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Abstract

We establish a method of correcting for endogeneity bias in fixed-effects estimates of
worker and firm-specific earnings heterogeneity using longitudinal employer-employee
data. The problem arises because realized job assignments may be endogenous if they
are partially determined by unobservable components of earnings. We exploit the
network structure of the data to model the process by which the labor market selects
job matches from the universe of possible employment relationships. Specifically, we
model the evolution of the matched data as an evolving bipartite graph in a Bayesian
latent class framework. We estimate the model using data from the LEHD program
of the U.S. Census Bureau. Our results suggest that the correction for endogeneity is
meaningful but does not overturn the qualitative findings from previous analyses that
assumed mobility to be exogenous.
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1 Introduction

The objective of this paper is to explore the consequences for estimates of worker and firm
effects in the decomposition of earnings in longitudinally-linked employer-employee data
when there is endogenous mobility, and to propose methods of correcting those estimates.
Abowd et al. (1999) pioneered the identification, computation, and inference for the fixed
effect estimator of the decomposition of log earnings into components associated with un-
observed worker and employer heterogeneity. A major factor in the interpretation of their
statistical model is that it requires the assumption that the assignment of workers to firms
is random conditional on all observable characteristics and the design of the stationary
unobservables. This assumption is at odds with many models of job assignment, in par-
ticular, those in which workers sort into jobs according to their comparative advantage.
Since structural interpretations of the measured heterogeneity have major consequences
for our understanding of the labor market, it is important to weaken the assumption that
job mobility and assignments are exogenous to earnings.

The central problem of this paper is one manifestation of a fundamental challenge of
empirical social science: separating the influence of correlated unobservables and sorting
from the direct effect of group membership. Our approach is analogous to estimating
treatment effects in the presence of selection on unobservables. Here the complication is
that the number of possible treatments, that is employers, is in the millions. We construct
an instrument for the actual assignment of workers to firms that exploits the relational
structure of our data. The key insight is that the work histories of one’s coworkers and
previous employers are informative of one’s own employment history, while being plausibly
unrelated to whatever idiosyncratic wage innovations drive assignment at the margin.

Correcting estimated firm effects on wages for endogeneity bias is useful in a number of
applications. First, this paper contributes to the ongoing debate as to whether estimates of
employer-specific wage premia constitute evidence in contradiction of the law of one wage.
If the bias correction does not affect the overall significance of firm effects in the presence
of worker effects, it suggests that firms really do play an important direct role in wage
determination, consistent with sociological evidence, but contrary to the neoclassical model
of a competitive labor market. Furthermore, it helps to resolve some of the debates spawned
by the early empirical results based on the assumption of exogenous mobility. These early
results show little correlation between estimated employer wage premia and worker-specific
earnings. In other words, high wage workers do not systematically appear in high-wage
firms. This has often been cited as evidence against theories of assortative matching,
and in favor of models of frictional search, which predict this lack of assortativity. The
empirical results have spawned a theoretical literature attempting to construct frictional
search models with assortative matching, in which estimated employer and worker wage
components would misrepresent the true assignment structure in the economy (Abowd,
Kramarz, Pérez-Duarte and Schmutte 2009; Shimer 2005; Lentz 2010).

Estimates of individual and firm effects are also being increasingly used in downstream
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applications. Iranzo et al. (2008) and Abowd et al. (2003) use estimates of person effects
to measure the human capital distribution within firms. Combes et al. (2008) use a similar
decomposition to estimate the contribution of neighborhoods to spatial earnings dispersion.
Schmutte (2010) relies on consistent estimates of firm effects to infer the role of local job
referral networks on earnings outcomes. Our estimates should be of interest in all such
applications, as the specter of endogenous mobility clouds the interpretation of empirical
results that rely on consistency of estimated individual or firm effects.

There is also a parallel literature in the economics of education that uses value-added
models to estimate the contributions of teachers and classrooms to student achievement.
Endogenous assignment is just as much a problem for those models as it is here. Indeed, sev-
eral recent studies have shown that the assumption of exogenous assignment in value-added
models is rejected by the data (Rothstein 2010; Koedel and Betts 2010). Nevertheless, val-
idation studies have shown that estimates from the value-added models are significantly
correlated with independent assessments of teacher productivity. Our techniques provide a
direct method of assessing whether correcting the endogeneity bias in value-added models
would substantially change their results. Our method can be implemented as long as one
has data in which the realized network of connections between individuals and groups is
sufficiently detailed to provide identifying variation.

We proceed by setting up the log earnings decomposition proposed by Abowd et al.
(1999) so that we can clearly articulate the nature of the endogenous mobility problem.
Then, we report the results of two tests of the exogenous mobility assumption conducted
by Abowd et al. (2010). As we will see, the null of exogenous mobility is rejected, but the
associated analysis of mobility patterns provides interesting information about the nature
of the true model. Next, we present an illustrative theoretical model with endogenous job
mobility and suggest an IV estimator based on the use of relational information derived
from the network structure. Turning to implementation, we set up a formal statistical
model with endogenous mobility, in which earnings and job mobility are determined by
latent classifications of workers, firms, and matches. This is a mixture model in which
the probability of forming a link between a given worker and firm depends on a latent
classification. We show that the model is identified and show how to estimate it using the
Gibbs sampler.

2 Why Does Endogenous Mobility Matter?

2.1 Exogenous Mobility in the Abowd, Kramarz and Margolis Model

Abowd et al. (1999) originally proposed the linear decomposition of log wage rates as the
least squares fit of the equation

w = Xβ +Dθ + Fψ + ε (1)

where w is the [N × 1] stacked vector of log wage outcomes wit, X is the [N × k] design
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matrix of observable individual and employer time-varying characteristics (the intercept
is normally suppressed, with y and X measured as deviations from overall means); D is
the [N × I] design matrix for the individual effects; F is the [w × J − 1] design matrix
for the employer effects (non-employment is suppressed here). ε is the [N × 1] vector

of statistical errors whose properties will be elaborated below;
[
βT θT ψT

]T
are the

unknown effects with dimension [k × 1] , [I × 1] , and [J − 1× 1] associated with each of
the design matrices.1

The assumption of exogenous mobility appears in the assumption that

E(ε|X,D,F ) = 0.

As long as the matrix of data moments has full rank – a non-trivial assumption – this
conditional moment restriction yields a consistent estimator for the full parameter vector,
including the individual and employer effects. Exogenous mobility imposes that a worker’s
employment history is completely independent of the idiosyncratic part of earnings cap-
tured in ε, which in the AKM model includes the “match effect” – the average amount by
which log wages in the current (i, J (i, t)) match deviate from their expected value. The
AKM model is, thus, equivalent to assuming that all assignments are pre-determined at

birth given full knowledge of X,D,F and
[
βT θT ψT

]T
. Hence, there is no room

for features included in many models of job mobility and assignment to affect either the
duration of matches or the assignment of workers to particular employers.

Identification of [
βT θT ψT

]
in the statistical model also requires that [XDF ]T [XDF ] be of full rank. Abowd et al.
(2002) showed that this condition is equivalent to connectedness of the realized mobility
network constructed by connecting sub-graphs of all workers who share a common employer
and all employers who share a common worker over the entire longitudinal sample. The
realized mobility network is a static bipartite graph on worker and employer nodes. As
we will see, our identification strategy also has an interpretation in terms of the realized
mobility network. We use information in the realized mobility network that predicts em-
ployer assignments but that we assume is conditionally independent of earnings residuals
to achieve identification. The identification conditions for the least squares solution for
the parameters in Equation (1) are orthogonality of each component of the design matrix
with respect to the estimated residual vector, implying that the estimated effects are also
orthogonal to the estimated residuals.

β̂
T
XT ε̂ = 0, θ̂

T
DT ε̂ = 0 and ψ̂

T
F T ε̂ = 0 (2)

1The AKM formulation is an analysis of covariance with two high-dimension factors (individuals and
employers) whose levels are estimated by least squares.
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2.2 Tests of Exogenous Mobility

Abowd et al. (2010) develop two formal tests for the null hypothesis of exogenous job
mobility against 2 omnibus alternatives that encompass many forms of endogenous mo-
bility. They apply these tests to longitudinally integrated employer-employee data from
the Longitudinal Employer-Household Dynamics (LEHD) Program of the U.S. Census Bu-
reau. Here we survey the basic nature of the tests and their results. Their tests exploit
the implicit restriction that future assignments of workers to firms are uninformative about
current earnings residuals. Under the null hypothesis of exogenous mobility, these future
assignments have no predictive power with respect to the residual. The first test, “Test 1,”
checks whether a worker’s future employers are independent of the average residual in the
current job. The second test, “Test 2,” checks whether the future employees of a particular
employer are predictive of the residuals on their current period wage payments.

Both tests reject the null of exogenous mobility. The test statistic for Test 1 is X2
8,991 =

7, 438, 692 with Pr{X2
ν2} < 0.001. The test statistic for Test 2 is X2

900 = 172, 295 with
Pr{X2

ν2} < 0.001. These are consistent with the related tests in Rothstein (2010) that
reject the exogenous mobility assumption in value-added models for longitudinally linked
education data.

3 A General Model of Wage Dynamics with Endogenous
Mobility

Here, we set up a somewhat simplified version of that strategy. We assume workers,
firms and matches have latent classifications that we cannot observe, but that determine
earnings and mobility. The statistical model is very general and is compatible with many
different structural models. Formally, we use the latent class model to identify workers
and firms with similar mobility and earnings patterns and then to estimate the effect on
earnings related to membership in these classes. We conduct Bayesian inference using
an adaptation of the Gibbs sampler algorithm for finite mixture models (Tanner 1996;
Diebolt and Robert 1994) to our case allowing for multiple overlapping levels of correlation
across observations. Our application and proposed procedure are related to stochastic
blockmodels and other methods for the detection of “communities” of nodes in social
networks. Our main innovation is the use of both node and edge characteristics in predicting
the matches (Hoff et al. 2002; Newman and Leicht 2007; Neville and Jensen 2005).

3.1 Model Setup

Agents of the model are workers, indexed i ∈ {1 . . . I} ≡ I and firms, indexed j ∈
{0 . . . J} ≡ J, where j = 0 is “not employed.”Each worker has a latent ability class denoted
ai ∈ A and each firm, except j = 0, has a latent productivity class denoted bj ∈ B. In
addition, each worker-firm match has an associated heterogeneity component that affects
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both wages and mobility: kij ∈ K. A,B and K are discrete with cardinality L,M + 1 and
Q. The “not-employed firm”is a single entity in its heterogeneity class, so the class b0 has
no employer heterogeneity. To make the subsequent formulas easier to interpret, assume
that the elements of A,B and K are rows from the identity matrices IL, IM and IQ, re-
spectively For instance, if L = 2, we have A = {(1, 0), (0, 1)}. The assignments of workers
and firms to ability and productivity classes are independent multinomial random vari-
ables with parameters πa, πb. We allow for endogeneity in the match quality by letting the
probability of k depend on ability and productivity. So Pr (kij = k|ai = a, bj = b) = πk|ab.

The log of earnings, when actually employed in any match, is given by

wijt = α+ aiθ + bjψ + kijµ+ εit (3)

where θ, ψ, µ are vectors of parameters describing the effect on the level of log earnings
associated with membership in the various heterogeneity classes. We take ε to be normal
with mean 0 and variance σ2, independent and identically distributed across individuals
and over time. When not employed, the individual earns a reservation log wage of

wi0t = α+ aiθ + ψ0 + ki0µ+ εit (4)

where ψ0 is just the appropriate element of ψ and ki0µ allows for heterogeneity in home
production with the same effects as in the market sector.

We formalize endogenous mobility by allowing those matches and employment durations
that are observed to depend on ability, productivity and match quality. Let J (i, t) be the
index function that returns the identifier of the firm in which i is employed in period t.
Define the variable sit = 1 if i separates from his current job at the end of period t and
sit = 0 otherwise. We let the probability of separation depend on the match quality by
specifying

Pr
(
sit = 1|ki J(i,t)

)
= fse

(
ai, bJ(i,t), ki J(i,t); γ

)
≡ γabk (5)

where 0 ≤ γabk ≤ 1. Conditional on separation, the productivity class of the next employer
depends on the productivity of the current employer, the ability of the worker, and the
quality of the current match

Pr
(
bJ(i,t+1)|ai, bJ(i,t), ki J(i,t)

)
= ftr

(
ai, bJ(i,t), ki J(i,t); δ

)
≡ δabk ∈ ∆M+1 (6)

where δabk ≡
[
δ0|abk, ..., δM |abk

]
is a 1× (M + 1) vector of transition probabilities, ∆M+1 is

the unit simplex, and J (i, 0) = 0 for all i. The transition probabilities are indexed by all
of the latent heterogeneity in the model. Within a heterogeneity class, the identity of the
precise employer selected is completely random, as is the identity of an individual within
an ability class.
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4 The Network Interpretation of Endogenous Mobility Mod-
els

Let the set of identifiers for all I individuals who work in one of the J employers (including
non-employment), A (t) , and the set of J employers, E (t) , be arranged in a bipartite graph
where A (t) and E (t) are the two (disjoint) vertex (or node) sets. There is a link between
i ∈ A (t) and j ∈ E (t) if and only if i is employed by j at date t. The totality of these links
active at date t can be represented by the I × J adjacency matrix B (t) .2 Assuming that
we are modeling primary job holders only, this adjacency matrix has a special form that is
critical in the modeling.

The labor market bipartite graph summarized by B (t) evolves over time. Since the
employment relations between firms and workers can change at any time, it is reasonable to
think of t as a continuous variable, sampled at intervals reflected in the data. These consid-
erations motivate adopting the dynamic network modeling tools to address the endogenous
mobility issues.

We distinguish primary employment from other forms of employment. The primary
employer at time t is the current employer if there is only one. Otherwise, the primary
employer is the one to whom the individual supplies the most labor market time. This
assumption puts constraints on the row degree distribution of B (t) .

Specifically, assume that j = 0 refers to the non-employment state. Including the
column j = 0 ensures that every individual in the population at date t has exactly one
“employer” although the (shadow) log wage outcome will be unobserved for individuals
who are not employed at t. Hence, B (t) eJ = eJ , where eJ is the J + 1 × 1 column
vector of 1s. The column degree distribution, e′IB (t) , is the size distribution of employers
(technically only the columns 1 to J are included in this distribution). The employer size
distribution (including non-employed) is therefore the column degree distribution of the
labor market bipartite graph. The (very hard) problem of entry and exit of individuals
and employers can be included in this formalism by including columns in B for potential
and defunct employers and allowing for birth and death of individuals. For the moment,
we are not going to address this extension.

The observed labor market data are snapshots of the market at points in time,

B(t1), ..., B(tT ),

where T is the total number of available time periods. These adjacency matrices describe
outcomes sampled at discrete points in time from the I ×J + 1 potential outcomes at each
moment of time. The objective is to use these snapshots of the labor market to model how
the labor market evolves over time and to implement tests of various endogenous mobility
models.

2Formally, the adjacency matrix for the bipartite graph of all edges in the node set {A (t) , E (t)} is block
diagonal with matrices of zeros on the diagonals, the matrix B (t) in the upper right block and B (t)T in the
lower left block. Only B (t) contains any information, so we refer to it as the adjacency matrix throughout.
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The adjacency matrix representation can be directly related to the AKM framework.
When the sort order of the data is t primary and i secondary, we have

F =


B (1)
B (2)

...
B (T )


where B (t) is exactly the adjacency matrix from the bipartite labor market graph (with
column J removed if the rows corresponding to non-employment are removed) and F is
the design matrix for the employer effects in the AKM specification. A direct strategy for
modeling endogenous mobility is, therefore, to model the evolution of B (t). We adopt this
approach below.

The evolution of B (t) can be described by a continuous time stochastic process as in
Snijders (2001). Such a formulation allows the dissolution of an edge (employment sepa-
ration) or creation of an edge (employment accession) to occur at any time in the interval
between ts and ts+1. We adopt the simpler approach of allowing at most one transition dur-
ing period t that occurs at the beginning of t+1. Under these simplifications the evolution
of B (t) can be described by the Markov transition matrix Pr [bij (t+ 1) = 1|B (t) , {Data}] ,
where {Data} is the observed and latent data from s = 0, . . . , t.

5 Likelihood, Prior and Posterior Distributions

5.1 Likelihood functions

We begin by developing the likelihood function for the observed and latent data. The
observed data, yit, consist of wage rates, separations, accessions, and identifier information:

yit =
[
wi J(i,t)t, sit, i, J (i, t)

]
for i = 1, ..., I and t = 1, ...T. (7)

The latent data vector, Z, consists of the heterogeneity classifications:

Z = [a1, . . . , aI , b1, . . . , bJ , k11, k12, . . . , k1J , k21, . . . , kIJ ] . (8)

In practice, we only use or update the heterogeneity classifications for the matches that are
actually observed, the number of which is bounded above by T × I. That is, we only care
about kij where i, j is such that j = J(i, t) for some t. Finally, the complete parameter
vector is

ρT =
[
α, θT , ψT , µT , σ, γ, δ, πa, πb, πk|ab

]
, ρ ∈ Θ (9)

We assume that workers and firms are infinitely-lived. The complete process starts
at t = 1, with continuous sampling continuing to date T. We model initial conditions
by assuming that everyone enters the labor force at t = 1 and is assigned an employer
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completely at random. In other words, we assume that the matches initially observed are
exogenous. The observed data matrix for this time interval is denoted Y . The likelihood
function for the joint distribution (Y,Z) is given by

£ (ρ|Y,Z) ∝
I∏
i=1



T∏
t=1

1√
2πσ2

exp

[
−(wi J(i,t)t−α−aiθ−bJ(i,t)ψ−ki J(i,t)µ)

2

2σ2

]
×
T−1∏
t=1

[
1− γ〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]1−sit [
γ〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]sit
×
T−1∏
t=1

[
δ〈bJ(i,t+1)〉|〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]sit


×

I∏
i=1

J∏
j=1

 L∏
`=1

M∏
m=1

Q∏
q=1

(πa`)
ai` (πbm)bjm

(
πq|`m

)kijq (10)

where the notation πa` denotes the `th element of πa (similarly for πbm, bjm, etc.) and 〈x〉
means the index of the non-zero element of the vector x.

The likelihood factors into a part due to the observed data conditioned on the latent
data, and the latent data conditioned on the parameters. The observed data likelihood
conditional on the latent data factors further into separate contributions from the earnings
and the mobility processes. The mobility process is Markov, and conditionally independent
of the earnings realizations once we know the latent classifications of the workers, firms
and matches. The power of the model comes from the predictive equation for Z given the
observed data and the parameters, which we can compute as the complete data likelihood
divided by the observed data likelihood. The observed data likelihood is calculated by
integrating out the latent data.

5.2 Prior distributions

The parameter vector ρ has a prior distribution that is composed of the product of priors
on each of the main components of the parameter space. Conditional on the heterogeneity
probabilities, the coefficients in the log wage equation have prior distributions proportional
to a constant (each one uniform on a wide, but finite, interval of R) and subject to the
constraint that the probability-weighted average effects are all zero. That is,

πTa θ = πTb ψ = πTk|ab(`m)µ = 0 (11)

for all `,m where πk|ab(`m) ≡ Pr (kij = k|ai = `, bj = m) . The variance parameter, σ, has
the inverted gamma prior IG (ν0, s0) with prior degrees of freedom small and prior s2

0 large.
Each vector of probabilities has a Dirichlet prior with each element of the parameter vector
given by the inverse of the dimension of the probability vector.
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5.3 Posterior distributions

The posterior distribution of ρ given (Y,Z) is given by

p (ρ|Y, Z) ∝ £ (ρ|Y,Z)
1

σν0+1
exp

(
− s

2
0

σ2

) L∏
`=1

π
1
L
−1

a`

M∏
m=1

π
1
M
−1

bm (12)

×
L∏
`=1

M∏
m=0

Q∏
q=1

(
π

1
Q
−1

q|`m γ
1
2
−1

`mq

(
1− γ`mq

) 1
2
−1

M∏
m′=0

δ
1

M+1
−1

m′|`mq

)
,

which factors into independent posterior distributions as follows:
α
θ
ψ
µ

 |σ ∼ N


ˆ
α
θ
ψ
µ

, σ2
(
GTG

)−1

 (13)

where
ˆ
α
θ
ψ
µ

 =
(
GTG

)−1
GTw

σ2 ∼ IG

(
ν

2
,

2

νs2

)
(14)

πa ∼ D

(
na1 +

(
1

L
− 1

)
, . . . , naL +

(
1

L
− 1

))
(15)

πb ∼ D

(
nb1 +

(
1

M
− 1

)
, . . . , nbM +

(
1

M
− 1

))
(16)

πk|ab ∼ D

(
nk|ab1 +

(
1

Q
− 1

)
, . . . , nk|abQ +

(
1

Q
− 1

))
(17)

γlmq ∼ D

(
nsep`mq +

(
1

2
− 1

)
, nstay`mq +

(
1

2
− 1

))
(18)

δb|lmq ∼ D

(
ntrans0|`mq +

(
1

M + 1
− 1

)
, . . . , ntransM |`mq +

(
1

M + 1
− 1

))
(19)

These factorizations contain some additional notation. G = [ABK] is the full design
matrix of ability, productivity, and match types in the complete data, and w is the vector
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of observed earnings. The term ν in the posterior of σ is ν = N + ν0 − (L+M +Q) and

s2 =

w −G
ˆ
α
θ
ψ
µ



T w −G

ˆ
α
θ
ψ
µ




ν
. (20)

The remaining parameters are sampled from Dirichlet posteriors, denoted by D.
Finally, we have various counts from the completed data. na` is the count of workers

with ability class `. nbm is the number of employers in productivity class m. nk|abq is the
number of matches observed in quality class q. nseplmq is the number of observations in which
a worker in ability class ` separates from an employer in productivity class m when match
quality was q. Finally, ntransm′|`mqis the number of transitions by workers in ability class `
from a match with an employer in productivity class m and match quality class q to an
employer in productivity class m′.

6 Estimation Procedure

We start with initial values for the parameter vector and latent data, ρ(0), Z(0). We defined
above the distributions of the parameters given the observed and latent data. To complete
the specification, we define the distributions for the latent variables conditional on the
observed data and the parameters. For instance, to update the ability classifications for
the workers, we need to sample from a multinomial with probability of the `th class equal
to

p (ai = `|a−i, b, k, Y, ρ) =
p (a−i, b, k, Y |ρ, ai = `) p(ai = `)

p (a−i, b, k, Y |ρ)

=
πa`p (a−i, b, k, Y |ρ, ai = `) p(ai = `)∑L

`′=1

[
πa`′p (a−i, b, k, Y |ρ, ai = `′) p(ai = `′)

] . (21)

This requires computing the likelihood function under each assignment of i to an ability
classification. The update formulas for bj and kij are exactly analogous. This is a high
dimension procedure, requiring roughly L evaluations of the likelihood per individual, M
per firm, and Q per match, for each iteration. However, given the simple form of the like-
lihood, these computations are not be excessively burdensome. Furthermore, much of this
work can be parallelized. The updating for each ai is an independent task. Furthermore,
most of the structure of the likelihood function remains the same as we tweak individual
assignments, which we exploit to obtain further simplification.

With the posterior distributions as defined in the previous section, the Gibbs sampler
can be implemented as follows:

σ(1) ∼ p
(
σ|α(0), θ(0)T , ψ(0)T , µ(0)T , γ(0), δ(0), π(0)

a , π
(0)
b , π

(0)
k|ab, Z

(0), Y
)

(22)
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
α
θ
ψ
µ


(1)

∼ p



α
θ
ψ
µ

 |γ(0), δ(0), π(0)
a , π

(0)
b , π

(0)
k|ab, Z

(0), σ(1), Y

 (23)

γ(1) ∼ p
(
γ|δ(0), π(0)

a , π
(0)
b , π

(0)
k|ab, Z

(0), α(1), θ(1)T , ψ(1)T , µ(1)T , Y
)

(24)

... (25)

k
(1)
IJ ∼ p

(
kIJ |ρ(1), a

(1)
1 , . . . , a

(1)
I , b

(1)
1 , . . . , b

(1)
J , k

(1)
11 , . . . , k

(1)
IJ−1, Y

)
(26)

7 Simulation Study

We demonstrate the validity of our estimation procedure with a simulation study. Our
model is an extension of standard data augmentation (Tanner 1996). As such, theoretical
results on the convergence of the data augmentation algorithm and Gibbs sampler should
obtain here. The main novelty in our approach is the presence of multiple levels of latent
variables. Each observation belongs to three separate latent classes: a worker-specific
ability class, an employer-specific productivity class, and a match-specific quality class. As
we show, our Gibbs sampler performs well for inference regarding the parameters associated
with earnings effects of the latent classifications.

We simulate data under a model with L = M = Q = 2 heterogeneity classes. In our
model economy, there are I = 100 workers and J = 20 employers. We observe workers in
each of T = 50 time periods. The simulated data allow for both the separation decision
and the job allocation at transition to depend on match quality. Furthermore, match
quality is correlated with latent worker ability and latent employer productivity, so there
is a rich structure of endogenous mobility in the model. We simulate the model under the
parameterization described in Section C.1.

Section C.2 presents summary statistics for the data simulated under the model. The
data contain 373 distinct employer-employee matches, not including spells of unemploy-
ment. The simulated job mobility and earnings histories reflect the model parameteriza-
tion. As expected given the model, the average of log earnings per period, calculated across
periods of employment, is indistinguishable from zero.

Table 1 reports the average correlation between heterogeneity components of earnings
estimated using the AKM decomposition, estimated using our structural model, across
each of the 1000 draws from the Gibbs sampler. Of primary interest for our purpose are
estimates of the Abowd et al. (1999) decomposition in these data. The true correlation
between estimated person- and firm-effects in realized matches in these estimates is −.063.
The correlation estimated using the AKM decomposition is −.069.
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In this, the sampler converges within 100 iterations to point mass on the true latent
classifications, regardless of choice of initial conditions. Thereafter, the sampler converges
immediately to sampling from the posterior distribution for the parameters. This is because
the posterior for the parameters given the latent data factors into the product of Dirichlet
and Normal-Gamma posteriors. The results presented here use 1000 samples from the
posterior distribution following a 1000 sample burn-in. We initialize all parameters in the
wage equation to zero, and start the categorical variables at uniform distributions. The
sampler iterates between sampling from the posterior distribution for the model parameters
conditional on the observed and latent data, and sampling from the predictive distribution
for the latent classes given the observed data and parameters. The choice of starting
point does not matter: up to a relabeling of the heterogeneity classes, the sampler quickly
converges to the same solution.

To sample from the posterior for α, θ, ψ, µ, σ requires an identifying assumption. Here,
unlike Abowd et al. (2002), we set one effect equal to zero. Since we only have two classes
for each type of heterogeneity, this means we estimate four parameters for the earnings
equation along with the standard deviation of the structural error. In addition, we have
to specify prior parameters for the Normal-Gamma distribution. We assume prior degrees
of freedom equal to one, and also set the prior standard error equal to one. The prior
for (α, θ, ψ, µ) is normal with mean zero and prior covariance matrix equal to the identity
matrix.

Figure 1 plots of the posterior distribution of the parameters from the wage equation.
By comparing these values with the truth presented in section C.2, we see that up to
re-identification, the model converges to the truth. As a result, our procedure is able
to detect the small endogeneity bias in the estimated correlation between worker and
employer heterogeneity classes. Finally, section C presents the posterior mode for the
categorical variables in the model. A comparison with the model parameters and the
simulated separation, transition, and match rates show that the model is very accurately
capturing the evidence from the data. Again, this is unsurprising since the simulator
quickly finds the true latent ability, productivity, and match classifications for the data.

8 Structural Estimation

We implement the model empirically using matched employer-employee data from the
LEHD program of the U.S. Census Bureau. The basic structure of these data is described
in Abowd, Stephens, Vilhuber, Andersson, McKinney, Roemer and Woodcock (2009). The
data processing and estimation procedures used to create the AKM decomposition for these
data are described in Abowd et al. (2003).

12



8.1 Universe Used for Structural Estimation

We used a universe sample from the states of Illinois, Indiana, and Wisconsin. All individ-
uals who worked in these states during the years 1999-2003 for their dominant job (the one
with the most annual earnings) were included. There are 16.9 million persons from 719
thousand unique employers. There are 39 million unique matches. The summary statistics
for these data provide the AKM starting values for our structural estimation. They are
reported in Appendix D. In particular, the values of the AKM parameters θ and ψ were
discretized into two categories based on the medians for the universe of persons and em-
ployers (considered as separate populations) in the three-state sample. The AKM residual
was averaged over all periods in which a match was present to obtain the continuous ver-
sion of the AKM µ, which was then discretized into two categories using the median of the
match population. This is the procedure that was also used for the exogenous mobility
tests in Abowd et al. (2010).

8.2 Sampling procedure

We fit the likelihood function in equation (10) using a 0.25% simple random sample of
individuals, keeping all employers and match-years associated with those individuals. The
0.25% simple random sample of persons has 42,228 persons, 39,458 firms, 97,455 matches
(including non-employment) and 211,140 person-years (also including years spent in non-
employment). Because of the structure of the frame for this sample, which included only
three geographically contiguous states, non-employment includes employment spells outside
of the universe, and should be interpreted in that light when examining the structural
estimates.

8.3 Estimation Details

The same Gibbs sampler that was tested in the Monte Carlo simulations, equation (22)
through equation (26), was used to fit the structural model to the sample LEHD data.
The starting values are shown in Appendix D. The results reported here use the last 500
draws from 1,000. All threads were in steady-state after 200 draws, as was the case for our
Monte Carlo simulations.

8.4 Results

Figure 2 shows the posterior distribution of the structural wage equation parameters. All
of these posterior distributions are tight around the modal value. Table 2 presents these
results in traditional format so that it is easy to see that the posterior means are all several
orders of magnitude greater than the posterior standard deviations. None of the wage
function parameters associated with the structural version of the AKM decomposition has
a symmetric distribution around zero.
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Table 3 provides a very interesting comparison of the wage decomposition parameters
estimated by least squares (labeled AKM) and our endogenous mobility model (labeled
Gibbs). In computing this table, we used the continous values from the AKM decom-
position but, of necessity, only the two discrete values from our structural model. The
structural person effect, θGibbs, explains less of the variance of the dependent variable (la-
beled y) than its AKM counterpart, while the structural firm effect, ψGibbs, explains about
the same amount. Somewhat surprisingly, the structural match component, µGibbs, ex-
plains very little of the variation in the dependent variable and is negatively correlated
with it. In the AKM estimates, the person and firm effect have a weak postive correlation
of 0.0635 and in the structural estimation the correlation is also weak and positive, 0.0359.
The AKM match effect, because it is estimated from the least squares residual must be
essentially uncorrelated with the person and firm effects, as is the case in our subsample.
However, the structural person and firm effects are weakly (person) and strongly (firm)
negatively correlated with the match effect. Nothing is correlated with the residual.

Table 4 displays the regression of the structural estimates of the wage decomposition
components on the AKM estimates of all components. These regressions, therefore, com-
pute the conditional expectation of the structure given the AKM estimates. They can
be use to compute endogenous mobility-corrected estimates of the wage components from
data for which only the AKM estimates are available. Of course, more specification testing
should be performed to confirm that the other samples share the same mobility parameters
as the one we used to estimate this table.

Figure 3 presents the contrast between the population distributions of workers, firms,
and matches and compares them to the steady-state distributions across realized matches.
The horizontal axis presents the distribution of workers across ability types, πA: we es-
timate 71 percent of workers are of low ability. The vertical axis reflects the population
distribution of firms across productivity types, πB: 53 percent of firms are of low produc-
tivity. The cells indicated by dashed black lines are therefore the populations of potential
matches. Within each cell, the black number provides the probability that the match is of
high quality conditional on the firm and worker type, πK|AB. High productivity firms are
much less likely to generate a good match, and in general, there seems to be a negative
correlation between person type, firm type, and match quality.

Overlaid on the figure in blue are the steady-state distributions across realized matches.
The model generates a closed-form for the transition of any worker across labor market
states. We present the average of this Markov transition matrix across 500 draws from the
Gibbs sampler in Table 5. We compute the kernel of this transition matrix to obtain the
expected distribution of workers across firm types, match types, and non-employment.

We find that among employed workers, 68 percent are of low ability. For the low ability
workers, 49 percent of their jobs are in low productivity firms. For high ability workers, 51
percent are. Among realized matches, the difference between the population and steady
state distributions are slightly more dramatic. Among realized jobs, those involving low
productivity employers are more likely to be of high quality than the population distribution
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would suggest.

9 Conclusion

Could we randomly assign workers to jobs without changing the manner in which their
wages were determined? Either their employers know of the random assignment, and
would, presumably, compensate them differently than workers they hired, or they would
not, in which case those workers would be non-randomly selected from the pool of potential
applicants. It is easy to imagine randomizing applications but not realized assignments.
We do not have an ideal experiment that identifies the effect of assignments of workers to
firms. It is difficult to think of what an ideal experiment would be.

The central problem of this paper is one manifestation of a fundamental challenge of
empirical social science: separating the influence of correlated unobservables and sorting
from the direct effect of group membership. Exploiting the wealth of information about
labor market behavior locked in the relational structure of matched data holds great po-
tential to address these problems. We use matched data to construct a complete model for
the actual assignment of workers to firms that exploits the dynamic network structure of
our data.
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Table 2: Posterior Distribution of Wage Equation Parameters: LEHD Data

Parameter Mean Std. Dev

θ1 -0.2497 0.0032
θ2 0.6112 0.0051
ψ1 -1.0961 0.0044
ψ2 1.2256 0.0055
µ1 -0.7243 0.0066
µ2 1.0562 0.0082
α 9.0777 0.0082
σ 0.4330 0.0024

Table entries are means and standard deviations estimated from 500 draws from the Gibbs sampler described
in the text.
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Table 3: Correlation Matrix of Wage Equation Parameters: LEHD Data

y θAKM ψAKM µAKM εAKM θGibbs ψGibbs µGibbs εGibbs

y 1
θAKM 0.5284 1
ψAKM 0.5683 0.0632 1
µAKM 0.4236 0.0335 -.0182 1
εAKM 0.2345 -.0000 -.0000 0.0000 1

θGibbs 0.3361 0.2401 0.1682 0.0816 -.0000 1
ψGibbs 0.5486 0.2037 0.5599 0.1179 -.0000 0.0359 1
µGibbs -.02219 0.0951 -.2577 0.1396 0.0000 -.1202 -.7236 1
εGibbs 0.4989 0.2288 0.1498 0.2677 0.4703 -.0000 .0002 -.0000 1

Table entries are means of the correlation between the indicated variables across 500 draws from the Gibbs
sampler described in the text.
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Table 4: Regression of Structural Wage Decomposition Components on AKM Estimates
of Wage Decomposition Components: LEHD Data

θGibbs ψGibbs µGibbs εGibbs

θAKM 0.1505 0.3171 0.1540 0.1747
(.0016) (.0039) (.0034) (.0017)

ψAKM 0.1442 1.4923 -.5288 0.1642
(.0022) (.0054) (.0048) (.0023)

µAKM 0.0716 0.3323 0.2656 0.3071
(.0022) (.0055) (.0048) (.0023)

εAKM 0.0000 0.0000 0.0000 0.9881
(.0040) (.0098) (.0087) (.0042)

Constant 0.0144 0.1852 -.0907 -.0034
(.0010) (.0024) (.0021) (.0010)

Results from running a regression of the wage components estimated under the endogenous mobility model
on wage components estimated using the AKM decomposition. The reported values are the mean parameter
estimate and standard error across 500 draws from the Gibbs sampler.
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Table 5: Markov Transition Matrix: LEHD Data

θ Type

ψ Type 1 1 2 2 3

µ Type 1 2 1 2 -

1 1 1 0.4127 0.2272 0.0708 0.0038 0.2855
1 1 2 0.0530 0.7230 0.0906 0.0048 0.1286
1 2 1 0.0169 0.0526 0.8447 0.0066 0.0792
1 2 2 0.0055 0.0173 0.0670 0.7530 0.1572
1 3 - 0.0552 0.1715 0.0818 0.0043 0.6872

2 1 1 0.7109 0.1014 0.0118 0.0004 0.1755
2 1 2 0.0448 0.8693 0.0405 0.0013 0.0441
2 2 1 0.0103 0.0113 0.9283 0.0038 0.0463
2 2 2 0.0123 0.0135 0.1436 0.7672 0.0634
2 3 - 0.1095 0.1202 0.0854 0.0027 0.6822

Table entries are functions of the means of the parameter estimates from 500 draws of the Gibbs sampler
described in the text.
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Appendices

A Endogenous Mobility in a Model with Comparative Ad-
vantage and Search Frictions

A.1 Workers and Firms

The labor market consists of two discrete and finite populations: a population of I workers,
and a population of J firms. I and J are both very large. Firms and workers match to
produce output for an external market. Time is discrete.

Workers differ in the skills they bring to the market, and firms differ in their ability to
extract output from a given quantity of efficient labor. As well, when a worker is matched
to a specific firm, the match can vary in quality in a manner that also affects productivity
and output. More specifically,

• Any worker is endowed with ability, θ, drawn from the distribution Sθ(θ) with support
[θmin, θmax];

• Any firm is endowed with productivity ψ, drawn from the distribution Sψ(ψ) with
support [ψmin, ψmax];

• Any worker-firm match has a quality, µ, drawn from the conditional distribution
H(µ|θ, ψ) with support [µmin, µmax].

• sθ(θ), sψ (ψ) , h (µ|θ, ψ) are probability densities corresponding to the distributions
defined above.

Workers, firms, and matches can be nascent, active, or inactive. Workers and firms all
begin in the nascent state, and must become active for at least one period before becoming
inactive. Inactivity is an absorbing state.

• ν is the probability that an active worker becomes inactive at the end of the current
period;

• η is the probability that an active firm becomes inactive at the end of the current
period;

• δ is the probability that an active match becomes inactive at the end of the current
period.

For now, assume that ν and η are also the probabilities that nascent workers and firms
become active in any given period. When they are born, their types are drawn from the
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same distribution, and since I and J are very large, the population distribution over types
for active and inactive workers and firms should be stable over time argument for this].

Log output in period t, yt = lnYt in a firm-worker match is defined as

yt = ψJ(i,t) + θi + µiJ(i,t) (27)

where i is the name of the worker, whose ability is θi. J(i, t) identifies i’s employer at t,
the productivity of which is ψJ(i,t). Finally, the quality of the match between the two is
µiJ(i,t).

If a match becomes inactive, but the worker in the match does not, the worker is
unemployed at the start of the next period. Following Cahuc, Postel-Vinay and Robin
(2006), an unemployed worked of type α receives log earnings in unemployment given by

lnwi0 = b+ θi (28)

which is equivalent to being employed by a firm with productivity b in a match with quality
µ = 0 and receiving all of the output as a wage.

A.2 Matching

Workers and firms come together pairwise through sequential, random, and costly search.
In each period, an unemployed worker is matched with a firm for an offer with probability
λ0 and an employed worker is matched with a firm for an offer with probability λ1. Given
that a worker has an offer, the firm from which it originates is randomly selected from the
population of active firms as follows:

The probability that a firm of type ψ is sampled is

f̂t(ψ) =
f(ψ)∑

z:z=ψj for some j active at t f(z)
(29)

for all ψ such that some active firm j is type ψj at time t. f̂t(ψ) = 0 for all ψ that are
not represented among active firms at time t. f represents the search distribution by type
if the full population of types are represented. This cumbersome notation is necessary to
deal with the fact that we have to handle two-sided matching in a model with discrete and
finite quantities of workers and firms.

A.3 Wages

Firms offer workers a constant piece rate share of the match surplus. The match surplus
depends on the value of unemployment, which is constant across workers of the same ability
type, and the output from the current job. The piece rate α is constant across employer
types and match qualities. The log wage offered to a worker with ability θ from a firm
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with type ψ into a match with quality µ is therefore

wit = α+ θi + ψJ(i,t) + µiJ(i,t). (30)

This is a simplification of the equilibrium wage-posting models that this paper builds on
in which firms match outside offers leading to renegotiation of the wage within a match.
By focusing on a constant piece rate, we illuminate the selection issues driving endogenous
mobility. We do, however, retain the implication that a worker only changes jobs to move
into a better match.

A.4 Timing

At the end of the period we have the following transition probabilities

• worker (enters or) leaves the market for good with probability ν.

• Employer (enters or) leaves the market with probability η.

• When a worker enters, his type is drawn from Sθ(θ).

• When a firm enters, its type is drawn from Sψ(ψ).

• matches exogenously dissolve with probability δ.

• employed worker receives outside offer with probability λ1.

• Assume ν+η+δ+λ1 ≤ 1 (Prob. nothing happens to a worker is [1− (ν + η + δ + λ1)]).

• Unemployed workers receives offers with probability λ0.

A.5 Job Mobility

Now describe the process governing the transition dynamics of workers across firms and
matches. The selection of job changes has the features of the Roy model. Workers move
when and only when they get an offer from job offering a higher wage. As in LeMaire
and Scheuer, let the joint firm-match productivity be κ = ψ + µ. Define the sampling
distribution of firm-match quality offers to be G(κ|θ), which can be derived from F (search
distribution of employer productivities) and H (the sampling distribution of match quality
conditional on θ and ψ), which are defined above. Let κit = ψJ(i,t) + µiJ(i,t) be the overall
quality of worker i’s job in period t. Let the outside job offer be given by κ∗ = ζ∗ + µ∗.

For an employed worker, given θi, transition dynamics over κit are simply

κit+1 =


b with prob. η + δ;
· with prob. ν;
κit with prob. 1− η − δ − λ1[1−G(κit|θi)];
κ with density λ1g(κ|θi).

(31)
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We can rewrite these in terms of firm and match heterogeneity so that the transition
dynamics for an employed worker are

(
ψit+1, µit+1

)
=


(b, 0) with prob. η + δ;
(·, ·) with prob. ν
(ψit, µit) with prob. 1− η − δ − ν − λ1[1−G(ψit + µit|θi)];
(ψ, µ) with density λ1h(µ|ψ, θi)f(ψ).

(32)

For a non-employed worker, given θi, transition dynamics are

κit+1 =

{
b with prob. 1− λ0;
κ with density λ0g(κ|θi).

(33)

In terms of firm and match heterogeneity

(
ψit+1, µit+1

)
=

{
(b, 0) with prob. 1− λ0;
(ψ, µ) with density λ0h(µ|ψ, θi)f(ψ).

(34)

We now have enough information to completely specify wage and mobility dynamics.
The model generates endogenous mobility because the correlation between θ, ψ and µ
induces differential mobility. Again, for two workers of the same ability in the same firm,
one with a better match will stay longer and exit to a better match. Therefore, assignment
to a new employer is not independent either of the match on the ‘inside’ job, or of the
‘outside’ job.

The likelihood function for data generated under this model is presented in Appendix
B.

Relative to our more general model, presented below, this model imposes a restriction on
the data generating process. Namely, the model assumes that the way firms are sampled
does not depend on worker quality or match quality, so all of the observed association
between worker type, firm type, residual, and future employer type are generated by the
Roy-style selection process, which is embedded here into the probability of job change:
Pr(c = 1|θ, ψ, µ).

A.6 Moments of interest

Define the variable cJit = 1 if worker i changes jobs at the end of period t. cJit = 0 otherwise.
For employed workers, (and suppressing subscripts)

Pr(cJ = 1|θ, ψ, µ) = λ1 [1−G(ψ + µ|θ)] . (35)

For non-employed (but active) workers

Pr(cJ = 1|θ) = λ0. (36)
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The sampling distribution for aggregate firm-match quality given θ is simply

g(k|θ) = Pr(ψ, µ|ψ + µ = k, θ) (37)

=

∫ ∞
−∞

h(k − ψ|θ, ψ)f(ψ)dψ.

Therefore the probability of changing jobs for a worker of type α conditional on receiving
an offer is

1−G(ψ̄ + µ̄|θ) =

∫ ∞
ψ̄+µ̄

g(k|θ)dk (38)

=

∫ ∞
ψ̄+µ̄

[∫
h(k − ψ|θ, ψ)f(ψ)dψ

]
dk

=

∫ [∫ ∞
ψ̄+µ̄

h(k − ψ|θ, ψ)dk

]
f(ψ)dψ

=

∫ [
1−H

(
ψ̄ + µ̄− ψ|θ, ψ

)]
f(ψ)dψ

= 1− EF
[
H
(
ψ̄ + µ̄− ψ|θ, ψ

)]
i.e. find the probability of drawing match quality sufficient to move conditional on employer
type, and integrate that across the employer type distribution.

B Likelihood Function for the Correlated Matches Model

For any worker, i, the model generates the following vector of observed data:

yit = [wit, cit, uit,i, J(i, t), N(i, t)] , (39)

where J(i, t) indicates the employer that i began the period with, N(i, t) indicates the
employer that i ends the period with, and cit identifies whether any change of employment

status took place. Specifically, cit = max
(
cmit , c

d
it, c

f
it, c

J
it

)
, where each entry can either be

equal to zero or exactly one of the following:

• cmit = 1 if and only if i exits to non-employment because of match dissolution;

• cdit = 1 if and only if i becomes non-active (exits the labor market permanently);

• cfit = 1 if and only if i exits to non-employment because his employer becomes non-
active;

• cJit = 1 if and only if i makes a direct job-to-job transition.
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mit is a binary indicator with mit = 1 if i is employed at an observed wage during
period t and 0 otherwise.

Our model also generates latent data that are observed by the market participants, but
not the econometrician. The latent data are the heteogeneity classifications of each worker,
firm, and match that appears in the data. The latent data vector is therefore

Z = [θ1, . . . θI , ψ1, . . . , ψJ , µ11, µ12, . . . , µ1J , µ21, . . . , µIJ ] . (40)

In addition to the heterogeneity already described, we assume earnings are afflicted by
some kind of classical measurement error with ε ∼ N(0, σ2), so that

wit = α+ θi + ψJ(i,t) + µiJ(i,t) + εit. (41)

The parameters to be estimated are

ρ = [α, θ, ψ, µ, σ, λ0, λ1, η, δ, ν, h, f, sψ, sθ]

The likelihood of the joint distribution of the observed and latent data is

£ (ρ|Y,Z) ∝
I∏
i=1



Ti∏
ti=1

(
1√

2πσ2
exp

[
−(wit−α−θi−ψJ(i,t)−µi J(i,t))

2

2σ2

])mit

×
Ti−1∏
ti=1

(
[ λ1 [1−G(ψit + µit|θi)]]

cJit [η]c
f
it [δ]c

m
it

)mit

×
Ti−1∏
ti=1

(
[1− η − δ − ν − λ1[1−G(ψit + µit|θi)]]

1−cit
)mit

×
Ti−1∏
ti=1

(
[λ0(1−G(b|ψi)]

cit [1− (λ0(1−G(b|θi))]1−cit
)1−mit

×
Ti−1∏
ti=1

[
h(µiN(i,t)|θi, ψN(i,t))f(ψN(i,t))

]cJit



(42)

×
I∏
i=1

J∏
j=1

h(µij |θi, ψj)sψ(ψj)sθ(θi) (43)

The bracketed term contains the likelihood contribution of each individual’s work history.
The first row in the bracketed term contains the probability of the wage when one is
observed. The second and third rows give the probability of differnt kinds of transition
for a worker who is currently employed. The fourth row is the probability of exiting or
remaining in non-employment for a non-employed worker. The fifth row expresses the
probability of moving into a job with an employer of a particular productivity and a match
of a particular quality. The final row in the likelihood function contains the probability of
the latent heterogeneity, on which the rest of the likelihood function is conditioned.
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C Details of the Monte Carlo Simulation Estimates

C.1 Parameters for the Simulated Data

This section presents the parameters used to generate simulated data. The notation is as in
the main body of the paper. We use the notation 0 as the employer productivity class label
during spells of unemployment. So, the notation δ10− denotes the vector of destination
probabilities for a worker with ability type 1 who was unemployed. Note also that the
columns of δ are ordered so that the probability of transition to employers of productive
type 1 and 2 appear in the first and second columns. The third column is the probability
of transition to unemployment.
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πA = (0.50, 0.50)

πB = (0.50, 0.50)

πK|AB =


πK|11

πK|12

πK|21

πK|22

 =


0.50, 0.50
0.25, 0.75
0.75, 0.25
0.50, 0.50



γ =



γ111

γ112

γ121

γ122

γ10−
γ211

γ212

γ221

γ222

γ20−


=



0.250
0.175
0.100
0.025
0.600
0.150
0.075
0.025
0.025
0.500



δ =



δ111

δ112

δ121

δ122

δ10−
δ211

δ212

δ221

δ222

δ20−



=



b = 1 b = 2 b = U

0.4 0.1 0.5
0.4 0.4 0.2
0.6 0.2 0.2
0.3 0.5 0.2
0.5 0.5 0.0
0.5 0.2 0.3
0.2 0.7 0.1
0.5 0.4 0.1
0.1 0.8 0.1
0.3 0.7 0.0


θ = (4,−4)

ψ = (2,−2)

µ = (1,−1)

α = 0

σ = 0.1

(44)
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C.2 Summary of the Simulated Data

• Match Rates: 
mK|11

mK|12

mK|21

mK|22

 =


0.55, 0.45
0.24, 0.76
0.77, 0.23
0.54, 0.46


• Separation rates: 

s111

s112

s121

s122

s10−
s211

s212

s221

s222

s20−


=



0.270
0.145
0.090
0.026
0.621
0.143
0.092
0.023
0.033
0.578



• Transition Rates: 

d111

d112

d121

d122

d10−
d211

d212

d221

d222

d20−



=



b = 1 b = 2 b = U

0.30 0.10 0.60
0.35 0.51 0.14
0.83 0.00 0.17
0.31 0.44 0.25
0.46 0.54 0.00
0.49 0.20 0.31
0.06 0.89 0.06
0.70 0.22 0.87
0.09 0.82 0.09
0.31 0.69 0.00


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C.3 Posterior Mean

π̂A = (0.55, 0.45)

π̂B = (0.50, 0.50)

π̂K|AB =


π̂K|11

π̂K|12

π̂K|21

π̂K|22

 =


0.55, 0.46
0.25, 0.75
0.76, 0.24
0.56, 0.44



γ̂ =



γ̂111

γ̂112

γ̂121

γ̂122

γ̂10−
γ̂211

γ̂212

γ̂221

γ̂222

γ̂20−


=



0.27
0.14
0.09
0.03
0.62
0.14
0.09
0.02
0.03
0.58



δ̂ =



δ̂111

δ̂112

δ̂121

δ̂122

δ̂10−
δ̂211

δ̂212

δ̂221

δ̂222

δ̂20−



=



b = 1 b = 2 b = U

0.30 0.10 0.60
0.35 0.51 0.14
0.83 0.00 0.17
0.31 0.44 0.25
0.46 0.54 0.00
0.49 0.20 0.31
0.06 0.89 0.06
0.70 0.22 0.08
0.09 0.82 0.09
0.31 0.69 0.00


θ̂ = (−4.00, 4.00)

ψ̂ = (−2.00, 2.00)

µ̂ = (−1.00, 1.00)

α̂ = 1.00

σ̂ = 0.10

(45)
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D Details of LEHD Structural Estimation

D.1 Initial Conditions Using LEHD Data

πA = (0.50, 0.50)

πB = (0.50, 0.50)

πK|AB =


πK|11

πK|12

πK|21

πK|22

 =


0.50, 0.50
0.50, 0.50
0.50, 0.50
0.50, 0.50



γ =



γ111

γ112

γ121

γ122

γ10−
γ211

γ212

γ221

γ222

γ20−


=



0.454572405
0.395058033
0.28413216
0.274265373
0.30364168
0.402575865
0.343973216
0.278657886
0.267743695
0.328570019



δ =



δ111

δ112

δ121

δ122

δ10−
δ211

δ212

δ221

δ222

δ20−



=



b = 1 b = 2 b = U

0.410297148 0.143953654 0.445749198
0.475801944 0.205731092 0.318466964
0.231502405 0.399017771 0.369479824
0.220494543 0.479095915 0.300409542
0.691171279 0.308828721 −−
0.499999527 0.198804192 0.301196281
0.492931019 0.262196019 0.244872962
0.217817092 0.513856712 0.268326196
0.165995755 0.572693504 0.261310741
0.61892908 0.38107092 −−


θ = (−0.8810892, 0)

ψ = (−0.67557, 0)

µ = (−0.5037163, 0)

α = 10.0959986

σ = 1

(46)
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D.2 Posterior Mean in the Structural Estimation Sample

π̂A = (0.7101, 0.2899)

π̂B = (0.528, 0.472)

π̂K|AB =


π̂K|11

π̂K|12

π̂K|21

π̂K|22

 =


0.2433, 0.7567
0.9496, 0.0504
0.4767, 0.5233
0.9693, 0.0307



γ̂ =



γ̂111

γ̂112

γ̂121

γ̂122

γ̂10−
γ̂211

γ̂212

γ̂221

γ̂222

γ̂20−


=



0.66033
0.44177
0.27959
0.25058
0.31277
0.38144
0.17986
0.19232
0.23731
0.31785



δ̂ =



δ̂111

δ̂112

δ̂121

δ̂122

δ̂10−
δ̂211

δ̂212

δ̂221

δ̂222

δ̂20−



=



b = 1 b = 2 b = U

0.45464 0.11293 0.43242
0.49288 0.21597 0.29114
0.2486 0.46806 0.28335

0.091005 0.28149 0.6275
0.72469 0.27531 −−
0.50792 0.031861 0.46022
0.52255 0.23242 0.24504
0.11199 0.64741 0.2406
0.10885 0.62407 0.26708
0.72286 0.27704 −−


θ̂ = (−0.2497, 0.6112)

ψ̂ = (−1.0961, 1.2256)

µ̂ = (−0.7243, 1.0562)

α̂ = 9.0777

σ̂ = 0.4330

(47)
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