
Destruction, Disinvestment, and Death:

Economic and Human Losses Following

Environmental Disaster∗

Jesse K. Anttila-Hughes† Solomon M. Hsiang‡

Abstract

The direct physical damage caused by environmental disasters is straightforward

to document and often the focus of media and government attention, but ad-

dressing disasters’ indirect effects remains difficult because they are challenging

to observe. We exploit annual variation in the incidence of typhoons (West-

Pacific hurricanes) to identify the effect of environmental disaster on economic

and health outcomes in Filipino households. We find that the Philippines’ ty-

phoon climate causes large losses to households’ economic well being, destroying

durable assets and depressing incomes in the wake of storms. Household income

losses translate directly into expenditure reductions, which are achieved in part

through disinvestments in health and human capital. Examining infant mortal-

ity rates, we observe substantially increased female infant mortality in the years

following storm exposure. Striking similarities in the structure of these mortality

and economic responses, along multiple dimensions, implicates the deterioration

of economic conditions and subsequent disinvestments as the cause of mortality

among female infants. Bolstering this hypothesis, we find that mortality is high-

est in households where infant daughters face the greatest competition with other

children for resources, particularly older brothers. We estimate that these delayed

deaths among female infants outnumber officially reported typhoon deaths in the

general populace by a factor of fifteen.
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1 Introduction

It is obvious that natural disasters cause immediate destruction and death. In theory,

documenting the direct physical damages caused by hurricanes, earthquakes, and other

catastrophes is straightforward, although the logisitics of doing so are often difficult. At

the same time, even our theoretical understanding of disasters’ aftereffects, particularly

on economic outcomes, remains limited by a paucity of empirical observations. The

few facts we have about post-disaster economics come primarily from studies that link

macroeconomic data with country-level estimates of disaster impacts (see Strömberg

(2007) and Cavallo and Noy (2009) for reviews of the literature). Thus even fairly basic

questions about disasters’ economic effects, such as whether household incomes rise or

fall in a disaster’s wake, remain unsettled (Albala-Bertrand (1993); Benson and Clay

(2004); Caselli and Malhotra (2004); Hallegatte and Ghil (2008); Horchrainer (2009);

Loayza et al. (2009); Dercon and Outes (2009); Noy (2009); Fomby, Ikeda and Loayza

(2009); Hsiang (2010); Strobl (2011); Deryugina (2011)).

Improving our understanding of post-disaster economic outcomes is important for

several reasons. Designing effective disaster management policies and institutions re-

quires that we understand the full cost of disasters (Kunreuther et al. (2009); United

Nations (2009)); if a sizeable portion of a disaster’s costs manifest after the event itself,

then models of humanitarian intervention which focus on immediate damages may need

to be reassessed or expanded. Secondly, the wealth of evidence suggesting that disas-

ters’ immediate death and destruction is most acute in low-income countries (Kahn

(2005), Mutter (2005), Yang (2008), Hsiang and Narita (forthcoming)) indicates that

disasters might plausibly influence economic development. Of particular concern is

disasters’ potential to alter long-run outcomes due to short-run losses: if poor house-

holds have a limited ability to mitigate disaster-induced losses, disaster incidence may

cause them to sacrifice valuable investment (Udry (1994); Jacoby and Skoufias (1997);
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Duflo (2000); Maccini and Yang (2009); Banerjee and Mullainathan (2010)) for short-

run needs. Lastly, recent evidence suggests that global climate change is expected to

increase the frequency of certain types of environmental disaster, (IPCC 2007; Knut-

son et al. (2010)). This implies that any improvement in estimates of disasters’ costs

will necessarily inform estimates of climate change’s anticipated damages (Narita, Tol

and Anthoff (2009); Mendelsohn, Emanuel and Chonobayashi (2010)), and in turn the

formulation of climate change policy in general (Stern (2006); Nordhaus (2008); Tol

(2009); Weitzman (2009); Pindyck (2011)).

In this paper we measure the post-disaster economic and health effects of a specific

type of environmental disaster: typhoons. Typhoons, or tropical cyclones1, are large,

fast-moving storms which form over the oceans and cause physical damage via intense

winds, heavy rainfall, and ocean surges. We focus on typhoons both because they are

one of the most common and costly types of natural disaster (Bevere, Rogers and Grol-

limund (2011)) and because their variation in timing and spatial distribution allow us to

identify their effects using quasi-experimental techniques (Holland (1986)). Typhoons

are relatively brief, usually affecting a given location for at most 1- 2 days. They are

also sharply defined in space, being 100-200 kilometers across and traveling distances

ranging from a few hundred to a few thousand kilometers in length. The intensity of a

location’s typhoon exposure is also variable, both because the storms themselves vary

in frequency and intensity and because different locations are exposed to different parts

of the same storm, another feature that we exploit in our econometric analysis.

The Philippines is situated in one of the most intense typhoon climatologies on

the planet (see Figure 1), a fact that both improves our identification strategy and

differentiates this study from analyses of one-off or infrequent natural disasters. In order

to capture spatial and temporal variations in typhoon exposure within the Philippines

1“Typhoon” is the name for a tropical cyclone that occurs in the western Pacific Ocean. The same
storms are called “hurricanes” in the Atlantic Ocean and simply “cyclones” in the Indian Ocean.
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we use a physical model of typhoon winds developed in Hsiang (2010) to create a unique

panel dataset of province-level incidence. This dataset allows us to adopt a difference-

in-differences approach which takes advantage of each province’s year-to-year variation

in typhoon exposure.

We combine physical storm data with two household survey files: the Family In-

come and Expenditure Survey (FIES), a repeated cross sectional survey of household

economic outcomes conducted by the Filipino government every three years; and the

Demographic and Health Survey (DHS), a suite of cross sectional household-level health

and fertility surveys. The FIES data allow us to identify the impact of storms on house-

holds’ physical assets, income, and consumption2, while the DHS’s retrospective data

on mothers’ fertility allow us to reconstruct a mother-by-year panel dataset of infant

births and mortality. Infant mortality constitutes a sensitive3 measure of health itself

as well as an indicator of general household well being. When linked together, these

three datasets allow us to characterize the multidimensional response of households to

typhoons.

We begin by demonstrating that our empirical model indeed captures typhoons’

direct destructive impact. We verify that our measure of typhoon exposure, spatially-

weighted maximum typhoon wind speed (henceforth “wind speed”), is a good predictor

of damages and deaths at the national level. We demonstrate that these nationally-

aggregated losses are also apparent at the household-level in the form of lost capital

assets, such as televisions, toilets, and walls.

Turning next to household income, we find that typhoons reduce average income

the year after they strike, presumably due to storms’ direct physical damages as well

2We note that expenditures alone do not infer quantity of consumption in the absence of prices,
and thus perform a variety of checks on storms’ impact on prices, which we find to be negligible; see
Section 5 for details.

3As Chay and Greenstone (2003) point out, infant mortality minimizes problems of cumulative ex-
posure and a host of other potentially confounding identification concerns that emerge when examining
other human capital measures.
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as their more indirect disruption of economic activity. We find that household income

drops linearly by 0.39% per meter per second of wind speed exposure. Given the average

annual exposure at the province level of 16.9 m/s during our sample period, we estimate

that the average short-run effect of the country’s typhoon climate is to depress incomes

by 6.7%. This effect occurs across a variety of income sources, affects both richer and

poorer households, and is net of public and private transfers.

The income losses we measure translate nearly one-for-one into a reduction of house-

hold expenditures, which decrease 7.1% for the average household in the average year.

These expenditure reductions track total income losses closely when they are exam-

ined across years (relative to the storm), across space, across typhoon intensities, and

across income groups. This tight relationship suggests that households do not mitigate

storm-induced losses via consumption-smoothing strategies, such as in-kind transfers,

savings, or borrowing. Instead, we observe that households make large adjustments to

their relative spending on different types of consumption and investment. In general,

households reduce their spending the most on expenditures that most closely resemble

human capital investments, such as medicine, education and high nutrient foods that

include meat, dairy, eggs and fruit. In contrast, expenditures decline much less on pure

consumption goods, such as recreation, alcohol and tobacco.

We next examine whether typhoons impact household health outcomes by examin-

ing infant mortality rates. We find no evidence that infant mortality rises during or

immediately following typhoon exposure, implying that deaths from physical exposure

to the storm itself, which we term ‘trauma deaths’, are few. However, we find that

typhoons cause infant mortality to rise the calendar year after the storm itself has

passed. This is illustrated in Figure 2, which shows the cumulative monthly mortality

impact of typhoons. The vast majority of infant female deaths (grey line) manifest well

after the typhoon event; moreover, many of the infants who die in the aftermath of
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the storm were not even conceived until after the storms are gone (dotted black line),

implying that the direct mortality impact of the storm is minimal. We estimate that in

our sample of mothers who never migrate, these typhoon-associated deaths amount to

an annual average of 1,130 female infant deaths per million households, corresponding

to 55% of the baseline infant female mortality rate.

Multiple aspects of our findings suggest that deteriorating economic conditions and

disinvestments in human capital are responsible for these female infant deaths. We

“fingerprint” patterns of economic contraction and disinvestment across many dimen-

sions by looking at their timing relative to storms, their nonlinear response to storm

intensity, their short and medium-run lag structure at different locations in the income

distribution, and their spatial patterns. We then demonstrate that patterns of female

infant mortality exhibit an almost identical “fingerprint” across these same dimensions.

Furthermore, we find that mortality is highest in households where infant daughters face

competition from other children over resources, particularly if those siblings are male.

These findings together suggest that female infant deaths following typhoon events are

‘economic deaths’ resulting from economic losses and the resulting household decisions

regarding human capital investments and within-household resource allocation. This

conclusion that female infants bear a differentially large share of the burden from income

loss is consistent with findings from a variety of other contexts (Rosenzweig and Schultz

(1982); Rose (1999); Duflo (2000); Duflo (2005); Bhalotra (2010)). Extrapolating these

estimates to the entire non-migrant population suggests that approximately 11,000 fe-

male infants suffer ‘economic deaths’ in the Philippines every year due to the previous

year’s storm season. In contrast, there was an average of 743 ‘trauma deaths’ per year

according to official reports for the same period (OFDA/CRED 2009). This suggests

that mortality attributable to Filipino typhoons is roughly 1500% of previous estimates.
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The remainder of the paper is structured as follows. Section 2 presents background

on typhoons and disaster impacts. Section 3 presents the data and Section 4 presents

the identification strategy. Section 5 presents our results. We conclude in Section 6,

which discusses our findings and some of their implications for policy.

2 Background

The Typhoon Climate of the Philippines

Figure 1 shows a map of the Philippines’ annual expected typhoon exposure, or its

typhoon climate. The Philippines possesses one of the most active cyclone climatologies

in the world, on average experiencing over ten typhoons each year ranging in intensity

from mild to severe. Because the Philippines is large compared to typhoons4, different

regions within the country may experience entirely different levels of storm exposure in

the same year.

The Philippines’ active typhoon climate provides additional benefits for analysis

compared to other idiosyncratic destructive events such as earthquakes5 or wars, in that

typhoons in the Philippines are a regular and expected occurrence. This can be seen in

Figure 4, which shows the distribution of typhoon exposure for each Filipino province;

we note that median exposure (white bars at the center of each box) is non-zero for

all but a handful of provinces. While destructive and unpredictable, typhoon exposure

itself is thus not surprising, and households almost certainly incorporate typhoon risk

into their economic decisions. We can thus plausibly infer that any impacts that we

observe occur in spite of all the adaptive responses that households employ to mitigate

4See, for example, Appendix Figure C.1 showing a satellite photo of Typhoon Nanmadol.
5Note that while earthquakes certainly have a spatial and temporal incidence structure similar

to typhoons the interarrival time of destructive earthquakes is orders of magnitude longer than for
destructive typhoons. See, for example, Triep and Sykes (1997).
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typhoon impacts.

Our estimate of typhoons’ costs adds to the rapidly growing literature on the natural

environment’s impact on health outcomes (Deschênes and Moretti (2009); Maccini and

Yang (2009); Deschênes and Greenstone (2011)), as well as the literature on the eco-

nomic and health impacts of disasters (Toya and Skidmore (2007); Strömberg (2007);

Cavallo and Noy (2009); Simeonova (2011); Hsiang (2010); Deryugina (2011)) as well as

the more general literature exploring climatic influence on economic outcomes (Gallup,

Sachs and Mellinger (1999); Acemoglu, Johnson and Robinson (2002); Bloom, Can-

ning and Sevilla (2003); Easterly and Levine (2003); Miguel, Satyanath, and Sergenti

(2004); Nordhaus (2006b); Schlenker and Roberts (2009); Dell, Jones, and Olken (2009);

Hsiang (2010); Graff Zivin and Neidell (2010)). It also augments the literature on the

economic consequences of physically destructive shocks (Davis and Weinstein (2002);

Vigdor (2008); Miguel and Roland (2011)) though it differs from much of that literature

in that typhoons, rather than being idiosyncratic events like bombings, are a persistent

and common state of the climate.

Household Adjustments to Income Loss

Reductions in household income have the obvious potential to cause deleterious effects:

consumption of goods and services, investments in health and education, and savings

for future use are all potential margins of adjustment which may suffer following income

loss. There are a variety of means by which households seek to minimize these costs.

Firstly, households may attempt to smooth their income or consumption over time,

thereby spreading costs out and attenuating the immediate impact of income loss. This

smoothing can come in the form of within-household adjustments such as accumulating

precautionary savings (Paxson (1992); Kazarosian (1997)), directly supplanting income

through adaptive labor market activity (Kochar (1995); Jacoby and Skoufias (1998);
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Kochar (1999)), or selling assets during times of duress (Rosenzweig and Wolpin (1993).

It may also come in the form of extra-household adjustments such as accessing credit

markets (Rosenzweig(1988); Cochrane (1991); Morduch (1995)) or relying on transfers

(Foster and Rosenzweig (2001); Fafchamps and Lund (2003); Yang and Choi (2007)).

It is important to note that the income and consumption smoothing literature differen-

tiates between relatively easily insured-against idiosyncratic shocks (i.e., income losses

affecting different households at different times) and less easily mitigated aggregate

shocks affecting many houses (Cochrane (1991); Townsend (1995)). One might thus

expect that income losses due to typhoons, which are particularly large and common

aggregate shocks, might be particularly difficult to smooth over time.

If income losses cannot be smoothed then households may adjust by altering their

expenditure patterns. This adjustment may manifest in altered consumption, e.g., via

changes in eating habits (Subramanian and Deaton (1996); Jensen and Miller (2008)),

or it may manifest as a reduction in investments, such as to human capital (Mincer

(1958); Jensen (2000); Banerjee and Mullainathan (2010))6. If losses to income result

in disinvestment in human capital, particularly among children, then the potential

costs of a shock may far exceed its immediately observable effects in the long run via

worsened later-life outcomes (Strauss and Thomas (1998); Maccini and Yang (2009);

Banerjee et al. (2010)). Moreover these losses may become compounded if households

differentially disinvest in children by type, for example due to gender biases (Sen (1990);

Duflo (2005)).

This paper expands upon the literature documenting household disinvestments in

children’s human capital following income loss (Jacoby and Skoufias (1998); Strauss

and Thomas (1998); Jensen (2000)), particularly disinvestments in girls’ human capital

6Note that in many instances consumption and investment cannot be disentangled; expenditures
on nutritious food, for example, can be equally viewed as consumption as well as investment in future
human capital.
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(Rose (1999); Bhalotra and Heady (2003); Maccini and Yang (2009); Chen (2011)).

More broadly, this paper adds to the growing body of research documenting the excess

risk burden born by female household members in developing contexts (Horton (1986);

Sen (1990); Duflo (2005); Qian (2008); Robinson and Yeh (2011)).

3 Data

Our analysis requires data describing household assets, income, expenditures, health

outcomes, and typhoon exposure. Summary statistics of these data are presented in

Tables 1, 2, and 3. For reference, Appendix Figure C.2 displays an administrative map

of the 82 provinces (smaller units) and 17 regions (larger units) we include in our data.

Typhoon data

A central innovation of our analysis is the development of a comprehensive data file

describing a physical measure of typhoon incidence over time. We develop this mea-

sure to ensure that our typhoon data are sufficiently precise to describe meaningful

variations in typhoon exposure in a climate where typhoons are common. We be-

gin by reconstructing the wind field for every West Pacific cyclone in the International

Best Track Archive for Climate Stewardship (IBTrACS) database (Knapp (2009)) using

the Limited Information Cyclone Reconstruction and Integration for Climate and Eco-

nomics (LICRICE) model (see Hsiang (2010) for a detailed description of the model7).

LICRICE only reconstructs wind fields and does not explicitly account for rains, flood-

ing, or storm surges because wind fields are less influenced by topography and are thus

more generalizable. However, our wind field measures describes these other typhoon

7Since Hsiang (2010), version 2 of LICRICE was built (used in this study), substantially improving
upon the model’s original accuracy. However these improvements were focused on numerical methods
and the heuristic description in Hsiang (2010) remains accurate.

10



impacts to the extent that they are correlated with wind speed.

We use LICRICE to reconstruct the wind field as a translating vortex for all 2,246

storms recorded in the West Pacific Basin between 1950-2008 by interpolating among

72,901 6-hour observations over every 1/34◦ × 1/34◦ pixel of the Philippines (1/34◦ ≈

0.0294◦ ≈ 2.02 miles ≈ 3.26 kilometers). Figure 3 illustrates a snapshot of a storm’s

wind field for an example storm, with the height of the surface depicting the speed of the

surface winds. Using this approach, we find that 837 storms affected the Philippines8

between 1950-2008 (13.72 storms per year). Of these storms, 411 occurred during

1979-2008 (13.70 storms per year), the period for which we have overlapping economic

and health data. For reference, annual maps of raw LICRICE output for the period

1979-2008 are presented in Appendix Figures C.3 and C.4.

To match typhoon exposure with annualized socioeconomic data files, our contin-

uous physical measure of typhoons must be summarized to form a single observation

for each location in every year. We summarize annual typhoon exposure for provinces

and regions by computing the maximum wind speed achieved at each pixel and then

taking the average across pixels within an administrative unit. We opt for this mea-

sure because it allows us to capture storm intensity while controlling for variations in

the physical size of regions and provinces9; a storm that passes over the entirety of a

geographic area would thus register as stronger treatment than one that merely passed

8That is, 837 storms registered non-zero wind speeds over at least one 1/34◦ × 1/34◦ pixel.
9Hsiang and Narita (forthcoming) discuss the variety of tropical cyclone measures that have been

employed in previous econometric studies, such as windspeed at landfall, minimum central pressure
and total energy dissipated. As Hsiang and Narita demonstrate, the spatially-weighted maximum wind
speed measure that is employed in this study is well-supported by theory and outperforms alternative
measures in a country-by-year panel analysis. Briefly, the theoretical basis for this measure rests
on two observations. First, the stress-strain relationship for most materials is highly non-linear, with
catastrophic failure occurring at a critical level of stress (Nordhaus (2006a)). Thus, for a given material,
only the maximum level of stress that the material is exposed to, i.e. the maximum wind speed, is
relevant for determining whether failure is expected. Secondly, people and capital are distributed
across space within a province, making it necessary to construct some sort of spatial average for wind
exposure. We follow Hsiang (2010) and Hsiang and Narita (forthcoming) and adopt area-weights for
our averages because they cannot be endogenous in the same ways that population, capital or income
weights might be. For further discussion see section A in the appendix.
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over a small portion of it. For succinctness, we refer to this statistic as ‘wind speed’

and it is presented in the units of meters per second (1 m/s = 3.6 km per hour ≈ 2.24

miles per hour)10.

Figure 4 displays medians, inter-quartile ranges and extreme values of typhoon

exposure for each of the 82 provinces in our sample during 1950-2008. The figure

illustrates that there is strong variation in typhoon exposure between provinces as well

as strong year-to-year variations in exposure at the level of an individual province. Note

that no province completely escapes typhoon exposure in the period of observation and

there are many provinces that are exposed to typhoons every year. Approximately half

of the provinces have median annual exposures in excess of 20 m/s and many provinces

are exposed to events exceeding 50 m/s. As shown in Table 1, the average province was

exposed to wind speeds of 17.6 m/s (s.d. = 12.0 m/s) between 1950 and 2008, or 16.9

m/s (s.d. = 11.6 m/s) between 1979 and 2008.

Household Asset, Income and Expenditure Data

Information on household assets, income and consumption are obtained from the cross-

sectional Family Income and Expenditure Survey (FIES) conducted by the National

Statistics Office (NSO) of the Philippines (Ericta and Fabian (2009)). In 1957, the

government of the Philippines began conducting the FIES irregularly (approximately

every five years) to understand the distribution of income, spending patterns and the

prevalence of poverty, as well as to benchmark consumer price indices. In 1985, the

survey was completely restructured and the NSO began conducting it at regular three

year intervals. In this analysis, we obtain and use FIES Public Use Files for the years

1985, 1988, 1991, 1994, 1997, 2000, 2003 and 2006.

10It is important to note that because reported wind speed values are area-averages, actual wind
speeds at the center of storms are substantially greater than the values we report and cannot be directly
compared.
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The FIES provide us with data on each household’s assets across several different

categories, household income by source, total income net of any transfers and subsidies,

and household expenditures on different goods and services.

We note that there are important timing issues to contend with in analyzing the

FIES data that arise from the manner in which the survey is administered. FIES

data are collected twice for each household, just after the middle of the year (July)

and just following the end of the year (the following January), with responses for each

survey reflecting economic behaviors over the preceding six months. Responses for each

household are then averaged between the two surveys to construct annual estimates;

however, if a household cannot be found in either round of the survey they are dropped

from the sample11. Figure 5 shows the FIES survey timeline overlaid with mean monthly

typhoon strikes to indicate why this is a potential concern. Typhoon activity in the

Philippines is concentrated late in the year, so estimates of typhoon impacts during

the year of exposure may be somewhat attenuated because first phase responses are

recorded prior to the bulk of typhoon events. This motivates us to focus on capital

losses the year following typhoon exposure, since it seems unlikely that capital can be

replaced immediately following a storm12.

Also concerning is the NSO’s policy of dropping second round non-respondents, since

typhoons may cause households to migrate, the obliteration of participants’ physical

homes, or villages becoming inaccessible due to flooding or infrastructure damage13.

This results in observations being dropped from our sample based on extreme values

11Surveyors attempt to revisit households two additional times if the household head cannot be
located in the first visit. Only after three unsuccessful interview attempts is a household dropped.

12We note that a typhoon’s contemporaneous effect on capital is roughly 53% of its effect in the
following year. This is consistent with our concern that contemporaneous effects will be smaller because
phase 1 responses occur before roughly 65% of storm events.

13The NSO explicitly states that a major cause of second phase survey attrition is the inability
to locate households when the physical structure they inhabited during the first phase interview is
destroyed by a typhoon before the second phase. When areas become inaccessible due to flooding
or infrastructure damage, the NSO generally tries to postpone surveys within the affected region.
Unfortunately, the NSO does not provide statistics on these types of attrition.
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of the treatment effect we are interested in, a fact that probably biases our estimate of

treatment effects towards zero. We attempt to minimize this attenuation by including

a vector of observable household covariates in all our models. In addition, we explicitly

test for balance on treatment in Section 4.

Lastly, we note that the lowest unit of geographic designation in the FIES surveys

changed between the 2000 and 2003 waves; early years include province level identifiers

(more detailed) while later years only report regional identifiers (less detailed). Thus,

our baseline models analyze outcomes at the province level but omit 2003 and 2006. We

then reintroduce these years in region level estimates as a check on our main results. For

province level models we are able to match 142,789 household observations contained in

the period 1985-2000, whereas our sample expands to 174,896 observations in regional

level models that span the period 1985-2006.

Infant Mortality Data

Our infant mortality data are taken from the 1993, 1998, 2003, and 2008 waves of the

Demographic and Health Surveys (DHS)14 for the Philippines. The DHS are cross-

sectional surveys with questions related to population, health, and nutrition, particu-

larly pertaining to maternal and child health. The DHS program is highly standardized

with changes between surveys documented and propagated, allowing for comparison of

surveys both across countries and within countries across time. Samples are designed

to be representative at the national and regional levels. Within the Philippines, each

household’s location is identified according to its administrative region and provincial

identifiers are not available.

14The DHS are administered by the Measure DHS project (funded largely by USAID) and are avail-
able for free download online at http://www.measuredhs.com/. Started in 1984, the DHS program
has collected survey data on 84 countries as of late 2011, with many of those countries having been
subject to multiple survey waves.
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The primary interview targets of the DHS are women between the ages of 15 and 49.

A wide suite of questions are asked on topics ranging from HIV awareness to nutritional

practices to each woman’s full fertility history. The latter provides us with a source

of our infant mortality data, as each woman is asked to provide detailed information

about every child she has ever born, including any children who have died. We are

thus able to construct a time series for each woman’s fertility and mortality events

over the duration of her life up until the survey, echoing recent research that uses

the DHS in a similar way (Kudamatsu (2011); Kudamatsu, Persson, and Strömberg

(2011); Chakravarty (2011)). We follow these authors in excluding migrant mothers

from our sample, thereby minimizing the sorting and migration concerns that arise in

the FIES. The 24,841 non-migrant mothers in our sample yield 265,430 mother-by-

year observations, or nearly 11 years of longitudinal data per woman. Table 3 shows

summary statistics.

The DHS data include several variables aside from infant mortality events which are

particularly useful for this analysis. Of particular note are: a measure of each woman’s

prior migration history, captured by whether she has ever lived anywhere else and, if so,

when she moved to her current location of residence; educational attainment of both the

woman and her husband, if any; the geographical region in which the woman resides;

and the woman’s age at time of survey. While there is no direct questioning on each

woman’s or household’s income, a variety of socioeconomic status (SES) indicators are

collected, ranging from whether the household has electricity to whether anyone in the

househole owns a car. We construct a proxy for socioeconomic status from these data

for comparison of distributional impacts in a process detailed in Section B.
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Other Data

Emergency Events Database (EM-DAT) Nationally aggregated data on eco-

nomic losses and deaths from tropical cyclones are obtained from the Emergency Events

Database data file commonly referred to as “EM-DAT” (OFDA/CRED 2009). The

EM-DAT data file contains information provided by national governments, interna-

tional organizations, NGOs, and private companies (e.g., re-insurance companies) on

a self-reporting basis15. EM-DAT data of economic losses are an estimate of negative

economic impacts that may include lost consumption goods, lost productive capital or

cost of business interruption, depending on the protocols of the reporting institution.

EM-DAT is the database used in most previous cross-country studies of post-disaster

economics, with some of its limitations discussed in the review by Cavallo and Noy

(2009).

Temperature and Rainfall We control for mean annual temperature and rainfall in

all of our analyses to minimize potentially confounding climate behaviors that might be

correlated with typhoon incidence (Auffhammer et al. 2010). Temperature observations

are extracted from the gridded reanalysis of the Climate Data Assimilation System I

(CDAS1) produced by the National Center for Environmental Prediction (NCEP) and

the National Center for Atmospheric Research (NCAR) (Kalnay et al. (1996). Rainfall

estimates are obtained from the Climate Prediction Center (CPC) Merged Analysis

of Precipitation (CMAP) which merges station readings on the ground with available

satellite data (Xie and Arkin 1996). Both temperature and precipitation data are

spatially averaged over each region or province.

15EM-DAT is provided for free by the Centre for Research on the Epidemiology of Disasters (CRED)
at www.emdat.be, Universite Catholique de Louvain, Belgium.
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Crop Prices and Wage Rates Province-level data on annual farm worker wage

rates and commodity retail prices are obtained from the Bureau of Agricultural in the

Philippines16. Data are available for the period 1985-2008.

4 Identification

To empirically identify the impact of typhoons on household outcomes we use a difference-

in-differences approach that exploits random variations in each location’s typhoon in-

cidence. Identifying the treatment effect of typhoons requires that we must only utilize

variations in typhoon exposure that are randomly assigned to households (Holland

(1986); Freedman (1991)). Because the formation of typhoons and their trajectories

have strong spatial patterns, some locations have relatively higher or lower levels of av-

erage typhoon exposure (recall Figure 1). However, these cross-sectional variations in

mean exposure might be correlated with cross-sectional differences in the unobservable

characteristics of different locations, for example culture. For this reason, we do not

utilize the cross-sectional variation in average exposure and instead rely only on random

year-to-year variations in exposure at each specific location. To achieve this, we include

province (or region) fixed-effects in all of our regressions to absorb any cross-sectional

variation in typhoons exposure or losses. If there are unobservable reasons why some

locations have higher (or lower) incomes or infant mortality on average, these fixed-

effects will non-parametrically account for this difference and it will not contaminate

our estimates of the typhoon treatment effect (Greene (2003)).

Randomness in typhoon exposure arises because both the location and timing of

storm formation as well as storm trajectories themselves are stochastic. One might

be concerned that annual variations in storm exposure might not be entirely random

16Details and data are available at http://countrystat.bas.gov.ph
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because households could make location choices based on seasonal typhoon forecasts.

Yet, while it is now possible to predict average storm frequencies for each storm season

in a given basin with moderate skill (Heming and Goerss (2010); Smith et al. (2010)),

these forecasts have almost no predictive power if one were to try forecasting location-

specific seasonal risk. Thus, it is reasonable to assume that annually varying risk

differentials are imperceptible for individuals on the ground, since these differentials

still cannot be predicted by scientists. In contrast to seasonal prediction, it is possible

to forecast typhoon exposure a few days before a storm strikes17 (Heming and Goerss

(2010)), a fact that often allows individuals to evacuate and protect some of their

assets. This is important for interpreting our results, because the treatment effect that

we estimate is the effect of typhoons after households have employed the full range of

adaptive behaviors available to them, such as evacuation. But it does not seem plausible

that short-term evacuations based on short-term forecasts lead to the reorganization of

populations on annual time-scales, so it is unlikely that forecast-based sorting affects

our annualized estimates.

We wish to avoid spurious correlations, so we must avoid correlating trends in ty-

phoon incidence and our outcomes of interest. To do this, we flexibly account for

common trend behaviors by including year fixed-effects in all of our models (Greene

(2003)). These fixed effects also account for any unobservable common climatic shocks,

such as the El-Niño-Southern Oscillation, which could be correlated with typhoon ex-

posure (Camargo and Sobel (2005)) as well as socio-economic outcomes (Hsiang, Meng

and Cane (2011)).

The primary threat to the validity of our study is the potential for household sorting

in the wake of typhoon exposure. As we explained, sorting due to typhoon risk should

17For example, Willoughby et al. (2007) note: “In the past, a forecast was considered successful if it
predicted the hurricanes position and intensity 12 - 72 h into the future. By the 1990s, forecast users
came to expect more specific details such as spatial distributions of rainfall, winds, flooding, and high
seas. In the early 21st century, forecasters extended their time horizons to 120 h.”
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not be a major concern since we include location fixed-effects and annual changes in

risk are imperceptible to households. Sorting on typhoon incidence, however, could be

problematic if the passage of a storm causes families to migrate away for long periods,

altering the household composition of different locations. This is of particular concern

for the FIES data given their survey methodology (discussed in Section 3).

To address this concern, we test for balance in the FIES data by regressing ob-

servable household characteristics on typhoon exposure, presenting results in Table 4.

This approach checks whether observable household characteristics vary with the inten-

sity of the previous years’ typhoon exposure. We allow household composition to vary

nonlinearly in response to typhoon exposure by including indicator variables for prior

year’s maximum wind speed18. In support of our approach, we find almost no evidence

of sorting. Out of 49 parameters estimated, six are statistically significant at the 10%

level and one is significant at the 5% level; this is very close to what we would expect if

household composition were random (five and two respectively). If one interprets these

coefficients literally, they might provide suggestive evidence that typhoon exposure is

positively associated with total family size and negatively with the probability that the

household head has finished primary school. However, in neither case does the inten-

sity of cyclone exposure matter in a systematic way, suggesting that these correlations

are probably random19. Nonetheless, to be certain that bias from sorting along these

covariates is minimized, we control for all of these all of them in our main regression

models.

We are less concerned about sorting in the DHS data for two reasons. First, house-

holds in the DHS are asked whether they have ever lived anywhere other than their

current location. This allows us to directly avoid sorting behavior by restricting our

18This exact model is used throughout the paper to identify the effect of typhoons on time-varying
outcomes. It is explained in greater detail in the next section.

19See Appendix Section A for additional discussion.
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sample to non-migrant mothers. The second reason is that, unlike FIES data, the DHS

data are a true panel that allows us to follow specific women over time. Thus, there are

no compositional changes in the DHS panel that can be driven by typhoon exposure

during the mother’s adult life.

5 Results

We structure the presentation of our results as follows: We first demonstrate that our

measure of typhoon incidence accurately predicts physical damage at both the macro

and micro level in Section 5.1. We then demonstrate in Section 5.2 that the legacy of

this physical destruction leads to losses to income the year following storms, which are

closely matched by expenditure and consumption losses as detailed in Section 5.3. We

then demonstrate the infant mortality impacts of typhoons in Section 5.4 and provide

evidence supporting the argument that they stem from economic losses in Section 5.4.2.

Lastly we explore cross-sectional evidence of adaptation in Section 5.5.

5.1 Physical damages

It may seem obvious that typhoons are physically destructive, but measuring the eco-

nomic importance of this destruction is not trivial. The first studies that used aggregate

measures of tropical cyclone (including typhoon) losses were unable to detect any effect

of storm intensity on losses (Kahn (2005); Noy (2009)). If this result were accepted

at face value, it would imply that variations in the intensity of cyclone climates have

no effect on economies. In this section we show evidence that our measure of typhoon

incidence predicts physical damages using both national data from EM-DAT as well as

asset loss data from FIES.
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5.1.1 Prima Facie Evidence from National Data

We begin by presenting prima facie evidence that aggregate losses scale with typhoon

intensity in the Philippines. Using “standard” EM-DAT estimates for all the economic

losses and deaths attributed to typhoons in each year, we estimate whether national

losses increase with wind speed exposure, averaged over the entire country. National

losses and their bivariate dependance on wind speed are shown in Figure 6. In Table 5

we present several ordinary least-squares estimates for the time-series regression

Zt = αWt + µ+ θ1t+ θ2t
2 + εt (1)

where Z is the log of total deaths or total economic losses, W is typhoon wind speed,

µ is a constant, θ1 and θ2 are trend terms and ε is variation that we do not explain.

Following Pielke et al. (2003) and Hsiang and Narita (2011), we also present models

where the dependent variable Z is normalized by the size of the economy (GDP) or the

country’s population.

We find that national average typhoon exposure explains about a third of the varia-

tion in EM-DAT’s estimates for both total typhoon damages and total typhoon deaths.

In all models, the intensity of wind exposure is highly significant, with an increase in

wind exposure by one meter per second increasing losses roughly 22%. We note that

the economic damages estimated by EM-DAT include capital losses, lost revenue and

any other “economic cost” that is associated with a storm, but it is impossible with

these data to uncover finely-grained structure that might indicate the mechanism by

which either damages or, for that matter, deaths occur.
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5.1.2 Household asset losses

To estimate typhoons’ impact on household assets, we use ordinary least-squares re-

gression to estimate the linear probability that a household has each of several different

types of physical capital recorded in the FIES data. We control for unobserved house-

hold attributes common across households in a given year or province by including

province and year fixed effects. We further augment the model with controls for house-

holds’ observable characteristics, namely: the total number of household members; the

number of members above fourteen years old; and age, gender and education level of the

household head. Finally, we control for the annual mean temperature and rainfall ob-

served in each province in each year, since these variables are known to affect economic

conditions (Miguel, Satyanath, and Sergenti (2004); Nordhaus (2006b); Schlenker and

Roberts (2009); Dell, Jones, and Olken (2009); Hsiang (2010)) and they are driven

by many of the same climatological factors that affect typhoon incidence20. Thus our

complete regression model is

Zhprt =
5∑

L=0

[αLWp,t−L + βLTp,t−L + γLRp,t−L] + τt + µp + ζXh + εrt + εht (2)

where h indexes households, p indexes provinces, r indexes regions and t indexes years.

Z is a one if a household has an asset and zero otherwise while W is typhoon wind speed,

T is temperature, R is rainfall, τ is a year fixed-effect, µ is a province fixed-effect, X is

the vector of observable household characteristics, εrt is a shock affecting all households

in a region and εht is a household level disturbance. We employ a distributed lag model

to examine the effect of typhoon exposure for the five years prior to the survey, with lags

indexed by L. In addition, because region-level shocks may exhibit unknown patterns

of serial correlation and household-level shocks may exhibit spatial correlations at a

20For example, typhoon activity in the West Pacific is affected by the El Niño-Southern Oscillation
(Camargo and Sobel (2005)), which also influences temperatures and rainfalls in the Philippines .
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sub-regional but supra-provincial scale, we cluster our estimated standard errors at the

region level following Bertrand, Duflo, and Mullainathan (2004)21 and Conley (1999).

Table 6 presents estimates of α for four of the most general and widely owned house-

hold assets: a closed toilet (eg. not a pail or open pit), a television, walls constructed

with primarily strong materials (compared to light or salvaged materials) and access

to electricity. We find that for all these assets response to previous year’s typhoon

treatment is negative and significant, varying between a 0.11% and 0.16% probability

of loss per m/s of typhoon treatment, or 1.9 - 2.7 % given the average annual provin-

cial treatment of 16.9 m/s. Cars, which we also show, do not respond at all, possibly

because they are a valuable asset that can easily be moved quickly when typhoon fore-

casters warn populations about an impending storm22. We show additional results of

typhoon treatment for an array of other household assets in appendix table C.2. We

note that the average coefficient across all 14 assets in year zero is -0.036, versus an

average coefficient in the first year lag of -.069. We estimate that the asset response

in year 0 is thus 52.5% of the response in year 1, consistent with our observation that

year-of typhoon impacts estimated using FIES data will be biased downwards due to

averaging across the two waves of the survey and possible attrition.

Non-Linear Estimates of Asset Losses We now relax, and test, the assumption

that physical damages, and hence asset losses, are linear in windspeed. It is plausible

that damage is highly non-linear in windspeed; for example, Nordhaus (2010) and

Mendelsohn et al. (2010) argue that losses are a power function of windspeed at landfall.

However, these papers examine aggregate storm damages, similar to Equation 1, so it

21Because regions are aggregations of provinces and provinces are the level of treatment, clustering
by region means we are also clustering at the level of treatment. Clustering at the province level does
not appreciably change our results.

22It is also possible that the coefficients for cars is small because there are a limited number of
households in our sample that ever possess a car.
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is not obvious whether estimates using our micro-data should have similar functional

forms. Thus, we estimate the losses to wind speed non-parametrically, allowing the

response function to have an arbitrary functional form, and examine whether it is

approximately linear or not. To do this, we construct dummy variables that are one if

exposure falls within a five meter per second range and zero otherwise

W̃
[x,x+5)
p,t−1 = 1 [Wp,t−1 ∈ [x, x+ 5)]

leaving events with 0-5 meters per second as the dropped bin. We then run the re-

gression from Equation 2 where the inner product of these dummy variables and their

coefficients replace the linear term α1Wp,t−1. To limit the number of estimated parame-

ters, we keep the remaining terms unchanged and focus our attention on the coefficients

of these dummy variables. The full nonlinear model that we estimate is

Zhprt =α
[5,10)
1 W̃

[5,10)
p,t−1 + α

[10,15)
1 W̃

[10,15)
p,t−1 + α

[15,20)
1 W̃

[15,20)
p,t−1 + α

[20,25)
1 W̃

[20,25)
p,t−1 +

α
[25,30)
1 W̃

[25,30)
p,t−1 + α

[30,35)
1 W̃

[30,35)
p,t−1 + α

[35,∞)
1 W̃

[35,∞)
p,t−1 +∑

L∈{0,[2,5]}

αLWp,t−L +
5∑

L=0

[βLTp,t−L + γLPp,t−L] +

τt + µp + ζXh + εrt + εht (3)

and it is estimated using the same method and sample as Equation 2. Panel A of

Figure 7 displays these coefficients for six of the main asset types. The probability

that households lose electricity, a closed toilet, walls made of strong materials, their

television or their refrigerator increase approximately linearly with typhoon wind speed

exposure. In contrast, the probability that a household loses a car to typhoon exposure

remains near zero.

The linearity of these response functions indicates that our earlier estimate for the
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average number of households missing an asset due to typhoons was a good approx-

imation. Furthermore, the coefficient for the 15-20 meter per second bin is generally

in the range of 1.5-3%, matching our earlier linearized estimates. Finally, it is worth

noting that exposures exceeding 35 meters per second (spatially-averaged) are not un-

common, recall Figure 4, and these stronger events cause 4-7% of households to lose

their immobile assets.

5.2 Income Losses

Our approach to estimating income losses mirrors our approach to estimating physical

damages. We focus our attention on income earned by households the year follow-

ing storm exposure, partly to minimize the aforementioned attenuation risk in the

FIES data and partly because that is where the result manifests most strongly. We

again note that the measures of total household income collected by FIES include all

reported transfers from other households and the government. Prior work by Yang

(2008) demonstrated that tropical cyclone strikes increased remittances to some coun-

tries, suggesting that transfers provided a mechanism for income insurance. In addition,

Fafchamps (2003) used Filipino micro data to show that some income shocks lead to

inter-household transfers that partially compensate for losses23. These previous studies

suggest that transfers might be important for mitigating household income losses, so it

is fortunate that our measures of total income account for them.

23Deryugina (2011) finds similar results for Federal transfers in response to hurricanes in the United
States.
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5.2.1 Household Income Losses

To estimate the effect of typhoons on income, we estimate Equation 2 replacing Z

with the natural logarithm of household income. Table 7 presents these results24 in

in columns 1-4. Including all all our control variables, we find that household income

falls by 0.39% for each additional meter per second of windspeed exposure the year

prior. This implies that under average exposure levels (16.9 m/s), average household

income is depressed 6.6%. In column 5 we estimate the same model except we match

households to the average exposure of its region (the larger administrative unit) rather

than its province. Doing this allows us to include the 2000 and 2006 waves of the

FIES which we could not do otherwise because households in these waves lack province

identifiers. Using this longer sample with coarser measures of exposure, we continue to

find a large effect of typhoon exposure on household income. In a final specification

check presented in column 6, we collapse our household data to the province level,

dramatically reducing our number of observations from 142,779 to 367. This allows us

to conduct two additional checks: (1) whether we are over-estimating our true number of

independent observations (Bertrand, Duflo, and Mullainathan (2004)) and (2) whether

spatial correlations in ε cause us to underestimate our standard errors25 (Conley (2008)).

Estimating an analog26 of Equation 2 using this collapsed data set and estimating

spatially-robust standard errors27 we find our coefficient of interest unchanged and that

our standard errors increase only slightly.

In Table 8, we examine whether wage or entrepreneurial income responds more

24Similar to our results for capital losses, province fixed-effects are the most important control for
limiting bias.

25In theory, we could explicitly account for spatial correlation in errors using our micro-data, however
it is not computationally cost effective.

26Using our collapsed data set requires that we introduce a lagged dependent variable into Equation
2 because aggregated output measures are highly correlated over time. We do not do this in the model
with household data because that data set is not a true panel, so we do not know what household
incomes were in the last period of observation.

27For technical reference, see Conley (1999).
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strongly to cyclone exposure. Entrepreneurial income is income from self-employed

activities, including own agricultural cultivation, whereas wage income is income earned

by selling labor to firms or other households. We find that self-employed entrepreneurial

income responds strongly and negatively in the year following storms, falling -0.28%

per m/s or 4.7% for average treatment. Non-agricultural wages also fall by an average

of 3.2% per year, although the effect is not significant, and it is worth noting that both

coefficients are negative, but not significant, in the second lagged year as well. This is

in stark contrast to agricultural wages, which do not respond negatively in the first lag

and exhibit little systematic variation in response to typhoon exposure.

Table 9 presents the estimated value of α1 for different categories of entrepreneurial

income ranked by the number of respondents claiming any income from that source.

None of these estimates are statistically different from zero, probably because the sample

size declines rapidly for each subcategory. However, we find that the point estimates for

lost income are consistently negative with only two exceptions: earnings from gambling

and income in the transport and storage industry. We thus are confident in stating that

income losses seem to not be driven by losses confined to a single sector.

Non-Linear Estimates of Income Losses We verify that our linear approximation

of the income response is reasonable by estimating Equation 3 for household income.

Panel B in Figure 8 plots the coefficient for each wind speed bin along with its con-

fidence interval, and panel B of Figure 7 presents coefficients for the entrepreneurial

and non-agricultural wage components of income. All of theses measures of household

income loss are approximately linear in wind speed exposure. This linearity suggests

that Equation 2 is a good approximation of the response function and it agrees with

previously measured GDP responses to tropical cyclone exposure (Hsiang (2010)).
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5.2.2 Income Losses at Different Locations of the Income Distribution

Kahn (2005), Skidmore and Toya (2007), Noy (2009), Hsiang (2010), Hsiang and Narita

(2011), the United Nations (2009) and the World Bank (2010) have all suggested that

poor populations experience larger relative losses to natural disasters, including trop-

ical cyclones. Though compelling, these analyses have been based on country-level

comparisons of income which may be tainted by an array of confounding factors as well

as subject to omitted variable bias. We explore whether this relationship is plausible

within-country by comparing losses for high and low-income households that inhabit

the same Filipino province and are subject to the same institutional environment.

The FIES are not a true panel, so we cannot condition household income (or capital)

losses on income in the previous period. We overcome this limitation by comparing how

the income distribution in each province responds to typhoon exposure. To do this, we

first collapse the data by province-year, retaining estimates of Y q
pt, the household income

at the q-quantile of the income distribution for province p in year t. Thus, for each

value of q we have a panel of province by year observations that we use to estimate the

model

Y q
pt = ρqY q

p,t−1 +
5∑

L=0

[αqLWp,t−L + βqLTp,t−L + γqLRp,t−L] + τ qt + µqp + εqpt (4)

where all coefficients are q-quantile specific versions of those described in Equation 2

and ρq is a q-quantile specific autocorrelation coefficient that we introduce because our

collapse of the dataset generates substantial autocorrelation (recall column 6 of Table

7). Similar to before, our variable of interest is αq1, the relative shift of income observed

at the q-quantile following the previous year’s typhoon exposure.

Panel A of Figure 9 presents OLS estimates of αq1 for q ∈ {10, 20, ...90} along with

confidence intervals. Strikingly, the semi-elasticity of income to wind speed is practically

28



constant at all points along the income distribution, with the response always near

the average household response (horizontal line). These results seem at odds with

earlier cross-country studies that found different short-run responses for high and low-

income populations. Yet, a completely different picture emerges when we examine the

cumulative impact of typhoons on the shape of the income distribution. Panel B shows

estimates for the cumulative effect of one additional meter per second in wind:
∑5

L=0 α
q
L.

When we sum coefficients for all the years following a storm, we see that incomes below

the median suffer much larger cumulative losses than income above the median, which

actually exhibit no cumulative losses. This occurs because losses at low ends of the

income distribution persist for several years after the storm, whereas incomes at the

high end of the distribution actually rise slightly above average a few years after the

storm, allowing these groups to recover previously unearned income. Thus, when we

look at typhoon-induced income losses beyond the first year we find strong evidence

that the income distribution widens, with low-income households suffering differentially

larger cumulative losses when compared to high-income households.

5.3 Consumption and Investment Effects

Having found strong evidence that household incomes respond negatively to typhoon-

induced economic losses, we examine whether consumption and investment expendi-

tures also adjust. To determine whether expenditures fall, we implement the same

analysis that we conducted for income, but instead examine the consumption and in-

vestment variables available in FIES. Broadly, these variables are all “expenditures,”

although it is not always possible to clearly distinguish whether a specific variable repre-

sents “consumption” or “investment,” since many expenditures represent a combination

of the two. For example, “recreation” is clearly a consumption good, while “education”

is mostly an investment in human capital, but “food” is probably some combination
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since food consumption increases immediate utility but also augments health, a specific

dimension of human capital.

We note that a change in expenditures absent information about a potential change

in prices does not allow one to infer changes in consumption. We check for and find little

evidence that typhoons affect regional prices for food in Section B of the Appendix.

5.3.1 Household Losses to Consumption and Investment

We estimate Equation 2, replacing Z with the logarithm of household expenditures,

and present the results in Table 10. In column 1 we show that household expenditures

fall 0.42% for each additional meter per second in the prior year’s typhoon wind speed.

This implies that under the average level of exposure (16.9 m/s), total expenditures are

7.1% lower than they would otherwise be due to the transient impact of the typhoon

climate, mirroring the average income loss of 6.6%. In columns 2-11, we estimate

Equation 2 for different expenditure subcategories. For eight out of ten subcategories we

observe similar patterns of losses with the exceptions being recreational expenditures,

which declines insignificantly, and repairs to the household’s capital assets, which rise

slightly. Notably, some of the largest relative declines in spending occur in categories

related to human capital investments: personal care (−0.74% per m/s), medical services

(−0.85% per m/s), and education (−0.79% per m/s). Food expenditures, another type

of investment in human capital, do not decline as strongly. However, clear reductions in

food expenditure seem to extend over a longer period of time, beginning immediately

in the year of storm exposure and continuing for three years afterwards.

In Table 11 we decompose the response of food expenditures into its different sub-

categories. The strongest declines are clearly in the purchase of meat, with strong

responses also appearing in the fish, dairy & eggs and fruit categories. Purchases of

cereal also decline, but much less than the more nutritious foods. The overall structure

30



of this response is consistent with previous observations by Subramainian and Deaton

(1996) and Jensen and Miller (2008) that real income losses lead to a shift in food

consumption that protects overall calorie intake at the expense of nutrients.

The last three columns of Table 11 present the expenditure response for nonalcoholic

beverages, alcoholic beverages and tobacco. All three types of purchases decline in the

year of typhoon exposure, however their responses after that year diverge: nonalcoholic

purchase remain low for up to three more years, alcoholic purchases mostly recover but

also have long but statistically insignificant declines, while tobacco purchases become

insignificantly positive in the year following exposure but then return to their original

level. This relatively lower income elasticity of alcohol and tobacco, pure consumption

goods, relative to more nutritious foods, partially human-capital investments, agrees

with our earlier observation that other non-food varieties of human capital investments

decline more rapidly than expenditures that more closely resemble pure consumption

goods (Table 10). This finding is consistent with the hypothesis that wealth shocks

directly alter the utility function of household members by increasing the marginal

utility of immediate consumption (e.g., Banerjee and Mullainathan (2010)).

Non-Linear Estimates of Consumption and Investment Losses Following our

earlier estimates, we verify that our linear model is a good approximation of the ex-

penditure response by non-parametrically estimating the impact to typhoon exposure.

We estimate Equation 3 for total expenditures and present our coefficients in Panel D

of Figure 8. We find that the response of expenditures is almost exactly linear and

mirrors the response to income, which we illustrate by overlaying the two responses

in Panel C of Figure 7. When we examine the various subcategories of expenditures,

which we show in Panel D of Figure 7, we continue to observe responses that are linear

in typhoon wind speed. Inspecting subcategories of food purchases, displayed in Panel
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E, we see the same linear structure.

5.3.2 Expenditure Losses at Different Locations of the Expenditure Distri-

bution

We next examine how the expenditure distribution responds to typhoon incidence,

demonstrating that it mirrors the response of in the income distribution. We estimate

Equation 4 for both total expenditures and food expenditures, displaying our results in

panels C-F of Figure 9. Identical to our results for the income distribution, the total

expenditure and food expenditure distributions shift coherently the year after typhoon

exposure. This shift persists for the following years at q-quantiles below the median,

generating large cumulative impacts. In contrast, total expenditure actually rises in

later years for households above median expenditure, leading to a cumulative impact

near zero. Households above median food expenditure do not consume extra food in

later years, however, so cumulative effects are observable throughout the distribution.

It is plausible that this occurs because the benefits or utility from food consumption

are not substitutable over time periods longer than a year.

5.4 Infant deaths

Our final analysis of household outcomes centers around estimating infant mortality.

We first show that the entirety of the child and infant mortality response is driven

by infant female deaths, and then provide evidence suggesting that these deaths are

attributable to typhoon-induced economic losses and the resulting household decisions.
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5.4.1 The Response of Infant Mortality

We estimate the effect of typhoons on child mortality by altering Equation 2 to reflect

the structure of the DHS data. We arrive at the model

Zwrt =
5∑

L=0

[αLWr,t−L + βLTr,t−L + γLRr,t−L] + τt + µw + ζXwt + εrt + εwt (5)

where w indexes a woman. Here, Z is one if a woman reports that a child of the relevant

demographic category died in year t and zero otherwise. Xwt are the time-varying traits

of a woman’s age and age-squared. µw is a woman-specific fixed-effect that controls for

any time-invariant woman-specific traits. Estimates with this model benefit from the

fact that our reconstructed panel contains more years (24) than the FIES data (6);

they suffer, however, in that DHS reports only the region a woman lives in and not her

province, substantially shrinking the number of distinct treatment groups that we have

in any given year (13). To account for the fact that all women in a region are coded

as receiving the same typhoon exposure, as well as to account for any serial correlation

within or between women that in same region, we cluster our standard errors at the

region-level.

We present estimates for our parameter of interest, α, in Table 12. The coefficients

report the number of additional women, out of one-million, who report the death of a

child in association with an increase in wind speed of one meter per second. The first

column shows that there is a detectable increase in child mortality the year following

a typhoon, with roughly 80 additional deaths (per one-million women) for an increase

in exposure by one meter per second. For the period of observation, regional mean

exposure was 15.3 meters per second. This suggests that in an average year roughly

1,220 women out of one-million would report a child dying due to typhoon exposure the

prior year. Columns 2 and 3 decompose this response into deaths of male and female
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children, revealing that the bulk of these deaths are among females. Columns 4 and 5

examines whether theses female deaths are from young children and infants, and we see

that almost all of the additional deaths are infant females: of the 80 child deaths per

m/s, 73 of them are female infants. In contrast, examination of infant males in column

6 reveals that they do not contribute to the observed mortality response in the first

lagged year at all.

5.4.2 Attributing Infant Mortality to Economic Conditions and Household

Decisions

We chose to examine child mortality partly because we claimed that they reflect human

capital stocks, and we interpret these female infant deaths as evidence that households

are disinvesting in the health of their female infant children. However, it is possible

that these deaths are not a result of disinvestment, but instead result from the physical

trauma of exposure to the typhoon itself or the typhoon’s aftereffects on the ambient

environment, e.g., disease ecology. We lack data on the proximate cause of death, so

we cannot completely rule out these hypotheses. However, we are able to demonstrate

that this mortality response mirrors the economic response across multiple dimensions,

strongly suggesting that economic conditions are causing these infant deaths. Further,

we are able to demonstrate that the patterns of infant mortality are consistent with our

understanding of how households reallocate resources in response to a wealth shock.

Temporal Structure The timing of female infant deaths does not suggest that they

are a result of direct exposure to typhoons. We illustrate this point in Figure 2, where

we estimate a version of Equation 5 at the region-month, rather than woman-year,

level. The black line shows cumulative monthly infant female mortality impact of

typhoon exposure, normalized such that the cumulative effect evaluated at the month
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preceeding typhoon impact is 0. We see that the coefficient of typhoon impact on

month-of mortality is near zero, and the increase in mortality rates does not manifest

until nearly a year after the storm has hit. Deaths continue to accumulate past the

12 month mark, beyond which all infants in the sample have been born after typhoon

exposure. We can thus conclude that the bulk of deaths occur significantly later than

any immediate traumatic impact of the storm could plausibly be acting.

It is reasonable to question whether fetal exposure to typhoons may be partly driv-

ing our results. The recent explosion of literature in fetal origins28, including natural

disasters’ impacts on them (Simeonova (2011)), suggests that exposure to shocks while

in utero can have serious deleterious effects on later health. One might thus posit that

in utero weakening contributes to or perhaps even drives the increase in death rates.

We explore this claim in Figure 2 where the dotted grey line shows the number of female

births resulting in an infant deaths per million households. We see that in utero effects

may be contributing somewhat to the increase in deaths, as evinced by the increase

in births ending in infant death immediately after typhoon impact. We nonetheless

note that a large portion of the total cumulative births resulting in deaths occur 9 or

more months after typhoon exposure, when in utero effects are strictly impossible. We

conclude that while in utero impacts may be accelerating the increase in infant deaths,

they can at most be an auxiliary. This observation is further supported by the lack of

a similar death pattern among infant males as detailed in Appendix Section B.

Returning to the annual data, we note that there is a striking agreement between

the timing of depressed economic conditions and female infant mortality. The left

panels of Figure 8 display the timing of income losses, expenditure reductions and

female infant mortality. The spike in mortality coincides with the sharp reductions

in income and expenditure described earlier. Both mortality and economic conditions

28For a detailed overview see Almond and Currie (2011).
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remain abnormal two years after a typhoon, although effects are smaller and are only

marginally significant. Differences only arise three and four years after the storm, when

mortality remains slightly elevated but average income and expenditure return to their

baseline values.

Non-linear Structure We look for nonlinear structure of the mortality response

by altering Equation 5 so that α1 is decomposed following Equation 3. Panel F of

Figure 7 displays the response function for all children, all infants and female infants.

The responses of the larger samples are noisy but approximately linear, but when we

isolate the infant female deaths that are driving the pooled response we see an almost

exactly linear response. Presenting the income, expenditure and female infant mortality

responses in the right panels of Figure 8, we see that all three all three match in their

linear responses to typhoon wind speed exposure.

Distributional Structure The DHS data lack income information, so to examine

distributional aspects of our results we instead examine the mortality response at differ-

ent locations in the wealth distribution. We outline our method for inferring household

wealth in Appendix Section B. In Table 13 we present the response of female infant

mortality for women above and below the median for assets, as well as for the bottom

and top deciles. We find that in the year immediately following storm exposure, mor-

tality is slightly higher in the lowest wealth groups, and moreover remains elevated for

several years. This pattern of relative uniformity in the year after the storm, with a

slower recovery for poor households, matches the response of income, expenditures and

human capital investments, as we illustrate in Figure 4.

Spatial Structure Up to this point, we have only estimated response functions that

pool all Filipino observations, however it is possible that some regions are more or
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less susceptible to typhoon-induced economic losses. If this is true, and if economic

losses are the mechanism through which typhoons increase female infant mortality,

then regions suffering larger typhoon-induced economic losses should also exhibit larger

typhoon-induced infant mortality. To examine whether this is the case, we estimate

region-specific versions of the coefficient α1. We do this by modifying Equations 2 and

5 so that α1 is interacted with a vector of region dummies. In the top panel of Figure

10, we plot −αfood expenditure1 against −αincome1 for each region. The strong positive

correlation verifies that locations with larger typhoon-induced income losses are also

the regions with larger reductions in typhoon-induced food purchases, one of the most

important inputs to human capital. In the bottom panel, we plot αinfant mortality1 against

the coefficient for income, finding that the regions with stronger economic responses to

typhoons are also the regions with stronger mortality responses.

Gender Bias A striking feature of the response is that it is completely restricted to

female infants, with no similar response in male infants, as can be seen in Table 12.

Differentially worse health outcomes for female children in times of economic duress are

a common result in the development literature, see e.g., Rose (1999) for a specific case

and Duflo (2005) for an overview. This pattern is generally thought to arise because

parents give less weight to girls’ outcomes when making decisions about intrahousehold

resource allocations. Maccini and Yang (2009) and Senauer, Garcia, and Jacinto (1988)

both provide evidence that this dismal situation applies to the Philippines as well. Thus,

our finding that typhoon-induced infant mortality is a strictly female phenomenon is

consistent with previous work on the within-household allocation of resources following

income shocks.

We note that it is possible that the gender differential in mortality could be partly

driven, at least shortly after impact, by the commonly documented tendency of males
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to die in utero at higher rates than females (Almond and Currie (2011); Sanders and

Stoecker (2011)). We examine this claim in section B in the appendix and note that

while it may be occurring in our data, it cannot explain more than a portion of unob-

served male deaths in the first year.

Resource Competition Among Siblings If the female infant mortality that we

observe occurs because of disinvestment in female children, it is plausible that this dis-

investment will be larger if the female infant faces greater competition for resources via

older siblings, particularly older brothers29. We look for evidence that female children

who must compete for resources with other children are more likely to die in the year

following a typhoon by estimating the mortality response of four subsamples of female

infants: those who are the first born to their mother, those who have only older sisters,

those who have only older brothers, and those who have both older sisters and broth-

ers. Table 14 presents our results. We find that mortality among first born females is

moderate, but it doubles when infants have older sisters and nearly doubles again if

there are any older brothers. We interpret these findings as strong evidence that female

infant mortality is driven by resource scarcity within households and not by physical

exposure to typhoons themselves.

5.4.3 “Economic Deaths” Exceed “Trauma Deaths”

Our finding that infant mortality mirrors the structure of economic losses (in time,

space, income/wealth, and storm intensity) combined with our finding that it is both

gendered and enhanced by sibling competition, strongly suggests that these infant

deaths are caused by economic conditions that deteriorate in the wake of typhoons

and not by physical exposure to the typhoons themselves. We thus term the lagged

mortality we observe in our data “economic deaths” to distinguish it from the “trauma

29See, for example, Butcher and Case (1994).
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deaths” resulting from direct physical exposure to the storm itself, e.g., via drowning or

blunt injuries. We estimate that in the average year, the prior year’s typhoon climate

causes 1,130 additional female infant deaths in every one-million households, roughly

55% of female infant mortality in our sample. A back-of-the-envelope calculation30 sug-

gests that across the entire country this amounts to approximately 11,300 “economic

deaths” annually. This number exceeds 721, the annual average31 number of “trauma

deaths” reported by EM-DAT across the entire population, by more than a factor of

15. These findings indicate that most of the Filipino mortality from typhoons does not

result from physical exposure to the storm. Rather, the bulk of mortality occurs due

to deterioration of economic conditions and subsequent disinvestment in health and

human capital.

5.5 Evidence of Adaptation to Typhoon Climates

Households should suffer positive typhoon loses only if adaptation to their typhoon

climate is costly. Here, we briefly examine whether there is evidence of adaptation to

typhoons using cross-sectional variation in typhoon climates (recall Figures 1 and 4).

5.5.1 Optimal Adaptation in Theory

We imagine that households can exert costly adaptive effort e to reduce their losses if a

typhoon strikes32. If the cost function over e is convex, then households will exert adap-

tive efforts only until their marginal costs of effort equal the expected marginal benefits.

Because adaptive efforts only provide benefits when a typhoon actually strikes, loca-

30We observe a death rate per woman-household of 1,130 deaths per million; 44.8% of
women in the sample are non-migrants; and there were 22.3 million women aged 15-49 (the
DHS age range) in 2007 according to the Philippine National Statistics Office as detailed at
http://www.census.gov.ph/data/pressrelease/2010/pr10162tx.html.

31Between 1985-2006.
32For example, households could reinforce the walls of their home.
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tions that have more frequent or more intense typhoons should have greater returns to

adaptation. Thus, theory predicts that households located in relatively intense typhoon

climates will invest more in costly adaptation, reducing their marginal losses when a

typhoon actually strikes. Denoting a household’s optimal level of adaptive effort e∗, we

expect

∂e∗

∂W̄
> 0 (6)

where W̄ is expected typhoon wind exposure, a summary statistic for a location’s

typhoon-climate. Unfortunately, we cannot directly observe whether this is true because

we do not observe e∗. However, increasing effort reduces marginal losses (−∂Y/∂W ) to

a fixed level of actual typhoon exposure

− ∂

∂e

∂Y (e)

∂W
< 0. (7)

This enables us to infer that adaptation is occurring if we see that marginal losses

decline as climates intensify. Assuming households optimize, we multiply equations 6

and 7 to obtain

− ∂

∂W̄

∂Y (e∗)

∂W
< 0 (8)

a result that we now investigate empirically. For a more complete treatment of optimal

adaptation to tropical cyclone climates, as well as empirical evidence from around the

world, we refer readers to Hsiang and Narita (2011).
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5.5.2 Cross-Sectional Evidence of Adaptation

We test Equation 8 by examining whether typhoon-induced losses vary with the ty-

phoon climatologies of different Philippine regions. In the top panel of Figure 11, we

plot the negative semi-elasticity of income (−∂Y/∂W ) for each region against its aver-

age typhoon exposure (W̄ ). Consistent with Equation 8, the marginal effect of typhoon

exposure declines with increasingly intense typhoon climates. This suggests that pop-

ulations do invest adaptive effort in response to their typhoon climate. However, we

note that all regions have positive marginal losses, indicating that no region undertakes

“complete adaptation” by driving their marginal damages to zero. In the lower panel we

provide suggestive evidence that this adaptive response can also be observed in female

infant mortality responses.

Two points regarding the top panel of Figure 11 are worth noting. First, the average

losses due to cyclones remain high even for regions that exhibit high levels of adaptation.

This occurs because average exposure necessarily increases with the climatological wind

speed, so more intense average exposure counteracts falling marginal losses. In Figure

12 we plot estimates for average annual losses and find that average total losses are

almost constant across all climatologies33. The second point of note is that the slope of

the OLS fit, representing the response of adaptive effort to climatological conditions, is

−0.04. This implies that marginal losses decline by roughly 2.8% with each one meter

per second increase in climatological wind speed. This number, estimated using only

the within-Philippines cross-section, almost exactly matches Hsiang and Narita’s (2011)

earlier estimate (3%) which used the cross section of all countries in the world34.

33We fit a quadratic curve because total average cost should be quadratic if the response in Figure
11 is linear.

34Using the same measure of cyclones exposure (spatially averaged maximum wind speed), Hsiang
and Narita (forthcoming) found that increasing average exposure by 1 m/s led to adaptive adjustments
which reduced marginal damages by approximately 3% of their baseline value (when average exposure
was 0 m/s). Our results, presented in Figure 11, indicate that increasing average exposure by 1 m/s
reduces marginal income losses by roughly 2.8% of the analogous baseline value (marginal income
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6 Summary and Discussion

We have shown that the typhoon climate of the Western Pacific imposes major economic

and human costs on Filipino households. We observe this impact directly in the form

of lost physical assets; measure its economic effect of depressing household income

and reducing consumption and human capital investments; and lastly show evidence

that these disinvestments have irreversible consequences, which we demonstrate by

examining infant mortality. We discuss some implications of these results and policy

options below.

The Magnitude of Typhoon Losses We summarize the magnitude of typhoon-

induced losses in Table 15, where we estimate average annual losses attributable to the

typhoon climate of the Philippines. We estimate that an average household’s income

was 6.57% lower in an average year due to the previous year’s typhoon exposure. To

place this in context, the Philippines’ National Statistical Office estimates that the av-

erage family’s savings rate was 14.7% in 200935. These income losses are closely tracked

by a 7.08% reduction in expenditures, with particularly large reductions to human cap-

ital investments such as education (13.3%) and medicine (14.3%). Food consumption

is less elastic, falling 5.9% in the average year, but this masks large substitutions away

from expensive and higher nutrient foods, such as meat and dairy, and towards cheaper

calories, such as grains. We find that average levels of typhoon exposure raise female

infant mortality rates by 1,130 deaths per million households per year. Accounting for

the fact that a child is not born in every household in every year, this translates into

18.1 deaths per thousand live births. This amounts to 55.0% of the observed female

losses are 0.0143 log points per m/s when average exposure is set to 0 m/s in Figure 11).
35Calculated using an average family income of 129,000 pesos and savings of 19,000 pesos for 2009.

Data available at http://www.nscb.gov.ph/secstat/d income.asp
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infant mortality rate in our sample36.

These results are large, and it is important to be clear when interpreting them. We

calculate these losses based on mean typhoon incidence in the average province/region;

so we interpret them as capturing the expected difference in outcomes between a

typhoon-free year and a year experiencing average typhoon exposure (16.9 m/s). They

can thus be thought of as mean losses conditional on the Philippines having the typhoon

climate that it has; any major shift in that typhoon climate would necessarily lead to a

host of adaptive responses that are impossible to estimate given lack of an observable

counterfactual.

Implications for Economic Development Our results indicate that typhoons de-

stroy existing capital and reduce investments in new capital. Both of these effects

are a concern for economic development. As discussed in Hsiang (2010), Dell, Jones,

and Olken (2011), and Pindyck (2011), climatic conditions that interfere with cap-

ital accumulation and economic growth are particularly pernicious because their ef-

fects are compounded over time. The repeated exposure of populations to tropical

cyclones, both in the Philippines and elsewhere, probably slows the accumulation of

capital stocks at the household level. Unfortunately, such long run effects are difficult

to identify empirically because cross-sectional variations in cyclone-climates are corre-

lated with unobservable omitted variables; hopefully, future research will address this

challenge. Nonetheless, given our evidence, tropical cyclones should be added to the

list of geographically-varying factors which may be contributing to spatial patterns in

global economic development (Gallup, Sachs and Mellinger (1999); Nordhaus (2006b)).

36We calculate the ratio of deaths per million households per year to deaths per thousand infants
in our sample to be 61.92. Note that the observed female infant mortality rate is our sample of 33.0
per thousand is close to the mean UN estimate for female infant mortality in the Philippines between
1985 and 2005 of 28.3 per thousand (data available from http://data.un.org/)
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Implications for Climate Change As previously discussed and shown in Figure

1, the Philippines has one of the most active typhoon climatologies in the world. The

frequency with which typhoons impact the Philippines suggests that households must

understand and incorporate typhoon risk into their economic decisions (Mendelsohn

(2000); Hsiang and Narita (forthcoming)). Thus, we interpret our estimates as con-

ditional on households having already exploited the full range of adaptive behaviors

available to them. This assumption is supported by our cross-sectional evidence that

levels of adaptation vary across typhoon-climates, results that match the cross-country

findings of Hsiang and Narita (forthcoming) with striking precision. The fact that we

continue to observe large typhoon impacts in one of the world’s most intense typhoon

climates, where populations have already adapted optimally, suggests that adaptation

costs are so high that populations find they are better off suffering typhoon losses rather

than investing in additional adaption. This has unsettling implications for future cli-

mate change policy.

In the design of climate change policy, adaptation to climatic changes is viewed as

a substitute for efforts to mitigate climate changes directly (Stern (2006); Nordhaus

(2008); de Bruin, Dellink and Tol (2009); Aldy et al. (2010); Patt et al. (2010)). If

adaptation is generally inexpensive compared to mitigation, then the cost-minimizing

strategy is to not invest heavily in mitigation and instead to rely primarily on adap-

tation. However, if adaptation is very costly, then mitigation should be utilized more

vigorously. Our findings suggest that adaptation to tropical cyclones is extremely costly;

thus policies cannot assume that adaption to changes in the future cyclone climate37

37Knutson et al. (2010), a recent review of this topic, conclude

[F]uture projections based on theory and high-resolution dynamical models consistently
indicate that greenhouse warming will cause the globally averaged intensity of tropical cy-
clones to shift towards stronger storms, with intensity increases of 211% by 2100. Existing
modeling studies also consistently project decreases in the globally averaged frequency
of tropical cyclones, by 634%. Balanced against this, higher resolution modelling studies
typically project substantial increases in the frequency of the most intense cyclones, and
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will be cheap. This should increase the estimated social cost of greenhouse gas emis-

sions, and concomitantly the value of mitigating these emissions. We may speculate

that technological advances will reduce the future cost of adaptation, but until further

evidence is martialled this remains an assumption. Moreover, if adaptation costs to

tropical cyclones are representative of adaptation costs to a broader class of climato-

logical phenomena, this would suggest that current models of future adaptation are too

optimistic (de Bruin, Dellink and Tol (2009)).

Policy Options in the Current Climate

Setting aside issues surrounding the future climate, it is important to note that there are

a variety of targeted policies that might increase the welfare of Filipino households, or

other typhoon-afflicted populations, in the current climate. At present, large-scale post-

disaster management is almost entirely an ad hoc process that is strongly influenced

by political concerns and the media (Besley and Burgess (2002); Garrett and Sobel

(2003); Eisensee and Strömberg (2007); Yang (2008); Kunreuther et al. (2009); United

Nations (2009)). However, our findings provide insight into systematic policies that

could address typhoon-induced welfare loss.

Insurance Social insurance allows Filipino households to smooth their consumption

over some, but not all, income shocks (Fafchamps (2003), Yang and Choi (2007)). Our

observation that consumption responds strongly to typhoons, reflecting income changes,

indicates that current insurance networks are not well-diversified against these events.

Perhaps this occurs because typhoons are large with respect to insurance networks, a

increases of the order of 20% in the precipitation rate within 100 km of the storm centre.
(p. 157)

Thus the entire distribution of tropical cyclone events is expected to shift on average, with fewer low
intensity storms but more frequent high intensity storms. However, there remains extensive uncertainty
and the relationship between tropical cylcones and warming is an area of active research.
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fact that would reduce the idiosyncratic component of the income shock (Townsend

(1995)). Expanding insurance networks over larger spatial scales should reduce the

uninsurable aggregate component of typhoon shocks; however this must be done care-

fully as even wealthy countries have struggled to sustainably insure tropical cyclone

risk (Kunreuther et al. (2009)).

Credit Without looking specifically at credit markets, we cannot say exactly how

they behave in the wake of Typhoons. However, we observe that income and consump-

tion in low income households recover more slowly than in high income households.

It is plausible that this differentially slow recovery persists because poor households

are credit constrained, preventing them from efficiently rebuilding their capital stocks

(Duflo and Banerjee (2007); Noy (2009)). If this is true, subsidizing the development

of credit markets for low-income households may increase their resilience.

Information It seems unlikely that the households in which female infants die are

intentionally allowing these infants to perish. It is more plausible that parents believe

their newborn can cope with higher-than-average levels of neglect, and that there will

be limited permanent damage (Duflo and Banerjee (2011)). Unfortunately, for a small

number of unlucky families, this assumption proves false. It may be the case that simply

educating parents about the risks of post-typhoon neglect will be enough to mitigate a

large portion of typhoons’ effect on infant mortality.

Targeted Subsidies If household decisions were made to perfectly optimize house-

hold welfare, than post-disaster economic decisions would be efficient. Unfortunately,

it seems that children’s long-term welfare, which depends in part on their human cap-

ital, is differentially neglected in comparison to short-term consumption of goods like

recreation, tobacco and alcohol. In this situation, it may be optimal to tax adults
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to finance human capital subsidies that specifically target children. To avoid political

manipulation of these subsidies, it might be possible that they be indexed to verifiable

measures of typhoon exposure (Hellmuth (2009)).

Technology Standards Because it is difficult for consumers to verify the quality of

infrastructure, construction quality may not be properly priced into markets (Olken

(2007)). This could introduce additional uncertainty into households’ calculation of the

economic risk they bear in a particular typhoon-climate. To correct for this market

imperfection, it may be optimal for governments to enforce building codes or other

technology standards that mandate a specified level of robustness to typhoon exposure.

Research and Develop Adaptation Technologies We find a continuous gradi-

ent in levels of adaptation that reflects the gradient in cyclone risk. This suggests that

adaptation technologies are effective, however the cost of adopting additional adaptation

technology is binding throughout the Philippines (Hsiang and Narita (forthcoming)).

Thus, research and development that raises the effectiveness or reduces the cost of adap-

tive technologies should induce households to employ greater levels of self-protection.
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Figure 10: Cross-sectional correlation of region-specific coefficients. Regions that suffer
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Table 1: Typhoon exposure (maximum wind speed) summary statistics.

Unit of observation Years N Mean Std. Dev. Min Max

Province 1950 - 2008 4838 17.6 12.0 0.0 62.1
Province 1979 - 2008 2460 16.9 11.6 0.0 53.5
Region 1950 - 2008 885 16.1 11.5 0.0 47.4
Region 1979 - 2008 450 15.3 11.0 0.0 45.9
Nation 1950 - 2008 59 17.3 4.6 9.2 30.5
Nation 1979 - 2008 30 16.5 4.0 9.2 23.6

Notes: Maximum wind speed measured in meters per second.
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Table 2: Summary averages for FIES households

VARIABLES

Total number of household members 5.2
[2.27]

Number of household members above age 15 4.1
[1.78]

Age of household head (yr.) 47.6
[14.16]

Household head is male (%) 85.2
[35.5]

Household head completed no school (%) 5.7
[23.19]

Household head completed primary school (%) 64.0
[48.01]

Household head completed secondary school (%) 33.6
[47.2]

Total household:
Income (PHP) 127500

[157600]
Expenditures (PHP) 103700

[106000]
Food expenditures (PHP) 50500

[33100]
Education expenditures (PHP) 4000

[11900]
Medical expenditures (PHP) 2200

[11300]

Observations: 142789

Household has:
Electricity (%) 62.6

[48.4]
Closed toilet (%) 72.2

[44.8]
Strong walls (%) 54.5

[49.8]
Television (%) 39.1

[48.8]
Car (%) 6.7

[24.9]

Observations: 107620

Notes: Standard errors shown in parentheses. Income and expenditures shown in year
2000-equivalent Philippine Pesos.
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Table 3: Summary averages for DHS households

Variable

Age 28.65
[10.08]

Married (%) 48.32
[49.97]

Wife has no education (%) 3.2
[17.6]

Wife has post-secondary education (%) 28
[44.9]

Husband has no education (%) 4.17
[20]

Husband has post-secondary education (%) 22.5
[41.7]

Wife’s total children born 2.0
[2.57]

Wife’s total sons born 1.02
[1.49]

Wife’s total daughters born 0.95
[1.42]

Observations 24841

Notes: Standard errors shown in parentheses. Non-migrant households only.
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Table 6: Typhoon impact on assets

(1) (2) (3) (4) (5)

Has
Has closed Strong Has Has

electricity toilet walls TV car
VARIABLES (%) (%) (%) (%) (%)

Max wind speed, T=0 -0.21* -0.04 -0.08 -0.17* -0.03
[0.11] [0.10] [0.10] [0.09] [0.03]

T + 1 -0.14** -0.16*** -0.11** -0.12** 0.01
[0.06] [0.03] [0.04] [0.05] [0.02]

T + 2 0.01 -0.09 -0.09 0.11* -0.03
[0.07] [0.06] [0.08] [0.06] [0.05]

T + 3 0.04 -0.12 0.12 -0.10* -0.01
[0.06] [0.09] [0.10] [0.05] [0.03]

T + 4 -0.07 -0.11 0.01 -0.15*** 0.01
[0.04] [0.06] [0.05] [0.03] [0.02]

Observations 107,620 107,620 107,620 107,620 107,620
R-squared 0.28 0.21 0.21 0.34 0.07

Notes: Notes: Standard errors clustered at the treatment (province) level in brackets. *** p<0.01, **
p<0.05, * p<0.1. Lags 0-5 estimated but only shown for 0-4. Includes province and year fixed effects,
lagged temperature and precipitation controls, and household controls consisting of the number of members,
working and non, in household as well as household head’s gender and education level.

75



T
ab

le
7:

H
ou

se
h
ol

d
in

co
m

e
as

a
fu

n
ct

io
n

of
ty

p
h
o
on

ex
p

os
u
re

an
d

co
va

ri
at

es

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

In
co

m
e

In
co

m
e

In
co

m
e

In
co

m
e

In
co

m
e

In
co

m
e

V
A

R
IA

B
L

E
S

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

M
ax

w
in

d
sp

ee
d
,

T
=

0
(m

/s
)

0.
26

-0
.1

0
0.

02
-0

.0
0

0.
27

-0
.0

1
[0

.2
6]

[0
.1

4]
[0

.1
5]

[0
.1

8]
[0

.1
6]

[0
.1

5]
T

+
1

-0
.8

8*
**

-0
.3

3*
**

-0
.3

5*
**

-0
.3

9*
**

-0
.5

8*
**

-0
.3

9*
**

[0
.1

9]
[0

.0
9]

[0
.0

9]
[0

.1
0]

[0
.1

4]
[0

.1
4]

T
+

2
1.

04
**

*
0.

01
0.

00
-0

.1
6

-0
.1

7
0.

02
[0

.3
2]

[0
.1

0]
[0

.0
8]

[0
.1

2]
[0

.1
4]

[0
.1

4]
T

+
3

0.
16

-0
.1

4
-0

.1
7

0.
04

-0
.2

2
0.

29
[0

.1
7]

[0
.1

4]
[0

.1
3]

[0
.1

5]
[0

.1
5]

[0
.1

8]
T

+
4

-0
.5

8*
*

-0
.0

8
-0

.0
9

-0
.0

6
-0

.0
3

-0
.0

5
[0

.2
5]

[0
.0

9]
[0

.1
1]

[0
.1

0]
[0

.0
9]

[0
.1

1]
O

b
se

rv
at

io
n
s

14
2,

78
9

14
2,

78
9

14
2,

77
9

14
2,

77
9

17
4,

89
6

36
7

R
-s

q
u
ar

ed
0.

32
0.

38
0.

57
0.

57
0.

55
0.

95

E
x
p

os
u
re

:
p
ro

v
in

ce
p
ro

v
in

ce
p
ro

v
in

ce
p
ro

v
in

ce
re

gi
on

p
ro

v
in

ce
P

ro
v
in

ce
F

E
-

Y
Y

Y
-

Y
R

eg
io

n
F

E
-

-
-

-
Y

-
H

H
co

n
tr

ol
s

-
-

Y
Y

Y
-

L
ag

ge
d

te
m

p
,

p
re

ci
p

-
-

-
Y

Y
Y

L
ag

ge
d

d
ep

en
d
en

t
va

r.
-

-
-

-
-

Y
S
E

cl
u
st

er
ed

at
re

gi
on

Y
Y

Y
Y

Y
-

Y
ea

rs
19

85
to

..
.

20
00

20
00

20
00

20
00

20
06

20
00

C
on

le
y

(s
p
at

ia
l)

S
E

-
-

-
-

-
Y

N
o
te

s:
P

er
ce

n
t

ch
a
n

g
e

ca
lc

u
la

te
d

a
s

lo
g

p
o
in

ts
*
1
0
0

p
er

m
/
s

o
f

m
a
x

w
in

d
sp

ee
d

.
S

ta
n

d
a
rd

er
ro

rs
in

b
ra

ck
et

s.
*
*
*

p
<

0
.0

1
,

*
*

p
<

0
.0

5
,

*
p
<

0
.1

.
L

a
g
s

0
-5

es
ti

m
a
te

d
b

u
t

o
n

ly
sh

o
w

n
fo

r
0
-4

.
S

p
a
ti

a
l

S
E

ca
lc

u
la

te
d

u
si

n
g

a
d

is
ta

n
ce

o
f

2
5
0
k
m

a
n

d
u

n
if

o
rm

w
ei

g
h
ts

.
C

o
lu

m
n

6
is

co
ll
a
p

se
d

to
th

e
p

ro
v
in

ce
le

v
el

.
In

co
m

e
in

cl
u

d
es

a
ll

w
a
g
es

,
sa

la
ry

,
a
n

d
n

et
tr

a
n
sf

er
s.

76



Table 8: Typhoon impact on income by source

(1) (2) (3)

Entrepreneurial Non-agricultural Agricultural
income wages wages

VARIABLES (%) (%) (%)

Max wind speed, T=0 (m/s) -0.11 0.04 -0.10
[0.22] [0.22] [0.35]

T + 1 -0.28** -0.19 0.04
[0.11] [0.15] [0.27]

T + 2 -0.15 -0.08 -0.29
[0.15] [0.18] [0.30]

T + 3 0.02 0.35 -0.20
[0.22] [0.21] [0.34]

T + 4 0.12 -0.02 0.34*
[0.12] [0.15] [0.21]

Observations 96,989 77,754 30,773
R-squared 0.22 0.36 0.24

Notes: Percent change calculated as log points *100 per m/s of max wind speed. Standard errors clustered at
the treatment (province) level in brackets. *** p<0.01, ** p<0.05, * p<0.1. Lags 0-5 estimated but only shown
for 0-4. Includes province and year fixed effects, lagged temperature and precipitation controls, and household
controls consisting of the number of members, working and non, in household as well as household head’s gender
and education level.
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Table 9: Typhoon impact on entrepreneurial income categories

Max wind speed, T + 1 (m/s)

VARIABLES % change SE N

Entrep. income -0.28** [0.11] 96,989

Crop farming / gardening income -0.29 [0.21] 52,193
Trade income -0.18 [0.18] 30,479
Livestock / poultry income -0.46 [0.44] 17,158
Gambling winnings 0.28 [0.46] 10,776
Fishing income -0.40 [0.24] 10,258
Manufact. income 0.08 [0.42] 8,715
Transport / storage income 0.15 [0.26] 7,855
Services income -0.10 [0.45] 7,011
Forestry / hunting income -0.44 [0.71] 2,537
N.A. / entrep. income -1.04 [0.96] 1,454
Construct. income -1.56 [1.24] 870

Notes: Percent change calculated as log points *100 per m/s of max wind speed. Standard errors
clustered at the treatment (province) level in brackets. *** p<0.01, ** p<0.05, * p<0.1. Lags 0-5
estimated but only shown for 0-4. Includes province and year fixed effects, lagged temperature and
precipitation controls, and household controls consisting of the number of members, working and
non, in household as well as household head’s gender and education level.
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Table 13: Typhoon impact on child mortality by SES group

(1) (2) (3) (4)

Poorest
VARIABLES decile Below med. Above med. Top decile

Max wind speed, T=0 (/s) 98.33 9.214 36.08 87.85
[62.12] [32.81] [25.34] [58.01]

T + 1 146.1* 82.15** 63.44** 62.74
[70.92] [31.36] [23.42] [56.10]

T + 2 140.8* 31.53 28.99 -5.418
[73.40] [35.88] [20.53] [47.83]

T + 3 164.8* 54.30** 21.39 27.98
[91.13] [23.82] [16.06] [34.26]

T + 4 173.4** 58.67 20.27 13.61
[74.24] [34.35] [22.20] [45.81]

Observations 26,637 142,216 123,214 20,587
R-squared 0.084 0.086 0.071 0.072

Notes: Mortality shown per million households per year. Standard errors clustered at the treatment (region)
level in brackets. *** p<0.01, ** p<0.05, * p<0.1. Lags 0-5 estimated but only shown for 0-4. Includes region
and year fixed effects, lagged temperature and precipitation controls, and mother fixed effects.
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Table 14: Typhoon impact on infant female mortality by sibling gender

Max wind speed,
VARIABLES T=1 [m/s]

First born 35.32
[23.48]

Marginal impact of having older siblings 75.70**
[25.35]

Only older sisters 75.80
[78.97]

Marginal impact of having older brothers 53.18
[67.54]

Only older brothers 121.2*
[57.10]

Marginal impact of having older sisters 0.405
[40.07]

Notes: Mortality shown per million households per year. Standard errors clustered at the treat-
ment (region) level in brackets. *** p<0.01, ** p<0.05, * p<0.1. Lags 0-5 estimated but only
shown for 0-4. Includes region and year fixed effects, lagged temperature and precipitation
controls, and mother fixed effects.
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Table 15: Household losses due to previous year’s mean typhoon exposure

Variables Mean typhoon impact in prev. calendar year

Income -6.57

Expenditures -7.08

Food exp. -5.90

Education exp. -13.3

Medicine exp. -14.3

Female infant mortality rate
deaths per million households 1130
percent of mean infant female death rate 55.0%

Notes: Losses are calculated using mean typhoon exposure between 1979 and 2008 as shown in 1 for the province level (region
level for infant mortality) using coefficient on T + 1 from estimates in tables 7 (col. 4),10 (cols. 1, 2, 7, and 8) and 12 (col 5).
Losses for income and expenditures are log points times 100.
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Appendices

A Appendix: Data

Typhoons

The Philippines’ typhoon climate Figure 1 summarizes the typhoon-climate of

the Philippines by displaying annual mean wind exposure. The globe on the left is

centered on the Philippines, displaying the country’s location in the global cyclone cli-

mate, while the map on the right displays the within-country variation in that climate.

Typhoons form in the warm waters of the Pacific, generally to the east of the Philip-

pines, and are pushed westward by prevailing winds, striking the Philippine islands. As

storms move westward, they also tend to drift northward38, causing storms to strike the

northern regions of the Philippines more often than they strike the southern regions,

generating a within-country gradient in typhoon risk that is probably the strongest

within-country gradient in the world (see figures C.3 and C.4 for trajectories of storms

during a single year).

Maximum wind speed as a measure of typhoon incidence Typhoon wind

speed is simply the maximum wind speed achieved at a location during the course

of a calendar year. If a location experiences multiple storms, the annual maximum

is the maximum of the maximum speed achieved in each storm. Pixel-specific wind

speed estimates are spatially averaged over each province39 to aggregate exposure into

38The northward drift is due both to prevailing winds as well as a phenomenon known as “beta-
drift,” which results from an interaction between the storms angular momentum (vorticity) and the
angular momentum gradient of the planet. See, for example, Wang et al. (1996).

39It may be possible to reduce our measurement error by using population-weights, following Jones
and Olken (2010) and Hsiang et al. (2011), or capital-weights, following Nordhaus (2010), when
aggregating our exposure measure. However, we fear that if populations strategically locate themselves
or capital in response to typhoon risk, this may bias our estimated coefficients in some unknown way.
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province-by-year observations. While there are other feasible measures of typhoon

impact, Hsiang and Narita (2011) demonstrate in detail that spatially averaged wind

speed has explanatory power of economic outcomes that is at least as good, if not

better, than alternative physical measures. These alternative measures include total

energy dissipated (e.g., Hsiang (2010)), wind speed at landfall (e.g., Nordhaus (2010)

or Mendelsohn et al. (2010) or minimum central pressure (also in Mendelsohn et al.

(2010)).

Family Income and Expenditure Survey (FIES)

FIES data collection and attrition FIES surveys are designed to be nationally

representative and are conducted at the household level. For each survey wave, teams

of surveyors deploy twice, the first phase from July 8-31 and the second phase from

January 8-31 in the following year. Surveyors visit the same households in both phases,

completely repeating the survey but asking respondents to recall income and consump-

tion only over the last six months40. Annual statistics are computed by averaging

responses to both the July and January phases. The survey asks detailed questions

about income and expenditure, collapsing respondents estimates of both prices and

quantities into summary statistics for total receipts. The NSO estimates that each sur-

veyor samples 1.5 households per day, suggesting that the survey does not take longer

than two-thirds of a working day. For each phase, the surveyor is instructed to return

to the household at least twice (for three visits total) if the household head is missing

or the survey cannot be completed for other reasons. In cases where a household does

Thus, we use area-weights because populations cannot manipulate this parameter, giving us confidence
that our RHS variable is fully exogenous. This conservative approach may mean that our estimation
is inefficient, in the sense that it does not take advantage of all available data, but this should only
make our inferences more conservative.

40The NSO asks respondents to describe income and consumption in an “average week” for the period
of recall in an effort to limit recall biases. This method has been used consistently from 1985-2006.
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not complete one of the two phases, the household is dropped from the sample. The

NSO notes that this type of attrition sometimes occurs because households cannot be

located in the second phase due to the passage of a typhoon, often because the physical

house containing the household no longer exists. Because the NSO does not provide

attrition statistics, there is little we can do to account for this attrition other than

control for household characteristics and run standard tests for balance on typhoon

treatment. Balance tests for our primary measure of treatment, previous year’s cyclone

incidence, are shown in Table 4 in section 4. We show an expanded version of our

tests for balance in Table C.1. We note that even for year-of incidence, when the NSO

explicitly warns of attrition bias, we find only modest evidence of sorting. Households

receiving typhoon treatment the same year as they are surveyed are mildly more likely

to be headed by a male household head (0.07% per m/s, or 1.2% for average treatment),

an effect that seems to persist somewhat over time. They are also mildly less likely to

have completed secondary school (0.23% per m/s, or 3.9% for average treatment), an

effect that seems to be reversed the following year. We include both of these variables

as covariates in our analysis, and note that doing so does not appreciably change our

results (see, for example, the stability of our coefficient on income after the addition

of household covariates during our specification search in Table 7). We conclude that

they are unlikely to be driving our results.

B Appendix: Results

Income and Expenditures Losses

Prices Reductions in expenditure of course do not directly translate into reductions

in consumption without knowledge of the price response. We investigate whether the

expenditure losses we observe can feasibly be interpreted as losses to consumption by
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testing for typhoons’ impact on regional food prices for a vairety of commodities; these

results are shown in appendix tables C.4, C.5 and C.6. We find little evidence to suggest

that typhoon exposure materially alters food prices. The one exception to this is the

price of beef, which seems to be somewhat reduced by typhoon exposure. A possible

explanation for such an outcome could be shock-induced asset sales, i.e., families may

be trying to smooth their income by selling off valuable assets such as cows. Regardless,

our price results overall would indicate that we are not remiss in interpreting our drops

in expenditures as reductions in income.

Infant Mortality

Inferring Economic Status

We follow Bollen, Glanville, and Stecklov (2002) in inferring household wealth for DHS

households by tabulating the total number of asset categories present in the house, and

then ranking each households’ total wealth (unweighted by asset type) against other

households in their region the year they were surveyed. We argue that In light of both

common intuition and our results in section 5.1 it is clear that this stratification suffers

from no small degree of endogeneity, since ‘poorer’ households with fewer assets may

simply be worse hit by typhoons.

We argue that our measure of socioeconomic status is nonetheless a reasonable

proxy for several reasons. First, since we rank each household against other households

in its region our measure will be a poor proxy only if a household’s rank relative to

other households’ is affected by typhoons nonmonotonically with wealth, and while we

observe differential impacts of typhoons across by income this relationship appears to be

monotonic. Second, while asset losses due to typhoons are clearly large, they are small

as a proportion of total assets, implying that our potential margin for error is small.
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Third, we note that due to the quasi-panel nature of DHS data our concerns about

typhoon impact altering our SES metric are only relevant for very recent typhoons; for

the bulk of observations we are looking at several years before the DHS surveyor arrived

and observed household assets, minimizing the potential for bias.

Robustness

Table C.7 shows specification sensitivity checks of our infant female mortality result.

We begin by regressing the binary variable indicating whether a household in our sample

reports an infant female’s death in a given year against our raw measure of typhoon

intensity, maximum wind speed, with standard errors clustered at the level of treatment,

the region. Even in this very limited specification we find a significant (and the 10%

level) and positive association between infant female mortality and typhoon intensity

in the calendar year following typhoon exposure. Controlling for year fixed effects does

little to change this result, but controlling for region fixed effects does, strengthening

the response and incrasing the precision with which we estimate our impacts. We find

no evidence that leads in our model predict female infant mortality, or that varying the

lead and lag structure of our distributed lags model appreciably alters our results.

Fetal losses

The gendered nature of infant deaths in our sample may plausibly, at least for in utero

effects, reflect the widely documented gender disparity in fetal deaths (Trivers and

Willard (1973); Almond, Edlund, and Palme (2009); Sanders and Stoecker (2011)).

It is thus feasible that the heavily female nature of the infant mortality result is due

to different timing of deaths due to fetal typhoon exposure: in utero exposure could

result in immediate death for affected male fetuses but only non-mortal damage to girls.

Those girls would have a higher propensity to be born preterm or low birth weight, and
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be more likely to die later on.

We examine in-utero exposure in Figure C.5, showing the cumulative impact of

typhoons on birth rates. We find that birth rates generally fall in the 9 months after

typhoon impact, particularly for males. Since this is before possible typhoon-induced

changes in conceptive behavior, we conclude that this reduction in the birth rate most

likely results from the typhoon’s traumatic impact on the intrauterine environment,

and interpret this result as supportive of the generally higher propensity of males to

die in utero. We find that female births actually increase slightly after storm impact,

perhaps reflecting storms’ increasing the likelihood of pre-term birth, but this effect is

quickly swamped by the same downward trend. We find that after the 9 month mark

has passed cumulative birth rates begin to recover, suggesting possible attempts by

households to make up for lost fertility. We explore whether this effect is discernable

at the annual level in Table C.8. We find that Figure C.5’s reduction in birth rates is

apparent in a negative, but not significant, coefficients for males.

We explore whether this differential response in fetal deaths results in material

changes in gender of mortality rates in Figure C.6. We find that the large decrease

in male births combined with the lack of any systematic response in male mortality

makes our estimate of monthly deaths sensitive to minor changes in specification, and

thus normalize gendered mortality rates by the previous period’s gendered birth rates.

Doing so substantially reduces noise in our estimate and reveals that while female infants

experience a marked increase in birth-rate adjusted mortality, the response among male

infants remains flat.
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C Appendix: Tables and Figures

Appendix Figure C.1: Typhoon Nanmadol striking the Philippines (moving westward)
in 2011.

91



Appendix Figure C.2: Provincial map of the Philippines in 2003. Provinces are the
smaller administrative unit, regions are larger and have their names in capital letters.
Made by Eugene Alvin Villar and reproduced under a Creative Commons license.
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Appendix Figure C.3: LICRICE estimates of annual typhoon exposure during 1979-
1993. Color indicates the maximum wind speed (m/s) experienced at the surface over
the course of the year.
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Appendix Figure C.4: LICRICE estimates of annual typhoon exposure (con’t) during
1994-2008. Color indicates the maximum wind speed (m/s) experienced at the surface
over the course of the year.
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Appendix Table C.7: Infant female mortality specification robustness

(1) (2) (3) (4) (5)

Infant Infant Infant Infant Infant
female female female female female

VARIABLES mortality mortality mortality mortality mortality

Max wind speed, T=0 (m/s) -26.15 -18.11 20.31 17.13 23.01
(16.68) (18.25) (17.30) (18.22) (23.34)

T + 1 30.44* 27.68* 63.48*** 68.15*** 74.68***
(14.98) (14.92) (19.43) (20.85) (21.12)

T + 2 -7.044 -17.00 17.85 22.80 30.34
(8.896) (9.758) (15.67) (16.31) (17.99)

T + 3 15.15 2.132 36.05** 31.74** 39.53**
(13.02) (14.65) (14.29) (13.92) (16.20)

T + 4 5.903 1.003 39.29 35.65 42.83
(15.87) (18.45) (22.65) (25.66) (25.25)

Observations 265,446 265,446 265,446 265,446 265,446
R-squared 0.000 0.000 0.001 0.001 0.082
Year FE Y Y Y Y
Region FE Y Y
Lagged temp., precip. Y Y
Mother FE Y

Notes: Mortality shown per million households per year. Standard errors clustered at the treatment (region) level in brackets.
*** p<0.01, ** p<0.05, * p<0.1. Lags 0-5 estimated but only shown for 0-4.
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Appendix Table C.8: Birth rates by gender

(1) (2) (3)

VARIABLES Any birth Male birth Female birth

Max wind speed, T=0 (m/s) -150.2 -252.0 94.50
(181.7) (142.8) (71.69)

T + 1 -97.47 -122.8 18.50
(156.1) (115.5) (93.58)

T + 2 27.39 91.89 -75.95
(180.1) (113.8) (87.46)

T + 3 91.89 0.739 90.67
(157.0) (147.3) (59.45)

T + 4 389.8** 174.6 215.6**
(170.4) (133.0) (77.40)

Observations 265,430 265,430 265,430
R-squared 0.168 0.117 0.117

Notes: Births shown per million households per year. Standard errors clustered at the treatment
(region) level in brackets. *** p<0.01, ** p<0.05, * p<0.1. Lags 0-5 estimated but only shown
for 0-4. Includes region and year fixed effects, lagged temperature and precipitation controls, and
mother fixed effects.
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