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Abstract

We study how exploration versus exploitation innovations impact economic growth
through a tractable endogenous growth framework that contains multiple innovation sizes,
multi-product �rms, and entry/exit. Firms invest in exploration R&D to acquire new prod-
uct lines and exploitation R&D to improve their existing product lines. We model and show
empirically that exploration R&D does not scale as strongly with �rm size as exploitation
R&D. The resulting framework conforms to many regularities regarding innovation and
growth di¤erences across the �rm size distribution. We also incorporate patent citations
into our theoretical framework. The framework generates a simple test using patent cita-
tions that indicates that entrants and small �rms have relatively higher growth spillover
e¤ects.
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1 Introduction

Despite the rapid development of endogenous growth theory over the last two decades, we
still have very little understanding about the innovation and growth patterns of di¤erent-sized
�rms and their contributions to macroeconomic growth. The motivations of small start-ups
for R&D and innovation di¤er greatly from Fortune 100 conglomerates, however, and our
understanding of economic growth and appropriate innovation policies will be limited until
we shed light on these key di¤erences. An important step forward is to characterize the
theoretical and empirical relationships between �rm size and R&D investment behavior, which
then determines innovation and growth dynamics.

In this study, we make a distinction between two types of R&D that �rms undertake:
exploration and exploitation. Firms undertake exploration R&D to create new products and
capture leadership in markets. On the other hand, �rms undertake exploitation R&D to im-
prove product lines that they are currently serving. We begin by showing some basic empirical
regularities regarding this important distinction, which has been under explored so far. Build-
ing on the seminal work of Klette and Kortum (2004), we then introduce this key distinction
into a tractable endogenous growth framework and generate many important, testable predic-
tions regarding �rm size and R&D spending, patenting, patent citations, and growth dynamics.
Our �nal task is to test these predictions using Census Bureau data.

Our paper makes several key theoretical advances. Most importantly, we o¤er a micro-
foundation for two types of R&D in a general equilibrium framework with �rm entry and exit.
In our model, �rms invest in R&D for two reasons: to improve their mark-ups on their existing
products and to innovate new products. The model provides a rich characterization of the �rm
dynamics due to heterogeneous R&D and innovation behavior across di¤erent-sized �rms. In
other words, it allows small start-ups to di¤er in meaningful ways from General Electric and
Procter & Gamble. We are not aware of prior work that has built this degree of heterogeneity
in R&D choices into a tractable framework with closed-form solutions.

Second, incorporating this exploration-exploitation distinction allows us to connect to sev-
eral empirical moments that vary across the �rm size distribution. Examples include deviations
from Gibrat�s Law (i.e., small �rms grow faster conditional on survival), declines in exploration
R&D shares with �rm size, and declines in conditional R&D intensities with �rm size among
innovative �rms. Prior models typically generate moments like growth rates and R&D in-
tensities that are uniform across the distribution. Our model allows for substantially greater
heterogeneity among �rms and generates interesting distributional implications.

Our third contribution is to explicitly incorporate patent citations into the endogenous
growth framework. These additions allow us to assess the link between �rm size and its
citations given to and received from other �rms. We derive tests that employ patent citations
to determine if the growth spillover e¤ects from exploration innovations are larger or smaller
than those from exploitation innovations, which is a crucial input to optimal policy design.
Finally, our model conceptualizes technology clusters. These clusters provide an intuitive
foundation for declining citation rates with invention age, which are not generated in basic
endogenous growth models.

Section 2 formalizes our theoretical model. We �rst consider a benchmark case where
exploration R&D does not scale with �rm size at all. Under these conditions, we derive
very tractable analytical solutions of the dynamics of economic growth and the concomitant
heterogeneity among innovative �rms. We then discuss how our results hold in an alternative
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setting with partial scaling of exploration R&D. Using an exploration R&D technology that
provides a size advantage to large �rms a là Klette and Kortum (2004), we further show that
our benchmark results hold also with this alternative technology if �rms also face managerial
costs with larger �rm size. At the end of Section 2, we list the predictions of our model
regarding �rm entry/exit, R&D, growth, innovation, patent counts, and patent citations.

Section 3 tests these empirical predictions. We show that our model matches many known
empirical facts regarding the �rm size distribution such as the high skewness of the distribution.
Moreover, our model has sharp predictions on some long-standing debates: It predicts that
small �rms grow faster and that their R&D to sales ratio is higher than large �rms on average.
These two predictions are strongly supported by our data for the recent US economy. We
further show empirical evidence regarding the model�s unique predictions. For instance, we
show that the relative rate of major inventions is higher in small �rms and that the exploitation
innovation share is higher in large �rms. We demonstrate that these distributional di¤erences
are not due to di¤erences in research capabilities or technologies, but are instead an outcome
of R&D investment choices by �rms.

Implementing our derived patent citations test, we �nd that growth spillover e¤ects are
larger from exploration R&D than exploitation R&D, akin to �rst-order stochastic dominance.
Our model identi�es a comparative advantage for new entrepreneurs and small �rms in under-
taking exploration innovation due to increased managerial attention of large �rms on re�ning
their existing product lines. Under the conditions identi�ed by our test, small �rms and new
entrants also yield greater spillovers, in a relative sense, into economic growth due to these
forces.

Section 4 concludes. Our work connects two literatures that have largely remained separate.
First, we clearly build on a lengthy theoretical growth literature.1 Our framework o¤ers an
intuitive, tractable way of bringing more of the realities of the empirical literature into the
workhorse theoretical models in the spirit of Klette and Kortum (2004) and Akcigit (2010).
Second, a large body of work examines the empirics of innovation. Section 3 outlines the
antecedents of our study from this literature, with particular emphasis on the heterogeneity of
innovation size and its relationship to the �rm size distribution (e.g., Acs and Audretsch 1987,
1988, Kortum and Lerner 2000, Baumol 2009).

It is important to note that we focus solely on innovative �rms in this paper, which we
de�ne to be �rms undertaking R&D activity and patenting. This concentration allows us to
connect a closed-form endogenous growth model that embraces �rm heterogeneity with parallel
empirical work. The �rm dynamics of this sector are of direct policy interest (e.g., support to
small R&D �rms), and innovation is a central driver for overall economic growth. In parallel
e¤orts, we are numerically quantifying a version of the model that includes non-innovative �rms
at the expense of losing analytical tractability. We likewise hope that future researchers �nd
our framework to be a useful platform for studying �rm heterogeneity and economic growth.

1For example, Romer (1986, 1990), Grossman and Helpman (1991), Aghion and Howitt (1992), Aghion et al.
(1997, 2001), Barro and Sala-i-Martin (1995), Kortum (1997), Peretto (1998), Howitt (1999), Klette and Kortum
(2004), Hopenhayn et al. (2006), and Lentz and Mortensen (2008). Related papers on heterogeneous innovation
are Akcigit (2010), Acemoglu and Akcigit (2010), Acemoglu and Cao (2010), Cai (2010), and Acemoglu et al.
(2010). Related papers on spillover bene�ts are Spence (1984) and Griliches (1992). Caballero and Ja¤e (1993)
also connect patent citations with growth models. Acemoglu (2009) provides a comprehensive overview.
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Empirical Foundations

Before proceeding to the model, it is helpful to introduce several empirical regularities
and their theoretical counterparts. Our exploration-exploitation terminology is extensively
used in the management and organizational behavior literatures, and it has clear parallels
with the pivotal work of Klepper (1996) and Cohen and Klepper (1996b) on product versus
process R&D. This latter work demonstrates that the share of R&D directed towards process
improvements grows with �rm size and industry maturity. They model how this pattern
descends from process innovations being less saleable in disembodied form compared to product
innovations. This results in the returns to process R&D growing with �rm size.

Figure 1 documents Census Bureau data for innovative �rms. Each panel describes an
aspect of exploitation R&D. Panels 1A and 1B consider the extent to which patents of each
�rm cite the �rm�s prior work. High self citation rates are indicative of exploitation R&D that
is meant to enhance the �rm�s current technologies. Panels 1C and 1D similarly consider the
extent to which the �rm engages in process-oriented R&D, a proxy for exploitation R&D.

The three groups of columns per panel separate �rms by employment size. Within each
triplet, �rms are further separated by contemporaneous employment growth. We use three
buckets: �rms that are exiting or showing major employment declines (gray bars), continuing
�rms that show small or modest employment changes (black bars), and �rms that are entering
or showing major employment gains (white bars). Major expansions or declines in employment
are demarcated by a 33% change over two years around the survey year.2

The �rst regularity is that exploitation behavior grows in �rm size. This is particularly true
on the extensive margin of Panels 1A and 1C, and it also holds on the intensive margin. These
share growths are very regular and hold within more �nely demarcated size groups. Large �rms
engage in relatively more exploitation R&D than small �rms, such that exploration R&D shares
are inversely related to �rm size. Our model generates these features as �rms choose R&D
strategies optimal for their portfolio of product lines. Firms with more incumbent operations
devote relatively more attention to improving these operations.

The second regularity is that exploitation R&D, by contrast, is approximately invariant
to contemporaneous �rm growth rates. This relationship is seen by comparing across the
columns within each triplet. There is much more variation across the �rm groups than within
the triplets. Exploitation R&D depends substantially on �rm size but cannot be predicted
by contemporaneous growth rates once �rm size is controlled for. In our model, realized
outcomes of innovative e¤orts are stochastic conditional on the type of R&D undertaken. This
randomness in outcomes yields contemporaneous growth rates that are not further related to
the type of innovation pursued except as determined by �rm size.

In Panel 1B, we list above the columns the shares of innovative �rms in our sample. Small
�rms are greater in number than large �rms and show higher variability in growth rates. These
are well known attributes of the �rm size distribution, and our model generates these features
due to the relatively larger impact of adding or losing product lines for small �rms.

2 Innovation data come from the NSF Survey of Industrial Research and Development and the NBER Patent
Database. We describe our data and its preparation in Section 3 and the appendix. Section 3 also provides
Monte Carlo simulations of self citation behavior and �rm size. Figure 1 restricts the sample to years in which
product versus process R&D are reported (i.e., odd years from 1979 to 1989).
For a year t, we de�ne �rm employment levels as the average of non-zero employment from t� 1 to t+1. We

de�ne employment growth as [Empt+1 � Empt�1]=[(Empt+1 + Empt�1)=2]. This growth measure is bounded
by (-2,2) for continuing �rms. Entrants and exiting �rms have a value of 2 and -2, respectively.
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2 Theoretical Framework

We now introduce our model that incorporates the empirical regularity that exploration R&D
does not scale as fast as exploitation R&D with �rm size. Our goal is to study the implications
of this heterogeneity on the R&D, innovation, and growth dynamics of �rms. We �rst describe
the model�s basic environment and then solve for its steady state equilibrium in a setting where
exploration R&D does not scale with �rm size. We then show that our predictions hold in an
alternative setting that allows scaling of exploration R&D. Finally, we introduce patent citation
behavior that overlays the R&D equilibrium. The appendix contains proofs of propositions.

2.1 Preferences and Final Good Technology

Consider the following continuous time economy. The world admits a representative household
with a constant relative risk aversion utility function

U =

Z 1

0
exp (��t) C (t)

1�" � 1
1� " dt: (1)

C (t) is consumption at time t; � > 0 is the discount rate, and " � 1 is the constant relative
risk aversion parameter (also the inverse of intertemporal elasticity of substitution).3 The
household is populated by a continuum of individuals with measure one.

Individuals consume a unique �nal good Y (t), which is also used for R&D as discussed
below. The �nal good is produced by labor and a continuum of intermediate goods j 2 [0; 1]
with the production technology

Y (t) =
L� (t)

1� �

Z 1

0
q�j (t) k

1��
j (t) dj: (2)

In this speci�cation, kj (t) is the quantity of intermediate good j, and qj(t) is its quality. We
normalize the price of the �nal good Y to be one in every period without loss of generality.
The �nal good is produced competitively with input prices taken as given.

Each intermediate good j is owned by a �rm f , which is run by an incumbent entrepreneur.
A �rm is characterized by the collection of its product lines Jf = fj : j is owned by �rm fg.
Similarly we will denote the product (quality) portfolio of �rm f by a multiset qf =
fqj : j 2 Jfg and denote the cardinality by nf :4 Each intermediate good j 2 [0; 1] is produced
with a linear technology

kj = ��qlj ; (3)

where lj is the labor input, �q �
R 1
0 qjdj is the average quality in the economy, and � > 0 is

a constant. This linear speci�cation has two implications. First, intermediate goods have the
same marginal cost w=��q > 0, where w is the wage rate in terms of the �nal good. Second,
the marginal product of labor in the intermediate good sector grows at the same rate as in the
�nal good sector, generating an invariant labor allocation across sectors in steady state.5

3Our cross-sectional results on �rms hold for any "; but we use " � 1 as a su¢ cient condition for proving the
existence of a dynamic steady-state equilibrium.

4A multiset is a generalization of a set that can contain more than one instance of the same member.
5An alternative speci�cation removes labor from the intermediate good sector and uses �nal goods as the

only input of production.
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Individuals work in four capacities: in �nal good production (L), in intermediate good
production (~L), as entrepreneurs running incumbent �rms (E), or as entrepreneurs running
outside �rms attempting to enter the market ( ~E). In each period, the labor market has to
satisfy the following constraint

L+ ~L+ E + ~E � 1: (4)

We will denote the share of entrepreneurs by S 2 [0; 1] such that S = E + ~E: Total R&D
spending is R (t), and the resource constraint of the economy is Y (t) � C (t) +R (t).

2.2 Research and Development

The last innovator in each product line owns the leading patent and has monopolist pricing
power until being replaced by another �rm. Intermediate producers have pro�t incentives to
improve the technologies for their existing products, thereby increasing associated mark-ups.

In addition, both incumbents and outside entrepreneurs have incentives to add new prod-
ucts to their portfolios through R&D competition. The outcomes of innovation processes are
stochastic in nature. A realized technology advance in product line j improves the current
technology quality qj (t) by a size sj > 0,

qj (t+�t) = (1 + sj) qj (t) ;

where sj depends on both the type of R&D pursued and random realizations.

Exploitation R&D The �rst type of R&D is undertaken by incumbent �rms to improve
their existing products. We often refer to this as exploitation R&D or incremental or internal
innovation. To improve an existing product j 2 Jf , �rm f spends

Cz (zj ; qj) = cz (zj) qj (5)

units of the �nal good. Incremental innovations are realized with the instantaneous Poisson
�ow rate of zj � 0. cz (�) : [0; �z]! R+ is increasing, di¤erentiable, strictly convex, and satis�es
the following conditions for some �z > 0: cz (0) = 0, c0z (0) = 0, and limz!�z c

0
z (z) = 1. Cost

(5) is proportional to the quality of the good that the �rm is improving. This implies that
a more advanced technology has higher R&D costs and prevents arti�cial scale e¤ects (e.g.,
Jones 1995). When exploitation R&D is successful, the current quality improves by size � > 0.

Exploration R&D The second type of R&D is undertaken by incumbents and potential
new entrants to obtain technology leadership over products not currently owned. We also refer
to this as external innovation. Through investing

Cx (x; �q) = cx (x) �q (6)

unit of the �nal good, �rm f innovates a new good at a Poisson �ow rate x � 0: Cost (6) is
proportional to the average quality level �q in the economy, which again removes scale e¤ects.
The cost function cx (�) : [0; �x]! R+ satis�es the same conditions as cz (�).

These exploration R&D e¤orts are undirected in the sense that resulting innovations are
realized in any product line j 2 [0; 1] with equal probability. This has two main implications.
First, �rms do not innovate over their own product lines through exploration R&D since this
event has zero probability. Second, there is no strategic interaction among �rms. In addition
to stochastic arrival rates, the sizes of realized quality improvements are randomly determined:
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(i) With probability � 2 (0; 1), the innovation is a major advance that substantially shifts
forward the latest quality by a size � > �. This generates a new technology cluster with
an associated wave of subsequent follow-on innovations. Prominent examples include
the transistor and mapping the human genome, but the step functions need not be
so profound. The conceptual construct is that these major advances de�ne a wave of
innovation and product development until another major advance starts a new wave.

(ii) With probability 1 � �, the innovation is a follow-up improvement to the current tech-
nology level of the product line that does not generate a new technology cluster. The
size of the follow-up improvement declines with the number of follow-up inventions since
the last major advancement. If the last major innovation in product line j occurred kj
innovations ago, the new step size is sj = ��kj with � 2 (0; 1). These improvements can
be larger or smaller than � depending upon � and kj .

Let us denote the economy-wide arrival rate of a new product by � , which is endogenously
determined by the exploration R&D e¤orts of incumbents and potential entrants. To summa-
rize, the probabilistic evolution of the quality level qj after a short interval �t is

qj (t+�t) =

8>><>>:
(1 + �) qj (t)
(1 + sj) qj (t)
(1 + �) qj (t)

qj (t)

with probability
with probability
with probability
with probability

��t�
��t (1� �)
zj�t
1� zj�t� ��t

The �rst line represents a major advance that results from exploration R&D with probability
�. The second line represents a follow-up innovation that results from exploration R&D with
probability 1 � �. The third line shows an incremental improvement of size � by the current
owner of product line j through exploitation R&D. The �nal line represents the case where no
quality improvement is realized during �t, which results in stagnant technology quality.

The following example illustrates a possible evolution of innovations in a random product
line:

Example 1

j
j
j

�

P1;f1

��

P2;f2

��2

P3;f3

�

P4;f3

�

P5;f3

��3

P6;f4| {z }
Tech Cluster 1

j
j
j

�

P7;f5

�

P8;f5

��

P9;f6| {z }
Tech Cluster 2

j
j
j

�

P10;f7

��

P11;f8

��2

P12;f9
:::| {z }

Tech Cluster 3

An example of a sequence of innovations in a product line

Here, Pm;f denotes that the mth patent is obtained by �rm f . The example starts with
a major innovation that opens a new technology cluster by �rm f1. Firms f2 and f3 then
produce follow-up innovations. Firm f3 further improves its own product twice. Firm f4 then
produces a further follow-up innovation. Next, this technology cluster is replaced by a new
leading innovation by �rm f5, which is patented as P7. The second cluster is then replaced by
another leading innovation by �rm f7. This new cluster is further improved by patents 11 and
12, and so on.

2.3 Entry and Exit

There are two types of entrepreneurs in the economy. Incumbent entrepreneurs (E) run �rms
that own existing product lines and invest in R&D, whereas outside entrepreneurs ( ~E) invest
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only in R&D in order to become intermediate producers upon a successful innovation. Outside
entrepreneurs choose an innovation �ow rate � > 0 with an R&D cost Cx (�; �q) = cx (�) �q in
terms of the �nal good. The value V0 of being an outside entrepreneur is the expected value
from innovating successfully and entering the market. This value is determined according to

rV0 � _V0 = max
�2[0;�x]

f� [EjV (fqj (1 + sj)g)� V0]� cx (�) �qg (7)

where V (fqg) denotes the value of a �rm that owns a single product line with quality q
and _V0 � @V0=@t denotes the partial derivative of the outside value with respect to time. The
expected value EjV (fqj (1 + sj)g) of a new innovation is an expectation over both quality level
q and innovation size sj . Production workers strictly prefer to become outside entrepreneurs
when the outside value V0 exceeds the present discounted sum of the future wage stream w=r
and vice versa. The no-arbitrage condition will pin down the number of entrepreneurs as
follows

S

8<:
=
2
=

1
[0; 1]
0

if
if
if

V0 > w=r
V0 = w=r
V0 < w=r

: (8)

Incumbent entrepreneurs produce intermediate inputs and invest in R&D. As a result, �rms
simultaneously expand into new product lines and lose some of their current product lines to
other �rms in the economy through competition. Each product line will face an aggregate
endogenous destruction rate, which will be denoted by � : An entrepreneur who has lost all
product lines to competitors becomes an outside entrepreneur at that instant with value V0.6

De�nition 1 (Allocation) In this economy, an allocation at every instant t consists of ag-
gregate output Y (t) ; aggregate consumption C (t) ; total R&D spending R (t) ; �nal sector pro-
duction workers L (t) ; intermediate sector production workers ~L (t) ; incumbent entrepreneurs
E (t) ; outside entrepreneurs ~E (t) ; price pj (t) and quantity kj (t) for each intermediate good j;
R&D decisions by incumbents to develop a new product x (t) and to improve each intermediate
good j by zj(t); R&D decision by outsiders � (t) ; wage rate w (t) ; and interest rate r (t) :

2.4 Equilibrium

We now characterize the Markov Perfect Equilibria of the economy that make strategies a func-
tion of payo¤-relevant states only. We focus on the steady state in which aggregate variables
(Y; C; R; w; �q) grow at the constant rate g. Asterisks ���denote equilibrium values.

De�nition 2 (Equilibrium) In this economy, a Markov Perfect Equilibrium is a sequencen
p�j (t) ; k

�
j (t) ; x

� (t) ; z�j (t); �
� (t) ; L� (t) ; ~L� (t) ; E� (t) ; ~E� (t) ; Y � (t) ; w� (t) ; r� (t)

o
t�0

such that (i) p�j (t) and k
�
j (t) maximize intermediate good producer�s operating pro�ts, (ii)

x� (t), z�j (t) and �
� (t) maximize intermediate good producer�s and outside entrepreneur�s �rm

6Many growth models do not introduce entrepreneurs. However, �rm exit is a key feature in �rm dynamics.
In contrast to Klette and Kortum (2004), each �rm in our model has an option value V0 > 0 from staying in the
market due to exploration R&D. As a result, a �rm that loses all of its product lines does not necessarily exit
the market. Introducing entrepreneurs into the model lets the entrepreneurs utilize their outside option when
they lose all of their product lines and generates smooth �rm exits.
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value, (iii) labor allocations L� (t) ; ~L� (t) ; E� (t) and ~E� (t) are optimal in the sense that they
maximize intermediate and �nal good producer�s pro�t and also satisfy the worker�s no-arbitrage
condition (8) and labor market clearing condition (4) ; (iv) Y � (t) is given in (2) ; (v) w� (t)
clears the labor market, and (vi) r� (t) is consistent with the household�s intertemporal con-
sumption choice:

Now we are ready to solve the model starting from the household�s problem.

2.4.1 Production

The standard maximization problem of the representative household yields the Euler equation

_Y �

Y �
=

_C�

C�
=
r� � �
"

: (9)

The maximization problem of the �nal goods producer generates the inverse demand pj =
L��q�j k

��
j ; 8j 2 [0; 1]. The constant marginal cost of producing each intermediate variety is

w�=��q, and the pro�t maximization problem of the monopolist j is

�� (qj) = max
kj�0

�
L��q�j k

1��
j � w

�

��q
kj

�
8j 2 [0; 1] :

The �rst order condition yields an optimal quantity and price for intermediate good j

k�j =

�
(1� �) ��q

w�

� 1
�

L�qj and p�j =
w�

(1� �) ��q : (10)

The realized price is a constant markup over the marginal cost and is independent of the
individual product quality. Thus, the pro�t for each active good is �� (qj) = ��qj , where

�� � L� (��q=w�)
1��
� (1� �)

1��
� �.

The maximization in the �nal goods sector, together with (10), implies a wage rate

w� = ~��q (11)

where ~� � �� [1� �]1�2� �1�� and �q is the average quality index de�ned earlier. Incorporating
the equilibrium wage rate, the constant part of the equilibrium pro�t simpli�es to

�� = L� (1� �) ~�: (12)

Equations (3), (10), and (11) determine the ratio of workers employed in the intermediate
good sector to the �nal good sector

~L�

L�
=
(1� �)2

�
: (13)
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2.4.2 Research and Development by Incumbents

The value functions of �rms determine R&D choices. qf denotes the product portfolio of �rm
f and serves as the state variable in �rm�s problem. Firm f takes the equilibrium values of
(r�; ��; ��; g�) as given and chooses the optimal R&D e¤orts x and zj for every j 2 Jf to
maximize the following value function7

r�V (qf )� _V (qf ) = max
x2[0;�x];

fzj2[0;�z]gJf

8>>>>>>><>>>>>>>:

X
qj2qf

��qj �
X

qj2qf
cz (zj) qj � cx (x) �q

+x

�
�EjV (qf [+ fqj (1 + �)g)

+ (1� �)EjV (qf [+ fqj (1 + sj)g)� V (qf )

�
+
X

qj2qf
zj [V (qfn- fqjg [+ fqj (1 + �)g)� V (qf )]

+
X

qj2qf
�� [V (qfn- fqjg)� V (qf )]

9>>>>>>>=>>>>>>>;
:8

(14)
The �rst line on the right hand side represents operating pro�ts over currently held product
lines minus R&D costs.

The second line is the change in �rm value after a successful innovation that garners a new
product line. V (qf [+ fqj (1 + sj)g) denotes equilibrium �rm value after a successful explo-
ration innovation of size sj , which adds a new product into �rm�s portfolio. With probability
�, exploration R&D generates a major advance. With probability (1� �), a follow-up advance
occurs. In the case of a major innovation, the step size is � and expectations are only over
the quality q of the acquired product line. For follow-up advances, the expectation is also over
the innovation size sj = ��kj . These terms are multiplied by the Poisson arrival rate x, as the
success of exploration R&D is stochastic.

The third line is the change in �rm value after incremental improvements to currently held
products. V (qfn- fqjg [+ fqj (1 + �)g) denotes the �rm value after improving one of the �rm�s
existing products by size �. These terms are multiplied by the Poisson arrival rate zj as the
success of exploitation R&D is stochastic, too. Firms choose innovation e¤ort for each line
separately.

The fourth line shows the change in �rm value due to losing its product lines through
creative destruction ��. V (qfn- fqjg) denotes �rm value after losing product that had quality
qj . The � _V (q) term on the left hand side of equation (14) represents change in �rm value
without any material events for the focal �rm due to economy-wide growth (i.e., �q changes).

The next proposition shows that the value function (14) can be expressed in a very tractable
form that is central for the rest of the analysis. For notational simplicity, we de�ne the expected
innovation size � � Ej (sj).

Proposition 1 For given equilibrium values of (r�; ��; ��; g�) ; the value function (14) of a
�rm with a set of product lines qf can be expressed as

V (qf ) = A
X
q2qf

q +B�q (15)

7We do not index the R&D e¤orts by f as xf and zj;f to simplify notation.
8[+ indicates the multiset union operator such that fa; bg [+ fbg = fa; b; bg : Similarly n- indicates the

multiset di¤erence operator such that fa; b; bg n- fbg = fa; bg :
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where A (value of holding a product line) and B (value of innovating a new product line) are
de�ned by

(r� + ��)A = �� + max
z2[0;�z]

fA�z � cz (z)g (16)

and
(r� � g�)B = max

x2[0;�x]
fAx (1 + �)� cx (x)g ; (17)

where g� is the equilibrium growth rate of the average quality in the economy. The optimal
R&D decisions are given by

z� = c0�1z (A�) and x� = c0�1x (A [1 + �]) : (18)

The proposition demonstrates that the exploitation R&D spending on incremental innova-
tions by incumbents is proportional to the number of product lines that the incumbent owns.
Proposition 1 further shows that R&D decisions are independent of a �rm�s quality portfolio
qf . Finally, the proposition implies that the outside entrepreneur�s value is

V0 = B�q: (19)

2.4.3 Research and Development by Outsiders, Entry and Exit

The �rst order condition of the optimization problem (7) ; together with (15) and (19), deter-
mine the optimal R&D e¤orts by outsider entrepreneurs ��,

�� = c0�1x (A [1 + �]) = x�; (20)

where the last equality follows from (18). These R&D e¤orts yield an equilibrium creative
destruction rate of

�� = E�x� + ~E��� = S�x�; (21)

where we sum new product arrivals by the incumbents and outside entrepreneurs.
A common feature of this class of models is that an equilibrium can exist with no entry

(S = 0). To focus on an empirically relevant equilibrium with positive entry, we make the
following assumption with respect to parameter values.

Assumption 1 (Positive entry) We assume that the parameters of the model satisfy

max
x2[0;�x]

(
x

� (1� �)
[1� � (1� �)]

(1 + �)

(��z ("� 1) + �) �
cx (x)

�� [1� �]1�2� �1��

)
> 1:

This condition is formally derived in the proof of Proposition 4. It requires that the expected
value of being an entrepreneur is more pro�table than being a worker when all members of the
economy are workers. This ensures an interior solution with positive entry rates. Intuitively,
for any given �; this assumption is satis�ed when the expected arrival rate x or step size � from
exploration R&D are su¢ ciently high relative to costs cx (x). The condition is also satis�ed
for su¢ ciently high labor productivity � or a small enough discount factor �.

On the other hand, the value of an outside entrepreneur is smaller than the value of being a
worker when all individuals switch to being an entrepreneur (see appendix for further details).
As a result, the no-arbitrage condition (8) holds in equilibrium with equality,

B� = ~�=r�; (22)

where we combined (8) together with (11) and (19) :

11



2.4.4 Invariant Distributions and Labor Demand

Next, we determine the expected innovation size � and the measure of outside entrepreneurs.
To accomplish this task, we need to solve for two invariant distributions: innovation size
distribution (	) and number of product distribution (�). We now characterize the innovation
size distribution. This distribution determines the expected innovation size �. Let 	�k denote
the equilibrium share of product lines with k subsequent follow-up innovations. A steady state
equilibrium requires a stable innovation size distribution. Thus, while stochastic innovation
properties move individual products up and down the k distribution, the overall share of
products at each k is stable. This stability requires equal in�ows and out�ows of products
from each size level, resulting in the �ow equations

Outflow Inflow

	�0�
� (1� �) = (1�	�0) ��� (23)

	�k�
� = 	�k�1�

� (1� �) for k � 1: (24)

The �rst line governs in�ows and out�ows among product lines where major innovations have
just occurred. Out�ows happen due to follow-up innovations at the rate �� (1� �), while in�ows
happen due to new leading innovations being realized at rate ��� throughout the innovation
size distribution. By assumption, incremental innovations within �rms do not in�uence these
k distributions. A similar reasoning governs the share of product lines with k � 1 consecutive
follow-up innovations in (24). As a result, �ow equations (23) and (24) generate the invariant
distribution

	�k = � (1� �)
k for k � 0; (25)

which yield the expected innovation size � = ��+(1� �)
P1
k=0	

�
k��

k+1 = ��= (1� (1� �)�) :
We next characterize the invariant distribution of the number of products. This distribution

is the main proxy for the �rm size distribution in Klette and Kortum (2004) and Lentz and
Mortensen (2008). Let ��n denote the equilibrium share of the incumbent �rms that own n
product lines. The invariant distribution again depends upon �ow equations

State :
n = 0 :
n = 1 :
n � 2 :

Inflow
E���1�

� =

E���22�
� + ~E��� =

E���n+1 (n+ 1) �
� + E���n�1x

� =

Outflow
~E���

E���1 (x
� + ��)

E���n (x
� + n��)

(26)

The �rst line characterizes outside entrepreneurs (n = 0). In�ows to outside entrepreneurs
happen when �rms with one product are destroyed, and out�ows occur when outside entrepre-
neurs successfully develop a new product at rate ��. Similarly, the second line considers in�ows
and out�ows of �rms with one product, and the third line considers n-product �rms. The next
proposition provides the explicit form solution of the invariant product number distribution.

Proposition 2 The invariant distribution ��n is equal to

��n =
~E�

E�

�
x�

��

�n 1
n!
for n � 1: (27)
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As �rms can own multiple product lines, the following identity on the number of product
lines holds,

P1
n=1E

���nn = 1. Using this fact, together with (21) and (27), the total measure
of outside entrepreneurs satis�es

~E� = S� exp
�
�S��1

�
: (28)

Labor market clearing requires that (4) holds with equality,

L� + ~L� + E� + ~E� = 1: (29)

This result, together with (13), (22), and (28) pin down all labor allocations. Next, we express
the equilibrium growth rate of the economy.

Proposition 3 Let the equilibrium R&D e¤orts be given by (��; z�) : The steady state growth
rate of the aggregate variables in the economy is

g� = ��� + z�� (30)

Now we are ready to summarize the equilibrium as follows.

De�nition 3 (Balanced Growth Path Equilibrium) A balanced growth path equilibrium
of this economy consists of the following tuple for every t, j 2 [0; 1] and qj

fY � (t) ; w� (t) ; k�j (t) ; p�j (t) ; x�; z�j ; ��; L�; ~L�; E�; ~E�; g�;	�n; ��n; r�g

such that: (i) Y � (t) and w� (t) satisfy (9) and (11); (ii) k�j (t) and p
�
j (t) satisfy (10); (iii) x

�

and z�j solve the value function in (14); (iv) �
� satis�es the FOC of the free entry condition

in (20); (v) labor measures ~L�; ~E�; E�; and L� satisfy (13) ; (22) ; (28) ; and (29) ; (vi) the
invariant distribution of innovation sizes satis�es (25); (vii) steady state equilibrium growth
rate satis�es (30); (viii) the invariant distribution of number of products satis�es (26); and
(ix) the equilibrium interest rate satis�es the Euler equation (9).

Using this de�nition, one can reduce equilibrium further into a triplet (x�; z�;S�) and de�ne
a continuous correspondence � that maps the compact set � � [0; �x]� [0; �z]� [0; 1] into itself
� : �� �: Existence of a �xed point of this mapping is guaranteed by Brouwer�s �xed point
theorem. Then the equilibrium of the model is simply the �xed point of this mapping

�
�
[x� z� S�]T

�
= [x� z� S�]T :

The details of this mapping are provided in the proof of the following proposition.

Proposition 4 There exists a steady state equilibrium with strictly positive growth g� > 0 and
strictly positive entry S 2 (0; 1).
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2.5 Central Theoretical Results

The following propositions characterize the �rm growth, R&D, and innovation dynamics of the
model, which we elaborate on in Section 2.8. We initially proxy �rm size by Qf =

P
qj2qf qj .

Firm sales, pro�ts, and production workers are proportional to Qf .9 Firm size also closely
relates to the number of product lines.

Lemma 1 Expected �rm size is strictly increasing in the number of products

E (Qf j nf ) > E
�
Qf 0 j nf 0

�
for any nf > nf 0 :

Therefore, when convenient, we also use nf to proxy for �rm size in propositions.

Proposition 5 Let G (Qf ) � E
�
_Qf=Qf

�
be the average growth rate of a �rm with total quality

Qf : Then G (Qf ) ; in equilibrium, is given by

G (Qf ) =
x� (1 + �) �q

Qf
+ z��� ��:

G (Qf ) is a strictly decreasing function.

This result suggests that small �rms grow faster than large �rms. This micro-founded departure
from Gibrat�s Law of proportionate growth is one of the central results of our work. The
intuition behind this result is as follows. Exploitation innovation scales up with �rm size, yet
exploration innovation does not. As a result, the growth coming from exploitation innovation
is the same on average across di¤erent �rm sizes (z��), whereas the contribution of exploration
R&D to �rm growth gets smaller as �rm size increases (the �rst ratio in G (Qf )). Combining
these e¤ects, overall �rm growth declines with �rm size.

Proposition 6 Let R (Qf ) � R&D=Sales be the �rm R&D intensity of a �rm with total
quality Qf : Then R (Qf ) ; in equilibrium, is given by

R (Qf ) =
�cx (x

�) �q

��Qf
+
�cz (z

�)

��
:

R (Qf ) is a strictly decreasing function.

This result suggests that small �rms have a greater R&D intensity than large �rms. Similar to
the previous proposition, the intuition is that total exploitation R&D e¤ort is proportionate
to the number of product lines of the �rm. On the other hand, exploration R&D e¤orts do
not scale with number of product lines, which results in a declining R&D intensity for larger
�rms. In other words, adding additional product lines continually adds more R&D e¤orts but
further dilutes the exploration R&D e¤ects with respect to intensity measures.

9Sales =
P

qj2qf p (qj) k (qj) = [(1� �)= ]
1��
� L�Qf , Profits =

P
qj2qf �

�qj = ��Qf , and Production

workers =
P

qj2qf lj = [(1� �) =w�]
1
� �

1��
� L�Qf :
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Proposition 7 Let a major innovation be de�ned as an innovation with a step size larger
than a certain threshold sk � sk̂ for some k̂ 2 Z+ and sk̂ > �: Moreover, let M (nf ) be the
probability of making a major innovation conditional on having a successful innovation for a
�rm with nf product lines. Then,M (nf ) can be expressed by

M (nf ) �
x�
Pk̂
k=0 � (1� �)

k

x� + nfz�
=
x�
h
1� (1� �)k̂+1

i
x� + nfz�

:

M (nf ) is a strictly decreasing function.

This result suggests that small �rms and new entrants have a comparative advantage for
achieving major advances. Large incumbents endogenously spend e¤ort on maintaining and
expanding existing products. Thus, while �rms of all sizes obtain major advances, these major
advances account for a smaller share of achieved innovations among larger �rms. An important
distributional implication of Proposition 7 is that these di¤erences weaken when considering
progressively larger thresholds sk̂. The comparative advantage is weakest at the most extreme
values (i.e., sk̂=0 = �).

10

2.6 Discussion of the Baseline Model

Our theoretical framework provides a very tractable environment to study the heterogeneous
innovation behavior of di¤erent sized �rms. We next review our main assumptions and demon-
strate that our results hold in alternative frameworks.

2.6.1 Key Model Assumptions

Assumption 2 (Structure of step sizes) Within a technology cluster, exploration innova-
tion sizes sj = ��kj decrease with the number of steps since the major invention. On the other
hand, exploitation innovation improves quality by a constant �:

The �rst part of this assumption is important and is motivated by the fact that some
innovations are radical in nature and substantially shift the evolution of product lines and
industries. Similarly, major breakthroughs can allow for important follow-on innovations. We
assume a decreasing return over time unless another major innovation wave emerges to re�ect
diminishing productivity as easily identi�able ideas are exhausted. This structure also allows
for our upcoming connection between patent citations and underlying innovations.

The second assumption of a constant exploitation innovation size simpli�es the analysis,
but the core results of the model could instead build upon incumbents drawing stochastically
from a distribution of exploitation innovation sizes. To incorporate the second distribution, one
must keep track of the two invariant distributions of exploration and exploitation innovation
sizes and their joint distribution. This substantially complicates the model without generating
further insights.

Assumption 3 (Common research technology) The realized outcomes of types of inno-
vation do not depend upon �rm traits.
10The aggregate quantity of major innovations by small and large �rms depends upon these propensities and

the �rm size distribution.
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Our framework assumes that successful innovative e¤orts of small and large �rms draw from
the same distribution of outcomes for each type of R&D pursued. In other words, research
capabilities are the same for all �rms, but �rms endogenously undertake di¤erent types of
R&D. This is a very important baseline that we verify empirically in Figures 4 and 5 below.

Assumption 4 (Scaling up of R&D) Exploration R&D does not scale with �rm size com-
pared to exploitation R&D.

This concept is central to our model and is embedded in the single stream of exploration
R&D per �rm. Figure 1 and our extended analysis in Section 3.5 characterize this di¤erence.
The speci�c formulation that exploration R&D does not scale at all, however, is a simpli�cation
that improves tractability. The true requirement is that exploration R&D not scale as quickly
with �rm size as re�nement R&D does.

As a more formal description, and to prepare for the next extension, de�ne Xn to be the
total instantaneous arrival rate of exploration innovations in a �rm with n existing products.
Likewise, xn � Xn=n represents innovations per product line or innovation intensity. In our
benchmark model, all �rms choose the same optimal total exploration R&D e¤ort, such that
X�
n = X

�; 8n. Our model and core results, however, generalize to any setting where exploration
innovation intensity x�n is decreasing in �rm size. R&D technologies that allow for partial
scaling of Xn with �rm size are compatible with our conclusions so long as the intensity
(X�

n=n) remains decreasing in n. We next consider a case that allows for scaling of exploration
R&D.

2.6.2 Klette and Kortum (2004) R&D Technology

In their seminal study, Klette and Kortum (2004) focus on exploration R&D, which they allow
to scale with �rm size, and do not consider exploitation R&D to improve currently held product
lines. They model the R&D cost function as

Ck (Xn; n) = nck

�
Xn
n

�
; (31)

where Xn is de�ned above. ck (�) is a strictly convex, di¤erentiable cost function. The division
of Xn by n in speci�cation (31) results in marginal costs for exploration R&D increasing at
the product level, as opposed to the �rm level. Thus, the intensity of innovations per product
line xn is independent of �rm size, which falls outside of our generalization above.

Can one substitute the exploration R&D technology structure of Klette and Kortum into
our benchmark model? The answer is yes, but additional structure is required to again have
the heterogeneity in innovations that are the focus of this paper and our empirical observations.
To keep the analysis tractable, we will focus on the maximization of a single �rm, abstracting
from the aggregate innovation in the economy, so that g = � = 0 and �q > 0 is �xed: If one
only substitutes (31) for (6), incumbent �rms undertake equivalent amounts of exploration
and exploitation R&D per product line in expectation. Total R&D e¤ort exactly scales with
�rm size, as does its mix. Each �rm would identically decide for the same exploration and
exploitation R&D e¤orts at the product line level. The resulting model no longer contains any
frictions that are capable of explaining our �ndings in the data.11

11 In most respects, the model becomes equivalent to single R&D technology for incumbent �rms that both
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Yet, the model becomes aligned with the data�s heterogeneity again if we also introduce a
cost for holding more product lines

Cn (n) = ncm (n) ; (32)

where c0m (n) > 0; c
00
m (n) > 0 and cm (0) = 0: This cost function simply models that the cost

of managerial e¤orts to coordinate more production units/divisions grows as the number of
products increases.

These coordination costs and associated frictions allow the augmented model to generate
interesting heterogeneities again. Managerial and coordination costs re-introduce heterogene-
ity between exploration and exploitation investments even with the exploration cost function
(31). Exploration e¤orts lead to growth in the number of product lines, while exploitation
e¤orts do not. Thus, in the presence of these coordination costs, smaller �rms have a compar-
ative advantage for exploration investments because product line expansion is less costly for
them. Larger �rms, with more product lines but higher management costs, have a comparative
advantage for exploitation.

Formally, we rewrite the main value function (14) as

r�V (qf )� _V (qf ) = max
xn2[0;�x];

fzj2[0;�z]gJf

8>>>><>>>>:

X
qj2qf

[��qj � cz (zj) qj ]� nck (xn)� ncm (n)

+nxn

�
�EjV (qf [+ fqj (1 + �)g)

+ (1� �)EjV (qf [+ fqj (1 + sj)g)� V (qf )

�
+
X

qj2qf
zj [V (qfn- fqjg [+ fqj (1 + �)g)� V (qf )]

9>>>>=>>>>; :
(33)

The next proposition characterizes this value function and its key properties.

Proposition 8 The value function (33) of an nf�product �rm with a set of product lines qf
can be expressed as

V (qf ) = ~A
X
q2qf

q +W (nf ) (34)

where ~A (value of holding a product line) is de�ned by

r� ~A = max
z2[0;�z]

n
�� � cz (z) + ~A�z

o
and W (n) (value of innovating a new product line) is de�ned by

r�W (n) = max
xn2[0;�x]

f�nck (xn)� ncm (n) + nxn [� +W (n+ 1)�W (n)]g

where � � ~A (1 + �) �q: The optimal exploration and exploitation R&D decision are given by

x�n = c
0�1
m (max f0;�+W (n+ 1)�W (n)g) and z� = c0�1z ( ~A�): (35)

Moreover,

(i) fW (n)g1n=1 is bounded from above,

(ii) fx�ng
1
n=1 forms a bounded, decreasing sequence such that x

�
n+1 < x�n when x

�
n > 0, and

x�n+1 = 0 otherwise:

stochastically improves existing product qualities and discovers new technologies. The resulting structure does
yield a special role for entrants, who can only undertake exploration e¤orts by de�nition, but otherwise the
model yields few predictions for �rm R&D heterogeneity that we study in the data.
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Proposition 8 indicates that intensities of exploration R&D e¤orts fx�ng
1
n=1 decrease with

�rm size in this alternative framework. Total exploration R&D e¤orts (X�
n � nx�n) can increase

with larger �rm size, but the intensity is always decreasing. Exploitation e¤orts, on the other
hand, continue to scale directly with �rm size. Rising management and coordination costs
endogenously lead �rms to focus more on their existing product lines rather than search for
new ones even when R&D cost structures have similar properties. Therefore we have the
following main results as before.

Proposition 9 Consider the benchmark model�s variation in Section 2.6.2. For any given
�rm f with n > 0 and the equilibrium R&D e¤orts fx�ng

1
n=1 and z

�;
(i) average growth rate of the number of product lines Gn � E ( _n=n) = x�n decreases in n;
(ii) average growth rate of sales in the existing product lines Gq � z�� is constant across �rms,
(iii) R&D intensity Rn � � (cm (x�n) �q + cz (z�)) =�� decreases in n;
(iv) conditional on a successful innovation, the probability of a major innovation (sk � sk̂ > �)
Mn � x�n

h
1� (1� �)k̂+1

i
= (x�n + nz

�) decreases in n:

2.7 Patent Citations Behavior and Innovation Spillover Sizes

We now incorporate patent citation behavior across innovations into our benchmark model.
As we have already de�ned the economy�s equilibrium, our speci�ed citation behavior does not
a¤ect real outcomes. We undertake this extension, however, to derive the economic meaning
behind patent citations. This in turn allows us to verify our modelling assumptions. Second,
this addition demonstrates how this class of endogenous growth models captures many im-
portant features from empirical literature on patent counts and citations. Constructing this
link between these literatures is the central purpose of this section. Finally, this extension
could provide a useful theoretical framework for future studies on the impact of policies such
as intellectual property rights for innovation qualities and growth.

2.7.1 Forward Patent Citations

Innovations are clustered in terms of their technological relevances. Major innovations generate
new technology clusters that last until they are overtaken by a subsequent major innovation.
An example of the sequential innovation process was illustrated in Example 1 in Section 2.2.

Let m (j; t) be the number of patents in the active technology cluster in product line j: For
instance, if t is between the innovation times of P3 and P4 in Example 1, then m (j; t) = 3, or
if t is between P11 and P12; then m (j; t) = 2. Therefore the number of citable patents in the
economy at time t is M (t) =

R 1
0 m (j; t) dj.

We next describe the citations distributions of patents. We specify citation behavior with a
few simple rules that build upon the patent literature. Patents cite previous patents within the
same technology cluster to specify how they build upon the prior work and the boundaries of
the innovations. Each new patent, by de�nition, improves the previous technologically-relevant
innovations on some dimensions. However, not all subsequent innovations improve an existing
technology in the same direction. Therefore major patents with broader scope are more likely
to be cited by subsequent follow-on work (e.g., Lerner 1994). We proxy this patent scope by
the step size s 2

�
�; ��k j k 2 N0

	
in our model. We assume that an innovation with size s will

receive a citation from a subsequent patent within the same technology cluster with probability
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s
 where 
 2 (0; 1=�) : Finally a major innovation replaces the previous cluster. Thereafter,
future citations begin with the new major innovation.

Thus, the citation behavior in Example 1 would be

Cited
with
prob.

Citing Cited
with
prob.

Citing

P1 : 
� P2 � P6 P6 : 
��3 none
P2 : 
�� P3 � P6 P7 : 
� P8; P9
P3 : 
��2 P4 � P6 P8 : 
� P9
P4 : 
� P5; P6 P9 : 
�� none
P5 : 
� P6 P10 : 
� P11; P12 :::

In reality, �rms do not patent all of their internal improvements, and we assume that only
� 2 (0; 1) share of these innovations are patented. This propensity to patent does not in�uence
our primary equilibrium analysis above, but its allows for reporting di¤erences across types.12

2.7.2 Invariant Distributions

With these simple modeling assumptions, we can characterize the �ow properties of citations
behavior. These traits depend upon the real side of the economy and provide a richer descrip-
tion of it. Similar to our earlier expressions, the equilibrium of the economy requires an invari-
ant citation distribution. Let �sk;n and ��;n denote respectively the share of patents that are of
size ��k and �, respectively, and receive n citations such that �1n=0��;n+�

1
k=0�

1
n=0�sk;n = 1.

For any given innovation size sk = ��k; the �ow equations for exploration patents with n
citations take the following form

Outflow Inflow

M��sk;0�
�� +M��sk;0
��

k (�� (1� �) + z��) = 	k�1�
� (1� �) for n = 0: (36)

M��sk;n�
�� +M��sk;n
��

k (�� (1� �) + z��) = M��sk;n�1
��
k (�� (1� �) + z��) for n 2 Z++:(37)

The �rst line represents size sk innovations with no citations (n = 0). There are M��sk;0 such
patents for each innovation size sk. The �rst part of the out�ow occurs when the technology
cluster is replaced through a new major innovation at the rate ���. When this happens,
patents become defunct and are no longer considered for citation. The second part of the
out�ow occurs when patents receive a new citation from subsequent innovations at the rate

��k (�� (1� �) + z��). This latter expression is the probability of citation based on step size
of 
��k multiplied by the arrival rate of subsequent patents. In this case, patents remain active
but move up the citation distribution.

On the right hand side, the in�ow occurs from 	k�1 product lines where the latest follow-
up innovation was of size ��k�1 and a new follow-up innovation brings the product line into
the 	k group. This occurs at rate �� (1� �). This in�ow is not dependent on the number

12Caballero and Ja¤e (1993) connect an endogenous growth model with patent citations to quantify the
potency of new ideas, their di¤usion rates, and their obsolescence rates. Their model allows them to characterize
annual shifts in the aggregate rates of these variables for the US economy since the 1960s via patent citations.
This antecedent relates to the aggregate creative destruction rates in our model. Our current framework further
considers the heterogeneity that exists in the economy across innovations and �rms as evident in patent citations.
Eeckhout and Jovanovic (2002) and Leiva (2007) also study citations and patent quality.
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of citable patents M�. All patents initially have zero citations, and only a single patent can
arrive per product line at any instant. The in�ow thus depends on the product lines a¤ected
only.

Similar reasoning applies to the second row, where citations n � 1, except that the in�ow
occurs only from the (k; n� 1) group. These innovations arrive at rate �� (1� �) + z��, and
they cite the speci�c patent at rate 
��k.

Next we characterize the citation distribution of exploitation patents with �ow equations

Outflow Inflow

M���;0�
�� +M���;0
� (�

� (1� �) + z��) = z�� for n = 0 (38)

M���;n�
�� +M���;n
� (�

� (1� �) + z��) = M���;n�1
� (�
� (1� �) + z��) for n 2 Z++:(39)

These �ows have similar interpretation. The substantive di¤erence is that the in�ow of zero-
cited patents occurs at rate z�� for internal improvements. The next proposition provides the
explicit form solutions for these distributions.

Proposition 10 The invariant distribution of the total number of forward citations (n) given
to a patent of size s 2 f�; sk j k 2 N0g can be expressed as

�s;n = �s;0

n
s for n 2 N0;

where M� = x�+�z�

x�� ;�sk;0 =
�(1��)k��

M�[���+
sk(��(1��)+z��)] ; ��;0 =
z��

M�[���+
�(��(1��)+z��)] and 
s �

s(��(1��)+z��)

���+
s(��(1��)+z��) :
Similarly, the invariant distribution of the total number of external forward citations is

~�s;n = ~�s;0 ~

n
s for n 2 N0;

where ~�sk;0 =
�(1��)k��

M�[���+
sk��(1��)] ;
~��;0 =

z��
M�[���+
���(1��)] and

~
s � 
s��(1��)
���+
s��(1��) :

Note that �s;n generates a more highly skewed distribution of citations as the share ��� gets
smaller in the denominator. This is intuitive given the slower arrival of new technology clusters
in favor of follow-on inventions that cite prior work.

2.7.3 Relative Sizes of Exploration versus Exploitation

Our last step is to connect average patent citation behavior with the underlying innovation sizes
of �rms. Our base model is �exible with respect to whether exploration or exploitation R&D
provides stronger spillover e¤ects into the growth process. We require that relative innovation
sizes ��k for exploration decline within clusters for follow-on innovations, but these step sizes
can be larger or smaller than the � step sizes for exploitation e¤orts depending upon cluster
age k and the model�s parameters. The described �rm dynamics and equilibrium conditions
above do not require further speci�cation.

Under the conditions of our model, citation patterns have the power to discern whether ex-
ploration or exploitation innovations have a larger growth spillover e¤ect to following entrants.
� represents the average exploration step size, while � is the step size for exploitation.

Lemma 2 Average citations for exploration patents are higher than for exploitation patents if
and only if � > �.
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This lemma captures the idea that we can use patent citations to discern relative innovation
sizes. Our model of citation behavior allows for stochastic features and incomplete reporting
of innovations that exist in real life, but an aggregate connection between the average quality
of innovations and average numbers of citations persists across types.

Recalling that � = ��=(1 � � (1� �)), we capture the intuitive conditions that promote
greater spillover e¤ects from exploration: higher step sizes � to major advances, higher likeli-
hood � that exploration yields a new technology cluster, and greater retention � in step sizes
within technology clusters. Each of these factors raises the potential for exploration e¤orts
relative to a given exploitation step size of �:

Evidence presented in Section 3.4 suggests that � > � for the US economy as a whole
during the period that we study. This suggests that the growth spillover bene�ts to following
entrants from exploration R&D are on average higher than from exploitation R&D.

2.8 Main Predictions of the Model

We �nally highlight the main testable predictions of the model, with the appendix providing
formal derivations. We group predictions into �ve broad categories to ease the comparison
between theory and empirics. Predictions A1-A5 are developed in prior work, while the re-
maining predictions are mostly unique to our model. Most predictions are general and do not
depend upon which part of Lemma 2 holds. Prediction C3 is the outcome of the test of Lemma
2, and predictions D5 and D6 are speci�c to the case of � > �.

2.8.1 Firm Size Distribution and Firm Growth Rates

A1 The size distribution of �rms is highly skewed.

A2 The probability of a �rm�s survival is positively related to its size.

A3 Small �rms that survive tend to grow faster than larger �rms. Among larger �rms, this
negative relationship weakens.

A4 The variance of growth rates is higher for smaller �rms.

A5 Younger �rms have a higher probability of exiting, but those that survive tend to grow
faster than older �rms.

2.8.2 Firm Size Distribution and Innovation Intensity

B1 R&D expenditures increase with �rm size among innovative �rms, but the intensity of
R&D decreases with �rm size.

B2 Similarly, patent counts increase with �rm size among innovative �rms, but the intensity
of patenting decreases with �rm size.

B3 Younger �rms are more R&D and patent intensive than older �rms.
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2.8.3 Patent Citation Behavior and Innovation Spillover Size

C1 A large fraction of patents receive zero external citations.

C2 The distribution of citations is highly skewed.

C3 An average exploration patent receives more external citations than an exploitation
patent.

C4 The distribution of patent citation life is highly skewed.

2.8.4 Innovation Type and Firm Size Distribution

D1 The proportion of a �rm�s patents that receives zero future external citations rises with
�rm size.

D2 The proportion of a �rm�s backwards citations that are self citations rises with contem-
poraneous �rm size.

D3 Average future external citations per patent is decreasing in �rm size.

D4 The relative rate of major innovations (highly cited patents) is higher for small �rms.
This higher relative rate weakens with more stringent citation quality thresholds.

D5 The average citations (received) of patents by entrants is higher than the average citations
of patents by incumbents. Similarly, the average citations of patents by young �rms is
higher than the average citations of patents by older �rms.

D6 The patents made by �rms at their entry on average receive more external citations than
later patents of the same �rm.

2.8.5 Innovation Type and Firm Growth Rates

E1 More cited patents lead to higher growth for a �rm. This e¤ect is larger for small �rms.

E2 An external patent leads to higher growth than an internal patent on average.

E3 More R&D and patent intensive �rms grow faster.

E4 Everything else equal, �rms that obtain more external patents are more likely to survive.
Firms that receive more external citations are more likely to exit the economy.

3 Empirics of Innovation

This section describes empirical regularities regarding innovation and the �rm size distribution
that come from our model. The presentation follows the �ve categories outlined above. We
touch lightly on the moments that are well established in the literature, devoting relatively
more attention to our new contributions. The appendix provides a more extended discussion
of these empirics, including those in Figure 1, and appropriate references.
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3.1 Data Development

Our project employs the Longitudinal Business Database, the NSF Survey of Industrial Re-
search and Development, and the NBER Patent Database. The Longitudinal Business Data-
base (LBD) provides the backbone for our research. This business registry contains annual
observations for every private-sector establishment with payroll from 1976 onward. The Census
Bureau data are an unparalleled laboratory for studying the �rm size distribution, entry/exit
rates, and life cycles of US �rms. Sourced from US tax records and Census Bureau surveys,
the micro-records document the universe of establishments and �rms rather than a strati�ed
random sample or published aggregate tabulations. As a representative year, the data include
108 million workers and 5.8 million establishments in 1997.

The Survey of Industrial Research and Development (RAD) is the US government�s primary
instrument for surveying the R&D expenditures and innovative e¤orts of US �rms. This is
an annual survey conducted jointly by the Census Bureau and NSF. Foster and Grim (2010)
provide a comprehensive description of these data. The survey includes public and private
�rms, as well as foreign-owned �rms, undertaking over one million dollars of R&D within the
US. RAD surveys are linked to the LBD through Census identi�ers. These micro-records begin
in 1972 and provide the most detailed statistics available on �rm-level R&D e¤orts. In 1997,
3,741 �rms reported positive R&D expenditures that sum to $158 billion.

To complement the RAD, we also match patent data into the LBD. We employ the individ-
ual records of all patents granted by the United States Patent and Trademark O¢ ce (USPTO)
from January 1975 to May 2009. Each patent record provides information about the invention
and the inventors submitting the application. Hall et al. (2001) provide extensive details about
these data, and Griliches (1990) surveys the use of patents as economic indicators of technol-
ogy advancement. We only employ patents 1) �led by inventors living in the US at the time
of the patent application, and 2) assigned to industrial �rms. In 1997, this group comprised
about 45 thousand patents (40% of the total USPTO patent count in 1997). We match these
patent data to the LBD using �rm name and location matching algorithms that build upon
Balasubramanian and Sivadasan (2010) and Kerr and Fu (2008). The appendix describes this
matching procedure and all the data employed more extensively.

Our empirical approach below is to use the best data and econometric frameworks that we
can for each model prediction. We often separately analyze Census Bureau data from external
patenting data that do not require disclosure of results. This empirical strategy entails that
the samples below di¤er somewhat across the tests. Nonetheless, this approach delivers the
most reliable estimates of each parameter, and we have further con�rmed that the reported
results are consistent with each other within the samples whenever possible.

3.2 Firm Size Distribution and Firm Growth Rates

Theoretical predictions A1-A5 are well known facts about the �rm size distribution that we do
not replicate in detail. These regularities closely relate to Stylized Facts 6-10 from Klette and
Kortum (2004).13 They are documented extensively in surveys such as Sutton (1997), Caves
(1998), and Geroski (1998). Each of these facts is separately con�rmed in the US Census
Bureau data that we employ (e.g., Dunne et al. 1988, Davis et al. 1996). They hold across

13The Klette and Kortum (2004) model displays Gibrat�s Law, but they note observed departures from
proportionate growth for �rms in the stylized facts.
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the universe of US �rms and across the R&D producing �rms that are the focus of this study
(e.g., Panel 1B of Figure 1 provides direct evidence on A2-A5). The faster growth for small
�rms (i.e., departures from Gibrat�s Law of proportionate growth) is evident in our �rm sample
discussed in Table 7 below.

3.3 Firm Size Distribution and Innovation Intensity

Even before separating exploration R&D from exploitation R&D, our model makes speci�c
predictions in B1-B3 about the general extent of R&D and patenting in the �rm size distrib-
ution. Patents counts and R&D expenditures are predicted to increase with �rm size, while
their intensities per employee or by �rm sales are predicted to decline with �rm size. Table 1
documents these patterns using data from 1993 to 1997 for US �rms with R&D expenditures.
We choose this period because the overlap and quality of our data sources (especially for sales)
are strongest during this �ve-year interval. Expenditures are in constant 1997 dollars. Panels
A and B use employment and establishment counts for size categories, respectively.

Columns 1-3 show that, not surprisingly, average R&D expenditures and patent counts
grow with �rm size. This connects to the �rst part of B1 and B2. As discussed further in the
appendix, the patent bridge �les employ name matching procedures that require choosing how
conservative or aggressive to be in establishing a link (e.g., how similar two names are before
a match is declared). We report results using both our most conservative and most aggressive
strategies in Table 1. When an R&D performer is not matched to the patent data, we infer
that no patenting occurred for the �rm during the period. Both techniques paint a similar
picture, and our subsequent empirical work employs the more conservative technique.

Columns 4-6 report the intensity of innovation normalized by employment counts. Column
7 reports intensity of innovation normalized by �rm sales. For these intensity patterns, we trim
the 1% tails to guard against outliers excessively in�uencing the results. While larger �rms
undertake more R&D and obtain more patents, conditional intensities show a strong decline
with �rm size. This decline is even steeper without the trimming procedure. This connects to
the second part of B1 and B2.

These patterns di¤er somewhat from earlier work that concluded that conditional intensity
is independent of size. The appendix undertakes an extended analysis of the �rm size to R&D
relationship across the 1975-1999 period. When using 1970s data, we �nd a substantially �atter
size relationship that mirrors the invariance to �rm size found in the central studies of Cohen
(1995) and Cohen and Klepper (1992, 1996a). We show how the pattern has consistently tilted
over the past three decades. For example, a cross-sectional regression of log �rm R&D on log
�rm size yields declining coe¢ cients with later cohorts. Elasticities are typically greater than
0.9 in the 1970s and fall to 0.6 in the late 1990s.

This extended discussion also provides additional stylized facts about the complete �rm
size distribution that are beyond our model of innovative �rms. For example, across all �rms,
the intensity of R&D expenditures or patenting increases with �rm size. This is very natural
as the calculation includes the vast majority of small �rms that do not undertake innovation
e¤orts, for example inferring zero R&D e¤orts for restaurants, law �rms, and computer repair
shops. We do not model these �rms in our work, typical of endogenous growth frameworks. As
the probability that an existing, non-innovative �rm commences innovation over the ensuing
�ve years (conditional on survival) is only about 1%, this exclusion seems reasonable.

Our �nal prediction B3 is that younger �rms are more R&D intensive than older �rms
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among innovative �rms. In our model, this is due to the positive relationship between �rm
age and �rm size. This feature is also present in the data, but we do not separately tabulate
it since the size relationship is the determining factor.14

3.4 Patent Citation Behavior and Innovation Spillover Size

Our model provides the micro-foundations for a simple, powerful test in Lemma 2 as to whether
the spillover bene�ts from exploration R&D are on average stronger or weaker than from
exploitation R&D. Figure 2 illustrates this test using patent citations from the NBER Patent
Database.15 The sample is restricted to industrial �rms that have all inventors located in the
US. We plot the distribution of external citations received over 1975-1999 for patents �led
between 1975-1984.

The solid line represents patents that make no backwards citations to prior work of the
assignee at the time of �ling, a proxy for exploration R&D. The dashed line represents patents
whose internal backwards citations are the majority of their citations, a proxy for exploitation
R&D. Galasso and Simcoe (2010) similarly use self citation behavior to distinguish exploration-
exploitation e¤orts. Both series display a large number of patents with no external citations
(C1) and a skewed distribution (C2).

More important are the comparisons between exploration and exploitation patents, which
con�rm C3 and provide the answer as to which part of Lemma 2 holds. The spillovers of
exploration innovation exceed exploitation innovation akin to �rst-order stochastic dominance.
The di¤erences are statistically signi�cant and hold in regressions that control for a variety
of traits about the patents (e.g., technology-year �xed e¤ects) or assignee �xed e¤ects. The
omitted, middle group (i.e., patents where backwards self citations are present but a minority)
behaves similarly to the no self citation group and are excluded for visual clarity.

Our model identi�es a comparative advantage for entrepreneurs and small �rms in under-
taking exploration innovation due to increased managerial attention of large �rms on re�ning
their existing product lines. Under Figure 2�s conditions, small �rms and new entrants also
yield greater spillovers into economic growth due to these forces.

Our model also highlights that the distribution of patent citation life is highly skewed (C4).
Figure 3 shows the declining citation rates with patent age. We select three cohorts: granted
patents applied for in 1975, 1977, and 1979. Figure 3 graphs the count of citations to these
patents in subsequent years normalized by the contemporaneous number of patents. This
normalization removes secular changes in patent grant rates. The general patterns in Figure 3
do not reconcile with earlier models of endogenous growth like Romer (1986, 1990). In its most
basic form, a "standing on the shoulders of giants" type framework predicts constant citation
rates over time for an invention relative to the �ow of new inventions.16 ;17

14Acemoglu et al. (2010) consider innovation dynamics jointly with respect to �rm size and age. Foster and
Grim (2010) provide related empirical analyses of R&D e¤orts in the �rm size and age distributions.
15Hall et al. (2001) provide a comprehensive introduction to patent citations. See also Trajtenberg (1990),

Ja¤e et al. (2000), and Hall et al. (2005).
16The model makes two predictions with respect to age di¤erences across citation types. First, the expected

age of internal citations should be less than external citations. This is very stark in the data at 5.9 years versus
8.6 years. Second, and more weakly, the expected average of citations to external patents should be greater
than internal patents. Empirically, this di¤erence is small at 8.2 versus 7.8 years.
17We follow Mehta et al. (2010) in calculating patent age as the time from the grant date of the cited patent

to the application date of the citing patent. If instead using the application date of the cited patent, citation
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3.5 Innovation Type and Firm Size Distribution

We next examine variations in innovation type and patent citations across the �rm size distrib-
ution. We build most directly on the important work of Acs and Audretsch (1987, 1988, 1991),
Baumol (2009), Zucker et al. (1998), Kortum and Lerner (2000), Samila and Sorenson (2010),
and similar. These papers �nd a special relationship between small, entrepreneurial companies
and major inventions, but they do not study innovation properties systematically throughout
the �rm size distribution. These distinctions also closely relate to the product versus process
innovation di¤erences discussed in the introduction.18

We document these relationships in Tables 2 and 3 using estimations at the assignee and
�rm levels, respectively. For assignee-level estimations, we measure assignee size as the number
of granted patents from the USPTO during the 1975-1984 period. For �rm-level estimations,
we measure �rm size as the average number of employees during this period. We employ the
earlier period to allow for a long horizon to measure citations.

Each approach has merits and limitations. Patent assignees perhaps most closely resemble
the model�s direct link of �rm size to �rm innovation aggregates. This strong link is due
to assignees data only considering innovative traits of �rms. Using assignees also has the
advantage of not requiring Census Bureau clearance of results, which enables the graphs below.
On the other hand, many �rms �le patents through multiple assignees. A �rm-level approach
better captures these corporate structures. Second, and most important, the direct link of
innovation to realized employment growth is of �rst-order importance.

In Tables 2 and 3, the �rst panel presents a linear speci�cation of the form,

Citep = �i;t + � � FirmSizep + "p;

where p indexes patents. The dependent variable is the citation behavior of the patent, which
varies across speci�cations, and the primary regressor is the size of the �rm �ling the patent. We
include �i;t �xed e¤ects for the technology i and year t of the patent. Technologies are de�ned
through patent classes. These �xed e¤ects remove systematic di¤erences in citation rates and
�rm sizes across technologies and years, focusing just on within variations. Estimations are
linear probability models, and we �nd similar results with non-linear techniques.19

The second panels in Tables 2 and 3 present non-parametric speci�cations that include
indicator variables for �rm size categories. Coe¢ cients in these estimates are relative to the
omitted category of the smallest �rms. For the assignee estimations, the omitted group is
assignees with one patent during the 1975-1984 period. For the �rm estimations, the omitted
group is �rms with fewer than 100 employees on average per annum. The smallest group
typically accounts for a large number of �rms and a modest share of patents.20

rates tend to rise for a few years before declining steadily. Patent grant dates typically lag application dates
by a few years, and patents become more generally publicized after their grant.
18Our work likewise relates to the economics literatures on innovation and industry structure and evolution.

Examples include Jovanovic (1982), Nelson and Winter (1982), Gilbert and Newbery (1982), Reinganum (1984),
Klepper and Grady (1990), Rosen (1991), Hopenhayn (1992), Henderson (1993), Jovanovic and MacDonald
(1994), Lerner (1997), Gans et al. (2002), Cabral and Mata (2003), Duranton (2007), Luttmer (2007, 2011),
and Kerr (2010). A lengthy management literature further discusses these ideas (e.g., Christensen 1997).
19We weight patents such that each �rm or assignee receives equal weight. We also cluster standard errors by

�rm to account for the multiple patent-to-�rm mappings. We �nd very similar results when collapsing the data
to a �rm-level cross-section or to a cross-section of �rm sizes. Analyzing the data at the patent level, however,
allows us to directly control for technology-year �xed e¤ects and undertake additional extensions.
20For example, �rms with 100 employees or fewer account for 61% of matched �rms and 9% of matched

26



3.5.1 Exploration versus Exploitation Investments

We begin with variations across �rm sizes in the types of innovations pursued. Our model links
exploitation investments with patents that do not receive external citations. Column 1 of both
tables shows that the likelihood of not receiving an external citation rises for patents of larger
�rms (prediction D1). The relative probability is 1.5% higher for assignees with more than
1000 patents compared to assignees with 101-1000 patents. Likewise, the probability is 1.9%
higher for �rms with more than 5000 employees compared to �rms with 1500-5000 employees.
There is also a mostly upward slope in probability across the �rm size distribution, although
the deviations of the largest �rms are most pronounced.

The same relationship holds in Table 4 for the fraction of citations that are self citations of
the �rm�s previous work (D2), which our model also connects to exploitation e¤orts. This table
considers patterns for patents �led in 1995 and their citations over the previous �ve years. This
short period facilitates simulations discussed next, and this snap shot is very representative of
the general behavior across the full sample. In 1995, the self citation share grows from 9% for
�rms �ling just one patent to 17% for �rms �ling 2-5 patents. The share further increases to
31% for �rms �ling over 100 patents.

The last three columns of Table 4 evaluate these observed self citation shares against
counterfactuals. Large patenters are more likely to cite themselves due to the greater likelihood
that they draw upon their past work. This is true even if citations are random. If IBM and
a small �rm in 1995 draw a random citation for the computer industry from 1990-1995, the
likelihood that IBM draws itself is much greater. The likelihood of self citing for a new entrant
is naturally zero. This bias to �rm size is particularly true where large �rms dominate narrow
technology �elds.

To con�rm that this mechanical e¤ect is not driving the observed relationship in Column 2,
we undertake Monte Carlo simulations where we replace observed patents with random coun-
terfactuals. For each observed citation, we draw a counterfactual that matches the technology
and application year of the cited patent. We include the original citation among the possible
pool of patents, and we draw with replacement. We measure from the simulation a counter-
factual self citation share to assignee size relationship. As this relationship depends upon the
randomness of the simulation draws, we repeat the procedure 1000 times.

We use these 1000 simulations to generate 95% con�dence bands for the self citation ratio
of each assignee. These con�dence bands are speci�c to assignees based upon their size and
underlying technologies. These con�dence bands more rigorously test whether the observed self
citation relationships are a systematic departure from the null hypothesis of being randomly
determined. As anticipated, Column 3 shows that the mean value of the test statistic is rising
in �rm size.

Columns 4 and 5 con�rm that the observed self citation behavior is a signi�cant departure
among large assignees. Column 4 examines the prevalence of departures. For assignees with
one patent during 1995, only 13% display self citation behavior that we can reject as being
random at a 95% con�dence level. This non-random share grows to 97% for assignees with
more than 100 patents in 1995. Column 5 also shows that average deviation of self citation
shares from the random baseline is growing in �rm size. These departures indicate that our

patents. The largest �rm size category accounts for 4% of matched �rms and 72% of patents. We discuss in
the appendix how our conservative matching approach results in these shares being a lower bound on the small
�rm contribution. Likewise, over 50% of assignees have one patent, and 90% have fewer than 10 patents.
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results are due to �rm behavior rather than the mechanics of �rm size. The appendix further
shows that these self citation �ndings hold in within-�rm panel analyses, too.21

3.5.2 Qualities of Exploration Innovations

These �rst two regularities (D1, D2) describe di¤erences by �rm size in whether exploration
or exploitation innovations are pursued. Before proceeding to predictions D3-D6, which relate
to the complete distribution of patent qualities, we pause to consider whether exploration
innovations di¤er in quality for small and large �rms. Assumption (3) speci�es a common
research technology for exploration innovations. This suggests that the citation qualities of
exploration inventions should not vary signi�cantly with �rm size (exact predictions depend
upon model parameters).

Figures 4 and 5 provide simple evidence using exploration patents that receive an external
citation. We plot the mean, non-zero external citations across exploration patents for assignees
against their sizes. Figure 4 uses a non-logarithmic citation scale, while Figure 5�s scale is
logarithmic. The trend lines employ lowess functional smoothing. In both cases, we �nd broad
similarity in patent quality and citations across the �rm size distribution for external advances.
This veri�es assumption (3). Di¤erences in types of innovation pursued across the �rm size
distribution are more important than di¤erences in research technologies.

3.5.3 Complete Quality Distributions

To combine these e¤ects and study the complete distribution of innovations, we categorize
patents by quartiles of external citations received. Our model identi�es how external patent
citations re�ect the underlying step sizes or qualities of innovations. Thus, our analysis of the
patent citation distribution also describes the distribution of innovation qualities.

We develop these quartiles by technology-year using the 36 sub-categories of the USPTO
classi�cation scheme (e.g., "Optics", "Biotechnology"). Quartiles are assigned by patent, and
patents with no external citations are assigned zero values for identifying bands. Tables 2 and 3
continue with our 1975-1984 sample of industrial patents. The dependent variables in Columns
2-5 are indicator variables for quartiles of the citation distribution. The lowest quality quartile
(0%-24%) is Column 2, and the highest quartile (75%-100%) is Column 5. Coe¢ cients across
Columns 2-5 naturally sum to one.

Both tables show that the patents of larger �rms are more likely to be of lower citation
quality. This is primarily a consequence of shifting mass from the upper two quartiles of the
distribution to the lowest quartile, and in particular through patents with no external citations.
These speci�cations thus con�rm our earlier observations in a �exible way that connects with
our �rm growth estimations shortly. They directly connect to predictions D3 and D4.

We can also use this framework to further con�rm our hypothesis that innovation quality is
mostly stochastic conditional on innovation type. Prediction D4 suggests that the innovations
of small �rms are more likely to be of higher quality, but this di¤erential should continually
weaken as more stringent citation quality thresholds are examined as the stochastic nature of

21This analysis closely relates to the patent localization work of Ja¤e et al. (1993) and Thompson and Fox-
Kean (2005). Similar procedures are used in agglomeration calculations like Duranton and Overman (2005)
and Ellison et al. (2010). Agrawal et al. (2010) discuss related issues with respect to large patenting �rms in
"company towns" and their self citation behavior (e.g., Eastman Kodak in Rochester, NY).
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realized inventions becomes more important. These weakening di¤erences through the upper
tail of the quality distribution are a unique prediction of Proposition 7 that helps di¤erentiate
our model from other frameworks.22

To examine this second prediction, we look within the upper quartile of the citation dis-
tribution in Columns 6-8 of Tables 2 and 3. We continue with indicator variables for whether
a patent is above a certain threshold in the quality distribution. Unlike Columns 2-5, how-
ever, we normalize the dependent variable to have unit standard deviation so that coe¢ cients
are comparable across Columns 6-8. This step was not required earlier as the quartiles are
approximately of equal size.

When using assignee data in Table 2, the lower arrival rate of major innovations for the
largest �rms compared to the smallest �rms persists to the 99th percentile of patent quality.
The �rm size di¤erential does, however, lose about two-thirds of the strength that existed when
looking at the top quartile. When using �rm data in Table 3, the small �rm advantage is more
prominent in the third quartile. What advantages exist at the 75th percentile are entirely
eroded by the 95th percentile. These patterns support the more subtle part of prediction D4.

The appendix further shows these results hold when examining patent claims. Each patent
includes a series of claims that delineate the property rights and novel features of the technology.
While we develop our predictions in Section 2.8 for patent citations, most distributional results
also hold for patent claims as claims are connected with the underlying step sizes of innovations.
Claims are also linked by prior empirical work to the quality of innovations, and so from an
empirical perspective it is reassuring that our results hold under this alternative technique.

We conclude that small �rms are more likely to undertake major innovations. This is
primarily due to di¤erences in types of innovations pursued. When undertaking exploration
R&D, quality di¤erences by �rm sizes are very limited, especially at the upper tail of the
quality distribution where the stochastic nature of invention is critical in shaping outcomes.

3.5.4 Dynamic E¤ects

Under the conditions of Lemma 2, predictions D5 and D6 emerge about citations pro�les of
patents by �rm age. We test these predictions using industrial patents from 1977-1994. This
sample gives us su¢ cient history in the patent and Census Bureau data to be con�dent in �rst
observations being new entrants. Ending the sample in 1994 allows for some time to measure
subsequent citations. We observe D5 directly, for example, by calculating age for assignees
through the time since their �rst patent �ling. Patents for new entrants receive about 25%
more external citations than patents for �rms observed for ten years (6.8 versus 5.4). The
declines in citations are monotonic in between.

For D6, Table 5 also presents some simple panel evidence on patent quality within �rms
over time. We restrict the sample to new entrants during 1977-1994. We regress traits of
patents on an indicator variable for whether or not the patent is �led in the �rst two years
that a �rm is observed in the patent data. We include assignee or �rm �xed e¤ects to compare

22A simple example can illustrate this point. Consider a scenario where 100 patents for small and large �rms
are drawn from a uniform quality distribution [0,1]. Imagine too that we include an additional 100 large �rm
patents that are of zero quality. Two consequences are 1) the mean of the small �rm distribution will usually be
higher than the mean of the large �rm distribution, and 2) there is no greater likelihood that the best patent
is made by a small company. Because the randomness of the invention draws determines the extreme values
realized, a similar logic applies to the very highest thresholds of patent quality.
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early patents of the �rm to later patents. We also include technology-year �xed e¤ects.
Column 1 shows that the average external citation count is higher at entry. Column 2 shows

that patents also have larger numbers of claims at �rm entry than in later years. Columns 3-6
show the distribution of external citations in quartiles. Column 3 is the lowest quality quartile,
and Column 6 is the highest quality quartile. Entrants have disproportionate representation
in the highest quality quartile compared to later years for the same �rm. The results con�rm
the time path of �rms in terms of invention quality.

Our remaining dynamic evidence focuses on verifying our model�s assumption that major
exploration innovations are followed within �rms by more incremental innovations and re-
�nements. This process requires that an external innovation be made to dramatically push
forward the technology of a product line that is dominated by incremental inventions within
the currently leading �rm. We can further verify these features by demonstrating that the
mean quality of citing patents outside of the original �rm for a given invention is higher than
the mean quality of citing patents within the �rm.

Table 6 describes di¤erences in how internal versus external work build upon an invention.
We use a linear speci�cation of the form,

Citep2;p1 = �p1 + �
p2
i;t + � � Externalp2;p1 + �p2;p1 ;

where Citep2;p1 models traits of patents p2 that cite patents p1. We include citations for US
industrial patents �led during 1975-1984. We restrict the citations to be US industrial patents
�led within a ten-year window of the original patent. We �nd similar patterns when using all
citations, but the consistent window is more appropriate.

The primary regressor is the indicator variable Externalp2;p1 that takes unit value if the
assignee of citing patent p2 di¤ers from the assignee of cited patent p1. Three-quarters of cita-
tions are external. We include �p1 �xed e¤ects for cited patents. We thus compare di¤erences
between internal and external citations on the same patent. We also include �p2i;t �xed e¤ects
for the technology i and year t of the citing patent p2; the patent �xed e¤ects naturally control
for these traits for cited patents p1. We de�ne �

p2
i;t through USPTO sub-categories and �ve-year

time periods. We cluster standard errors by cited patents.
The �rst column of Table 6 models the number of external citations on citing patents p2

as the outcome variable. The second column alternatively tests the number of claims on the
citing patent as a measure of quality. Columns 3-6 then test the quality distribution of citing
patents in a format similar to Tables 2 and 3. Quality distributions are determined through
ranks of external citations by technology and period. Coe¢ cients across the �nal four columns
for a row approximately sum to zero, but the relationship does not hold exactly given that
quality distributions are calculated over a larger group than the regression sample.

The �rst column �nds that the mean number of future citations for external work that
builds upon a given invention is 0.8 citations higher than the internal work that also builds
on the focal invention. This e¤ect is large relative to the sample mean of 8.2. There is also a
substantial external premium of 1.2 claims relative to the sample mean of 15.4. Columns 3-6
show that this e¤ect mainly comes from a greater prevalence of upper quartile patents among
the external citing patents, with mass moved from the lowest two quartiles of the distribution.
These patterns suggest that external work that builds upon a given invention is stronger than
the internal work that follows. The appendix extends this analysis.23

23The appendix also reports transition matrices for �rms in the patent quality and patent count distributions.
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3.6 Innovation Type and Firm Growth Rates

Our �nal group of predictions E1-E4 focuses on the link between innovation and �rm growth.
We show these relationships using the full dataset of patents matched to the Census Bureau
data. We organize our sample around �ve-year blocks. The three periods included in the
regressions are 1978-1982, 1983-1987, and 1988-1992. We calculate for each �rm its employment
growth to the following period, and we use 1993-1997 data to calculate growth for 1988-1992.

Following Davis et al. (1996), we calculate employment growth relative to the average of
the two periods: EmpGrf;t = [Empf;t+1 � Empf;t]=([Empf;t+1 + Empf;t]=2). This growth
variable is bounded between (-2, 2) for continuing �rms, reduces the impact of outliers, and
protects against mean reversion. For our core sample, the mean of EmpGrf;t is 0.128 and the
standard deviation is 0.597. Firm employment Empf;t for each period is calculated as a mean
across the years where positive employment is observed. Our patterns below are robust to
several variants of de�ning employment growth (e.g., ln[Empf;t+1=Empf;t]).

The central regressors to explain employment growth to the next period are the �rm�s
current employment, the �rm�s total patenting in the period, the quality distribution of the
�rm�s own patents in this period (Internal Patent Quality Sharef;q), and the quality distribution
of the recent external innovations cited by the �rm (External Citations Quality Sharef;q).
External citation quality is calculated with a window of �ve years.24

Table 7 presents an employment growth speci�cation of the form,

EmpGrf;t = �i;t + 
E ln(Empf;t) + 
P ln(Patentsf;t)

+
X
q2Q

(�q � Internal Patent Quality Sharef;q)

+
X
q2Q

(�q � External Citations Quality Sharef;q) + �f;t;

where f and t index �rms and �ve-year periods. The set of quality quartiles Q are indexed
by q. We omit the lowest two quality quartiles for both distributions, and the �q and �q
coe¢ cients are estimated relative to this group. We include �i;t �xed e¤ects for the industry i
and year t of the �rm. Industries are assigned to �rms at the two-digit level of the Standard
Industrial Classi�cation system using industries in which �rms employ the most workers. We
cluster standard errors at the �rm level; regressions are unweighted.25

Similar to our model, these matrices emphasize the faster speed of �rm movements across the citation quality
distribution compared to the patent count distribution.
24For a �rm observation during the 1983-1987 period, we �rst calculate the fraction of its 1983-1987 patents

that fall within each of the four quality quartiles. For the �rm�s patents �led in 1987, we also separately calculate
the quality distribution of cited, external patents during 1982-1987. We repeat this procedure for patents �led
by the �rm in 1986 using a 1981-1986 window on external citations, and so on. We then aggregate these external
citations qualities to characterize for the �rm the overall quality of the prior external work upon which it was
building during the 1983-1987 period. For the �rst sample period of 1978-1982, we use data on patents from
before 1978 to calculate quality. The �ve-year window allows for consistent calculations throughout the panel.
Quality distributions are relative to the technology-year in which a patent was �led.
25This growth speci�cation implicitly contains �rm �xed e¤ects. First, the dependent variable is employment

growth versus the level of employment. Second, the innovation literature often characterizes patents as stock
variables. By focusing on contemporaneous patent counts and quality distributions, we are implicitly looking
at changes in innovation stocks to the current period from the previous period. Econometric speci�cations tend
to �nd contemporaneous R&D investments have the most important impact for rates of technology formation
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The �rst column of Table 7 shows the employment growth response when controlling for
just employment and patenting levels. The negative relationship to current employment levels
matches the departures from Gibrat�s Law recently observed in complete datasets of the �rm
size distribution (prediction A3). If Gibrat�s Law were to hold throughout the full size distri-
bution, the 
E employment coe¢ cient would be zero. Instead, small �rms grow faster. The
estimate suggests that a 10% increase in �rm size lowers employment growth by 5% from the
sample mean of 0.128. Column 1 also �nds that greater numbers of patents promote growth
in the next period. Non-linear speci�cations �nd the employment relationship is convex, but
adding higher order moments does not in�uence the quality distribution results reported next.

Column 2 introduces the quality distributions: Internal Patent Quality Sharef;q and Ex-
ternal Citations Quality Sharef;q. The � and � coe¢ cients are measured relative to the two
lowest quality quartiles. Looking �rst at own-�rm patents, employment growth is higher when
a greater share of the �rm�s own innovations are higher quality. The e¤ect is statistically sig-
ni�cant and economically important. Moving 10% of the quality distribution from the lowest
quartile to the highest quartile has the same employment growth e¤ect as a 12% increase in
the number of patents. This both supports our model�s assumptions and prediction E1.

The spillover e¤ect captured by citations of high quality patents is also strong for the
upper quality distribution. Column 2�s � coe¢ cient for the upper quality quartile is greater
than its corresponding � coe¢ cient, although in general we �nd that the � and � coe¢ cients
for the upper quartile are comparable in size. This suggests that building upon high quality
innovations is very important for growth. Independent of magnitude, we also consistently
observe more nonlinear di¤erences in the quality distribution for external citations compared
to internal patents (i.e., comparing the third and highest quality quartiles). Spillover bene�ts
are highly skewed towards high quality innovations.26

The next two columns split the sample into small �rms and large �rms. If a �rm is observed
during the sample period to have 100 or fewer employees, it is classi�ed as a small �rm for the
full sample. Not surprisingly, deviations from Gibrat�s Law are greater for small �rms. Growth
is also stronger in total patent counts for small �rms compared to large �rms. Finally, the
growth impact of developing a major innovation or of building upon a prior major innovation
is more powerful in small �rms (prediction E1).

Our primary sample drops �rm-year observations where a patent is not observed due to
the log transformation. This truncation cannot be remedied by selection models or examining
raw patent counts because the associated quality distributions are unde�ned. Column 5 takes
the alternative approach of restricting the sample to �rms that are observed to patent in all
three periods, circumventing the selection bias within �rms. The overall importance of having
major innovations within the company grows relative to the quality of external citations in
this sample. In both cases, high quality innovations remain particularly important.

The last column separately con�rms prediction E2 that internal patents do not contribute

(e.g., Pakes and Griliches 1980, Hausman et al. 1984, and Hall et al. 1986). Samila and Sorenson (2010) likewise
�nd localized employment e¤ects have very short lags.
26These results, of course, should not be interpreted as suggesting an easy way to promote �rm growth.

Adjusting external citation quality distributions is a very di¢ cult challenge for managers, perhaps even more
so than internal quality distributions. Breakthrough innovations are often di¢ cult to discern, and how to build
upon them appropriately is not obvious. In this context, it is important to note that USPTO examiners review
and sometimes modify citations on patents to re�ect appropriate prior technologies. Citations thus re�ect true
technological proximity versus an attempt to actively de�ne how a �rm is being viewed externally.
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as much to �rm growth as external patents. We calculate the share of citations made by the
�rm in the current period that are self citations of prior work by the �rm. We include indicator
variables for the self citation share being (0%, 20%] and (20%, 100%]. Relative to the majority
of observations that have zero self citations, higher backwards self citations are associated with
weaker employment growth. This relationship holds in all subsamples and when only including
the self citation measures.

Prediction E3 also holds with this sample. Regressing employment growth on log patenting
by itself yields a coe¢ cient of -0.018 (0.003). This negative relationship is to be expected
given that greater patenting is associated with larger �rm size. On the other hand, regressing
employment growth on log patent intensity by itself yields a coe¢ cient of 0.066 (0.002). Similar
relationships hold for R&D expenditures using the samples in Table 1.

The appendix reports several speci�cation extensions. We again repeat our analysis with
patent claims as a second measure of innovation quality. We also test the stronger employment
growth e¤ects associated with higher patent quality threshold e¤ects. Finally, we show that
survival margins con�rm prediction E4.

4 Conclusions

Research continues to enrich our models of economic growth. This paper contributes to this
e¤ort by modelling heterogeneity in �rm behavior for exploration versus exploitation R&D.
We �nd empirical evidence that exploration R&D does not scale as rapidly with �rm size
as exploitation R&D. Adding this ingredient to our theoretical framework delivers a richer
account of innovation and growth, o¤ering many testable implications that hold in the data.
The R&D heterogeneity across di¤erent-sized �rms is important.

One important implication of the model is that small �rms, and especially new entrants,
have a comparative advantage for undertaking exploration R&D. This is very natural as large
�rms have many product lines to concentrate on. This framework rationalizes why small,
entrepreneurial �rms contribute disproportionate numbers of major innovations. Moreover,
the predicted distributional patterns line up with the data.

Another important implication emerges from patent citations. By incorporating patent
citations behavior into our model, we derive a simple test as to whether the growth spillover
e¤ects across �rms are higher for exploration or exploitation innovation. For the recent US
economy, we �nd that the external impacts of exploration innovation on other �rms exceed
exploitation innovation. This in turn suggests that small, innovative �rms and new entrants
play a special role in economic growth due to these spillovers.

This paper establishes a theoretical framework to study innovative �rms and provides
empirical evidence from US �rms. In a parallel quantitative work, we are calibrating a version
of this model to US data that also incorporates non-innovating �rms at the expense of losing
theoretical tractability. That work will quantify the implications of di¤erent R&D types on �rm
dynamics, and, more important, the contribution of innovating �rms to the overall economy.
Our ultimate goal in that project is to study quantitatively various innovation policies.

This paper has built a very tractable model with important �rm heterogeneities. We
hope this framework is a useful platform for future research on the �nancing of innovation,
intellectual property rights, and R&D policies in general. We also hope the new facts generated
in our empirical work stimulate future discussions on the dynamics of innovative �rms.
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Notes:  Figure shows basic regularities on firm R&D and patenting for innovative firms that conduct R&D or file patents.  Data are taken from US Census 
Bureau and NBER Patent Database.  The three groups of columns per chart separate firms by employment size.  Within each triplet, firms are further 
separated by contemporaneous employment growth. Panels 1A and 1B document the extent to which firms self cite their prior work. Panels 1C and 1D 
consider the extent to which firms undertake process-oriented R&D.  Greater self citations or process-oriented R&D represent exploitation R&D behavior.  
Exploitation is increasing in firm size, but is approximately invariant to contemporaneous firm growth rates conditional on firm size.

Fig. 1: Exploitation R&D behavior among US firms
Distributions of firm size and growth
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Notes:  Figure plots cumulative distribution of citation counts by patent type.  We group patents by the share of citations that they make at the time of the 
patent to prior work by the same assignee.  The distribution of citations overall is highly skewed.  Patents building mostly on prior work of the same firm 
have a lower external impact.  This is evident in that the cumulative density for external patents is lower than for internal patents.  External patents 
represent exploration innovation, while internal patents represent exploitation.  Our sample includes all domestic USPTO patents to industrial firms from 
1975-1985.  Citations are calculated over 1975-1999.

Fig. 2: Spillovers from external versus internal patents 
1975-1984 US domestic patents
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Notes:  Figure shows the declining citation rates with patent age.  We select three cohorts: granted patents in 1975, 1977, and 1980.  We graph the count 
of citations to these patents in subsequent years normalized by the number of patents in each year.  This normalization removes secular changes in patent 
grant rates.

Fig. 3: Patent citation age lengths 
1975, 1977, and 1979 US domestic patents
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Notes:  Figure graphs the average number of external citations per patent against the number of patents for the assignee.  Each circle represents an 
assignee, and the displayed trend line employs lowess functional smoothing.  Average external citations  are only calculated over patents with positive 
external citations.  The sample includes all industrial patents applied for during the 1975-1984 period.  Citations are calculated over 1975-1999.  Figure 
shows how the average number of external citations per patent does not depend strongly on assignee size conditional on being an external innovation.

Fig. 4: External citations and assignee size 
1975-1984 US domestic patents



Notes:  See Figure 4.  Figure employs a log scale for average external citations. Figure again shows how the average number of external citations per patent 
does not depend strongly on assignee size conditional on being an external innovation.

Fig. 5: Log external citations and assignee size 
1975-1984 US domestic patents



Mean R&D

expenditures R&D per R&D per

among R&D Conservative Aggressive employee with Conservative Aggressive sales with

producers ($m) matching matching 1% trim ($k) matching matching 1% trim

(1) (2) (3) (4) (5) (6) (7)

1-100 employees 3.8 0.5 0.6 38.9 0.0141 0.0227 0.257

101-500 employees 4.3 1.3 1.5 22.5 0.0053 0.0063 0.128

501-1500 employees 6.1 2.4 3.6 8.0 0.0027 0.0040 0.035

1501-5000 employees 17.5 6.7 13.2 6.7 0.0026 0.0053 0.032

5001+ employees 149.0 62.8 83.2 5.8 0.0032 0.0046 0.018

1 establishment 3.7 1.1 1.3 35.3 0.0114 0.0173 0.216

2 establishments 4.7 1.5 1.9 15.4 0.0054 0.0072 0.100

3-5 establishments 9.6 2.8 3.6 14.0 0.0047 0.0061 0.093

6-10 establishments 8.7 3.3 6.8 9.3 0.0022 0.0044 0.045

11-50 establishments 21.5 12.1 20.7 7.2 0.0028 0.0052 0.032

51+ establishments 144.0 54.8 69.5 5.2 0.0023 0.0030 0.018

Table 1: Firm size and innovation intensity among R&D producers, 1997

Notes:  Table reports the relationship between the firm size distribution and innovative activity for US firms undertaking R&D.  Columns 1-3 report R&D expenditures and 

raw patent counts.  Columns 4-6 report the intensity of innovation normalized by employment counts.  Column 7 reports intensity of innovation normalized by sales.  Larger 

firms undertake more R&D and obtain more patents, but conditional intensities decline with firm size.  R&D expenditures are averages by firm over 1993-1997 for firms 

reporting R&D in 1997.  Expenditures are in constant 1997 dollars.  App. Tables 1a-1e report broader descriptive statistics and longitudinal changes in these distributions.

B. Using establishment counts to group firms

A. Using employee counts to group firms

1997 patents

among R&D producers

1997 patents

per employee with 1% trim



Likelihood 

patent has

no external

citation 0-24% 25%-49% 50%-74% 75%-100% Top 25% Top 5% Top 1%

(1) (2) (3) (4) (5) (6) (7) (8)

Log count of assignee 0.003 0.008 0.001 -0.001 -0.008 -0.017 -0.007 -0.008

patents, 1975-1984 (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) (0.004)

(0,1) Indicator variable 0.001 0.009 -0.001 0.002 -0.011 -0.025 -0.003 -0.006

for 2-5 patents (0.003) (0.004) (0.004) (0.005) (0.005) (0.011) (0.011) (0.012)

(0,1) Indicator variable 0.002 0.015 0.000 -0.003 -0.012 -0.026 -0.015 -0.014

for 6-10 patents (0.003) (0.005) (0.005) (0.005) (0.006) (0.014) (0.015) (0.015)

(0,1) Indicator variable 0.008 0.020 -0.008 -0.005 -0.007 -0.015 0.008 -0.011

for 11-20 patents (0.004) (0.006) (0.005) (0.006) (0.007) (0.016) (0.016) (0.017)

(0,1) Indicator variable 0.010 0.030 0.001 -0.003 -0.028 -0.064 -0.030 -0.031

for 21-100 patents (0.003) (0.005) (0.005) (0.005) (0.006) (0.014) (0.013) (0.013)

(0,1) Indicator variable 0.038 0.058 0.018 -0.013 -0.063 -0.144 -0.069 -0.051

for 101-1000 patents (0.005) (0.006) (0.005) (0.005) (0.007) (0.017) (0.014) (0.014)

(0,1) Indicator variable 0.052 0.071 0.030 -0.025 -0.077 -0.175 -0.085 -0.066

 for 1001+ patents (0.011) (0.010) (0.009) (0.006) (0.013) (0.030) (0.020) (0.016)

Tech.-Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 272,322 272,322 272,322 272,322 272,322 272,322 272,322 272,322

Table 2: Cross-sectional relationship between assignee size and citation behavior

A. Linear specification

B. Non-parametric approach (relative to assignees with one patent)

Notes:  Table quantifies the relationship between patent citation behavior and assignee size.  Assignee size is measured as the number of patents for the 

assignee.  The top panel uses a linear specification, while Panel B uses a non-parametric specification.  Column 1 shows that the likelihood of a patent not 

receiving an external citation rises with assignee size.  Columns 2-5 show the distribution of external citations for the patent in quartiles by external citations 

received.  Column 2 is the lowest quality quartile, and Column 5 is the highest quality quartile.  The coefficients for a row sum to zero across these columns.  

Large assignees have disproportionate representation in the lowest quality quartile compared to small assignees.  Columns 6-8 examine the upper quartile 

effect at ever increasing quality levels.  The underrepresentation of large assignees weakens at increasingly high quality bars.  This pattern suggests that the 

comparative advantage of small firms lies in making major innovations, but not necessarily breakthrough innovations.  The sample includes US industrial 

patents applied for between 1975-1984 and their citations during 1975-1999.  Estimations include technology-year fixed effects, cluster standard errors at 

the assignee level, and weight patents such that each assignee receives constant weight.

(coefficients sum to zero across columns)

Prevalence of patents by external citation ranks

(likelihood normalized to have unit sd)

being among the most cited patents

Normalized likelihood of patent 



Likelihood 

patent has

no external

citation 0-24% 25%-49% 50%-74% 75%-100% Top 25% Top 5% Top 1%

(1) (2) (3) (4) (5) (6) (7) (8)

Log firm employment, 0.002 0.004 -0.002 -0.001 -0.001 -0.002 0.002 -0.001

1975-1984 (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) (0.003)

(0,1) Indicator variable -0.002 0.008 -0.003 0.005 -0.011 -0.025 0.005 0.030

101-500 employees (0.004) (0.006) (0.007) (0.007) (0.007) (0.016) (0.017) (0.020)

(0,1) Indicator variable 0.003 0.010 -0.016 0.014 -0.007 -0.017 0.012 -0.018

501-1500 employees (0.005) (0.008) (0.009) (0.009) (0.009) (0.021) (0.022) (0.022)

(0,1) Indicator variable 0.005 0.010 -0.009 -0.011 0.010 0.022 0.001 -0.028

1501-5000 employees (0.006) (0.009) (0.010) (0.010) (0.010) (0.024) (0.024) (0.024)

(0,1) Indicator variable 0.024 0.039 -0.007 -0.020 -0.013 -0.029 0.039 0.024

5001+ employees (0.006) (0.009) (0.009) (0.009) (0.010) (0.023) (0.028) (0.030)

Tech.-Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 257,300 257,300 257,300 257,300 257,300 257,300 257,300 257,300

A. Linear specification

B. Non-parametric approach (relative to firms with 100 and fewer employees)

Notes:  See Table 2.  Table considers firm size instead of assignee size.  The sample of patents is reduced to those that are matched to the US Census 

Bureau data (conservative matching).  Large firms again have disproportionate representation in the lowest quality quartile compared to small firms.  The 

underrepresentation of large firms weakens at increasingly high quality bars.  This pattern suggests that the comparative advantage of small firms lies in 

making major innovations, but not necessarily breakthrough innovations.

Table 3: Cross-sectional relationship between firm size and citation behavior

Normalized likelihood of patent 

Prevalence of patents by external citation ranks being among the most cited patents

(coefficients sum to zero across columns) (likelihood normalized to have unit sd)



Count of assignees by Mean observed self

number of 1995 patents citation share for the

with citations for US- US-based, industrial Mean test statistic for Share of firms deviating Mean deviations of

based, industrial patents patents over the 95% confidence level at 95% confidence level observed citation shares

over prior 5 years prior 5 years by size category from random behavior (col. 2 minus col. 3)

(1) (2) (3) (4) (5)

1 patent 8044 9% 1% 13% 8%

2-5 patents 3382 17% 3% 35% 14%

6-10 patents 595 22% 4% 64% 18%

11-20 patents 307 23% 4% 73% 19%

21-100 patents 288 27% 4% 89% 23%

101+ patents 65 31% 6% 97% 25%

Table 4: Cross-sectional relationship of assignee size and self citation behavior

Notes:  Table reports the results of Monte Carlo simulations of self citation behavior by firm size.  The sample is restricted to US-based, industrial patents in 1995 and 

their citations to other US-based, industrial patents over the prior five years.  Rows group assignees by their patent counts in 1995.  The second column indicates the 

share of observed citations that are self citations.  For the Monte Carlo simulations, we draw counterfactuals that match the technologies and application years of cited 

patents.  We include the original citation among the possible pool of patents, and we draw with replacement.  We measure from the simulation a counterfactual self 

citation share to assignee size relationship.  We repeat the simulations 1000 times to generate 95% confidence bands for the self citation ratio of each assignee.  These 

confidence bands are specific to assignees based upon their size and underlying technologies.  The third column provides the mean test statistic by firm size.  This 

statistic rises with firm size because firms with larger patent portfolios are more likely to cite themselves even if citations are random.  The fourth column indicates the 

share of assignees by size category that exhibit self citation behavior that exceeds a random pattern at a 95% confidence level.  These deviations are strongly increasing 

in firm size.  The last column presents the mean deviation of observed self citation behavior from the simulation baselines.  These deviations are also increasing in firm 

size.  The appendix shows that the basic self citation relationship to firm size holds within firms using panel estimation techniques.

Comparison of observed self citation behavior against 1000 Monte Carlo

simulations that replicate technologies and years of citations



Number of Number 

external of claims

citations on patent 0-24% 25%-49% 50%-74% 75%-100%

(1) (2) (3) (4) (5) (6)

First two years the 0.667 1.212 -0.004 -0.009 -0.005 0.017

assignee is observed (0.082) (0.140) (0.004) (0.005) (0.005) (0.005)

Assignee fixed effects Yes Yes Yes Yes Yes Yes

Tech.-Year fixed effects Yes Yes Yes Yes Yes Yes

Observations 250,657 250,657 250,657 250,657 250,657 250,657

First two years the 0.699 0.838 -0.012 -0.013 0.003 0.023

firm is observed (0.107) (0.172) (0.005) (0.006) (0.007) (0.006)

Firm fixed effects Yes Yes Yes Yes Yes Yes

Tech.-Year fixed effects Yes Yes Yes Yes Yes Yes

Observations 141,110 141,110 141,110 141,110 141,110 141,110

Notes:  Table quantifies changes in average patent quality within firms over time.  The top panel considers the first two years 

that an assignee is observed, while Panel B uses the first two years that a firm is observed.  Columns 1 and 2 show that external 

citation rates and claims per patent are higher at firm entry. Columns 3-6 show the distribution of external citations in quartiles.  

Column 3 is the lowest quality quartile, and Column 6 is the highest quality quartile.  The coefficients for a row sum to zero 

across these columns.  Entrants have disproportionate representation in the highest quality quartile compared to later years for 

the same firm.  The sample includes US industrial patents for assignees and firms first observed between 1977 and 1994.  

Estimations include assignee/firm fixed effects and technology-year fixed effects, cluster standard errors at the assignee/firm 

level, and weight patents such that each assignee/firm receives constant weight.

A. Within assignee estimations

B. Within firm estimations

Table 5: Panel relationship between entry and patent quality

Prevalence of patents by external citation ranks

(coefficients sum to zero across columns)



Number of

external Number of

citations on claims on 

citing patent citing patent 0-24% 25%-49% 50%-74% 75%-100%

(1) (2) (3) (4) (5) (6)

External citation 0.849 1.236 -0.015 -0.009 -0.005 0.029

(0.053) (0.073) (0.002) (0.002) (0.002) (0.002)

Cited patent fixed effects Yes Yes Yes Yes Yes Yes

Citing tech-year effects Yes Yes Yes Yes Yes Yes

Observations 761,940 761,940 761,940 761,940 761,940 761,940

Notes:  Table characterizes differences in patent quality for internal versus external patents that cite a particular invention.  

Columns 1 and 2 show that external citation rates and claims are higher.  Columns 3-6 show the quality distribution of the 

citations by quartiles.  Column 3 is the lowest quality quartile, and Column 6 is the highest quality quartile.  External citations 

are consistently of higher quality.  The sample includes citations of US industrial patents from 1975-1984 applied for within 

ten years after the original patent.  Estimations include cited patent fixed effects and technology-period fixed effects for citing 

patents.  Estimations cluster standard errors by cited patent.  The appendix extends these specifications.

Table 6: Assignee size and building upon technologies

ranks among citing patents

(coefficients sum to zero across columns)

Prevalence of patents by external citation



Base Including Small Large Balanced Including

patent quality company company panel self citing

regression distributions sample sample sample measures

(1) (2) (3) (4) (5) (6)

Log employment -0.065 -0.065 -0.115 -0.071 -0.078 -0.065

(0.002) (0.002) (0.004) (0.004) (0.005) (0.002)

Log patents 0.049 0.042 0.066 0.029 0.034 0.050

(0.003) (0.004) (0.008) (0.004) (0.006) (0.004)

Quality distribution of firm's inventions (share relative to two lowest quality quartiles):

Third quality quartile 0.027 0.032 0.014 0.026 0.026

(50th-74th) (0.010) (0.012) (0.014) (0.023) (0.010)

Highest quality quartile 0.049 0.057 0.032 0.081 0.048

(75th-100th) (0.010) (0.013) (0.016) (0.023) (0.011)

Quality distribution of external inventions cited by firm (share relative to two lowest quartiles):

Third quality quartile 0.012 0.007 0.003 0.010 0.016

(50th-74th) (0.012) (0.015) (0.016) (0.022) (0.012)

Highest quality quartile 0.074 0.081 0.041 0.039 0.076

(75th-100th) (0.010) (0.012) (0.014) (0.019) (0.010)

Extent to which the firm was backward self citing in patents (indicator variables relative to no self cites):

Moderate self citation -0.027

(>0% and <=20%) (0.010)

High self citation -0.074

(>20%) (0.012)

Tech.-Period effects Yes Yes Yes Yes Yes Yes

Observations 29,496 29,496 18,807 10,689 7,705 29,496

Notes:  Table quantifies the relationship between firm employment growth and the quality distribution of patents internal to 

the firm and externally cited by the firm.  In particular, it shows the importance of high quality inventions (upper quartile) 

both within and external to the firm for subsequent employment growth.  The sample includes all firms in the US Census 

Bureau data that are matched to patent data during the 1975-1999 period.  The data center on three time periods: 1978-

1982, 1983-1987, and 1988-1992.  Firm growth is measured as [emp(t+1)-emp(t)]*2/[emp(t+1)+emp(t)] across these 

periods.  The internal patent quality distribution and backwards self citation shares are determined by inventions made by 

the firm in the current period.  The external quality distribution is determined by inventions made by other firms that are 

cited by the focal firm.  These external inventions are limited to those made in the prior five years.  Earlier and later periods 

than 1978-1992 are used in constructing these variables.  The small company sample includes all firms that are observed to 

have 100 or fewer employees during the 1978-1992 period.  The balanced panel sample includes all firms that patent in all 

three periods.  Estimations include technology-period fixed effects, cluster standard errors at the firm level, and are 

unweighted.  The appendix extends these estimations.

Table 7: Innovation quality and employment growth of firm

Dependent variable is employment growth of firm



5 Theoretical Appendix

Proof of Proposition 1. Conjecture that V (qf ) = A
X

qj2qf
q + B�q: Substituting this

expression into the original value function

r�A
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qj2qf

qj + r
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x;[zj ]j2Jf

8>><>>:
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qj2qf

��Aqj

9>>=>>; :
This expression holds if and only if

r�A = max
z
f�� � cz (z) + zA�� ��Ag (40)

B (r� � g�) = max
x
fxA (1 + �)� cx (x)g : (41)

Proof of Proposition 2. We will prove by induction. De�ne Sn �
~E�

E�
�
x�

��
�n 1

n! : Recall
the �ow equations (26) : The �rst two lines indicate that S1 = �1 and S2 = �2. Moreover the
third equation delivers the following equality �3 = S3 for n = 2: Assume it holds up to some
n > 2: Then the last line can be rewritten as

E���n+1 (n+ 1) �
� +

~E�

E�

�
x�

��

�n�1 E�x�

(n� 1)! = E
�
~E�

E�
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x�

��

�n 1
n!
(x� + n��) :

Rearranging this equation we get

��n+1 =
~E�

E�

�
x�

��

�n+1 1

(n+ 1)!
= Sn+1:

Proof of Proposition 3. Note that Y � = (1� �)
1�2�
�

h
�
~�

i 1��
�
L��q: Therefore the growth

rate of aggregate output is equivalent to the growth rate of the average quality of product
lines. We can express the level of �q (t) after an instant �t as

�q (t+�t) =

�
�q (t) [���t (1 + �) + z��t (1 + �)]

+�q (t) [1� ���t� z��t]

�
:

Now subtract �q (t) from both sides and divide by �t and take the limit as �t! 0

g =

�
�q (t)

�q (t)
= lim
�t!0

�q (t+�t)� �q (t)
�t

1

�q (t)
= ��� + z��:

Proof of Proposition 4. Let � be a correspondence that maps [x z S]T 2 � into a
new vector of iterates [x0 z0 S0]T 2 � such that

� : [x z S]T �
�
x0 z0 S0

�T
:
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We will de�ne the iterations using the equations that characterize the equilibrium
in De�nition 3. First from (12), (13), and (29) pro�t can be expressed �� =

(1� S�)� (1� �) ~�
�
1� � + �2

��1
: Moreover from (9), (21), and (30), the equilibrium in-

terest rate can be expressed as r� = " (S�x�� + z��) + �: As a result, from (16) the value of
exploration innovation is

A =
(1� S�)� (1� �) ~�

�
1� � + �2

��1 � cz (z�)
S�x� (�"+ 1) + ("� 1) z��+ � : (42)

Using this, we can de�ne z0 as the maximizer of (16)

z0
�
[x; z;S]T

�
= arg max

~z2[0;�z]

(
(1� S)� (1� �) ~�

�
1� � + �2

��1 � cz (z)
Sx (�"+ 1) + ("� 1) z�+ � �~z � cz (~z)

)
: (43)

Similarly we use (17) to �nd the next iteration of x0

x0
�
[x; z;S]T

�
= arg max

~x2[0;�x]

(
(1� S)� (1� �) ~�

�
1� � + �2

��1 � cz (z)
Sx (�"+ 1) + ("� 1) z�+ � ~x (1 + �)� cx (~x)

)
:

(44)
Finally we use the no-arbitrage condition (22), (17), and (42) to �nd the next iteration of the
share of entrepreneurs,

S0 = max

8><>:0;min
8><>:1; 1

"x�

264 ~� [("� 1) (Sx� + z�) + �]
(1�S)�(1��)~�(1��+�2)
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Sx(�"+1)+("�1)z�+� x (1 + �)� cx (x)

� �

375� z�

x�

9>=>;
9>=>; :
(45)

By construction � maps the compact set � into itself. Note also that the mapping is
also continuous. To �nalize the proof, we need to show that S 2 (0; 1) since we used the no-
arbitrage condition with equality in (45). By contradiction assume �rst S� = 0: That implies
�� = 0; L� + ~L� = 1, L� = �(1��)~�

1��+�2 and r
� = z��"+ �: Using (9) and (30) to substitute for the

interest rate and using the value of pro�t, the expected value of holding a product line (16) is
("z��+ �)A = � (1� �) ~�=

�
1� � + �2

�
+A�z� � cz (z�) : This implies

A =
� (1� �) ~�=

�
1� � + �2

�
� cz (z�)

("� 1) z��+ � >
� (1� �) ~�=

�
1� � + �2

�
("� 1) z��+ � : (46)

Then the expected value of entry is

B =
maxx fAx (1 + �)� cx (x)g

z�� ("� 1) + � >
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z�� ("� 1) + �maxx

(
� (1� �) =

�
1� � + �2

�
("� 1) z��+ � x (1 + �)� cx (x)

~�

)
| {z }

>1 by Assumption 1

:

The equality uses the expression in (17), and the inequality follows from (46) : Using As-
sumption 1 we get B > ~�= (z�� ("� 1) + �) : Note that the value of working from (11) is
w�=r� = ~��q= ("z��+ �) : Therefore

B�q >
~��q

z�� ("� 1) + � =
w�

r�
"z��+ �

z�� ("� 1) + � >
w�

r�
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which is a contradiction from (8) :
Next assume S� = 1: This implies L� = 0 and �� = 0: From (43) and (44) we have

x� = z� = 0: As a result A = B = 0: However w�=r� = ~��q=�, which implies w�=r� > B�q:
Again, this is a contradiction from (8) : This completes the proof.

Proof of Lemma 1. Let jnf 2 Jf denote the product line in which �rm f had its
nth most recent exploration innovation among its current product lines. Take two �rms with
nf > nf 0 � n: Note that expected quality level of the latest nth innovation is the same across
�rms, E(qjnf ) = E(qjn

f 0
): To see this, consider the expected value of the latest exploration

innovation of a randomly chosen �rm f; E(qj1f ): Since our analysis is on steady state, we will
focus on the expected product line quality normalized by current average quality E(qj1f )=�q such
that the expected current normalized quality is 1. Similarly, the expected initial quality of an
exploration innovation that was made a periods ago is e�g

�a: A couple of observations are in
order. For an innovation to be a periods old, two events must have occurred during a periods:
(i) no other �rm has replaced �rm f in product line j for a periods (with probability e��

�a)
and (ii) from today backwards in history, the �rst arrival of �rm f has occurred a periods
ago (with probability x�e�x

�a). Finally, a product line�s quality improves through exploitation
of the same �rm at the rate �z� on average. Then the current expected quality of the latest
exploration innovation of a randomly chose �rm f is

E(qj1f ) =
Z 1

0
e��

�ax�e�x
�ae�g

�ae�z
�ada = x�

Z 1

0
e�(�

�+x�(1+�))ada =
x�

�� + x� (1 + �)
:

The main conclusion of this analysis is that the expected quality is independent of the number
of product lines nf that �rm f owns. Repeating the same steps for E(qj2f ); E(qj3f )::: and so on
leads to the fact that E(qjnf ) = E(qjnf 0 ) for any f , f

0 and n such that nf > nf 0 � n: Therefore

E(Qf j nf ) =
nf 0X
n=1

E(qjnf ) +
nfX

n=nf 0+1

E(qjnf ) = E(Qf 0 j nf 0) +
nfX

n=nf 0+1

E(qjnf ) > E(Qf 0 j nf 0):

Proof of Proposition 5. Firm growth is equivalent to the growth of Qf : After a small
time interval, the quality index will be on average

Qf (t+�t) =

8><>:
x��t [Qf (t) + �q (1 + �)] +

P
qf
z��t [Qf (t) + �qf ]

+ (1� x��t� nfz��t� nf���t)Qf (t)
+
P
qf
���t (Qf � qf )

9>=>; :
Then after some algebra the expected growth rate of a �rm is

G (Qf ) = lim
�t!0

Qf (t+�t)�Qf (t)
�tQf

=
x��q (1 + �)

Qf
+ z��� ��;

which is decreasing in Qf :
Proof of Proposition 6. Immediate from the text.
Proof of Proposition 7. The total probability of having an innovation during �t

is x��t + nfz
��t: The probability of having a major innovation with sk � sk̂ > � is
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h
1� (1� �)k̂+1

i
x��t: Then the probability of having a major innovation conditional on a

successful innovation is the ratio
h
1� (1� �)k̂+1

i
x��t= (x��t+ nfz

��t) :

Proof of Proposition 8. First we show that the value function has its form in (34).
The conjecture in (34) is equivalent to (33) if and only if

r ~A = max
z

n
�� � cz (z) + ~A�z

o
and

rW (n) = max
xn2[0;�x]

f�nck (xn)� ncm (n) + nxn [� +W (n+ 1)�W (n)]g

where � � �q ~A (1 + �) : Recall that cm (n) stands for the convex managerial cost such that

cm (0) = 0 and c0m (n) ; c
00
m (n) > 0:

Our goal is to show that the optimal per-product-line R&D e¤ort x�n is decreasing in the
number of product lines n. Note that

c0k (x
�
n) =W (n+ 1)�W (n) + �:

Therefore it is both necessary and su¢ cient to show that �n �W (n+ 1)�W (n) is decreasing
in n:
Before we start with the main proof, consider the following three lemmas.

Lemma 3 W (n) is bounded from above.

Proof. Consider the per period return function �(x; n) = nx� � ncx (x) � ncm (n) : We
will show �rst that �(x; n) is bounded. De�ne ~x � argmax x�(x; n) : It is determined by
the �rst order condition @cx(~x)

@x = �: Then �(x; n) � n [~x�� cx (~x)] � ncm (n) : De�ne ~n �
argmaxn2Z+ fn [~x�� cx (~x)]� ncm (n)g : The existence of ~n is ensured by the strict convexity
of cm (�) : As a result we have �(x; n) � �(~x; ~n) :Then we can conclude that W (n) �Wmax �
�(~x; ~n) =�, which is the present discounted sum of the maximum per-period returns. Note
that in the last expression we used the fact that r� � g� > �: This completes the proof.

Lemma 4
n
W (n)
n

o1
n=1

forms a decreasing sequence.

Proof. Let us rewrite the value functions for (n+ 1) and n in the following way

r�W (n+ 1)

n+ 1
= x�n+1�� ck

�
x�n+1

�
� cm (n+ 1) + x�n+1 [W (n+ 2)�W (n+ 1)]

r�W (n)

n
� x�n+1�� ck

�
x�n+1

�
� cm (n) + x�n+1 [W (n+ 1)�W (n)] :

Note that the second inequality follows from the fact that the argument on the right-hand side
is not necessarily the optimal choice for n: Taking the di¤erence of these two lines we get

r�
�
W (n+ 1)

n+ 1
� W (n)

n

�
� cm (n)� cm (n+ 1) + x�n+1 [�n+1 ��n] :
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To obtain a contradiction, assume W (N+1)
N+1 > W (N)

N holds for some N 2 Z++: Then from the
last inequality and the increasing nature of cm (�) ; we have

�N+1 ��N > 0: (47)

Note that W (N + 1) �W (N) = W (N+1)
N+1 + N

�
W (N+1)
N+1 � W (N)

N

�
> W (N+1)

N+1 where the last

inequality follows from the contradiction assumption: Then together with (47)

W (N + 2)�W (N + 1) > W (N + 1)�W (N) >
W (N + 1)

N + 1
:

After rearranging the inequality we get

W (N + 2)

N + 2
>
W (N + 1)

N + 1
:

Repeating the same steps we get the following generalization

W (n+ 1)

n+ 1
>
W (n)

n
and �n+1 > �n; for n > N:

However this contradicts the fact that W (n) is bounded above. This completes the proof.

Lemma 5 If �N > �N�1 and
n
W (n)
n

o1
n=1

is a decreasing sequence; then 2W (N) >

N (�N +�N�1) :

Proof. Assume 2W (N) � N (�N +�N�1). This, together with �N > �N�1 implies
W (N) < N�N which in turn leads to

W (N)

N
<
W (N + 1)

(N + 1)
;

which is a contradiction. That completes the proof.
Proof of Proposition 8 (continued) Note that proving that x�n to be decreasing is

equivalent to proving that �n � W (n+ 1) �W (n) is decreasing. The latter is proven next.
By contradiction, assume 9N such that �N > �N�1: Next, consider the value functions

r�W (N + 1)

N + 1
= x�N+1�� ck

�
x�N+1

�
� cm (N + 1) + x�N+1 [W (N + 2)�W (N + 1)]

r�W (N)

N
� x�N+1�� ck

�
x�N+1

�
� cm (N) + x�N+1 [W (N + 1)�W (N)]

r�W (N)

N
� x�N�1�� ck

�
x�N�1

�
� cm (N) + x�N�1 [W (N + 1)�W (N)]

r�W (N � 1)
N � 1 = x�N�1�� ck

�
x�N�1

�
� cm (N � 1) + x�N�1 [W (N)�W (N � 1)] :

We subtract the second from the �rst and fourth from the third lines to get

r�
�
W (N + 1)

N + 1
� W (N)

N

�
� [cm (N)� cm (N + 1)] + x�N+1 [�N+1 ��N ]

r�
�
W (N)

N
� W (N � 1)

N � 1

�
� [cm (N � 1)� cm (N)] + x�N�1 [�N ��N�1] :
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We again take the di¤erence between the two lines

r�

0@ h
W (N+1)
N+1 � W (N)

N

i
�
h
W (N)
N � W (N�1)

N�1

i 1A �
�

[cm (N)� cm (N � 1)]
� [cm (N + 1)� cm (N)]

�
| {z }

<0

+

�
x�N+1 [�N+1 ��N ]
�x�N�1 [�N ��N�1]

�
:

Recall the initial assumption �N > �N�1: This implies

r�
��
W (N + 1)

N + 1
� W (N)

N

�
�
�
W (N)

N
� W (N � 1)

N � 1

��
� x�N+1 [�N+1 ��N ] :

De�ne 	 �
h
W (N+1)
N+1 � W (N)

N

i
�
h
W (N)
N � W (N�1)

N�1

i
: This can be also written as

	 =
N�N �W (N)

N (N + 1)
� N�N�1 �W (N)

N (N � 1) :

After rearranging the previous expression we get

(N + 1) (N � 1)N	 = (N � 1)N�N � (N � 1)W (N)� (N + 1)N�N�1 + (N + 1)W (N)

= N2 (�N ��N�1)�N (�N +�N�1) + 2W (N)

> 0

where the last inequality uses the initial contradiction assumption and Lemma 5. Therefore
	 > 0 and �N+1 > �N : Repeating the same steps for n � N + 1 gives us the following
generalization, �n+1 > �n; 8n > N: This result contradicts the bounded nature of W (n) and
completes the proof.

Proof of Proposition 9. Follows from Proof of Proposition 8 and the text.
Proof of Proposition 10. First we compute the number of citable patents M�: The

measure of citable patents after �t is simply

M� (t+�t) = [M� (t) + 1] (x��t (1� �) + �z��t) + 1� x��t� + (1� x��t� �z��t)M� (t) :

Imposing the steady state condition M� (t+�t) = M� (t) we �nd M� = 1
� +

�z�

x�� : Recall the

�ow equations (36) and (37) : Equations (36) and (25) imply �sk;0 =
��(1��)k�

M�[���+
sk(��(1��)+z��)] :

Then we can rewrite (37) in a recursive form as �sk;n = �sk;n�1

sk(�

�(1��)+z��)
[���+
sk(��(1��)+z��)] , which

implies �sk;n = �sk;0
h


sk(�
�(1��)+z��)

���+
sk(��(1��)+z��)

in
: Similar reasoning applies to ��;n and to the �ow

equations (38) and (39) :
For the second part of the theorem, we just rewrite the same �ow equations without the

internal citations z�: Then the expressions follow.
Proof of A1. Immediate from Proposition 2.
Proof of A2. Let f and f 0 be two arbitrary �rms with nf > nf 0 product lines. The

survival probability of a product line j from period t to t0 is e�(t
0�t)�� :Moreover, the probability

that �rm f will have at least one exploration innovation during the same period is 1�e�(t0�t)x� :
Since product lines receive iid shocks every period, we can write the �rm survival probability
as

Pt;t0 (f j nf ) = 1� e�(t
0�t)x� Q

j2Jf

�
1� e�(t0�t)��

�
= 1� e�(t0�t)x�

�
1� e�(t0�t)��

�nf
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where we express the probability of a �rm exit as the probability that the �rm loses all of its

time-t product lines
�
1� e�(t0�t)��

�nf
multiplied by the probability that it does not innovate

any new product during that period, e�(t
0�t)x� : Then in all remaining events, the �rm will

survive. Note that Pt;t0 (f j nf ) > Pt;t0
�
f 0 j nf 0

�
i¤ nf > nf 0 :

Proofs of A3 and A4. Firm growth in terms of the number of product lines can be
expressed as

gf =
nf +mf

nf
� 1 = mf

nf

where mf 2 Z is simply the net number of product innovations (new products minus the ones
that are lost to other �rms). Then the mean and variance of growth rate can be written as
E (gf ) = 1

nf
E (mf ) and V (gf ) = 1

n2f
V (mf ) :We can express mf = ~mf �

Pnf
k=1 �f;k where ~mf is

the net number of new innovations acquired through exploration R&D and �f;k is an indicator
function that becomes 1 if �rm f loses its kth product line through creative destruction at the
rate ��:

Note that the expectation and variance can be expressed as E (mf ) = E ( ~mf )+
Pnf
k=1 E (�f;k)

and V (mf ) = V ( ~mf )+
Pnf
k=1V (�f;k) since acquiring and losing product lines are independent.

Since the exploration innovation process is identical for all �rms
�
x�nf = x

�; 8nf
�
; the expec-

tation and variance of the net number of new innovations is the same for all �rms, E ( ~mf ) = ~E
and V ( ~mf ) = ~V, 8f:

Next consider the following expectations. E
�
�2f;k

�
= E (�f;k) = e��

�
; where the �rst

equality follows from the fact that �f;k 2 f0; 1g : Therefore V (�f;k) = E
�
�2f;k

�
� [E (�f;k)]2 =

e��
� �
1� e���

�
: As a result, we can express the expected �rm growth and variance as

E (gf ) =
~E
nf
� e��� and V (gf ) =

~V
n2f
+
e��

� �
1� e���

�
nf

.

Both are decreasing in nf :
Proof of A5. Let at > a0t denote the time-t ages of �rms f and f

0 respectively: We
will show that E (nt � n0t j at > a0t) > 0: Note that if the two �rms had n� = n0� for some � 2
[t� a0t; t] ; then the expected number of products is simply the same, E (nt � n0t j at > a0t; �) = 0
since the numbers of products of the �rms evolve independently and identically from then on.
Let ~P� � P

�
n� = n

0
� and n� 0 6= n0� 0 8� 0 2 [� � a0� ; � ]

�
denote the probability density that the

two �rms have the same number of product lines at time � for the �rst time since f 0 entered
the market in period � � a0� . Right before f 0 entered the market, the following was true:
n��a0��� > n

0
��a0���: After the entry, if f

0 never catches up with the number of products of �rm

f with probability ~P� in period � 2 [t� a0t; t] ; we have nt > n0t: If �rm f catches up with �rm
f at some period � ; then E (nt � n0t j at > a0t; �) = 0 as explained above. Then

E
�
nt � n0t j at > a0t

�
=

8>>>>>><>>>>>>:

R t
t�a0t

~P�E
�
nt � n0t j at > a0t and n� = n0�

�| {z }
=0

d�

+

 
1�

Z t

t�a0t

~P�d�

!
| {z }

>0

E
�
nt � n0t j at > a0t and n� 6= n0� 8� 2

�
t� a0t; t

��| {z }
>0

9>>>>>>=>>>>>>;
> 0:
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We have shown that the �rm age is positively correlated with the number of products. Then
the rest follows from A2.

Proof of B1. Proven in Proposition 6.
Proof of B2. For �rm f; the expected number of patent counts is x� + nfz�: Note that

it is increasing in the number of product lines. Yet the intensity x�=nf + z� is decreasing in
�rm size.

Proof of B3. Since �rm age is shown to be positively related to nf in the proof of A5,
this result follows from B1 and B2.

Proofs of C1 and C2. They follow from Proposition 10.
Proof of C3. Proposition 10 shows that ~�k;n = ~�nk;0

~
k: The conditional distribution

of the number of external citations (conditional on patent type) is ~� (n j k) =
�
1� ~
k

�
~
nk

for k 2 Z+: Combining this expression with the invariant distribution in Proposition 10; the
expected number of external citations to an exploration patent is simply

1X
k=0

	�k

1X
n=0

n~� (n j k) =
1X
k=0

� (1� �)k
~
k

1� ~
k
=

(1� �) 
�
1� � (1� �) ; (48)

where we used the fact that �1n=0n

n = 
= (1� 
)2 : Similar reasoning applies to exploitation

patents. The conditional citation distribution is ~� (n j �) =
�
1� ~
�

�
~
n�: Then the expected

number of external citations given to an exploitation patent is

1X
n=0

n~� (n j �) =
1X
n=0

n
�
1� ~
�

�
~
n� =


�
1� 
�

=

� (1� �)

�
: (49)

Recall that � � ��= [1� � (1� �)] and � > �: Then we get the desired result.
Proof of C4. Note that the citation life of a patent ends when its technology cluster

gets replaced by a new major innovation. Since it is a Poisson process, the probability of
having at least one arrival of a major innovation is the remainder probability from no arrival.
The probability of having no arrival of a major innovation by time t is e�x�t: Therefore the
probability of having at least one arrival is P (t) = 1� e�x�t:

Proof of D1. Probability of receiving a citation is proportional to the innovation size.
Since � > �; internal patents are less likely to be cited than external patents. Since the share
of external patents decline in �rm size, the result follows.

Proof of D2. Self-citations come through exploitation innovations. Since the share of
exploitation innovation increases in �rm size, the result trivially follows:

Proof of D3. This follows from the fact that average innovation size is bigger for smaller
�rms. Since citations (received) are proportional to the innovation size, the result follows.

Proof of D4. Recall Proposition 7. The relative rate of major innovation is decreas-

ing in �rm size, @M (n) =@n = �z�x�
h
1� (1� �)k̂+1

i
= (x� + nz�)2 : Note that this negative

relationship weakens as k̂ gets smaller.
Proofs of D5 and D6. Note that entrants start with an exploration innovation only.

Then the �rst part of D5 follows from C3. Note that we proved in A5 that young �rms are
smaller in size on average. Then the second part of D5 follows from D3. Since innovation at
the entry is only an exploration innovation and the average citation is higher for exploration
innovation, the result in D6 follows.
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Proof of E1. Recall that pro�ts, number of employees, and sales are all a linear
function of the total quality Qf . The growth rate of Qf after an innovation of size s is
simply gf (s) = s=Qf : Note that gf (s) increases in innovation size, which proves the �rst part.
Moreover, @gf (s) =@Qf = �s=Q2f < 0; which proves the second part.

Proof of E2. The additional quality contributions are ��q and (1 + �) �q for an internal
innovation and external innovation respectively. Since � < (1 + �) ; the result follows.

Proof of E3. This is true from A1, A3, B1 and B2.
Proof of E4. More external patents imply more number of product lines that the �rm

owns. Then the �rst part of E4 follows from A2. Note that internal patents has no a¤ect
since �rm survival is a function of the number of product lines. On the other hand, more
external citations imply a higher number of hits received through creative destruction, which
reduces the number of product lines and negatively a¤ects �rm survival.
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Empirical Appendix

This empirical appendix further describes our data, documents empirical extensions to our
reported results, and provides additional references. The format of the appendix closely follows
Section 3 for easy reference.

Data Development

Longitudinal Business Database

Each establishment in the LBD is assigned a unique, time-invariant identi�er. Establishments
are also linked to their parent �rms in the case of multi-unit �rms. For most of our analyses,
we aggregate establishments up to the �rm level. We typically use employment counts to
measure the sizes of �rms, but we �nd equivalent results when using the value of shipments or
a count of establishments for measuring �rm size. Shipments, which are not part of the LBD
�les, are collected from the base Economic Censuses (e.g., Census of Manufacturing, Census
of Services). Jarmin and Miranda (2002) describe the construction of the LBD and provide
extensive descriptive statistics. Davis et al. (1996) provide an extensive discussion of the
manufacturing sector.

NSF Survey of Industrial Research and Development

The Survey of Industrial Research and Development (RAD) is the basis for publications like
Science and Engineering Indicators, National Patterns of R&D Resources, and R&D in In-
dustry. With appropriate clearance, researchers can access the base RAD survey responses
through the Census Bureau. Surveyed �rms are legally required to provide �ve mandatory
items:

� Total costs incurred for R&D within the �rm (RDTOT)

� Domestic net sales and receipts of the �rm (DNS)

� Domestic net employment of the �rm (DNE)

� Federally funded R&D performed within the �rm (RDFED)

� State location of R&D performance (added in 2002)

In addition, a host of additional variables are collected voluntarily from large R&D performers
(e.g., technology break-outs, funding by federal agency). This project focuses on the RDTOT
variable, which is transformed into constant 1997 dollars and paired with employment size
metrics from the LBD. Adams and Peck (1994) and Kerr and Fu (2008) provide detailed intro-
ductions to the additional, voluntary data.27 Foster and Grim (2010) provide a comprehensive
overview of the RAD and the traits of the top R&D performers in the US economy.

The most important issue for our analysis of the �rm size distribution and innovation is
adjustments to the RAD sampling frame. Each year, the RAD surveys with certainty the

27The voluntary data include measures of foreign R&D sourcing and domestic R&D contracting. These
variables are reported for most every �rm. We use these data to con�rm that our �rm size distribution patterns
are not being driven by multinational structures, outsourcing, or similar.
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identi�ed �rms that are conducting R&D within the US over a nominal expenditure bar. This
expenditure hurdle began at $500,000 in the 1970s, was raised to $1 million for most of the
1980s and 1990s, was raised again to $5 million in 1996, and was most recently adjusted to
$3 million in 2002. While �rms undertaking less than this bar are sub-sampled, these records
are more di¢ cult to employ due to their uneven coverage and frequently imputed values. Our
work concentrates on the period when the hurdle was $1 million, and we ignore values beneath
this hurdle. We further comment on the expenditure hurdles when discussing the intensity
measures below. The Census Bureau and NSF are constantly working to update the sample
frame to include new R&D performers although short identi�cation lags can occur.

The product versus process distinctions in Figure 1 are taken from RAD surveys between
1979 and 1989. The RAD also collected these data in 1991, but the data for this year are not
reliable. The patterns shown in Figure 1 are quite robust. The increase in exploitation behavior
with �rm size holds with all four metrics when controlling for industry-year e¤ects. A 10%
growth in �rm size is typically associated with a 0.5% growth in the likelihood of undertaking
exploitation behavior and a 0.1% (non-log) share growth on the intensive margin. All of these
estimates are statistically signi�cant. No contemporaneous growth e¤ects are evident once �rm
size is controlled for.28

Three of the four relationships unambiguously hold when further including �rm �xed e¤ects
regardless of how �rm size is measured. The e¤ects on the extensive margin are comparable
in size. A 10% growth in �rm size is associated with a 0.3% (non-log) share growth for self
citations in panel settings. The one exception is the share of R&D that is process oriented.
The positive relationship of this latter metric to �rm size is not evident when modelling �rm
size through employments in panel estimates, but it is present (0.1%) when modelling �rm size
through R&D expenditures.

NBER Patent Database

Our patent matching strategy builds on the work of Balasubramanian and Sivadasan (2010) and
Kerr and Fu (2008). Balasubramanian and Sivadasan (2010) develop a name matching strategy
that links patent assignees with �rms in the LBD. This matching strategy principally pairs
entities with similar names in local geographic areas� that is, it searches for �rms with names
similar to the patent assignee name in the city from which the patent is �le. Balasubramanian
and Sivadasan (2010) provide extensive descriptive statistics on the quality of their matches.
This major undertaking has become the backbone for the bridge �le of the NBER Patent
Database to the Census Bureau data family.

We extend the Balasubramanian and Sivadasan (2010) match in two ways, although for
convenience given their extensive documentation, we note that we obtain all of our results
without these extensions. First, their patent �le concluded with patents granted in 1999, and
we extend the approach to consider patents granted up to May 2009. Our descriptive statistics
run through 2000, but we use application years to group patents longitudinally. Having the
additional grants that are approved during the 2000s helps ensure that we have a complete
sample for the late 1990s.29

28The most noticeable deviation from growth invariance in Panel 1D, the 15% value for small, fast growing
�rms, disappears once industry-year di¤erences are modelled.
29We conclude the sample in 2000 because many Census Bureau datasets (especially RAD) underwent exten-

sive redesigns in the early 2000s and transitioned to the NAICS classi�cation system.
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Second, we incorporate a large number of additional re�nements developed by Kerr and Fu
(2008) and Acemoglu et al. (2010). These re�nements in part come from a second, complemen-
tary name matching approach. We also work extensively to ensure that corporate subsidiaries
are linked correctly to their parent �rms (e.g., Johnson & Johnson �les patents through many
of its operating divisions). Inability to establish these linkages is the main limitation of name
matching algorithms. Extensive manual e¤orts are undertaken to solidify these linkages for
speci�c matching to the RAD.

Firm Size Distribution and Firm Growth Rates

The discussion in the text is complete.

Firm Size Distribution and Innovation Intensity

Our patterns in Table 1 di¤er somewhat from earlier work that concluded that conditional
intensity was independent of size. App. Table 1a extends Table 1 to include all R&D performers
during the 1975-1997 period. Column 7 of Table 1 is dropped as we do not have comparable
sales data for the full period. The table reports average values with each �ve-year interval
per �rm being given equal weight. The �rst period of 1975-1977 contains three years. The
patterns are very similar but somewhat �atter across the �rm size distribution for the longer
time horizon. We demonstrate below that the underlying longitudinal changes naturally link
our work with earlier studies of R&D behavior and the �rm size distribution.

Before examining these longitudinal shifts, we extend the �rm sample from R&D performers
to the universe of US �rms. The broader sample is more comparable across studies. Across the
complete sample, we can include the additional moments: 1) The probability of undertaking
R&D or �ling a patent increases with �rm size and 2) The unconditional intensity of R&D
expenditures or patenting by �rm size increases with �rm size.

The �rst moment is straightforward. The second moment regarding unconditional intensity
is di¤erent from the conditional intensity discussed in the text. By expanding to the universe
of US �rms, we include the great majority of �rms that do not undertake innovative activity.
Unconditional intensities include zero values for all of these observations. This particularly
a¤ects the small �rm sample as 98% of �rms have 100 or fewer employees (compared to 67%
for our innovative sample in Figure 1).

App. Table 1b documents these patterns using data from 1975 to 1997. Entries are
averages over the sample period, with each �ve-year interval given equal weight, as discussed
below. Columns 1 and 4 show that the probability that the �rm conducts $1 million in R&D
or is granted a patent grows with �rm size. Not surprisingly, the di¤erences across size classes
are quite large. A third of all �rms with more than 5000 employees are active in innovation,
versus less than 0.05% in the smallest size class. The probability of innovation approaches one
when looking at ever larger size categories within our 5001+ grouping.

Columns 2 and 4 show that unconditional R&D expenditures per employee and patents per
employee also increase with �rm size. Similar to the rising probabilities, these upward sloping
intensity patterns have been found in many contexts. Finally, Columns 3 and 6 show that
conditional intensities (i.e., intensity depending upon being observed in the RAD or patent
data) decline in �rm size. These relationships are most comparable to Table 1.

50



Appendix Tables 1c and 1d repeat these tabulations for �ve-year intervals from 1975-1997.
These intervals are chosen such that the end year coincides with an Economic Census year.
This segmentation aligns these descriptive statistics with the empirical estimations. The �rst
period contains three years.

While these basic patterns are evident in each period, they are more accentuated in re-
cent years, especially after 1987. Said di¤erently, the higher R&D expenditures per employee
conditional on performing R&D for small �rms is signi�cantly greater in 1997 than in 1977.
The intensity (in constant dollars) increases seven to eight fold for the smallest �rms, rel-
ative to a two-fold increase for the largest �rms. Likewise, the probability of undertaking
R&D or patenting declines slightly for the largest �rm categories in 1997 relative to 1977; the
probability doubles or triples in the smallest categories.

Unreported tabulations �nd that these monotonic relationships hold within each size cate-
gory. The one exception to the monotonicity is that the growth in intensity among the smallest
�rms with ten or fewer employees (80% of all �rms) is weaker than among �rms with 11-100
employees. These additional breakdowns are not reported due to disclosure restrictions with
the Census Bureau data. We also �nd similar results when segmenting �rms based upon sales,
although these data are only consistently available after 1992 for all sectors and thus cannot
be used to discern a time trend. These relationships are evident within industries, too.

These results help reconcile recent work that �nds a decreasing intensity to �rm size re-
lationship in Compustat samples (e.g., Akcigit 2010) with earlier work focused on the 1970s
and 1980s that did not �nd a strong relationship between �rm size and conditional innovation
intensity (e.g., Cohen 1995, Cohen and Klepper 1992, 1996a). It is likewise interesting to note
that measuring �rm size through just manufacturing employment increases these elasticities
to closer to one. Our work uses total �rm employment.30

We earlier noted changes in the RAD sampling frame. We do not believe that these
changes substantively in�uence our results. First, and most important, there is no �oor for
observing patent outcomes, where we �nd very similar results. Second, the transitions across
panels in Appendix Tables 1c and 1d are smooth, which suggests that the small changes in
the expenditure threshold are of limited consequence. Third, one can adjust the minimum
expenditure thresholds upward for inclusion in the sample without in�uencing the patterns.
Finally, the errors are bounded in the patent case and are very small.

App. Table 1e closes by showing that the core patenting patterns are robust across variants
in metric design. The two groups of columns compare the conservative and aggressive matching
strategies. The conservative matching strategy only retains the best �rm match per assignee;
these matches must also be above a strict quality threshold. The aggressive match employs
all matches above a lower quality threshold, with multiple �rm matches per assignee allowed
(duplicating patents). The aggressive match results in about four times as many mappings. The
central di¤erence between the two techniques is that the aggressive strategy further accentuates
relative patent contributions from small �rms. This is because small �rms are more likely to
be eliminated when choosing the best �rm match per assignee. We employ the conservative
approach in our core estimations, and this approach is likely closer to a lower bound on small
�rm e¤ects.

Looking down the table, Panels A and B show the sample end periods with just the end

30One potential deviation from our exploration-exploitation hypothesis is that the likelihood of conducting
basic research rises with �rm size.
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year of patenting measured for each interval (i.e., 1997 patent for the 1993-1997 interval).
Panels C and D instead use average patenting (i.e., mean patents during 1993-1997). Taking
average patents across the period raises the share of �rms �ling patents and reduces their
intensity measures. We favor the end-year measure as many �rms patent infrequently. Single
point measures are more representative of activity in the �rm size distribution. Comparing the
panels shows, however, that the central patterns are evident regardless of this design choice.

Patent Citation Behavior and Innovation Spillover Size

As simple statistics for our sample, 8.4% of all patents in this sample did not receive a citation
by 1999, which is 15 or more years after the �ling. If excluding self citations, the non-citation
share is 10.7%. Looking at a shorter horizon of seven years after application, 22.8% of patents
do not receive a citation and 27.9% do not receive an external citation. For cited patents from
our 1975-1984 sample, the mean is 8.6 citations, the median is 6, the variance is 101.9, the
skewness is 5.0, and the kurtosis is 59.4. The max is 280 citations versus a 99th percentile of
48 citations. Extreme values for the 1975-1984 sample are smaller than those in later periods.

The raw non-citation rate in the NBER Patent Database is 23.4%. This greater share is
primarily due to limited time for patents at the end of the 1975-1999 sample period to have
received citations. The raw non-citation rate through 1999 exceeds 70% for patents applied
for after 1995. There is also some evidence that lower citation rates are due to a greater share
of frivolous patents. Finally, non-citation rates are slightly higher for non-US patents and
non-assigned patents, but these di¤erences are small relative to the age e¤ect.

Innovation Type and Firm Size Distribution

Exploration versus Exploitation Investments

App. Table 2 reports additional regression results for self citation behavior. These regressions
employ an extended 1975-1999 sample. The self citation share is 9.2% higher for assignees
with more than 1000 patents compared to assignees with 101-1000 patents (30% versus 20%).
Likewise, the share is 4.5% higher for �rms with more than 5000 employees compared to �rms
with 1500-5000 employees. These patterns hold when including assignee �xed e¤ects and are
very robust across speci�cation variants.

Qualities of Exploration Innovations

Figure 4 uses a non-logarithmic citation scale and shows a slightly downward sloping trend
line. Figure 5 uses a logarithmic citation scale instead. The relationship in Figure 5 is non-
monotonic with a hump shape in the middle of the assignee size distribution. There is naturally
greater variation and more extreme values among smaller assignees as the average for larger
assignees is taken over more patents. But, there is also a large mass of small assignees with
very low average citation rates.

As the graphs suggest, di¤erent estimation techniques yield di¤erent conclusions about the
relationship between intensive patent quality and �rm size. Econometric techniques stretch the
citation scale in di¤erent ways and thereby emphasize di¤erent portions of the data. Across a
large number of linear and non-linear speci�cation alternatives, we �nd that the majority of
speci�cations �nd a slight negative size relationship such that patents from larger �rms receive
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fewer external citations. But, an important number of speci�cations �nd a non-monotonic or
slightly positive relationship. This sensitivity contrasts with the very robust patterns evident
on the external margin. We thus conclude that external citations per patent do not depend
signi�cantly on �rm size conditional on being an exploration innovation (assumption 3).

Complete Quality Distributions

App. Table 3 shows that these results hold when using claims as an alternative measure of
patent value. Each patent includes a series of claims that delineate the property rights of the
technology. These claims de�ne the novel features of each invention from prior inventions and
become a crucial factor in future patent infringement litigations. USPTO examiners review
and modify the claims argued for by inventors in their applications, and several studies link
the granted number of claims on a patent with its economic value. One again �nds that the
patents of large �rms are disproportionately lower in quality as measured by claims. Moreover,
the size di¤erential that is pronounced at the 75th percentile is entirely eroded by the 99th
percentile.31

Dynamic E¤ects

App. Table 4a separately estimates the citation speci�cation in Table 6 by assignee size of the
cited patent. The external e¤ect is stronger in large assignees relative to smaller assignees.
This is evident in both counts of raw external citations and claims and in di¤erences across
the quality distribution. App. Table 4b reports results that instead employ a breakdown by
original patent quality. The external citation premium is most dramatic at the lower end of
the quality distribution. These results provide suggestive evidence that internal and external
innovations build di¤erently on past work.

App. Table 5 presents the transition matrices. We examine �ve-year periods from 1975-
1979 to 1990-1994 for the patenting by US industrial �rms. Our goal is to examine and contrast
the extent to which assignees move up and down the hierarchy of patent counts versus patent
quality. Panel A assigns �rms to quartiles based upon the average quality of their patents in
each period. Panel B assigns �rms to quartiles based upon their counts of patents. Panel C
assigns �rms to quartiles based upon the interaction of their patent count and average quality.
This last measure represents a weighted impact. Rows sum to 100%.

A comparison of Panels A and B shows that �rms transition across quality quartiles much
faster than they do across count quartiles. Persistence in the highest quartile is only 18% for
quality but 49% for patent counts. New entrants also enter higher in the quality distribution
than in the count distribution. 27% of entrants enter into the highest quality quartile, compared
to 16% in the count distribution. Exit is drawn evenly from the quality distribution, while
greater size leads to better survival prospects in the count distribution. Panel C shows the
joint consequences of these patterns in terms of weighted innovation counts. New entrants
have a greater quality-weighted impact than simple patent counts would suggest. Similarly,
the weighted transitions from the top quartile for incumbents are faster. These features are
present in the model.

31As a methodology note, seemingly unrelated regressions deliver the same results as OLS in this context as
the regressors are the same in each speci�cation.
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Innovation Type and Firm Growth Rates

App. Table 6a repeats Table 7�s analysis using patent claims to measure quality distributions
instead of citations. The results are qualitatively similar. For internal quality distributions,
the highest quality quartile again stands out as being especially important for employment
growth of �rms. This is particularly true for small companies. The di¤erences, however, are
less dramatic such that moving 10% of the quality distribution from the lowest two quartiles
to the highest quartile increases growth by an amount equivalent to a 6% increase in the
number of patents. For external quality distributions, the primary employment growth e¤ects
come from movements out of the lowest quality quartiles. Interestingly, these e¤ects are again
concentrated in small companies.

App. Table 6b extends these employment growth results by looking at increasing thresholds
of quality. We earlier demonstrated how the comparative advantage of small �rms for making
major innovations weakens as we examine more extreme values of the quality distribution due
to the stochastic nature of innovation outcomes. The opposite prediction, however, should
hold for these employment growth e¤ects. Realized extreme values of patent quality� that
is, breakthrough inventions� should prompt greater rates of growth. App. Table 6b con�rms
that the employment growth e¤ects strengthen with increasing patent quality at the 95th and
99th percentiles.

Additional tests further con�rm the robustness of the observed growth e¤ects to many
speci�cation variants: dropping any sample year, focusing just on manufacturing or non-
manufacturing �rms, adjusting the external citation window, adjusting the aggressiveness of
patent matching strategies, and similar. The results further hold individually in the great
majority of sub-technology groups of the patent system. We conclude that major innovations
are important for both the employment growth of the innovating �rm and for the following
�rms that build upon the innovation.

These employment results are for continuing �rms so that employment growth is consis-
tently measured. Characterizing entry and exit is unfortunately much more di¢ cult. For entry,
we observe in the data all new �rms who obtain a patent and/or hire employees. For our model,
however, the relevant comparison group is those who sought to innovate and enter but were
unsuccessful. This group includes some large-scale, publicized attempts (e.g., failed start-ups
backed by venture capitalists) but is mostly a vast pool of unobservable e¤orts. The unobserv-
able elements are especially true with respect to internal and external quality distributions.
We thus need to calibrate the model to infer these properties.32

Exit is similarly di¢ cult to analyze, although some traction is possible. The challenge for
analyzing exit rates is that there are several processes occurring simultaneously, some within the
model�s scope and some outside of the model (e.g., intellectual property protections, markets
for technologies). These multiple processes yield ambiguous predictions. Ceteris paribus, the
strongest predictions of the model are that survival rates are increasing in �rm size and in the
number of contemporaneous patents obtained. This greater survival probability is due to the
security of holding the leading innovation in several product lines.

App. Table 7 repeats the growth speci�cation framework with an indicator variable for
whether the �rm exists in the next period or not. The results �t our basic model description

32For example, Kerr et al. (2010) describe the long tail of business plans and potential ventures seeking angel
�nancing that would not appear in our data. These angel investors fund on the order of 5% of the proposals
that they receive.
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well. Survival is strongly increasing in �rm size and current patent counts, which are the
central predictions of the theory. There is no relationship of patent quality to survival when
using claims to measure quality. On the other hand, a negative relationship to survival exists
for very high quality patents when using external citations to assess quality. In both cases,
building upon high quality, external innovations is associated with weak increases in survival
probabilities.

Quite interestingly, these di¤erences in the relationship of survival to how patent qualities
are measured agree with the basic theory (E4). In particular, our model suggests that large
numbers of external citations occur when important innovations are subsequently innovated
upon by other �rms. The higher share of external citations may thus be associated with cases
where a major innovation preceded a lot of subsequent entry and activity (endogenously or
exogenously). This interpretation is supported by the limited e¤ect when using patent claims
for measuring quality. This pattern is more in agreement with our model�s basic predictions
of quality invariance.

We do not want to push these results too far, especially the di¤erences across quality
measurements. As noted, there are many aspects of �rm entry and exit that are outside of the
scope of this framework. The central prediction that survival grows in patent counts and �rm
size is strongly supported, which is the most important piece for our theoretical framework.
In future work, we hope to analyze the acquisition dimensions of technology markets further
in the context of an endogenous growth model.

Finally, our model links major innovations to new product introductions by �rms. Balasub-
ramanian and Sivadasan (2010) document the growth in product lines among small manufac-
turing �rms after they patent. Bernard et al. (2010) discuss the extensive product switching
for US manufacturing �rms following external shocks. These papers both employ the Census
Bureau datasets, and we refer readers to them and to Acemoglu et al. (2010) for detailed
discussions of product introductions.
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Mean R&D

expenditures R&D per

among R&D Conservative Aggressive employee with Conservative Aggressive

producers ($m) matching matching 1% trim ($k) matching matching

(1) (2) (3) (4) (5) (6)

1-100 employees 1.9 0.3 0.4 23.2 0.0094 0.0262

101-500 employees 2.5 0.7 1.0 11.2 0.0028 0.0042

501-1500 employees 4.0 1.4 2.2 5.0 0.0015 0.0024

1501-5000 employees 10.7 3.8 6.9 4.2 0.0014 0.0026

5001+ employees 145.0 41.9 57.0 4.6 0.0018 0.0027

1 establishment 2.4 0.6 0.9 19.8 0.0067 0.0168

2 establishments 2.9 0.9 1.3 8.3 0.0028 0.0061

3-5 establishments 4.8 1.4 2.0 6.6 0.0026 0.0042

6-10 establishments 5.7 2.0 3.7 5.2 0.0016 0.0028

11-50 establishments 20.6 6.0 10.1 4.8 0.0016 0.0028

51+ establishments 134.4 39.6 52.7 3.9 0.0015 0.0022

B. Using establishment counts to group firms

Notes:  See Table 1.  Table reports average values for innovative activity across full sample period of 1975-1997.  Each five-year interval per firm is 

given equal weight.  The first period of 1975-1977 contains three years.  R&D expenditures are averages over time intervals in constant 1997 dollars.  

Patents are taken from the years closing each interval.

App. Table 1a: Table 1 with 1975-1997 sample of R&D performers

Patents Patents

among R&D producers per employee with 1% trim

A. Using employee counts to group firms



R&D per R&D per Patents per Patents per

(0,1) employee with employee with employee with employee with

R&D>$1m 1% trim, 1% trim, (0,1) 1% trim, 1% trim,

in RAD survey all firms R&D>$1m patent all firms patents>0

(1) (2) (3) (4) (5) (6)

1-100 employees 0.02% 0.004 17.5 0.05% 0.00009 0.1700

101-500 employees 1.4% 0.139 9.4 1.5% 0.00016 0.0104

501-1500 employees 8.1% 0.374 4.7 4.9% 0.00020 0.0040

1501-5000 employees 16.9% 0.658 3.9 11.4% 0.00028 0.0024

5001+ employees 35.9% 1.567 4.5 32.5% 0.00068 0.0021

1 establishment 0.03% 0.005 15.3 0.06% 0.00010 0.1500

2 establishments 0.3% 0.027 7.4 0.5% 0.00015 0.0308

3-5 establishments 1.1% 0.067 6.1 1.1% 0.00015 0.0138

6-10 establishments 3.0% 0.143 4.7 2.2% 0.00014 0.0062

11-50 establishments 7.9% 0.347 4.5 5.4% 0.00018 0.0034

51+ establishments 23.9% 0.905 3.8 19.8% 0.00039 0.0020

App. Table 1b: Firm size and innovation intensity across full sample of US firms

A. Using employee counts to group firms

B. Using establishment counts to group firms

Notes:  See Table 1.  Table reports the relationship between the firm size distribution and innovative activity for the complete sample of US firms.  

Columns 1 and 4 report the extensive margin of undertaking innovative activity.  Larger firms are more likely to undertake R&D or file a patent.  

Columns 2 and 5 report the unconditional intensity of innovation across all firms with zero values included for non-innovating firms.  Unconditional 

intensities also rise with firm size.  Finally, Columns 3 and 6 report conditional intensities among innovating firms.  Conditional intensities decline 

with firm size.  R&D expenditures are in thousands of 1997 dollars.  Patent statistics use a conservative matching approach.  Values are averages over 

the 1975-1997 period with each five-year interval receiving equal weight.  Appendix Tables 1c and 1d show changes over time in these distributions.



R&D per R&D per Patents per Patents per

(0,1) employee with employee with employee with employee with

R&D>$1m 1% trim, 1% trim, (0,1) 1% trim, 1% trim,

in RAD survey all firms R&D>$1m patent all firms patents>0

(1) (2) (3) (4) (5) (6)

1-100 employees 0.01% 0.000 5.0 0.04% 0.00006 0.1606

101-500 employees 1.4% 0.040 2.8 1.4% 0.00012 0.0088

501-1500 employees 8.4% 0.154 1.8 5.4% 0.00022 0.0040

1501-5000 employees 18.9% 0.382 2.0 11.6% 0.00021 0.0018

5001+ employees 41.7% 1.247 3.0 37.6% 0.00065 0.0017

1-100 employees 0.01% 0.000 5.3 0.04% 0.00005 0.1527

101-500 employees 1.1% 0.032 2.9 1.2% 0.00010 0.0085

501-1500 employees 7.6% 0.164 2.2 4.1% 0.00014 0.0035

1501-5000 employees 15.1% 0.410 2.7 11.3% 0.00018 0.0016

5001+ employees 37.6% 1.181 3.1 33.4% 0.00048 0.0014

1-100 employees 0.01% 0.003 18.6 0.04% 0.00007 0.1636

101-500 employees 0.9% 0.085 9.2 1.3% 0.00012 0.0093

501-1500 employees 8.7% 0.493 5.7 4.5% 0.00014 0.0031

1501-5000 employees 16.2% 0.629 3.9 10.5% 0.00021 0.0020

5001+ employees 32.6% 1.619 5.0 30.7% 0.00048 0.0016

1-100 employees 0.03% 0.005 19.6 0.06% 0.00011 0.1711

101-500 employees 2.0% 0.195 9.5 1.7% 0.00017 0.0102

501-1500 employees 9.2% 0.515 5.6 4.9% 0.00019 0.0038

1501-5000 employees 18.2% 0.789 4.3 11.2% 0.00029 0.0026

5001+ employees 34.5% 1.855 5.4 30.0% 0.00061 0.0021

1-100 employees 0.03% 0.010 38.9 0.09% 0.00018 0.2021

101-500 employees 1.5% 0.343 22.5 1.9% 0.00028 0.0150

501-1500 employees 6.8% 0.545 8.0 5.4% 0.00029 0.0055

1501-5000 employees 16.1% 1.078 6.7 12.6% 0.00051 0.0040

5001+ employees 33.2% 1.932 5.8 31.0% 0.00116 0.0037

App. Table 1c: Longitudinal employment detail for App. Table 1b

Notes:  See App. Table 1b.

D. 1988-1992

E. 1993-1997

C. 1983-1987

A. 1975-1977

B. 1978-1982



R&D per R&D per Patents per Patents per

(0,1) employee with employee with employee with employee with

R&D>$1m 1% trim, 1% trim, (0,1) 1% trim, 1% trim,

in RAD survey all firms R&D>$1m patent all firms patents>0

(1) (2) (3) (4) (5) (6)

1 establishment 0.02% 0.001 3.6 0.04% 0.00007 0.1472

2 establishments 0.3% 0.010 3.2 0.5% 0.00017 0.0339

3-5 establishments 1.1% 0.027 2.5 1.0% 0.00015 0.0141

6-10 establishments 3.1% 0.068 2.2 2.4% 0.00013 0.0054

11-50 establishments 8.7% 0.186 2.1 6.0% 0.00018 0.0031

51+ establishments 24.9% 0.674 2.7 22.4% 0.00039 0.0017

1 establishment 0.01% 0.001 5.0 0.04% 0.00005 0.1324

2 establishments 0.3% 0.007 2.3 0.4% 0.00015 0.0348

3-5 establishments 1.0% 0.024 2.4 0.9% 0.00010 0.0105

6-10 establishments 2.7% 0.065 2.4 1.7% 0.00010 0.0058

11-50 establishments 7.7% 0.184 2.4 5.3% 0.00015 0.0027

51+ establishments 25.1% 0.735 2.9 20.6% 0.00032 0.0016

1 establishment 0.03% 0.004 14.8 0.05% 0.00007 0.1446

2 establishments 0.2% 0.017 8.7 0.4% 0.00013 0.0300

3-5 establishments 0.9% 0.053 5.7 1.1% 0.00014 0.0128

6-10 establishments 2.8% 0.108 3.9 2.1% 0.00011 0.0054

11-50 establishments 8.1% 0.452 5.6 5.6% 0.00015 0.0026

51+ establishments 23.6% 0.922 3.9 19.5% 0.00031 0.0016

1 establishment 0.04% 0.007 17.8 0.07% 0.00011 0.1530

2 establishments 0.5% 0.040 7.5 0.5% 0.00014 0.0259

3-5 establishments 1.4% 0.077 5.7 1.1% 0.00015 0.0138

6-10 establishments 3.3% 0.178 5.5 2.2% 0.00012 0.0053

11-50 establishments 8.1% 0.411 5.1 5.0% 0.00017 0.0035

51+ establishments 24.5% 1.074 4.4 18.5% 0.00037 0.0020

1 establishment 0.04% 0.014 35.3 0.1% 0.00018 0.1727

2 establishments 0.4% 0.062 15.4 0.6% 0.00018 0.0295

3-5 establishments 1.1% 0.152 14.0 1.2% 0.00022 0.0178

6-10 establishments 3.2% 0.295 9.3 2.6% 0.00023 0.0089

11-50 establishments 7.0% 0.503 7.2 5.3% 0.00026 0.0049

51+ establishments 21.4% 1.118 5.2 18.1% 0.00055 0.0030

Notes:  See App. Table 1b.

App. Table 1d:  Longitudinal establishment detail for App. Table 1b

A. 1975-1977

B. 1978-1982

C. 1983-1987

D. 1988-1992

E. 1993-1997



Patents per Patents per Patents per Patents per

employee with employee with employee with employee with

(0,1) 1% trim, 1% trim, (0,1) 1% trim, 1% trim,

patent all firms patents>0 patent all firms patents>0

(1) (2) (3) (4) (5) (6)

1-100 employees 0.04% 0.00006 0.1606 0.08% 0.00077 0.9290

101-500 employees 1.4% 0.00012 0.0088 2.5% 0.00067 0.0266

501-1500 employees 5.4% 0.00022 0.0040 8.8% 0.00065 0.0074

1501-5000 employees 11.6% 0.00021 0.0018 18.7% 0.00049 0.0026

5001+ employees 37.6% 0.00065 0.0017 48.5% 0.00129 0.0027

1-100 employees 0.09% 0.00018 0.2021 0.13% 0.00109 0.8377

101-500 employees 1.9% 0.00028 0.0150 2.8% 0.00074 0.0267

501-1500 employees 5.4% 0.00029 0.0055 7.5% 0.00061 0.0081

1501-5000 employees 12.6% 0.00051 0.0040 16.9% 0.00114 0.0067

5001+ employees 31.0% 0.00116 0.0037 38.2% 0.00183 0.0048

1-100 employees 0.10% 0.00007 0.0685 0.17% 0.00061 0.3559

101-500 employees 2.8% 0.00012 0.0045 4.9% 0.00070 0.0144

501-1500 employees 8.8% 0.00022 0.0025 13.4% 0.00064 0.0048

1501-5000 employees 18.0% 0.00022 0.0012 26.9% 0.00052 0.0019

5001+ employees 44.3% 0.00065 0.0015 55.6% 0.00131 0.0023

1-100 employees 0.20% 0.00013 0.0637 0.29% 0.00054 0.1799

101-500 employees 3.8% 0.00023 0.0061 5.5% 0.00057 0.0105

501-1500 employees 9.3% 0.00023 0.0025 12.5% 0.00046 0.0037

1501-5000 employees 18.6% 0.00040 0.0021 23.6% 0.00084 0.0036

5001+ employees 39.6% 0.00087 0.0022 47.3% 0.00138 0.0029

Notes:  See App. Table 1b.

Conservative matching approach Aggressive matching approach

App. Table 1e: Comparison of matching strategies

A. 1975-1977 with 1977 patents

B. 1993-1997 with 1997 patents

C. 1975-1977 with average patents per interval

D. 1993-1997 with average patents per interval



(1) (2) (3) (4) (5) (6)

Log count of assignee 0.057 0.017 Log firm employment 0.009 0.016

patents during period (0.001) (0.002) during period (0.001) (0.002)

(0,1) Indicator variable 0.065 (0,1) Indicator variable 0.027

for 2-5 patents (0.001) 101-500 employees (0.003)

(0,1) Indicator variable 0.114 (0,1) Indicator variable 0.022

for 6-10 patents (0.004) 501-1500 employees (0.004)

(0,1) Indicator variable 0.126 (0,1) Indicator variable 0.031

for 11-20 patents (0.005) 1501-5000 employees (0.004)

(0,1) Indicator variable 0.204 (0,1) Indicator variable 0.076

for 21-100 patents (0.007) 5001+ employees (0.005)

(0,1) Indicator variable 0.296

for 101+ patents (0.017)

Year fixed effects Yes Yes Yes Year fixed effects Yes Yes Yes

Assignee fixed effects Yes Firm fixed effects Yes

Observations 192,607 192,607 192,607 Observations 92,902 92,902 92,902

App. Table 2: Firm size and self citation behavior

Notes:  See Table 4.  Table quantifies the relationship between self citation behavior and firm size.  Columns 1-3 consider assignee sizes, while Columns 4-6 consider 

firm sizes.  The sample includes US industrial patents during the 1975-1999 period.  Patents and self citation behavior are aggregated to the assignee and firm levels by 

year for estimation.  Estimations cluster standard errors at the assignee/firm level and are unweighted.

Fraction of current citations 

 that are self citations

Fraction of current citations 

 that are self citations



Number 

of claims

on patent 0-24% 25%-49% 50%-74% 75%-100% Top 25% Top 5% Top 1%

(1) (2) (3) (4) (5) (6) (7) (8)

(0,1) Indicator variable 0.233 -0.005 0.001 -0.007 0.011 0.024 0.016 0.016

for 2-5 patents (0.109) (0.004) (0.004) (0.005) (0.005) (0.011) (0.011) (0.011)

(0,1) Indicator variable 0.689 -0.015 -0.005 -0.006 0.025 0.058 0.057 0.049

for 6-10 patents (0.157) (0.005) (0.005) (0.005) (0.007) (0.015) (0.015) (0.015)

(0,1) Indicator variable 0.734 -0.021 0.003 -0.012 0.030 0.067 0.039 0.048

for 11-20 patents (0.186) (0.006) (0.005) (0.006) (0.007) (0.017) (0.017) (0.018)

(0,1) Indicator variable 0.323 -0.014 0.001 -0.002 0.015 0.034 0.025 0.026

for 21-100 patents (0.173) (0.006) (0.005) (0.005) (0.007) (0.017) (0.015) (0.013)

(0,1) Indicator variable -0.347 0.011 0.011 -0.006 -0.015 -0.034 -0.013 0.002

for 101-1000 patents (0.228) (0.008) (0.005) (0.006) (0.009) (0.020) (0.017) (0.013)

(0,1) Indicator variable -1.170 0.032 0.034 -0.007 -0.059 -0.133 -0.069 -0.020

 for 1001+ patents (0.406) (0.016) (0.007) (0.009) (0.014) (0.031) (0.027) (0.020)

Tech.-Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 272,322 272,322 272,322 272,322 272,322 272,322 272,322 272,322

Notes:  See Table 2.

App. Table 3: Table 2 using claims to measure patent quality

Normalized likelihood of patent 

Prevalence of patents by claims ranks being among highest claim patents

(coefficients sum to zero across columns) (likelihood normalized to have unit sd)



Number of

external Number of

citations on claims on 

citing patent citing patent 0-24% 25%-49% 50%-74% 75%-100%

(1) (2) (3) (4) (5) (6)

External citation 0.849 1.236 -0.015 -0.009 -0.005 0.029

(0.053) (0.073) (0.002) (0.002) (0.002) (0.002)

Observations 761,940 761,940 761,940 761,940 761,940 761,940

External citation 0.217 0.170 0.004 -0.002 -0.007 0.005

(0.107) (0.146) (0.003) (0.004) (0.004) (0.005)

Observations 277,708 277,708 277,708 277,708 277,708 277,708

External citation 0.829 0.939 -0.014 -0.003 -0.004 0.020

(0.080) (0.122) (0.003) (0.003) (0.004) (0.004)

Observations 248,264 248,264 248,264 248,264 248,264 248,264

External citation 1.202 2.083 -0.026 -0.019 -0.004 0.049

(0.087) (0.115) (0.003) (0.003) (0.003) (0.004)

Observations 235,968 235,968 235,968 235,968 235,968 235,968

Cited patent fixed effects Yes Yes Yes Yes Yes Yes

Citing tech-year effects Yes Yes Yes Yes Yes Yes

C. Restricted to cited assignees with 101-1000 patents

D. Restricted to cited assignees with more than 1000 patents

Notes:  See Table 6.

App. Table 4a: Table 6 with firm size breakdowns

Prevalence of patents by external citation

ranks among citing patents

(coefficients sum to zero across columns)

A. Full sample of citations

B. Restricted to cited assignees with 1-100 patents



Number of

external Number of

citations on claims on 

citing patent citing patent 0-24% 25%-49% 50%-74% 75%-100%

(1) (2) (3) (4) (5) (6)

External citation 0.849 1.236 -0.015 -0.009 -0.005 0.029

(0.053) (0.073) (0.002) (0.002) (0.002) (0.002)

Observations 761,940 761,940 761,940 761,940 761,940 761,940

External citation 1.786 1.449 -0.106 -0.034 0.061 0.079

(0.202) (0.381) (0.014) (0.015) (0.013) (0.012)

Observations 40,026 40,026 40,026 40,026 40,026 40,026

External citation 1.321 1.054 -0.050 -0.030 0.016 0.064

(0.109) (0.207) (0.006) (0.007) (0.007) (0.006)

Observations 96,042 96,042 96,042 96,042 96,042 96,042

External citation 1.282 1.310 -0.026 -0.026 -0.009 0.060

(0.081) (0.134) (0.004) (0.004) (0.004) (0.004)

Observations 189,139 189,139 189,139 189,139 189,139 189,139

External citation 0.461 1.230 0.003 0.004 -0.010 0.004

(0.075) (0.097) (0.002) (0.002) (0.003) (0.003)

Observations 436,733 436,733 436,733 436,733 436,733 436,733

Cited patent fixed effects Yes Yes Yes Yes Yes Yes

Citing tech-period effects Yes Yes Yes Yes Yes Yes

Notes:  See Table 6.

D. Second highest quartile of cited patent quality

B. Lowest quartile of cited patent quality

C. Second lowest quartile of cited patent quality

App. Table 4b: Table 6 with cited patent quality breakdowns

ranks among citing patents

(coefficients sum to zero across columns)

A. Full sample of citations

E. Highest quartile of cited patent quality

Prevalence of patents by external citation



Bottom Second

Not two highest Highest

present quartiles quartile quartile

(1) (2) (3) (4)

Assignee position in current period:

Not present 51% 23% 27%

Bottom two quartiles 64% 23% 9% 4%

Second highest quartile 56% 18% 17% 9%

Highest quartile 61% 9% 11% 18%

Assignee position in current period:

Not present 68% 17% 16%

Bottom two quartiles 76% 12% 5% 7%

Second highest quartile 59% 16% 9% 17%

Highest quartile 31% 12% 9% 49%

Assignee position in current period:

Not present 55% 28% 18%

Bottom two quartiles 73% 14% 8% 5%

Second highest quartile 63% 14% 12% 12%

Highest quartile 36% 9% 12% 43%

Notes:  Table documents transition matrices across five-year periods from 1975-1979 to 1990-1994 for 

the patenting by US industrial firms.  Rows sum to 100%.  Panel A groups assignees to quartiles based 

upon the average quality of their patents in each period.  Panel B groups assignees to quartiles based upon 

their counts of patents.  Panel C groups assignees to quartiles based upon the interaction of their patent 

count and average quality.  Assignees transition across quality quartiles much faster than they do across 

count quartiles.  New entrants also enter higher in the quality distribution than in the count distribution.  

New entrants thus have a greater quality-weighted impact, and weighted transitions from the top quartile 

for incumbents are faster than simple patent counts suggest.

A. Quality distribution of patents

B. Count distribution of patents

Assignee position in the following period:

App. Table 5: Transition matrices for patent quality and quantity

C. Weighted distribution of patents



Base Including Small Large Balanced Including

patent quality company company panel self citing

regression distributions sample sample sample measures

(1) (2) (3) (4) (5) (6)

Log employment -0.065 -0.065 -0.115 -0.071 -0.078 -0.066

(0.002) (0.002) (0.004) (0.004) (0.005) (0.002)

Log patents 0.049 0.047 0.073 0.031 0.036 0.055

(0.003) (0.004) (0.008) (0.004) (0.006) (0.004)

Quality distribution of firm's inventions (share relative to two lowest quality quartiles):

Third quality quartile 0.008 0.007 0.003 0.028 0.009

(50th-74th) (0.010) (0.012) (0.015) (0.023) (0.010)

Highest quality quartile 0.030 0.035 0.002 0.032 0.029

(75th-100th) (0.010) (0.012) (0.014) (0.021) (0.010)

Quality distribution of external inventions cited by firm (share relative to two lowest quartiles):

Third quality quartile 0.023 0.023 0.017 0.015 0.029

(50th-74th) (0.012) (0.015) (0.017) (0.022) (0.010)

Highest quality quartile 0.030 0.032 0.016 -0.004 0.038

(75th-100th) (0.011) (0.015) (0.016) (0.022) (0.011)

Extent to which the firm was backward self citing in patents (indicator variables relative to no self cites):

Moderate self citation -0.026

(>0% and <=20%) (0.010)

High self citation -0.083

(>20%) (0.012)

Tech.-Period effects Yes Yes Yes Yes Yes Yes

Observations 29,496 29,496 18,807 10,689 7,705 29,496

App. Table 6a: Table 7 using claims to measure patent quality

Dependent variable is employment growth of firm

Notes:  See Table 7.  Table substitutes quality distributions measured through claims on patents. 



75th 95th 99th 75th 95th 99th

percentile percentile percentile percentile percentile percentile 

and higher and higher and higher and higher and higher and higher

(1) (2) (3) (4) (5) (6)

Log employment -0.065 -0.065 -0.065 -0.065 -0.065 -0.065

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Log patents 0.043 0.046 0.048 0.048 0.049 0.049

(0.004) (0.003) (0.003) (0.003) (0.003) (0.003)

Share of own inventions 0.039 0.084 0.156 0.028 0.046 0.053

in indicated quality range (0.010) (0.022) (0.054) (0.009) (0.019) (0.048)

Share of cited inventions 0.075 0.114 0.154 0.028 0.026 0.021

in indicated quality range (0.010) (0.017) (0.034) (0.011) (0.024) (0.055)

Tech.-Period fixed effects Yes Yes Yes Yes Yes Yes

Observations 29,496 29,496 29,496 29,496 29,496 29,496

Dependent variable is employment growth of firm

App. Table 6b: Table 7 with higher thresholds

Notes:  See Table 7 and App. Table 6a.  Specifications examine the upper quartile effect of patent quality on firm employment growth at 

ever increasing quality levels.  The effects increase as patent quality thresholds are raised.

Using external citations to measure quality Using claims to measure quality



Firm survival Firm survival

analysis using analysis using

Base survival patent claims external citations

regression to measure quality to measure quality

(1) (2) (3)

Log employment 0.029 0.029 0.028

(0.001) (0.001) (0.001)

Log patents 0.006 0.006 0.004

(0.001) (0.001) (0.001)

Quality distribution of firm's inventions (share relative to two lowest quality quartiles):

Third quality quartile 0.000 -0.011

(50th-74th) (0.005) (0.005)

Highest quality quartile 0.001 -0.039

(75th-100th) (0.005) (0.005)

Quality distribution of external inventions cited by firm (share relative to two lowest quartiles):

Third quality quartile 0.007 0.016

(50th-74th) (0.006) (0.006)

Highest quality quartile 0.008 0.020

(75th-100th) (0.005) (0.005)

Tech.-Period fixed effects Yes Yes Yes

Observations 34,157 34,157 34,157

App. Table 7: Survival analysis

Notes:  See Table 7.  Estimations consider whether firms survive to the following period or not.  The central 

prediction of the model is that larger firms and firms with greater numbers of contemporaneous patents 

survive longer.  These effects are evident in the first two rows.  The model delivers ambiguous predictions 

regarding survival and patent quality.  The model predicts that survival is invariant to general patent quality.  

This is most evident in the second column using patent claims to measure quality.  The model also predicts 

that high external citations are associated with greater replacement even though patent quality is high.  This is 

evident in the third column.  The appendix text further discusses this analysis.


