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Abstract

This paper considers business cycle models with agents who dislike both risk and
ambiguity (Knightian uncertainty). Ambiguity aversion is described by recursive multi-
ple priors preferences that capture agents’ lack of confidence in probability assessments.
While modeling changes in risk typically requires higher-order approximations, changes
in ambiguity in our models work like changes in conditional means. Our models thus
allow for uncertainty shocks but can still be solved and estimated using first-order
approximations. In our estimated medium-scale DSGE model, a loss of confidence
about productivity works like ‘unrealized’ bad news. Time-varying confidence emerges
as a major source of business cycle fluctuations.

1 Introduction

How do changes in aggregate uncertainty affect the business cycle? The standard framework

of quantitative macroeconomics is based on expected utility preferences and rational expec-

tations. A change in uncertainty is then typically modeled as an anticipated change in risk,

followed by a change in the magnitude of realized shocks. Indeed, expected utility agents think

about the uncertain future in terms of probabilities. An increase in uncertainty is described

by the anticipated increase in a measure of risk (for example, the conditional variance of a

shock or the conditional probability of a disaster). Moreover, rational expectations implies

that agents’ beliefs coincide with those of the econometrician (or model builder). As a result,

an anticipated increase in risk is followed on average by unusually large shocks, reflecting

the higher variance of shocks or the larger likelihood of disasters.
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and Rafael Wouters, as well as workshop and conference participants at Boston Fed, Carnegie Mellon,
CREI, Duke, ESSIM (Gerzensee), Federal Reserve Board, NBER Summer Institute, New York Fed, NYU,
Ohio State, Rochester, San Francisco Fed, SED (Ghent), Stanford, UC Santa Barbara and Yonsei for helpful
discussions and comments.
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This paper studies business cycle models with agents who are averse to ambiguity

(Knightian uncertainty). Ambiguity averse agents do not think in terms of probabilities

– they lack the confidence to assign probabilities to all relevant events. An increase in

uncertainty may then correspond to a loss of confidence that makes it more difficult to

assign probabilities. Formally, we describe preferences using multiple priors utility (Gilboa

and Schmeidler (1989)). Agents act as if they evaluate plans using a worst case probability

drawn from a set of multiple beliefs. A loss of confidence is captured by an increase in

that set of beliefs. It could be triggered, for example, by worrisome information about the

future. Conversely, an increase in confidence is captured by a shrinkage of the set of beliefs –

agents might learn reassuring information that moves them closer toward thinking in terms

of probabilities. In either case, agents respond to a change in confidence if the worst case

probability used to evaluate actions also changes.

The paper proposes a simple and tractable way to incorporate ambiguity and shocks

to confidence into a business cycle model. At every date, agents’ set of beliefs about an

exogenous shock, such as an innovation to productivity, is parametrized by an interval of

means centered around zero. A loss of confidence is captured by an increase in the width of

the interval; in particular, the “worst case” mean becomes worse. Conversely, an increase in

confidence is captured by a narrowing of the interval and thereby a better worst case mean.

Since agents take actions based on the worst case mean, a change in confidence works like

a news shock: an agent who gains (loses) confidence responds as if he had received good

(bad) news about the future.

The difference between a change in confidence and news is that the latter is followed, at

least on average, by a shock realization that validates the news. For example, bad news is

on average followed by bad outcomes. A loss of confidence, however, need not be followed

by a bad outcome. Information that triggers a loss of confidence affects agents’ perception

of future shocks, described by their (subjective) set of beliefs. It does not directly affect

properties of the distribution of realized shocks (such as the direction or magnitude of the

shocks). A connection between confidence and realized shocks occurs only if the two are

explicitly assumed to be correlated.

We study ambiguity and confidence shocks in economies that are essentially linear. The

key property is that the worst case mean that supports agents’ equilibrium choices can be

written as a linear function of the state variables. It implies that equilibria can be accurately

characterized using first order approximations. In particular, we can study agents’ responses

to changes in uncertainty, as well as time variation in uncertainty premia on assets, without

resorting to higher order approximations. This is in sharp contrast to the case of changes in

risk, where higher order solutions are critical.
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The effects of changes in confidence are what one would expect from changes in uncer-

tainty. For example, a loss of confidence about productivity generates a wealth effect – due to

more uncertain wage and capital income in the future, and also a substitution effect since the

return on capital has become more uncertain. The net effect on macroeconomic aggregates

depends on the details of the economy. In our estimated medium scale DSGE model, a

loss of confidence generates a recession in which consumption, investment and hours decline

together. In addition, a loss of confidence generates increased demand for safe assets, and

opens up a spread between the returns on ambiguous assets (such as capital) and safe assets.

Business cycles driven by changes in confidence thus give rise to countercyclical spreads or

premia on uncertain assets.

To quantify the effects of ambiguity shocks in driving the US business cycle, we in-

corporate ambiguity averse households into an otherwise standard medium scale DSGE

model based on Christiano et al. (2005) and Smets and Wouters (2007). Agents view

neutral productivity shocks as ambiguous and their confidence about productivity varies over

time, a type of “uncertainty shock”. Even though uncertainty shocks are present, standard

linearization methods can be used to solve the model and ease its Bayesian estimation. The

main results are that the estimated confidence process (i) is persistent and volatile, (ii) has

large effects on the steady state of endogenous variables, with welfare costs of ambiguity

about 15% of steady state consumption, (iii) accounts for a sizable fraction of the variance

in output - about 30% at business cycle frequencies and about 55% overall, (iv) generates

positive comovement between consumption, investment and hours worked. It is this positive

comovement that distinguishes confidence shocks from other shocks and leads the estimation

to assign an important role to confidence in driving the business cycle.

We emphasize that changes in confidence can also generate booms that look “exuberant”,

in the sense that output and employment are unusually high and asset premia are unusually

low, while fundamentals such as productivity are close to their long run average. An

exuberant boom occurs in our model whenever there is a persistent shift in confidence above

its mean. While agents in the model behave on average as if they are pessimistic, what

matters for the nature of booms and busts is how variables move relative to model-implied

averages. Confidence jointly moves asset premia and economic activity, thus generating

booms and slumps. Moreover, the fact that agents behave as if they are pessimistic on

average helps explain the magnitude of average asset premia, which are puzzlingly low in

rational expectations models.

While we do not assume rational expectations, we do impose discipline on belief sets

in the estimation by connecting them to the data generating process. To describe agents’

perception of a shock, we decompose the estimated shock distribution into an ambiguous
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and a risky component. For the risky component, agents know the probabilities. For the

ambiguous component, they know only the long run empirical moments. When forecasting in

the short run, however, agents realize that the data are consistent with many distinct models.

Discipline comes from requiring that admissible beliefs make “good enough” forecasts on

average, under any data generating process that is consistent with the long run moments.

More models are “good enough” in this sense if the ambiguous component of the data is

more variable. As a result, movements in confidence about a shock are effectively bounded

by the variability of the shock.

As an additional check on the size and time variation of the estimated belief sets, we

compare the implied range of output growth and inflation forecasts – a measure of ambiguity

perceived about these variables – to the interquartile range of SPF survey forecasts for

output growth and inflation. Disagreement of survey forecasters is often used as a measure

of uncertainty since disagreement among experts plausibly reflects uncertainty about what

the right model of the future is. We find both similar magnitudes (mean forecast ranges

fluctuate between 0.5 and 2%) and qualitatively similar behavior. For example, both forecast

dispersion and implied ambiguity were low in the boom years of the mid 1990s and increased

at the start of recessions and especially in the 2008 Financial Crisis.

Our paper is related to several strands of literature. The decision theoretic literature on

ambiguity aversion is motivated by the Ellsberg Paradox. Ellsberg’s experiments suggest

that decision makers’ actions depend on their confidence in probability assessments – they

treat lotteries with known odds differently from bets with unknown odds. The multiple

priors model describes such behavior as a rational response to a lack of information about

the odds. To model intertemporal decision making by agents in a business cycle model, we

use a recursive version of the multiple priors model that was proposed by Epstein and Wang

(1994) and has recently been applied in finance (see Epstein and Schneider (2010) for a

discussion and a comparison to other models of ambiguity aversion). Axiomatic foundations

for recursive multiple priors were provided by Epstein and Schneider (2003).

Hansen et al. (1999) and Cagetti et al. (2002) study business cycles models with robust

control preferences. The “multiplier” preferences used by these authors assume a smooth

penalty function for deviations of beliefs from some reference belief. Models of changes in

uncertainty with robust control thus typically use tools developed for models of changes in

risk, such as higher order approximations (for example, Bidder and Smith (2011)). Multiple

priors utility is not smooth when belief sets differ in means. As a result, it allows for first

order effects of uncertainty that do not arise under expected utility. This is why linear

approximations are sufficient to study dynamics in response to uncertainty shocks.

Some of the mechanics of our model are reminiscent of rational expectations models with
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signals about future “fundamentals” (for example Beaudry and Portier (2006), Christiano

et al. (2008), Schmitt-Grohe and Uribe (2008), Jaimovich and Rebelo (2009), Blanchard et al.

(2009),Christiano et al. (2010a) and Barsky and Sims (2011)). On impact, the response to

a loss of confidence about productivity in our model resembles the response to noise that is

mistaken for bad news about productivity in a model with noisy signals. The difference is

that noise in a signal only matters for agents’ decisions if the typical signal contains enough

news. Put differently, noise matters for the business cycle only if news shocks are also present

and sufficiently important. In contrast, confidence shocks and their role in the business cycle

need not be connected to news shocks.1

Confidence shocks can affect agents’ actions (and hence the business cycle) even if they

are uncorrelated with shocks to “fundamentals” (such as productivity) at all leads and lags.

They share this feature with noise shocks as well as with sunspots (for example Farmer

(2009)), stochastic bubbles (Martin and Ventura (2011)) and shocks to higher order beliefs

(Angeletos and La’O (2011)). At the same time, confidence shocks differ from those other

shocks in that they alter agents’ perceived uncertainty of fundamentals. This is typically

reflected in asset premia. Depending on the application, this need not be true for the other

types of shocks.

Recent work on changes in uncertainty in business cycle models has focused on changes

in realized risk – looking either at stochastic volatility of aggregate shocks (see for ex-

ample Fernández-Villaverde and Rubio-Ramirez (2007), Justiniano and Primiceri (2008),

Fernández-Villaverde et al. (2010), Basu and Bundick (2011) and the review in Fernández-

Villaverde and Rubio-Ramı́rez (2010)), time-varying probability of aggregate disaster (Gou-

rio (2011)) or at changes in idiosyncratic volatility in models with heterogeneous firms (Bloom

et al. (2009), Arellano et al. (2010), Bachmann et al. (2010) and Christiano et al. (2010b)).

We view our work as complementary to these approaches. In particular, confidence shocks

can generate responses to uncertainty – triggered by news, for example – that is not connected

to later realized changes in risk.

The paper proceeds as follows. Section 2 reviews multiple priors utility and shows how

ambiguity about the mean of a bet entails first order effects of uncertainty. Section 3 analyzes

a stylized business cycle model with ambiguity about productivity. Section 4 presents a

general framework for adapting business cycle models to incorporate ambiguity aversion.

Here we show how uncertainty can be studied using linear techniques. Section 5 describes

the estimation of a medium scale DSGE model for the US.

1This distinction between noise, news and confidence and its observable implications are discussed further
in Section 3 below.
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2 Recursive multiple priors

Ellsberg (1961) showed that there is a behaviorally meaningful distinction between risk

(uncertainty with known odds or objectively given probabilities) and ambiguity (unknown

odds). For example, many people strictly prefer to bet on an urn that is known to contain

an equal number of black and white balls than on an urn of unknown composition. Gilboa

and Schmeidler (1989) showed that Ellsberg-type behavior can be derived from a model of

rational choice with axiomatic foundations. Their axioms allow for a “preference for knowing

the odds” that is ruled out under expected utility.

For our business cycle application, we use a recursive version of the multiple priors model.

Uncertainty is represented by a period state space S. One element s ∈ S is realized every

period, and the history of states up to date t is denoted by st = (s0, ..., st). Preferences order

uncertain streams of consumption C = (Ct)
∞
t=0, where Ct : St → <n and n is the number of

goods. Utility for a consumption process C = {Ct} is defined recursively by

Ut
(
C; st

)
= u (Ct) + β min

p∈Pt(st)
Ep
[
Ut+1

(
C; st, s̃t+1

)]
, (2.1)

where Pt (st) is a set of probabilities on S that govern the distribution of next period state

s̃t+1.

Utility after history st is given by felicity from current consumption plus expected

continuation utility evaluated under a “worst case” belief. The worst case belief is drawn

from a set Pt (st) that may depend on the history st. The primitives of the model are the

felicity u, the discount factor β and the entire process of one-step-ahead belief sets Pt (st).

Expected utility obtains as a special case if all sets Pt (st) contain only one belief. More

generally, a nondegenerate set of beliefs captures the agent’s lack of confidence in probability

assessments; a larger set Pt (st) says that the agent is less confident after having observed

history st.

Discussion

The maxmin representation (2.1) is implied by a preference for knowing the odds. Gilboa

and Schmeidler assume that one can observe choice among state contingent consumption

lotteries, as in Anscombe and Aumann (1963) axiomatization of the (subjective) expected

utility model. Lotteries are a source of “objective” uncertainty (known odds) whereas for

the state s there are no objectively given probabilities. Observing choice between state

contingent lotteries can then identify whether or not agents deal with uncertainty about s

as if they think in terms of probabilities.

In particular, the necessary conditions for an expected utility representation in Anscombe
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and Aumann (1963) include the independence axiom. It says that C is strictly preferred to

C̃ if and only if any lottery between C and some other plan D is also strictly preferred to a

lottery with the same probabilities on C̃ and D. It implies that an agent who is indifferent

between two consumption plans C and C̃ never strictly prefers a lottery between those two

plans. This latter implication contradicts Ellsberg-type behavior. For example, if one plan

is a hedge for the other then forming a lottery assigns known probabilities to otherwise

ambiguous contingencies.2 Put differently, randomizing between two indifferent ambiguous

plans that hedge each other can transform ambiguity into risk, resulting in a strictly more

desirable plan.

Gilboa and Schmeidler show that a maxmin representation of utility follows if indepen-

dence is replaced by two alternative axioms. Uncertainty aversion says that a lottery between

indifferent plans is weakly preferred to either plan. The axiom thus allows (but does not

require) strict preference for the lottery, weakening independence. Certainty independence

says that the independence axiom holds as long as D is constant. This axiom says that strict

preference for a lottery between indifferent plans can occur only if in fact one plan hedges

the other. Randomizing with constant plans is not helpful because constant plans cannot

be hedges. For example, a lottery between an ambiguous plan and its certainty equivalent

is never strictly preferred to the certainty equivalent (and hence the plan itself). The latter

property is shared by the multiple priors and expected utility models.

Epstein and Schneider (2003) provide foundations for the intertemporal model (2.1).

They consider a family of conditional preference orderings, one for each history st. Each

conditional preference ordering satisfies the Gilboa-Schmeidler axioms, suitably modified for

multiperiod plans. Moreover, conditional preferences at different histories are connected

by dynamic consistency.3 The setup of the model also implies consequentialism, that is,

utility from a consumption plan at history st depends only on the consumption promised

in future histories that can still occur after st has been realized. Both dynamic consistency

and consequentialism are properties that are also satisfied by the standard time separable

expected utility model.

First order effects of uncertainty

Consider the effect of a small increase in uncertainty at a point of certainty. Fix a

constant consumption bundle C̄, a date t and a nonconstant function f that maps states

2For example, suppose C pays one if state s occurs and zero otherwise, and C̃ is a perfect hedge for C,
that is, it pays one if s does not occur and zero otherwise. Then a lottery between C and C̃ is purely risky
and may thus be preferable to the ambiguous plans C and C̃.

3In addition to the recursive representation (2.1), the model also allows for a “sequence” representation
where minimization at every node is over probabilities over future sequences of state s and where those
probabilities are updated measure-by-measure by Bayes’ rule.
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into consumption bundles – a “bet” on the state one period ahead at t + 1. Construct an

uncertain consumption plan C by setting Cτ = C̄ for all τ 6= t+ 1, but Ct+1 = C̄ +αf(s̃t+1)

where α is a scalar. We expand utility around certainty (α = 0). For α > 0, we obtain

U
(
C; st

)
= U

(
C̄; st

)
+ β min

p∈Pt(st)
Ep[u

(
C̄ + αf(s̃t+1)

)
]

= U
(
C̄; st

)
+ β

(
αu′

(
C̄
)
Ep0

[f (s̃t+1)] +
1

2
α2u′′

(
C̄
)
Ep0 [

f (s̃t+1)2]+ ...

)
, (2.2)

where higher order terms are omitted and p0 is the belief that achieves the minimum. A

similar expansion holds for α < 0, but the minimizing belief p0 may be different since

consumption depends differently on the state s.

We now compare the welfare effects of small changes in uncertainty by varying α (the

scale of the bet) near zero. To isolate the effect of uncertainty, we focus on bets f such that

for any small α 6= 0, the agent is strictly worse off than at certainty (α = 0). In the case of a

risk averse agent with expected utility (u is strictly concave and Pt (st) = {p0}) this simply

means that the bet f is actuarially fair, or Ep0
[f (s̃t+1)] = 0.4 Consider now the magnitude

of the utility loss from an increase in risk as α moves away from zero. The first order term

in (2.2) vanishes, but the second term is negative because of risk aversion. We have restated

the familiar result that, under expected utility, changes in risk have second order effects on

utility near certainty.

Consider next a multiple priors agent. To make the argument as simple as possible,

assume that this agent is risk neutral, so that all higher order terms in (2.2) vanish. In order

for the agent to be worse off than at certainty for any small α 6= 0 we must have

min
p∈Pt(st)

Epf (s̃t+1) < 0 < max
p∈Pt(st)

Epf (s̃t+1) . (2.3)

In other words, there is ambiguity about whether the bet is fair. The effects of uncertainty

are now driven only by the first order terms. For example, if α > 0 then the worst case mean

is the negative lower bound, whereas if α < 0 the worst case mean is the positive upper

bound. Changes in ambiguity due to changes in the interval of means (2.3) thus have first

order effects on welfare near certainty. More generally, if the agent is also risk averse, then

higher order also terms matter, but changes in welfare near certainty are still dominated by

the first order terms.

4Indeed, if f were not fair and had nonzero mean then for small enough α of the same sign as the mean,
the first order effect in (2.2) dominates and we obtain higher utility than at α = 0. Conversely, taking fair
bets always lowers utility because u is strictly concave.
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3 A stylized example

To illustrate the role of ambiguity in business cycles, we consider a stylized business cycle

model. Our main criterion for this model is simplicity. We abstract from internal propagation

of shocks through endogenous state variables such as capital or sticky prices or wages. For

uncertainty about productivity to have an effect on labor hours and output, we assume

that labor has to be chosen before productivity is known. This introduces an intertemporal

decision that depends on both risk and ambiguity. In fact, with the special preferences and

technology we choose, the effects of both ambiguity and risk can be read off a loglinear closed

form solution, which facilitates comparison.

A representative agent has felicity over consumption and labor hours

U (C,N) =
1

1− γ
C1−γ − βN

where γ is the coefficient of relative risk aversion (CRRA) or equivalently the inverse of the

intertemporal elasticity of consumption (IES). Agents discount the future with the discount

factor β. Setting the marginal disutility of labor equal to β simplifies some algebra below

by eliminating constant terms.

Output Yt is made from labor Nt according to the linear technology.

Yt = ZtNt−1,

where logZt is random. The fruits of labor effort made at date t − 1 thus only become

available at date t. One interpretation is that goods have to be stored for some time before

they can be consumed. It may be helpful to think of the period length as very short, such

as a week.

For simplicity, we assume that log productivity zt = logZt is serially independent and

normally distributed. The productivity process takes the form

zt+1 = µt −
1

2
σ2
u + ut+1 (3.1)

Here u is an iid sequence of shocks, normally distributed with mean zero and variance σ2
u.

The sequence µ is deterministic and unknown to agents – its properties are discussed further

below.

Preferences are given by (2.1) with felicity as above. Agents perceive the unknown

component µt to be ambiguous. We parametrize their one-step-ahead set of beliefs at date t

by a set of means µpt ∈ [−at, at]. Here at captures agents’ lack of confidence in his probability
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assessment of productivity zt+1. We allow confidence itself to change over time to reflect, for

example, news agents receive. We assume an AR(1) process for at:

at+1 = (1− ρa) ā+ ρaat + εat+1 (3.2)

with ā > 0 and 0 < ρa < 1. The lack of confidence at thus reverts to a long run mean ā.

Periods of low at < ā represent unusually high confidence in future productivity, whereas at >

ā describes periods of unusual lack of confidence. We further assume that εat is independent

of ut.
5

Consider now the Bellman equation of the social planner problem

V (Y, a) = max
N

{
U (Y,N) + β min

µp∈[−a,a]
Ep
[
V
(
ez̃N, ã

)]}
where tildes indicate random variables and where the conditional distribution of z̃ under

belief p is given by (3.1) with µt = µp. The transition law of the exogenous state variable a

is given by (3.2).

It is natural to conjecture that the value function is increasing in output. The “worst

case” belief, p0 say, then has mean µp0 = −a. Combining the first order condition for labor

with the envelope condition, we obtain

β = Ep0

[
β
(
Z̃N

)−γ
Z̃

]
with µp0 = −a (3.3)

The constant marginal disutility of labor is equal to the marginal product of labor, weighted

by future marginal utility because labor is chosen one period in advance.

3.1 The effect of uncertainty on hours

With our special preferences and technology, optimal hours are independent of current

productivity (or output). Taking logarithms and using normality of the shocks, we can

write the decision rule for hours as

n = − (1/γ − 1)

(
a+

1

2
γσ2

u

)
(3.4)

5We assume that a is an exogenous persistent process, interpreted as the cumulative effect of news that
affect confidence. Epstein and Schneider (2007) and Epstein and Schneider (2008) present a model of learning
under ambiguity that shows how updating affects confidence and Ilut (2009) considers a model of of updating
about a perpetually changing hidden state. A key feature of those models is that confidence moves slowly
with signals. We thus view a as a reasonable stand-in to examine the dynamics of confidence in a business
cycle setting. More generally, it could also be interesting to allow for correlation between innovations to
confidence and other shocks. This is omitted here for simplicity.
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The equation describes the effect of uncertainty on aggregate hours. Uncertainty works the

same way whether it is ambiguity, as measured by a, or risk, as measured by the product of

the quantity of risk σ2
u and risk aversion γ.

As usual, an increase in uncertainty has wealth and substitution effects. Consider first

an increase in risk. On the one hand, higher risk lowers the certainty equivalent of future

production, which, in the absence of ambiguity, is given by N exp(−1
2
γσ2

u). Other things

equal, the resulting wealth effect leads the planner to reduce consumption of leisure and

increase hiring. However, higher risk also lowers the risk adjusted return on labor. Other

things equal, the resulting substitution effect leads the planner to reduce hiring. The net

effect depends on the curvature in felicity from consumption, determined by γ. With a strong

enough substitution effect, an increase in risk lowers hiring.

Consider now an increase in ambiguity. When a increases, the planner acts as if expected

future productivity has declined. Mechanically, an increase in ambiguity thus entails wealth

and substitution effects familiar from the analysis of news shocks. The interpretation of

these effects, however, is the same as in the risk case. On the one hand, higher ambiguity

lowers the certainty equivalent of future production, which, in the absence of risk, is given

by N exp (−at). On the other hand, higher ambiguity lowers the uncertainty-adjusted return

on labor. Again, with a strong enough substitution effect an increase in uncertainty lowers

hiring.

Given separable felicity and the iid dynamics of zt, inspection of the Bellman equation

shows that the value function depends on current output only through the utility of consump-

tion – the other terms depend only on the state variable at, not on current productivity or

past hours. It follows that the value function is increasing in output, verifying our conjecture

above. Below, we argue that the “guess-and-verify” approach to finding the worst case belief

that we have used here to solve the planner problem is applicable much more widely.

The complete dynamics of the model are then given by the productivity equation (3.1)

as well as

yt = zt + nt−1,

nt = − (1/γ − 1)

(
at +

1

2
γσ2

u

)
,

at = (1− ρa) ā+ ρaat−1 + εat ,

The economy is driven by productivity and ambiguity shocks. Productivity shocks tem-

porarily change output but have no effect on hours. In contrast, ambiguity shocks have

persistent effects on both hours and output.
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With a strong enough substitution effect (1/γ > 1), a loss of confidence (an increase in

a) generates a recession. During that recession, productivity is not unusually low. Hours

are nevertheless below steady state: since the marginal product of labor is more uncertain,

the planner finds it optimal not to make people work. Conversely, an unusual increase in

confidence – a drop of at below its long run mean – generates a boom in which employment

and output are unusually high, but productivity is not. In other words, a phase of low

realizations of at will look to an observer like a wave of optimism, where output and

employment surge despite average productivity realizations.

3.2 Decentralization

Suppose that agents have access to a set of contingent claims. Write qt (z̃, ã) for the date

t price of a claim that pays one unit of consumption at date t + 1 if (zt+1, at+1) = (z̃, ã) is

realized and denote the spot wage by wt. The agent’s date t budget constraint is

Ct +

∫
qt (z̃, ã) θt (z̃, ã) d (z̃, ã) = wtNt + θt−1 (zt, at) ,

where θt (z̃, ã) is the amount of claims purchased at t that pays off one unit of the consumption

good if (z̃, ã) is realized at t+ 1. Since aggregate labor is determined one period in advance,

this set of contingent claims completes the market – claims on (z̃, ã) can be used to form

any portfolio contingent on the aggregate state (Y, a).

Assume that there are time invariant functions for prices q (z̃, ã;Y, a) and w (Y, a) as well

as aggregate labor N (Y, a) that depend only on the aggregate state (Y, a). Assume further

that the agent knows those price functions. The Bellman equation is

W (θ, Y, a) = max
C,N,θ′(.)

{
U (C,N) + β min

µp∈[−a,a]
Ep
[
W
(
θ′ (z̃, ã) , ez̃N (Y, a) , ã

)]}
w (Y, a)N + θ = C +

∫
q (z̃, ã;Y, a) θ′ (z̃, ã) d (z̃, ã)

Conjecture again that utility depends positively on the state variable Y . The worst case

mean is then once more µp = −a and the maximization problem becomes standard.

In particular, prices are related to the agent’s marginal rates of substitution through Euler

equations. Letting fµ (z̃, ã|a) denote the conditional density of the exogenous variables (z, a)
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implied by (3.1) and (3.2) with µt = µ, we have

w = βC (θ, Y, a)γ (3.5)

q (z̃, ã;Y, a) = βf−a (z̃, ã|a)

(
C
(
θ′ (z̃, ã) , ez̃N (Y, a) , ã

)
C (θ, Y, a)

)−γ
(3.6)

The wage is equal to the marginal rate of substitution of consumption for hours. State

prices are equal to the marginal rates of substitutions of current for future consumption.

Importantly, state prices are based on the worst case conditional density f−a. This is how

ambiguity aversion contributes to asset premia and how it shapes firms’ decisions in the face

of uncertainty.

For simplicity, we consider two-period lived firms that hire workers only at date t and

sell output only at date t + 1. To pay the wage bill at date t, they issue contingent claims

which they subsequently pay back out of revenue at date t + 1. The profit maximization

problem is

max
N,θ(.)

∫
q (z̃, ã;Y, a) (ez̃N − θ (z̃, ã))d (z̃, ã)

s.t. wN =

∫
q (z̃, ã;Y, a) θ (z̃, ã) d (z̃, ã)

As usual, the financial policy of the firm is indeterminate. Substituting the constraint

into the objective, the first order condition with respect to labor equates the wage to the

marginal product of labor

w =

∫
q (z̃, ã;Y, a) ez̃d (z̃, ã) (3.7)

Since labor is chosen one period in advance, the marginal product of labor involves state

prices, which in turn reflect uncertainty perceived by agents. Substituting for prices from

(3.5)-(3.6), we find that the planner’s first order condition for labor (3.3) must hold in any

equilibrium.

From the first order conditions, wages and state prices can be solved out in closed form.

Let Qf (Y, a) =
∫
q (z̃, ã;Y, a) d (z̃, ã) denote the price of a riskless bond. We can then write

w (Y, a) = βY γ,

Qf (Y, a) = βY γ exp
(
a+ γσ2

u

)
,

q (z̃, ã;Y, a) = Qf (Y, a) f 0 (z̃, ã|a) exp

(
−1

2
σ2
u

(
a

σ2
u

+ γ

)2

−
(
a

σ2
u

+ γ

)(
z̃ − 1

2
σ2
u

))
(3.8)
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where f 0 is the density of the exogenous variables (z̃, ã) if µt = 0.

With utility linear in hours, labor supply is perfectly elastic at a wage tied to current

output. Since output does not react to uncertainty shocks on impact, neither does the wage.

Uncertainty shocks are transmitted to the labor market because asset prices affect labor

demand. The bond price increases with both ambiguity and risk. Intuitively, either type of

uncertainty encourages precautionary savings and thereby lowers the riskless interest rate

rf (Y, a) = − logQf (Y, a) = − log β − γ log Y − a− γσ2
u

The price of a claim on a particular state (z̃, ã) in formula (3.8) is equal to the riskless

bond price multiplied by an “uncertainty neutral” density. We have written the latter as the

density for µt = 0 times an exponential term that collects uncertainty premia.

If agents do not care about either type of uncertainty (a = γ = 0), then uncertainty

premia are zero and the exponential term is one. More generally, the relative price of a

“bad” state (that is, lower productivity z̃) is higher when confidence is lower (or a is higher).

Intuitively, when confidence is lower, then agents value the insurance provided by claims

on bad states more highly. This change in relative prices also affects firms’ hiring decision.

Indeed, since firms can pay out more in good (high z̃) states, a loss of confidence that makes

claims on good states less valuable increases firms’ funding cost. Conversely, an increase in

confidence makes claims on good states more valuable; lower funding costs then induce more

hiring.

The functional form of the state price density is that of an affine pricing model with “time-

varying market prices of risk” (that is, time varying coefficients multiplying the shocks). This

type of pricing model is widely used in empirical finance. Here time variation in confidence

drives the coefficient a/σ2
u + γ on the shock z̃ and thus permits a structural interpretation

of the functional form. A convenient feature of affine models is that conditional expected

returns on many interesting assets are linear functions of the state variables. Consider, for

example, a claim to consumption next period. Its price and excess return are

Qc (Y, a) = βE−a
[(
ez̃N (Y, a)

)1−γ
Y γ
]

= Qf (Y, a)N (Y, a) exp
(
−a− γσ2

u

)
re (z̃, Y, a) = log

(
ez̃N (Y, a)

)
− logQc (Y, a)− logQf (Y, a)

= z̃ + a+ γσ2
u

Long run average excess returns have an ambiguity and a risk component. Moreover, the

conditional expected excess return depends positively on a. In other words, a loss of

confidence not only generates a recession, but also increases the conditional premium on
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the consumption claim.

3.3 Comparison to news and noise shocks

We have seen that confidence shocks in our model work like unrealized news shocks with

a bias. In this subsection we compare our model with confidence shocks to a rational

expectations model with news and noise shocks. We show that the two models can be

distinguished by considering either quantity moments or asset price data. To this end, we

study a version of the stylized model above in which agents receive noisy signals about future

productivity.

Suppose that, at date t, agents observe a signal about productivity one period ahead.

The joint dynamics of the signal and productivity itself are

st = zt+1 + σsεs,t

zt+1 = −1

2
(1− π)σ2

u + ut+1

where the noise εs,t is uncorrelated with all other shocks and π = σ2
u/ (σ2

u + σ2
s). Since the

conditional variance of var (zt+1|st) is (1− π)σ2
u the constant in the second equation ensures

that E [Zt+1|st] = 1. The parameter π indicates how good the signal is: if π = 1 then the

signal reveals tomorrow’s productivity (a pure news shock) whereas π = 0 says that the

signal is worthless (a pure noise shock).

Optimal hours are now

nt = (1/γ − 1)

(
πst −

1

2
γ (1− π)σ2

u

)
With a strong enough substitution effect, agents work more if a good signal arrives. Of course,

the signal could either reflect good future productivity (news) or a positive realization of εs

(noise). In the news case, the shock will be followed by realized high productivity, but in the

noise case this need not happen (and in fact will not happen on average). Ambiguity shocks

are thus similar to noise shocks in that can they affect actions, but not realized fundamentals.

Nevertheless, it is straightforward to distinguish the news & noise model from the

ambiguity model above. First, consider a simple regression of log productivity on log hours.

In a large sample, we obtain a slope coefficient

β̂ =
cov (zt+1, nt)

var (nt)
=

(1/γ − 1) πσ2
u

(1/γ − 1)2 π2(σ2
u + σ2

s)
= (1/γ − 1)−1
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In other words, if news matters for employment (γ 6= 1), then employment must forecast

productivity. In contrast, the ambiguity model above does not predict such a relationship.

The point here is that while ambiguity shocks work mechanically like noise shocks, noise

shocks can matter only if there are also enough news shocks, and the presence of news will

be reflected in the regression coefficient.

A second important difference between a news & noise model and the ambiguity model

above lies in the predictions for asset prices. The price formula (3.8) shows that an

econometrician who observes data from the ambiguity model will recover a pricing kernel

that features “time varying market prices of risk”. Such time variation would be reflected

for example in predictability regressions of excess returns on forecasting variables. Moreover,

prices changes can be dominated by changes in confidence which can be uncorrelated with

changes in expected fundamentals, thus leading to “excess volatility”. In contrast a news

model predicts that risk premia are constant and asset prices move mostly with expected

fundamentals.

3.4 Bounding ambiguity by measured volatility

Consider now the connection between the true dynamics of log productivity z in (3.1) and

the agents’ set of beliefs. In our model, productivity consists of two components, the iid

shock u that agents view as risky, and the deterministic sequence µ that agents view as

ambiguous. In line with agents’ lack of knowledge about µ, we do not impose a particular

sequence as “the truth”. Instead, we restrict only the long run average and variability of µ,

and thereby also of productivity z. We then develop a bound on the process at that ensures

that the belief set is “small enough” relative to the variability in the data observed by agents.

For quantitative modeling, the bound imposes discipline on how much the process at can

vary relative to the volatility in the data measured by the modeler.

Consider first the long run behavior of µ. Let I denote the indicator function and let

Φ (.,m, s2) denote the cdf of a univariate normal distribution with mean m and variance s2.

We assume that the empirical distribution of µ converges to that of an iid normal stochastic

process with mean zero and variance σ2
µ. Formally, we require that, for any integers k, τ1, ..., τk

and real numbers µ̄1, ..., µ̄k,

lim
T→∞

1

T

T∑
t=1

I
({
µt+τj ≤ µ̄j; j = 1, .., k

})
=

k∏
j=1

Φ
(
µ̄j; 0, σ2

µ

)
.

In particular, we assume that for almost every realization of the shocks u, the empirical

second moment 1
T

∑T
t=1 µtut converges to zero.
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For example, if we were to observe µ and record the frequency of the event {µt ≤ µ̄} then

that frequency would converge to Φ
(
µ̄, 0;σ2

µ

)
. For a two-dimensional example, the frequency

of the event {µt ≤ µ̄1, µt+τ ≤ µ̄2} is assumed to converge to Φ
(
µ̄1, 0;σ2

µ

)
Φ
(
µ̄2, 0;σ2

µ

)
. Simi-

larly, recording the frequency of an event that jointly restricts elements of µ spaced in time

as described by the τjs always delivers in the long run the cdf of an iid multivariate normal

distribution. At the same time, almost every draw from an iid normal process with mean

zero and variance σ2
µ would deliver a sequence µt that satisfies the condition.

We also require that the ambiguous component in the data is not systematically related to

the risky component. In particular, we assume that for almost every realization of the shocks

u, the empirical second moment 1
T

∑T
t=1 µtut converges to zero. This has implications for the

long run empirical distribution of log productivity z. Indeed, given a true sequence µ that

satisfies the above condition, then for almost every realization of the shocks u the empirical

mean 1
T

∑
t zt converges to zero, the empirical variance 1

T

∑
t z

2
t converges to σ2

z = σ2
µ + σ2

u,

and the empirical autocovariances at all leads and lags converge to zero. In other words, to an

econometrician who sees a large sample, the data look like white noise (that is, uncorrelated

with mean zero and variance σ2
z) regardless of the true sequence µ.

If an econometrician fits a covariance stationary statistical model to the productivity

data, he thus recovers an iid process with mean zero and variance σ2
z . Ambiguity averse

agents look at the data differently. Even though they know the limiting properties of µ and

hence of z, when they make decisions at date t, they are concerned that they do not know the

current conditional mean µt needed to forecast zt+1. They understand that statistical tools

cannot help them learn µt in real time. They deal with their lack of knowledge at date t by

behaving as if they minimize over a set of forecasting rules (that is, a set of one-step-ahead

conditional probabilities) indexed by the interval [−at, at]. It makes sense to assume that

this interval should be smaller the less variable the data are (lower σ2
z) and, in particular,

the less variability in the data is attributed to ambiguity as opposed to risk (lower σ2
µ).

We thus develop a bound on the process at, denoted amax, that is increasing in σ2
µ. The

basic idea is that even the boundary forecasts indexed by ±amax should be “good enough”

in the long run. To define “good enough”, we calculate the frequency with which one of

the boundary forecasting rules is the best forecasting rule in the interval [−amax, amax]. The

forecasting rule with mean amax is the best rule at date t if its mean amax − 1
2
σ2
u is closest

to the true conditional mean µt − 1
2
σ2
u, that is, if µt ≥ amax. Similarly, the rule −amax is the

best rule if µt ≤ −amax. We now require that the frequency with which µt falls outside the

interval [−amax, amax], thus making the boundary forecasts the best forecasts, converges in

the long run to a number α ∈ (0, 1). Given our assumption on the long run behavior of µ
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above, the bound is defined by

Φ
(
amax; 0, σ2

µ

)
= α/2

The number α determines the tightness of the bound. For example, α = 5% implies amax ≈
2σµ.

The bound amax restricts the variability in the worst case mean relative to measured

volatility in the data. Suppose the variance of the productivity is measured to be σ2
z . Denote

by ρ = σ2
µ/σ

2
z the share of the variability in the data that agents attribute to ambiguity. Then

with α = 5% we require at ≤ 2
√
ρσz. The bound is tighter if less of the variability in the data

is due to ambiguity. In the extreme case of ρ = 0, the process at must be identically equal

to zero – agents treat all variability in z as risk. In practice, the bound dictates parameter

restrictions on the law of motion for at. In a discrete time model, we cannot impose exactly

that at ∈ [0, 2
√
ρσz]. However, small enough volatility of εat in (3.2) ensures that those

conditions are virtually always satisfied – this is the approach we follow in our quantitative

work below.

It is interesting to compare how risk and ambiguity affect the long run behavior of business

cycles variables in our simple model. Consider, for example, the empirical mean and variance

of output in a large sample

ȳ = −1

2
σ2
u − (1/γ − 1)

(
ā+

1

2
γσ2

u

)
σ̄2
y = σ2

z + (1/γ − 1)2 var (at)

Here we have used the law of large numbers for u together with our assumptions on µ, which

imply that the long run moments are the same for every possible sequence µ. The bound

puts discipline on the role of ambiguity in explaining business cycles. For example, suppose

that we assume ā > 3
√
var (at) and ā + 3

√
var (at) < 2

√
ρσz in order to keep a almost

always in the interval [0, 2
√
ρσz]. Together these conditions imply that var (at) < (ρ/9)σ2

z ,

which in turn bounds the share of σ̄2
y that can be contributed by time-varying ambiguity.

4 General framework

4.1 Environment & equilibrium

We consider economies with many individuals i ∈ I and we assume Markovian dynam-

ics. The econometrician’s model of the exogenous state s ∈ S is a Markov chain with
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transition probabilities p∗ (st). Agent i’s preferences are of the form (2.1) with primitives

(βi, u
i, {P i (st)}). Given preferences, it is helpful to write the rest of the economy in fairly

general notation that many typical problems can be mapped into. Consider a recursive

competitive equilibrium. The vector X collects endogenous state variables that are prede-

termined as of the previous date. Let Ai denote a vector of actions taken by agent i. One

action is the choice of consumption and we write ci (Ai) for agent i′s consumption bundle

when his action is Ai. Finally, let Y denote a vector of other endogenous variables not chosen

directly by any agent – this vector will typically include prices, but perhaps also variables

such as government transfers.

The technology and market structure are summarized by a set of reduced form functions

or correspondences. A recursive competitive equilibrium consists of action and value func-

tions Ai and V i, respectively, for all agents i ∈ I, as well as a function describing the other

endogenous variables Y . We also write A for the collection of all actions (Ai)i∈I and A−i for

the collection of all actions except that of agent i. All functions take as argument the state

(X, s) and satisfy

W i (A,X, s; p) = ui
(
ci
(
Ai
))

+ βiE
p
[
V i(x′ (X,A, Y (X, s) , s) , s′)

]
;i ∈ I (4.1)

Ai (X, s) = arg max
Ai∈Bi(Y (X,s),A−i,X,s)

min
p∈Pi(s)

W i (A,X, s; p) i ∈ I (4.2)

V i (X, s) = min
p∈Pi(s)

W i (A (X, s) , X, s; p) (4.3)

0 = G (A(X, s), Y (X, s) , X, s) (4.4)

The first equation simply defines the agent’s objective in state (X, s) if his belief over

the next exogenous state is p; the function x′ describes the transition of the endogenous

state variables. The second and third equation provide agent i’s optimal policy and value

function; Bi is the agent’s budget set correspondence. The function G summarizes all other

contemporaneous relationships such as market clearing, the government budget constraint

or the optimality conditions of firms. There are enough equations in (4.4) to determine all

endogenous variables Y .

The equations make explicit only the problems of individuals – agents who maximize

utility – since this is where ambiguity aversion enters directly. The problems of firms can

typically be subsumed into equation (4.4) and the transition function x′. In particular, this is

true for models in which firms maximize shareholder value, as in our stylized example above.

Indeed, shareholder value depends on state prices that can be taken to be elements of Y .

Firm actions can be elements of Y or X (the latter if they are state variables, for example

prices set for some time) and the firm value can be an element of X. Firms’ optimality
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conditions as a function of state prices (cf. (3.7) in our example) are contained in G and x′.

As in the example, ambiguity affects firms as it is reflected in prices.

We have explicitly split the endogenous variables into A, Y and X to clarify the effect of

the minimization step in (4.2) on the choice of A. If there is only one transition density p (s)

that is the same for all i ∈ I (and thus no minimization step), then the system can typically

be written as a single functional equation. We assume that this is possible here as well. Let

w denote the entire vector of endogenous variables chosen the period before the exogenous

state s is realized. It includes not only the endogenous state X, but also past actions. We

assume that, for given p, there is a function H such that the functional equation

Ep [H (w,W (w, s) ,W (W (w, s) , s′)) |s] = 0 (4.5)

has a solution

W (w, s) := (x′ (X,A (X, s) , Y (X, s) , s) , A (X, s) , Y (X, s))

Note that the state variable X is the only element of w that affects W since A and Y were

assumed to not directly affect what happens next period. The general notation here does

not fully exploit this feature of the problem. Nevertheless, writing things with one vector w

will make it easier to describe how the model is solved once the worst case belief is known.

4.2 Characterizing optimal actions & equilibrium dynamics

Characterizing equilibrium consists of two tasks. First, we need to find the endogenous

variables A and Y as functions of the state (X, s). Second, we want to describe the dynamics

of the system when the evolution of the state is driven by the econometrician’s transition

density p∗. The first task involves solving for worst case beliefs. For every state (X, s), there

is a measure p0i (X, s) that achieves the minimum for agent i in (4.2). Since the minimization

problem is linear in probabilities, we can replace P it by its convex hull without changing the

solution. The minimax theorem then implies that we can exchange the order of minimization

and maximization in the problem (4.2). It follows that the optimal action Ai is the same as

the optimal action if the agent held the probabilistic belief p0i (X, s) to begin with. In other

words, for every equilibrium of our economy, there exists an economy with expected utility

agents holding beliefs p0i that has the same equilibrium.

The observational equivalence just described suggests the following guess-and-verify

procedure to compute an equilibrium with ambiguity aversion:

1. guess the worst case beliefs p0i
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2. solve the model assuming that agents have expected utility and beliefs p0i (that is, find

the functions A and Y solving (4.1)-(4.4) given p0i or the function W solving (4.5))

3. compute the value functions V i

4. verify that the guesses p0i indeed achieve the minima in (4.3) for every i.

Turn now to the second task. Suppose we have found the optimal action functions A as

well as the response of the endogenous variables Y and hence the transition for the states X.

We are interested in stochastic properties of the equilibrium dynamics that can be compared

to the data. We characterize the dynamics in the standard way by calculating (or simulating)

moments of the economy under the true distribution of the exogenous shocks p∗. The only

unusual feature is that this true distribution need not coincide with the distributions p0i that

are used to compute optimal actions.

4.3 First order effects of uncertainty

We now specialize the process of belief sets P to capture random changes in confidence that

have first order effects. We assume that the family of distributions of the state next period

can be represented as

st+1 = Ep[st+1|st] + εst+1; p ∈ P (st) (4.6)

where the distribution of the innovation εst+1 is independent of p. The restriction here is that

there is no ambiguity about conditional moments other than the mean. At the same time,

the distribution of εs may depend on the state s. For example, there could be heteroskedastic

shocks.

One example for (4.6) is provided by the belief structure in our simple model (3.1)-(3.2).

In that model, ambiguity is about mean productivity, and confidence is a component of s

that is uncorrelated with productivity itself. Using the notation of this section, we have

s = (z, a)′ and

st+1 =

(
µp − 1

2
σ2
u

(1− ρa) ā+ ρaat

)
+

(
ut+1

εat+1

)
; µp ∈ [−at, at] (4.7)

Here only the first component of the conditional mean Ep [st+1|st] – the one corresponding

to productivity itself – depends on p through the mean shifter µp. In contrast, the evolution

of confidence is not ambiguous.

The example suggests a way to specify simple but rich families of beliefs that are

compatible with (4.6). Start from a vector u of fundamental shocks that people feel
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ambiguous about. In addition to productivity, this set might contain policy shocks. Next,

define a subvector a of s that has the same length as u to capture confidence about u. Finally,

parametrize the set of beliefs by an interval for each fundamental shock, centered at zero

and bounded by |a|. In principle, confidence could be different for different fundamental

shocks. One could imagine, for example, that ambiguity about fiscal and monetary policy is

correlated, but quite different from ambiguity about technology. This is because the flow of

news that drives confidence is likely to be different for those shocks.

Risk shocks and ambiguity

While the simple model is homoskedastic, we emphasize that (4.6) also allows for

nonlinear specifications that link changes in ambiguity and changes in volatility. For example,

consider a variation on (4.7) with stochastic volatility in productivity that feeds back to

agents’ perception of ambiguity. Let s =
(
z, σ2

z,t

)
st+1 =

(
µp − 1

2
σ2
z,t

(1− ρσ) σ̄2
z + ρσσ

2
z,t

)
+

(
σz,tε

z
t+1

εσt+1

)
; Rp

t =
(µp)2

2σ2
z,t

≤ η

where the parameters of the stochastic volatility process are chosen such that the variance

“almost never” becomes negative. With normal distributions, Rp
t represents the entropy of a

belief with mean µp relative to a benchmark belief with mean zero. The inequality says that

in periods of high turbulence (high σ2
z,t), there is also more ambiguity about the conditional

mean, reflected in a wider interval for that parameter.

4.4 Essentially linear economies

The computation and interpretation of equilibria is particularly simple if the conditional

mean of the exogenous state is linear under both the econometrician’s belief and the worst

case belief, that is,

Ep∗ [st+1|st] = s̄∗ + Φ∗(st − s̄∗) (4.8)

Ep0

[st+1|st] = s̄0 + Φ0(st − s̄0) (4.9)

For the econometrician’s belief, this is a common assumption. For the worst case belief, it

is an implicit restriction on the model that must be checked by guess-and-verify. However,

this type of guess is natural if the family of means Ep [st+1|st] is linear in st. For example,

in the example (4.7), it is natural to conjecture that the worst case mean is µp0 = −at. We

now describe how the above guess-and-verify method works and how the equilibrium can be

analyzed if (4.9) holds.
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Finding the equilibrium law of motion

For a given belief p0, step 2 of the procedure – finding the equilibrium law of motion –

amounts to finding a solution W (w, s) to (4.5). We look for an approximate solution by

linearization. Define the worst case steady state w̄ by

H
(
w̄0, w̄0, w̄0, s̄0, s̄0

)
= 0

Intuitively, this is where w would converge if the law of motion of the exogenous state were

(4.6) with the worst case conditional mean (4.9). The actual law of motion will typically

be different if the true conditional mean differs from the worst case. The worst case steady

state, just like the worst case belief, should be viewed only as a tool to describe agents’

responses to uncertainty.

Denote the deviation from the worst case steady state by ŵ0
t := wt− w̄0 and ŝ0

t := st− s̄0

and perform a first order Taylor expansion of H in (4.5) around this steady state to obtain

Ep0 [
α−1ŵ

0
t−1 + α0ŵ

0
t + α1ŵ

0
t+1 + δ0ŝ

0
t + δ1ŝ

0
t+1|st

]
= 0,

where α−1, α0, α1, δ0, δ1 are constants determined by equilibrium conditions. Together with

(4.9), this is a familiar system of expectational difference equations. We use time subscripts

to make the notation comparable to other such equations in the literature (as for example in

Christiano (2002)). The timing is that wt−1 contains endogenous variables determined one

period before the exogenous state st is realized and wt corresponds to W (wt−1, st), deter-

mined once st is known. Under the usual regularity conditions, the method of undetermined

coefficients delivers a solution

ŵ0
t = ρŵ0

t−1 + νŝ0
t . (4.10)

It is important to note that the econometrician’s transition density p∗ has not been used

to find this solution. This is because agents do not know the econometrician’s belief about

the data (we do not impose rational expectations). Instead, agents’ behavior is driven by

their worst case belief p0. Nevertheless, standard tools from solving expectational difference

equations under rational expectations can be used to find the above approximation to the

equilibrium law of motion W .

Step 3 of the guess-and-verify procedure computes agents’ value functions under the

worst case belief, V 0i say. Nonlinearity of the value functions could be important here; it is

thus useful to compute value functions using higher order approximations around (w̄0, s̄0).

Finally, step 4 verifies the guess by solving the minimization problem in (4.2) for the mean

Ep. In our applications, this amounts to checking monotonicity of a function. Indeed,
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suppose beliefs are given by (4.7) and the guess is µp = Ep0 [zt+1|st] = −at. It is verified by

checking whether for any X,A, s = (z, a) and a′, the function

Ṽ (z′) := V 0(x′ (X,A, Y (X, s) , s, z′, a′) , z′, a′)

is strictly increasing.

Characterizing equilibrium dynamics

Consider now the dynamics of the model from the perspective of the econometrician.

Agents’ response to ambiguity leads to actions and hence equilibrium outcomes given by

(4.10). At the same time, the exogenous state moves according to the equation in (4.8), in

which the steady state equals s̄∗. Suppose the volatility of the shocks is negligible. First

order effects of ambiguity imply that the resulting zero risk steady state is typically not

equal to (s̄0, w̄0). Instead, it is given by s̄ = s̄∗ and

w̄ − w̄0 = ρ
(
w̄ − w̄0

)
+ ν

(
s̄∗ − s̄0

)
(4.11)

Mechanically, the dynamic system behaves as if it has been displaced from (s̄0, w̄0) so as to

make the impulse response of wt take on the value w̄ in both the first and second period after

the shock. The condition in (4.11) states that when the economy’s time t initial condition is

equal to (wt−1 = w̄, st = s̄∗), the linearized equilibrium conditions generate a time t solution

W (wt−1, st) that maintains the economy at its initial condition w̄. Put differently, the zero

risk steady state reflects the response of agents who observe s̄∗ at date t and whose ambiguity

aversion leads them to act as if the exogenous state will converge to s̄0.

Denote by ŵt := wt − w̄ and ŝt := st − s̄∗ the deviations from the zero risk steady state.

Combining (4.10) and (4.11), those deviations follow the law of motion

ŵt = ŵ0
t + w̄0 − w̄

= ρ
(
ŵ0
t−1 + w̄0 − w̄

)
+ ν

(
ŝ0
t + s̄0 − s̄∗

)
= ρŵt−1 + νŝt

In other words, the actual movement of the endogenous variables around w̄ when displaced

by actual shocks ŝt is the same as their movement around the worst case steady state when

displaced by shocks ŝ0
t .
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5 An estimated model with ambiguity

This section describes the model that we use to describe the US business cycles. The model

is based on a standard medium scale DSGE model along the lines of Christiano et al. (2005)

and Smets and Wouters (2007). Many elements of our model are standard in the literature

(for example in Del Negro et al. (2007), Christiano et al. (2008), Schmitt-Grohe and Uribe

(2008) and Justiniano et al. (2011)). What is new is that decision makers are ambiguity

averse. We defer the description of the details of the model that are not related to ambiguity

to Appendix 6.1.

5.1 Setup: parametrizing ambiguity

Preferences reflect both ambiguity aversion and internal habit formation. As in Section

4, utility is defined over uncertain streams of consumption
−→
C =

(−→
C t

)∞
t=0

where date t

consumption
−→
C t : St → <2 includes two goods, the final good and leisure. Agent i′s felicity

function is:

ui
(−→
C t,
−→
C t−1

)
= log(Ct − θCt−1)− ψL

1 + σL
h1+σL
i,t .

where Ct denotes individual consumption of the final good, hi,t denotes a specialized labor

service supplied by the household and θ is controls internal habit formation.

Utility follows a recursion similar to (2.1):

Ut

(−→
C ; st

)
= ui

(−→
C t,
−→
C t−1

)
+ β min

p∈Pt(st)
Ep
[
Ut+1

(−→
C ; st, st+1

)]
, (5.1)

The sets of beliefs Pt (st) reflect ambiguity about the transitory productivity level Zt+1. The

technology shock Zt enters into the production of intermediate goods as described in detail

in Appendix 6.1. From the perspective of the econometrician, the dynamics for Zt is:

logZt = ρz logZt−1 + σzz
x
t . (5.2)

We parametrize the sets Pt (st) of one-step ahead conditional beliefs about future technology

by an exogenous component at that captures time-varying ambiguity:

logZt+1 = ρz logZt + σzz
x
t+1 + µt (5.3)

µt ∈ [−at,−at + 2|at|] (5.4)

at+1 = (1− ρa) a+ ρaat + σaa
x
t+1 (5.5)

where the shocks zx and ax are standard normal iid shocks. As in Section 4, we assume that
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the agent knows the evolution of at, but that he is not sure whether the conditional mean of

logZt+1 is really ρz logZt. Instead, the agent allows for a range of intercepts. If at is higher,

then the agent is less confident about the mean of logZt+1 – his belief set is larger.

A convenient feature shared by both the model here and the simple model of section 3 is

that it is fairly easy to see what the worst case scenario is, or which µt solves the minimization

problem in (5.1). Indeed, the environment (given by B, x′ u and G in the general formulation

of section 4) is such that, under expected utility and rational expectations, a first order

solution is known to provide a satisfactory approximation to the equilibrium dynamics.

Moreover, it can be checked that the value function, under expected utility, is increasing in

Zt. This monotonicity implies that the worst case scenario belief that solves the minimization

problem in (5.1) is given by the lower bound of the set [−at,−at + 2|at|]. Intuitively, it is

natural that the agents take into account that the worst case is always that the mean

of productivity innovations is as low as possible. According to the worst case belief p0,

technology thus evolves as

logZt+1 = ρz logZt + σzz
x
t+1 − at (5.6)

Choosing ambiguity parameters

Time variation in ambiguity is governed by the three parameters a, ρa and σa. Two

considerations matter for selecting a prior over these parameters. The first is technical: we

would like the interval for µ remains centered around zero which is true only if a remains

nonnegative. Unfortunately, nonnegativity is incompatible with a linear law of motion for

a. We thus require parameters such that the unconditional mean ā is more than three

unconditional standard deviations away from zero:

a ≥ 3
σa√

1− ρ2
a

. (5.7)

As a result, the probability that a becomes negative is less than .15%, and any negative as

will be small. Any a close to zero will thus represent a small set of belief that is close to

having a single mean close to zero - a very confident agent.

The second consideration is that we want to bound the lack of confidence by the measured

variance of the shock that agents perceive as ambiguous. In section 3.4 we argued that a

reasonable upper bound for a is given by 2
√
ρσz, where ρ ∈ [0, 1] is the share of the variability

in the data that agents attribute to ambiguity. When ρ = 1 we obtain the largest upper

bound, i.e. at ≤ 2σz. Again we cannot enforce the bound exactly, but assume that it is
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violated with probability .13%:

a+ 3
σa√

1− ρ2
a

≤ 2σz. (5.8)

In preliminary estimations of the model, we find that when the three ambiguity param-

eters a, ρa and σa are separately estimated the implied unconditional volatility of the at

process is so large that it implies very frequent negative realizations to at. We thus restrict

attention to the subset of the parameter space in which (5.7) is binding. It is helpful to

write a = nσz with n ∈ [0, 1] because of (5.8). We estimate two ambiguity parameters ρa

and n, together with the other parameters of the model, including σz. We can then compute

a = nσz and infer σa from (5.7).

5.2 Estimation and Data

The solution of our model with ambiguity follows the general steps described in section 4.4;

details are in Appendix 6.3. The linearity of the state space representation of the model and

the assumed normality of the shocks allow us to estimate the model using standard Bayesian

methods as discussed for example in An and Schorfheide (2007) and Smets and Wouters

(2007). We estimate the posterior distribution of the structural parameters by combining

the likelihood function with prior information. The likelihood is based on the following

vector of observable variables:

[
∆ log Y G

t ,∆ log It,∆ logCt, logLt, log πt, logRt,∆ logPI,t
]

where ∆ denotes the first difference operator. The vector of observables refers to data for

US on GDP growth rate, investment growth rate, consumption growth rate, log of hours per

capita, log of gross inflation rate, log of gross short term nominal interest rate and price of

investment growth rate. The sample period used in the estimation is 1984Q1-2010Q1. The

data sources are described in Appendix 6.4. In the state space representation we do not

allow for a measurement error on any of the observables.

We now discuss the priors on the structural parameters. The only parameter we calibrate

is the share of government expenditures in output which is set to match the observed

empirical ratio of 0.22. The rest of the structural parameters are estimated. The priors on

the parameters not related to ambiguity and thus already present in the standard medium

scale DSGE are broadly in line with those adopted in previous studies (e.g. Christiano et al.

(2010b) and Justiniano et al. (2011)). The prior for each of the autocorrelation parameter

of the shock processes is a Beta distribution with a mean of 0.5 and a standard deviation
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of 0.15. The prior distribution for the standard deviation of the 7 fundamental shocks is an

Inverse Gamma with a mean of 0.01 and a standard deviation of 0.01.

Regarding the ambiguity parameters, we follow the argument in section 5.1 and estimate

the two parameters n and ρa. The prior on the scaling parameter n is a Beta distribution

with mean 0.5 and standard deviation equal to 0.25. The prior is loose and it allows a wide

range of plausible values. The prior on ρa follows the pattern of the other autocorrelation

coefficients and is a Beta distribution with a mean of 0.5 and a standard deviation of 0.15.

The prior and posterior distributions are described in Table 2. The posterior estimates

of our structural parameters that are unrelated to ambiguity are in line with previous

estimations of such medium scale DSGE models (Del Negro et al. (2007), Smets and Wouters

(2007), Justiniano et al. (2011), Christiano et al. (2010b)). These parameters imply that

there are significant ‘frictions’ in our model: price and wage stickiness, investment adjustment

costs and internal habit formation are all substantial. The estimated policy rule is inertial

and responds strongly to inflation but also to output gap and output growth. Given that

these parameters have been extensively analyzed in the literature, we now turn attention to

the role of ambiguity in our estimated model.

5.3 Results: steady state

Ambiguity has important effects on both the steady state and the business cycle of our

model. Consider first the steady state. The posterior mode of the structural parameters of

ambiguity implies that the steady state level of ambiguity is

a = nσz = 0.963× 0.0045 = 0.00435,

which means that the agent is on average concerned about a one-step ahead future technology

level that is 0.435% lower than the true technology, normalized to 1. In the long run, the

agent expects the technology level to be Z∗, which solves:

logZ∗ = ρz logZ∗ − a.

For the estimated ρz = 0.955, we get that Z∗ = 0.903. Thus, the ambiguity-averse agent

expects under his worst case scenario evaluation the long run mean technology to be

approximately 9% lower than the true mean. Based on these estimates and using (5.7), we

can directly find that the standard deviation of the innovations to ambiguity is σa = 0.000405.

Our interpretation of the reason we find a relatively large a is the following: the estimation

prefers to have a large σa because the ambiguity shock provides a channel in the model that
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delivers dynamics that seem to be favored by the data. Indeed, as detailed in the next section,

the ambiguity shocks generate comovement between variables that enter in the observation

equation. This is a feature that is strongly present in the data and is not easily captured by

other shocks. Given the large role that the fit of the data places on the ambiguity shock,

the implied estimated σa is relatively large. Because of the constraint on the size of the

mean ambiguity in (5.7), this results also in a large required steady state ambiguity. Thus,

given also the estimated σz, the posterior mode for n is relatively large. The picture that

comes out of these estimates is that ambiguity is large in the steady state, it is volatile and

persistent.

The estimated amount of ambiguity has substantial effects on the steady state of en-

dogenous variables.6 To describe these effects we perform the following calculations.7 We fix

all the estimated parameters of the model at their posterior mode but change the standard

deviation of the transitory technology shock, σz, from its estimated value of σz = 0.0045 to

being equal to 0. When σz = 0, then the level of ambiguity a is also equal to 0.8 By reporting

the difference between the steady states with σz = σz > 0 and with σz = 0 we calculate the

steady state effect of fluctuations in transitory technology that goes through the estimated

amount of ambiguity. In Table 1 we present the net percent difference of some variables of

interest between the two cases, i.e. for a variable X we report 100[XSS(σz=σz), /XSS(σz=0)−1],

where XSS(σz=σz) and XSS(σz=0) are the steady states of variable X under σz = σz and

respectively σz = 0.9

Table 1: Steady state percent difference from zero fluctuations

Variable Welfare Output Capital Consumption Hours Nom.Rate

-13.1 -15 -14 -16.4 -14.8 -42.5

As evident from Table 1, the effect of fluctuations in the transitory technology shock

that goes through ambiguity is very substantial. Output, capital, consumption, hours are all

significantly smaller, by about 15%, when σz = σz. The nominal interest rate is smaller by

42%, which corresponds to the quarterly steady state interest rate being lower by 73 basis

points. Importantly, the welfare cost of fluctuations in this economy is also very large, of

6As described in Section 4.4, we refer to the steady state of our linearized model as a ‘zero risk steady
state’, in which the variances of the shocks only have an effect on the endogenous variables through ambiguity.

7The quantitative implications of the model are reported by evaluating parameters at the posterior mode.
8As evident from equation (5.8) or from the discussion of Section 3.4, since 0 ≤ a ≤ σz, then σz = 0

implies a = 0. Intuitively, when there is no observed variability in the zt process, then there cannot be any
perceived ambiguity about its one-step ahead mean.

9For welfare, we report the difference in terms of steady state consumption under σz = 0.
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about 13% of steady state consumption.

The steady state effects of fluctuations in technology that go through ambiguity are much

larger than what it is implied by the standard analysis featuring only risk, as for example

in Lucas (1987). By standard analysis we mean the strategy of shutting down all the other

shocks except the transitory technology and computing a second order approximation of the

model in which there is no ambiguity but σz = σz. For such a calculation, we find that the

welfare cost of business cycle fluctuations is around 0.01% of steady state consumption. The

effects on the steady state values of the other variables reported in Table 1 is negligible.

5.4 Results: business cycle fluctuations

In this section we analyze the role of time-varying ambiguity in generating business cycles.

We highlight the role of ambiguity by discussing three main points: a theoretical variance

decomposition of variables; a historical variance decomposition based on the smoothed shocks

and impulse responses experiments. We conclude by comparing our model implications for

forecast dispersion to survey data.

Variance decomposition

Table 3 reports the theoretical variance decomposition of several variables of interest.

For each structural shock we compute the share of the total variation in the corresponding

variable that is accounted by that shock at two horizons: one is at the business cycle

frequency which incorporates periodic components with cycles between 6 and 32 quarters,

as in Stock and Watson (1999). The second is at a long-run horizon which is the theoretical

variance decomposition obtained by solving the dynamic Lyapunov equation characterizing

the law of motion of the model. These two shares are reported in the first two rows of

Table 3. In the third row, we also report for comparison the variance decomposition in an

estimated model without ambiguity.

At business cycle frequency the ambiguity shock accounts for about 27% of GDP vari-

ability. It simultaneously explains a large share of real variables such as consumption (52%),

investment (14%), hours (31%) and less for inflation (2%) and the nominal interest rate (7%).

The long-run theoretical decomposition implies that the shock is even more important. It

explains about 55% of GDP variability and it is a significant driver of the other variables:

consumption (62%), investment (51%), hours (52%), inflation (29%) and the nominal interest

rate (38%). Based on these two sets of numbers we can conclude that the ambiguity shock

is an important factor of business cycle fluctuations while also having a low-frequency

component that magnifies its role in the total variance decomposition. The simultaneous

large shares of variation explained by ambiguity suggest that time-variation in the agents’
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confidence about technology shocks can be a unified source of macroeconomic variability.

For comparison, we can analyze the estimated model without ambiguity. The business

cycle frequency variance decomposition for a model that sets the level of ambiguity to zero,

i.e. n = 0, is reported in the third row of Table 3. There the largest share of GDP variability

is explained by the marginal efficiency of investment shock, confirming the results of many

recent studies, such as Christiano et al. (2010b) and Justiniano et al. (2011). Introducing

time-varying ambiguity reduces the importance of the other shocks, except for the transitory

technology shock Zt, in explaining the decomposition of the level of observed variables. The

reduction in effects are especially strong for the marginal efficiency of investment and growth

rate shocks. With ambiguity, the shock Zt becomes more important. The reason is that

ambiguity enters in the model indirectly through the variance of σz. Thus, with ambiguity

the estimated variance of Zt affects the likelihood evaluation through two channels: one

direct, through the shock Zt, and one indirect through the variance of the shock at.

Impulse responses

We now turn to analyzing the impulse responses for the ambiguity shock in the estimated

model. As suggested already in the discussion, an increase in ambiguity generates a recession,

in which hours worked, consumption and investment fall. It is also worth emphasizing that

the impulse response is symmetric: a fall in ambiguity, compared to steady state, generates

an economic boom in which variables comove positively. The fact that this shock predicts

comovement between these variables is an important feature that helps explain why the

estimation prefers in the likelihood maximization such a shock.

Before we proceed further, let us define the excess return on capital. The return on

capital RK
t is defined in equation (6.18) in Appendix. The ex-post excess return ext+1 is

then defined as the difference between the realized return on capital and the nominal interest

rate, i.e. ext+1 := RK
t+1−Rt. As detailed in Appendix, from the two intertemporal optimality

conditions with respect to capital and bonds, it follows that in the linearized equilibrium,

Rt equals Ep0

t R
K
t+1. Thus, under the worst case expectations, Ep0

t ext+1 = 0. However, the

average realized RK
t+1 will be in general different than Ep0

t R
K
t+1. The reason is that the former

is obtained under the true data generating process in which the worst case mean at does not

materialize on average in the realization of zt+1, while Ep0

t R
K
t+1 represents the average RK

t+1

if at would materialize.

Figure 3 plots the responses to a one standard deviation increase in ambiguity for the

estimated model.10 On top of the mentioned comovement in macro aggregates, the model

also predicts a fall in the price of capital, a fall in the real interest rate and a countercyclical

10The impulse response is plotted as percentage deviations from the ‘zero risk steady state’ of the model.
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ex-post excess return.11

We briefly explain these results. The main intuition in understanding the effect of the

ambiguity shock is to relate it to its interpretation of a news shock. An increase in ambiguity

makes the agent act under a more cautious forecast of the future technology. From an

outside observer that analyzes the agent’s behavior, it seems that this agent acts under

some negative news about future productivity. This negative news interpretation of the

increase in ambiguity helps explain the mechanics and economics of the impulse response.

As described in detail in Christiano et al. (2008) and Christiano et al. (2010a), in a rational

expectations model, a negative news about future productivity can produce a significant

bust in real economy while simultaneously generating a fall in the price of capital. This

result is reflected in our impulse response. In our model, the negative news is on average not

materialized, because nothing changed in the true process for technology, as shown in the

first panel of Figure 3. However, because of the persistent effect of ambiguity, the economy

continues to go through a prolonged recession.

The ex-post excess return, defined above as ext+1, is positive following the period of the

initial increase in ambiguity and it is positive persistently along the path. The explanation for

the countercyclical excess returns is that the negative expectation about future productivity

does not materialize in the true data generating process, so ex-post capital pays more. Thus

along this path of higher ambiguity, RK
t+1 is systematically higher than Ep0

t R
K
t+1. The ex-post

excess return reflects a rational uncertainty premium that ambiguity averse agents require

to invest in the uncertain asset.

Historical shock decomposition

We conclude the description of the role of ambiguity shocks in business cycle fluctuations

by discussing the historical variance decomposition and the smoothed shocks that result from

the estimated model. In Figure 1 we plot the Kalman filter estimate of the ambiguity shock

at, as a deviation from its steady state value. The figure first shows that ambiguity is very

persistent. After an initial increase around 1991, which also corresponds to an economic

downturn, the level of ambiguity was low and declining during the 90’s, reaching its lowest

values around 2000. It then increases back to levels close to steady state until 2005. Following

a few years of relatively small upward deviations from its mean, ambiguity spikes starting

in 2008. Ambiguity rapidly increases, so that throughout 2008 it doubles over each quarter.

Ambiguity reaches its peak in 2008Q4 when it is 8 times larger than its 2008Q1 value. The

figure shows a dotted vertical line at 2008Q3, which corresponds to the Lehman Brothers

bankruptcy. Our model interprets the period following 2008Q1 as one in which ambiguity

11By price of capital we mean the Tobin’s marginal q. For the equation determining the evolution of qt in
the scaled version of our economy, see equation (6.20) in Appendix.
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about future productivity has increased dramatically.

Based on these smoothed path of ambiguity shocks we can now calculate what the model

implies for the historical evolution of endogenous variables. In Figure 2 we compare, as

deviations from steady state, the observed data with the counterfactual historical evolution

for the growth rate of output, consumption, investment and the level of hours worked when

the ambiguity shock is the only shock active in the model economy. The ambiguity shock

implies a path for variables that comes close to matching the data, especially for output,

consumption and hours. The model implied path of investment is less volatile but the

correlation with the observed data is still significantly large. It is interesting that the

ambiguity shock helps explain some of the business cycle frequency of these variables but

also the low-frequency component as present in hours worked.12

The ambiguity shock generates the three large recessions observed in this sample. Indeed,

if we analyze the smoothed path of the shock in Figure 2, the time-varying ambiguity

helps explain the recession of the 1991, the large growth of the 1990’s (as a period of

low ambiguity), and then the recession of 2001. Given that the estimated ambiguity still

continues to rise through 2005, the model misses by predicting a more prolonged recession

than in the data, where output picks up quickly. The rise in ambiguity in 2008 predicts

in the model that output, investment and consumption fall. The model matches the fall in

consumption, but fails to generate a large fall in investment. It is important to highlight

that the ambiguity shock implies that in the model consumption and investment comove.

Indeed, in the historical decomposition, recessions are times when both of these variables

fall. This is an important effect because standard shocks that have been recently found to be

quantitatively important (as for example in Christiano et al. (2010b) and Justiniano et al.

(2011)), such as the marginal efficiency of investment or intertemporal preference shocks

imply a weak, and most often a negative comovement between these two components.

Survey dispersion data

Our estimation treats confidence about productivity as a latent variable with its range

restricted by the measured volatility of productivity. The results suggest that time variation

in confidence is an important source of observed economic fluctuations. We provide external

validation for our model by comparing model-implied confidence to popular measures of

confidence based on the dispersion of survey forecasts. In particular, we look at data from

the Survey of Professional Forecasters on one quarter ahead projections for Q/Q real GDP

growth and inflation, expressed in annualized percentage points. Our measure of dispersion

is the interquartile range (the difference between the 75th percentile and the 25th percentile).

12Usually the low-frequency movement in hours worked is attributed to exogenous labor supply shocks,
corresponding to shocks to ψL in our model. See for example Justiniano et al. (2011).
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We also construct model-implied measures of confidence about GDP growth and inflation.

Agents’ belief sets about one-quarter-ahead technology shocks are given by (5.3)-(5.5).

Agents also know the structure of the economy, so that their set of forecast means about any

variable Xt+1 can be read off the (linearized) solution of the model. Our measure of (lack

of) confidence about Xt+1 is the range of forecasts, RtXt+1, implied by the belief set:

RtXt+1 :=
∣∣EatXt+1 − E−atXt+1

∣∣ = 2|Eat(Xt+1|st = 0)|, (5.9)

where Eat(Xt+1|st = 0) denotes the conditional expectation of Xt+1 evaluated at at and at

values of the other state variables, denoted here by st, equal to zero. The latter equality in

(5.9) follows from the linearity of the law of motion for Xt+1. Finally, we use the absolute

value operator to maintain a positively valued range.

Table 4 reports summary statistics. The first column shows that the mean range of

forecasts is very similar in magnitude to the SPF interquartile range for both inflation and

real GDP growth. The second column says that the variability of the range of forecasts is

similar to the SPF interquartile range for inflation, while it is about half the SPF interquartile

range for growth. The third column shows the correlation coefficient between the measures:

it is significantly positive for both inflation and growth. Figure 4 plots the range of forecasts

implied by the belief set (solid line) against the SPF interquartile range (dashed line). The

top panel shows real GDP growth and the bottom one shows inflation. The main disconnect

between the model and the data is the high SPF real growth forecast dispersion in the late

1980s. Otherwise, the time path generated by the ambiguity shock at matches qualitatively

the alternative measures of confidence obtained from survey forecasts.
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M. Uribe (2010): “Risk Matters: The Real Effects of Volatility Shocks,” The American

Economic Review, forthcoming.

Fernández-Villaverde, J. and J. Rubio-Ramirez (2007): “Estimating Macroeco-

nomic Models: A Likelihood Approach,” Review of Economic Studies, 74, 1059–1087.

Fernández-Villaverde, J. and J. Rubio-Raḿırez (2010): “Macroeconomics and
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Figure 1: Estimated ambiguity shock
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Figure 2: Historical shock decomposition
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Figure 3: Impulse response: positive shock to ambiguity

10 20 30 40
−1

−0.5

0

0.5

1
technology

pe
rc

en
t d

ev
iat

ion
 fr

om
 ss

10 20 30 40
2

4

6

8

ambiguity

10 20 30 40

−1.5

−1

−0.5

GDP

10 20 30 40

−1.2

−1

−0.8

−0.6

Consumption

pe
rc

en
t d

ev
iat

ion
 fr

om
 ss

10 20 30 40

−3

−2

−1

Investment

10 20 30 40
−1.4

−1.2

−1

−0.8

−0.6

−0.4

Hours worked

10 20 30 40
0

2

4

6

8

ex−post excess return

pe
rc

en
t d

ev
iat

ion
 fr

om
 ss

10 20 30 40

−0.04

−0.02

0

0.02

price of capital

10 20 30 40

1.2

1.3

1.4

Net real interest rate 

An
nu

ali
ze

d,
 p

er
ce

nt

Figure 4: Model implied and SPF range of forecasts
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Table 2: Priors and Posteriors for structural parameters

Parameter Description Prior Posterior

Typea Mean St.dev Mode [ .5 , .95]b

α Capital share B 0.4 0.02 0.322 0.291 0.353
δ Depreciation B 0.025 0.002 0.0237 0.0206 0.0279
100(β−1 − 1) Discount factor G 0.3 0.05 0.353 0.2586 0.4728
100(µ∗ε − 1) Growth rate N 0.4 0.1 0.5 0.4 0.6
100(µΥ − 1) Price of inv. growth N 0.4 0.1 0.46 0.43 0.49
100(π̄ − 1) Net inflation N 0.6 0.2 0.85 0.66 1.17
ξp Calvo prices B 0.5 0.1 0.743 0.681 0.841
ξw Calvo wages B 0.5 0.1 0.938 0.912 0.953
S
′′

Investment adj. cost G 10 5 13.92 6.157 27.962
ϑ Capacity utilization G 2 1 1.959 0.433 4.279
aπ Taylor rule inflation N 1.7 0.3 2.09 1.771 2.473
ay Taylor rule output N 0.15 0.05 0.059 0.013 0.188
agy Taylor rule growth N 0.15 0.05 0.209 0.116 0.294
ρR Taylor rule smoothing B 0.5 0.15 0.808 0.751 0.842
λf − 1 SS price markup N 0.2 0.05 0.22 0.134 0.314
λw − 1 SS wage markup N 0.2 0.05 0.135 0.069 0.22
θ Internal habit B 0.5 0.1 0.661 0.535 0.729
σL Disutility of labor G 2 1 1.886 1.64 2.288
n Level ambiguity B 0.5 0.25 0.963 0.827 0.999
ρz Transitory technology B 0.5 0.15 0.955 0.928 0.974
ρµ∗ε Persistent technology B 0.3 0.15 0.132 0.014 0.509
ρζ Efficiency of investment B 0.5 0.15 0.494 0.351 0.722
ρλf Price mark-up B 0.5 0.15 0.907 0.62 0.961
ρg Government spending B 0.5 0.15 0.954 0.923 0.977
ρµΥ

Price of investment B 0.5 0.15 0.957 0.929 0.983
ρa Level Ambiguity B 0.5 0.15 0.96 0.936 0.981
σz Transitory technology IG 0.01 0.01 0.0045 0.0041 0.0058
σµ∗ε Persistent technology IG 0.01 0.01 0.0044 0.0029 0.0064
σζ Efficiency of investment IG 0.01 0.01 0.0183 0.016 0.0231
σλf Price mark-up IG 0.005 0.01 0.0102 0.007 0.033
σg Government spending IG 0.01 0.01 0.0195 0.017 0.0236
σµΥ

Price of investment IG 0.01 0.01 0.003 0.0026 0.0034
σεR Monetary policy IG 0.005 0.01 0.0015 0.0013 0.0017

a B refers to the Beta distribution, N to the Normal distribution, G to the Gamma distribution,

and IG to the Inverse-gamma distribution.
b Posterior percentiles obtained from 2 chains of 200,000 draws generated using a Random

walk Metropolis algorithm. We discard the initial 50,000 draws and retain one out of every 5

subsequent draws.
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Table 3: Theoretical variance decomposition

Shock\Variable Output Cons. Invest. Hours Inflation Int. rate

TFP Ambiguity (at) 27.2 52.1 14.4 31.1 2 7.4
(55.4) (62.7) (51.4) (52.1) (29.6) (38.5)
[-] [-] [-] [-] [-] [-]

Transitory technology (zt) 12.1 13.5 9.6 2.5 23.8 15.9
(5.5) (5) (5.7) (6.5) (15.2) (10.5)
[4.1] [7.3] [3.1] [3.1] [17.2] [15.4]

Persistent technology (µ∗ε,t) 5.9 5.7 5.3 10.4 5.1 1.9
(8.1) (7.1) (8.4) (9.3) (7.7) (6.7)
[18.8] [37.4] [12.8] [29.8] [14.2] [5.9]

Government spending (gt) 3.4 2.1 0.22 3.3 0.75 1.4
(0.6) (0.3) (0.1) (0.8) (0.5) (0.8)
[4.8] [4.1] [0.3] [3.9] [0.3] [0.7]

Price mark-up (λf,t) 13.1 12.5 13.3 14.4 61.6 46.8
(8.4) (8.6) (8.4) (8.9) (32.1) (18.9)
[16.2] [27.2] [14.2] [15.2] [65.8] [58.2]

Monetary policy (εR,t) 3.6 5.7 2.3 4.1 1 13.1
(1.7) (1.8) (1.7) (1.8) (1.2) (6.3)
[4.1] [8.8] [2.1] [4] [0.3] [11.4]

Price of investment (µΥ,t) 1.7 0.5 2.3 1.6 0.3 0.7
(5.1) (4.2) (6.1) (5) (3.3) (4.4)
[2.2] [1.3] [2.2] [1.8] [0.1] [0.4]

Efficiency of investment (ζt) 32.8 7.6 52.5 32.3 5.3 12.6
(15) (10.1) (18) (15.4) (10.3) (13.9)
[49.6] [13.8] [65.1] [42.1] [2] [7.7]

Note: For each variable, the first two rows of numbers refer to the variance decomposition
in the estimated model with ambiguity. The first row is the business cycle frequency and
the second row is the long-run decomposition. The third row, in squared brackets, refers to
the business cycle frequency decomposition in the estimated model without ambiguity.

Table 4: Model implied and SPF range of forecasts

Variable Mean St.dev Correlation

Inflation SPF 0.74 0.27 -
Inflation Model 0.82 0.24 0.44 (0.27, 0.58)

Real growth SPF 1.12 0.43 -
Real growth Model 0.96 0.27 0.25 (0.06, 0.42)

Note: The correlation is between the SPF and model implied range of forecasts. In
parantheses we report the 95% confidence interval.
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6 Appendix

6.1 Structure of estimated model

In this section we describe the structure of the estimated model in Section 5.

The goods sector

The final output in this economy is produced by a representative final good firm that

combines a continuum of intermediate goods Yj,t in the unit interval by using the following

linear homogeneous technology:

Yt =

[∫ 1

0

Yj,t
1

λf,t dj

]λf,t
,

where λf,t is the markup of price over marginal cost for intermediate goods firms. The

markup shock evolves as:

log(λf,t/λf ) = ρλf log(λf,t−1/λf ) + λxf,t,

where λxf,t is i.i.d.N(0, σ2
λf

). Profit maximization and the zero profit condition leads to the

following demand function for good j:

Yj,t = Yt

(
Pt
Pj,t

) λf,t
λf,t−1

(6.1)

The price of the final good is:

Pt =

[∫ 1

0

P
1

1−λf,t
j,t dj

](1−λf,t)

.

The intermediate good j is produced by a price-setting monopolist using the following

production function:

Yj,t = max{ZtKα
j,t (εtHj,t)

1−α − Φε∗t , 0}, (6.2)

where Φ is a fixed cost and Kj,t and Hj,t denote the services of capital and homogeneous

labor employed by firm j. Φ is chosen so that steady state profits are equal to zero. The

intermediate goods firms are competitive in factor markets, where they confront a rental

rate, Ptr̃
k
t , on capital services and a wage rate, Wt, on labor services. The variable εt is a

technology shock with a covariance stationary growth rate. The variable Zt is a transitory

technology shock. It is stationary from the perspective of the econometrician, but it is

perceived to be ambiguous by agents, as described in Section 5.1.
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The fixed costs grow with the exogenous variable, ε∗t :

ε∗t = εtΥ
( α

1−α t),

with Υ > 1. If fixed costs were not growing, then they would eventually become irrelevant.

We specify that they grow at the same rate as ε∗t , which is the rate at which output grows.

Note that the growth of ε∗t , i.e. µ∗ε,t ≡ ∆ log(ε∗t ), exceeds that of εt, i.e. µε,t ≡ ∆ log(εt) :

µ∗ε,t = µε,tΥ
α

1−α .

This is because we have another source of growth in this economy, in addition to εt. In

particular, we posit a trend decrease in the price of investment. We discuss this process as

well as the representation for Zt further below. The stochastic growth rate evolves as:

log(µ∗ε,t/µ
∗
ε) = ρµ∗ε log(µ∗ε,t−1/µ

∗
ε) + µx∗ε,t,

where µx∗ε,t is i.i.d.N(0, σ2
µ∗ε

) and µ∗ε is the steady state growth rate of the economy.

We now describe the intermediate good firms pricing opportunities. Following Calvo

(1983), a fraction 1− ξp, randomly chosen, of these firms are permitted to reoptimize their

price every period. The other fraction ξp cannot reoptimize and set Pit = π̄Pi,t−1, where π̄

is steady state inflation. The jth firm that has the opportunity to reoptimize its price does

so to maximize the expected present discounted value of the future profits:

Ep0

t

∞∑
s=0

(βξp)
s λt+s
λt

[
Pj,t+sYj,t+s −Wt+sHj,t+s − Pt+sr̃kt+sKj,t+s

]
, (6.3)

subject to the demand function (6.1), where λt is the marginal utility of nominal income for

the representative household that owns the firm. It should be noted that the expectation

operator in these equations is the expectation under the worst case belief p0. This is because

state prices in the economy reflect ambiguity.

There are perfectly competitive “employment agencies” that aggregate the households

specialized labor inputs hi,t into a homogeneous labor service according to the following

function:

Ht =

[∫ 1

0

(hi,t)
1
λw di

]λw
,

where λw is the constant markup of wages over the household’s marginal rate of substitution.

These employment agencies rent the homogeneous labor service Ht to the intermediate goods

firms at the wage rate Wt. In turn, these agencies pay the wage Wi,t to the household
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supplying labor of type i. Similarly as for the final goods producers, profit maximization and

the zero profit condition lead to the following demand function for labor input of type i:

hi,t = Ht

(
Wt

Wi,t

) λw
λw−1

. (6.4)

We follow Erceg et al. (2000) and assume that the household is a monopolist in the supply

of labor by providing hi,t and it sets its nominal wage rate, Wi,t. It does so optimally with

probability 1 − ξw and with probability ξw is does not reoptimize its wage. In case it does

not reoptimize, it sets the wage as:

Wi,t = π̄µ∗εWi,t−1.

Households

The household accumulates capital subject to the following technology:

K̄t+1 = (1− δ)K̄t +

[
1− S

(
ζt

It
It−1

)]
It, (6.5)

where ζt is a disturbance to the marginal efficiency of investment with mean unity, K̄t is the

beginning of period t physical stock of capital, and It is period t investment. The function S

reflects adjustment costs in investment. The function S is convex, with steady state values

of S = S ′ = 0, S ′′ > 0. The specific functional form for S(.) that we use is:

S

(
ζt

It
It−1

)
= exp

[√
S ′′

2

(
ζt

It
It−1

− 1

)]
+ exp

[
−
√
S ′′

2

(
ζt

It
It−1

− 1

)]
− 2. (6.6)

The marginal efficiency of investment follows the process:

log(ζt) = ρζ log(ζt−1) + ζxt ,

where ζxt is i.i.d.N(0, σ2
ζ ).

Households own the physical stock of capital and rent out capital services, Kt, to a

competitive capital market at the rate Ptr̃
k
t , by selecting the capital utilization rate ut:

Kt = utK̄t.

Increased utilization requires increased maintenance costs in terms of investment goods per

unit of physical capital measured by the function a (ut) . The function a(.) is increasing and
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convex, a (1) = 0 and ut is unity in the nonstochastic steady state. We assume that a′′ (u) =

ϑrk, where rk is the steady state value of the rental rate of capital. Then, a′′ (u) /a′ (u) = ϑ

is a parameter that controls the degree of convexity of utilization costs. In the linearized

equilibrium, only ϑ matters for dynamics. The specific form for a (ut) that we use is

a(ut) =
1

2
rkϑu2

t + rk(1− ϑ)ut + rk(
1

2
ϑ− 1). (6.7)

The ith household’s budget constraint is:

PtCt + Pt
It

µΥ,tΥt
+Bt = Bt−1Rt−1 + PtKt[r̃

k
t ut − a(ut)Υ

−t] +Wi,thi,t +Xi,t − TtPt (6.8)

where Bt are holdings of government bonds, Rt is the gross nominal interest rate, Xi,t is

the net cash inflow from participating in state contingent securities at time t and Tt is net

lump-sum taxes. We assume that the cost in consumption units of one unit of investment

goods is (ΥtµΥ,t)
−1
. The stationary component of the relative price of investment follows:

log(µΥ,t) = ρµΥ
log(µΥ,t−1) + µxΥ,t,

where µxΥ,t is i.i.d.N(0, σ2
µΥ

).

The government

The market clearing condition for this economy is:

Ct +
It

µΥ,tΥt
+Gt = Y G

t , (6.9)

where Gt denotes government expenditures and Y G
t is our definition of measured GDP, i.e.

Y G
t ≡ Yt − a(ut)Υ

−tKt. We model government expenditures as Gt = gtε
∗
t , where gt is a

stationary stochastic process. The fiscal policy is Ricardian. The government finances Gt by

issuing short term bonds Bt and adjusting lump sum taxes Tt. The law of motion for gt is:

log(gt/g) = ρg log(gt−1/g) + gxt ,

where gxt is.i.d.N(0, σ2
g).

The nominal interest rate Rt is set by a monetary policy authority according to:

Rt

R
=

(
Rt−1

R

)ρR [(πt
π̄

)aπ (Y G
t

Y ∗t

)ay ( Y G
t

µ∗εY
G
t−1

)agy]1−ρR

exp(εR.t),

where εR.t is a monetary policy shock i.i.d.N(0, σ2
εR

), π̄ is the constant inflation target, R is
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the steady state nominal interest rate target equal to π̄µ∗ε/β and Y ∗t is the level of output

along the deterministic growth path.

6.2 Equilibrium conditions for the estimated model

Here we describe the equations that characterize the equilibrium of the estimated model in

Section 5. To solve the model, we first scale the variables in order to induce stationarity. As

mentioned in section 6.1, the model has two sources of growth: a stochastic trend in neutral

technology and a deterministic trend in the price of investment goods. The real variables

are scaled as follows:

ε∗t = εtΥ
( α

1−α t), ct =
Ct
ε∗t
, yt =

Yt
ε∗t
, gt =

Gt

ε∗t

kt+1 =
K̄t+1

ε∗tΥ
t
, it =

It
ε∗tΥ

t
, λz,t = λtPtε

∗
t .

where λt is the Lagrange multiplier on the household budget constraint in (6.8). The scaling

here indicates that because of the deterministic trend in the price of investment goods, the

capital stock and investment grow at a faster rate than output and consumption.

Let µt be the Lagrange multiplier on the capital accumulation equation in (6.5) and

define the nominal price of capital expressed in units of consumption goods as

QK̄,t =
µt
λt

Price variables are then scaled as:

qt =
QK̄,t

Υ−tPt
, rkt =

r̃kt
Υ−t

, w̃t =
Wt

ε∗tPt

We will also make use of other scaling conventions:

µ∗ε,t = µε,tΥ
α

1−α , p∗t = (Pt)
−1

 1∫
0

P

λf,t
1−λf,t
j,t dj


1−λf,t
λf,t

, w∗t = (Wt)
−1

 1∫
0

W
λw

1−λw
i,t di


1−λw
λw

,

where the index i refers to households and the index j to monopolistically competitive firms.

We now present the nonlinear equilibrium conditions characterizing the model, in scaled

form. The expectation operator in these equations, Ep0

t , is the one-step ahead conditional

expectation under the worst case belief p0. The latter is described by equation (5.6).
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Goods production 1. the real marginal cost of producing one unit of output, mt:

mt =

(
1

1− α

)1−α(
1

α

)α (rkt )α w̃1−α
t

Zt
(6.10)

2. marginal cost must also satisfy another condition: namely, that mt must equal the cost

of renting one unit of capital divided by the marginal productivity of capital (the same is

true for labor):

mt =
rkt

αZt

(
Υ
µ∗ε,tlt

kt

)1−α , (6.11)

where we used that the labor to capital ratios will be the same for all firms. The aggregate

homogeneous labor, lt, can be written in term of the aggregate, ht, of household differentiated

labor, hi,t:

lt :=

1∫
0

Hj,tdj = (w∗t )
λw
λw−1 ht, where ht :=

1∫
0

hi,tdi.

3. Conditions associated with Calvo sticky prices:

p∗t =

(1− ξp)
(
Kp,t

Fp,t

) λf,t
1−λf,t

+ ξp

(
π̄

πt
p∗t−1

) λf,t
1−λf,t


1−λf,t
λf,t

(6.12)

Kp,t = λf,tλz,tytmt + βξpE
p0

t

(
π̄

πt+1

) λf,t+1
1−λf,t+1

Kp,t+1 (6.13)

Fp,t = λz,tyt + βξpE
p0

t

(
π̄

πt+1

) 1
1−λf,t+1

Fp,t+1 (6.14)

Kp,t = Fp,t

1− ξp
(
π̄
πt

) 1
1−λf,t

(1− ξp)


1−λf,t

(6.15)

Households 1. Marginal utility of consumption (FOC wrt ct):

λz,t =
µ∗ε,t

ctµ∗ε,t − bct−1

− Ep0

t

bβ

ct+1µ∗ε,t+1 − bct
(6.16)

2. Capital accumulation decision (FOC wrt kt+1):

λz,t = Ep0

t

β

πt+1µ∗ε,t+1

λz,t+1R
k
t+1 (6.17)
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where the return on capital is defined as:

Rk
t =

utr
k
t − a(ut) + (1− δ)qt

Υqt−1

πt (6.18)

and physical capital accumulates following:

kt+1 =
(1− δ)kt

Υµ∗ε,t
+

[
1− S

(
ζtitµ

∗
ε,tΥ

it−1

)]
it (6.19)

3. Investment decision (FOC wrt it):

λz,t
1

µΥ,t

= λz,tqt

[
1− S

(
ζtitµ

∗
ε,tΥ

it−1

)
− S ′

(
ζtitµ

∗
ε,tΥ

it−1

)
ζtitµ

∗
ε,tΥ

it−1

]
+ (6.20)

+ βEp0

t

λz,t+1

µ∗ε,t+1Υ
qt+1S

′
(
ζtitµ

∗
ε,tΥ

it−1

)
ζt+1

(
it+1µ

∗
ε,t+1Υ

it

)2

.

4. Bond decision (FOC wrt Bt):

λz,t = Ep0

t

β

πt+1µ∗ε,t+1

λz,t+1Rt (6.21)

5. Conditions associated with Calvo sticky wages:

w∗t =

[
(1− ξw)

(
ψLKw,t

w̃tFw,t

) λw
1−λw(1+σL)

+ ξw

(
π̄µ∗ε
πw,t

w∗t−1

) λw
1−λw

] 1−λw
λw

(6.22)

πw,t = πtµ
∗
ε,t

w̃t
w̃t−1

(6.23)

Fw,t = lt
λz,t
λw

+ βξw (µ∗ε)
1

1−λw Ep0

t

(
1

πw,t+1

) λw
1−λw π̄

1
1−λw

µ∗ε,t+1πt+1

Fw,t+1 (6.24)

Kw,t = l1+σL
t + βξwE

p0

t

(
π̄

πw,t+1

µ∗ε

) λw
1−λw

(1+σL)

Kw,t+1 (6.25)

Kw,t = w̃tFw,t
1

ψL

1− ξw
(
π̄µ∗ε
πw,t

) 1
1−λw

1− ξw


1−λw(1+σL)

(6.26)

6. Capital utilization (FOC wrt ut) :

rkt = a′(ut) (6.27)
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Monetary policy 1. Taylor rule

Rt

R
=

(
Rt−1

R

)ρR [(πt
π̄

)aπ (yGt
yG

)ay ( yGt µ∗ε,t
yGt−1µ

∗
ε

)agy]1−ρR

exp(εR.t) (6.28)

Resource constraint 1. Production function:

(p∗t )
λf,t
λf,t−1

{
Zt

(
utkt
Υµ∗ε,t

)α
l1−αt − Φ

}
= yt (6.29)

2. Resource constraint:

yt = ct +
it
µΥ,t

+ gt +
a(ut)kt
µΥ,tΥµ∗ε,t

(6.30)

3. Definition of GDP:

yGt = ct +
it
µΥ,t

+ gt (6.31)

The 22 endogenous variables to be determined are:

ct, it, yt, y
G
t , lt, kt+1, ut, λz,t, qt, r

k
t , R

k
t ,mt, Rt, p

∗
t , πt, Fp,t, Kp,t, w

∗
t , Fw,t, Kw,t, w̃t, πw,t.

We have listed 22 equations above, from (6.10) to (6.31).

6.3 Solution method

Here we describe the solution method for the estimated model presented in Section 5.

The logic follows the general formulation in section 4.4, where we show how we solve

essentially linear economies with ambiguity aversion. The solution involves the following

procedure. First, we solve the model as a rational expectations model in which the worst

case scenario expectations are correct on average. The equations describing the equilibrium

conditions under these expectations were presented in the Appendix 6.2. Second, we take

the equilibrium decision rules formed under ambiguity and then characterize the dynamics

under the econometrician’s law of motion for productivity described in equation (5.2).

Let wt denote the endogenous variables and st the exogenous variables. For notational

purposes, split the vector st into the technology shock zt := logZt, the ambiguity variable

at and the rest of the exogenous variables, s̃t, expressed in logs, of size n. In the case of our
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estimated model n = 6. Under the worst case belief

zt+1 = ρzzt + zxt+1 − at (6.32)

We can summarize our procedure for finding the equilibrium dynamics in the following steps:

1. Find the deterministic ‘worst case steady state’. Here we take the steady state values

of exogenous variables s̄0. This vector includes setting at = a, s̃t = s̃0
n×1 and finding the

steady state technology level of the process in (6.32). The latter is

zo = − a

1− ρz

Using s̄0 := (s̃0
n×1, z

o, a) one can compute the ‘worst case steady state’ of the endogenous

variables. This can be done by analytically solving the equilibrium conditions presented in

section 6.2 evaluated at a deterministic steady state s̄0. Denote these steady state values of

these endogenous variables as a vector w̄0
m×1.

2. Linearize the model around the ‘worst case steady state’. Denote the deviation from

the worst case steady state by ŵ0
t := wt − w̄0 and ŝ0

t := st − s̄0. Posit a linear equilibrium

law of motion:

ŵ0
t = Aŵ0

t−1 +Bŝ0
t (6.33)

and specify the linear evolution of the exogenous variables:

ŝ0
t :=

 ̂̃stẑt
ât

 = P

 ̂̃st−1

ẑt−1

ât−1

+

 εt

zxt

axt


where Ξt :=

[
εt zxt axt

]′
denotes the innovations to the exogenous variables st with

Ξt ∼ N (0,Σ). Importantly for us,

Ep0

ŝ0
t+1 = P ŝ0

t + Ep0

Ξt+1, (6.34)

where Ep0
Ξt+1 = 0. To reflect the time t worst case belief about ẑt+1, recall (6.32) so the

matrix P satisfies the restriction:

P =

 ρn×n 0 0

0 ρz −1

0 0 ρa

 (6.35)
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where ρ is a matrix reflecting the autocorrelation structure of the elements in s̃t.

To solve for matrices A and B, we can use any standard solution techniques of forward

looking rational expectations model. In particular here we follow the method of undeter-

mined coefficients of Christiano (2002). Let the linearized equilibrium conditions, presented

in nonlinear form in Appendix 6.2, be restated in general as:

Ep0 [
α−1ŵ

0
t−1 + α0ŵ

0
t + α1ŵ

0
t+1 + δ0ŝ

0
t + δ1ŝ

0
t+1|st

]
= 0 (6.36)

where α−1, α0, α1, δ0, δ1 are constants determined by the equilibrium conditions. Substitute

the posited policy rule into the linearized equilibrium conditions to get:

0 =
(
α−1A

2 + α0A+ α1

)
wt−1 + (α−1AB + α−1BP + α0B + δ0P + δ1) st+

+ (α−1B + δ0)ẼtΞt+1

Thus, as in Christiano (2002), A is the matrix eigenvalue of matrix polynomial:

α(A) = α−1A
2 + α0A+ α1 = 0 (6.37)

and B satisfies the system of linear equations:

F = (δ0 + α−1B)P + [δ1 + (α−1A+ α0)B] = 0 (6.38)

3. Consider now the dynamics of the model from the perspective of the econometrician.

Agents’ response to ambiguity leads to actions and hence equilibrium outcomes given by

(6.33), where A and B are determined by (6.37) and (6.38). At the same time, the exogenous

state zt moves according to the equation

zt = ρzzt−1 + zxt (6.39)

so the steady state of z equals z∗ = 0. Thus, we have to correct for the fact that, from the

perspective of the agent’s worst case beliefs at t−1, the average innovation of the technology

shock at time t is not equal to 0. Comparing (6.39) and (6.32), the average innovation is

then equal to at−1 :

zt = Ep0

zt + zxt + at−1. (6.40)

3.a) Find the ‘zero risk steady state’. Take the steady state of the exogenous variables

under the econometrician’s belief s̄∗ := (s̃0
n×1, z

∗, a) which differs from s̄0 only in the element

corresponding to the steady state technology level z∗. Then, the zero risk steady state is the
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fixed point w̄ that solves

w̄ − w̄0 = A
(
w̄ − w̄0

)
+B

(
s̄∗ − s̄0

)
(6.41)

where the difference s̄∗ − s̄0 =
[

0n×1 z∗ − zo 0
]′
. Thus, w̄ can be analytically found as:

w̄ = w̄0 +B(s̄∗ − s̄0) (I − A)−1

3.b) Dynamics around the ‘zero risk steady state’.

Denote by ŵt := wt − w̄ and ŝt := st − s̄∗ the deviations from the zero risk steady state.

Combining (6.33) and (6.41), those deviations follow the law of motion

ŵt = ŵ0
t + w̄0 − w̄

= A
(
ŵ0
t−1 + w̄0 − w̄

)
+B

(
ŝ0
t + s̄0 − s̄∗

)
= Aŵt−1 +Bŝt (6.42)

We want to characterize the equilibrium dynamics under the econometrician’s belief in which

the worst case belief at−1 is not materialized in the zt realization. That means that the law

of motion for the exogenous states under the econometrician belief is

ŝt =

 ρn×n 0 0

0 ρz 0

0 0 ρa

 ŝt−1 + Ξt. (6.43)

As presented in equation (6.40), we can then describe this evolution by adding an average

innovation of at−1 to the expected value of zt formed under the time t− 1 worst case belief.

The latter expectation is formed using the matrix P as defined in (6.35), so we can write

(6.43) as:

ŝt = P ŝt−1 +

 0n×n 0 0

0 0 1

0 0 0

 ŝt−1 + Ξt (6.44)

6.4 Data sources

The data used to construct the observables are:

1. Real Gross Domestic Product, BEA, NIPA table 1.1.6, line 1, billions of USD, in 2005

chained dollars.
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2. Gross Domestic Product, BEA, NIPA table 1.1.5, line 1, billions of USD, seasonally

adjusted at annual rates.

3. Personal consumption expenditures on nondurable goods, BEA, NIPA table 1.1.5, line

5, billions of USD, seasonally adjusted at annual rates

4. Personal consumption expenditures on services, BEA, NIPA table 1.1.5, line 6, billions

of USD, seasonally adjusted at annual rates

5. Gross private domestic investment, fixed investment, nonresidential and residential,

BEA, NIPA table 1.1.5, line 8, billions of USD, seasonally adjusted at annual rates.

6. Personal consumption expenditures on durable goods, BEA, NIPA table 1.1.5, line 4,

billions of USD, seasonally adjusted at annual rates.

7. Nonfarm business hours worked, BLS PRS85006033, seasonally adjusted at annual

rates, index 1992=100.

8. Civilian noninstitutional population over 16, BLS LNU00000000Q.

9. Effective Federal Funds Rate. Source: Board of Governors of the Federal Reserve

System.

We then perform the following transformations of the above data to get the observables:

10. GDP deflator: (2) / (1)

11. Real per capita GDP: (1) / (8)

12. Real per capita consumption: [(3)+(4)] / [(8)*(10)]

13. Real per capita investment: [(5)+(6)] / [(8)*(10)]

14. Per capital hours: (7) / (8)

15. Relative price of investment: We use the price index for consumption expenditures on

durable goods (BEA, NIPA table 1.1.4, line 4) and price index for fixed investment

(BEA, NIPA table 1.1.4, line 8). We follow the methodology proposed in Fisher (2006).

An appendix detailing the procedure used in the construction of this series is available

from the authors upon request.
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