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Abstract

We study an environment where a duopoly develops innovations
that build on one another and compete. Since the quality of innova-
tions is unobserved, rewards take the form of rights to produce the
resulting products. There is a tradeo� between encouraging one �rm
to work on its innovations by granting it promised rights, and the fact
that those rights deteriorate the rights of its competitors. In a world
where the planner is concerned with optimally generating innovations
from the �rms, we show that the optimal allocations result in mo-
nopolization: eventually one �rm is promised nearly everything, and
the competitor is almost completely ignored. This occurs because the
planner has a strong incentive to backload rewards. We argue that the
backloading motive is di�erent from existing ones in the literature. It
both explains further the state-dependent protection results computed
in [1], generating heterogeneity in patent protection in the absence of
heterogeneity in innovation opportunities. The optimal evolution of
the duopoly resembles competition �for the market,� but the back-
loading implies that competition for the market leads to eventually
near permanent monopolization by one �rm.

1 Introduction

This paper studies the optimal reward structure for innovations generated
by a duopoly of �rms. The appropriate reward for innovation has long been
∗Department of Economics, UCLA.
†Faculty of Management, University of Toronto.
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considered an important issue by economists. In describing the bene�ts of
patents as a reward mechanism, [13] wrote that patents are useful �because
the reward conferred by it depends upon the invention's being found useful,
and the greater the usefulness, the greater the reward.� This paper builds
on that general principle, that incentives dictate that rewards take the form
of a stake in the pro�tability of the innovation. When innovations compete,
however, there is a trade-o�: rewarding one innovation decreases the rewards
to competing innovations. Often these competing innovations come from a
few �rms that interact repeatedly. We address the question of what forms
of rewards best elicits innovation from those �rms. Microsoft, for instance,
argued that its strong position in the market was part of a sound policy
in supporting innovation; we address the trade-o� between potential bene-
�ts from rewarding one �rm greatly, and the cost that imposes in terms of
lost innovation from other �rms. The cost comes because when one �rm is
granted rights for an innovation, it reduces the value of the innovations it
competes against. We show how the oligopoly context in�uences optimal
rewards for innovation and how market structure among a duopoly that gen-
erates competing innovations. We �nd that rewards are backloaded, in the
sense that the same opportunity receives greater rewards when it comes on
the heels of other innovations by the same �rm. This backloading leads to
a market which is eventually strongly skewed toward one of the competing
�rms.

We study an environment where innovations from the competing �rms
build on one another. We show that the optimal structure treats identical
opportunities di�erently depending on the innovator's past history of con-
tributions. Recent papers on optimal patents, beginning from [17], stress
that inherent heterogeneity may lead to di�erent rewards for di�erent inno-
vators. Here there is no heterogeneity built into the structure; all innovation
opportunities are technologically identical. The rewards, however, are his-
tory dependent, leading to ex post heterogeneity in the reward for di�erent
innovations, and as a result, heterogeneity in the degree of innovation over
time. This idea is familiar from recent work by [1]. In that paper, the au-
thors use a growth theory structure similar to [2] and consider policies that
change depending on the quality di�erential between the �rm's most recent
innovations. Acemoglu and Akcigit compute numerically the best policies
within a particular class and show that they are backloaded, in the sense
that �rms that succeed repeatedly get increasing protection. Our paper con-
siders a more general class of policies in a more abstract environment. We
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also generate strongly backloaded policies. Although our structure does not
nest theirs, the intuition about backloading that we develop is new and ap-
plies to their environment. It therefore helps develop further understanding
of their numerical results.

In our model the scarcity of market preference leads to monopolization, in
the sense that one of the innovators is eventually promised the opportunity to
pro�t forever, at the expense of the other �rms. Counterintuitively, monop-
olization occurs even when the marginal bene�t of preferential treatment for
the monopolizing �rm is zero at monopoly. This arises because of the plan-
ner's incentive to backload rewards. The motive for backloading, however, is
di�erent from the standard backloading intuition from [4] and [12]. In those
papers, backloading is bene�cial because not only does it generate strong
incentives late, but also because it generates strong incentives early, as the
agent works hard to reach the point where the backloaded incentives kick in.
Here we introduce a di�erent motive for backloading. Since the planner can
provide protection for a given agent at a given time for multiple innovations,
it is useful to push preference to the later period where it is applicable to
more than one innovation. This leads to protection whose duration increases
with additional successes.

As in the recent papers following [17], optimal policies in out structure
come out of information constrained allocations. Moral hazard precludes
rewarding with a cash prize; instead, rewards must be earned through the
allocation of preferential treatment, such as a patent in the product market.
This is the sense in which our work follows the ideas of Mill. Because of
the cumulative nature of the research, allowing one innovator to pro�t in
the product market necessarily restricts what can be o�ered to the other
innovator, since they compete in this common market. As a result, rights
are scarce. Our optimal allocations allocate rights in the product market in
order to encourage innovation.

Our model can be described concisely. Two innovating �rms randomly
receive opportunities to generate social value (innovations) at independent
rates. The innovations build on one another. Our approach is to study
(information constrained) optimal allocations. The planner rewards the in-
novators by o�ering, at each instant, a given innovator the opportunity to
pro�t from some subset of past innovations. The planner, then, needs to
decide how to determine the allocation of rights at each state and history.
This is potentially a very complicated problem; our results use a structure
that is amenable to recursive methods. The planner faces a sort of extensive-
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intensive tradeo�: the more the planner promises rights to one �rm, the more
that �rm takes advantage of its opportunities (the intensive margin), but the
less rights are available to reward other �rms (the extensive margin).

In order to focus on the dynamic tradeo� between rewarding di�erent
�rms, the bulk of our results focus on the case where there is no static
distortions. Under such an environment, the optimal allocation pools all
innovations and gives the rights to those innovations to a single entity. We
show this formally in section 3. Section 4 characterizes optimal policies when
there is full exclusion at each point in time. The optimal policy trades o�
the extensive and intensive margins. As a particular innovator has more
successes, his innovations are promised more and more. This varying state of
promised rights generates the heterogeneity in otherwise homogenous ideas
and innovators: after numerous successes, a �rm is favored and therefore
does more with each opportunity. We show that this leads inevitably to
states where the planner takes almost no advantage of innovations other
than one �rm that has been particularly successful; rights eventually enter a
state where nearly the entire future has been promised to one �rm, and the
other �rm is (nearly) completely foreclosed, its ideas virtually unused.

As a function of the promises the planner has made, the pro�ts themselves
evolves in a stark way. The �rm with the greater duration promise gets the
pro�ts from all the cumulative innovations. As a result, when the future
promise is skewed su�ciently toward one �rm, even an arrival of an idea by
the competitor leaves the leader with greater promised rights. Firms with
su�ciently low promise get no immediate pro�ts from their innovation; they
are required to put them into a �pool� from which, initially, only the �rm
with the greater promise pro�ts. The lagging �rm's payo� to generating
the innovation is that the promise becomes less skewed, moving the state
closer to its favor, where it will gain rights to all of the pooled patents.
The interpretation most in keeping with the traditional literature on patent
policy is to imagine this being the result of a patent policy that a�ords a
patent with the power to exclude all other innovations, but which is only
granted to followers after a su�cient collection of innovations are developed.
Alternatively, one can interpret this as re�ecting stark rules for the �ow of
pro�ts from the pool, or as regulatory treatment that strongly favors one
�rm until another �rm generates a su�cient collection of innovations.

In that sense our paper �ts into a broader research agenda on competition
and innovation. [6] argue that competition for the market is as important
as competition in the market. Our model focuses entirely on competition for
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the market; there is e�ectively no cost of market structures at a particular
point in time. Our results have the feature that competition for the market
extinguishes itself: eventually one �rm has been su�ciently successful that
they no longer face meaningful risk of being overtaken. This is used to
magnify competition for the market. In this sense our paper is related to the
larger set of papers on regulation and innovation, for instance in [18] and [7].
Competition for the market eventually dies out as backloading leads to one
�rm getting not only the current, but rights to the future, market almost
entirely.

To the extent that these policies seem unusual, and are driven by the un-
derlying recursive nature of the setup, we consider an alternative structure
that avoids these results. In particular, we consider a second regime where
complete exclusion is not available to the planner. We call this alternative
regime "incomplete exclusion rights"; the planner can grant a �rm prefer-
ential treatment at a single instant for any innovations from a sequence of
innovations by that �rm that have arrived consecutively, without an interven-
ing innovation by the other �rm. In other words, whenever the competitor
is granted some preferential treatment, the incumbent leading �rm loses all
rights to preferential treatment. This is comparable to a standard notion
of patents used in models of cumulative innovation, where a leading �rm
can maintain market position by �ling for new patents, until a competing
improvement makes a new �rm the market leader.

We show that under the exclusive rights regime, we still get backloading;
rewards increase with successive innovations by the incumbent. Moreover,
the chance of a competitors innovation being implemented (and the incum-
bent being ousted) is declining with successes by the incumbent. This is
familiar from the state dependent policies that [1] compute as optimal poli-
cies in the step-by-step model they study. We show the sense in which this
structure is driven by a backloading incentive present in their paper as well.

We interpret this as simple patent system without licensing, and show
that it can be decentralized through a system of non-infringing patents with
an associated fee. The twist is that, since the optimal allocation forecloses
the market, the most recent purchaser of a patent also has the right to pay
an additional fee which disallows any more patents to be �led by the compe-
tition. With this decentralization, the authority need not observe anything,
or ask for any reports; it simply allocates rights to anyone who pays the
appropriate fees. Until the foreclosure fee is paid, the patent authority o�ers
patents that are narrow, in the sense that they o�er no rights to exclude other
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innovations; they simply give the innovator the right to solely market their
own innovation. The foreclosure fee broadens the patent so that it excludes
all future work.

Our paper links recent literature on the role of information constraints
in generating particular features of the optimal reward structure with the
literature that studies protection in particular growth theory contexts. In
addition to [17], papers in the former category include [?], who also generate
a menu of patents for di�erent types of innovations, and [10], where optimal
policy is a menu of lengths and breadths. [9] and [14] apply these methods to
dynamic environments, based on the quality ladder structure in [16]. In those
papers the set of innovators is large, so there are never repeat innovators; they
therefore can not address the issues of oligopoly, state dependent rewards,
and the evolution of market structure that we study here. Like the model of
[1], our paper allows us to study repeat innovators and their treatment as a
function of their history of innovations. Unlike papers in this spirit like [11],
[19], and [5], we do not consider the role of market signals in generating out
optimal allocations.

2 Competition and Innovation

2.1 Static Competition

The quality ladder structure follows the one explored in the patent literature
in papers such as [16] and [9]. We begin with a model of static oligopoly
competition in a quality ladder. Suppose a collection of �rms sells products
of various quality levels. A single consumer either takes an outside option
(normalized to zero) or purchases one physical unit of quality q, choosing
which variety in order to maximize q − p, where p is the price paid for the
quality q variety.1 There are no costs of production. We take competition
to be Bertrand, so that the leading edge product is always the one sold
in equilibrium, and the social surplus at any point in time is the quality q
either in the form of pro�ts for the �rm selling the leading edge product, or as
consumer surplus if p < q. Industry pro�ts are summarized by the di�erence
between the quality levels of the highest and second highest quality level that
is sold.

1As is usual in this sort of model, in the event of a tie, the higher quality product is
chosen.
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Our model abstracts from static monopoly costs. The implication of such
costs is important, but this framework has little to say about them beyond
what is known. What is new here is the role that skewed rights between
the �rms impacts the �rms incentives to innovate, which we focus on here
by abstracting from other considerations that are surely relevant in practice,
but has been well studied elsewhere.

2.2 Innovation

Suppose that a �rm has an opportunity to generate an innovation. We term
this opportunity an idea. The innovation will be an improvement of size
∆ upon the highest quality product currently available; this is the sense in
which the �rms are working on a common agenda. Ideas can be turned into
innovations of size ∆ in exchange for research cost c(∆). Here ∆ (and there-
fore c(∆)) is the non-veri�able feature that necessitates patents, in keeping
with Mill's comments. It is well known in the literature (and very intuitive)
that, if the degree of innovation cannot be veri�ed by the planner, the inno-
vators cannot be rewarded with transfers, since they could claim the transfer
and not pay the costs of innovation.

The planner can use the promise of rights to sell in a market to successfully
induce e�ort.2 The leading edge product (i.e. the most recent innovation)
sells for a price equal to its quality di�erential over the other �rm's best
product, since that trailing product will be provided at cost (zero) in the
pricing game, and the leader charges the quality di�erential.

As in [9] we study policies that are described by contingent rights for
a given innovation. This takes the form of a mapping from innovations to
rights holders.3 Formally, for a list of arrivals of ideas M = {1, 2, ...M}, the
planner chooses at each time t set P i

t ⊆M of innovations for which the agent
i receives exclusive rights. De�ne by P̄ i

t the greatest element in the set. This
grant of rights can be made contingent on the entire history; solving that
history dependent problem is the topic of the next section. For now we focus
on the implications of the granting of rights for an innovator's investment

2See Hopenhayn, et al. (2006) for more on this issue in the cumulative context, in a
quality ladder model like this one.

3Without loss of generality we let preference for a given innovation be allocated to a
single innovator at any instant; this is without loss because changing preference over time
can e�ectively "split" preference for a given innovation across innovators. Such a split
will, in addition, not be optimal.
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decision.
Any choice of rights implies pro�ts for each �rm in the amount Bi

t, where
Bi
t = max{P̄ i

t − P̄
j
t , 0}. One can interpret this as the amount of breadth of

protection a�orded that innovator relative to the existing innovations. This
is the set of future instants during which the current size of the current
innovation impacts the �rm's pro�ts. In all such instants, the �rms pro�ts
will be higher by ∆ units if it makes an innovation of that size in the current
innovation. Therefore when innovator i chooses ∆ for innovationm, he solves

∆(d) = arg max
∆

d∆− c(∆)

where

d = E

ˆ
e−rtI{P̄ j

t < m}dt

The features of the contract, for the purposes of the investment decision, can
be summarized by the planner's promise of expected discounted length of time
d ≥ 0 during which the innovator will be given preferential treatment for an
innovation made under that idea. This simpli�cation is a key feature that
allows the complete contingent rights contract to be tractable in a recursive
way we introduce below.

Since the value of d, which we term the duration of preference, is in
present discounted terms, it might come in many ways, for instance, a T
period patent (where preference is guaranteed for all T periods) would have
d = (1−e−rT )/r. We use the language of duration to describe recursively how
the optimal policy proceeds, considering arbitrary duration policies, which
may be contingent on future arrivals as well as the passage of time. A patent
that o�ered T periods of protection for sure, followed by T ′ units of additional
protection with probability 1/2 would have d = (1 − e−rT )/r + 1

2
e−rT (1 −

e−rT
′
)/r. Since the planner can choose a preference policy at every instant,

this duration can be delivered in any contingent way, evolving over time or
with later arrivals of innovators, and with the identity of the innovator that
arrives with an idea. Of course, since (discounted) time is not unbounded,
the maximum possible promise of sure preferential treatment forever is 1/r.
This dynamic budget constraint of the planner's incentive tool is the key
feature of the model.

Since the innovation will permanently increase the highest quality, every
innovation yields ∆/r − c(∆) additional units of present discounted social
surplus. We therefore can denote the bene�t from the allocation of d units
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of duration as R(d) = ∆(d)/r − c(∆(d)) Note that

R′(d) = ∆′(d)/r − c′(∆(d))∆′(d)

= ∆′(d)(1/r − d)

Where the second line uses the fact that c′(∆) = d by the agents FOC.
Now by the implicit function theorem it must be the case that

∆′(d) =
1

c′′(∆)

We then have that

R′′(d) = ∆′′(d)(1/r − d)−∆′(d)

In order for R to be concave, then, we need the third derivative of c to be
smaller than some positive bound.

Our model has no static distortions, so that R(d) is maximized at 1/r,
we discuss in section 6 the possibility that R(d) is not maximized at 1/r,
which can be interpreted as static costs of monopoly. Focusing on the case
with no static distortions, however, is interesting for at least two reasons.
First, it highlights the role of the dynamic force that we study, namely the
scarcity of rights when competition is for the market only, without any other
source of ine�ciency. Further, the work of [8] suggests that a planner who
allocates patent rights together with the ability to regulate the strength of
preference per period (for instance through patent breadth or direct price
controls) will choose, in many circumstances, a long, narrow patent in the
single innovation context.

3 Optimality of Complete Exclusion Rights

We now turn to studying the optimal allocation of duration across histories
of arrivals. In this section we introduce the structure of the arrival of ideas,
describe the full planner's problem, and show that it can be solved in a
relatively simple way, in order to set the stage for the key results of the next
section where we characterize the solution.

There is continuous time and an in�nite horizon. We focus on the case
where are two agents (which we sometimes call �rms or innovators) and a
principal (or planner). Below we discuss extension to more �rms, including an
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explicit extension for a speci�c case described below. Each �rm receives ideas
with independent Poisson arrival rate λ.4 Although arrivals are taken to be
technologically identical, in order to highlight the endogenous emergence of
heterogenous treatment without heterogeneity in arrivals, there is a sense in
which the model can be thought of as delivering small and large innovations;
an unusually large innovation can be thought of as the rare arrival of several
consecutive ideas in a short period of time to one innovator.

Since the planner cannot observe inputs or outputs, he cannot simply pay
for the e�ort. The planner can, however, choose market structure, and, in
turn, deliver market duration that generates pro�ts and in turn innovation in
line with the analysis of the previous section.5 We assume that the planner's
history dependent market structure choice is made with full commitment at
time zero. When an idea arrives, the contract prescribes future instants dur-
ing which the innovator will be assigned rights that include the innovation
stemming from that idea. From the prior section, the planner's expected dis-
counted future payo� from a promise of d units of time of future preference
to an arriving idea as R(d). On the other hand, duration is limited by the
planner's prior promises of duration to previous innovators. In particular,
while the planner can e�ectively deliver duration to more than one innova-
tion of one innovator, he faces a choice between rewarding one innovator or
another. Therefore the stock of available rewards available to a particular
innovator is curtailed by the amount that is promised to the competition.

To see how planner's choices translate into an evolution of promised dura-
tion for innovators, suppose that the planner o�ers the most recent innovator
rights to all past innovations until the next arrival. Denote by d̂ the duration
this o�ers to the new duration. When the other �rm has an arrival, duration
therefore drops to 1/r − d̂. Therefore d̂ solves

rd̂ = 1 + λ(1/r − d̂− d̂)

4Although we abstract from di�erent λ across the innovators, nothing changes if λ
di�ers across agents or di�er for the �rms based on which one had the last idea. We
discuss this in the extensions section.

5This is not the only one that can be mapped into our structure. For instance, the
planner could be a �rm selling a product, where customers can be induced to buy with
promises of future good treatment. An airline can reward today's purchase with promises
of future good seat assignments available only to frequent �yers. These rewards are scarce;
only a limited number of customers can be allocated the good seat assignment. The �rm
trades o� using current promises to encourage sales against the fact that current promises
restrict the possibility of later promises to other potential customers
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or d̂ = r+λ
r(r+2λ)

> 1/2r. The planner can o�er every arrival this duration. If
the planner o�ers any innovator more for one of its arrivals, however, it will
curtail the ability of the planner to reward the other innovator. We study
this trade o� recursively in the next section.

3.1 Dynamic Program

At any instant, the planning problem is summarized by an outstanding dura-
tion promised to each of the innovators for prior work; the planner's "stock"
of available rights to o�er is determined by these values. Since one innova-
tor can be granted rights simultaneously for multiple prior innovations (by
setting the rights of the competitor low enough), one can think of this as the
largest promise that is owed across all prior innovations; all other promises
can be kept with a fraction of d, since a given innovator can be granted
preference for multiple innovations at once.6

If an innovation by �rm 1 arrives, the planner o�ers preferential treatment
for that new innovation for duration dn1 . It continues preferential treatment
for the innovator's previous innovation (or innovations), which are owed d,
for duration dc1. The planner will then enter the next instant with promise
equal to the maximum of dn1 and dc1, since the outstanding duration that
cannot be allocated to other �rms is the larger of those promises. We will
argue below that optimally dn1 = dc1, and therefore we will eventually just
use d1 to denote the new promise. If innovator two has the next idea, then
innovator 1's duration becomes d2. We keep track of the duration promise
to the two �rms by d and d; we show below that it is su�cient to track only
one. In the interim, we speak generically about duration as d; everything
is symmetric across the innovators, so all statements apply equally to d. In
order to make everything completely symmetric, we refer to the promise to
�rm two in the event that �rm one arrives by d2, and so on.

In addition to duration promises, the planner must also decide how to
allocate duration in intervening periods. In particular, the planner allocates a
fraction x of the next dt instants to innovator one if no idea arrives. Although
preference is the fundamental choice the planner makes, our study of the
problem focuses on the promises of duration that the planner makes, and
uses x and future promises to ensure past promises are kept.

6It will turn out that all past innovations with any promise will get identical promises
in the optimal allocation.
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If nothing arrives, the planner may change the duration promise by ḋ.
We include the possibility for completeness; it will turn out that the optimal
policy will have ḋ = 0, so the planner never uses the option to make changes
after no arrival of an idea takes place. The dynamic program is, then,

rV (d, d) = max
dn1 ,d

c
1,d2,ḋ,x

dc1,d
n
1 ,d2,ḋ,x


λ (R(dn1 ) + V (max{dn1 , dc1}, d2)− V (d, d)) +
λ (R(dn1 ) + V (d2,max{dn1 , dc1})− V (d, d)) +

V1(d, d)ḋ+ V2(d, d)ḋ

(1)
s.t. (2)

rd = x+ λ(dc1 − d) + λ(d2 − d) + ḋ (3)

rd = x+ λ(dc1 − d) + λ(d2 − d) + ḋ (4)

The �rst line of the maximand is the case where the current innovator,
promised d for prior innovations, arrives with a new idea. The second line is
the case where the competitor arrives with an idea. The �nal line is when
nothing arrives. There are also the domain constraints:

0 ≤ max{dn1 , dc1}+ d2 ≤ 1/r

0 ≤ d2 + max{dn1 , dc1} ≤ 1/r

0 ≤ x+ x ≤ 1

The constraints in (1) guarantee that the planner actually does deliver d
and is critical to understanding the problem. Given a current promise d, the
fraction x of the current period is allocated to the �rst innovator. Unless the
constraint is not binding, it is clearly optimal for x + x = 1, since in that
case duration is scarce and should not be thrown away. The innovator gains
dc1 − d if the innovator comes up with a new idea, and moves to d2 if the
other innovator has an idea and is implemented. This constraint also shows
a key di�erence between this model and one with a sequence of innovators,
as studied in Hopenhayn, et al (2006). In both models, duration promises
to the current innovator make the PK constraint tighter in the future. In
simple terms, increasing duration today makes the planner less able to make
promises to other agents in the future. However, to the extent that future
innovations come from the same source, greater duration does not preclude
future innovations, and therefore is not making the PK constraint tighter in
the future in those states This impact of duration on the tightness of the PK
constraint is formally the fundamental di�erence of this problem from ones
with innovators who never recur.
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Since greater d only makes the feasible set of possible choices of d1 and d2

smaller, it is immediate that V (d, d) is weakly decreasing in each argument.
This in turn implies that dc1 can always be taken to be at least as big as
dn1 ; if d

c
1 were less, raising it and o�setting the increase by lowering ḋ to

maintain promise keeping always does at least as well, and strictly better if
V is strictly decreasing. Similarly, for dc1 > dn1 , reducing d

c
1 at the margin is

identical to increasing ḋ, and therefore we can let dc1 = dn1 ≡ d1. However, in
the modi�ed program where dc1 = dn1 ≡ d1 the envelope condition is7

V1(d, d) +
1

r + 2λ
V11(d, d)ḋ = µ(d, d)

where µ(d) is the Lagrange multiplier on the PK constraint for d. This
coincides with the �rst order condition for ḋ

V1(d, d) = µ(d, d)

when ḋ = 0. We therefore have the following lemma.

Lemma 1. Suppose V is concave. Then dc1 = dn1 and ḋ = 0

The interpretation of dc1 = dn1 is that new arrivals always extend duration
promises for all prior inventions for the incumbent. If the incumbent had
invented a drug that treats a given disease, and then came up with an im-
provement that treats the disease somewhat more e�ectively, it both obtains
preferential treatment for the improved drug for d1, and from the point of
the improvement gets d1 units of preference for the basic treatment as well.
The intuition for why this is optimal is identical to the reason why there is
no statutory limit to preferential treatment (ḋ = 0): there is no bene�t to
lowering past duration promises, given that you are o�ering dn1 to the inno-
vator for his new innovation, and therefore this is an e�cient time to deliver
duration to satisfy the outstanding promise of d on the initial innovation.
The fact that the planner's payo� from the improvement is independent of
the treatment of the basic drug is crucial to that logic. The planner is better
o� delivering duration always contingent on an arrival of the competitor, so
as to deliver the most duration to the competitor if he is next to arrive.

This logic implies that the planner is always o�ering rights to all of an
innovator's innovations if he is granting rights to any of the innovator's inno-
vations. Since protecting innovations of the other innovator has no impact,

7Subscripts denote derivatives.
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one can take this to mean that any point where an innovator is given exclu-
sive rights to any innovation, that innovator is given exclusive rights to the
entire history of innovations. Because this feature of the optimal allocation
is strong, we also study below a weaker form, when protection ends whenever
a �rm's competitor arrives with an innovation. Here, the leading edge prod-
uct is able to exclude all competing products (except the outside good with
quality normalized to zero). One might imagine that older product infringe
on newer products, but not vice-versa. In [16] this is referred to as "lagging
breadth." Then at any time that the �rm is the market leader, it pro�ts from
all of its past improvements (and all of the competitors, but this is a transfer
and does not impact incentives). This maximizes the reward delivered to the
innovator for past innovations.

We now verify that V is in fact concave. If it is, then imposing the earlier
results we have a simpli�ed problem

rV (d, d) = max
d1,d2,x
d1,d2,x

{
λ (R(d1) + V (d1, d2)− V (d, d)) +
λ (R(d1) + V (d2, d1)− V (d, d)) +

}
(5)

s.t.

rd = x+ λ(d1 − d) + λ(d2 − d)

rd = x+ λ(d1 − d) + λ(d2 − d) (6)

We can now verify that the value function described by the simpli�ed
problem is concave.

Lemma 2. V is concave

Proof. The Bellman equation can be rewritten as

V (d, d̄) =
1

r

λ

r + 2λ
max(R(d1) +R(d1) + V (d1, d2) + V (d2, d1))

From this we can see immediately that the Bellman operator maps con-
cave functions into concave functions, since the convex combination of choices
for two states (d, d̄) is feasible at the convex combination of the states, and
delivers more when V on the right is concave.

Next, we make the �nal step in simplifying the problem. We argue that
for any value of the state (d, d̄), it must be the case that d + d̄ = 1/r.
Intuitively, if there were only one innovation, the planner would like to o�er
it 1/r ; as a result, given the many ideas that will arrive, the planner never
�wastes� any instants.
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Lemma 3. d+ d̄ = 1/r

Proof. Suppose d + d̄ < 1/r. Since both d and d̄ cannot be greater than 1,
It must be the case that x + x̄ = 1, since, if either duration is less than 1
the corresponding x should be increased. Since this applies at all instants,
it must always be the case that x + x̄ = 1 and as a result all instants are
promised to one of the two innovators, that is, d+ d̄ = 1/r

This further simpli�es the problem: we can study it in terms of duration
d, with d̄ = 1/r − d at all dates. We are now ready to characterize the
planner's allocation by studying that problem.

4 Evolution of Complete Exclusion Rights

4.1 Dynamic Program

Since all time is allocated to one innovator or the other, the planner's problem
can be written as

rV (d) = max
d1,d2,x

{
λ (R(d1) + V (d1)− V (d)) +
λ
(
R(1

r
− d2) + V (d2)− V (d)

) }
s.t.

rd = x+ λ(d1 − d) + λ(d2 − d)

Since the problem is symmetric, we generally focus our discussion on the
shape of V in the set [1/2r, 1/r]. We �rst study when the promise keeping
constraint binds, which gives some basic insight into the shape of V . This
question is analogous to the question of when x is strictly between zero and
one, since from the �rst order condition for x it is clear that x could not be
interior unless the promise keeping constraint were not binding.

4.2 Characterization

Since V is globally concave and symmetric, it is maximized at 1/2r. This is
intuitive: when duration promise is identical to the two agents, you can treat
the agents identically upon the next arrival, setting d1 = 1/r − d2, which
is best since R is concave. Note that having the agents treated identically
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requires

rd = x+ λ(1/r − d2 − d) + λ(d2 − d)

x = (r + 2λ)d− λ/r

Therefore an identical result can be accomplished with x between zero and
one if d ∈ [1/r − d̂, d̂]. Intuitively, in this case, the planner can deliver any
asymmetric preference by using x, leaving the balance of the duration promise
identical across agents when the next innovation arrives, and allowing d1 =
1/r − d2. As a result it is immediate that

Lemma 4. V (d) is constant in the range of [1/r − d̂, d̂]

This range is the one where the promise keeping constraint does not bind.
Clearly, outside of this range the planner can no longer have d1 = 1/r − d2,
and therefore value must be lower, since concavity in R dictates losses when
the next arrivals are treated di�erently. It is clear that it is never optimal
to choose a point in the interior of the �at portion, since raising the current
innovator's promise has no cost. The following lemma shows that the planner
must go even further.8

Proposition 5. d1(d̂) > d̂

For duration promises in excess of d̂, the �rst order condition for d1 and
concavity of V shows that duration is an increasing sequence for any con-
secutive ideas by innovator 1. An increasing sequence on an interval must
converge, and of course by the �rst order condition for d1 it cannot converge
to d < 1/r, where R′ > 0. Therefore, sequences of arrivals by �rm one get
arbitrarily close to a promised duration of 1/r:

Corollary 6. For all d < 1/r and π < 1 there exists a T such that duration

is greater than d with at least probability π.

The implication of this result is that the allocations eventually have near
monopolization, in the sense that eventually the system evolves to a point
where one �rm is promised almost the entire future. Duration rises and falls
with arrivals by the two �rms; the two �rms engage in a "tug of war" for
duration.

8Proofs of results from this point forward are contained in the Appendix.
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An interesting feature is the evolution of x. Starting from duration in
the middle region where V is maximized, ideas by innovator 1 move duration
up, and the promise keeping constraint binds. As a result, x = 1. Note that
the intervening period between innovations is never split; for any duration
d > d̂, a sequence of innovations by the "trailing" innovator promised 1/r−d
falls with every innovation by the trailing �rm, but if d is high enough,
innovations by the trailing �rm may at �rst do not change x, so long as the
duration promise falls but remains above d̂. The trailing �rm only receives
rights when a su�cient number of innovations by it have moved duration
below 1/r − d̂, i.e. past the decreasing portion of the value function. This
conforms to the idea that trailing �rms need to make su�cient progress
before their innovations are deemed to "not infringe" on the current leader's
patent. Here, during the period of infringement, the leader maintains rights
to all innovations, including the ones being invented by the laggard �rm, as
if it has the ability to costly license the infringing ideas. The payo� to the
trailing �rm is the eventual ability to sell a product that embodies the entire
history of ideas, once their duration promise is su�ciently high.

An alternative interpretation of the optimal allocation is not as patent
policy alone, but as favorable treatment from a regulator more generally.
Suppose favorable treatment allows the �rm to reap all the bene�ts of in-
novations from any �rm, for instance by the incumbent �rm negotiating li-
censing contracts that extract full surplus. Here the optimal policy uses such
favorable treatment as an incentive device. The regulator favors the leader
until the laggard has had su�cient innovations to be the new leader, at which
time the regulator shifts its favorable treatment to that �rm. Laggard inno-
vators innovate for eventual favorable treatment. In this sense the optimal
allocation has a strong sense that it entails competition for the market as an
incentive device; this competition for the market, however, eventually leads
to near permanent monopolization by some �rm.

The environment we study introduces a natural desire by the planner
to backload rewards, which is what leads to the monopolization. If the
planner waits to provide a given �rm preference, it can provide that �rm
preference for more innovations, since innovations are constantly arriving,
and a given �rm can be allocated preference for multiple innovations at a
point in time. As a result, the planner waits to award the preference until the
�rm has a preponderance of the duration promise. Backloading of rewards
is similar to the quantitative result in [1]. They stress the usual backloading
motive which they term "trickle down incentives:" rewards that come when
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�rms succeed repeatedly are useful both after several successes (when the
backloaded reward arises) and earlier, when �rms attempt to reach the stage
where backloaded rewards arise. This is the usual backloading of incentives
intuition from the literature on dynamic contracts. Our model generates
backloading for a di�erent reason, that rights can be granted to one innovator
for two innovations, but not to two innovators for one innovation each, at
the same point in time. This is fundamentally related to the idea that the
innovations compete with one another, which is at the heart of the idea that
rewards through rights are in con�ict in such cases. Although our model
does not nest the one used by [1], it is similar enough that the same force is
likely at work in their numerical results.

An alternate interpretation is as an ex ante licensing contract signed
between the two �rms. An interesting feature is that the optimal contract
at no point in time shares the pro�ts generated by the joint research, in the
sense of splitting the pro�ts between the �rms; the licensing always takes
the form of dynamic splitting, where one �rm is rewarded for their work by
having a longer time during which they pro�t completely. The contract relies
on being able to pre-specify the extreme rights (x being either zero or one)
as a function of history that boils down to the state d. The policy is a sort
of duopoly patent pool, where the �rms pool their patents and pro�ts �ow
to one of the pool members based on their relative contribution, measured
through d.

So far we have studied exclusive rights, which are di�erent from the ones
in many papers including [1]. One might be concerned that complete exclu-
sion rights are overly broad, in a way that might naturally lead to excessive
monopoly power. Moreover, they require extreme shifts of rights that may
be hard to implement. In the next section we consider a restricted class of
polices where complete exclusion is not available to the planner, so that the
policies look more like ones studied elsewhere, and show that many of the
same results are preserved. Moreover, we show that the resulting allocations
can be easily decentralized through payments to the planner.
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5 Incomplete Exclusion Rights

5.1 De�nition

The previous section involved a policy where the planner kept promises of
complete exclusion to innovators, sometimes only delivering that promise at
dates far in the future. Further, it required that the planner be able to �turn
o�� rights later on: when the innovator received rights, it was absolute, in-
cluding for innovations previously receiving rights for the competition. The
planner delivers an airtight promise not only that the leading �rm will be
an exclusive producer of not only the leading edge product, but also that
it will not face even the threat of competition from any product previously
marketed. In the language of patents, the earlier innovator's patent infringes
on a patent that comes later. This is contrary to the usual notion of in-
fringement on prior art. In this section we restrict the planner to allocate
rights in a way that does not involve any of these features. In particular,
we force the planner into two restrictions. First, if the planner is to give a
particular innovator exclusive rights to produce a particular product, it must
deliver those rights at the moment of the innovation's arrival, and not later.
This corresponds to a patent right that must be either granted or refused for
the innovation. Further, the planner cannot ever exclude an innovator from
producing something which it is at one point had exclusive rights to produce.
In patent language, a patent can never infringe on a patent that comes after
it. In the quality ladder model, this only requires that the leading �rm is
concerned about competition from prior patented (and marketed) products;
laggard products still sell nothing. Competition from existing products is
inevitable, as it is di�cult to reduce rights over time.

As a result, the leading edge �rm always faces competition from the last
innovation of the laggard �rm. If a new leader emerges, the laggard will
never be able to pro�t from any prior idea. In the language of the dynamic
program (5), the assumption maintained in this section is:

Assumption: (Incomplete Exclusion Rights) If d1 > 0, then d2 = 0. If
d2 > 0 then d1 = 0.

This implies that, at any time, only one innovator has a promise.9 In other
words, whenever a new idea is awarded some preference, all prior claims to

9In Hopenhayn et al. (2006), such a patent system is de�ned to be exclusive. We avoid
that terminology to avoid confusion with the rights described in the last section, where at
any point in time one innovator has exclusive rights to the entire ladder.
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market leadership by innovators other than the current one are set to zero, as
here. Exclusivity is natural in the patent context, in that it mirrors the sort
of market structures that are assumed by many dynamic models of patents
such as [16]. It maps into a patent right that is non-infringing on past rights,
but does not encompass the prior rights. That is, every patent that is granted
is non-infringing on every other patent, both before and after the arrival of a
given improvement. Firms have the exclusive right to produce quality levels
they "invent," but no right to exclude previous products invented by others.

Note that this assumption e�ectively rules out any allocations with any-
thing that looks like meaningful licensing. Given the moral hazard problem,
rewards can only take the form of duration, so licensing would mean a share
of pro�ts; sales of patents are e�ectively ruled out because it would give �rms
an incentive to underinvest and sell. Since under the incomplete exclusion as-
sumption duration is either-or across �rms, allocations where one �rm shares
with the other are impossible.

In the complete exclusion case the optimal policy was a very sophisticated
dynamic contract, where laggards innovate because of the promise of future
ownership of all innovations after su�cient success. E�ectively there are
always two rights holders; a leader who pro�ts, and a laggard who hopes to
pro�t in the future. In this section we show that, under incomplete exclusion
rights, we get the same sort of backloading as in the last section, but in a
way that requires a much less complicated history dependence. In particular
we show that the allocation can be decentralized through a simple sale of
rights.

In the exclusive case, the planner has less duration to allocate, since
rights can be given to a smaller number of innovations (by assumption) at
any instant: only the most recent string of innovation by a given �rm can
be granted rights, and not ones that came before the last innovation by the
other �rm. Therefore there is, in this environment, a natural interpretation
of d = 1/(r+ λ) that is similar to d̂: all future innovations are implemented,
meaning that duration for the current incumbent is de�ned by "until the next
idea of the other �rm arrives," which in discounted terms is 1/(r + λ). As a
result, duration d ≤ 1/(r + λ) can be delivered without excluding anything,
and there is scarcity in duration since 1/(r + λ) < 1/r. We now turn to
optimally choosing under the incomplete exclusion rights assumption.

Incomplete exclusion rights allows for very simple extension to more than
two �rms, which we discuss in more detail below. In short, the laggard �rm
can be taken to be a collection of outside �rms. If one wishes to make their
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arrival probability di�erent from the leader (for instance, proportional to
their number, for instance twice the leader's arrival rate if there are three
�rms and therefore two laggards), nothing formally needs to be changed. We
discuss the details in the extensions below; we maintain a single λ in this
section for notational convenience.

5.2 Dynamic Program

Because only one innovator has a duration promise, we can write the plan-
ner's problem recursively as a function of that duration promise d. When
that �rm comes with another innovation, it gets a revised promise d1. When
the outside �rm has an idea, the planner must decide whether or not to im-
plement it. Duration promises to the incumbent greater that 1/(r+λ) require
some exclusion; we call the planner's current probability of implementing the
outsider p. If implemented (p > 0) the new innovation is promised duration
d2. In this case, by exclusivity, the innovator who entered the instant with
promise d has their duration adjusted to zero, and we track the new duration
promise d2.

The dynamic program is therefore

rV (d) = max
d1,d2,p

{
λ (R(d1) + V (d1)− V (d)) +
λp (R(d2) + V (d2)− V (d))

}
(7)

s.t.

rd = 1 + λ(d1 − d)− λpd

where d, d1, and d2 can be taken to lie in [1/(r+λ), 1/r], since if d < 1/(r+λ),
the PK constraint does not bind, and you can set x < 1. Therefore the value
function is independent of d in this range, and we can restrict attention to
the domain where all durations are in the range [1/(r + λ), 1/r].10 From
the promise keeping constraint we see the tradeo� between o�ering rewards
d1 to the current innovator, and implementing outsiders: the greater you
reward the insider through a promise of d1 for their next innovation, the
fewer outsiders are implemented.

10It is easy to show that this is a self generating property of the value function, and
therefore must be true of V (d) which is a �xed point of the Bellman operator.
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5.3 Characterization

First, we show that if the current promise involves any exclusion (d > 1/(r+
λ)), then the current o�er to the incumbent �rm if he arrives with an idea,
d1(d), either involves the optimal level of innovation for that idea in isolation,
d1(d) = 1, or involves as little current exclusion as is consistent with promise
keeping, p(d) = 1.

Proposition 7. Suppose d > 1/(r+ λ). Then either d1(d) = 1, or p(d) = 1.

The characterization Lemma (7) shows the sense in which duration is
backloaded: it is backloaded maximally, eventually giving every innovation
of the leader's duration forever, and never implementing an outsider's innova-
tion. The proof makes clear the reason for the backloading, which di�ers from
standard theories of backloaded incentives. Since the planner is committed to
d, he is committed to a �xed amount of exclusions of the non-incumbent �rm.
When those exclusions occur is welfare neutral, in the sense that all of the
exclusions cost the planner missing out on a new incumbent starting with
d2. When the planner implements duration d by excluding arrivals of the
outside �rm later, he raises the duration promise for all intervening arrivals
by the incumbent, though, which raises the incumbents level of innovation.
Intuitively, for a given d, every implemented non-incumbent is "bad luck"
for the incumbent. The planner resolves this bad luck as soon as possible by
making every "unfortunate" (for the incumbent) idea of the non-incumbent
end the incumbents duration early on. Whenever the incumbent gets an
arrival, then, the "good luck" for the incumbent is large: he has avoided
a state where all his competitors ideas are implemented, and therefore gets
the maximal duration increase d1(d) that the planner could have o�ered and
maintained the promise of d. This makes the incumbent respond to an arrival
of an idea with the maximal e�ort.

Backloading takes the strong form of monopolization in �nite time.

Corollary 8. Suppose d2 > 1/(r + λ). Then for any probability π < 1
there exists T such that d∗ has been achieved in no more than T periods with

probability π.

If new market leaders are granted any promise of exclusion of their com-
petitor, it is optimal to completely monopolize the industry (in the sense
that one �rm is promised 1/r, and the other is never implemented) in �nite
time. The question, then, is whether d2 exceeds 1/(r + λ), so that duration
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ever enters this region. We show next that the answer is always yes, and
therefore we have a complete characterization of the dynamics of d: increas-
ing duration with arrivals by the incumbent to 1/r, periodically resetting to
d2 when an idea is implemented by the non-incumbent.

Lemma 9. d2 > 1/(r + λ).

The Lemma shows that new incumbents are promised some exclusions of
their competitors. The earlier results show that these exclusions are maxi-
mally backloaded, which generates duration promises that climb, with posi-
tive probability, to d = 1/r.

The intuition behind o�ering some exclusions to new incumbents is re-
lated to backloading. If the planner were forced to grant exclusions that gen-
erate d2 immediately (i.e. for ideas that arrive immediately after the change
in incumbency), then exclusions would not be bene�cial and d2 would be
exactly 1/(r + λ). The reason is concavity of R: immediate exclusions cost
R(d2) in un-implemented projects, but generate R′(d2). The latter is always
smaller when R is strictly concave, but would be identical if R were linear.
However, backloading leaves the cost of exclusions the same, but increases
their bene�t: exclusions far in the future generate bene�ts for all of the in-
cumbents ideas that arrive in sequence in the meantime. For linear R, this
extra bene�t of exclusions shows immediately that backloaded exclusions are
bene�cial; by continuity they must be bene�cial for R that are nearly linear.
The proof extends this logic to show that for any concave R, a small amount
of exclusions, su�ciently backloaded, is bene�cial to the planner.

5.4 Implementation: Selling Exclusivity

In this section we show that the optimal policies under the incomplete ex-
clusion rights restriction can be implemented without complicated contracts,
but rather with fees. To do so we focus on the special case without the single
n such that p is interior. In that case there are two levels of exclusion: none
(where p = 1) and complete exclusion after N arrivals. There will in turn
be two fees. First is a typical �patent fee,� paid by a laggard who wants
to become a new leader, and entitling the holder to a non-infringing patent
on their innovation that lasts forever, but o�ers no �forward� protection: it
e�ectively ends when another innovator pays the same fee and takes the lead.
Second is an �exclusive rights� fee, which can be paid at any time by the cur-
rent leader (i.e. the most recent payer of the patent fee), and which changes
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rights in one fundamental way: it disallows the competition from ever be-
ing granted a patent in the future. In essence it generates in�nite forward
breadth, which forecloses the market, since licensing is e�ectively impossible
given moral hazard and the assumption of incomplete exclusion.

The nature of the implementation is that, given the patent fee f and
the exclusive rights fee t, the planner need not observe anything; the fees
themselves screen arrivals of innovations and implements exclusivity after N
consecutive innovations by an incumbent. The way in which screening of the
former is obtained is standard: pro�ts from taking over leadership just covers
the patent fee f , and therefore anyone without an innovation does not �nd
it worthwhile to claim to have an innovation when they do not. Screening
on the number of consecutive innovations works because, the greater is the
number of innovations that an innovator is pro�ting from, the more value
the exclusivity has. Therefore the fee needs to be set su�ciently high that
only an innovator with N arrivals will be willing to pay the fee.

The complication is that, if an innovator planned to foreclose the market
early, they could also over-innovate for each arrival in anticipation. The
proposition below shows that the fees can be set such that this strategy is
never pro�table.

Proposition 10. There exists f and t that decentralizes the optimal alloca-
tion. That is, laggards pay f only upon receiving an idea and leaders pay t
after exactly N arrivals of ideas.

One can interpret t as the �price of exclusivity.� It is an additional fee
paid to make the �rm never face competition from additional innovations.

6 Extensions and Discussion

6.1 Di�erent arrival rates and more �rms

A straightforward change to the model is to allow the �rms to have di�erent
arrival rates λfor the two �rms. Further, since the relevant arrival rates in the
incomplete exclusion case are the leader �rm and the laggard �rm, this allows
the very natural assumption that the �rm with the last innovation may have
a higher arrival rate for the next innovation. Nothing qualitatively changes
about the results; we still have maximal backloading. This also allows a
natural interpretation as N �rms with symmetric arrival rates, where the
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leader has arrival rate λ and the laggard(s) have arrival rate (N − 1)λ, in
proportion to their relative numbers.

Handling more than two �rms in the complete exclusion case is concep-
tually similar to the case considered above, but is more challenging because
now there are N promises, which even if all time is allocated, leads to a
state variable with N − 1 dimensions. The basic economic intuition, that an
arrival raises that �rms duration promise at the expense of the others, and
that �rms innovate sometimes for rewards that come later, must remain.

6.2 Market Structures with Static Distortions or Lag-

gard Pro�ts

Our assumption that the promise of preferential treatment for a given in-
novation is su�cient for computing social bene�t from that innovation is
important, and has strong implications. It implies that the return to o�ering
preferential treatment for a given innovation does not depend on the way
the �rm's other innovations are being treated. For instance, the �rm's in-
centive to innovate is determined entirely by the duration promise for the
given innovation, and not what the �rm's promises of preferential treatment
are for other innovations. This does not imply that the �rm can only pro�t
while it gets preference, it simply implies that all units of time must generate
pro�ts only based on the preferential treatment, and pro�ts do not depend
on future units are allocated across �rms. In the same spirit, the assumption
implies that any social costs from distortions generated by the promise are,
again, independent of the promises made to the �rm's other innovations. In
other words, the impact of innovation on pro�tability and on social welfare
is not a function of the promises made for past innovations, or on the fu-
ture promises that might be made for future innovations. This assumption
is also essential for the recursive solution we study: without it, one could not
compute the return, let alone the optimal policy, without knowing at any
point in time the two �rms' complete portfolio of promises, making the state
variable potentially expand without bound as time progresses.

We can, however, modify our structure to model two important fea-
tures that the benchmark model does not include: static distortions from
monopoly, and the possibility that laggard innovations generate pro�ts. We
can interpret the shape of R as directly making statements about the prod-
uct market where patent rights are granted. In the analysis R′(1/r) = 0,
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so that there were no static distortions, since the allocation of the entire
future (the period that the innovation will be enjoyed) makes the agent's
incentives perfectly aligned with the planners, and maximizes social surplus.
Less duration means less than e�cient innovation, which is where the tension
arises: duration is scarce relative to the amount needed to induce e�cient
research e�ort. To get e�cient innovation on one innovation, the planner
would need to preclude future (valuable) innovations. One could proceed
with alternative market structures, leading to alternative R(d) functions. Let
d∗ = arg max0≤d≤1/r R(d). The value of d∗ is analogous to the (discounted)
optimal patent length in a static model like [3] or [15]; since the market is
driven by only one innovation, that innovation is granted duration d∗ in order
to maximize the planner's value in the space of rewards by product market
treatment.

If d∗ < r+λ
r(r+2λ)

, it is immediate that the planner can implement every
innovation at the Arrow-Nordhaus duration d∗, since the planner can always
provide less than what is delivered under the plan that delivers d̂. So the
model only has a dynamic tradeo� if d∗ > d̂, to ensure that the planner faces
a scarcity in market time. A simple description of this assumption is that
if the planner o�ers the current innovator preferential treatment until the
next arrival of the competitor, the protection is still insu�cient relative to
the Arrow-Nordhaus patent.

In this case all the formal results can be restated; backloading takes the
form, in the exclusive rights case, or rising duration to no higher than d∗

(rather than one); similarly, in the incomplete exclusion case, the planner
generates increasing duration for the leader up to a maximum of the static-
optimum, d∗.

One can generalize the example further so that pro�ts when the �rm is
not preferred are not zero, but just less than when the �rm is preferred. This
might be due to services it provides for the leading edge provider, in order
to make the innovations work e�ciently. Such an environment would mean
that

∆(d) = arg max
∆

d∆ + γ(1/r − d)∆− c(∆)

where γ < 1 re�ects the idea that the loss of exclusivity lowers the ability
of the �rm to pro�t from the innovation. In a sense γ in this example is
inversely related to the scarcity the planner faces; when γ = 1 the �rm gets
the entire future for any innovation, and therefore there is no scarcity. If
γ = 0 the �rm can only pro�t when it holds the promise it was granted at
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the time of innovation.

7 Conclusions

We have characterized the solution to the problem facing a planner who must
allocate rights to production across two �rms who can use those rights to
make pro�ts, and in turn are encouraged to innovate by the provision of the
rights. It allows us to address the question of what distribution of rights arises
from planner's solution, and in particular how much the market becomes
�concentrated.� The planner, because he can allocate rights to a single �rm
for multiple innovations at any point in time, backloads rewards, giving the
�rm with the preponderance of the future promises an exclusive right to all
of the current pro�ts. The optimal policy we study leads to monopoly, in
the sense that one �rm is excluded even though it is getting useful ideas.
We show that these basic results hold even if the planner is forced to use a
restricted set of polices where rights are is always granted immediately for
any innovation that is implemented. In that case, the optimal allocation can
be decentralized through a simple set of patent fees: one for a patent with no
forward breadth, and an additional fee that gives the innovator in�nite future
breadth. One can interpret the results as casting light on regulatory policies
designed to foster competition �for the market.� When the state dependence
of rights is combined with a dynamic model of competition for the market,
competition dies out in the long run.

Appendix

Proof of Proposition 5:

Proof. Since it is clear that d1(d̂) can never be less than d̂, we focus on the
case where d1(d̂) = d̂. Since promise keeping does not bind, this implies
that d2(d̂) = 1/r − d̂. In that case, the system just oscillates between d̂ and
1/r − d̂; the planners payo� is

V (d̂) =
2λ

r
R(d̂)
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We show that in this case that V is di�erentiable at d̂, implying that V ′(d̂) =
0 since V is �at to the left of d̂, which means that the �rst order condition

R′(d1) = −V ′(d1) + µ(d)

cannot be satis�ed if d1 = d = d̂, since the envelope condition would then
imply

R′(d1) = −V ′(d1) + V ′(d)

= 0

To show that V is di�erentiable at d̂, we describe a di�erentiable function Ṽ
that is below V near d̂. Since V is concave, the existence of such a function
implies that V is di�erentiable.

To construct Ṽ , suppose the planner delivers duration away from d̂ by ε
units by giving �rm one extra duration at all future points when the other
�rm has the most recent innovation (and x = 1 when �rm one has the most
recent innovation). This implies that all innovations by �rm 1 receive d̂+ r

λ
ε,

and all innovations by �rm 2 receive d̂− r
λ
ε. Therefore the planner's payo�

Ṽ (d̂+ ε) =
λ

r
R(d̂+

r

λ
ε) +

λ

r
R(d̂− r

λ
ε)

Under the maintained assumption that V (d̂) = 2λ
r
R(d̂), Ṽ is a di�eren-

tiable function equal to V at d̂. Since it is feasible choice for the planner,
must be less than the payo� V from the optimal policy. But therefore V
is di�erentiable, implying that d1(d̂) must exceed d̂, and contradicting that
V (d̂) = 2λ

r
R(d̂).

Proof of Proposition 7:

Proof. If d = 1/r, then p = 1 and d1 = 1/r are immediate from promise
keeping. Therefore we focus on the case where d < 1/r Suppose that p < 1
and d1(d) < 1/r.

Denote by dt1(d) the duration promise, starting from d, after t consecutive
arrivals of the incumbent, starting from a promise of d. Then d1(d) = d1

1(d)
Moreover, let pt(d) be the probability of implementing the entrant after t
consecutive arrivals by the incumbent; we have assumed, to a contradiction,
that p0(d) = p < 1.
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Denote by τ the smallest positive integer such that pτ (d) > 0. Since
d < 1/r, it must be the case that τ is �nite. In words, τ is the number of
consecutive arrivals by the incumbent before p > 0. Note that following the
promise keeping constraint, duration is weakly falling with these arrivals, so
dt1(d) < 1/r for t ≤ τ .

We show that this policy cannot be optimal by considering the following
variation. We increase p(d) by ε. In order to maintain promise keeping,
we must lower the implementation of entrants elsewhere. We do this at
the node that follows τ consecutive arrivals by the incumbent. The initial
policy dictates that the entrant, if it arrives, be implemented with probability
pτ (d). We lower this probability by (r + λ)τε; with that probability we do
not implement the entrant, but instead keep the incumbent, but increment
the incumbent's duration to the initial duration promise d from τ arrivals
hence.

Since we are, in some states, o�ering the incumbent d (rather than noth-
ing) after τ consecutive arrivals, we are of course increasing dτ (d). This in-
creases the duration promises for all dt(d) for t > 1 in turn. Since dt(d) < 1/r
for t > 1, all of these are improvements to welfare.

We now claim that the change maintains initial promise keeping of d, and
has no additional impact on welfare. That it maintains d is by construction:
the exclusions after an entrants arrival following τ arrivals by the incumbent
increase duration by

1

(r + λ)τ+1
d(r + λ)τε

The �rst term is the discounting until τ arrivals by the incumbent, followed
by one by the entrant; d is the gained duration in this state; and (r+ λ)τ+1ε
is the probability that the duration is granted. This simpli�es to d(r+λ)−1ε,
which is exactly the amount of duration that is lost when an additional ε
probability of losing d at the �rst node is lost, after arrival by the entrant.

To see that it has no additional impact on welfare, note that there are
two other changes induced by the policy. First, with (discounted) probability
(r+λ)−1ε, we implement immediate arrivals by the entrant, and the planner
moves from state d to state d2, earning R(d2) from the entrant. However,
with the identical (discounted) probability, an entrant who would have been
given d2 is not implemented, and in this case the state transit to d instead of
moving to d2. Since these happen withe equal discounted probabilities, these
changes exactly cancel, and therefore the modi�cation is a strict improvement
in welfare.

29



Proof of Lemma 9:

Proof. Consider a small exclusion, only if the entrant arrives immediately
after τ − 1 arrivals by the incumbent. As in the proof of, in this event of
exclusion, set the incumbents duration back to 1/(r+λ), so it has no change
in continuation utility (in other words, this is a one shot exclusion). This
generates losses due to exclusions of(

1

λ+ r

)τ
R(1/(r + λ))

It generates gains for the τ periods from the beginning to the τ − 1 arrival
of incumbent ideas. For instance, the τ − 1 arrival by an incumbent has
duration increased at rate

1

λ+ r

1

λ+ r

since, if the next arrival is by the entrant (the �rst term) then there is an
increase of 1

λ+r
for every unit of exclusion. This generates gain(

1

λ+ r

)τ−1

R′(1/(r + λ))

(
1

λ+ r

)2

where the �rst term is the discounting until the duration promise increases,
the second term is the gain from the increased duration, times the rate at
which duration is increasing.

It is easy to verify that all of the bene�t terms simplify to the same(
1

λ+r

)τ+1
R′(1/(r+λ)); earlier terms get less duration increase by a factor of

1
λ+r

, but happen sooner by the same factor. Therefore the total gain is

τ

(
1

λ+ r

)τ+1

R′(1/(r + λ))

and therefore there is an improvement if

τ

(
1

λ+ r

)τ+1

R′(1/(r + λ)) >

(
1

λ+ r

)τ
R(1/(r + λ))

τ >
R(1/(r + λ))

1
λ+r

R′(1/(r + λ))
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Proof of Proposition 10

Denote byWN the value of an outside �rm, upon receiving an idea and paying
f , if he excludes after N arrivals. We set f = WN . This implies that the
value of being the laggard �rm is zero. We need to show that, �rst, we can
set t so that it is optimal to pay t after N arrivals. Then it is immediate that
a laggard �rm without an idea does not �nd it worthwhile to pay f , and one
who does is indi�erent between paying f and not.

Consider the deviation of paying t after n arrivals, after the payment of f .
The value of this plan is denoted Wn for arbitrary n . For any such deviation
strategy we have associated durations when n steps from foreclosure. They
can be solved recursively from

rdn = 1− λdn + λ (dn−1 − dn)

with d0 = 1
r
. Denote β = λ

´
e−(r+2λ)tdt = λ

r+2λ
. The recursion implies

dn =
(1− βn)

1− β
+
βn

r
.

We can divide up rewards into pro�ts and expected payment of fees.

Wn = vn − βnt

The pro�ts from selling follow a simple recursion:

vn+1 = πn+1 + βvn

where πn = maxxdnx − c(x). This recursion decomposes the reward from
innovating into two parts. First, there is the expected pro�ts from selling the
current increment. Since that innovation lasts for dn units of time, its pro�ts
are πn. If the incumbent gets the next idea (embodied in the discounting by
β), they will face the same problem as any innovator n− 1 steps from fore-
closure, except for the pro�ts they make from the increment they generated
from earlier innovations.

We want to show that an arbitrary n (in particular N) can be made the
maximum of Wn by appropriate choice of t. We start by showing that we
can make it a local maximum, i.e.

vn − βnt ≥ vn+1 − βn+1t

vn − βnt ≥ vn−1 − βn−1t
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Note that the �rst is equivalent to

βn(1− β)t ≤ (1− β)vn − πn+1

and the second is equivalent to

βn(1− β)t ≥ β((1− β)vn−1 − πn)

Note that vn > βvn−1 and πn > πn+1, so these two can always be satis�ed
simultaneously for appropriate t.

The next two claims verify that any local maximum is also a global one.
This completes the proof.

Claim 11. If vn − βnt ≥ vn−1 − βn−1t then vn−1 − βn−1t ≥ vn−2 − βn−2t.

Proof. Rewrite the �rst inequality as πn+βvn−1−βnt ≥ πn−1+βvn−2−βn−1t.
Observing that πn < πn−1 it follows that βvn−1 − βnt ≥ βvn−2 − βn−1t.
Dividing through by β we get vn−1 − βn−1t ≥ vn−2 − βn−2t.

Claim 12. vn − βnt ≥ vn+1 − βn+1t implies vn+1 − βn+1t ≥ vn+2 − βn+2t.

Proof. Multiply the �rst inequality by β and substituting on the left hand
side βvn by vn+1 − πn+1 and on the right hand size βvn+1 by vn+2 − πn+2

gives:
vn+1 − πn+1 − βn+1t ≥ vn+2 − πn+2 − βn+2t.

Observing that πn+1 > πn+2 this implies that vn+1−βn+1t ≥ vn+2−βn+2t.
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