked above seats without walk-zone priority. Because of this implementation decision, the BPS school choice program in fact systematically favors proponents of school choice over proponents of neighborhood assignment.15 This observation becomes more interesting in light of the recent January 17, 2012 statement by Boston Mayor Thomas M. Menino:

“I’m committing tonight that one year from now Boston will have adopted a radically different student assignment plan, one that puts a priority on children attending schools closer to their homes.”16

15The intuition for this fact is much the same as for the case of Chicago: Under the current system, walk-zone students with lottery numbers high enough to acquire non-walk-zone seats are systematically awarded walk-zone seats, effectively wasting their high priority draws.

The current BPS mechanism design appears to be in conflict with Menino’s statement. This conflict can be corrected by reversing the order of the two blocks of seats, or by adopting a more balanced implementation based on the model we develop in this paper.

2.3 Discussion

The current Chicago school choice mechanism’s treatment of low-SES students might well be consistent with the policy objectives of CPS. However, the current BPS school choice mechanism appears to be in conflict with Mayor Menino’s stated goal of increasing the emphasis on neighborhood assignment. In any event, it is clear that *ad hoc* implementations of deferred acceptance have introduced implicit biases in both the Chicago and Boston school choice programs.

The general model we provide in the remainder of this paper encapsulates the Chicago and Boston school choice settings, and provides machinery which can virtually eliminate the biases we have illustrated.

3 Basic Model

The applications described in Section 2 motivate a richer school choice model than those considered in the literature—one that accommodates slot-specific priorities at each school. School choice, however, is not the only application of matching theory that would benefit from such a generalization. Motivated by United State Army’s recently introduced branch-for-service program, Sönmez and Switzer (forthcoming) and Sönmez (2011) have introduced and analyzed the Army’s *cadet-branch matching* problem, under which cadets can increase their priorities at the bottom 25% of slots of each Army branch, in exchange for “bidding” three additional years of service commitment.

Like in Chicago’s and Boston’s school choice programs, cadet-branch matching relies upon the possibility of priority variation across slots within branches. Unlike school choice,
however, each cadet can match with branches under multiple contract terms. Thus, a fully general model must build on the richer matching with contracts framework (Kelso and Crawford (1982); Hatfield and Milgrom (2005)), in order to go beyond the basic structure of school choice and cover the Army’s matching problem.

3.1 Agents, Branches, Contracts, and Slots

In a matching problem with slot-specific priorities, there is a set of agents I, a set of branches B, and a (finite) set of contracts X. Each contract $x \in X$ is between an agent $i(x) \in I$ and branch $b(x) \in B$. We extend the notations $i(\cdot)$ and $b(\cdot)$ to sets of contracts by setting $i(Y) \equiv \cup_{y \in Y} \{i(y)\}$ and $b(Y) \equiv \cup_{y \in Y} \{b(y)\}$. For $Y \subseteq X$, we denote $Y_i \equiv \{y \in Y : i(y) = i\}$; analogously, we denote $Y_b \equiv \{y \in Y : b(y) = b\}$.

Each agent $i \in I$ has a (linear) preference order P^i (with weak order R^i) over contracts in $X_i = \{x \in X : i(x) = i\}$. For ease of notation, we assume that each i also ranks a “null contract” \emptyset_i, which represents remaining unmatched (and hence is always available), so that we may assume that i ranks all the contracts in X_i. We say that the contracts $x \in X_i$ for which $\emptyset_i P^i x$ are unacceptable to i.

Each branch $b \in B$ has a set S_b of slots; each slot can be assigned contracts in $X_b \equiv \{x \in X : b(x) = b\}$. Slots $s \in S_b$ have (linear) priority orders Π^s (with weak orders Γ^s) over contracts in X_b. For convenience, we use the convention that $Y_s \equiv Y_b$ for $s \in S_b$. As with agents, we assume that each slot s ranks a “null contract” \emptyset_s which represents remaining unassigned. We set $S \equiv \cup_{b \in B} S_b$.

17 Here, a branch could represent a branch of the military (as in cadet–branch matching), or a school (as in the Chicago and Boston examples).

18 A contract may have additional “terms” in addition to an agent and a branch. For concreteness, X may be considered a subset of $I \times B \times T$ for some set T of potential contract terms.

19 We use the convention that $\emptyset_i P^i x$ if $x \in X \setminus X_i$.

20 As with agents, we use the convention that $\emptyset_s \Pi^s x$ if $x \in X \setminus X_s$.
3.2 Choice and the Order of Precedence

We assume that for each \(b \in B \), the slots in \(S_b \) are ordered according to a (linear) order of precedence \(\succ^b \). We denote \(S_b \equiv \{s^1_b, \ldots, s^{q_b}_b\} \) with \(q_b \equiv |S_b| \) and the understanding that \(s^\ell_b \succ^b s^{\ell+1}_b \) unless otherwise noted. The interpretation of \(\succ^b \), defined formally in the choice function construction below, is that if \(s_b \succ^b s'_b \) then—whenever possible—branch \(b \) fills slot \(s_b \) before filling \(s'_b \).

To simplify our exposition and notation in the sequel, we treat linear orders over contracts as interchangeable with orders over singleton contract sets.

For any agent \(i \in I \) and \(Y \subseteq X \), we denote by \(\max_{P_i} Y \) the \(P_i \)-maximal element of \(Y_i \), using the convention that \(\max_{P_i} Y = \emptyset \) if \(\emptyset, \overline{P_i}y \) for all \(y \in Y_i \). Similarly, we denote by \(\max_{\Pi^s} Y \) the \(\Pi^s \)-maximal element of \(Y_s \), using the convention that \(\max_{\Pi^s} Y = \emptyset \) if \(\emptyset, \overline{\Pi^s}y \) for all \(y \in Y_s \).\(^{21}\)

Agents have unit demand, that is, they choose at most one contract from a set of contract offers. We assume also that agents always choose the maximal available contract, so that the choice \(C^i(Y) \) of an agent \(i \in I \) from contract set \(Y \subseteq X \) is defined by

\[
C^i(Y) \equiv \max_{P_i} Y.
\]

Meanwhile, branches \(b \in B \) may be assigned as many as \(q_b \) contracts from an offer set \(Y \subseteq X \)—one for each slot in \(S_b \)—but may hold no more than one contract with a given agent. Slots at branch \(b \) are filled in the order of precedence \(\succ^b \):

- First, slot \(s^1_b \) is assigned the contract \(x^1 \) which is \(\Pi^{s^1_b} \)-maximal among contracts in \(Y \).
- Then, slot \(s^2_b \) is assigned the contract \(x^2 \) which is \(\Pi^{s^2_b} \)-maximal among contracts in the set \(Y \setminus Y_i(x^1) \) of contracts in \(Y \) with agents other than \(i(x^1) \).
- This process continues in sequence, with each slot \(s^\ell_b \) being assigned the contract \(x^\ell \)

\(^{21}\)Here, we use the notations \(\overline{P^i} \) and \(\Pi^s \) because we will sometimes need to maximize over orders other than \(P^i \) and \(\Pi^s \).
which is \(\Pi_{s^b}^{\ell} \)-maximal among contracts in the set \(Y \setminus Y_{i(x^1,\ldots,x^{\ell-1})} \).

Formally, the choice (set) \(C^b(Y) \) of a branch \(b \in B \) from \(Y \) is defined by the following algorithm:

1. Let \(H^0_b \equiv \emptyset \), and let \(V^1_b \equiv Y \).

2. For each \(\ell = 1,\ldots,q_b \):

 (a) Let \(x^\ell \equiv \max_{\Pi_{s^b}^{\ell}} V^\ell_b \) be the \(\Pi_{s^b}^{\ell} \)-maximal contract in \(V^\ell_b \).

 (b) Set \(H^\ell_b = H^{\ell-1}_b \cup \{x^\ell\} \) and set \(V^{\ell+1}_b = V^\ell_b \setminus Y_{i(x^\ell)} \).

3. Set \(C^b(Y) = H^{q_b}_b \).

We say that a contract \(x \in Y \) is **assigned to slot** \(s^b_\ell \in S_b \) in the computation of \(C^b(Y) \) if \(\{x\} = H^\ell_b \setminus H^{\ell-1}_b \) in the running of the algorithm defining \(C^b(Y) \).\(^{22}\)

3.3 Stability

An **outcome** is a set of contracts \(Y \subseteq X \). We follow the Gale and Shapley (1962) tradition in focusing on match outcomes which are **stable** in the sense that

- neither agents nor branches wish to unilaterally walk away from their assignments, and
- agents and branches cannot benefit by recontracting outside of the match.

Formally, we say that an outcome \(Y \) is **stable** if it is

1. **individually rational**—\(C^i(Y) = Y_i \) for all \(i \in I \) and \(C^b(Y) = Y_b \) for all \(b \in B \)—and

2. **unblocked**—there does not exist a branch \(b \in B \) and **blocking set** \(Z \neq C^b(Y) \) such that \(Z = C^b(Y \cup Z) \) and \(Z_i = C^i(Y \cup Z) \) for all \(i \in i(Z) \).

\(^{22}\)If no contract \(x \in Y \) is assigned to slot \(s^b_\ell \in S_b \) in the computation of \(C^b(Y) \), then we say that \(s^b_\ell \) is assigned the null contract \(\emptyset_{s^b_\ell} \).
3.4 Conditions on the Structure of Branch Choice

We now discuss the extent to which branch choice functions satisfy the conditions that have been key to previous analyses of matching with contracts models. For the most part, our observations are negative23; thus, they help contextualize our results and illustrate some of the technical difficulties that arise in our general framework.

3.4.1 Substitutability Conditions

Definition. A choice function C^b is \textbf{substitutable} if for all $z, z' \in X$ and $Y \subseteq X$,

$$z \notin C^b(Y \cup \{z\}) \implies z \notin C^b(Y \cup \{z, z'\}).$$

Hatfield and Milgrom (2005) introduced this substitutability condition, which generalizes the earlier \textit{gross substitutes} condition of Kelso and Crawford (1982). Hatfield and Milgrom (2005) also showed that substitutability is sufficient to guarantee the existence of stable outcomes.24

Choice function substitutability is necessary (in the maximal domain sense) for the guaranteed existence of stable outcomes in a variety of settings, including many-to-many matching with contracts (Hatfield and Kominers (2010)) and the Ostrovsky (2008) supply chain matching framework (Hatfield and Kominers (2012)). However, substitutability is \textit{not} necessary for the guaranteed existence of stable outcomes in settings where agents have unit demand (Hatfield and Kojima (2008, 2010)). Indeed, as Hatfield and Kojima (2010) showed, the following condition weaker than substitutability suffices not only for the existence of

23As we show, branch choice functions in general fail both the (Hatfield and Milgrom (2005)) substitutability and (Hatfield and Kojima (2010)) unilateral substitutability conditions, and need not satisfy the (Hatfield and Milgrom (2005)) law aggregate demand.

24The analysis of Hatfield and Milgrom (2005) implicitly assumes \textbf{irrelevance of rejected contracts}, the requirement that

$$z \notin C^b(Y \cup \{z\}) \implies C^b(Y) = C^b(Y \cup \{z\})$$

for all $b \in B$, $Y \subseteq X$, and $z \in X \setminus Y$ (Aygün and Sönmez (2012b)). This condition is naturally satisfied in most economic environments—including ours. (The fact that all branch choice functions in our setting satisfy the irrelevance of rejected contracts condition is immediate from the algorithm defining branch choice—see Lemma D.1 of the Appendix)
stable outcomes, but also to guarantee that there is no conflict of interest among agents.25

Definition. A choice function C^b is **unilaterally substitutable** if

\[z \notin C^b(Y \cup \{z\}) \implies z \notin C^b(Y \cup \{z, z'\}) \]

for all $z, z' \in X$ and $Y \subseteq X$ for which $i(z) \notin i(Y)$ (i.e. no contract in Y is associated to agent $i(z)$).

Unilateral substitutability is a powerful condition; it has been applied in the study of cadet–branch matching mechanisms (Sönmez and Switzer (forthcoming); Sönmez (2011)). Although cadet–branch matching arises as a special case of our framework, the choice functions C^b which arise in markets with slot-specific priorities are not unilaterally substitutable, in general. Our next example illustrates this fact; this also shows (\textit{a fortiori}) that the branch choice functions in our framework may be non-substitutable.

Example 1. Let $X = \{i_0, i_1, j_1\}$, with $B = \{b\}$, $I = \{i, j\}$, $i(i_0) = i = i(i_1)$ and $i(j_1) = j$.26 If b has two slots, $s^1_b \succ^b s^2_b$, with priorities given by

\[
\begin{align*}
\Pi^{s^1_b} & : i_0 \succ \emptyset_{s^1_b}, \\
\Pi^{s^2_b} & : i_1 \succ j_1 \succ \emptyset_{s^2_b},
\end{align*}
\]

then C^b fails the unilateral substitutability condition: $j_1 \notin C^b(\{i_1, j_1\})$, but $j_1 \in C^b(\{i_0, i_1, j_1\})$.

Nevertheless, the choice functions C^b do behave substitutably whenever each agent offers at most one contract to b.

25As in the work of Hatfield and Milgrom (2005), an irrelevance of rejected contracts condition (which is naturally satisfied in our setting—see Footnote 24) is implicitly assumed throughout the work of Hatfield and Kojima (2010) (Aygün and Sönmez (2012a)).

26Clearly (in order for $b(\cdot)$ to be well-defined), we must have $b(i_0) = b(i_1) = b(j_1) = b$, as $|B| = 1$.

18
Definition. A choice function C^b is **weakly substitutable** if

$$z \notin C^b(Y \cup \{z\}) \implies z \notin C^b(Y \cup \{z, z'\})$$

for any $z, z' \in X_b$ and $Y \subseteq X_b$ such that

$$|Y \cup \{z, z'\}| = |i(Y \cup \{z, z'\})|.$$ \hspace{1cm} (1)

This weak substitutability condition, first introduced by Hatfield and Kojima (2008), is in general necessary (in the maximal domain sense) for the guaranteed existence of stable outcomes (Hatfield and Kojima (2008), Proposition 1).

Proposition 1. Every branch choice function C^b is weakly substitutable.

The choice functions C^b also satisfy the slightly stronger bilateral substitutability condition introduced by Hatfield and Kojima (2010).

Definition. A choice function C^b is **bilaterally substitutable** if

$$z \notin C^b(Y \cup \{z\}) \implies z \notin C^b(Y \cup \{z, z'\})$$

for all $z, z' \in X$ and $Y \subseteq X$ with $i(z), i(z') \notin i(Y)$.

Proposition 2. Every choice function C^b is bilaterally substitutable.

In addition to illustrating some of the structure underlying the choice functions induced by slot-specific priorities, Proposition 1 is also useful in our proofs. Meanwhile, Proposition 2 is not used directly in the sequel—as with Example 1, we present Proposition 2 only to illustrate the relationship between our work and the conditions introduced in the prior literature.\footnote{Combining Proposition 2 with Theorem 1 of Hatfield and Kojima (2010) can be used to prove the existence of stable outcomes in our setting, although (as observed in Footnote 25) this logic implicitly...}
3.4.2 The Law of Aggregate Demand

A number of structural results in two-sided matching theory rely on the following monotonicity condition introduced by Hatfield and Milgrom (2005).

Definition. A choice function C^b satisfies the **Law of Aggregate Demand** if

$$Y' \supseteq Y \implies |C^b(Y')| \geq |C^b(Y)|.$$

Unfortunately, like the substitutability and unilateral substitutability conditions, the branch choice functions in our framework may fail to satisfy the law of aggregate demand.

Example 2. Let $X = \{i_0, i_1, j_0\}$, with $B = \{b\}$, $I = \{i, j\}$, $i(i_0) = i = i(i_1)$ and $i(j_0) = j$.\(^{29}\)

If b has two slots, $s_b^1 \succ b s_b^2$, with priorities given by

$$\Pi_{s_b^1} : i_0 \succ j_0 \succ \emptyset_{s_b^1},$$
$$\Pi_{s_b^2} : i_1 \succ \emptyset_{s_b^2},$$

then C^b does not satisfy the law of aggregate demand:

$$|C^b(\{i_1, j_0\})| = |\{i_1, j_0\}| = 2 > 1 = |\{i_0\}| = |C^b(\{i_0, i_1, j_0\})|.$$

4 Basic Theory

We now develop our general theoretical results: In Section 4.1, we associate our original market to a (one-to-one) matching market in which slots, rather than branches, compete for...
contracts. Next, in Section 4.2, we introduce the cumulative offer process and use properties of the agent-slot matching market to show that the cumulative offer process always identifies a stable outcome. We then show moreover, in Section 4.3, that the cumulative offer process selects the agent-optimal stable outcome if such an outcome exists. Finally, in Section 4.4, we show that the mechanism which selects the cumulative offer process outcome is stable, strategy-proof, and improvement-respecting.

4.1 Associated Agent–Slot Matching Market

To associate a (one-to-one) agent-slot matching market to our original market, we extend the contract set X to the set \bar{X} defined by

$$\bar{X} \equiv \{ \langle x; s \rangle : x \in X \text{ and } s \in S_b(x) \} .$$

Slot priorities $\bar{\Pi}^s$ over contracts in \bar{X} exactly correspond to the priorities Π^s over contracts in X:

$$\langle x; s \rangle \bar{\Pi}^s \langle x'; s \rangle \iff x\Pi^s x';$$

$$\emptyset_s \bar{\Pi}^s \langle x; s' \rangle \iff [\emptyset_s \Pi^s x \text{ or } s' \neq s].$$

Meanwhile, the preferences \bar{P}^i of $i \in I$ over contracts in \bar{X} respect the order P^i, while using orders of precedence to break ties among slots:

$$\langle x; s \rangle \bar{P}^i \langle x'; s' \rangle \iff xP^i x' \text{ or } [x = x' \text{ and } s \succ^b(x) s'];$$

$$\emptyset_i \bar{P}^i \langle x; s \rangle \iff [\emptyset_i P^i x \text{ or } i(x) \neq i].$$
These extended priorities $\tilde{\Pi}^a$ and preferences \tilde{P}^i induce choice functions over \tilde{X}:

$$\tilde{C}^a(Y) \equiv \max_{\tilde{\Pi}^a} Y;$$
$$\tilde{C}^i(Y) \equiv \max_{\tilde{P}^i} Y.$$

To avoid terminology confusion, we call a set $\tilde{Y} \subseteq \tilde{X}$ a slot-outcome. It is clear that slot-outcomes $\tilde{Y} \subseteq \tilde{X}$ correspond to outcomes $Y \subseteq X$ according to the natural projection $\varpi : \tilde{X} \to X$ defined by

$$\varpi(\tilde{Y}) \equiv \{x : (x; s) \in Y \text{ for some } s \in S_b(x)\}.$$

Our contract set restriction notation extends naturally to slot-outcomes \tilde{Y}:

$$\tilde{Y}_i = \{(y; s) \in \tilde{Y} : i(y) = i\}; \quad \tilde{Y}_s = \{(y; s') \in \tilde{Y} : s' = s\}.$$

Definition. A slot-outcome $\tilde{Y} \subseteq \tilde{X}$ is slot-stable if it is

1. individually rational for agents and slots—$\tilde{C}^i(\tilde{Y}) = \tilde{Y}_i$ for all $i \in I$ and $\tilde{C}^s(\tilde{Y}) = \tilde{Y}_s$ for all $s \in S$—and

2. not blocked at any slot—there does not exist a slot-block $\langle z; s \rangle \in \tilde{X}$ such that $\langle z; s \rangle = \tilde{C}^i(z)(\tilde{Y} \cup \{(z; s)\})$ and $\langle z; s \rangle = \tilde{C}^s(\tilde{Y} \cup \{(z; s)\})$.

By construction, slot-stable outcomes project (under ϖ) to stable outcomes.

Lemma 1. If $\tilde{Y} \subseteq \tilde{X}$ is slot-stable, then $\varpi(\tilde{Y})$ is stable.

Theorem 3 of Hatfield and Milgrom (2005) implies that one-to-one matching with contracts markets have stable outcomes. Combining this observation with Lemma 1 shows that the set of stable outcomes is always nonempty in our framework. In the next section, we refine this observation by focusing on the stable outcome associated to the slot-outcome of agent-optimal slot-stable mechanism for the agent–slot market.
4.2 The Cumulative Offer Process

We now introduce the cumulative offer process for matching with contracts (see Hatfield and Kojima (2010); Hatfield and Milgrom (2005); Kelso and Crawford (1982)), which generalizes the agent-proposing deferred acceptance algorithm of Gale and Shapley (1962). We provide an intuitive description of this algorithm here; a more technical statement is given in Appendix A.

Definition. In the **cumulative offer process**, agents propose contracts to branches in a sequence of steps $\ell = 1, 2, \ldots$:

Step 1. Some agent $i^1 \in I$ proposes his most-preferred contract, $x^1 \in X_{i^1}$. Branch $b(x^1)$ holds x^1 if $x^1 \in C_{b(x^1)}(\{x^1\})$, and rejects x^1 otherwise. Set $A^2_b(x^1) = \{x^1\}$, and set $A^2_{b'} = \emptyset$ for each $b' \neq b(x^1)$; these are the sets of contracts *available* to branches at the beginning of Step 2.

Step 2. Some agent $i^2 \in I$ for whom no contract is currently held by any branch proposes his most-preferred contract which has not yet been rejected, $x^2 \in X_{i^2}$. Branch $b(x^2)$ holds the contracts in $C_{b(x^2)}(A^2_{b(x^2)} \cup \{x^2\})$ and rejects all other contracts in $A^2_{b(x^2)} \cup \{x^2\}$; branches $b' \neq b(x^2)$ continue to hold all contracts they held at the end of Step 1. Set $A^3_{b(x^2)} = A^2_{b(x^2)} \cup \{x^2\}$, and set $A^3_{b'} = A^2_{b'}$ for each $b' \neq b(x^2)$.

Step ℓ. Some agent $i^\ell \in I$ for whom no contract is currently held by any branch proposes his most-preferred contract which has not yet been rejected, $x^\ell \in X_{i^\ell}$. Branch $b(x^\ell)$ holds the contracts in $C_{b(x^\ell)}(A^\ell_{b(x^\ell)} \cup \{x^\ell\})$ and rejects all other contracts in $A^\ell_{b(x^\ell)} \cup \{x^\ell\}$; branches $b' \neq b(x^\ell)$ continue to hold all contracts they held at the end of Step $\ell - 1$. Set $A^{\ell + 1}_{b(x^\ell)} = A^\ell_{b(x^\ell)} \cup \{x^\ell\}$, and set $A^{\ell + 1}_{b'} = A^\ell_{b'}$ for each $b' \neq b(x^\ell)$.

If at any time no agent is able to propose a new contract—that is, if all agents for whom no contracts are on hold have proposed all contracts they find acceptable—
then the algorithm terminates. The **outcome of the cumulative offer process** is the set of contracts held by branches at the end of the last step before termination.

In the cumulative offer process, agents propose contracts sequentially. Branches accumulate offers, choosing at each step (according to C^b) a set of contracts to hold from the set of all previous offers. The process terminates with no agents wish to propose contracts.

Note that we do not explicitly specify the order in which agents make proposals. This is because in our setting, the cumulative offer process outcome is in fact *independent* of the order of proposal.\(^{30}\) An analogous order-independence result is known for settings where priorities induce unilaterally substitutable branch choice functions (Hatfield and Kojima (2010)). However, as we illustrated in Example 1, slot-specific priorities may not induce unilaterally substitutable choice functions. Meanwhile, no order-independence result is known for the general class of bilaterally substitutable choice functions.\(^{31}\)

Our first main result shows that the cumulative offer process outcome has a natural interpretation: it corresponds to the outcome of the agent-optimal slot-stable slot-outcome in the agent–slot matching market.

Theorem 1. *The slot-outcome of the agent-optimal slot-stable mechanism in the agent–slot matching market corresponds (under projection ϖ) to the outcome of the cumulative offer process.*

The proof of Theorem 1 proceeds in three steps. First, we show that the contracts “held” by each slot improve (with respect to slot priority order) over the course of the cumulative offer process.\(^{32}\) This observation implies that no contract held by a slot $s \in S$ at some step of the cumulative offer process has higher priority than the contract s holds at the end of

\(^{30}\)We make this statement concrete in Theorem B.1 of Appendix B.

\(^{31}\)Although Hatfield and Kojima (2010) state their cumulative offer process algorithm without attention to the proposal order, they only prove that the choice of proposal order has no impact on outcomes in the case of unilaterally substitutable preferences.

\(^{32}\)Here, by the contract “held” by a slot $s \in S_b$ in step ℓ, we mean the contract assigned to s in the computation of $C^b(A^\ell_{b+1}).$
the process; it follows that the cumulative offer process outcome Y is the ϖ-projection of a slot-stable slot-outcome \tilde{Y}. Then, we demonstrate that agents (weakly) prefer \tilde{Y} to the agent-optimal slot-stable slot outcome \tilde{Z}, which exists by Theorem 3 of Hatfield and Milgrom (2005). This implies that $\tilde{Y} = \tilde{Z}$, proving Theorem 1 as $\varpi(\tilde{Y}) = Y$.

Theorem 1 implies that the cumulative offer process always terminates.33 Moreover, it shows that the cumulative offer process outcome is stable and somewhat distinguished among stable outcomes.

Theorem 2. The cumulative offer process produces an outcome which is stable. Moreover, for any slot-stable $\tilde{Z} \subseteq \tilde{X}$, each agent (weakly) prefers the outcome of the cumulative offer process to $\varpi(\tilde{Z})$.

Note that Theorem 2 shows only that agents weakly prefer the cumulative offer process outcome to any other stable outcome associated to a slot-stable slot-outcome. As not all stable outcomes are associated to slot-stable slot-outcomes, this need not imply that each agent prefers the cumulative offer process outcome to all other stable outcomes; we demonstrate this explicitly in the next section.

4.3 Agent-Optimal Stable Outcomes

We say that an outcome $Y \subseteq X$ **Pareto dominates** $Y' \subseteq X$ if $Y_i R_i Y'_i$ for all $i \in I$, and $Y_i P_i Y'_i$ for at least one $i \in I$. A stable outcome $Y \subseteq X$ which Pareto dominates all other stable outcomes is called an **agent-optimal stable outcome**.34 For general slot-specific priorities, agent-optimal stable outcomes need not exist, as the following example shows.

Example 3. Let $X = \{i_0, i_1, j_0, j_1, k_0, k_1\}$, with $B = \{b\}$, $I = \{i, j, k\}$ and $i(h_0) = h = i(h_1)$ for each $h \in I$.35 We suppose that $h_0 P^h h_1 P^h \emptyset_h$ for each $h \in I$, and that b has two slots,

33This fact can also be observed directly, as the set X is finite, and the full set of contracts available, $\bigcup_{b \in B} A'_b$, grows monotonically in ℓ.

34That is, an agent-optimal stable outcome is a stable outcome such that $Y_i R_i Y'_i$ for any agent $i \in I$ and stable outcome $Y' \subseteq X$.

35Clearly (in order for $b(\cdot)$ to be well-defined), we must have $b(h_0) = b = b(h_1)$ for each $h \in I$, as $|B| = 1$.

$s^1_b \succ^b s^2_b$, with slot priorities given by

$$\Pi^s_1 : i_1 \succ j_1 \succ k_1 \succ i_0 \succ j_0 \succ k_0 \succ \emptyset s_b,$$

$$\Pi^s_2 : i_0 \succ i_1 \succ j_0 \succ j_1 \succ k_0 \succ k_1 \succ \emptyset s_b.$$

In this setting, the outcomes $Y \equiv \{j_1, i_0\}$ and $Y' \equiv \{i_1, j_0\}$ are both stable. However, $Y_i P^j Y_i'$ while $Y'_j P^j Y_j$, so there is no agent-optimal stable outcome.

Here, Y is associated to a slot-stable slot-outcome, but Y' is not. As we expect from Theorem 2, the cumulative offer process produces the former of these two outcomes, Y.

Although matching markets with slot-specific priorities may not have agent-optimal stable outcomes, the cumulative offer process finds agent-optimal stable outcomes when they exist.

Theorem 3. *If an agent-optimal stable outcome exists, then it is the outcome of the cumulative offer process.*

In our proof of Theorem 3, we show that no stable outcome can Pareto dominate the cumulative offer process outcome. That is: for any stable outcome Y which is not equal to the outcome Z of the cumulative offer process, there is some agent $i \in I$ such that $Z_i P^j Y_i$. This quickly implies Theorem 3, as agent-optimal stable outcomes Pareto dominate all other stable outcomes.

4.4 The Cumulative Offer Mechanism

A **mechanism** consists of a **strategy space** S^i for each agent $i \in I$, along with an **outcome function** $\varphi_\Pi : \prod_{i \in I} S^i \rightarrow X$ that selects an outcome for each choice of agent strategies. We confine our attention to **direct mechanisms**, i.e. mechanisms for which the strategy spaces correspond to the preference domains: $S^i = P^i$, where P^i denotes the set of all possible preference relations for agent $i \in I$. Such mechanisms are entirely determined by their
outcome functions, hence in the sequel we identify mechanisms with their outcome functions and use the term “mechanism \(\varphi_\Pi \)” to refer to the mechanism with outcome function \(\varphi_\Pi \) and \(S^i = P^i \) (for all \(i \in I \)). All mechanisms we discuss implicitly depend on the priority profile under consideration; we often suppress the priority profile from the mechanism notation, writing “\(\varphi \)” instead of “\(\varphi_\Pi \),” if doing so will not introduce confusion.

In this section, we analyze the cumulative offer mechanism (associated to slot priorities \(\Pi \)), which selects the outcome obtained by running the cumulative offer process (with respect to priorities \(\Pi \) and submitted preferences). We denote this mechanism by \(\Phi_\Pi : \prod_{i \in I} P^i \to X \).

4.4.1 Stability and Strategy-Proofness

A mechanism \(\varphi \) is stable if it always selects an outcome stable with respect to slot priorities and input preferences. This condition dates back to Gale and Shapley (1962) and has been the backbone of the matching market design literature. It captures the natural idea that a mechanism produces an outcome consistent with the policy objectives reflected in the priority structure.

We say that a mechanism \(\varphi \) is strategy-proof if truthful preference revelation is a dominant strategy for agents \(i \in I \), i.e. there is no agent \(i \in I \), preference profile \(P^I \in \prod_{j \in I} P^j \), and \(\bar{P}^i \neq P^i \) such that \(\varphi(\bar{P}^i, P^{-i}) P^i \varphi(P^i, P^{-i}) \). Similarly, we say that a mechanism \(\varphi \) is group strategy-proof if there is no set of agents \(I' \subset I \), preference profile \(P^I \in \prod_{j \in I} P^j \), and \(\bar{P}^{I'} \neq P^{I'} \) such that \(\varphi(\bar{P}^{I'}, P^{-I'}) P^i \varphi(P^{I'}, P^{-I'}) \) for all \(i \in I' \). Strategy-proofness conditions have been central to the recent revolution in school choice market design because they eliminate benefits of strategic sophistication and costly strategic behavior, and enable the collection of true preference data (Abdulkadiroğlu et al. (2006); Pathak and Sönmez (2008)).

It follows immediately from Theorem 2 that the cumulative offer mechanism is stable. Meanwhile, Theorem 1 of Hatfield and Kojima (2009) implies that the agent-optimal slot-stable mechanism is (group) strategy-proof in the agent-slot matching market. Thus, we
see that the cumulative offer mechanism is (group) strategy-proof, as any $\bar{P}^{I'} \neq P^{I'}$ such that $\varphi(\bar{P}^{I'}, P^{-I'}) \neq \varphi(P^{I'}, P^{-I'})$ for all $i \in I'$ would give rise to a profitable manipulation $(\bar{P}^{I'} \neq \tilde{P}^{I'})$ of the agent-optimal slot-stable mechanism. These observations are summarized in the following theorem.

Theorem 4. The cumulative offer mechanism Φ_{Π} is

1. stable, and
2. (group) strategy-proof.

4.4.2 Respect for Unambiguous Improvements

We say that priority profile $\bar{\Pi}$ is an **unambiguous improvement over priority profile Π** for $i \in I$ if

1. for all $x \in X_i$ and $y \in X_{I \setminus \{i\}}$, if $x \Pi^s y$, then $x \bar{\Pi}^s y$; and

2. for all $y, z \in X_{I \setminus \{i\}}$, $y \Pi^s z$ if and only if $y \bar{\Pi}^s z$.

That is, $\bar{\Pi}$ is an unambiguous improvement over priority profile Π for $i \in I$ if $\bar{\Pi}$ is obtained from Π by increasing the priorities of some of i’s contracts (at some slots) while leaving the relative priority orders of other agents’ contracts unchanged.

We say that a mechanism φ **respects unambiguous improvements for i** if for any preference profile P^I,

$$(\varphi_{\bar{\Pi}}(P^I))_i R^i_{\Pi} (\varphi_{\Pi}(P^I))_i$$

whenever $\bar{\Pi}$ is an unambiguous improvement over Π for i. We say that φ **respects unambiguous improvements** if it respects unambiguous improvements for each agent $i \in I$.

While present in the matching literature since the work of Balinski and Sönmez (1999), respect for unambiguous improvements has not been central to previous debates on real-
world market design. Nevertheless, respect for improvements is essential in settings like cadet–branch matching, where agents can influence their priority rankings directly—and may (in the absence of respect for improvements) take perverse steps to lower their priorities.37

Theorem 5. The cumulative offer mechanism Φ_Π respects unambiguous improvements.

Our proof of Theorem 5 makes use of the fact that the cumulative offer process outcome is independent of the contract proposal order. In particular, we focus on a proposal order in which i proposes contracts only when no other agent is able to propose. This choice of proposal order guarantees that i is always the last agent to propose a contract in the running of the cumulative offer process (for any priority profile). As $\bar{\Pi}$ is an unambiguous improvement over Π for i, we can show that the last contract i proposes in the cumulative offer process with priority profile $\bar{\Pi}$ must also be proposed in the cumulative offer process with priority profile Π. This yields the desired result because it implies that i is at least as well off under the outcome of cumulative offer process with priority profile $\bar{\Pi}$ as under the cumulative offer process with priority profile Π.

As an alternative to this approach to the proof of Theorem 5, we could instead show that the agent-optimal slot-stable mechanism for the agent–slot matching market satisfies a condition analogous to respecting unambiguous improvements. Theorem 5 would then follow from Theorem 1.38

36 Respect for improvements is, however, of importance in the growing normative literature on school choice design. For example, Hatfield et al. (2012) have used this condition in analyzing how school choice mechanism selection can impact schools’ incentives for self-improvement.

37 As Sönmez (2011) has illustrated, the current ROTC cadet–branch matching mechanism does not respect improvements—it rewards cadets who can lower their priorities to just below the 50-th percentile mark. Evidence from Service Academy Forums (2012) suggests that cadets have figured this out, and may be adjusting their training and academic performance accordingly:

“20% in the complete OML [order of merit list] might actually be 28% in the ‘Active Duty’ OML, so make sure you make this mental conversion to the complete OML during your first three years. Or, just really screw up everything except for GPA, and get yourself into the 55% (from the top = 45%) where you get your choice of Branch... just kidding. But in all seriousness, why create a system of merit evaluation that takes a top 40% OML cadet and rewards him/her for purposely sabotaging things to go DOWN in the OML to below the 50% AD OML line[...]?”

38 A natural strengthening of our notion of an unambiguous improvement for $i \in I$ would include the condition that i’s preferred contracts (weakly) increase in priority—formally, for all $b \in B$, $s \in S_b$, and
5 Further Applications

In this section, we present applications of our theoretical results to the design of affirmative action programs and cadet–branch matching mechanisms.

5.1 Design of Affirmative Action Mechanisms

We say that a matching problem has **agent types** if the contract set X is a subset of $I \times B \times T$ for some **type set** T, and for each $i \in I$, $X_i = \{i\} \times B \times \{t\}$ for some $t \in T$, so that each i is associated to exactly one **type** t.\(^{39}\) For such a problem, we identify agents with their types, writing $t(i)$ for the unique type $t \in T$ such that $X_i = \{i\} \times B \times \{t\}$. For consistency with the prior literature on school choice, we abuse notation slightly by writing i to denote, for each branch $b \in B$, the unique contract $(i, b, t(i)) \in (X_i \cap X_b)$.

Imposing this additional structure on our general model simplifies the form of slot-specific priorities, rendering branches’ choice functions substitutable.

Proposition 3. In a matching problem with slot-specific priorities and agent types, the branch choice functions C^b are substitutable and satisfy the law of aggregate demand.

In settings with agent types, substitutability coincides with weak substitutability—this conclusion obtains whenever $|X_i \cap X_b| \leq 1$ for all $i \in I$ and $b \in B$. Thus, Proposition 3 follows directly from Proposition 1.

Combining Proposition 3 with Theorems 15, 3, and 4 of Hatfield and Milgrom (2005) shows that there exists an agent-optimal stable outcome in any matching problem with slot-specific priorities and agent types. The following result then follows upon combining this observation with our Theorems 3, 4, and 5.

\[x, x' \in (X_i \cap X_b), \quad \text{if } x\Pi^s x' \text{ and } x'\Pi^s x, \text{ then } xP^i x'.\] (2)

As Theorem 5 shows that Φ_Π respects unambiguous improvements, we see *a fortiori* that Φ_Π respects unambiguous improvements that satisfy the additional condition (2).

\(^{39}\)Note that we may assume without loss of generality that $X_i = \{i\} \times B \times \{t\}$, as any case in which $X_i \subset \{i\} \times B \times \{t\}$ can then be captured by assuming some contracts $x \in \{i\} \times B \times \{t\}$ to be unacceptable to slots at their associated branches $b(x)$.

30
Corollary 1. In a matching problem with slot-specific priorities and agent types, the cumulative offer mechanism Φ_Π is an agent-optimal stable mechanism, which is (group) strategy-proof and respects unambiguous improvements.

As our discussion in Section 2.1 suggests, decreases in the precedence of slots that rank agents of type t highly can improve type-t agents’ cumulative offer outcomes. Unfortunately, while we believe this comparative static should hold in reasonably-sized marketplaces, it may fail in small markets.\footnote{Example C.1 of Appendix C illustrates this fact.}

5.1.1 “Soft” Minority Quotas in School Choice

Many affirmative action programs impose quotas on majority agents. However, as Kojima (2012) showed, quota policies can have perverse effects: some quota-based affirmative action policies hurt all minority students under any stable matching mechanism. Despite these discouraging observations, Hafalir et al. (forthcoming) recently introduced a novel approach to affirmative action, \textit{affirmative action with minority reserves}, which compares favorably to the more standard majority-quota policies.

In the Hafalir et al. (forthcoming) approach, certain slots at each school are \textit{reserved} for minorities but convert into regular slots if not claimed by minority students. Formally, the model of Hafalir et al. (forthcoming) embeds into the framework of matching with slot-specific priorities as follows: The agents $i \in I$ are \textit{students} and the branches $b \in B$ are \textit{schools}. Each student $i \in I$ as a strict linear preference order P^i over schools, and is of either minority (m) or majority (M) type (i.e. $t(i) \in \{m, M\} = T$). Each school $b \in B$ has a strict linear “tiebreaker” order π^b over students and a number of slots q_b corresponding to its “capacity.”

Under \textbf{affirmative action with minority reserves}, each school $b \in B$ has an associated minority reserve $r^m_b \leq q_b$ such that b prefers any minority applicant to any majority applicant if the number of minority students admitted is below r^m_b (Hafalir et al. (forthcom-
This policy can be implemented by choosing slot-specific priorities $\bar{\Pi}$ such that

1. for all $\ell \leq r_m^b$, $i^{s_b^l}_i^{s_b^l}i^{s_b^l}\emptyset_{s_b^l} \iff$

 (a) $t(i) = m$ and $t(i') = M$, or

 (b) $t(i) = t(i')$ and $i^{b}_{\pi^{b}}$;

2. for all $\ell > r_m^b$, $i^{s_b^l}_i^{s_b^l}i^{s_b^l}\emptyset_{s_b^l} \iff i^{b}_{\pi^{b}}$.

Under affirmative action with majority quotas, meanwhile, each school $b \in B$ has an associated majority quota $q^M_b \leq q_b$ such that b cannot admit more than q^M_b majority applicants. This policy can be implemented by choosing slot-specific priorities Π such that

1. for all $\ell < q_b - q^M_b$, $i^{s_b^l}_i^{s_b^l}i^{s_b^l}\emptyset_{s_b^l} \iff t(i) = t(i') = m$ and $i^{b}_{\pi^{b}}$,

 (b) $t(i) = t(i')$ and $i^{b}_{\pi^{b}}$;

2. for all $\ell \geq q_b - q^M_b$, $i^{s_b^l}_i^{s_b^l}i^{s_b^l}\emptyset_{s_b^l} \iff i^{b}_{\pi^{b}}$.

With these observations, we may derive two of the main results of Hafalir et al. (forthcoming) as consequences of our general results for slot-specific priority structures.

Proposition 4 (Hafalir et al. (forthcoming)). 1. In the presence of affirmative action with minority reserves, the cumulative offer mechanism produces the student-optimal stable outcome and is (group) strategy-proof.

2. Given a vector q^M of majority quotas, set $r^m_b = q_b - q^M_b$ for each $b \in B$, and let Y be an outcome which is stable under the priorities Π induced by the quotas q^M and tiebreaker order profile π. Either:

 (a) Y is stable under the priorities $\bar{\Pi}$ induced by reserves r^m and tiebreakers π, or

 (b) there exists an outcome Z which is stable under priorities Π and Pareto dominates Y.
Proof. Part 1 follows directly from Proposition 3. Part 2 also follows quickly: By Corollary 1, we know that \((\Phi_{\Pi}(P^i))_i R^i Y_i\) for each \(i \in I\). Meanwhile, \(\bar{\Pi}\) is an unambiguous (weak) improvement for each \(i \in I\), hence \((\Phi_{\Pi}(P^i))_i R^i (\Phi_{\Pi}(P^i))_i\) for each \(i \in I\), by Theorem 5. Thus, taking \(Z \equiv \Phi_{\bar{\Pi}}(P^i)\) gives

\[
Z_i = (\Phi_{\bar{\Pi}}(P^i))_i R^i (\Phi_{\bar{\Pi}}(P^i))_i R^i Y_i, \tag{3}
\]

for each \(i \in I\). Now, if we have \(Y = \Phi_{\Pi}(P^i) = \Phi_{\bar{\Pi}}(P^i) = Z\), then \(Y\) is stable under the priorities \(\bar{\Pi}\). Otherwise, there is at least one \(i \in I\) for whom the identity (3) is strict. In that case, \(Z\) is stable under priorities \(\bar{\Pi}\) and Pareto dominates \(Y\). \(\square\)

5.1.2 Socioeconomic Affirmative Action in Chicago School Choice

We now demonstrate that our framework embeds the real-world structure of the Chicago selective high school affirmative action program discussed in Section 2.1. Here, the agents \(i \in I\) and branches \(b \in B\) again correspond to students and schools. Each student \(i \in I\) has a strict linear preference order \(P^i\) over schools, and there are four agent types representing the different SES tiers: \(T = \{4, 3, 2, 1\}\).

The top 40% of the \(q_b\) slots at school \(b \in B\) are open slots, assigned based on a strict linear merit order \(\pi^*\) over students, which is determined by composite test scores—and thus uniform across schools. The remaining 60% of the slots at each school \(b \in B\) feature socioeconomic reserves: the first 15% of these slots are reserved for students \(i \in I\) of type \(t(i) = 4\); the next 15% are reserved for students \(i \in I\) of type \(t(i) = 3\); and so forth. These priority structures are illustrated in Figure 3.\(^{41}\)

Formally, the set \(S_b\) of slots at school \(b\) is partitioned into subsets

\[
S_b = S_b^0 \cup S_b^4 \cup S_b^3 \cup S_b^2 \cup S_b^1,
\]

\(^{41}\)Because all the slots in Chicago’s selective high schools are overdemanded, all seats reserved for students of type \(t\) are claimed by students in type \(t\), hence we may assume for expositional simplicity that slots \(s \in S_b^t\) find students of types \(t' \neq t\) unacceptable.
with \(S^o_b \) consisting of \(\frac{40}{100} q_b \) slots, and each set \(S^t_b \) consisting of \(\frac{15}{100} q_b \) slots.\(^{42}\) The priorities of slots \(s \in S^o_b \) are such that

\[
i \Pi^s i' \Pi^s \emptyset_s \iff i \pi^s i'.
\]

Meanwhile, the priorities of slots \(s \in S^t_b \) are such that

\[
i \Pi^s i' \Pi^s \emptyset_s \iff i \pi^s i'
\]

whenever \(t(i) = t(i') = t \), and \(\emptyset_s \Pi^s i \) whenever \(t(i) \neq t \). The order of precedence \(\succ^b \) is such that

\[
s^o \succ^b s^4 \succ^b s^3 \succ^b s^2 \succ^b s^1
\]

for all \(s^o \in S^o_b, s^4 \in S^4_b, s^3 \in S^3_b, s^2 \in S^2_b, \) and \(s^1 \in S^1_b \).\(^{43}\)

Tables 1–3 show the effect of switching from the current precedence orders \(\succ^b \) to the alternate orders, illustrated in Figure 4, in which open slots are filled after reserve slots. Formally, these counterfactual precedence orders \(\blacktriangleright^b \) are such that

\[
s^4 \blacktriangleright^b s^3 \blacktriangleright^b s^2 \blacktriangleright^b s^1 \blacktriangleright^b s^o
\]

for all \(s^o \in S^o_b, s^4 \in S^4_b, s^3 \in S^3_b, s^2 \in S^2_b, \) and \(s^1 \in S^1_b \).

Our model suggests a natural precedence order which gives rise to priorities in between

\[\text{Figure 3: Structure of slot priorities in the Chicago selective high school match. The top 40\% of slots are open slots; the bottom 60\% feature socioeconomic reserves for each of the four student types} \{4, 3, 2, 1\}.\]

\[\begin{aligned}
4 &\sim 3 \sim 2 \sim 1 \succ \emptyset \quad 0 < \ell \leq \frac{40}{100} q_b \\
4 &\succ \emptyset \quad \frac{40}{100} q_b < \ell \leq \frac{55}{100} q_b \\
3 &\succ \emptyset \quad \frac{55}{100} q_b < \ell \leq \frac{70}{100} q_b \\
2 &\succ \emptyset \quad \frac{70}{100} q_b < \ell \leq \frac{85}{100} q_b \\
1 &\succ \emptyset \quad \frac{85}{100} q_b < \ell \leq \frac{100}{100} q_b.
\end{aligned}\]
the current CPS priority structure—under which all open slots are filled first—and the counterfactual structure discussed in Section 2.1—under which all open slots are filled last. Instead of filling all the open slots at once, CPS could alternate between filling open slots and filling reserve slots, in proportion to the total numbers of each slot type available. For example, intermediate priorities could be designed so as to fill three open slots at each school, then one of each type of reserved slot at each school, then three more open slots, then four more reserved slots, and so forth.44 This approach spreads the access to open slots evenly throughout the priority structure, virtually eliminating the biases of the current CPS system.45

Simulation results presented in Table 4 show that student outcomes under the intermediate priorities are almost identical to those arising when all reserved slots are filled before the open slots (the counterfactual discussed in Section 2.1). While this might at first seem surprising, it is in fact quite natural, given the distribution of CPS students’ test scores. As we pointed out in Section 2.1, high-SES students’ composite scores dominate low-SES students’ scores throughout the relevant part of the score distribution. As a result, high-SES students fill the first available open slots, then the highest-scoring low-SES students receive the first reserved slots. Then, once again, the top of the truncated scoring distribution consists of high-SES students; these students take the next open slots. The highest-scoring low-SES

44When using this approach, every third block of slots should have only two open slots, so as to maintain the overall 40%-15%-15%-15%-15% proportions in every block of 20 slots.

45As the number of slots at each school is finite, completely eliminating the bias would require randomizing the precedence relation to some extent.
students who remain unassigned then receive reserved slots, leaving even fewer low-SES students with high scores in the pool. This process produces an outcome very similar to that found when all reserved slots are filled before the open slots.

5.2 Precedence Order Changes in Cadet–Branch Matching

The cadet–branch matching problem studied by Sönmez and Switzer (forthcoming) and Sönmez (2011) is a slot-specific priority matching problem with contract set $X = I \times B \times \{t_0, t_+\}$. Here, the agents $i \in I$ correspond to cadets, who must be assigned to branches of service $b \in B$. Contracts with term t_0 represent standard service contracts; contracts with term t_+ represent the standard contract supplemented with a three-year service extension.

Cadets are ranked according to a strict linear order of merit ranking π^*. The slots of each branch $b \in B$ are partitioned into two sets, $S_b^0 \subset S_b$ and $S_b^+ \subset S_b$, of sizes $(1 - \lambda)q_b$ and λq_b, respectively. Slots $s \in S_b^0$ are regular slots, whose priority rankings follow the order of merit list exactly: for any $b \in B$, $s \in S_b^0$, $i \neq i' \in I$, and $t, t' \in \{t_0, t_+\}$,

$$(i, b, t) \Pi^s (i', b, t') \iff i^{\pi^*} i'.$$

Our results are independent of how regular slots’ relative priorities of contracts (i, b, t) and
(i, b, t') are chosen; for concreteness, we follow the military's convention of assuming that

$$(i, b, t_0)\Pi^s(i, b, t_+).$$

for all slots $s \in S^0_b$. Slots $s \in S^+_b$ are branch-of-choice slots, which give priority to t_+ contracts: for any $b \in B$, $s \in S^+_b$, and $i \neq i' \in I$,

$$(i, b, t_+)\Pi^s(i', b, t_0), \quad \text{and} \quad (i, b, t)\Pi^s(i', b, t) \iff i\pi^*i'$$

for any $t \in \{t_0, t_+\}$.

In the settings of Sönmez and Switzer (forthcoming) and Sönmez (2011), the branch-of-choice slots have lowest precedence at each branch. That is, the slots $s, s' \in S_b$ at branch $b \in B$ follow a precedence order \triangleright^b such that

$$s \in S^0_b \text{ and } s' \in S^+_b \implies s \triangleright^b s'.$$

(5)

In our model, all precedence orders satisfying condition (5) are equivalent; hence, we identify the full class of such orders with a “single” precedence order \triangleright^b.

Sönmez and Switzer (forthcoming) demonstrated that the branch choice functions induced by precedence order \triangleright^b are unilaterally substitutable. This implies the existence of a cadet-optimal stable outcome, and allowed Sönmez and Switzer (forthcoming) to propose the use of a cadet-optimal stable mechanism for cadet–branch matching. 46

Our next result shows that the structure found by Sönmez and Switzer (forthcoming) is unique to the specific precedence order the United States military selected: up to equivalence, \triangleright^b is the only precedence order which guarantees the existence of cadet-optimal stable outcomes in general.

46In his discussion of market design for the ROTC cadet–branch match, Sönmez (2011) extended these results to the case in which more than two distinct contract terms are available.
Proposition 5. For any cadet–branch matching problem precedence order $\triangleright \neq \triangleright^b$ for which there exists $b \in B$, $s \in S^0_b$, and $s' \in S^+_b$ such that $s' \triangleright^b s$, there exists a profile of cadet preferences under which no outcome stable with respect to the branch choice functions C^b induced by the slot priorities $\Pi^s (s \in S_b)$ and precedence order \triangleright^b is cadet-optimal.

6 Conclusion

In this paper, we have studied slot-precedence, a feature of priority structure that is present in many real-world applications of matching theory but has not been treated formally in the prior literature. As we have shown, the choice of precedence order has important distributional implications, but does not affect agents’ strategic incentives. Thus, attention to the precedence order provides policymakers and market designers an additional degree of freedom in the design of priority matching mechanisms. This additional flexibility is particularly useful for diversity-motivated designs, like affirmative action systems.

Our work also has theoretical implications: We have shown that the existence of agent-optimal stable outcomes is not necessary for strategy-proof stable matching, and have reinforced and expanded the matching with contracts framework. Additionally, our general model clarifies the relationship between existing models of affirmative action (Kojima (2012); Hafalir et al. (forthcoming)) and illustrates special structure present in the Army’s specific choice of priority structure for cadet–branch matching (Sönmez and Switzer (forthcoming); Sönmez (2011)).

Our model is not the most comprehensive priority matching framework possible, and some of our substantive results may extend to more general settings. Nevertheless, our slot-specific priorities framework naturally embeds all of the priority structures currently in application, at least as far as we are aware. Our focus on slot precedence allows us to conduct comparative static exercises which uncover hidden biases in priority structure which—whether intentional or unintentional—affect welfare in real-world school choice programs. Precedence orders also
induce attractive theoretical structure, which allows us to link our model to the simpler problem of one-to-one agent–slot matching.

References

A Formal Description of the Cumulative Offer Process

The cumulative offer process associated to proposal order ⊐ is the following algorithm:

1. Let ℓ = 0. For each $b \in B$, let $D^0_b \equiv \emptyset$, and let $A^1_b \equiv \emptyset$.

2. For each $\ell = 1, 2, \ldots$:

 (a) Let i be the ⊐-ℓ-maximal agent $i \in I$ such that $i \notin i(\bigcup_{b \in B} D^{\ell-1}_b)$ and $\max_{P_i}(X \ \backslash \ \bigcup_{b \in B} A^\ell_b)$, which is, the agent highest in the proposal order who wants to propose a new contract—if such an agent exists. (If no such agent exists, then proceed to Step 3, below.)

 i. Let $x \equiv \max_{P_i}(X \ \backslash \ \bigcup_{b \in B} A^\ell_b)$ be i’s most preferred contract that has not yet been proposed.

 ii. Let $b \equiv b(x)$. Set $D^\ell_b = C^b(A^\ell_b \cup \{x\})$ and set $A^{\ell+1}_b = A^\ell_b \cup \{x\}$. For each $b' \neq b$, set $D^\ell_{b'} = D^{\ell-1}_{b'}$ and set $A^{\ell+1}_{b'} = A^\ell_{b'}$.

3. Return the outcome

\[Y \equiv \left(\bigcup_{b \in B} D^{\ell-1}_b \right) = \left(\bigcup_{b \in B} C^b(A^\ell_b) \right) \]

consisting of contracts held by branches at the point when no agent wants to propose additional contracts.
Here, the sets $D_{b}^{\ell-1}$ and A_{b}^{ℓ} denote the sets of contracts held by and available to branch b at the beginning of cumulative offer process step ℓ. We say that a contract z is rejected during the cumulative offer process if $z \in A_{b(z)}^{\ell}$ but $z \notin D_{b(z)}^{\ell-1}$ for some ℓ.

B Proofs Omitted from the Main Text

Proof of Proposition 1

We prove the following auxiliary lemma which directly implies Proposition 1.

Lemma B.1. Suppose that $Y \subseteq Y' \subseteq X_b$, $|Y| = |i(Y)|$, and $|Y'| = |i(Y')|$. Then, if $y \in Y$ and $y' \in Y'$ are the contracts assigned to $s \in S_b$ in the computations of $C^b(Y)$ and $C^b(Y')$, respectively, we have $y \Gamma s y$.

Proof. The hypotheses on Y and Y' imply that $Y_{i(y)} = \{x\}$ for each $x \in Y$ and that $Y'_{i(x')}$ = $\{x'\}$ for each $x' \in Y'$. With this observation, the following claim follows quickly.

Claim. Let $V_{b}^{\ell}(Z)$ denote the set V_{b}^{ℓ} defined in step $\ell-1$ of the computation of $C^b(Z)$. Then, $V_{b}^{\ell}(Y) \subseteq V_{b}^{\ell}(Y')$.

Proof. We proceed by induction. We have $V_{b}^{1}(Y) = V_{b}^{1}(Y')$ a priori, so we assume that $V_{b}^{\ell'}(Y) \subseteq V_{b}^{\ell'}(Y')$ for all $\ell' < \ell + 1$ for some $\ell > 0$. We now show that this hypothesis implies that $V_{b}^{\ell+1}(Y) \subseteq V_{b}^{\ell+1}(Y')$: Let $x' \equiv \max_{i(x')}(V_{b}^{\ell}(Y'))$. If $x' \in V_{b}^{\ell}(Y)$, then clearly $x' = \max_{i(x')}(V_{b}^{\ell}(Y))$; hence,

$$V_{b}^{\ell+1}(Y) = (V_{b}^{\ell}(Y)) \setminus Y_{i(x')} = (V_{b}^{\ell}(Y)) \setminus \{x'\} \subseteq (V_{b}^{\ell}(Y')) \setminus \{x'\} = (V_{b}^{\ell}(Y')) \setminus Y_{i(x')} = V_{b}^{\ell+1}(Y')$$

as desired. Otherwise, we have $x' \notin V_{b}^{\ell}(Y)$, so that $\left(\max_{i(x')}(V_{b}^{\ell}(Y))\right) \equiv x \neq x'$. As $x \in V_{b}^{\ell}(Y) \subseteq V_{b}^{\ell}(Y') \setminus \{x'\}$, we have

$$V_{b}^{\ell+1}(Y) = (V_{b}^{\ell}(Y)) \setminus Y_{i(x)} = (V_{b}^{\ell}(Y)) \setminus \{x\} \subseteq (V_{b}^{\ell}(Y')) \setminus \{x'\} = (V_{b}^{\ell}(Y')) \setminus Y_{i(x')} = V_{b}^{\ell+1}(Y').$$

43
The claim implies that
\[
\left(\max_{\Pi^s_b} V^\ell_b(Y') \right) \Gamma^s_b \left(\max_{\Pi^s_b} V^\ell_b(Y) \right)
\] (6)
for all \(\ell \); this shows the result.

To see that Proposition 1 follows from Lemma B.1, we suppose that (1) holds for some \(z, z' \in X \) and \(Y \subseteq X \), and note that (1) also implies that
\[
|Y \cup \{z\}| = |i(Y \cup \{z\})|.
\] (7)

Now, given (7), we know that if \(z \notin C^b(Y \cup \{z\}) \), then for each \(s \in S_b \), the contract \(y \) assigned to \(s \) in the computation of \(C^b(Y \cup \{z\}) \) must be higher-priority than \(z \) under \(\Pi^s \), that is, \(y \Pi^s z \). But then, it follows from (7) and Lemma B.1 that each such \(s \) must be assigned a contract \(y' \) for which
\[
y' \Gamma^s y \Pi^s z
\]
in the computation of \(C^b(Y \cup \{z, z'\}) \). Thus, we must have \(z \notin C^b(Y \cup \{z, z'\}) \). Hence, we see that each \(C^b \) is weakly substitutable.

Proof of Proposition 2

See Appendix D.

Proof of Lemma 1

It is immediate that if \(\varpi(\tilde{Y}) \) is not individually rational, then \(\tilde{Y} \) is not individually rational for agents and slots. Thus, we need only consider the blocking conditions.

For \(\tilde{Y} \subseteq \tilde{X} \), suppose that \(Z \subseteq X \) is a set of contracts that blocks \(\varpi(\tilde{Y}) \). We fix some \(b \in b(Z) \), and observe that there must be a contract \(z \in Z_b \setminus \varpi(\hat{Y}) \) for which there is some step \(\ell \) of the computation of \(C^b(\varpi(\hat{Y}) \cup Z) \) such that \(D^\ell_b \setminus D^{\ell-1}_b = \{z\} \). (That is, there
must exist a contract $z \in Z_b \setminus \varpi(\tilde{Y})$ which is assigned to the highest-precedence slot, s_b^ℓ, among those slots which are assigned contracts in $Z_b \setminus \varpi(\tilde{Y})$ during the computation of $C^b(\varpi(\tilde{Y}) \cup Z)$.) We let $x \in \varpi(\tilde{Y})$ be the (possibly null) contract which is assigned to slot s_b^ℓ in the computation of $C^b(\varpi(\tilde{Y}))$.

It is clear that $z \Pi s_b^\ell x$, by construction. Thus, we have $\langle z; s_b^\ell \rangle \tilde{\Pi} s_b^\ell \langle x; s_b^\ell \rangle$. Meanwhile, we know that $z \Pi^i(x)\varpi(\tilde{Y})_{i(x)}$ because Z blocks $\varpi(\tilde{Y})$. It follows that $\langle z; s_b^\ell \rangle$ is a slot-block for \tilde{Y}. Thus, if \tilde{Y} is not blocked at any slot, then $\varpi(\tilde{Y})$ is unblocked; the result follows.

Proof of Theorem 1

We prove the following result, which is slightly more general than Theorem 1.

Theorem B.1. For any proposal order \sqsupset, the slot-outcome of the agent-optimal slot-stable mechanism in the agent–slot matching market corresponds (under projection ϖ) to the outcome of the cumulative offer process associated to proposal order \sqsupset.

Proof. We suppress the dependence on \sqsupset, as doing so will not introduce confusion.

We begin with a simple lemma which shows that slots’ assigned contracts improve (with respect to slot priorities) over the course of the cumulative offer process.

Lemma B.2. Fix ℓ and ℓ' with $\ell < \ell'$, and let x^ℓ and $x^{\ell'}$, with $b(x^\ell) = b = b(x^{\ell'})$, be the contracts assigned to $s \in S_b$ in the computations of $C^b(A_b^{\ell+1}) = D_b^\ell$ and $C^b(A_b^{\ell'+1}) = D_b^{\ell'}$, respectively. Then, $x^{\ell'} \Gamma^s x^\ell$.

Proof. The result follows immediately from Lemma B.1, as $A_b^{\ell+1} \subseteq A_b^{\ell'+1} \subseteq X_b$ by construction.

We denote the outcome of the cumulative offer process by Y, and let

$$\tilde{Y} \equiv \{ \langle y; s \rangle : y \in Y \text{ and } s \text{ is assigned } z \text{ in the computation of } C^b(z)(Y) \}.$$

By construction, we have $\varpi(\tilde{Y}) = Y$.

45
Lemma B.3. The slot-outcome \bar{Y} is slot-stable.

Proof. We suppose that $\langle z; s \rangle$ slot-blocks \bar{Y}, so that

$$zP^i(\varpi(\bar{Y}))_{i(z)} = Y_{i(z)}, \quad (8)$$

$$z\Pi^s(\varpi(\bar{Y}))_s = Y_s. \quad (9)$$

Now, by (8) and the fact that Y is the cumulative offer process outcome, we know that z must be proposed in some step ℓ of the cumulative offer process. We let $\ell \geq \ell$ be the first step of the cumulative offer process for which no slot $s' \in S_{b(z)}$ with $s' \succ^{b(z)} s$ is assigned z in the computation of $C^{b(z)}(A^{\ell+1}_{b(z)}) = D^\ell_{b(z)}$. (Such a step ℓ must exist since $z \notin Y$.) We let x^ℓ be the contract assigned to s in the computation of $C^{b(z)}(A^{\ell+1}_{b(z)})$. Since $x^\ell \neq z$, we know that $x^\ell \Pi^s z$. But then, we know by Lemma B.2 that for each $\ell' \geq \ell$, the contract $x^{\ell'}$ assigned to s in the computation of $C^{b(z)}(A^{\ell'+1}_{b(z)})$ has (weakly) higher Π^s-priority than x^ℓ, and hence has (strictly) higher Π^s-priority than z: $x^{\ell'} \Gamma^s x^\ell \Pi^s z$. In particular, then, we must have $Y_s \Pi^s z$, contradicting (9). Thus, there cannot be a slot-contract $\langle z; s \rangle$ which slot-blocks \bar{Y}.

Now, we let \bar{Z} be the agent-optimal slot-stable slot-outcome. (Such an outcome exists by Theorem 3 of Hatfield and Milgrom (2005).)

Lemma B.4. For each agent $i \in I$, $\bar{Y}_i \bar{R}^i \bar{Z}_i$.

Proof. It suffices to show that no contract $z \in \varpi(\bar{Z})$ is ever rejected during the cumulative offer process. To see this, we suppose the contrary, and consider the first step ℓ at which some contract $z \in \varpi(\bar{Z})$ is rejected. We let $s \in S_{b(z)}$ be the slot such that $\langle z; s \rangle \in \bar{Z}$, and let $x \neq z$ be the contract assigned to s in the computation of $C^{b(z)}(A^{\ell+1}_{b(z)})$.

Now, as z is the first contract in $\varpi(\bar{Z})$ to be rejected, we know that $xP^i(x(\varpi(\bar{Z})))_{i(x)}$. Moreover, as $z \not\in C^{b(z)}(A^{\ell+1}_{b(z)})$ and x is assigned to s in the computation of $C^{b(z)}(A^{\ell+1}_{b(z)})$, we know that $x\Pi^s z$. But then, it follows that $\langle x; s \rangle$ slot-blocks \bar{Z}, contradicting the fact that \bar{Z} is slot-stable.
Now, by Lemma B.3, we know that \bar{Y} is slot-stable; it then follows from Lemma B.4 that \bar{Y} must be the agent-optimal slot-stable slot-outcome. The theorem then follows directly, as $\varpi(\bar{Y}) = Y$.

\section*{Proof of Theorem 2}

The result follows immediately from Lemma 1 and Theorem 1, as the agent-proposing deferred acceptance algorithm in the agent–slot matching market yields the agent-optimal slot-stable slot-outcome, by Theorem 3 of Hatfield and Milgrom (2005).

\section*{Proof of Theorem 3}

We show Theorem 3 by way of the following more general result.

\textbf{Theorem B.2.} For any stable outcome Y which is not equal to the outcome Z of the cumulative offer process, there is some agent $i \in I$ such that $Z_i P_i Y_i$.

\textit{Proof.} We suppose to the contrary that there is some stable outcome $Y \neq Z$ such that $Y_i R_i Z_i$ for all $i \in I$. We prove the theorem by considering an alternative proposal order \sqsupset' for the cumulative offer process, and showing that the outcome Z' of the cumulative offer process associated to \sqsupset' must be (weakly) preferred to Y by all agents.

We now describe the alternative proposal order: \footnote{For ease of exposition, we do not provide a fully formal specification of \sqsupset'; nonetheless, our description directly yields an algorithm to compute such a specification.} Let \sqsupset' be any order such that at each step of the cumulative offer process associated to \sqsupset',

1. all agents in $i(Y)$ who wish to propose contracts weakly preferred to those in Y have the opportunity to propose contracts before any agents in $I \setminus i(Y)$ do, and

2. all agents in $i(Y)$ who wish to propose contracts \textit{not} weakly preferred to those in Y are not allowed to propose unless no agents in $I \setminus i(Y)$ wish to propose contracts.

\textbf{Claim.} We have $Z'_i R'_i Y'_i$ for all $i \in I$.

\section*{Proof of Theorem 4}

The result follows immediately from Lemma 1 and Theorem 1, as the agent-proposing deferred acceptance algorithm in the agent–slot matching market yields the agent-optimal slot-stable slot-outcome, by Theorem 3 of Hatfield and Milgrom (2005).
Proof. We observe that if there is some step of the cumulative offer process associated to \(\equiv' \) at which all contracts in \(Y \) are held, then all future proposals will be rejected, and so the process produces the outcome \(Z' = Y \).\footnote{Formally, our argument shows that an analogous statement is true under any proposal order; we state the claim for proposal order \(\equiv' \) because that statement is important in the sequel.} To see this, we observe that no agent in \(i(Y) \) will propose while \(Y \) is held. Meanwhile, if at that time some agent \(i \in I \setminus i(Y) \) proposes a contract \(x \) which is held following its proposal, then \(\{x\} \) blocks \(Y \), contradicting the fact that \(Y \) is stable.

Now, we note that by our choice of \(\equiv' \), at any step in the cumulative offer process associated to \(\equiv' \) when there exists at least one agent \(i \in i(Y) \) who wishes to propose a contract weakly preferred to \(Y_i \), some such agent is given the opportunity to propose. It follows that, if there is no step of the cumulative offer process associated to \(\equiv' \) at which all contracts in \(Y \) are held, then the process must terminate before all contracts in \(Y \) have been proposed. In this case, the process outcome \(Z' \) must be weakly-preferred to \(Y \) by all agents; combining this fact with our previous observations shows the claim.

Now, by Theorem B.1, \(Z' \) must be the outcome of the cumulative offer process associated to the original proposal order—that is, \(Z' = Z \). But by the above claim, we then have

\[
Z_i = Z'_i R'_i Y_i R_i Z_i
\]

for all \(i \in I \), contradicting the assumption that \(Z \neq Y \).

Theorem 2 shows that the outcome \(Z \) of the cumulative offer process is stable. But then, if there were an agent-optimal stable outcome \(Y \neq Z \), we would have a stable outcome \(Y \) for which \(Y_i R'_i Z_i \) for all \(i \in I \), contradicting Theorem B.2.
Proof of Theorem 4

Part 1 is immediate from Theorem 2. Meanwhile, for Part 2, we suppose that there is some set of agents $I' \subset I$ and $\vec{P}' \neq P'$ such that

$$\Phi_{\Pi}(\vec{P}', P^{-I'}) P^i \Phi_{\Pi}(P', P^{-I'})$$

(10)

for all $i \in I'$. Now, if \tilde{Z} is the outcome of the agent-optimal slot-stable mechanism run on preferences $(\tilde{P}', \tilde{P}^{-I'})$ and \tilde{Y} is the outcome of the agent-optimal slot-stable mechanism run on preferences $(\tilde{P}', \tilde{P}^{-I'})$, then we have $\tilde{Z} \tilde{P}^i \tilde{Y}$ for all $i \in I'$, as we have

$$\varnothing(\tilde{Z}) = \Phi_{\Pi}(\tilde{P}', P^{-I'}) P^i \Phi_{\Pi}(P', P^{-I'}) = \varnothing(\tilde{Y})$$

by (10) and Theorem B.1. But this implies that the agent-optimal slot-stable mechanism is not group strategy-proof (in the agent–slot market), contradicting Theorem 1 of Hatfield and Kojima (2009).49

Proof of Theorem 5

To see this, we fix an agent i and let $\bar{\Pi}$ be an unambiguous improvement over Π for i. We let \sqsupset be the proposal order used in computing Φ, and let \sqsupset' be the alternative (uniquely defined) proposal order such that for all ℓ,

$$j \sqsupset' k \iff j \sqsupset k \quad \text{(for all } j, k \neq i)$$

$$j \sqsupset' i \quad \text{(for all } j \neq i),$$

that is, the order obtained from \sqsupset by moving i to the bottom of each linear order \sqsupset.

49Theorem 1 of Hatfield and Kojima (2009) implies that the agent–slot matching mechanism which selects the slot-outcome of the agent-optimal slot-stable mechanism is group strategy-proof for agents. To see this, it suffices to note that both the substitutes condition and the law of aggregate demand hold automatically (for all preferences) in one-to-one matching markets such as the agent–slot matching market.
By Theorem B.1, the outcome \(\Phi_{\Pi}(P_I) \) is equal to that of the cumulative offer process associated to \(\sqsupset' \) under priorities \(\bar{\Pi} \). Likewise, the outcome \(\Phi_{\Pi}(P_I) \) is equal to that of the cumulative offer process associated to \(\sqsupset' \) under priorities \(\Pi \). These observations essentially prove the result: In any cumulative offer process associated to \(\sqsupset' \), agent \(i \) always proposes after all other agents’ are unwilling to propose new contracts. Hence, under priority structure \(\bar{\Pi} \), there is some contract \(x \) which \(i \) proposes in the last step before the cumulative offer process associated to \(\sqsupset' \) terminates. As \(\bar{\Pi} \) is an unambiguous improvement over \(\Pi \) for \(i \), we see that \(i \) proposes \(x \) in the cumulative offer process associated to \(\sqsupset' \), under priorities \(\Pi \).\(^{50}\)

It follows that
\[
(\Phi_{\Pi}(P_I))_i = xR^i(\Phi_{\Pi}(P_I))_i,
\]
as desired.

Proof of Proposition 3

In any problem with agent types, \(|X_i \cap X_b| = 1 \) for all \(i \in I \) and \(b \in B \). It follows immediately that in such a problem,
\[
|Y| = |i(Y)| \text{ for all } b \in B \text{ and } Y \subseteq X_b.
\] \hspace{1cm} (11)

The substitutability of each branch choice function \(C^b \) in the presence of agent types then follows from Proposition 1, as weak substitutability is equivalent to substitutability under condition (11). Additionally, we see that in the presence of agent types, each choice function \(C^b \) satisfies the law of aggregate demand, as condition (11) and Lemma B.1 together show

\(^{50}\)In the cumulative offer process associated to \(\sqsupset' \), any contract \(x' \) with \(i(x') = i \) and \(x'P^ix \) is proposed before \(x \) is proposed. Moreover, by our choice of \(\sqsupset' \), the process state at the time of the proposal of such a contract \(x' \) is exactly the same under priorities \(\Pi \) as it is under priorities \(\bar{\Pi} \). Thus, such \(x' \) must be rejected under priorities \(\Pi \), as otherwise \(\bar{\Pi} \) would not be an unambiguous improvement over \(\Pi \) for \(i \).
that for all \(\ell \) and \(Y \subseteq Y' \), \(\max_{\Pi_b} V_\ell^b(Y) = \emptyset \) whenever \(\max_{\Pi_b} V_\ell^b(Y') = \emptyset \); hence,

\[
|C^b(Y')| \geq |C^b(Y)|.
\]

Proof of Proposition 5

We let \(b \in B \) be some branch for which \(\triangleright^b \neq \triangleright^b \), and let \(\ell \) be the minimal value such that \(s^\ell_b \in S^+_{b^+} \). As \(\triangleright^b \neq \triangleright^b \), there are \(s \in S_{b^0}^+ \) and \(s' \in S_{b^+}^+ \) such that \(s \triangleright^b s' \). In particular, then, there must be some slot \(s \in S_{b^0}^+ \) for which \(s \triangleright^b s' \); we let \(\ell' \) be such that \(s^\ell'_{b^+} \) is the \(\triangleright^b \)-minimal such slot.

We label the cadets in \(I \) as \(i^1, i^2, \ldots \) by the ranking \(\pi^* \), so that

\[
i^m \pi^* i^{m'} \iff m \leq m'.
\]

We assume that

\[
P^{i^m} = \begin{cases} (i^m, b, t_0) > \emptyset_{i^m} & m < \ell \\ (i^m, b, t_0) > (i^m, b, t_+) > \emptyset_{i^m} & \ell \leq m \leq \ell' \\ (i^m, b, t_0) > \emptyset_{i^m} & \ell' < m. \end{cases}
\]

Claim. The outcomes

\[
Y \equiv \{(i^m, b, t_0) : m < \ell\} \cup \{(i^m, b, t_+) : \ell \leq m \leq \ell'\} \cup \{(i^m, b, t_0) : \ell' \leq m \leq |S_b|\},
\]

\[
Y' \equiv \{(i^m, b, t_0) : m < \ell\} \cup \{(i^m, b, t_+) : \ell \leq m \leq \ell'\} \cup \{(i^\ell, b, t_0)\} \cup \{(i^m, b, t_0) : \ell' < m \leq |S_b|\}
\]

are both stable under the priorities \(\Pi \) and preferences \(P^I \).

Proof. Clearly, both \(Y \) and \(Y' \) are individually rational. Thus, it suffices to show that each is unblocked.

Now under \(Y \), all cadets \(i^m \) for whom \(m < \ell \) or \(m \geq \ell' \) hold their most-preferred contracts. Thus, any set blocking \(Y \) must be a subset of \(Z^* \equiv \{(i^\ell, b, t_0) : \ell \leq m < \ell'\} \). However, the
contracts \((i^m, b, t_+)\) are assigned to slots \(s^m_b\) \((\ell \leq m < \ell')\) in the computation of \(C^b(Y)\), and \((i^m, b, t_+)\Pi^m_b(i, b, t_0)\) for all \(i \in I\) and \(m\) with \(\ell \leq m < \ell'\). It follows that \(Y = C^b(Y \cup Z)\) for any \(Z \subseteq Z^*\); hence \(Y\) is unblocked, as desired. An analogous argument shows that \(Y'\) is unblocked.

The result follows directly from the claim, since \(Y_{\ell'} P^\sigma Y'_{\ell'}\) but \(Y' P^s Y_{\ell'}\).

C Example Omitted from the Main Text

Example C.1. Let \(X = \{i_b, i_{b'}, i_b', i_{b''}, i_b'', i_{b'}, j_b, j_{b'}\}\), with \(B = \{b, b'\}\), \(I = \{i, i', i'', j\}\), \(i(h_b) = h = i(h_{b'})\) for each \(h \in I\), and \(b(h_{b'}) = b''\) for each \(h \in I\) and \(b'' \in B\). We suppose that there are two types of agents—\(T = \{i, j\}\)—and that \(t(i) = t(i') = t(i'') = i\), while \(t(j) = j\). We suppose that agents have preferences

\[
\begin{align*}
P^i &: i_b \succ i_{b'} \succ \emptyset, \\
P^{i'} &: i'_b \succ \emptyset, \\
P^{i''} &: i''_b \succ \emptyset, \\
P^j &: j_b \succ j_{b'} \succ \emptyset.
\end{align*}
\]

We suppose further that \(b\) has two slots, \(s^1_b \succ^b s^2_b\), with priorities given by

\[
\begin{align*}
\Pi^{s^1_b} &: i_b \succ i'_b \succ i''_b \succ j_b \succ \emptyset, \\
\Pi^{s^2_b} &: j_b \succ i'_b \succ i''_b \succ \emptyset.
\end{align*}
\]

and that \(b'\) has one slot, \(s^1_{b'}\), with priority order identical to \(\Pi^{s^2_b}\),

\[
\Pi^{s^1_{b'}} &: i_b \succ j_b \succ i'_b \succ i''_b \succ \emptyset.
\]

In this example, the cumulative offer process outcome is \(\{i_b, j_b, i''_{b'}\}\). If the precedence
of slots s^1_b and s^2_b were reversed, however, the cumulative offer process outcome would be \{i_b, i'_b, j_W\}; hence i'' is made worse off following a decrease in the precedence of a slot that favors agents of type $i = t(i'')$.

\section{Proof of Proposition 2}

We first prove a lemma which shows that branch choice functions satisfy the \textit{irrelevance of rejected contracts} property of Aygün and Sönmez (2012b,a).

\textbf{Lemma D.1.} If $z' \notin C^b(Y \cup \{z, z'\})$, for some $z, z' \in X$ and $Y \subseteq X$, then $C^b(Y \cup \{z, z'\}) = C^b(Y \cup \{z\})$.

\textit{Proof.} We suppose that $z' \notin C^b(Y \cup \{z, z'\})$, and show the following claim.

\textbf{Claim.} Let $V^\ell_b(Z)$ denote the set V^ℓ_b defined in step $\ell - 1$ of the computation of $C^b(Z)$. Then, $V^\ell_b(Y \cup \{z, z'\}) = V^\ell_b(Y \cup \{z\}) \cup \{z'\}$.

\textit{Proof.} We proceed by induction. We have $V^1_b(Y \cup \{z, z'\}) = V^1_b(Y \cup \{z\}) \cup \{z'\}$ \textit{a priori}, so we assume that $V^\ell''_b(Y \cup \{z, z'\}) = V^\ell''_b(Y \cup \{z\}) \cup \{z'\}$ for all $\ell < \ell + 1$ for some $\ell > 0$. We now show that this hypothesis implies that $V^{\ell+1}_b(Y \cup \{z, z'\}) = V^{\ell+1}_b(Y \cup \{z\}) \cup \{z'\}$: Let $x' \equiv \max_{\Pi^\ell_b} (V^\ell_b(Y \cup \{z, z'\}))$. As $z' \notin C^b(Y \cup \{z, z'\})$, we must have $x' \neq z'$; hence,

$$ x' = \max_{\Pi^\ell_b} (V^\ell_b(Y \cup \{z, z'\}) \setminus \{z'\}) = \max_{\Pi^\ell_b} (V^\ell_b(Y \cup \{z\})) \quad (12) $$

by the inductive hypothesis. It then follows that

$$ V^{\ell+1}_b(Y \cup \{z, z'\}) = V^\ell_b(Y \cup \{z, z'\}) \setminus \{x'\} $$

$$ = (V^\ell_b(Y \cup \{z\}) \cup \{z'\}) \setminus \{x'\} $$

$$ = (V^\ell_b(Y \cup \{z\}) \setminus \{x'\}) \cup \{z'\} $$

$$ = V^{\ell+1}_b(Y \cup \{z\}) \cup \{z'\}, $$
where the second equality follows from the inductive hypothesis, and the fourth equality follows from (12). This completes our induction.

The claim implies the desired result, as it shows that

\[
C^b(Y \cup \{z, z'\}) = (Y \cup \{z, z'\}) \setminus V^b(Y \cup \{z, z'\})
\]

\[
= (Y \cup \{z, z'\}) \setminus (V^b(Y \cup \{z\}) \cup \{z'\})
\]

\[
= (Y \cup \{z\}) \setminus (V^b(Y \cup \{z\})) = C^b(Y \cup \{z\}).
\]

Now, we suppose that \(i(z), i(z') \notin i(Y)\), and that \(z \notin C^b(Y \cup \{z\})\). Supposing that \(z \in C^b(Y \cup \{z, z'\})\), we see by Lemma D.1 that \(z' \in C^b(Y \cup \{z, z'\})\). This implies immediately that \(i(z) \neq i(z')\), as no branch ever selects two contracts with the same agent.

Claim. For each \(\ell\) with \(1 \leq \ell \leq q^b\), let \(z^\ell\) and \(y^\ell\) be the contracts assigned to \(s^\ell\) in the computation of \(C^b(Y \cup \{z, z'\})\) and \(C^b(Y \cup \{z\})\), respectively. We have \(z^\ell \Gamma^b y^\ell\).

Proof. Let \(H^\ell_b(Z)\) denote the set \(H^\ell_b\) defined in step \(\ell\) of the computation of \(C^b(Z)\). We proceed by double induction: Clearly, either \(z^1 = \max_{\Pi^b^1} (Y \cup \{z, z'\}) = \max_{\Pi^b^1} (Y \cup \{z\}) = y^1\) or \(z^1 = \max_{\Pi^b^1} (Y \cup \{z, z'\}) = z', \) so \(z^1 \Gamma^b y^1\) and \(i(H^1_b(Y \cup \{z, z'\})) \subseteq i(H^1_b(Y \cup \{z\}) \cup \{z'\}).\) Thus, we suppose that \(z^\ell' \Gamma^b y^\ell\) and \(i(H^\ell_b(Y \cup \{z, z'\})) \subseteq i(H^\ell_b(Y \cup \{z\}) \cup \{z'\})\) for all \(\ell' < \ell\).

We have

\[
z^\ell = \max_{\Pi^b^\ell} \left(V^\ell_b(Y \cup \{z, z'\}) \right) = \max_{\Pi^b^\ell} \left((Y \cup \{z, z'\}) \setminus \left(Y_{i(H^{\ell-1}_b(Y \cup \{z, z'\}))} \right) \right),
\]

\[
y^\ell = \max_{\Pi^b^\ell} \left(V^\ell_b(Y \cup \{z\}) \right) = \max_{\Pi^b^\ell} \left((Y \cup \{z\}) \setminus \left(Y_{i(H^{\ell-1}_b(Y \cup \{z\}))} \right) \right).
\]
Since $i(z') \notin i(Y)$ and $i(z) \neq i(z')$, we have

$$\left(\left(Y \cup \{z\}\right) \setminus \left(Y_{i(H_b^{\ell-1}(Y \cup \{z\}))}\right)\right) = \left(\left(Y \cup \{z\}\right) \setminus \left(Y_{i(H_b^{\ell-1}(Y \cup \{z')\})}\right)\right) \subseteq \left(\left(Y \cup \{z\}\right) \setminus \left(Y_{i(H_b^{\ell-1}(Y \cup \{z\}))}\right)\right) \subseteq \left(\left(Y \cup \{z, z'\}\right) \setminus \left(Y_{i(H_b^{\ell-1}(Y \cup \{z, z'\}))}\right)\right),$$

where the first inclusion follows from the hypothesis that $i(H_b^{\ell-1}(Y \cup \{z, z'\})) \subseteq i(H_b^{\ell-1}(Y \cup \{z\}) \cup \{z'\})$.

The inclusion (13) implies that $z^s \Gamma_s y^f$. This observation completes the first part of the induction. Moreover, it quickly yields the second part. To see this, we observe that if $i(z^f) \notin i(H_b^{\ell-1}(Y \cup \{z\}))$, then either $z^f = z'$ or $z^f = y^f$, as $z^f \Gamma_s y^f$ and $i(z') \notin i(Y \cup \{z\})$. In either case, we have $i(H_b^f(Y \cup \{z, z'\})) \subseteq i(H_b^f(Y \cup \{z\}) \cup \{z'\})$. And finally, if $i(z^f) \in i(H_b^{\ell-1}(Y \cup \{z\}))$, then

$$i(H_b^f(Y \cup \{z, z'\})) = (i(H_b^{\ell-1}(Y \cup \{z, z'\})) \cup \{i(z^f)\})$$
$$\subseteq (i(H_b^{\ell-1}(Y \cup \{z\}) \cup \{z'\}) \cup \{i(z^f)\})$$
$$= (i(H_b^{\ell-1}(Y \cup \{z\})) \cup \{i(z')\} \cup \{i(z^f)\})$$
$$= (i(H_b^{\ell-1}(Y \cup \{z\})) \cup \{i(z')\})$$
$$\subseteq (i(H_b^f(Y \cup \{z\})) \cup \{i(z')\}) = (i(H_b^f(Y \cup \{z\}) \cup \{z'\}),$$

so the induction is complete.\footnote{Here, the first inclusion follows from the inductive hypothesis.}

Now, if $z \notin C^b(Y \cup \{z\})$, we know that for each $s \in S_b$, the contract y assigned to s in the computation of $C^b(Y \cup \{z\})$ must be higher-priority than z under Π^s, that is, $y \Pi^s z$. The preceding claim then shows that each such s must be assigned a contract y' in the computation of $C^b(Y \cup \{z, z'\})$ for which $y' \Gamma^s y \Pi^s z$. Thus, we must have $z \notin C^b(Y \cup \{z, z'\})$, contradicting our supposition to the contrary.