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1 Introduction

This paper is concerned with the following contracting problem: a principal owns a project

whose quality — viability, profitability, or difficulty — is unknown. Lacking the skills to directly

investigate the project’s quality, the principal must rely on an agent to experiment, i.e. to

exert (costly) effort over time to learn more about the project. Through time, beliefs about the

project’s quality evolve as a function of not only the agent’s effort but also the agent’s (persistent)

skill. The expected benefit of effort at any time depends on these beliefs: if, at some point, beliefs

about the project’s quality are sufficiently pessimistic relative to the agent’s skill, it would be

optimal to abandon the project altogether. Both the agent’s skill and his effort choice in any

period are unobservable to the principal, inducing both moral hazard and adverse selection.

These features are relevant in many contractual environments. Perhaps the most obvious

application is the design of incentives within or across organizations for research and development

(R&D) projects. A related application is the testing of a breakthrough product, e.g. investigating

potential side effects of a new drug. But there are other quite distinct applications: for example,

a firm or university may hire a recruiting agency to search for an external candidate for its CEO

or president position. The agency’s quality, the agency’s effort, and uncertain market conditions

determine when it is optimal to stop the search and just go with the best internal candidate.

Although dynamic moral hazard, adverse selection, and learning are essential features of

these agency relationships, there is virtually no existing theoretical work on contracting in such

environments. It bears emphasis that “learning” here refers not to the principal updating about

the agent’s type over time, but rather both parties updating about a persistent state variable

— the project’s quality — that affects the social value of effort. The socially optimal effort

profile is non-stationary across time, and private benefits are determined by a conjunction of

hidden information, hidden action, and evolving beliefs about the state. Consequently, these are

rich environments to contract in. How well can a principal incentivize the agent? What is the

nature of distortions, if any, that arise? What are the qualitative properties of optimal incentive

contracts?

Our main contribution is to provide answers to these questions in a simple yet canoni-

cal model of experimentation, the so-called “exponential bandit” model, which we now briefly

summarize.

Modeling framework. The project at hand may either be good or bad (a persistent state).

Time is discrete and of infinite horizon. In each period, the agent can either exert effort (work)

or not (shirk), a binary choice that is unobservable to the principal. The agent incurs a constant
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private cost in each period that he exerts effort. If the agent works in a period and the project is

good, the project is successful in that period with some constant probability; if either the agent

shirks or the project is bad, success cannot obtain in that period. Project success is publicly

observable and obviates the need for any further effort.1 The probability of success in a period

(conditional on the agent working and the project being good) depends on the agent’s persistent

skill or ability, which, as usual, we refer to as his type. This is a binary variable — ability is

either high or low — that is the agent’s private information at the time of contracting. Project

success yields a fixed social surplus that is directly accrued by the principal. Both parties are

risk neutral and discount the future at a common rate.

Social optimum. Consider the first-best solution, i.e. when the agent’s ability and effort are

observable. Beliefs about the project being good decline deterministically so long as effort has

been exerted but success not obtained. Since effort is costly, the social optimum is characterized

by a stopping time for each agent type: as a function of his ability, the agent keeps working

(so long as he has failed in the past, i.e. success has not been obtained) up until some point at

which the project is permanently abandoned. It turns out that the optimal stopping time is a

non-monotonic function of the agent’s ability. The intuition stems from two countervailing forces:

on the one hand, for any given belief about the project’s quality, a higher-ability agent has a

greater marginal benefit of effort (since conditional on the project being good, he succeeds with

a higher probability); but at any point in time, a higher-ability agent is also more pessimistic

about the project’s quality (conditional on having exerted effort at all prior periods) because the

informativeness of past failures about project quality is increasing in the agent’s ability.

Agency issues. The contracting problem entails hidden information at the time of contracting

(the agent’s ability), dynamic hidden action (effort is costly for the agent and unobservable to

the principal), and learning (both parties update over time about project quality and hence the

benefits of effort, as function of their beliefs about past effort and ability). The principal’s goal

is to maximize profits, and to do so, she can commit ex-ante to a dynamic contract that specifies

a sequence of transfers to the agent as a function of time and the publicly observable history,

viz. project success/failure.2 More precisely, since there is hidden information at the time of

contracting, the principal may offer the agent a menu of such dynamic contracts from which the

agent can choose one.

Let us highlight some of the complexities that arise in determining the optimal menu

1As we show, our analysis carries through without change if project success is only observed by the agent but
can be verifiably disclosed.

2Thus, we consider a setting with full commitment. Note that we do not impose limited liability, so transfers
can be to or from the agent, but there is an ex-ante individual rationality constraint.
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of contracts. First, the agent does not commit to an effort profile but rather chooses effort

in a sequentially optimal fashion. This implies that after accepting a particular contract, the

agent will generally choose different effort profiles depending on his ability, a key distinguishing

feature from a standard static adverse selection problem. Second, since the agent is getting more

pessimistic about the likelihood of project success over time (so long he has worked in prior

periods), the static incentive constraint for effort becomes more demanding over time. While

this suggests that it may be optimal to provide increasing rewards for success over time, there is

also a dynamic incentive constraint that the agent should not prefer to postpone current effort

to the future in order to benefit from a higher future reward for success. In other words, there

can be a dynamic agency cost : the presence of a future reward for success makes it less costly

for the agent to forego a present reward for success and hence harder to prevent the agent form

shirking in the present. Third, in addition to the pre-contractual hidden information about

the agent’s ability, there is also the possibility of post-contractual hidden information regarding

beliefs about project quality.3 In particular, the principal’s and the agent’s beliefs about project

quality would diverge whenever the agent deviates by either choosing a different contract from

the menu than he is intended to and/or by shirking when the principal expects him to work.4 All

these elements come into play when determining how to minimize the “information rent” that a

menu of contracts provides the agent.

Results. In an optimal menu of contracts, the principal screens the agent types by offering two

distinct contracts that satisfy the relevant self-selection or incentive compatibility constraints.

Each type’s contract induces him to work for a sequence of consecutive periods (so long as success

has not been obtained) until when he abandons the project by permanently shirking. Compared

to the social optimum, there is a distortion in the stopping time: while the high-ability type’s

stopping time is efficient, the low-ability type stops experimentation too early. Although this

resembles the familiar “no distortion at the top but distortion below” in static models of adverse

selection, such an analogy is rather incomplete because of the varied considerations noted above;

we elaborate further later in the paper. Note that this implies that it is never optimal to simply

“sell the project to the agent”, because doing so would induce the socially optimal stopping times

by all agent types.

We show how to implement the optimal solution in two different and economically inter-

esting ways: a menu of bonus contracts and a menu of clawback contracts.5 In a bonus contract,

3Post-contractual hidden information is sometimes referred to as “hidden knowledge” or “moral hazard with
hidden information” (e.g. Hart and Holmstrom, 1987).

4Of course, in an optimal menu of contracts, such deviations will not occur; however, these off-path consider-
ations matter when determining what the optimal menu is.

5To interpret the description below, note that we normalize the agent’s reservation utility to zero (independent
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the agent pays the principal an up-front fee and is then rewarded with a time-varying bonus

for project success. The sequence of bonuses (of which at most one is ever paid) is increasing

over time up until some point when it drops to zero; this induces the desired stopping time.

We characterize the exact sequence of bonuses that are optimal for the principal. One way of

interpreting bonus contracts is that the principal sells the project to the agent at the outset for

a specified price, but commits to buy back the project’s output (which obtains with a success)

at time-dated future prices, so long as output is obtained by a certain date. Note that in this

interpretation, the project’s output is only valuable to the principal, not otherwise to the agent.

By contrast, in a clawback contract, the principal pays the agent an up-front amount,

which can be viewed as a pre-payment for future success. Then, in each period in which a

success does not obtain (and has not already obtained in the past), the agent is required to pay

the principal some particular amount, up until some point when these payments stop; this induces

the desired stopping time. We characterize the exact sequence of payments from the agent to the

principal that must be used in such optimal contracts: the payment sequence increases over time

with a jump at the termination date. We call this a “clawback contract” based on the idea that

clawbacks in practice involve recouping a payment already made to the agent (sometimes with

added penalties) when there is some, perhaps inconclusive, evidence of the agent’s negligence. In

the present context, the evidence is the lack of project success; it is important to note, however,

that, in equilibrium, the agent does not shirk before the induced stopping time.

Related Literature. This paper fits into the literature on dynamic moral hazard, to which

there have been a number of contributions in recent years, particularly with the proliferation

of continuous-time methods. Most papers in this literature ignore adverse selection, but excep-

tions include Sannikov (2007), Fong (2009), and Gershkov and Perry (2012). The environments

considered by these authors do not involve learning or experimentation, which is our focus.

While we are not aware of any other paper that studies contracting with dynamic moral

hazard, adverse selection, and experimentation, it is useful to relate our work to other research

on contracting for experimentation.6 Manso (2011) studies a setting in which a principal must

not only incentivize an agent to work rather than shirk, but also to work on experimentation

rather than exploitation in the usual sense of “two-arm bandit” models. The latter concern —

which we do not have — is central to his main insights. He studies a two-period model and does

not have adverse selection (instead, he has limited liability); hence, the focus is quite different.

of his type).
6Beyond contracting settings, a number of authors have studied games where players experiment with ex-

ponential “bandits”, such as Keller et al. (2005), Strulovici (2010), Bonatti and Horner (2011), and Garfagnini
(2011).
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Somewhat closer to our setting is Hörner and Samuleson (2012), who identify the dynamic agency

cost mentioned earlier (see also Bhaskar, 2009). Again, they do not have adverse selection, which

is an essential component of our analysis. They examine rather different aspects of agency by

assuming that the agent cannot exert effort in any period without a fixed amount of funding in

that period from the principal. Thus, they are interested in applications such as venture capital

financing (Bergemann and Hege, 1998, 2005), whereas we are interested in applications where

the principal initially owns the project or the agent cannot directly accrue the full social benefits

from project success. In this respect, we are closer to Besanko et al. (2012), but their framework

does not have moral hazard and instead focuses on issues of ambiguity. Finally, another related

paper is Gerardi and Maestri (2011). They analyze how an agent can be incentivized to acquire

and truthfully report information over time using payments that compare the agent’s reports

with the ex-post observed state of nature. Their baseline model does not have adverse selection;

in an extension they consider adverse selection in terms of the agent’s beliefs about the state

rather than the agent’s ability.

2 The Model

Environment. A principal needs to hire an agent to work on a project. The project’s quality

— synonymous with the state of nature — may either be good or bad, s ∈ {0, 1}, where s = 1

represents “good”. The common prior on the project being good is β0 ∈ (0, 1). The agent is

privately informed about whether his ability is high or low, θ ∈ {L,H}, where θ = H represents

“high”. The common prior on ability being high is µ0 ∈ (0, 1). In each period, t ∈ {1, 2, . . .}, the

agent can either exert effort (work) or not (shirk); this choice is never observed to the principal.

Exerting effort in any period costs the agent c > 0. If effort is exerted and the project is good, the

project is successful in that period with probability λθ; if either the agent shirks or the project is

bad, success cannot obtain in that period. Success is observable and once a project is successful,

no further effort can be exerted.7 We assume 1 > λH > λL > 0. A success yields the principal a

payoff normalized to 1; the agent does not intrinsically care about project success. Both parties

are risk neutral, share a common discount factor δ ∈ (0, 1), and are expected utility maximizers.8

7What is important is that effort has no social value after a single success; it is inessential but convenient to
assume that the agent simply cannot exert any further effort. In particular, this means that whenever we make
statements about effort being exerted in any period, it is implicit that the project has not already succeeded.
More importantly, it will turn out that our results can be applied without change if success is privately observed
by the agent but can be verifiably disclosed; see Section 5.

8The substance of our analysis and results also hold when δ = 1, as we will discuss; however, we assume δ < 1
to avoid some expositional inconveniences in formal statements.
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Contracts. We consider contracting at period zero with full commitment power from the prin-

cipal. Since there is hidden information at the time of contracting, without loss of generality

the principal’s problem is to offer the agent a menu of dynamic contracts from which the agent

chooses one. A dynamic contract specifies a sequence of transfers in each period as a function of

the publicly observable history, which is simply whether or not the project has been successful

to date. For some applications, it would be natural to assume that once the agent has accepted

a contract, he is free to work or shirk in any period (at least up until some termination date). It

turns out, however, to be analytically convenient to consider a larger set of contracts in which the

principal can stipulate binding “lockout” periods in which the agent is prohibited from working.

Our preferred interpretation is that this is a relaxed problem. We will show that the solution to

this relaxed problem can be implemented using contracts in which there are no lockout periods;

consequently, the solution also solves the problem where the principal cannot prohibit the agent

from working in any period. Throughout, we follow the convention that transfers are from the

principal to the agent; negative values represent payments in the other direction.

Accordingly, a contract is given by C = (W0,b,w,Γ), where W0 is an up-front transfer

at period zero, b = (bt)t∈Γ is a transfer conditional on the the project being successful in period

t, w = (wt)t∈Γ is a transfer conditional on the project not being successful in period t (nor in

any prior period), and Γ is the set of periods at which the agent is not locked out, i.e. at which

he is allowed to choose whether to work or shirk, so long as there has not been a prior success.9

For ease of exposition, we refer to any bt as a bonus and any wt as a penalty ; note, however,

that bt is not constrained to be positive nor must wt be negative. Note also that Γ ⊆ N can be

an arbitrary set and, aside from the initial time zero transfer, transfers are only made during

periods in Γ, i.e. when the agent makes a choice of whether to work or shirk.10 We say that a

contract is connected if Γ is a connected set, i.e. if Γ = {1, . . . , T} for some T ; in this case we

refer to T as the length of the contract. The agent’s actions are denoted by a = (at)t∈Γ, where

at = 1 if the agent works in period t ∈ Γ and at = 0 if the agent shirks.

Payoffs. Given the agent’s type θ, a contract C = (W0,b,w,Γ), and a sequence of actions

a = (at)t∈Γ, the principal expected discounted payoff at time zero is

Πθ
0 (C, a) = β0

∑
t∈Γ

δt

[ ∏
s∈Γ,s≤t−1

(
1− asλθ

)] [
atλ

θ (1− bt)−
(
1− atλθ

)
wt
]
−(1−β0)

∑
t∈Γ

δtwt−W0.

(1)

9Throughout this paper, symbols in bold typeface denote vectors.
10It is straightforward to confirm that there is no loss of generality in assuming that there are no transfers in

any period after the project has succeeded and in also assuming that there are no transfers in lockout periods.
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To interpret the above formula, note that W0 is the up-front payment that is always made. With

probability 1−β0 the state is bad, in which case the project never succeeds and the principal also

pays the agent the entire sequence (wt)t∈Γ. Conditional on the state being good (which occurs

with probability β0), the probability of project success depends on both the agent’s effort choices

and his ability;
∏

s∈Γ,s≤t−1

(
1− asλθ

)
is the probability that a success does not obtain between

period 1 and t− 1 conditional on the good state. If the project were to succeed at time t, then

the principal would earn a payoff of 1 in that period and would have paid the agent not only the

up-front payment but also the sequence (ws)s∈Γ,s≤t−1 followed by bt.

Through analogous reasoning, the agent’s expected discounted payoff at time zero from

the contract C and action profile a is

U θ
0 (C, a) = β0

∑
t∈Γ

δt

[ ∏
s∈Γ,s≤t−1

(
1− asλθ

)] [
at(λ

θbt − c) +
(
1− atλθ

)
wt
]
+(1−β0)

∑
t∈Γ

δt (wt − atc)+W0.

(2)

If a contract is not agreed upon, we normalize both the principal’s and the agent’s payoff

to be zero.

3 Benchmarks

This section presents preliminaries concerning efficiency benchmarks and simple classes of con-

tracts.

3.1 The First Best

Consider the first-best solution. Since beliefs about the project quality (i.e. the state being

good) decline so long as effort has been exerted but success not obtained, the first-best solution

is characterized by a stopping rule such that an agent of ability θ keeps exerting effort so long as

success has not obtained up until some period tθ, whereafter effort is no longer exerted. Let βθt

be the belief on the state being good, s = 1, at the beginning of period t, and β
θ

t be this belief

when the agent has exerted effort in all periods up to time t. The optimal stopping time tθ is

given by

tθ = max
t≥0

{
t : β

θ

tλθ ≥ c
}
, (3)
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where, for each θ, β
θ

0 = β0, and for t ≥ 1, Bayes’ rule yields

β
θ

t =
β0

(
1− λθ

)t−1

β0 (1− λθ)t−1 + (1− β0)
. (4)

Note that (3) is only well-defined when c
λθ
≤ β0; if c

λθ
> β0, it would be optimal to never

experiment, i.e. stop at tθ = 0. To focus on the most interesting cases, we assume the following:

Assumption 1. Experimentation is efficient for both types: for θ ∈ {L,H}, β0λ
θ > c.

Note that in particular, this implies c < 1, where 1 is the social benefit from project

success. Purely for expositional convenience, we also assume that parameter values are such that

β
θ

tθ = c
λθ

. Then, (3) and (4) imply that the optimal stopping time for type θ is

tθ = 1 +
log
(

c
λθ−c

1−β0

β0

)
log (1− λθ)

. (5)

The right-hand side of (5) is non-monotonic in λθ; it is initially increasing and eventually de-

creasing. The reason is that there are two countervailing forces: on the one hand, for any given

belief about the state, the expected marginal benefit of effort is higher when the agent’s ability is

higher; on the other hand, the higher is the agent’s ability, the more informative about the state

is any previous lack of success (given that effort has been exerted), which pushes down the belief

about the state (and hence the expected marginal benefit of effort) at any time t > 1. Therefore,

both tH > tL and tL < tH are robust possibilities that arise for different parameters.

In this draft, we focus on the subset of the parameter range where it is efficient for the

high type to work longer than the low type, condition on no prior success. In other words, we

assume:

Assumption 2. Parameters are such that tH > tL.

The case of tH < tL is also relevant and will be included in future versions of this paper.

Note that the first-best expected discounted surplus at time zero is

tθ∑
t=1

δt
[
β0

(
1− λθ

)t−1 (
λθ − c

)
− (1− β0)c

]
.
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3.2 No Adverse Selection

In the absence of adverse selection the principal can implement the first-best solution and extract

all the surplus. A variety of contracts can be used to achieve this; we discuss two classes of

relatively simple contracts that will be useful in the subsequent analysis with adverse selection.

3.2.1 Bonus contracts

First consider contracts where once experimentation begins, the only transfers are payments to

the agent made when he obtains a success by some deadline.

Definition 1. A bonus contract is C = (W0,b,w,Γ) such that wt = 0 for all t ∈ Γ. A bonus

contract is a constant-bonus contract if, in addition, Γ = {1, . . . , T} for some T and there is some

constant b such that bt = b for all t = 1, . . . , T .

While a general bonus contract rewards the agent with a time-dependent bonus for success,

a constant-bonus contract is connected and pays the same reward independent of when success

is obtained up until the deadline. To ease notation, we will denote a bonus contract as just

C = (W0,b,Γ), a connected bonus contract as C = (W0,b, T ), and a constant-bonus contract

as C = (W0, b, T ).

We now argue that when the agent’s ability is observable, constant-bonus contracts are

optimal for the principal. Suppose the principal offers the agent of type θ a constant-bonus

contract Cθ = (W θ
0 , 1, t

θ), where W θ
0 is chosen such that, conditional on the agent exerting effort

in all periods t = 1, . . . , tθ, the type θ agent’s participation constraint at time 0 binds:

U θ
0

(
Cθ, (1)t

θ

t=1

)
=

tθ∑
t=1

δt
[
β0

(
1− λθ

)t−1 (
λθ − c

)
− (1− β0)c

]
+W θ

0 = 0.11

By offering such a constant-bonus contract with a bonus of 1 and making the participation

constraint bind, the principal effectively sells the project to the agent at a price that extracts

all the surplus. Plainly, this achieves the first-best level of experimentation and the principal

cannot improve on this.

11On the left hand side, the notation (1)t
θ

t=1 denotes the action profile where the agent works in all periods from
1 to tθ.
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3.2.2 Clawback contracts

Now consider contracts where the agent receives no payments for success, and instead is penalized

when there is a failure (i.e. success does not obtain). Such a contract will satisfy the agent’s

participation constraint only if he is paid some positive amount at time zero, which motivates

the terminology of “clawbacks”. Formally:

Definition 2. A clawback contract is C = (W0,b,w,Γ) such that bt = 0 for all t ∈ Γ. A

clawback contract is a onetime-clawback contract if, in addition, Γ = {1, . . . , T} for some T and

wt = 0 for all t = 1, . . . , T − 1.

We highlight that a clawback contract allows for |wt| > W0 in any t, i.e. clawbacks

should be understood as allowing for penalties larger than what the agent initially received

from the principal at time zero. Unlike bonus contracts (where at most one bonus is ever

paid), a general clawback contract involves the possibility of transfers in multiple periods after

experimentation has begun; in particular, in a connected clawback contract of length T , the

agent may be penalized for failure in every period from 1 to T . However, in a onetime-clawback

contract, this is not the case because the agent makes only one payment, which is at time

T (conditional on no success up to that point). To ease notation, we will denote a clawback

contract as just C = (W0,w,Γ), a connected clawback contract as C = (W0,w, T ), and a

onetime-clawback contract as C = (W0, wT , T ).

Given observable types, suppose the principal offers a type θ agent a onetime-clawback

contract Cθ = (W θ
0 , w

θ
tθ
, tθ) where W θ

0 is chosen such that, conditional on the agent exerting

effort in all periods t = 1, . . . , tθ, the agent’s participation constraint at time 0 binds:

U θ
0

(
Cθ, (1)t

θ

t=1

)
= W θ

0−c

 tθ∑
t=1

δt
(
β0

(
1− λθ

)t−1
+ (1− β0)

)−wθtθδtθ (β0(1− λθ)tθ + (1− β0)
)

= 0.

First best requires the agent to work in all periods until tθ so long as success has not been

obtained. From the one-step deviation principle, the incentive compatibility conditions for effort

are summarized by the following inequality: for any t ∈ {1, . . . , tθ},

λθβ
θ

t

δtθ−t (1− λθ)tθ−t (−wθtθ)+
tθ∑

s=t+1

δs−t
(
1− λθ

)s−t−1
c

 ≥ c. (6)

The right-hand side of (6) is the constant cost of effort. The left-hand side is the benefit of

effort at any time t (given that effort has been exerted and success not obtained at all prior

10



periods): with probability λθβ
θ

t there will be a success in period t and the agent saves both

the expected discounted penalty, δt
θ−t (1− λθ)tθ−t (−wθ

tθ

)
, and the expected discounted cost of

future effort,
tθ∑

s=t+1

δs−t
(
1− λθ

)s−t−1
c. It follows that the agent will work in all periods if wθ

tθ
is

chosen low enough, i.e., the clawback penalty is large enough. In this case, the first best is again

implemented and the principal extracts all the surplus.

3.3 No Moral Hazard

Suppose there were adverse selection but the agent’s effort is observable (and contractible). Then,

since one can ignore the incentive compatibility for effort constraints, the principal’s problem

reduces to optimize over how long each type should work conditional on not obtaining success,

subject to time zero participation constraints and the incentive compatibility constraints that

each type should not choose the other’s contract. This is analogous to a standard monopolist

screening problem where the stopping time maps into “quantity” and the time-zero transfer maps

into “price”. It is routine to check that the standard sorting condition of increasing differences

holds.12 Hence, modulo time (i.e. “quantity”) being discrete, an optimal contract can be derived

from textbook arguments, with the conclusion that the high type’s stopping time would be

efficient while the low type’s stopping time would generally be inefficiently early.

4 Optimal Contracts

With the preceding preliminaries in hand, we turn to our main results on optimal contracts for

experimentation with both adverse selection and moral hazard.

Given any contract C = (W0,b,w,Γ), define αθ (C) =
(
aθt (C)

)
t∈Γ

as an optimal action

12Denote a type θ agent’s utility from being required to work until time T (conditional on no prior success) as
v(T, θ); this is gross any time-zero transfer. From (2), we compute

v(T, θ) = −c

(
β0

T∑
t=1

δt(1− λθ)t−1 + (1− β0)

T∑
t=1

δt

)
.

Hence, for any T ′ > T ,

v(T ′, H)− v(T,H)− [v(T ′, L)− v(T, L)] = cβ0

T ′∑
t=T+1

δt
[(

1− λL
)t−1 − (1− λH)t−1] > 0.
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plan for type θ.13 That is, for θ ∈ {H,L},

αθ (C) ∈ arg max
a=(at)t∈Γ

U θ
0 (C, a) , (7)

where U θ
0 (·) was defined in (2). An optimal menu of contracts, (CH ,CL) maximizes the princi-

pal’s ex-ante expected profit subject to incentive compatibility constraints for effort (ICθ
a below),

participation constraints (IRθ below), and self-selection constraints for the agent’s choice of con-

tract (ICθ,θ′ below). Formally, recalling the definition of Πθ
0(·) from (1), the principal’s program

is:

max
(CH ,CL,aH ,aL)

µ0ΠH
0

(
CH , aH

)
+ (1− µ0) ΠL

0

(
CL, aL

)
subject to, for all θ, θ′ ∈ {H,L},

aθ ∈ arg max
a=(at)t∈Γθ

U θ
0

(
Cθ, a

)
, (ICθ

a)

U θ
0

(
Cθ, aθ

)
≥ 0, (IRθ)

U θ
0

(
Cθ, aθ

)
≥ U θ

0

(
Cθ′ ,αθ

(
Cθ′
))

. (ICθ,θ′)

It is instructive to contrast the above problem with that in the absence of moral haz-

ard (Subsection 3.3). Dynamic moral hazard is reflected directly in the constraints (ICθ
a) and

indirectly in the constraints (ICθ,θ′) via the term αθ(Cθ′). To get a sense of how these matter,

begin with the obvious point that it is no longer sufficient for the principal to only use time-zero

transfers since the agent will not work along the course of the contract unless incentivized to do

so at each period. Note that the agent’s incentive to work at any time t is shaped not only by

period t transfers (bt and wt) but also by the subsequent sequences of transfers. For example,

ceteris paribus, a penalty for failure at period t + 1, wt+1 < 0, creates an incentive to work in

period t, whereas a bonus for success in period t + 1, bt+1 > 0, creates an incentive to shirk in

period t. Incentives at any point in time also depend on both the current and future beliefs about

the state, which is different for the two agent types. Incentives further differ across the two types

because their marginal benefit of effort conditional on the good state is different. Consequently,

the optimal plan of action for a given contract will generally be different for the two types of the

agent.

Therefore, in the presence of dynamic moral hazard, the analogy suggested in Subsec-

13If there are multiple optimal action plans, any selection may be used.
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tion 3.3 becomes rather limited: the principal must use a much richer set of instruments than

merely setting a “price” to optimally incentivize the agent who intrinsically dislikes consuming

more “quantity”. Notwithstanding, our main efficiency result is:

Theorem 1. In any optimal menu of contracts, each type θ ∈ {H,L} is induced to work in

every period up until some second-best stopping time, t
θ
. Relative to the first-best stopping times,

tH and tL, the second-best has t
H

= tH and t
L ≤ tL; moreover, at the limit when time becomes

continuous, t
L
< tL.14

Relative to the first best, there is no distortion in the stopping time of the high ability

agent whereas the low ability agent stops experimenting too early. In this sense, despite the

complications arising from dynamic moral hazard, we recover a familiar “no distortion (only)

at the top” result. For typical parameters, the induced stopping time for the low type is some

t
L ∈ (0, tL); however, it is possible that the low type will be induced to not experiment at all

(t
L

= 0) and it is also possible to have no distortion in the low type’s stopping time (t
L

= tL).

The former possibility arises for reasons akin to exclusion in the standard model (e.g. the prior,

µ0, on the high type is sufficiently high); the latter possibility is because time is discrete. Indeed,

when the interval between any two periods gets sufficiently small, some distortion must obtain.

While the efficiency properties of Theorem 1 are familiar, deriving them in our framework

is novel. We establish these properties through a characterization of a class of optimal menus:

Theorem 2. There is an optimal menu in which the principal separates the two types using

connected clawback contracts. In particular, the optimum can be implemented using a onetime-

clawback contract for type H, CH = (WH
0 , w

H
tH , t

H) with wHtH < 0 < WH
0 , and a connected claw-

back contract for type L, CL = (WL
0 ,w

L, t
L
), where for all t ∈ {1, . . . , tL},

wLt =


− (1− δ) c

β
L
t λ

L
if t < t

L
,

− c

β
L

tL
λL

if t = t
L
,

(8)

and WL
0 > 0 is such that the participation constraint, (IRL), binds. Type H gets an information

rent: UH
0 (CH ,αH(CH)) > 0.

Proof. See Appendix A. Q.E.D.

Within the class of clawback contracts, Theorem 2 characterizes what is essentially the

14To add: details of how the continuous-time limit is formalized.
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(generically) unique optimal contract for the low type.15 Notice from (8) that for any δ, it is

a clawback contract in which the agent pays the principal an increasing penalty in each period

t < t
L

at which the project does not succeed (since β
L

t > β
L

t+1), followed by a larger penalty that

“jumps” in the final period t
L

conditional on no success then.16 At the limit of δ → 1, i.e. when

there is no discounting, this contract reduces to a onetime-clawback contract where the low type

only pays the penalty if he has not succeeded by t
L
.17 For any δ, the high type’s contract is a

onetime-clawback contract in which he only pays a penalty to the principal if there is no success

by the efficient stopping time tH . Per Theorem 1, both types exert effort in every period until

their respective stopping times.

Remark 1. Since the optimal contracts in Theorem 2 are connected clawback contracts in which

the agent exerts effort in each period up until some deadline, it follows immediately that the

principal does not need to use the instrument of locking the agent out in any period; rather, by

simply providing no transfers after each contract’s deadline, it would be incentive compatible for

the agent to stop exerting effort at the deadline.

4.1 Sketch of Solution

As the proof of Theorem 2 (and hence Theorem 1) is a central contribution of this paper, we now

sketch in some detail the steps involved. Recall that a general menu of contracts is (CH ,CL)

where for each θ ∈ {H,L}, Cθ = (W θ
0 ,b

θ,wθ,Γθ).

Step 1: It is without loss to focus on contracts for type L that induce him to work in

every non-lockout period, i.e. on contracts in the set {CL : αL(CL) = (1)t∈ΓL}. The idea is

as follows: fix any contract, CL, in which there is some period, t ∈ ΓL, such that it would be

suboptimal for type L to work in period t. Since the outcome for type L in period t is then

deterministic (the project will not succeed in period t), one can modify CL to create a new

contract, ĈL, in which t /∈ Γ̂L, and wLt is “shifted up” by one period with an adjustment for

discounting. This ensures that the incentives for type L in all other periods remain unchanged,

and critically, that no matter what behavior would have been optimal for type H under contract

CL, the new contract is less attractive to type H, i.e. for any αH(CL) and any αH(ĈL),

UH
0 (CL,αH(CL)) ≥ UH

0 (ĈL,αH(ĈL)).

Step 2: It is without loss to focus on contracts in which there are no bonuses, i.e. to

15The proof of Theorem 2 reveals that there is generically a unique optimal value of t
L

, even though there is
no closed form solution.

16By “jump” here we refer to the fact that for any period t < t
L

, wLt β
L

t = (1− δ)wL
t
Lβ

L

t
L .

17Note that the value of t
L

generally depends on δ, but always remains weakly smaller than tL by Theorem 1.
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optimize over menus of (not necessarily connected) clawback contracts. To see the intuition

for why clawback contracts suffice, consider for simplicity a connected contract Cθ for some

θ ∈ {H,L} in which Γθ = {1, . . . , T}. We build a new contract Ĉθ in which Γ̂θ = Γθ, but b̂θT = 0

and ŵθT = wθT − bθT . Clearly, for either type, the incentive to work in period T is identical under

these two contracts. On the other hand, because the continuation value from reaching period T

has been reduced, effort incentives in the previous periods have been affected. But this can be

fully corrected by setting ŵθT−1 = wθT−1 + δbθT . The procedure can now be iterated backward so

that b̂θt = 0 for all t ∈ {1, . . . , T}, yet αθ′(Ĉθ) = αθ′(Cθ) for each θ′ ∈ {H,L}. Furthermore, this

implies that the principal’s expected payoff evaluated at time zero is the same from either type

under both Cθ and Ĉθ.

The gain in focussing on clawback contracts is that raising incentives for effort in any

period t through the penalty for failure in that period, i.e. reducing wt, has a positive feedback

on incentives for effort in earlier periods, because this only reduces the continuation value for the

agent from reaching period t. By contrast, incentive provision through a bonus has a negative

feedback on effort incentives in earlier periods: raising the reward for success, bt, increases the

continuation value for the agent from reaching period t. For this reason, dealing with the dynamic

moral hazard problem is analytically more convenient under clawback contacts.18

Step 3: Based on the above two steps, the principal can optimize over menus of clawback

contracts in which the low type’s contract induces him to work in every (non-lockout) period,

subject to, for each θ ∈ {H,L}, (ICθ
a), (IRθ), and (ICθ,θ′). Call this program [P]. Since it is

daunting to determine a priori which constraints in this program bind, we focus instead on a

relaxed program, [RP1], that (i) ignores (IRH) and (ICLH), and (ii) replaces (ICHL) by a relaxed

version, called (Weak-ICHL) that only requires that type H should not want to deviate to the L

type’s contract assuming that type H would work in all periods after taking type L’s contract.19

In the relaxed program [RP1], it is straightforward to show that Weak-ICHL and IRL must

bind at an optimum: otherwise, time-zero transfers in one of two contracts can be profitably

lowered without violating any of the constraints. Consequently, one can substitute from the

binding version of these constraints to rewrite the objective function as the sum of total surplus

less an “information rent” for the high type, as in the standard approach.20 We are left with

18Although, we will show subsequently that the optimum can also be implemented via bonus contracts.
19Formally, in light of other constraints, (ICHL) requires UH0 (CH ,αH(CH)) ≥ UH0 (CL,αH(CL)) whereas

(Weak-ICHL) requires only UH0 (CH ,αH(CH)) ≥ UH0
(
CL,1

)
. Note that the latter does not imply the former in

an arbitrary contract CL with αL(CL) = 1, because it need not be the case that αH(CL) = 1. To illustrate this
point, consider a limit case of parameters β0 = 1 and λH = 1. Then, for any λL < 1, c > 0, and δ ∈ (0, 1), in a
onetime-clawback contract with a sufficiently negative penalty in period 2, type L would find it optimal to work
in both periods whereas type H would work in period 2 but not in period 1.

20It is worth emphasizing, however, that this approach only works in the relaxed program, [RP1]. In the full
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a relaxed program, [RP2], whose objective is to maximize social surplus less the high type’s

information rent, and whose only constraints are the direct moral hazard constraints ICH
a and

ICL
a , where type L must work in all periods. This program is tractable because it can be solved

by separately optimizing over each type’s clawback contract. The following steps, 4–7, derive an

optimal contract for type L in program [RP2] that has useful properties.

Step 4: We show that there is an optimal clawback contract for type L that is connected.

A rough intuition is as follows.21 Because type L is required to work in all non-lockout periods,

the value of the objective function in program [RP2] can be improved by removing any gaps

in ΓL in one of two ways: either by “shifting up” the sequence of effort and penalties or by

terminating the contract early (suitably adjusting for discounting in either case). Shifting up

the sequence of effort and penalties eliminates inefficient delays in type L’s experimentation, but

it also increases the rent given to type H, because the penalties — which are more likely to

be borne by type L than type H — are now paid earlier. Conversely, terminating the contract

early reduces the rent given to type H by lowering the total penalties in the contract, but it

also shortens experimentation by type L. It turns out that either of these modifications may be

beneficial (i.e. increase the value of the objective function of [RP2]), but critically, at least one

of them will be.

Step 5: Given any TL, there are many penalty sequences that can be used by a connected

clawback contract of length TL to induce the low-ability agent to work in each period 1, . . . , TL.

We construct the unique sequence, call it w(TL), that ensures that the low type’s incentive

constraint for effort binds in each period 1, . . . , TL. The intuition is straightforward: in the

final period, TL, there is obviously a unique such penalty, as it must solve wLTL(TL) = −c +

(1 − β
L

TLλ
L)wLTL(TL). Iteratively working backward using a one-step deviation principle, this

pins down penalties in each earlier period through the (forward-looking) incentive constraint for

effort in each period. Naturally, for any TL and t ∈ {1, . . . , TL}, wLt (TL) < 0, i.e. as suggested

by the term “penalty”, the agent pays the principal each time there is a failure.

Step 6: We next show that there is a connected clawback contract for type L that solves

program [RP2] using the Step 5 penalty structure wL(·). An intuition is that if type H were to

take type L’s clawback contract, he could work in each period and obtain some rent because he

is less likely to have to pay the penalty in any period.22 Any slack left in type L’s contract with

program [P], one cannot directly establish that either (IRL) or (ICHL) must bind. This contrast with the standard
approach is because of dynamic moral hazard.

21For the intuition that follows, assume that all penalties being discussed are negative transfers, i.e. transfers
from the agent to the principal.

22As previously noted, it may not be optimal for type H to work in each period when taking type L’s contract,
but recall that program [RP2] effectively constrains type H to only such deviations.
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regards to type L’s incentive constraints for effort only increases the rent that can be obtained

by type H.

Step 7: In light of Steps 4–6, an optimal contract for type L in program [RP2] can be

found by just choosing the optimal length of connected clawback contracts with the penalty

structure wL(·). We show that the optimal length, t
L
, cannot be larger than the first-best

stopping time: t
L ≤ tL. This is derived from a standard monotone comparative statics argument.

The intuition is that since the principal distorts the stopping time for type L only to reduce the

rent given to type H, incentivizing over-experimentation cannot be optimal since that would

only increase the scope for rent.

Step 8: Let C
L

be the contract for type L identified in Steps 4–7.23 The final step is to

show that there is a solution to [RP2] that combines C
L

with a suitable onetime-clawback contract

for the high type and also solves the original program [P]. First, we show that αH(C
L
) = 1, i.e.

if type H were to take contract C
L
, it would be optimal for him to work in all periods 1, . . . , t

L
.

The intuition is as follows: under contract C
L
, type H has a higher expected probability of

success from working in any period t ≤ t
L
, no matter his prior choices of effort, than does type

L in period t given that type L has exerted effort in all prior periods (recall αL(C
L
) = 1).24

Consequently, the fact that C
L

makes type L indifferent between working and shirking in each

period up to t
L

(given that he has worked in all prior periods) implies through a recursive

induction argument that type H would find it strictly optimal to work in each period up to t
L

no matter his prior history of effort, and hence αH(C
L
) = 1. It then follows that if type H’s

contract is chosen to satisfy (Weak-ICHL) then it will also satisfy (ICHL) and (IRH); the latter

because UH
0 (C

L
,1) ≥ UL

0 (C
L
,1).

Lastly, we show that by choosing a onetime-clawback contract for type H that imposes

a sufficiently severe penalty in period tH and compensating type H through the initial transfer

WH
0 , the principal maximizes the social surplus from the high type, satisfies (Weak-ICHL), and

also satisfies (ICLH). In particular, (ICLH) is satisfied because the principal can exploit the

two types’ differing probabilities of success by making the onetime-clawback contract for type

H “risky enough” to deter type L from taking it while still satisfying (Weak-ICHL) and hence

(IRH).

23The initial transfer in C
L

is set to make the participation constraint for type L bind.
24This relies on Step 7 showing that t

L ≤ tL, because then tH > tL implies that for any t ∈ {1, . . . , tL},
βHt λ

H > β
L

t λ
L for any history of effort by type H in periods 1, . . . , t− 1.
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4.2 Bonus Contracts

While Theorem 2 shows that the second-best can be implemented using a menu of clawback

contracts, it is also of interest whether bonus contracts can be used.

Theorem 3. The second-best can also be implemented using a menu of bonus contracts. In partic-

ular, the principal can use the following connected bonus contract for type L: CL = (WL
0 ,b

L, t
L
),

where, for any t ∈ {1, . . . , tL},

bLt = (1− δ)c
t
L−1∑
s=t

δs−t
(
β
L

t λ
L
)−1

+ δt
L−tc

(
β
L

t
LλL

)−1

, (9)

and WL
0 is such that the participation constraint, (IRL), binds. For the high type, the principal

can use a constant-bonus contract CH = (WH
0 , b

H , tH) with a suitably chosen WH
0 and bH > 0.

Proof. See Appendix B. Q.E.D.

Comparing (8) and (9) reveals that type L’s bonus sequence in the contract of Theorem 3

and his penalty sequence in the contract of Theorem 2 have the following relationship: for all

t ∈ {1, . . . , tL},

bLt =
t
L−1∑
s=t

δs−t(−wLs ) + δt
L−t(−wL

t
L). (10)

In particular, as is intuitive, bL
t
L = −wL

t
L , since type L’s effort incentive in the final period depends

on the difference between the bonus and the penalty in that period. In earlier periods, comparing

the incentive constraint for effort in bonus contracts and clawback contracts is more complex

due to the differences in how future bonuses and future penalties affect present considerations,

for reasons previously noted. The formula (9) obtains from choosing the bonus sequence for type

L to make his incentive constraint for effort bind in each period and thereby minimize the rent

provided to type H. It is also readily verified that in the bonus sequence (9),

bLt =
(1− δ)c
β
L

t λ
L

+ δbLt+1 for any 1 ≤ t < t
L
, (11)

and hence the reward for success increases over time. Notice that in the limit as δ → 1, type L’s

bonus contract becomes a constant-bonus contract, analogous to how the clawback contract in

Theorem 2 becomes a onetime-clawback contract.
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5 Discussion

Suppose that project success is privately observed by the agent but can be verifiably disclosed.25

We assume in this private-observability setting that the principal’s payoff from project success

obtains only when the agent discloses it and contracts are conditioned not on project success but

rather the disclosure of project success. Private observability introduces additional constraints

for the principal, since the agent must also now be incentivized to not withhold project success.

For example, in a bonus contract where δbt+1 > bt, an agent who obtains success in period t

would strictly prefer to withhold it and continue to period t + 1, shirk in that period, and then

reveal the success at the end of period t+ 1.

Theorem 4. Even if project success is privately observed, the menus of contracts identified in

both Theorem 2 and Theorem 3 remain optimal and implement the same outcome as when project

success is publicly observable.

Proof. It suffices to show that in each of the menus, each of the contracts would induce an agent

(of either type) to reveal project success immediately when it is obtained.

Consider first the menu of Theorem 2: for each θ ∈ {H,L}, Cθ, the contract for type θ is

a clawback contract in which wθt ≤ 0 for all t. Hence, no matter which contract the agent takes

and no matter his type, it is optimal to reveal a success when obtained.

For the implementation in Theorem 3, observe from (11) that type L’s bonus contract

has the property that δbLt+1 < bLt for all 1 ≤ t < t
L
; moreover, this property also holds in type

H’s bonus contract because it is a constant-bonus contract. Hence, under either contract, it is

optimal for the agent of either type to disclose success immediately when obtained. Q.E.D.

Therefore, project success being privately observed by the agent does not reduce the

principal’s payoff compared to the baseline setting where project success is publicly observable

(and contractible), so long as the agent can verifiable disclose project success. However, unlike

the menus of Theorem 2 and Theorem 3, not every optimal menu under public observability

is optimal under private observability.26 In this sense, these optimal menus have a desirable

25If disclosure were not verifiable and instead the agent could only make cheap-talk claims, then it is impossible
to incentivize the agent.

26In particular, there are optimal menus of bonus contracts under public observability that are suboptimal
under private observability because the contract given to type H is such that he would have an incentive to delay
disclosure of project success. Formally, the dynamic incentive constraint for effort under public observability
requires

bHt ≥
c(1− δβHt λH)

βHt λ
H

+ δλHbHt+1,
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robustness property that other optimal menus need not.

which can be satisfied with bHt < δbHt+1, in which case the contract would be suboptimal under private observability
as noted earlier. An analogous point applies to menus of clawback contracts.
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A Proof of Theorem 2

The proof below for Theorem 2 also proves Theorem 1. We remind the reader that Subsection 4.1
provides an outline and intuition for the proof.

A.1 Step 1

Given any contract for type L, CL =
(
WL

0 ,b
L,wL,ΓL

)
, we claim that there is a contract ĈL =

(
ŴL

0 , b̂
L, ŵL, Γ̂L

)
such that:

(i) 1 ∈ arg max
a=(at)t∈Γ̂L

UL0 (ĈL,a);

(ii) UL0 (CL,αL(CL)) = UL0 (ĈL,1);

(iii) ΠL
0 (CL,αL(CL)) = ΠL

0 (ĈL,1); and

(iv) UH0 (CL,αH(CL)) ≥ UH0 (ĈL,αH(ĈL)).

The claim is trivially true if it is optimal for type L to work in each (non-lockout) period of CL,
so assume that it is suboptimal for type L to work in some period t in CL. Denote the largest preceding
period in ΓL as

p(t) =

{
max ΓL \ {t, t+ 1, . . .} if ∃s ∈ ΓL s.t. s < t,

0 otherwise.

Construct ĈL =
(
ŴL

0 , b̂
L, ŵL, Γ̂L

)
as follows:

Γ̂L = ΓL\ {t} ;

ŵLs =

{
wLs if s 6= p(t) and s ∈ Γ̂L,

wLs + δt−p(t)wLt if s = p(t) > 0;

b̂Ls = bLs for all s ∈ Γ̂L;

ŴL
0 =

{
WL

0 if p(t) > 0,

WL
0 + δtwLt if p(t) = 0.

Notice that under contract CL, type L would have shirked in period t and thus received wLt
in this period; the new contract ĈL just locks the agent out in period t and shifts the payment wLt
up to the preceding non-lockout period, suitably discounted. It follows that the incentives for effort
for type L remain unchanged in any other period, i.e. that for any a∗ ∈ arg max

a=(at)t∈ΓL

UL0 (CL,a), a∗−t ∈

arg max
a=(at)t∈Γ̂L

UL0 (ĈL,a); moreover, plainly both the principal’s payoff from type L under this contract and

type L’s payoff do not change. Finally, observe that for type H, no matter what his optimal action at
time t in CL would have been (it may have been to work rather than shirk), his payoff from ĈL must
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be weakly lower because the lockout in period t is effectively as though he has been forced to shirk in
period t and receive wLt .

Performing the above procedure repeatedly for all periods t ∈ ΓL in which it would be suboptimal
for type L to work under CL yields a final contract ĈL which satisfies all the properties stated in the
claim.

A.2 Step 2

We claim that for any type θ ∈ {H,L} and any contract Cθ = (W θ
0 ,b

θ,wθ,Γθ), there exists another

contract, Ĉθ = (Ŵ θ
0 , (0)t∈Γθ , ŵ,Γ

θ), that performs identically, i.e. such that for any θ′ ∈ {H,L} and
αθ′(Cθ):

(i) αθ′(Cθ) ∈ arg max
a=(at)t∈Γθ

U θ
′

0

(
Ĉθ,a

)
;

(ii) U θ
′

0 (Cθ,αθ′(Cθ)) = U θ
′

0 (Ĉθ,αθ′(Ĉθ)); and

(iii) Πθ′
0

(
Cθ,αθ′(Cθ)

)
= Πθ′

0

(
Ĉθ,αθ′(Cθ)

)
.

To prove the claim, fix some θ and Cθ = (W θ
0 ,b

θ,wθ,Γθ). The result is trivial if Γθ = ∅, so
assume Γθ 6= ∅. For any period t ∈ Γθ, define the largest preceding period in Γθ as

p(t) =

{
max Γθ \ {t, t+ 1, . . .} if ∃s ∈ Γθ s.t. s < t,

0 otherwise.

We modify the contract Cθ into Ĉθ =
(
Ŵ θ

0 , b̂
θ, ŵθ,Γθ

)
by only changing transfers for periods t and

p(t) as follows:

ŵθt = wθt − bθt ,
b̂θt = 0,

and, if p(t) > 0 then

ŵθp(t) = wθp(t) + δt−p(t)bθt ,

b̂θp(t) = bθp(t),

while if p(t) = 0 then Ŵ θ
0 = W θ

0 + δtbθt .

Clearly, the incentives for effort for both types from period t+ 1 on are identical in Cθ and Ĉθ

since no changes have been made from period t + 1 on. Moreover, since
(
b̂θt , ŵ

θ
t

)
differs from

(
bθt , w

θ
t

)
only by the same constant bθt on both coordinates, effort incentives also remain unchanged in period t.
Notice, however, that both types’ continuation payoff in period t has been reduced by bθt .

Now consider period p(t). If p(t) > 0 the agent of either type faces the following considerations
under contract Ĉθ: (1) if a success is obtained, he obtains the bonus b̂θt = bθt and the game is over;
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(2) if a success is not obtained, there is a transfer wθp(t) + δt−p(t)bθt and the next active period is period

t where the continuation payoff is bθt lower than it is under contract Cθ; consequently, the discounted
continuation payoff from failure is identical to that of the original contract Cθ. In sum, the incentives
in period p(t) remain unchanged for both types and, critically, both types have the same continuation
payoff at the beginning of period p(t) under either contract. By analogous reasoning, if p(t) = 0, then
the time zero payoff to both types is the same under either contract.

This modification procedure can be applied to each period t ∈ Γθ. We eventually obtain a

contract with no bonus in any period t ∈ Γθ, viz. a contract Ĉθ =
(
Ŵ θ

0 , b̂
θ, ŵθ,Γθ

)
defined as follows:

(i) In any t such that t < sup Γθ and t ∈ Γθ,

b̂θt = 0,

ŵθt = wθt − bθt + δs−tbθs, where s = min Γθ\ {1, . . . , t} .

(ii) If T = sup Γθ is finite, then

b̂θT = 0,

ŵθT = wθT − bθT ,

(iii) Ŵ θ
0 = W θ

0 + δsbθs, where s = min Γθ.

It follows from the construction that this new contract Ĉθ has the properties stated in the claim.

A.3 Step 3

By Steps 1 and 2, we can restrict our attention to clawback contracts Cθ
w =

(
W θ

0 ,w
θ,Γθ

)
, with the L

type’s contract inducing the L type to exert effort in all periods in ΓL. Denoting the set of clawback
contracts by Cw, the principal faces the following program [P]:

max
(CHw∈Cw,CLw∈Cw,aH)

µ0ΠH
0

(
CH
w ,a

H
)

+ (1− µ0) ΠL
0

(
CL
w,1

)
(P)

subject to

1 ∈ arg max
a=(at)t∈ΓL

UL0
(
CL
w,a

)
(ICL

a )

aH ∈ arg max
a=(at)t∈ΓH

UH0
(
CH
w ,a

)
(ICH

a )

UL0
(
CL
w,1

)
≥ 0 (IRL)

UH0
(
CH
w ,a

H
)
≥ 0 (IRH)

UL0
(
CL
w,1

)
≥ UL0

(
CH
w ,α

L
(
CH
w

))
(ICLH)

UH0
(
CH
w ,a

H
)
≥ UH0

(
CL
w,α

H
(
CL
w

))
. (ICHL)

To solve program [P], we solve a relaxed program and later verify that the solution is feasible in
(and hence is a solution to) [P]. Specifically, we relax three constraints in [P]: (i) we ignore ICLH and
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IRH , and (ii) we consider a weak version of ICHL in which the H type is assumed to exert effort in all
periods in ΓL if he chooses CL

w. The relaxed program, [RP1], is therefore:

max
(CHw∈Cw,CLw∈Cw,aH)

µ0ΠH
0

(
CH
w ,a

H
)

+ (1− µ0) ΠL
0

(
CL
w,1

)
(RP1)

subject to

1 ∈ arg max
a=(at)t∈ΓL

UL0
(
CL
w,a

)
(ICL

a )

aH ∈ arg max
a=(at)t∈ΓH

UH0
(
CH
w ,a

)
(ICH

a )

UL0
(
CL
w,1

)
≥ 0 (IRL)

UH0
(
CH
w ,a

H
)
≥ UH0

(
CL
w,1

)
. (Weak-ICHL)

It is clear that in any solution to program [RP1], (IRL) must be binding: otherwise, the initial
time-zero transfer from the principal to the agent in the contract CL

w can be reduced slightly to strictly
improve the second term of the objective function while not violating any of the constraints. Similarly,
(Weak-ICHL) must also bind because otherwise the time-zero transfer in the contract CH

w can be reduced
to improve the first term of the objective function without violating any of the constraints.

Using these two binding constraints and substituting in the formulae from equations (1) and
(2), we can rewrite the objective function (RP1) as the sum of expected total surplus and type H’s
“information rent”, obtaining the following explicit version of the relaxed program which we call [RP2]:

max
(CHw∈Cw,CLw∈Cw,aH)



µ0

[
β0

∑
t∈ΓH

δt

[ ∏
s∈ΓH ,s≤t−1

(
1− aHs λH

)]
aHt
(
λH − c

)
− (1− β0)

∑
t∈ΓH

δtaHt c

]

+ (1− µ0)

[
β0
∑
t∈ΓL

δt

[ ∏
s∈ΓL,s≤t−1

(
1− λL

)] (
λL − c

)
− (1− β0)

∑
t∈ΓL

δtc

]

−µ0β0


∑
t∈ΓL

δtwLt

[ ∏
s∈ΓL,s≤t

(
1− λH

)
−

∏
s∈ΓL,s≤t

(
1− λL

)]

−
∑
t∈ΓL

δtc

[ ∏
s∈ΓL,s≤t−1

(
1− λH

)
−

∏
s∈ΓL,s≤t−1

(
1− λL

)]
︸ ︷︷ ︸

Information rent of type H


(RP2)

subject to

1 ∈ arg max
(at)t∈ΓL


β0
∑
t∈ΓL

δt

[ ∏
s∈ΓL,s≤t−1

(
1− asλL

)] [(
1− atλL

)
wLt − atc

]
+(1− β0)

∑
t∈ΓL

δt
(
wLt − atc

)
+WL

0

 , (ICL
a )

aH ∈ arg max
(at)t∈ΓH


β0

∑
t∈ΓH

δt

[ ∏
s∈ΓH ,s≤t−1

(
1− asλH

)] [(
1− atλH

)
wHt − atc

]
+(1− β0)

∑
t∈ΓH

δt
(
wHt − atc

)
+WH

0

 . (ICH
a )
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A key observation is that this program [RP2] is separable, i.e. it can be solved by separately
maximizing (RP2) with respect to CL

w subject to (ICL
a ) and separately maximizing (RP2) with respect

to (CH
w ,a

H) subject to (ICH
a ).

A.4 Step 4

We now claim that in program [RP2], it is without loss to consider solutions in which the low type’s
contract is a connected clawback contract, i.e. solutions CL

w in which ΓL =
{

1, ..., TL
}

for some TL.

To prove this, observe that the optimal CL
w is a solution of

max
CLw



(1− µ0)

[
β0
∑
t∈ΓL

δt

[ ∏
s∈ΓL,s≤t−1

(
1− λL

)] (
λL − c

)
− (1− β0)

∑
t∈ΓL

δtc

]

−µ0β0


∑
t∈ΓL

δtwLt

[ ∏
s∈ΓL,s≤t

(
1− λH

)
−

∏
s∈ΓL,s≤t

(
1− λL

)]

−
∑
t∈ΓL

δtc

[ ∏
s∈ΓL,s≤t−1

(
1− λH

)
−

∏
s∈ΓL,s≤t−1

(
1− λL

)]



(12)

subject to the (ICL
a ),

(1)t∈ΓL ∈ arg max
(at)t∈ΓL


β0
∑
t∈ΓL

δt

[ ∏
s∈ΓL,s≤t−1

(
1− asλL

)] [(
1− atλL

)
wLt − atc

]
+(1− β0)

∑
t∈ΓL

δt
(
wLt − atc

)
+WL

0

 . (13)

To avoid trivialities, consider any optimal CL
w with ΓL 6= ∅. First consider the possibility 1 /∈ ΓL.

In this case, construct a new clawback contract ĈL
w that is “shifted up by one period”:

Γ̂L = {s : s+ 1 ∈ ΓL},
ŵLs = wLs+1 for all s ∈ Γ̂L,

ŴL
0 = WL

0 .

Clearly it remains optimal for the agent to work in every period in Γ̂L, and since the value of (12) must
have been weakly positive under CL

w, it is now weakly higher since the modification has just multiplied
it by δ−1 > 1. This procedure can be repeated for all lockout periods at the beginning of the contract,
so that without loss, we hereafter assume that 1 ∈ ΓL. We are of course done if ΓL is now connected,
so also assume that ΓL is not connected.

Let t∗ be the earliest lockout period in ΓL, i.e. t∗ = min{t : t /∈ ΓL and t∗ − 1 ∈ ΓL}. (Such
a t∗ > 1 exists given the preceding discussion.) We will argue that one of two possible modifications
preserves the agent’s incentive to work in all periods in the modified contract and weakly improves
the principal’s payoff. This suffices because the procedure can then be applied iteratively to produce a
connected contract.

Modification 1: Consider first a modified clawback contract ĈL
w that removes the lockout period

25



t∗ and shortens the contract by one period as follows:

Γ̂L = {1, . . . , t∗ − 1} ∪ {s : s ≥ t∗ and s+ 1 ∈ ΓL},

ŵLs =


wLs if s < t∗ − 1,

wLs + ∆1 if s = t∗ − 1,

wLs+1 if s ≥ t∗ and s ∈ Γ̂L,

ŴL
0 = WL

0 .

Note that in the above construction, ∆1 is a free parameter. We will find conditions on ∆1 such that
the L type’s incentives for effort are unchanged and the principal is weakly better off.

For an arbitrary t, define

S(t) =

 ∏
s∈ΓL,s≤t−1

(
1− λL

) (λL − c) ,
R(t) =

∏
s∈ΓL,s≤t

(
1− λH

)
−

∏
s∈ΓL,s≤t

(
1− λL

)
.

The value of (12) under CL
w is

V (CL
w) = (1− µ0)

β0

∑
t∈ΓL

δtS(t)− (1− β0)
∑
t∈ΓL

δtc

− µ0β0

∑
t∈ΓL

δtwLt R(t)−
∑
t∈ΓL

δtcR(t− 1)

 .
The value of (12) after the modification to ĈL

w is

V (ĈL
w) = (1− µ0)


β0

( ∑
t∈ΓL,t<t∗

δtS(t) + δ−1
∑

t∈ΓL,t>t∗
δtS(t)

)

−(1− β0)

( ∑
t∈ΓL,t<t∗

δtc+ δ−1
∑

t∈ΓL,t>t∗
δtc

)


−µ0β0


∑

t∈ΓL,t<t∗−1

δtwLt R(t) + δ−1
∑

t∈ΓL,t>t∗
δtwLt R(t)

+δt
∗−1

(
wLt∗−1 + ∆1

)
R(t∗ − 1)

−
∑

t∈ΓL,t<t∗
δtcR(t− 1)− δ−1

∑
t∈ΓL,t>t∗

δtcR(t− 1)

 .

Therefore, the modification benefits the principal if and only if

0 ≤ V (ĈL
w)− V (CL

w) = (1− µ0)

[
β0

(
δ−1 − 1

) ∑
t∈ΓL,t>t∗

δtS(t)− (1− β0)
(
δ−1 − 1

) ∑
t∈ΓL,t>t∗

δtc
]

−µ0β0


(
δ−1 − 1

) ∑
t∈ΓL,t>t∗

δtwLt R(t) + δt
∗−1∆1R(t∗ − 1)

−
(
δ−1 − 1

) ∑
t∈ΓL,t>t∗

δtcR(t− 1)

 ,

26



or equivalently after rearranging terms, if and only if

(1− µ0)

β0

∑
t∈ΓL,t>t∗

δtS(t)− (1− β0)
∑

t∈ΓL,t>t∗

δtc


≥ µ0β0

[ ∑
t∈ΓL,t>t∗

δtwLt R(t)− δt∗−1 ∆1
1−δ−1R(t∗ − 1)−

∑
t∈ΓL,t>t∗

δtcR(t− 1)
]
. (14)

Now turn to the incentives for effort for the agent of type L. Clearly, since CL
w induces the agent

to work in all periods, it remains optimal for the agent to work under ĈL
w in all periods beginning with

t∗. Consider the incentive constraint for effort in period t∗ − 1 under ĈL
w. Using (13), this is given by:

− βLt∗−1λ
L

wLt∗−1 + ∆1 + δ−1
∑

t∈ΓL,t>t∗

δt−(t∗−1)

 ∏
s∈ΓL,t∗−1<s≤t−1

(
1− λL

) [(1− λL)wLt − c]
 ≥ c.

(15)
Analogously, the incentive constraint in period t∗ − 1 under the original contract CL

w is:

− βLt∗−1λ
L

wLt∗−1 +
∑

t∈ΓL,t>t∗−1

δt−(t∗−1)

 ∏
s∈ΓL,t∗−1<s≤t−1

(
1− λL

) [(1− λL)wLt − c]
 ≥ c. (16)

If we choose ∆1 such that the left-hand side of (15) is equal to the left-hand side of (16), then
since it is optimal to work under the original contract in period t∗ − 1, it will also be optimal to work
under the new contract in period t∗ − 1. Accordingly, we choose ∆1 such that:

∆1 =
∑

t∈ΓL,t>t∗−1

δt−(t∗−1)

 ∏
s∈ΓL,t∗−1<s≤t−1

(
1− λL

) [(1− λL)wLt − c]

−δ−1
∑

t∈ΓL,t>t∗

δt−(t∗−1)

 ∏
s∈ΓL,t∗−1<s≤t−1

(
1− λL

) [(1− λL)wLt − c]

= (1− δ−1)
∑

t∈ΓL,t>t∗−1

δt−(t∗−1)

 ∏
s∈ΓL,t∗−1<s≤t−1

(
1− λL

) [(1− λL)wLt − c] , (17)

where the second equality is because {t : t ∈ ΓL, t > t∗ − 1} = {t : t ∈ ΓL, t > t∗}, since t∗ /∈ ΓL.

Now consider the incentive constraint for effort in any period τ < t∗ − 1. We will show that
because ∆1 is such that the left-hand side of (15) is equal to the left-hand side of (16), the fact that it
was optimal to work in period τ under contract CL

w implies that it is optimal to work in period τ under
contract ĈL

w. Formally, the incentive constraint for effort in period τ under CL
w is

− βLτ λL
wLτ +

∑
t∈ΓL,t>τ

δt−τ

 ∏
s∈ΓL,τ<s≤t−1

(
1− λL

) [(1− λL)wLt − c]
 ≥ c, (18)

which is satisfied since CL
w induces the agent to work in all periods. The incentive constraint for effort
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in period τ under ĈL
w can be written as:

c ≤ −βLτ λL
ŵLτ +

∑
t∈Γ̂L,t>τ

δt−τ

 ∏
s∈Γ̂L,τ<s≤t−1

(
1− λL

) [(1− λL) ŵLt − c]


= −βLτ λL



wLτ +
∑

t∈ΓL,τ<t<t∗−1

δt−τ

[ ∏
s∈ΓL,τ<s≤t−1

(
1− λL

)] [(
1− λL

)
wLt − c

]
+δt

∗−1−τ

[ ∏
s∈ΓL,τ<s≤t∗−2

(
1− λL

)] [(
1− λL

)
(wLt∗−1 + ∆1)− c

]
+δ−1

∑
t∈ΓL,t>t∗−1

δt−τ

[ ∏
s∈ΓL,τ<s≤t−1

(
1− λL

)] [(
1− λL

)
wLt − c

]



= −βLτ λL



wLτ +
∑

t∈ΓL,τ<t<t∗−1

δt−τ

[ ∏
s∈ΓL,τ<s≤t−1

(
1− λL

)] [(
1− λL

)
wLt − c

]
+δt

∗−1−τ

[ ∏
s∈ΓL,τ<s≤t∗−2

(
1− λL

)] [(
1− λL

)
wLt∗−1 − c

]
+(1− δ−1)

[ ∑
t∈ΓL,t>t∗−1

δt−τ

[ ∏
s∈ΓL,τ<s≤t−1

(
1− λL

)] [(
1− λL

)
wLt − c

]]

+δ−1
∑

t∈ΓL,t>t∗−1

δt−τ

[ ∏
s∈ΓL,τ<s≤t−1

(
1− λL

)] [(
1− λL

)
wLt − c

]


= −βLτ λL

wLτ +
∑

t∈ΓL,t>τ

δt−τ

 ∏
s∈ΓL,τ<s≤t−1

(
1− λL

) [(1− λL)wLt − c]


where the first equality is from the construction of ĈL
w, the second equality uses (17), and the third

equality follows from algebraic simplification. Since the above constraint is identical to (18), it is
satisfied.

Modification 2: Now we consider a modified contract C̃L
w that eliminates all periods after t∗,

defined as follows:

Γ̃L = {1, . . . , t∗ − 1},

w̃Ls =

{
wLs if s < t∗ − 1,

wLs + ∆2 if s = t∗ − 1,

W̃L
0 = WL

0 .

Again, ∆2 is a free parameter above. We find conditions on ∆2 such that the L type’s incentives are
unchanged and the principal is weakly better off.
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The value of (12) under the modification C̃L
w is

V (C̃L
w) = (1− µ0)

β0

∑
t∈ΓL,t<t∗

δtS(t)− (1− β0)
∑

t∈ΓL,t<t∗

δtc


−µ0β0

[ ∑
t∈ΓL,t<t∗−1

δtwLt R(t) + δt
∗−1

(
wLt∗−1 + ∆2

)
R(t∗ − 1)−

∑
t∈ΓL,t<t∗

δtcR(t− 1)
]
.

Therefore, using the previous formula for V (CL
w), this modification benefits the principal if and

only if

0 ≤ V (C̃L
w)− V (CL

w) = − (1− µ0)

β0

∑
t∈ΓL,t>t∗

δtS(t)− (1− β0)
∑

t∈ΓL,t>t∗

δtc


−µ0β0

[
−

∑
t∈ΓL,t>t∗

δtwLt R(t) + δt
∗−1∆2R(t∗ − 1) +

∑
t∈ΓL,t>t∗

δtcR(t− 1)
]
,

or equivalently after rearranging terms, if and only if

(1− µ0)

β0

∑
t∈ΓL,t>t∗

δtS(t)− (1− β0)
∑

t∈ΓL,t>t∗

δtc


≤ µ0β0

[ ∑
t∈ΓL,t>t∗

δtwLt R(t)− δt∗−1∆2R(t∗ − 1)−
∑

t∈ΓL,t>t∗
δtcR(t− 1)

]
. (19)

As with the previous modification, the only incentive constraint for effort that needs to be
verified in C̃L

w is that of period t∗ − 1, which since it is the last period of the contract is simply:

− βLt∗−1λ
L
[
wLt∗−1 + ∆2

]
≥ c. (20)

We choose ∆2 so that the left-hand side of (20) is equal to the left-hand side of (16):

∆2 =
∑

t∈ΓL,t>t∗−1

δt−(t∗−1)

 ∏
s∈ΓL,t∗−1<s≤t−1

(
1− λL

) [(1− λL)wLt − c] =
∆1

1− δ−1
, (21)

where the second equality follows from (17). But now, observe that (21) implies that either (14) or (19)
is guaranteed to hold, and hence either the modification to ĈL

w or to C̃L
w weakly benefits the principal

while preserving the agent’s effort incentives.

A.5 Step 5

Take any connected clawback contract, CL
w = (WL

0 ,w
L, TL) that induces effort from the low type in

each period t ∈ {1, . . . , TL}. We claim that the low type’s incentive constraint for effort binds at all
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periods if and only if wL = wL(TL), where wL(TL) is defined as follows:

wLt =

 − (1− δ) c

β
L
t λ

L
if t < TL,

− c

β
L
TLλ

L
if t = TL.

(22)

The proof of this claim is via three sub-steps; for the remainder of this step, since TL is given
and held fixed, we ease notation by just writing wL instead of wL(TL).

Step 5a: First, we argue that with the above penalty sequence, the low type is indifferent
between working and shirking in each period t ∈ {1, . . . , TL} given that he has worked in all prior
periods and will do in all subsequent periods no matter his action at period t. In other words, we need
to show that for all t ∈ {1, . . . , TL}:

− βLt λL
wLt +

TL∑
s=t+1

δs−t
(
1− λL

)s−(t+1) [(
1− λL

)
wLs − c

] = c.27 (23)

We prove that (23) is indeed satisfied for all t via an induction argument. First, it is obviously
true for t = TL. Next, for any t < TL, assume it holds for t+ 1. This is equivalent to

TL∑
s=t+2

δs−(t+1)
(
1− λL

)s−(t+2) [(
1− λL

)
wLs − c

]
= − c

β
L
t+1λ

L
− wLt+1. (24)

To show that (23) holds for t, it suffices to show that

−βLt λL
wLt + δ

[(
1− λL

)
wLt+1 − c

]
+ δ

(
1− λL

) TL∑
s=t+2

δs−(t+1)
(
1− λL

)s−(t+2) [(
1− λL

)
wLs − c

] = c

Using (24), the above equality is equivalent to

−βLt λL
{
wLt + δ

[(
1− λL

)
wLt+1 − c

]
+ δ

(
1− λL

) [
− c

β
L
t+1λ

L
− wLt+1

]}
= c,

27To derive this equality, observe that under the hypotheses, the payoff for type L from working at t is

−c+
(

1− βLt
) TL∑
s=t

δs−twLs + β
L

t

(1− λL)wLt +

TL∑
s=t+1

δs−t
(
1− λL

)s−t [(
1− λL

)
wLs − c

] ,
while the payoff from shirking at time t is

wLt +
(

1− βLt
) TL∑
s=t+1

δs−twLs + β
L

t

 TL∑
s=t+1

δs−t
(
1− λL

)s−(t+1) [(
1− λL

)
wLs − c

] .
Setting these payoffs from working and shirking equal to each other and manipulating terms yields (23).
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which simplifies to

wLt = − c

β
L
t λ

L
+ δc+ δ

(
1− λL

) c

β
L
t+1λ

L
. (25)

Since β
L
t+1 =

β
L
t (1−λL)
1−βLt λL

, (25) is in turn equivalent to

wLt = − (1− δ) c

β
L
t λ

L
,

which is true by the definition of wL.

Step 5b: Next, we show that given the sequence wL, it would be optimal for the low type to
work in any period no matter the prior history of effort. The argument is by induction. Consider first

the last period, TL. Since no matter the history of prior effort, the current belief is some βL
TL
≥ β

L
TL ,

and hence
−βLTLλ

LwLt ≥ β
L
TLλ

LwLt = c,

it is optimal to work in the last period (note that the equality above is by definition).

Now assume inductively that the assertion is true for period t + 1 ≤ TL, and consider period
t < TL after any history of prior effort, with current belief βLt . Since we already showed that equation

(23) holds, it follows from βLt ≥ β
L
t that

−βLt λL
wLt +

TL∑
s=t+1

δs−t
(
1− λL

)s−(t+1) [(
1− λL

)
wLs − c

] ≥ c,
and hence it is optimal for the agent to work in period t.

Step 5c: Finally, we argue that any profile of penalties, wL, that makes the low type’s incentive
constraint for effort bind at every period t ∈ {1, . . . , TL} must coincide with wL, given that the clawback
contract must induce work from the low type in each period up to TL. Again, we use induction. Since
wL
TL

is the unique penalty that makes the agent indifferent between working and shirking at period TL

given that he has worked in all prior periods, it follows that wL
TL

= wL
TL

. Note from Step 5b that it
would remain optimal for the agent to work in period TL given any profile of effort in prior periods.

For the inductive step, pick some period t < TL and assume that in every period x ∈ {t, . . . , TL},
the agent is indifferent between working and shirking given that he has worked in all prior periods, and
would also find it optimal to work at x following any other profile of effort prior to x. Under these
hypotheses, the indifference at period t+ 1 implies that

− βLt+1λ
L

wLt+1 +
TL∑

s=t+2

δs−(t+1)
(
1− λL

)s−(t+2) [(
1− λL

)
wLs − c

] = c. (26)

Given the inductive hypothesis, the incentive constraint for effort at period t is

−βLt λL
wLt +

TL∑
s=t+1

δs−t
(
1− λL

)s−(t+1) [(
1− λL

)
wLs − c

] ≥ c,
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which, when set to bind, can be written as

−βLt λL
wLt + δ

[(
1− λL

)
wLt+1 − c

]
+ δ

(
1− λL

) TL∑
s=t+2

δs−(t+1)
(
1− λL

)s−(t+2) [(
1− λL

)
wLs − c

] = c.

(27)

Substituting (26) into (27) , using the fact that β
L
t+1 = β

L
t (1−λ)

β
L
t (1−λ)+1−βLt

, and performing some

algebra shows that wLt = wLt . Moreover, by the reasoning in Step 5b, this also ensures that the agent
would find it optimal to work in period t for any other history of actions prior to period t.

A.6 Step 6

By Step 4, we can restrict attention in solving program [RP2] to connected clawback contracts for the
low type. For any TL, Step 5 identified a particular sequence of penalties, wL(TL). We now show that
in solving [RP2], we can further restrict attention to the class of connected clawback contracts for the
low type with precisely this penalty structure.

The proof involves two sub-steps; throughout, we hold an arbitrary TL fixed and, to ease nota-
tion, drop the dependence of wL(·) on TL.

Step 6a: We begin by showing that given any connected clawback contract for the low type of
length TL that satisfies (ICL

a ), the value of [RP2] is weakly higher under a connected clawback contract
with the same length that has the property that wLt ≤ wLt (TL) for all t ∈ {1, . . . , TL}.

To show this, consider any connected clawback contract of length TL that satisfies (ICL
a ) and

specifies a penalty wLt′ > wLt′ in some period t′ ≤ TL. We will prove that we can change the penalty
structure by lowering wLt′ and raising some subsequent wLs for s ∈ {t′ + 1, . . . , TL} in a way that keeps
type L’s incentives for effort unchanged, and yet increase the value of the objective function (RP2).
Define

t̂ = max
{
t : t ≤ TL and wLt > wLt

}
.

Observe that we must have t̂ < TL because otherwise (ICL
a ) would be violated in period TL.

Furthermore, by definition of t̂, wLt ≤ wLt for all TL ≥ t > t̂.

Claim: There exists t̃ ∈ {t̂+ 1, . . . , TL} such that (ICL
a ) at t̃ is slack and wL

t̃
< wL

t̃
.

Proof : Suppose not, then for each TL ≥ t > t̂, either wLt = wLt , or wLt < wLt and (ICL
a ) binds.

Then since whenever wLt < wLt , (ICL
a ) binds by supposition, it must be that in all t > t̂, (ICL

a ) binds
(this follows from Step 5). But then (ICL

a ) at t̂ is violated since wL
t̂
> wL

t̂
. ‖

Claim: There exists t ∈ {t̂+ 1, . . . , TL} such that wL
t
< wL

t
and for any t ∈

{
t̂+ 1, ..., t

}
, (ICL

a )

at t is slack. In particular, we can take t to be the first such period after t̂.

Proof : Fix t̃ in the previous claim. Note that (ICL
a ) at t̂ + 1 must be slack because otherwise

(ICL
a ) at t̂ is violated by wL

t̂
> wL

t̂
and Step 5. There are two cases. (1) wL

t̂+1
< wL

t̂+1
; then t̂+ 1 is the

t we want. (2) wL
t̂+1

= wL
t̂+1

– in this case, since (ICL
a ) is slack at t̂+ 1, it must be that (ICL

a ) at t̂+ 2 is

slack (otherwise, the claim in Step 5 is violated); now if wL
t̂+2

< wL
t̂+2

, we are done because t̂+ 2 is the t
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we are looking for; if wL
t̂+2

= wL
t̂+2

, then we continue to t̂+ 3... until we reach t̃ which we know give us a

slack (ICL
a ), wL

t̃
< wL

t̃
, and we are sure that (ICL

a ) is slack in all periods of this process before reaching

t̃. ‖

Now we shall show that we can slightly reduce wL
t̂
> wL

t̂
and slightly increase wL

t
< wL

t
and

meanwhile keep the incentives for effort of the L type satisfied for all periods. We know that we do not
violate (ICL

a ) for t ∈
{
t̂+ 1, ..., t

}
because (ICL

a ) is slack there. We shall show that the modification

weakly reduces the H type’s rent and meanwhile does not violate (ICL
a ) at t̂ nor any previous period.

Therefore, the modified contract weakly dominates the original contract.

We first want to guarantee that (ICL
a ) at t̂ is unchanged. By the same reasoning as used in Step

4, the incentive constraint for effort in period t̂ (given that the agent will work in all subsequent periods
no matter his behavior at period t) can be written as

− βL
t̂
λL

wLt̂ +
∑
t>t̂

δt−t̂
(
1− λL

)t−(t̂+1) [(
1− λL

)
wLt − c

] ≥ c. (28)

Observe that if we reduce wL
t̂

by ∆ > 0 and increase wL
t

by ∆

δt−t̂(1−λL)t−(t̂+1)(1−λL)
= ∆

δt−t̂(1−λL)t−t̂
, then

the left-hand side of (28) does not change. Moreover, it follows that incentives for effort at t < t̂ are also
unchanged (see Step 4), and the incentive condition at t will be satisfied if ∆ is small enough because
the original (ICL

a ) at t is slack.

We now show that the modification above leads to a reduction of the rent of the H type in
(RP2), i.e. raises the value of the objective. The rent is given by

µ0β0


TL∑
t=1

δtwLt

[(
1− λH

)t − (1− λL)t]− TL∑
t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
] .

Hence, the change in the rent from reducing wL
t̂

by ∆ and increasing wL
t

by ∆

δt−t̂(1−λL)t−t̂
is

µ0β0δ
t̂∆

{
−
[(

1− λH
)t̂ − (1− λL)t̂]+

(
1

(1− λL)t−t̂

)[(
1− λH

)t − (1− λL)t]}

= µ0β0δ
t̂∆

 (1− λH)t̂
(1− λL)t−t̂

[(1− λH)t−t̂ − (1− λL)t−t̂] < 0,

where the inequality is because t− t̂ > 0 and 1− λH < 1− λL.

Step 6b: Now we show that unless the penalty sequence for the low type is exactly wL, the
value of the objective (RP2) can be improved while satisfying the incentive constraint for effort, (ICL

a ).

To show this, recall that the H type’s rent is

β0

TL∑
t=1

δtwLt

[(
1− λH

)t − (1− λL)t]− β0c

TL∑
t=1

δt
[(

1− λH
)t−1 −

(
1− λL

)t−1
]
.
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By Step 6a, (ICL
a ) is satisfied in all periods t = 1, . . . , TL whenever wLt = wLt . Now, if wLt < wLt

for some periods, we can replace wLt by wLt without affecting the effort incentives of the L type, and by
doing this we reduce the rent of the H type, thereby raising the value of (RP2).

A.7 Step 7

By Step 6, an optimal contract for the low type that solves program [RP2] can be found by optimizing
over TL, i.e. the length of connected clawback contracts with the penalty structure wL(TL). We now
argue that the optimal length is no larger than tL (recall that tL is the first-best stopping time).

The portion of the objective (RP2) that involves TL is

(1− µ0)

[
β0

TL∑
t=1

δt
(
1− λL

)t−1 (
λL − c

)
− (1− β0)

TL∑
t=1

δtc

]

−µ0β0

{
TL∑
t=1

δtwLt (TL)
[(

1− λH
)t − (1− λL)t]− TL∑

t=1
δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
]}

,

where we have used the desired penalty sequence. Now consider the following definition:

Π
(
z, TL

)
= z (−µ0β0)


TL∑
t=1

δtwLt (TL)
[(

1− λH
)t − (1− λL)t]− TL∑

t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
]

+ (1− µ0)

β0

TL∑
t=1

δt
(
1− λL

)t−1 (
λL − c

)
− (1− β0)

TL∑
t=1

δtc

 .
If z = 0, the expression above corresponds to surplus maximization; if z = 1, the expression corresponds
to the principal’s optimization problem. Consider the term multiplied by z modulo a negative constant:

K
(
TL
)

=
TL∑
t=1

δtwLt (TL)
[(

1− λH
)t − (1− λL)t]− TL∑

t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
]
.

If K(·) is shown to be increasing, then Π(z, TL) has decreasing differences, which implies that the
optimal TL when z = 0 is no smaller than the optimal TL when z = 1, as desired. To see that K(·) is
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indeed increasing, observe that

K (T + 1)−K (T ) =
T+1∑
t=1

δtwLt (T + 1)
[(

1− λH
)t − (1− λL)t]− T+1∑

t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
]

−
T∑
t=1

δtwLt (T )
[(

1− λH
)t − (1− λL)t]+

T∑
t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
]

= δTwLT (T + 1)
[(

1− λH
)T − (1− λL)T ]

+δT+1wLT+1 (T + 1)
[(

1− λH
)T+1 −

(
1− λL

)T+1
]

−δT+1c
[(

1− λH
)T − (1− λL)T ]− δTwLT (T )

[(
1− λH

)T − (1− λL)T ]

= δT

[
− (1− δ) c
β
L
Tλ

L

] [(
1− λH

)T − (1− λL)T ]
+δT+1

[
−c

β
L
T+1λ

L

] [(
1− λH

)T+1 −
(
1− λL

)T+1
]

−δT+1c
[(

1− λH
)T − (1− λL)T ]− δT [ −c

β
L
Tλ

L

] [(
1− λH

)T − (1− λL)T ]
= δT+1c

(
1

β
L
Tλ

L
− 1

)(
λH − λL

1− λL

)(
1− λH

)T
> 0,

where the third equality uses the definition of wL(·) and the final inequality is because β
L
Tλ

L < 1.

Note also that it is clear that there is generically a unique TL that maximizes Π(1, TL); hereafter

we denote this solution t
L

.

A.8 Step 8

We have shown so far that there is a solution to program [RP2] in which the low type’s contract is a

connected clawback contract of length t
L ≤ tL and in which the penalty sequence is given by wL(t

L
).

In terms of optimizing over the high type’s contract, note that any solution must induce the high type
to work in each period up to tH and no longer: this follows from the fact that the objective in (RP2)
involving the high type’s contract is social surplus from the high type, and that there is clearly a
sequence of (sufficiently low) penalties wH to ensure that (ICH

a ) is satisfied.

Recall that solutions to [RP2] produce solutions to [RP1] by choosing WL
0 to make (IRL) bind

andWH
0 to make (Weak-ICHL) bind, which can always be done. Accordingly, let C

L
w = (W

L
0 ,w

L(t
L

), t
L

)

be the connected clawback contract where W
L
0 is set to make (IRL) bind, and consider the solutions to

program [RP1] in which the low type’s contract is C
L
w. We will argue that some of these solutions to

[RP1], namely C
L
w combined with a suitable one-time-clawback contract for the high type, also solve

the original program [P]. Recall that [RP1] differs from [P] in three ways:

35



1. it imposes (Weak-ICHL) rather than (ICHL);

2. it ignores (IRH);

3. it ignores (ICLH).

We address each of these constraints in order.

Step 8a: First, we argue that given any connected clawback contract of length TL ≤ tL with
penalty sequence wL(TL), it would be optimal for type H to work in every period 1 . . . , TL, no matter

the history of prior effort. Consequently, any solution to [RP1] using C
L
w satisfies (ICHL).

To prove the claim, we fix any TL ≤ tL and write wL as shorthand for wL(TL). The argument
is by induction. Consider first the last period, TL. Since

−βLTLλLwLTL = c,

it follows from the fact that tH > tL (hence β
H
t λ

H > β
L
t λ

L for all t < tH) that no matter the history of
effort,

−βHTLλ
HwLTL ≥ c,

i.e., regardless of the history, the H type will work in period TL.

Now assume inductively that it is optimal for type H to work in period t + 1 ≤ TL no matter
the history of effort, and consider period t with belief βHt . The inductive hypothesis implies that

−βHt+1λ
H

wLt+1 +

TL∑
s=t+2

δs−(t+1)
(
1− λH

)s−(t+2) [(
1− λH

)
wLs − c

] ≥ c,
or equivalently,

TL∑
s=t+2

δs−(t+1)
(
1− λH

)s−(t+2) [(
1− λH

)
wLs − c

]
≤ − c

βHt+1λ
H
− wLt+1. (29)
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Therefore, at period t :

−βHt λH
wLt + δ

[(
1− λH

)
wLt+1 − c

]
+ δ

(
1− λH

) TL∑
s=t+2

δs−(t+1)
(
1− λH

)s−(t+2) [(
1− λH

)
wLs − c

]
≥ −βHt λH

{
wLt + δ

[(
1− λH

)
wLt+1 − c

]
+ δ

(
1− λH

) [
− c

βHt+1λ
H
− wLt+1

]}

= −βHt λH
(
wLt − δc

)
+ δ

(
1− λH

)(βHt c
βHt+1

)
= −βHt λHwLt + δc

≥ −βLt λLwLt + δc

= −βLt λL
(
− (1− δ) c

β
L
t λ

L

)
+ δc

= c,

where the first inequality uses (29), the second equality uses βHt+1 =
βHt (1−λH)

1−βHt +βHt (1−λH)
, and the penultimate

equality uses the definition of wLt .

Step 8b: Next, we show that any solution to [RP1] using C
L
w also satisfies (IRH). To show

this, observe first that

UH0

(
C
L
w,1

)
= β0

t
L∑

t=1

δt
(
1− λH

)t−1
[(

1− λH
)
wLt (t

L
)− c

]
+ (1− β0)

∑
t∈Γ

δt
(
wLt (t

L
)− c

)
+W

L
0

≥ β0

t
L∑

t=1

δt
(
1− λL

)t−1
[(

1− λL
)
wLt (t

L
)− c

]
+ (1− β0)

∑
t∈Γ

δt
(
wLt (t

L
)− c

)
+W

L
0

= UL0

(
C
L
w,1

)
, (30)

where the inequality follows from the fact that for all 1 ≤ t ≤ tL, wLt ≤ 0.

Consequently, in any solution to [RP1] using C
L
w,

UH0
(
CH
w ,α

H
(
CH
w

))
≥ UH0

(
C
L
w,1

)
(by ICH

a and Weak-ICHL)

≥ UL0

(
C
L
w,1

)
(by inequality 30)

≥ 0 (by IRL),

and hence (IRH) is satisfied.

Step 8c: Finally, we show that there is a solution to [RP1] using C
L
w that also satisfies (ICLH)

in [P], which completes the proof. As previously noted, any optimal contract for the high type in [RP1]
must induce effort from this type in periods 1, . . . , tH and make (Weak-ICHL) bind. We will construct
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such a onetime-clawback contract, CH
w = (WH

0 , wH
tH
, tH), where given the penalty wH

tH
(a free parameter

at this point) and that the high type works in all periods, WH
0 is chosen to make (Weak-ICHL) bind,

i.e. by the equation:[(
1− λH

)tH
β0 + (1− β0)

]
δt
H
wHtH − β0

tH∑
t=1

δt
(
1− λH

)t−1
c− (1− β0)

tH∑
t=1

δtc+WH
0 = ρ, (31)

where

ρ = β0

t
L∑

t=1

δtwLt (t
L

)
[(

1− λH
)t − (1− λL)t]− β0c

t
L∑

t=1

δt
[(

1− λH
)t−1 −

(
1− λL

)t−1
]

is the rent earned by the H type given type L’s contract C
L
w.

Plainly, the penalty wH
tH

can be chosen to be severe enough (i.e. sufficiently negative) to ensure
that it is optimal for an agent of either type, H or L, to work in all periods after accepting such a contract
CH
w , i.e. that for all θ ∈ {H,L}, αθ(CH

w ) = 1. All that remains is to show that a sufficiently severe wH
tH

and its corresponding WH
0 (determined by (31)) also satisfies (ICLH) given that αL(CH

w ) = 1.

Using (31), we compute

UL0
(
CH
w ,1

)
= WH

0 − c

β0

tH∑
t=1

δt
(
1− λL

)t−1
+ (1− β0)

tH∑
t=1

δt

+ wHtHδ
tH
[
β0

(
1− λL

)tH
+ (1− β0)

]

= −


[(

1− λH
)tH

β0 + (1− β0)

]
δt
H
wHtH − β0

tH∑
t=1

δt
(
1− λH

)t−1
c− (1− β0)

tH∑
t=1

δtc


+ρ− c

β0

tH∑
t=1

δt
(
1− λL

)t−1
+ (1− β0)

tH∑
t=1

δt

+ wHtHδ
tH
[
β0

(
1− λL

)tH
+ (1− β0)

]

= β0δ
tH
[(

1− λL
)tH − (1− λH)tH]wHtH + k, (32)

where k = ρ+ c

{
β0

tH∑
t=1

δt
[(

1− λH
)t−1 −

(
1− λL

)t−1
]}

is independent of wH
tH

.

The expression (32) is an affine function of wH
tH

, with a strictly positive coefficient on wH
tH

, since
λH > λL. Hence, we can choose wH

TH
sufficiently low so that (32) is negative, in which case (ICLH) is

satisfied because UL0

(
C
L
w,1

)
= 0.

B Proof of Theorem 3

We first show that given a connected bonus contract for type L with bonus sequence bL and length
TL ≤ t

H
, either type of agent who accepts this contract will work in all periods no matter the prior
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history of effort if the following conditions are satisfied for each t ∈ {1, . . . , TL − 1}:

bLTL ≥
c

β
L
TLλ

L
and β

L
t λ

L(bLt − δbLt+1) ≥ (1− δ)c. (33)

To show this, we use the one-step deviation principle with an induction argument. First, note
that in the last period, TL, type L will work no matter the history because by the first inequality of
(33), bL

TL
is such that the type L weakly prefers working to shirking given that he has worked in all

previous periods, and any other history only induces more favorable beliefs about the state. A fortiori,
the H type will also work in the last period no matter the history of effort, since for any history of

effort, βH
TL
λH > β

L
TLλ

L, given TL ≤ tH .

Now assume inductively that for any t < TL, a type θ ∈ {H,L} will work in all periods
s ∈ {t+ 1, . . . , TL} given any history of effort in periods s ∈ {1, . . . , t}.

We want to show that, no matter the history of actions (as)
t−1
s=1, type θ weakly prefers the action

plan (as)
TL

s=t = (1, 1, . . . , 1) to action plan (as)
TL

s=t = (0, 1, . . . , 1). If we show that type θ weakly prefers

plan (at, at+1) = (1, 0) to (at, at+1) = (0, 1), then it follows that type θ prefers (as)
TL

s=t = (1, 0, 1, . . . , 1)

to (as)
TL

s=t = (0, 1, 1, . . . , 1), because βθt+2 is the same in either case. The desired conclusion then

follows because (as)
TL

s=t+1 = (1, 1, . . . , 1) is weakly preferred to (as)
TL

s=t+1 = (0, 1, . . . , 1) by the induction
hypothesis. But that (at, at+1) = (1, 0) is weakly preferred to (at, at+1) = (0, 1) follows from the second
inequality of (33): (i) for the low type, the inequality implies it given the history (as)

t−1
s=1 = (1, . . . , 1),

and hence for any other history (since beliefs would be more favorable); and (ii) for the high type, it

follows for any history a fortiori because βHt λ
H > β

L
t λ

L for all t < TL.

Therefore, given a bonus contract for the L type with length TL ≤ t
H

and bonus sequence
satisfying (33), both types will work in all periods under this contract, and we can focus on a relaxed
problem analogous to [RP1] and [RP2].

To derive an optimal contract that minimizes the rent of the H type, we must set TL = t
L

and
set the bonus sequence to make type L’s incentive compatibility constraint for effort in (33) bind in

each period t ≤ tL. Hence, we set:

b
L

t
L =

c

β
L

t
LλL

= −wL
t
L ,

and, for t < t
L

,

b
L
t =

(1− δ)c
β
L
t λ

L
+ δb

L
t+1

=

t
L−1∑
s=t

δs−t
(1− δ)c
β
L
s λ

L
+ δt

L−tb
L

t
L

=
t
L−1∑
s=t

δs−t(−wLs ) + δt
L−t(−wL

t
L). (34)

(Note that above and in the remainder of this Appendix, we suppress the argument of wLt (·) as

it is held fixed at t
L

.)
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The key step in proving that this bonus contract achieves the second best is to confirm that
the rent to type H under this contract is the same as the rent found in the optimal menu of clawback
contracts. Recall that this rent was:

µ0β0


t
L∑

t=1

δtwLt

[(
1− λH

)t − (1− λL)t]− t
L∑

t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
] . (35)

Under the low type’s bonus contract defined above, it is readily seen that the rent is:

µ0β0


t
L∑

t=1

δt
[(

1− λH
)t−1

λH −
(
1− λL

)t−1
λL
]
b
L
t −

t
L∑

t=1

δtc
[(

1− λH
)t−1 −

(
1− λL

)t−1
] . (36)

The value of (35) is equal to that of (36) if

t
L−1∑
t=1

δt
[(

1− λH
)t − (1− λL)t]wLt + δt

L
[(

1− λH
)tL − (1− λL)tL]wL

t
L

=
t
L−1∑
t=1

δt
[(

1− λH
)t−1

λH −
(
1− λL

)t−1
λL
]
b
L
t

+δt
L
[(

1− λH
)tL−1

λH −
(
1− λL

)tL−1
λL
]
b
L

t
L . (37)

To prove (37), observe that by (34), the right-hand side of (37) is equivalent to

t
L−1∑
t=1

δt
[(

1− λH
)t−1

λH −
(
1− λL

)t−1
λL
]t

L−1∑
s=t

δs−t(−wLs ) + δt
L−t(−wL

t
L)


+δt

L
[(

1− λH
)tL−1

λH −
(
1− λL

)tL−1
λL
]

(−wL
t
L),

and hence (37) is equivalent to

t
L−1∑
t=1

δt
[(

1− λH
)t − (1− λL)t]wLt

=

t
L−1∑
t=1

δt
[(

1− λH
)t−1

λH −
(
1− λL

)t−1
λL
]t

L−1∑
s=t

δs−t(−wLs ) + δt
L−t(−wL

t
L)


+δt

L
[(

1− λH
)tL−1 −

(
1− λL

)tL−1
]

(−wL
t
L),

or equivalently, manipulating the right-hand side of the above equality using the fact that for any
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θ ∈ {H,L},
t
L−1∑
t=1

(
1− λθ

)t−1
λθ = −(1− λθ)t

L−1, to

t
L−1∑
t=1

δt
[(

1− λH
)t − (1− λL)t]wLt =

t
L−1∑
t=1

[(
1− λH

)t−1
λH −

(
1− λL

)t−1
λL
]t

L−1∑
s=t

δs(−wLs )

 . (38)

But now observe that the right-hand side of (38) can be manipulated as follows:

t
L−1∑
t=1

[(
1− λH

)t−1
λH −

(
1− λL

)t−1
λL
]t

L−1∑
s=t

δs(−wLs )


= δ(−wL1 )(λH − λL) + δ2(−wL2 )

2∑
t=1

[(
1− λH

)t−1
λH −

(
1− λL

)t−1
λL
]

+ . . .+ δt
L−1(−wL

t
L−1

)

t
L−1∑
t=1

[(
1− λH

)t−1
λH −

(
1− λL

)t−1
λL
]

=

t
L−1∑
s=1

δs(−wLs )
s∑
t=1

[(
1− λH

)t−1
λH −

(
1− λL

)t−1
λL
]

=

t
L−1∑
s=1

δswLs
[
(1− λH)s − (1− λL)s

]
,

and since the last expression is equivalent to the left-hand side of (38), we are done.

Finally, we conclude the proof as follows: since typeH’s rent from the bonus contract constructed
for type L is the same as in the optimal clawback menu, this bonus contract for type L solves the analog
of program [RP2]. Finally, by an analogous argument as the one used in Step 8 of the proof of Theorem 2,
we can choose a constant-bonus contract for type H of length tH with a high enough bonus bH > 0
and low enough initial transfer WH

0 to induce the first-best experimentation from type H and solve the
analog of program [P].
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