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Abstract

This paper studies the effects of a fiscal transfer program on the proba-
bility and timing of the insolvency of that program. We use an overlapping
generations model with aggregate uncertainty in which households have
rational expectations to show how the size of the fiscal transfer program
affects the expected time in which the economy will reach its fiscal limit.
We look at two results of insolvency. The first is a catastrophic govern-
ment shut down in which the current economy ceases to function. The
second is a less-severe permanent regime shift to a high proportional tax
rate regime. In our example calibrated to the U.S. economy we show that
the expected time until the fiscal limit is about 100 years. But we also
find that there is a roughly 35 percent chance that the economy could
hit its limit in 30 years. We also calculate measures of the fiscal gap and
the equity premium. Our model with potential fiscal insolvency generates
equity premia that are close to those observed in the data.
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1 Introduction

The global recession that began in 2008 highlighted two key weaknesses in developed

economies: excessive debt and unsustainable fiscal policies. This paper studies the

effects of a fiscal transfer program on the probability and timing of the insolvency

of that program. Although the fiscal issues of most developed countries also include

healthcare spending and unemployment policy, the focus of this paper is pay-as-you-

go transfer programs like the Social Security system in the United States.

Because age heterogeneity is central to questions about intergenerational trans-

fers, we use an overlapping generations model with aggregate uncertainty in which

households have rational expectations to show how the size of the fiscal transfer pro-

gram affects the expected time in which the economy will reach its fiscal limit. We

treat any type of restructuring of the transfer program as a default, and we look at

two results of insolvency. The first is a catastrophic government shut down in which

the current economy ceases to function. The second is a less-severe permanent regime

shift to a high-proportional tax rate regime. Calibrating our model to the U.S. econ-

omy, we find that the expected time until the fiscal limit is about 100 years. But

we also find that there is a roughly 35 percent chance that the economy could hit its

limit in 30 years.

Using our model, we calculate measures of the fiscal gap as well as the equity

premium as indicators of fiscal imbalance. Popular measures of a country’s degree of

indebtedness or fiscal insolvency, such as the deficit or the debt-to-GDP ratio, are not

well defined or offer an incomplete picture. Our definition of the fiscal gap applies the

generational accounting concept from Auerbach, Gokhale, and Kotlikoff (1991) and

measures the long-run fiscal burden of a country as the net present value of expected

future government revenues minus expenses as a percent of either current GDP or the

net present value of GDP. Our measures of the fiscal gap as a percent of current GDP

from our baseline model are between 1 and 4 percent and increase monotonically with

the size of the transfer program.

The equity premia generated by our model with potential fiscal insolvency are
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about 6 percent in the initial period in the model in which insolvency triggers an

economic shut down and about 2 percent in the model in which insolvency triggers a

permanent switch to a high tax rate regime. The two specifications generate Sharpe

ratios of 0.32 and 0.28, respectively. However, when tracking the equity premia and

Sharpe ratios across time as the economy gets closer to its shut down or regime

switch, the equity premium and Sharpe ratios rise to 7 percent and 0.33 in the shut

down model and 6 percent and 0.50 in the regime switching model. The latter case

is particularly interesting given that it predicts high equity premia and Sharpe ratios

in economies that are close to their fiscal limit.

In treating fiscal insolvency as a type of default, the literature on sovereign default

becomes informative.1 However, Leeper and Walker (2011) argue that large restruc-

turing of fiscal programs is probably more relevant to developed economies than is

sovereign default. They define a fiscal limit as “the point beyond which taxes and

government expenditures can no longer adjust to stabilize the value of government

debt.” A large literature focuses of fiscal stress and fiscal limits.2

Our paper abstracts from money, so it does not have the monetary and fiscal

interaction described in Sargent and Wallace (1981) and highlighted in the recent

fiscal limits research.3 In this study, we treat the transfer program as having some

fixed component that can be thought of as nonproportional to income and as hard to

change quickly. The foundations of this idea of fiscal stickiness come from Alesina and

Drazen (1991) and has been incorporated into stochastic OLG models by Auerbach

and Hassett (1992, 2001, 2002, 2007) and Hassett and Metcalf (1999). We assume

that a fiscal transfer program represents a promise to pay, and any restructuring of

that program due to insolvency is defined as a default.

Further, our concept of what the government does after a fiscal restructuring is

similar to the ideas in the regime switching literature, of which Hamilton (2008) is a

1See Yue (2010), Reinhart and Rogoff (2009), Arellano (2008), and Aguiar and Gopinath (2006).
2See Auerbach and Kotlikoff (1987), Kotlikoff, Smetters, and Walliser (1998a,b, 2007),

İmrohoroğlu, İmrohoroğlu, and Joines (1995, 1999), Huggett and Ventura (1999), Cooley and Soares
(1999), De Nardi, İmrohoroğlu, and Sargent (1999), Altig, Auerbach, Kotlikoff, Smetters, and Wal-
liser (2001), Smetters and Walliser (2004), and Nishiyama and Smetters (2007).

3See also Cochrane (2011), Leeper and Walker (2011), Davig, Leeper, and Walker (2010, 2011),
Davig and Leeper (2011a,b), and Trabandt and Uhlig (2009).
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good survey. This study focuses on two potential regime switches—one more severe

and one less severe. In each case, the first fiscal regime one in which a nonproportional

transfer is collected from the young and given to the old. Our first specification is

that the government completely shuts down if it cannot collect the transfer from the

young. This could be interpreted as the young starving to death or as the economy

degenerating to autarky. Our other specification is a permanent switch to a high

proportional labor income tax rate regime when the fiscal transfer cannot be collected.

The paper proceeds as follows. Section 2 presents the model in which the economy

shuts down if the fiscal transfer system becomes insolvent as well as the simulation

of the economy, the measures of the fiscal gap, and the equity premium. Section 3

presents the model in which the fiscal transfer switches permanently to a high pro-

portional tax regime if the transfer system becomes insolvent with its accompanying

simulations, measures of the fiscal gap, and equity premium. Section 4 concludes.

2 Model with Shut Down

We study a simple 2-period-lived agent model in which the government promises to

make a lump sum transfer H̄ ≥ 0 from the young to the old each period. Ricardian

equivalence holds because households have rational expectations. However, the con-

straints of the model generate states of the world in which the government can only

make a transfer that is less that the promised amount 0 ≤ Ht ≤ H̄.

Our characterization of government shut down relies on the assumption that when

the state of the world is such that H̄ generates negative consumption for the young,

the agents in the economy resort to autarky rather than starvation (negative con-

sumption). This shut-down result would not hold if the government merely reduced

the size of the transfer program in the face of a shut down. Rational agents would

expect this and incorporate that risk on the payment H̄ in the second period of their

lives. We explore these types of less catastrophic regime shifts in Section 3.4

4A proportional transfer program will never shut down a government. However, if the government
is locked in to some degree of nonproportional transfer program, then there are states of the world in
which the government must either shut down or default on that debt. See Alesina and Drazen (1991)
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2.1 Household problem

A unit measure of identical consumer-workers is born each period. They supply a

unit of labor inelastically in the first period of life to identical perfectly competitive

firms, and do not work in the second period of life,

l1,t = l̄ = 1 ∀t

where l1,t is the amount of labor inelastically supplied by age-1 workers at time t.

Consumer-workers live for I = 2 periods and choose each period how to divide

their initial wealth and wages among consumption ci,t and capital investment in the

firms ki+1,t+1. The objective of a consumer-worker is maximize utility subject to a

period budget constraint and two nonnegativity constraints,

max
c1,t,k2,t+1,c2,t+1

u(c1,t) + βEt [u(c2,t+1)]

where c1,t + k2,t+1 ≤ wt −Ht

and c2,t+1 ≤ (1 + rt+1 − δ)k2,t+1 +Ht+1

and c1,t, c2,t+1, k2,t+1 ≥ 0

and where u(ci,t) =
(ci,t)

1−γ − 1

1− γ

Let new consumer-workers have no initial capital k1,t = 0. Note that the nonnegativity

constraints on capital k2,t+1 and consumption c1,t and c2,t+1 are not strict inequalities.

This is because we are allowing the government transfer program to zero out the

consumption and savings of the young.

Consumption in the second period of life is characterized by the second period

budget constraint.

c2,t+1 = (1 + rt+1 − δ)k2,t+1 +Ht+1 (1)

Note that the nonnegativity constraint on consumption will never bind because ev-

for an early description of this type of policy inertia. If the government defaults in a way that the
consumption of the young does not go to zero, then the government has changed its nonproportional
transfer program to look like a proportional transfer program.
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erything on the right-hand-side of (1) is weakly positive. Consumption in the first

period of life c1,t and savings in the first period of life k2,t+1 are jointly determined by

the first period budget constraint and by the Euler equation.

c1,t + k2,t+1 = wt −Ht (2)

u′(c1,t) = βEt

[(
1 + rt+1 − δ

)
u′(c2,t+1)

]
(3)

Note from the right-hand-side of (2) that the nonnegativity constraints on c1,t and

k2,t+1 bind when wt ≤ H̄. It is in these cases that the government is only able

to collect Ht = wt by forcing the consumption and savings of the young to zero.

Economic shut down is characterized by this condition.

2.2 Firm problem

A unit measure of identical perfectly competitive firms exist in this economy that hire

aggregate labor Lt at real wage wt and rent aggregate capital Kt at real rental rate rt

every period in order to produce consumption good Yt according to a Cobb-Douglas

production function,

Yt = AtK
α
t L

1−α
t ∀t (4)

where At = ezt is distributed log normally, and zt follows an AR(1) process.

zt = ρzt−1 + (1− ρ)µ+ εt

where ρ ∈ [0, 1), µ ≥ 0, and εt ∼ N(0, σ2)
(5)

Profit maximization implies that the real wage and real rental rate are determined

by the standard first order conditions for the firm.

rt = αeztKα−1
t L1−α

t ∀t (6)

wt = (1− α)eztKα
t L
−α
t ∀t (7)
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2.3 Market clearing

Market clearing implies that the aggregate labor demand equals aggregate labor sup-

ply, aggregate capital demand equals aggregate capital supply, and output equals

consumption minus investment in each period,

Lt = l1 = l̄ = 1 ∀t (8)

Kt = k2,t ∀t (9)

Yt = Ct +Kt+1 − (1− δ)Kt ∀t (10)

where Ct in (10) is aggregate consumption and is given by Ct ≡
∑2

i=1 ci,t.

2.4 Solution and calibration

A competitive equilibrium for a given H̄ is defined in the following way.

Definition 1 (Competitive equilibrium). A competitive equilibrium in the over-
lapping generations model with 2-period lived agents and promised government trans-
fer of H̄ is defined as consumption c1,t and c2,t and savings k2,t+1 allocations and a
real wage wt and real net interest rate rt each period such that:

i. households optimize according to (1), (2) and (3),

ii. firms optimize according to (6) and (7),

iii. markets clear according to (8), (9), and (10).

The equilibrium can be solved in terms of either age-1 consumption c1,t or age-

1 savings k2,t+1. The following exposition and our numerical method obtains the

solution by solving for the optimal c1,t. We first write all the endogenous variables in

terms of age-1 consumption c1,t. The age-1 budget constraint (2) becomes

k2,t+1 = wt −Ht − c1,t. (11)

Age-2 consumption in the next period is simply a function of k2,t+1 as in (1). The real

wage wt and interest rate rt from (6) and (7) are simply functions of the savings k2,t
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in equilibrium. So the Euler equation (3) can be written all in terms of parameters,

period-t state variables, and c1,t

u′
(
c1,t

)
= βEzt+1|zt

[(
1 + αezt+1

[
(1− α)eztkα2,t − H̄ − c1,t

]α−1 − δ
)
× ...

u′
([

1 + αezt+1
(
[1− α]eztkα2,t − H̄ − c1,t

)α−1 − δ
](

[1− α]eztkα2,t − H̄ − c1,t

)
+ ...

min
{

(1− α)ezt+1
(
[1− α]eztkα2,t − H̄ − c1,t

)α
, H̄
})]

(12)

Note that equation (12) characterizes c1,t for all t in which the nonnegativity

constraint does not bind wt > H̄. In the other case when the wage is too low to be

able to collect the transfer from the young wt ≤ H̄, the government collects all that

it can from the young Ht = wt, transfers that amount to the old, and the young are

left with zero consumption and savings c1,t = k2,t+1 = 0. For this reason the amount

of the transfer in equilibrium, in general, is

Ht = min{wt, H̄} ∀t (13)

This expression implies the possibility that, in equilibrium, the government will not

be able to collect the full promised transfer H̄ in all states of the world. Because (12)

characterizes c1,t in the cases in which the nonnegativity constraint does not bind,

Ht = H̄ in the equation. However, the last term in (12) shows that the integral over

all shocks next period must include cases in which the nonnegativity constraint is not

satisfied.

We calibrate the parameters of the model so that one period is equivalent to 30

years and then solve for the endogenous objects for a grid of points in the state space

(k2,t, zt).
5 The policy functions for c1,t, c2,t, k2,t+1, Yt, wt, and rt in terms of the state

(k2,t, zt) are all monotonically increasing in the productivity shock zt, and all except

for the interest rate rt are monotonically increasing in the capital stock k2,t.

5MatLab code for the computation is available upon request.
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Table 1: Calibration of 2-period lived agent OLG model with
promised transfer H̄

Parameter Source to match Value
β annual discount factor of 0.96 0.29
γ coefficient of relative risk aversion between 1.5 and 4.0 2
α capital share of income 0.35
δ annual capital depreciation of 0.05 0.79
ρ AR(1) persistence of normally distributed shock to match 0.21

annual persistence of 0.95
µ AR(1) long-run average shock level 0
σ standard deviation of normally distributed shock to match 1.55

the annual standard deviation of real GDP of 0.49
H̄ set to be 32% of the median real wage 0.11

The Technical Appendix gives a detailed description of the calibration of all parameters.

2.5 Simulation

One way to measure the effect of fiscal policy on the probability of forcing an economy

into a shut down scenario is to simulate the economy and observe when it is most

likely to shut down relative to different sized transfer programs. In this section, we

simulate the time series of the economy until it shuts down 3,000 times. And we do

this for three different values of transfer program size H̄ = {0.05, 0.11, 0.17} and for

three different values of the initial value of the capital stock k2,0 = {0.11, 0.14, 0, 17}.6

In each simulation we use an initial value of the productivity shock of its median

value z0 = µ.

Table 2 shows how each parameterization for H̄ and k2,0 changes the median wage

wmed, the median capital stock kmed, and the size of H̄ and k2,0 relative to the median

wage wmed and the median capital stock kmed, respectively.

Using the calibrated parameters from Table 1 and the various values for H̄ and k2,0

from Table 2, we simulate the model 3,000 times. Table 3 presents the descriptive

statistics of how many periods the simulations take to hit the economic shutdown

point of wt ≤ H̄. The middle row of Table 3 corresponding to H̄ = 0.11 shows that

this model economy has a greater than 50 percent chance of shutting down in 60 years

6The three values for each roughly correspond to low, middle and high values. That is, H̄ = 0.11
is the value that is roughly equal to 32 percent of the median wage, and k2,0 = 0.14 is roughly equal
to the median capital stock across simulations.
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Table 2: Initial values relative to median values

k2,0 = 0.11 k2,0 = 0.14 k2,0 = 0.17
wmed kmed wmed kmed wmed kmed

H̄/wmed k2,0/kmed H̄/wmed k2,0/kmed H̄/wmed k2,0/kmed

H̄ = 0.05
0.3030 0.0992 0.3026 0.0996 0.3008 0.0991
0.1650 1.1093 0.1652 1.4062 0.1662 1.7148

H̄ = 0.11
0.3445 0.1344 0.3433 0.1358 0.3474 0.1365
0.3193 0.8187 0.3204 1.0311 0.3166 1.2457

H̄ = 0.17
0.2562 0.1043 0.2709 0.1090 0.2825 0.1134
0.6635 1.0550 0.6275 1.2846 0.6018 1.4988

wmed is the median wage and kmed is the median capital stock across all 3,000 simulations before
economic shut down.

(2 periods) under a fiscal transfer system that is calibrated to be close to that of the

United States. Table 3 also shows that the probability of a shutdown increases or

decreases drastically with the size of the fiscal transfer system.

Table 3: Periods to shut down simulation statistics

k2,0 = 0.11 k2,0 = 0.14 k2,0 = 0.17
Periods CDF Periods CDF Periods CDF

H̄ = 0.05

min 1 0.1620 1 0.1543 1 0.1477
med 4 0.5370 4 0.5320 4 0.5283
mean 5.95 0.6704 6.00 0.6703 6.04 0.6694
max 45 1.0000 45 1.0000 45 1.0000

H̄ = 0.11

min 1 0.3623 1 0.3480 1 0.3357
med 2 0.5653 2 0.5543 2 0.5433
mean 3.29 0.7060 3.35 0.7029 3.41 0.7022
max 24 1.0000 24 1.0000 25 1.0000

H̄ = 0.17

min 1 0.5203 1 0.4987 1 0.4807
med 1 0.5203 2 0.6833 2 0.6707
mean 2.42 0.7373 2.48 0.7336 2.54 0.7295
max 18 1.0000 18 1.0000 18 1.0000

The “min”, “med”, “mean”, and “max” rows in the “Periods” column represent the minimum,
median, mean, and maximum number of periods, respectively, in which the simulated time
series hit the economic shut down. The “CDF” column represents the percent of simulations
that shut down in t periods or less, where t is the value in the “Periods” column. For the CDF
value of the “mean” row, we used linear interpolation.

To illustrate the dynamics of the model, we show impulse response functions of

the endogenous variables. Figure 1 shows the time series of the endogenous variables

starting from the baseline values of H̄ = 0.11 and k2,0 = 0.14. With no shocks the

economy hits its shut-down point in four periods. The lower pane in Figure 1 shows

9



the interest rate separately because its magnitudes become so much larger than the

other variables.7

Figure 1: Zero-shock time series of endogenous
variables for H̄ = 0.11 and k2,0 = 0.14
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Figures 2 and 3 show the impulse response functions for the model with shutdown

and H̄ = 0.11 and k2,0 = 0.14 for a positive standard deviation productivity shock

in period 2 and a negative standard deviation productivity shock in period 2, respec-

tively. With the positive shock in period 2, the economy lasts until period 7 before

shutting down. With the negative productivity shock in period 2, the economy shuts

down immediately in period 2.

7Impulse response functions for the other starting values are included in the Technical Appendix.
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Figure 2: Impulse response function for positive
standard deviation productivity shock
in period 2: H̄ = 0.11 and k2,0 = 0.14
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Figure 3: Impulse response function for negative
standard deviation productivity shock
in period 2: H̄ = 0.11 and k2,0 = 0.14

1 2 3 4 5
0

0.2

0.4

0.6

0.8

Period

V
ar

ia
bl

e

c
1,t

, k
2,t

, c
2,t

, Y
t
, and w

t

 

 

1 2 3 4 5
0

0.5

1

1.5

Period

V
ar

ia
bl

e

r
t

 

 

c1
k2
c2
Y
w

r
c1
k2
c2
Y
w

11



2.6 Fiscal gap and equity premium

Because the actual transfer is not always equal to the promised transfer Ht ≤ H̄, we

define the fiscal gap as the deviation of the net present value of promised transfers

from the net present value of actual transfers as a percent of the net present value of

output.

fiscal gapt = xt ≡
NPV (H̄)−NPV (Ht)

NPV (Yt)
(14)

This measure does not suffer from the fungibility of short-run definitions of debts and

deficits.

A difficulty with this long-run measure of the fiscal gap is that the lives of house-

holds are shorter lived than the horizon over which the net present values must be

calculated. For the net present values in (14), we must use discount factors derived

separately from the households’ discount factor. If we define the discount factor in s

periods from the current period as dt+s, then we can rewrite the net present values in

the measure of the fiscal gap from (14) in terms of the discount factors and expected

streams of transfers and income.

xt =

∑∞
s=0 dt+sH̄ −

∑∞
s=0 dt+sE [Hs]∑∞

s=0 dt+sE [Ys]
(15)

We will compute four different measures of the fiscal gap using four different

assumed sequences of discount factors dt+s—two from our model and two from the

literature. The first measure of the fiscal gap (fgap1) uses the prices of sure-return

bonds that mature s periods from the current period t as the discount factors. Define

pt,j as the price of an asset Bt,j with a sure-return payment of one unit j periods

in the future. If these assets can be bought and sold each period, then a household

could purchase an asset that pays off after the household is dead and sell it before

they die. Because each of these assets must be held in zero net supply, they do not

change the equilibrium policy functions described in Section 2.4. The equations that
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characterized the prices pt,j for all t and j follow standard asset pricing theory.8

pt,j =

1 if j = 0

β
Et[u′(c2,t+1)pt+1,j−1]

u′(c1,t)
if j ≥ 1

∀t (16)

With the starting value of the sure-return price pt,0 pinned down, the prices of the

assets that mature in future periods can be solved for recursively using equation (16).

Table 4 shows the calculated sure-return prices at each maturity—which we use as

our discount factors—and their corresponding net discount rates shown at an annual

rate. Each cell represents the computed prices and interest rates that correspond to

a particular promised transfer value H̄ and initial capital stock k2,0. The first column

in each cell displays the prices of the different maturity s of sure return bond pt,t+s

computed using recursive equation (16). The second column in each cell represents

the annualized version of the net return rt,t+sAPR or net interest rate.9

rt,t+s =

(
1

pt,t+s

) 1
s30

− 1 for s ≥ 1 (17)

The second fiscal gap measure (fgap 2) is calculated using a constant discount

rate which is the current period risky return on capital Rt taken from the model. For

example, the risky return on capital in period t is Rt = 1.4971 in the middle cell in

which H̄ = 0.11 and k2,0 = 0.14. So the discount factors are dt+s = (1.4971)−s. Our

third fiscal gap measure (fgap 3) uses a constant discount rate taken from Interna-

tional Monetary Fund (2009, Table 6.4). This study uses an annual discount factor

of the growth rate in real GDP plus 1 percent to calculate the net present value of

aging-related expeditures. This averages out among G-20 countries to be a discount

rate of around 4 percent and for the U.S. is about 3.8 percent (Rt ≈ 3.1). So the

discount rates for fgap3 are dt+s = (3.05)−s. For the last measure of the fiscal gap

8We derive equation (16), as well as some other assets of interest, in detail in the Technical
Appendix.

9The return or yield of a sure-return bond should increase with its maturity in an economy that
never shuts down. However, the increasing probability of the economy shutting down in each future
period counteracts the increasing value of the sure return in the future. This is why the interest
rates in the second column of each cell in Table 4 seem to go toward an asymptote in the limit.
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Table 4: Term structure of prices and interest rates

k2,0 = 0.11 k2,0 = 0.14 k2,0 = 0.17
rt,t+s rt,t+s rt,t+s

s pt,t+s APR pt,t+s APR pt,t+s APR

H̄ = 0.05

0 1 0 1 0 1 0
1 1.5556 -0.0146 1.5897 -0.0153 1.6190 -0.0159
2 0.3115 0.0196 0.3466 0.0178 0.3782 0.0163
3 0.0385 0.0369 0.0441 0.0353 0.0493 0.0340
4 0.0088 0.0403 0.0096 0.0395 0.0099 0.0392
5 0.0049 0.0360 0.0063 0.0344 0.0063 0.0344
6 0.0014 0.0372 0.0025 0.0338 0.0024 0.0342

H̄ = 0.11

0 1 0 1 0 1 0
1 1.6771 -0.0171 1.7186 -0.0179 1.7673 -0.0188
2 0.1543 0.0316 0.1793 0.0291 0.2137 0.0261
3 0.0074 0.0560 0.0092 0.0535 0.0118 0.0506
4 0.0072 0.0420 0.0077 0.0414 0.0085 0.0405
5 0.0029 0.0397 0.0032 0.0390 0.0038 0.0379
6 4.3 ×10−4 0.0440 5.0 ×10−4 0.0431 5.9 ×10−4 0.0421

H̄ = 0.17

0 1 0 1 0 1 0
1 1.5848 -0.0152 1.6811 -0.0172 1.7308 -0.0181
2 0.0092 0.0812 0.0156 0.0718 0.0359 0.0570
3 0.0010 0.0794 0.0031 0.0663 0.0038 0.0639
4 9.0 ×10−5 0.0808 0.0046 0.0459 0.0049 0.0453
5 1.3 ×10−5 0.0780 0.0010 0.0470 0.0011 0.0463
6 1.7 ×10−5 0.0630 5.6 ×10−5 0.0558 6.1 ×10−5 0.0554

The first column in each cell is the price of the sure-return bond pt,t+s at different maturities s as
characterized by equation (16). The second column in each cell is the net interest rate rt,t+sAPR
implied by the sure-return rate and given in annual percentage rate terms according to equation (17).
Full descriptions of the term structure of prices and interest rates for all calibrations and for up to
s = 12 is provided in the Technical Appendix.
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(fgap4), we use the constant discount rate from Gohkhale and Smetters (2007) who

use an annual discount rate of 3.65 percent for their discount factors in their NPV

calculation. This is equivalent to a 30-year gross discount rate of Rt ≈ 2.9. So the

discount rates for fgap4 are dt+s = (2.93)−s. The expectations for Ht and Yt are

simply the average values from the 3,000 simulations described in Section 2.5.

Table 5 gives the computed fiscal gaps for the nine different combinations of

promised transfer H̄ and initial capital stock k2,0 as a percent of the net present value

of output.

Table 5: Measures of the fiscal gap as percent of
NPV(GDP)

k2,0 = 0.11 k2,0 = 0.14 k2,0 = 0.17
fgap 1 fgap 2 fgap 1 fgap 2 fgap 1 fgap 2
fgap 3 fgap 4 fgap 3 fgap 4 fgap 3 fgap 4

H̄ = 0.05
0.0037 0.0078 0.0034 0.0096 0.0033 0.0118
0.0033 0.0035 0.0030 0.0032 0.0028 0.0029

H̄ = 0.11
0.0192 0.0373 0.0175 0.0427 0.0164 0.555
0.0168 0.0176 0.0152 0.0159 0.0140 0.0147

H̄ = 0.17
0.0474 0.0876 0.0421 0.1041 0.0385 0.1171
0.0408 0.0426 0.0361 0.0378 0.0328 0.0344

Fiscal gap 1 uses the gross sure return rates Rt,t+s from Table 4 as the discount
rates for NPV calculation. Fiscal gap 2 uses the current period gross return on
capital Rt from the model as the constant discount rate. Fiscal gap 3 uses the
International Monetary Fund (2009) method of an annual discount rate equal
to 1 plus the average percent change in GDP plus 0.01 (≈ 2.05). And fiscal gap
4 uses the Gohkhale and Smetters (2007) method of an annual discount rate
equal to 1 plus 0.0365 (≈ 1.93).

In similar fashion to how the fiscal gap is a measure of risk in the economy, we

can use the difference in the expected risky return on capital one period from now

E[Rt+1] and the riskless return on the sure-return bond maturing one period from

now Rt,t+1 to calculate an equity premium. A large literature has tried to explain

why the equity premium observed in the real world is so large.10 More recently, Barro

(2009) has shown that incorporating rare disasters into an economic model produces

risk premia and risk free rates that are similar to those observed in the data. In

our model, we incorporate the rare disaster of an economic shutdown. As shown in

10See Shiller (1982), Mehra and Prescott (1985), Kocherlakota (1996), Campbell (2000), and
Cochrane (2005, Ch. 21) for surveys of the equity premium puzzle.

15



Table 6, our model produces equity premia ranging from 4.7 percent to as high as 7.3

percent using only a coefficient of relative risk aversion of γ = 2.

Table 6: Components of the equity premium in period 1

k2,0 = 0.11 k2,0 = 0.14 k2,0 = 0.17
30-year annual 30-year annual 30-year annual

H̄ = 0.05

E[Rt+1] 8.2070 1.0361 7.5150 1.0334 7.0113 1.0313
σ(Rt+1) 23.3433 n.a. 21.3222 n.a. 19.8511 n.a.
Rt,t+1 0.6428 0.9854 0.6291 0.9847 0.6177 0.9841
Equity premium

7.5641 0.0507 6.8859 0.0487 6.3936 0.0473
E[Rt+1]−Rt,t+1

Sharpe ratio
0.3240 n.a. 0.3229 n.a. 0.3221 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

H̄ = 0.11

E[Rt+1] 11.3042 1.0459 10.0769 1.0423 9.2241 1.0396
σ(Rt+1) 32.3859 n.a. 28.8049 n.a. 26.3140 n.a.
Rt,t+1 0.5963 0.9829 0.5819 0.9821 0.5658 0.9812
Equity premium

10.7080 0.0630 9.4950 0.0602 8.6582 0.0584
E[Rt+1]−Rt,t+1

Sharpe ratio
0.3306 n.a. 0.3296 n.a. 0.3290 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

H̄ = 0.17

E[Rt+1] 16.2082 1.0574 13.7520 1.0521 12.1889 1.0483
σ(Rt+1) 46.7126 n.a. 39.5389 n.a. 34.9735 n.a.
Rt,t+1 0.6310 0.9848 0.5948 0.9828 0.5778 0.9819
Equity premium

15.5772 0.0727 13.1572 0.0693 11.6112 0.0664
E[Rt+1]−Rt,t+1

Sharpe ratio
0.3335 n.a. 0.3328 n.a. 0.3320 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

The gross risky one-period return on capital is Rt+1 = 1 + rt+1 − δ. The annualized gross risky one-period
return is (Rt+1)1/30. The expected value and standard deviation of the gross risky one-period return Rt+1 are
calculated as the average and standard deviation, respectively, across simulations. The annual equity premium
is the expected value of the annualized risky return in the next period minus the annualized return on the
one-period riskless bond.
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We report the Sharpe ratio in Table 6 as well as all of the components of the

equity premium and the Sharpe ratio. For the expected risky return E[Rt+1], the

one-period sure return Rt,t+1, and the equity premium (the difference between the

two), we report results for both one period from the model (30 years) as well as the

annualized (one-year) version. Our Sharpe ratios between 0.32 and 0.33 are in line

with common estimates from the data.

Because the equity premium and the Sharpe ratio fluctuate from period-to-period,

we report in Table 7 the average equity premium and Sharpe ratio across simulations

in the period immediately before the economic shutdown as compared to their respec-

tive values in the first period. The average Sharpe ratio is above its initial value in

the period immediately before shutdown in every case. This is evidence that Sharpe

ratios increase as an economic approaches its critical value.

Table 7: Equity premium and Sharpe ratio in period immediately
before shutdown

k2,0 = 0.11 k2,0 = 0.14 k2,0 = 0.17
Eq. Sharpe Eq. Sharpe Eq. Sharpe

prem. ratio prem. ratio prem. ratio

H̄ = 0.05

period 1 0.0507 0.3240 0.0487 0.3229 0.0473 0.3221
before shutdown 0.0710 0.3356 0.0707 0.3337 0.0706 0.3370
percent bigger 0.6617 0.5410 0.6843 0.5570 0.6960 0.5690
percent smaller 0.1763 0.2970 0.1613 0.2887 0.1563 0.2833

H̄ = 0.11

period 1 0.0630 0.3306 0.0602 0.3296 0.0584 0.3290
before shutdown 0.0679 0.3339 0.0667 0.3333 0.0664 0.3343
percent bigger 0.3740 0.3760 0.4023 0.3970 0.4227 0.4153
percent smaller 0.2637 0.2617 0.2497 0.2550 0.2417 0.2490

H̄ = 0.17

period 1 0.0727 0.3335 0.0693 0.3328 0.0664 0.3320
before shutdown 0.0709 0.3353 0.0686 0.3354 0.0673 0.3348
percent bigger 0.2027 0.2740 0.2253 0.2937 0.2543 0.3070
percent smaller 0.2770 0.2057 0.2760 0.2077 0.2650 0.2123

The “period 1” row represents the equity premium and Sharpe ratio in the initial period for each spec-
ification. The “before shutdown” row represents the average equity premium and Sharpe ratio across
simulations in the period immediately before shutdown for each specification. The “percent bigger” and
“percent smaller” rows tell how many of the simulated ending values of the equity premium and Sharpe
ratio were bigger than or less than, respectively, their initial period values. These percentages do not sum
to one because the equity premium and Sharpe ratio do not change in the cases in which the economy
shuts down in the second period.
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3 Model with Regime Change

In this section, we make the consequence of a default on the promised transfer H̄ to

be a regime switch to a proportional transfer system rather than the autarky shut

down described in Section 2. We assume that when the government defaults on its

promised transfer wt ≤ H̄, the regime switches permanently to one in which the

transfer is simply τ percent of the wage each period Ht = τwt. We solve the model

for the 80-percent tax rule τ = 0.8 and for the 30-percent tax rule τ = 0.3 in the case

of a regime switch.

3.1 Regime change to 80-percent wage tax

Figure 4 illustrates the rule for the transfer Ht under regime 1 in which the transfer

is H̄ unless wages wt are less than H̄ and under regime 2 in which the transfer is

permanently switched to the proportional transfer system Ht = 0.8wt.

Figure 4: Transfer program Ht under regime 1 and regime 2:
80 percent wage tax

3.1.1 Household problem, firm problem, and market clearing

The characterization of the household problem remains the same as in equations (1),

(2), and (3) from Section 2.1. The only difference is in the definition of Ht in those
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equations. With the new regime switching assumption, the transfer each period from

the young to the old Ht is defined as follows.

Ht =

H̄ if ws > H̄ for all s ≤ t

0.8wt if ws ≤ H̄ for any s ≤ t

(18)

The change is reflected in the expectations of the young of consumption when old

c2,t+1 in the savings decision (3).

The firm’s problem and the characterization of output, aggregate productivity

shock, and optimal net real return on capital and real wage are the same as equations

(4) through (7) in Section 2.2. The market clearing conditions that must hold in each

period are the same as (8), (9), and (10) from Section 2.3

3.1.2 Solution and calibration

A competitive equilibrium with a transfer program regime switch characterized in

(18) is defined in the following way.

Definition 2 (Competitive equilibrium: 80-percent tax). A competitive equi-
librium in the overlapping generations model with 2-period lived agents and promised
government transfer of H̄ that permanently switches to a proportional transfer of
0.8wt if the government cannot collect H̄ as in (18) is defined as consumption c1,t and
c2,t and savings k2,t+1 allocations and a real wage wt and real net interest rate rt each
period such that:

i. households optimize according to (1), (2) and (3),

ii. firms optimize according to (6) and (7),

iii. markets clear according to (8), (9), and (10).

Characterizing the equilibrium from Definition 2 is simple because households in

this model live for only two periods. If a period begins in the constant transfer regime

wt > H̄ and Ht = H̄, then the only difference from the model in Section 2 is that

the young household’s consumption and savings decision reflects the new possibility

in expectation that next period’s transfer could be 0.8wt+1 rather than H̄.
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This regime switch actually decreases the expected value of next period’s transfer

Ht+1 for the current period’s young—0.8wt instead of wt. Thus, the current period

young will have more precautionary savings k2,t+1 than their Section 2 economic

shutdown predecessors. However, this implicit tax increase on the period t + 1 old

allows the economy to persist and accumulate utility for generations in the future

rather than die.

Once the regime has permanently switched to the high tax rate proportional trans-

fer program of Ht = 0.8wt, allocations each period are determined by the following

two equations,

c2,t = (1 + αeztkα−1
2,t − δ)k2,t + 0.8(1− α)eztkα2,t (19)

u′
(
c1,t

)
= βEzt+1|zt

[(
1 + αezt+1kα−1

2,t+1 − δ
)
× ...

u′
([

1 + αezt+1kα−1
2,t+1 − δ

]
k2,t+1 + 0.8(1− α)ezt+1kα2,t+1

)] (20)

where,

k2,t+1 = 0.2(1− α)eztkα2,t − c1,t (21)

and in which we have substituted in the expressions for rt and wt from (6) and (7),

respectively, and Ht = 0.8wt.

We calibrate the parameters of the model in the same way as in Table 1 for the

economic shut down model with the exception of H̄. We again calibrate H̄ to be

32 percent of the median wage. However, we calculate the median wage from the

time periods in the simulations before the regime switches (regime 1). Because the

economy does not shut down any more, it is less risky in the long run. But the

economy is actually more risky to the current period young in that the expected

value of their transfer in the next period is decreased by a potential regime switch.

Higher precautionary savings induces a higher median wage and a higher promised

transfer H̄ = 0.09 in order to equal 32 percent of the regime 1 median wage. The

policy functions for c1,t, c2,t, k2,t+1, Yt, wt, and rt in terms of the state (k2,t, zt) are all

monotonically increasing in the productivity shock zt, and all except for the interest
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rate rt are monotonically increasing in the capital stock k2,t.

Table 8: Calibration of 2-period lived agent OLG model with
promised transfer H̄ and regime switching: 80-percent tax

Parameter Source to match Value
β annual discount factor of 0.96 0.29
γ coefficient of relative risk aversion between 1.5 and 4.0 2
α capital share of income 0.35
δ annual capital depreciation of 0.05 0.79
ρ AR(1) persistence of normally distributed shock to match 0.21

annual persistence of 0.95
µ AR(1) long-run average shock level 0
σ standard deviation of normally distributed shock to match 1.55

the annual standard deviation of real GDP of 0.49
H̄ set to be 32% of the median real wage 0.09

The Technical Appendix gives a detailed description of the calibration of all parameters.

3.1.3 Simulation

Analogous to the simulation of the model with economic shut down from Section

2.5, we simulate the regime switching model 3,000 times with various combinations

of values for the promised transfer H̄ ∈ {0.09, 0.11} and the initial capital stock

k2,0 ∈ {0.0875, 0.14}. As shown in Table 9, our calibrated values of H̄ = 0.09 and

k2,0 = 0.0875 correspond to 32 percent of the median real wage in regime 1 and the

median capital stock in regime 1, respectively. In each simulation we use an initial

value of the productivity shock of its median value z0 = µ.

Table 9: Initial values relative to median values
from regime 1: 80-percent tax

k2,0 = 0.0875 k2,0 = 0.14
wmed kmed wmed kmed

H̄/wmed k2,0/kmed H̄/wmed k2,0/kmed

H̄ = 0.09
0.2827 0.0878 0.2883 0.0895
0.3184 0.9967 0.3121 1.5642

H̄ = 0.11
0.2944 0.0886 0.3021 0.0899
0.3736 0.9873 0.3641 1.5567

wmed is the median wage and kmed is the median capital stock across
all 3,000 simulations before the regime switch (in regime 1).
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The upper left cell of Table 9 is analogous to the middle cell of Table 2 in that H̄

is calibrated to be 32 percent of the regime 1 real wage and k2,0 to equal the regime

1 median capital stock. However, the lower right cell of Table 9 has the same H̄ and

k2,0 as the middle cell of Table 2. Notice that the median capital stock is higher in the

regime switching economy (kmed = 0.1.5567 for H̄ = 0.11 and k2,0 = 0.14 in regime

switching economy as compared to kmed = 0.1.0311 in the shutdown economy with

the same H̄ and k2,0). This is because young households have an increased risk in the

second period of life under the possibility of a regime switch because their transfer

will be lower in the case of a default on H̄.

Using the calibrated parameters from Table 8, we simulate the regime switching

model 3,000 times for the four different combinations of H̄ and k2,0. Table 10 presents

the descriptive statistics of how many periods the simulations take to hit the regime

switch point of wt ≤ H̄. Notice that the distribution of time until regime switch

across simulations from the upper left cell of Table 10 is very similar to the middle

cell in Table 3 from the shut down economy. Higher precautionary savings extends

the time until a regime switch, but increased promised transfers reduce that time.

Table 10: Periods to regime switch simulation
statistics: 80-percent tax

k2,0 = 0.0875 k2,0 = 0.14
Periods CDF Periods CDF

H̄ = 0.09

min 1 0.3677 1 0.3340
med 2 0.5727 2 0.5470
mean 3.25 0.7124 3.40 0.7066
max 24 1.0000 25 1.0000

H̄ = 0.11

min 1 0.4517 1 0.4060
med 2 0.6430 2 0.6127
mean 2.78 0.7314 2.94 0.7244
max 24 1.0000 24 1.0000

The “min”, “med”, “mean”, and “max” rows in the “Periods” column
represent the minimum, median, mean, and maximum number of pe-
riods, respectively, in which the simulated time series hit the regime
switch condition. The “CDF” column represents the percent of sim-
ulations that switch regimes in t periods or less, where t is the value
in the “Periods” column. For the CDF value of the “mean” row, we
used linear interpolation.

As with the shut down model from Section 2.5, we show impulse response func-
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tions of the endogenous variables. Figure 5 shows the time series of the endogenous

variables starting from the baseline values of H̄ = 0.09 and k2,0 = 0.0875. With no

shocks the economy hits its shut-down point in 3 periods. The lower pane in Figure

5 shows the interest rate separately because its magnitudes become so much larger

than the other variables.11

Figure 5: Zero-shock time series of endogenous
variables for H̄ = 0.09 and k2,0 = 0.0875:
80-percent tax
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Figures 6 and 7 show the impulse response functions for the model with shutdown

and H̄ = 0.09 and k2,0 = 0.0875 for a positive standard deviation productivity shock

in period 2 and a negative standard deviation productivity shock in period 2, respec-

tively. With the positive shock in period 2, the economy lasts until period 6 before

shutting down. With the negative productivity shock in period 2, the economy shuts

down immediately in period 2.

11Impulse response functions for the other starting values are included in the Technical Appendix.
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Figure 6: Impulse response function for positive
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 80-
percent tax
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Figure 7: Impulse response function for negative
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 80-
percent tax
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3.1.4 Fiscal gap and equity premium

For the model with regime switching to an 80-percent wage tax, we define the fiscal

gap in the same way as in equation (14) from Section 2.6. The discount factors used to

calculate the net present values in the fiscal gap measures from the regime switching

model are calculated in the same way as described in Section 2.6. Table 11 shows the

calculated sure-return prices and their corresponding annualized discount rates for

this regime switching economy. Each cell represents the computed prices and interest

rates that correspond to a particular promised transfer value H̄ and initial capital

stock k2,0.

Table 11: Term structure of prices and in-
terest rates in regime switching
economy: 80-percent tax

k2,0 = 0.0875 k2,0 = 0.14
rt,t+s rt,t+s

s pt,t+s APR pt,t+s APR

H̄ = 0.09

0 1 0 1 0
1 0.3269 0.0380 0.4645 0.0259
2 1.1607 -0.0025 2.5547 -0.0155
3 0.3534 0.0116 0.4138 0.0099
4 0.6753 0.0033 1.2121 -0.0016
5 0.4117 0.0059 0.2982 0.0081
6 0.1304 0.0114 0.4420 0.0045

H̄ = 0.11

0 1 0 1 0
1 0.2328 0.0498 0.3227 0.0384
2 1.3063 -0.0044 1.5334 -0.0071
3 2.5521 -0.0104 1.5811 -0.0051
4 0.2606 0.0113 0.8424 0.0014
5 1.7532 -0.0037 1.8832 -0.0042
6 0.3762 0.0054 0.4895 0.0040

The first column in each cell is the price of the sure-return bond
pt,t+s at different maturities s as characterized by equation
(16). The second column in each cell is the net interest rate
rt,t+sAPR implied by the sure-return rate and given in annual
percentage rate terms according to equation (17). Full descrip-
tions of the term structure of prices and interest rates for all
calibrations and for up to s = 12 is provided in the Technical
Appendix.

Table 12 shows our four measures of the fiscal gap as a percent of the net present

value of GDP for each of our four combinations of H̄ and k2,0. One difference in the
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regime switching model is that the economy never shuts down. Also striking is that

some of the fiscal gap measures are negative. This occurs because some of the discount

rates decay more slowly than others (fgap 1 is the slowest) and because expected Ht

is higher than H̄ after the regime switch. Even though the impulse response of wt

decays to a lower level after the regime switch (see Figure 5), the expected Ht can be

high because of the high variance in productivity shocks. A median value would be

lower. We therefore can get negative fiscal gap measures, even though H̄ is big enough

to trigger a regime switch in relatively few periods. Table 12 gives the computed fiscal

gaps as a percent of the net present value of output as in equation (14) for the four

combinations of values for the promised transfer H̄ and the initial capital stock k2,0.

Table 12: Measures of the fiscal gap
with regime switching as
percent of NPV(GDP): 80-
percent tax

k2,0 = 0.0875 k2,0 = 0.14
fgap 1 fgap 2 fgap 1 fgap 2
fgap 3 fgap 4 fgap 3 fgap 4

H̄ = 0.09
-0.0519 0.0003 -0.0343 -0.0157
0.0067 0.0066 0.0052 0.0051

H̄ = 0.11
-0.0861 0.0057 -0.0749 -0.0075
0.0130 0.0129 0.0103 0.0102

Fiscal gap 1 uses the gross sure return rates Rt,t+s from
Table 4 as the discount rates for NPV calculation. Fiscal
gap 2 uses the current period gross return on capital Rt

from the model as the constant discount rate. Fiscal gap
3 uses the International Monetary Fund (2009) method of
an annual discount rate equal to 1 plus the average percent
change in GDP plus 0.01 (≈ 2.05). And fiscal gap 4 uses
the Gohkhale and Smetters (2007) method of an annual dis-
count rate equal to 1 plus 0.0365 (≈ 1.93).

Note also in Table 12 that the fiscal gap measure fgap1 becomes even more negative

as H̄ increases. This is caused by the higher H̄ shortening the periods until the regime

switch or higher Ht values. In other words, the positive effect on the fiscal gap from a

higher H̄ in the pre-switch periods is dominated by the negative effect on the fiscal gap

from the more periods of high regime 2 Ht. For the other measures of the fiscal gap,

the second effect dominates so the fiscal gap increases with the size of the promised

transfer H̄.
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Lastly, we also caclulate the equity premium and Sharpe ratio for this regime

switching model using the difference in the expected risky return on capital one

period from now E[Rt+1] and the riskless return on the sure-return bond maturing

one period from now Rt,t+1. In reference to the Barro (2009) result, our model with

regime switching delivers equity premia that are significantly lower than the riskier

model with shut down from Section 2.6 and do not match as closely estimated equity

premia and Sharpe ratios. As shown in Table 13, our regime switching model produces

equity premia around 2 percent and Sharpe ratios around 0.28.

Table 13: Components of the equity premium with
regime switching: 80-percent tax

k2,0 = 0.0875 k2,0 = 0.14
30-year annual 30-year annual

H̄ = 0.09

E[Rt+1] 17.1319 1.0592 12.9708 1.0503
σ(Rt+1) 49.4105 n.a. 37.2570 n.a.
Rt,t+1 3.0589 1.0380 2.1526 1.0259
Equity premium

14.0731 0.0213 10.8182 0.0244
E[Rt+1]−Rt,t+1

Sharpe ratio
0.2848 n.a. 0.2904 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

H̄ = 0.11

E[Rt+1] 22.1773 1.0678 16.0801 1.0572
σ(Rt+1) 64.1466 n.a. 46.3385 n.a.
Rt,t+1 4.2960 1.0498 3.0985 1.0384
Equity premium

17.8813 0.0180 12.9816 0.0188
E[Rt+1]−Rt,t+1

Sharpe ratio
0.2788 n.a. 0.2801 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

The gross risky one-period return on capital is Rt+1 = 1 + rt+1 − δ. The annual-
ized gross risky one-period return is (Rt+1)1/30. The expected value and standard
deviation of the gross risky one-period return Rt+1 are calculated as the average
and standard deviation, respectively, across simulations. The annual equity premium
is the expected value of the annualized risky return in the next period minus the
annualized return on the one-period riskless bond.

However, the real equity premium story in the model with the 80-percent tax rate

regime switch is what happens to the equity premium as the economy approaches its

critical value. Table 14 reports the average equity premium and Sharpe ratio across

simulations in the period immediately before the regime switch as compared to their

respective values in the first period. The average equity premium and Sharpe ratio
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increase significantly from the initial period to the period right before the regime

switch in every case.

Table 14: Equity premium and Sharpe ratio in period immediately
before regime switch: 80-percent tax

k2,0 = 0.0875 k2,0 = 0.14
Eq. Sharpe Eq. Sharpe

prem. ratio prem. ratio

H̄ = 0.09

period 1 0.0213 0.2848 0.0244 0.2904
before shutdown 0.0737 0.3231 0.0773 0.3272
percent bigger 0.6287 0.5353 0.6600 0.5523
percent smaller 0.0037 0.0970 0.0060 0.1137

H̄ = 0.11

period 1 0.0180 0.2788 0.0188 0.2801
before shutdown 0.0637 0.3152 0.0675 0.3201
percent bigger 0.5457 0.4770 0.5910 0.5180
percent smaller 0.0027 0.0713 0.0030 0.0760

The “period 1” row represents the equity premium and Sharpe ratio in the initial
period for each specification. The “before shutdown” row represents the average
equity premium and Sharpe ratio across simulations in the period immediately
before shutdown for each specification. The “percent bigger” and “percent smaller”
rows tell how many of the simulated ending values of the equity premium and
Sharpe ratio were bigger than or less than, respectively, their initial period values.
These percentages do not sum to one because the equity premium and Sharpe ratio
do not change in the cases in which the economy shuts down in the second period.

3.2 Regime change to 30-percent wage tax

Figure 8 illustrates the rule for the transfer Ht under regime 1 in which the transfer

is H̄ unless wages wt are less than H̄ and under regime 2 in which the transfer is

permanently switched to the proportional transfer system Ht = 0.3wt.

3.2.1 Household problem, firm problem, and market clearing

The characterization of the household problem remains the same as in equations (1),

(2), and (3) from Section 2.1. The transfer each period from the young to the old Ht

is defined as follows.

Ht =

H̄ if ws > H̄ for all s ≤ t

0.3wt if ws ≤ H̄ for any s ≤ t

(22)
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Figure 8: Transfer program Ht under regime 1 and regime 2:
30 percent wage tax

The change is reflected in the expectations of the young of consumption when old

c2,t+1 in the savings decision (3).

The firm’s problem and the characterization of output, aggregate productivity

shock, and optimal net real return on capital and real wage are the same as equations

(4) through (7) in Section 2.2. The market clearing conditions that must hold in each

period are the same as (8), (9), and (10) from Section 2.3

3.2.2 Solution and calibration

A competitive equilibrium with a transfer program regime switch characterized in

(22) is defined in the following way.

Definition 3 (Competitive equilibrium: 30-percent tax). A competitive equi-
librium in the overlapping generations model with 2-period lived agents and promised
government transfer of H̄ that permanently switches to a proportional transfer of
0.3wt if the government cannot collect H̄ as in (22) is defined as consumption c1,t and
c2,t and savings k2,t+1 allocations and a real wage wt and real net interest rate rt each
period such that:

i. households optimize according to (1), (2) and (3),

ii. firms optimize according to (6) and (7),

iii. markets clear according to (8), (9), and (10).
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Once the regime has permanently switched to the high tax rate proportional trans-

fer program of Ht = 0.3wt, allocations each period are determined by the following

two equations,

c2,t = (1 + αeztkα−1
2,t − δ)k2,t + 0.3(1− α)eztkα2,t (23)

u′
(
c1,t

)
= βEzt+1|zt

[(
1 + αezt+1kα−1

2,t+1 − δ
)
× ...

u′
([

1 + αezt+1kα−1
2,t+1 − δ

]
k2,t+1 + 0.3(1− α)ezt+1kα2,t+1

)] (24)

where,

k2,t+1 = 0.7(1− α)eztkα2,t − c1,t (25)

and in which we have substituted in the expressions for rt and wt from (6) and (7),

respectively, and Ht = 0.3wt. We use the same calibration as in Table 8 with the

80-percent tax regime shift.

3.2.3 Simulation

We simulate the regime switching model 3,000 times with the same combinations

of values for the promised transfer H̄ ∈ {0.09, 0.11} and the initial capital stock

k2,0 ∈ {0.0875, 0.14} as in Section 3.1. As shown in Table 15, our calibrated values of

H̄ = 0.09 and k2,0 = 0.0875 correspond to about 32 percent of the median real wage

in regime 1 and close to the median capital stock in regime 1, respectively. Note that

none of these regime 1 values change much from Table 9 even though the regime 2

tax plan is significantly different. In each simulation we use an initial value of the

productivity shock of its median value z0 = µ.

The upper left cell of Table 15 is analogous to the middle cell of Table 2 in that H̄

is calibrated to be 32 percent of the regime 1 real wage and k2,0 to equal the regime 1

median capital stock. However, the lower right cell of Table 15 has the same H̄ and

k2,0 as the middle cell of Table 2. Notice that the median capital stock is higher in the
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Table 15: Initial values relative to median val-
ues from regime 1: 30-percent tax

k2,0 = 0.0875 k2,0 = 0.14
wmed kmed wmed kmed

H̄/wmed k2,0/kmed H̄/wmed k2,0/kmed

H̄ = 0.09
0.2828 0.0864 0.2880 0.0885
0.3183 1.0130 0.3125 1.5819

H̄ = 0.11
0.2963 0.0868 0.3051 0.0877
0.3712 1.0082 0.3605 1.5970

wmed is the median wage and kmed is the median capital stock across
all 3,000 simulations before the regime switch (in regime 1).

regime switching economy (kmed = 0.1.5970 for H̄ = 0.11 and k2,0 = 0.14 in regime

switching economy as compared to kmed = 0.1.0311 in the shutdown economy with

the same H̄ and k2,0). This is because young households have an increased risk in the

second period of life under the possibility of a regime switch because their transfer

will be lower in the case of a default on H̄.

Using the calibrated parameters from Table 8, we simulate the regime switching

model 3,000 times for the four different combinations of H̄ and k2,0. Table 16 presents

the descriptive statistics of how many periods the simulations take to hit the regime

switch point of wt ≤ H̄. Notice that the distributions of time until regime switch

across simulations in all the cells of Table 16 are very similar to the distributions from

the 80-percent tax economy in Table 10. Higher precautionary savings extends the

time until a regime switch, but increased promised transfers reduce that time.

The impulse response functions of the endogenous variables are given in Figures

9, 10, and 11.Figure 9 shows the time series of the endogenous variables starting from

the baseline values of H̄ = 0.09 and k2,0 = 0.0875. With no shocks the economy hits

its shut-down point in 3 periods. The lower pane in Figure 9 shows the interest rate

separately because its magnitudes become so much larger than the other variables.12

Figures 10 and 11 show the impulse response functions for the model with shut-

down and H̄ = 0.09 and k2,0 = 0.0875 for a positive standard deviation productivity

shock in period 2 and a negative standard deviation productivity shock in period 2,

12Impulse response functions for the other starting values are included in the Technical Appendix.
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Table 16: Periods to regime switch simulation
statistics: 30-percent tax

k2,0 = 0.0875 k2,0 = 0.14
Periods CDF Periods CDF

H̄ = 0.09

min 1 0.3677 1 0.3340
med 2 0.5697 2 0.5440
mean 3.28 0.7116 3.42 0.7054
max 24 1.0000 25 1.0000

H̄ = 0.11

min 1 0.4517 1 0.4060
med 2 0.6390 2 0.6080
mean 2.80 0.7302 2.96 0.7228
max 24 1.0000 24 1.0000

The “min”, “med”, “mean”, and “max” rows in the “Periods” column
represent the minimum, median, mean, and maximum number of pe-
riods, respectively, in which the simulated time series hit the regime
switch condition. The “CDF” column represents the percent of sim-
ulations that switch regimes in t periods or less, where t is the value
in the “Periods” column. For the CDF value of the “mean” row, we
used linear interpolation.

respectively. With the positive shock in period 2, the economy lasts until period 6

before shutting down. With the negative productivity shock in period 2, the economy

shuts down immediately in period 2.
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Figure 9: Zero-shock time series of endogenous
variables for H̄ = 0.09 and k2,0 = 0.0875:
30-percent tax
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Figure 10: Impulse response function for positive
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 30-
percent tax
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Figure 11: Impulse response function for negative
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 30-
percent tax
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3.2.4 Fiscal gap and equity premium

For the model with regime switching to a 30-percent wage tax, we define the fiscal gap

in the same way as in equation (14) from Section 2.6. The discount factors used to

calculate the net present values in the fiscal gap measures from the regime switching

model are calculated in the same way as described in Section 2.6. Table 17 shows the

calculated sure-return prices and their corresponding annualized discount rates for

this regime switching economy. Each cell represents the computed prices and interest

rates that correspond to a particular promised transfer value H̄ and initial capital

stock k2,0.

Table 17: Term structure of prices and in-
terest rates in regime switching
economy: 30-percent tax

k2,0 = 0.0875 k2,0 = 0.14
rt,t+s rt,t+s

s pt,t+s APR pt,t+s APR

H̄ = 0.09

0 1 0 1 0
1 0.3367 0.0370 0.4453 0.0273
2 6.0523 -0.0296 8.0476 -0.0342
3 2.0412 -0.0079 6.7823 -0.0210
4 8.5075 -0.0177 16.8480 -0.0233
5 15.9863 -0.0183 25.3856 -0.0213
6 7.5427 -0.0112 6.1479 -0.0100

H̄ = 0.11

0 1 0 1 0
1 0.2326 0.0498 0.3225 0.0384
2 7.3132 -0.0326 7.1394 -0.0322
3 11.5166 -0.0268 5.8534 -0.0194
4 16.4777 -0.0231 12.1299 -0.0206
5 9.2992 -0.0148 15.5375 -0.0181
6 23.4145 -0.0174 31.7886 -0.0190

The first column in each cell is the price of the sure-return bond
pt,t+s at different maturities s as characterized by equation (16).
The second column in each cell is the net interest rate rt,t+sAPR
implied by the sure-return rate and given in annual percentage
rate terms according to equation (17). Full descriptions of the
term structure of prices and interest rates for all calibrations and
for up to s = 12 is provided in the Technical Appendix.

Table 18 shows our four measures of the fiscal gap as a percent of the net present

value of GDP for each of our four combinations of H̄ and k2,0. Similar to the 80-
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percent tax regime switch model, all the measures for the first measure of the fiscal

gap (fgap1) are negative. These negative fiscal gaps—and relatively low measures of

the fiscal gap for the other measures—occur because the expected Ht after the regime

swith is significantly higher than H̄. But in all cases, increased H̄ increases the fiscal

gap.

Table 18: Measures of the fiscal gap
with regime switching as
percent of NPV(GDP): 30-
percent tax

k2,0 = 0.0875 k2,0 = 0.14
fgap 1 fgap 2 fgap 1 fgap 2
fgap 3 fgap 4 fgap 3 fgap 4

H̄ = 0.09
-0.1241 0.0002 -0.1214 -0.0148
0.0099 0.0096 0.0079 0.0078

H̄ = 0.11
-0.1194 0.0064 -0.1190 -0.0108
0.0172 0.0171 0.0139 0.0138

Fiscal gap 1 uses the gross sure return rates Rt,t+s from
Table 4 as the discount rates for NPV calculation. Fiscal
gap 2 uses the current period gross return on capital Rt

from the model as the constant discount rate. Fiscal gap
3 uses the International Monetary Fund (2009) method of
an annual discount rate equal to 1 plus the average percent
change in GDP plus 0.01 (≈ 2.05). And fiscal gap 4 uses
the Gohkhale and Smetters (2007) method of an annual dis-
count rate equal to 1 plus 0.0365 (≈ 1.93).

Lastly, we also caclulate the equity premium and Sharpe ratio for this regime

switching model using the difference in the expected risky return on capital one

period from now E[Rt+1] and the riskless return on the sure-return bond maturing

one period from now Rt,t+1. The equity premium results from Table 19 show very

little change from the Table 13 results from the 80-percent tax regime model. This

means that the form of the regime change has little effect on the initial period equity

premium. The equity premia here around 2 percent with Sharpe ratios around 0.28.

And as with the other regime switching model, the real equity premium story

in the model with the 30-percent tax rate regime switch is what happens to the

equity premium as the economy approaches its critical value. Table 20 reports the

average equity premium and Sharpe ratio across simulations in the period immediately

before the regime switch as compared to their respective values in the first period.
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Table 19: Components of the equity premium with
regime switching: 30-percent tax

k2,0 = 0.0875 k2,0 = 0.14
30-year annual 30-year annual

H̄ = 0.09

E[Rt+1] 17.1319 1.0592 12.9708 1.0503
σ(Rt+1) 49.4105 n.a. 37.2570 n.a.
Rt,t+1 2.9703 1.0370 2.2457 1.0273
Equity premium

14.1616 0.0223 10.7251 0.0229
E[Rt+1]−Rt,t+1

Sharpe ratio
0.2866 n.a. 0.2879 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

H̄ = 0.11

E[Rt+1] 22.1773 1.0678 16.0801 1.0572
σ(Rt+1) 64.1466 n.a. 46.3385 n.a.
Rt,t+1 4.2986 1.0498 3.1006 1.0384
Equity premium

17.8787 0.0180 12.9795 0.0187
E[Rt+1]−Rt,t+1

Sharpe ratio
0.2787 n.a. 0.2801 n.a.E[Rt+1]−Rt,t+1

σ(Rt+1)

The gross risky one-period return on capital is Rt+1 = 1 + rt+1 − δ. The annual-
ized gross risky one-period return is (Rt+1)1/30. The expected value and standard
deviation of the gross risky one-period return Rt+1 are calculated as the average
and standard deviation, respectively, across simulations. The annual equity premium
is the expected value of the annualized risky return in the next period minus the
annualized return on the one-period riskless bond.
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The average equity premium and Sharpe ratio increase significantly from the initial

period to the period right before the regime switch in every case. In the case of both

the 80-percent wage tax regime switch and the 30-percent wage tax regime switch,

the equity premia in the period before the shift are much closer to those observed in

the data, notwithstanding the initial period equity premia are smaller.

Table 20: Equity premium and Sharpe ratio in period immediately
before regime switch: 30-percent tax

k2,0 = 0.0875 k2,0 = 0.14
Eq. Sharpe Eq. Sharpe

prem. ratio prem. ratio

H̄ = 0.09

period 1 0.0223 0.2866 0.0229 0.2879
before shutdown 0.0819 0.3266 0.0848 0.3276
percent bigger 0.6290 0.5367 0.6617 0.5660
percent smaller 0.0033 0.0957 0.0043 0.1000

H̄ = 0.11

period 1 0.0180 0.2787 0.0187 0.2801
before shutdown 0.0701 0.3173 0.0739 0.3199
percent bigger 0.5460 0.4807 0.5913 0.5153
percent smaller 0.0023 0.0677 0.0027 0.0787

The “period 1” row represents the equity premium and Sharpe ratio in the initial
period for each specification. The “before shutdown” row represents the average
equity premium and Sharpe ratio across simulations in the period immediately
before shutdown for each specification. The “percent bigger” and “percent smaller”
rows tell how many of the simulated ending values of the equity premium and
Sharpe ratio were bigger than or less than, respectively, their initial period values.
These percentages do not sum to one because the equity premium and Sharpe ratio
do not change in the cases in which the economy shuts down in the second period.

4 Conclusion

In this paper, we have used a stylized model to quantify the degree to which a fiscal

transfer program might impose systemic risk on an economy. We estimate the time

until a fiscal limit is reached by simulating the model under various assumptions

about the severity of regime switch after the fiscal limit. We also calculate various

measures of the fiscal gap for each set of assumptions.

Our results show that the expected time until the fiscal limit is reached for our

example calibrated to the United States is about 35 years. However, the chance of

hitting the fiscal limit within 30 years is more than 30 percent under every assumption.
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We also calculated equity premia and Sharpe ratios for every period in every

simulation in our models. For the model in which the economy shuts down when the

fiscal limit is reached, the equity premium in the first period of the baseline case is

about 6 percent and rises slightly as the economy approaches the fiscal limit. As in the

channel proposed by Barro (2009), the rare disaster of an economic shutdown produces

equity premia that are closer to what is observed in the data without resorting to

unreasonably high risk aversion.

In the models in which the fiscal system permanently switches to a proportional

tax rate upon reaching the fiscal limit, the equity premia in the first period are much

lower at around 2 percent. But they rise dramatically to an average of between 7

and 8 percent in the period immediately before the fiscal limit is reached. This result

suggests that the equity premium might be a good indicator of proximity to the fiscal

limit.

An obvious extension of this work is to augment the model with agents that live

for more than two periods and to perhaps model some other dimensions of hetero-

geneity within each age cohort such as ability. A more detailed model will give better

predictions about the risk of hitting the fiscal limit. However, the computational

burden of obtaining a solution will increase exponentially.
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TECHNICAL APPENDIX

T-1 Description of calibration

This section details how we arrived at the calibrated parameter values listed in Table
1. The 30-year discount factor β is set to match the annual discount factor common
in the RBC literature of 0.96.

β = (0.96)30

We set the coefficient of relative risk aversion at a midrange value of γ = 2. This value
lies in the midrange of values that have been used in the literature.13 The capital
share of income parameter is set to match the U.S. average α = 0.35, and the 30-year
depreciation rate δ is set to match an annual depreciation rate of 5 percent.

δ = 1− (1− 0.05)30

The equilibrium production process in our 2-period model is the following,

Yt = eztKα
t ∀t

where labor is supplied inelastically and zt is the aggregate total factor productivity
shock. We assume the shock zt is an AR(1) process with normally distributed errors.

zt = ρzt−1 + (1− ρ)µ+ εt

where ρ ∈ [0, 1), µ ≥ 0, and εt ∼ N(0, σ2)
(5)

This implies that the shock process ezt is lognormally distributed LN(0, σ2). The
RBC literature calibrates the parameters on the shock process (5) to ρ = 0.95 and
σ = 0.4946 for annual data.

For data in which one period is 30 years, we have to recalculate the analogous ρ̃
and σ̃.

zt+1 = ρzt + (1− ρ)µ+ εt+1

zt+2 = ρzt+1 + (1− ρ)µ+ εt+2

= ρ2zt + ρ(1− ρ)µ+ ρεt+1 + (1− ρ)µ+ εt+2

zt+3 = ρzt+2 + (1− ρ)µ+ εt+3

= ρ3zt + ρ2(1− ρ)µ+ ρ2εt+1 + ρ(1− ρ)µ+ ρεt+2 + (1− ρ)µ+ εt+3

...

zt+j = ρjzt + (1− ρ)µ

j∑
s=1

ρj−s +

j∑
s=1

ρj−sεt+s

13Estimates of the coefficient of relative risk aversion γ mostly lie between 1 and 10. See Mankiw
and Zeldes (1991), Blake (1996), Campbell (1996), Kocherlakota (1996), Brav, Constantinides, and
Geczy (2002), and Mehra and Prescott (1985).
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With one period equal to thirty years j = 30, the shock process in our paper should
be:

zt+30 = ρ30zt + (1− ρ)µ
30∑
s=1

ρ30−s +
30∑
s=1

ρ30−sεt+s (T.1.1)

Then the persistence parameters in our one-period-equals-thirty-years model should
be ρ̃ = ρ30 = 0.2146. Define ε̃t+30 ≡

∑30
s=1 ρ

30−sεt+s as the summation term on the
right-hand-side of (T.1.1). Then ε̃t+30 is distributed:

ε̃t+30 ∼ N

(
0,

[
30∑
s=1

ρ2(30−s)

]
σ2

)

Using this formula, the annual persistence parameter ρ = 0.95, and the annual stan-
dard deviation parameter σ = 0.4946, the implied thirty-year standard deviation is
σ̃ = 1.5471. So our shock process should be,

zt = ρ̃zt−1 + (1− ρ)µ̃+ ε̃t ∀t where ε̃ ∼ N(0, σ̃2)

where ρ̃ = 0.2146 and σ̃ = 1.5471. We calibrate µ, and therefore µ̃, so that the
median wage is 50,000.

Lastly, we set the size of the promised transfer H̄ to be 32 percent of the median
real wage. This level of transfers is meant to approximately match the average per
capita real transfers in the United States to the average real wage in recent years. We
get the median real wage by simulating a time series of the economy until it hits the
shut down point, and we do this for 3,000 simulated time series. We take the median
wage from those simulations. In order to reduce the effect of the initial values on
the median, we take the simulation that lasted the longest number of periods before
shutting down and remove the first 10 percent of the longest simulation’s periods
from each simulation for the calculation of the median.
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T-2 Impulse response functions for all specifica-

tions

T-2.1 Shut down model impulse response functions

Figure 12: Zero-shock time series of endogenous
variables for H̄ = 0.11 and k2,0 = 0.14
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T-2.2 80-percent wage tax regime switch impulse response
functions

T-2.3 30-percent wage tax regime switch impulse response
functions
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Figure 13: Impulse response function for positive
standard deviation productivity shock
in period 2: H̄ = 0.11 and k2,0 = 0.14
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T-3 Derivation of government discount factors

In this section, we derive the discount factors that the government uses in order to
calculate the net present value of transfers Ht, promised transfers H̄, and output Yt
into the infinite future. The discount factors must be computed separately from the
households’ discount factor because the life of the policy variables outlasts the life of
each household.

Our primary method of computing the discount factors is to use the term structure
of period-t prices of assets that give a sure return in the future. Because we are
interested in discounting assets with conditional returns Ht = min{wt, H̄} and Yt in
addition to a sure return H̄, we need to define three different assets and three different
prices. Define pt,j as the price of an asset Bt,j that guarantees a payment of one unit
j periods in the future. Define qt,j as the price of an asset Dt,j that guarantees a
payment of Ht = min{wt, H̄} units j periods in the future. And define st,j as the
price of an asset Ft,j that guarantees a payment of Yt units j periods in the future.
If these assets can be bought and sold each period, then a household could purchase
an asset that pays off after the household is dead and sell it before they die.

Because each of these assets must be held in zero net supply, they do not change
the equilibrium policy functions described in Section 2. The budget constraints in
the households’ problem become the following,

c1,t + k2,t+1 ≤ wt −Ht −
∞∑
j=0

pt,jBt,j −
∞∑
j=0

qt,jDt,j −
∞∑
j=0

st,jFt,j
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Figure 14: Impulse response function for negative
standard deviation productivity shock
in period 2: H̄ = 0.11 and k2,0 = 0.14
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c2,t+1 ≤ (1 + rt+1−δ)k2,t+1 +Ht+1 + ...
∞∑
j=0

pt+1,jBt,j+1 +
∞∑
j=0

qt+1,jDt,j+1 +
∞∑
j=0

st+1,jFt,j+1

The equilibrium solutions for the prices on the assets that pay off in the current period
are,

pt,0 = 1 (T.3.1)

qt,0 = Ht = min{wt, H̄} (T.3.2)

st,0 = Yt (T.3.3)

The first order conditions for the households’ optimal choices of Bt,j, Dt,j, and Ft,j,
for all j ≥ 1, give the following standard asset pricing Euler equations that pin down
the prices pt,j, qt,j, and st,j in recursive fashion.

pt,j = β
Et [u′ (c2,t+1) pt+1,j−1]

u′ (c1,t)
∀t and j ≥ 1 (T.3.4)

qt,j = β
Et [u′ (c2,t+1) qt+1,j−1]

u′ (c1,t)
∀t and j ≥ 1 (T.3.5)

st,j = β
Et [u′ (c2,t+1) st+1,j−1]

u′ (c1,t)
∀t and j ≥ 1 (T.3.6)

We compute the prices of the sure return assets pt,j, qt,j, and st,j by discretizing
the state space and then approximating the exact integrals from the right-hand side
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Figure 15: Zero-shock time series of endogenous
variables for H̄ = 0.09 and k2,0 = 0.0875:
80-percent tax
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of (T.3.4), (T.3.5), and (T.3.6) for each point in the discretized state space using
polynomial interpolation.14

i. We choose the nodes in the support of k2,t to beNk equally spaced points on a log
scale between the minimum value recorded in the 2,000 simulations from Section
2.5 and the value of the 95th percentile of the simulations for the maximum.
The log scale increases the accuracy of the discretized approximation because
most of the realizations of k2,t in the simulations are concentrated in the lower
end of the range. We set the number of nodes in the discretized support of k2,t

to Nk = 151.

ii. We choose Nz nodes in the support of zt and calculate a Markov transition
matrix for the discretized approximation of zt using Gaussian quadrature as de-
scribed in Tauchen and Hussey (1991) and computed using the implementation
from Flodén (2008). We set Nz = 7.

iii. The next step is to compute the exact solution for all the endogenous objects
from Section 2 for all Nk × Nz = 1, 057 points in the state space: c1,t(k2,t, zt),
c2,t(k2,t, zt), k2,t+1(k2,t, zt), Yt(k2,t, zt), wt(k2,t, zt), and rt(k2,t, zt).

iv. With the solutions for the endogenous objects from step (iii) we can solve for
the prices of the assets that mature in the current period pt,0, qt,0, and st,0 for
every value of the discretized state using equations (T.3.1), (T.3.2), and (T.3.3).

14The MatLab code for this computation is available upon request.
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Figure 16: Impulse response function for positive
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 80-
percent tax
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v. Because we can express the one-period-ahead prices pt+1,0, qt+1,0, and st+1,0 from
step (iv) as closed form functions of k2,t+1 and zt+1, we can solve exactly for the
current period prices of the assets that mature one period from now pt,1, qt,1,
and st,1 using equations (T.3.4), (T.3.5), and (T.3.6).

vi. We solve for the rest of the j-period-ahead prices pt,j, qt,j, and st,j recursively
from equations (T.3.4), (T.3.5), and (T.3.6) using interpolation on the one-
period-ahead version of the price function for the bond that matures in j − 1
periods.

(a) Because we don’t have a closed form function for pt+1,j−1, qt,j−1, and st,j−1

for j ≥ 2, we cannot compute the exact integral in the numerator of the
right-hand-side of equations (T.3.4), (T.3.5), and (T.3.6).

(b) We take a linear interpolation of the discretized functions pt+1,j−1, qt,j−1,
and st,j−1 in the k2,t+1 dimension from the policy function k2,t+1(k2,t, zt).

(c) We then fit a polynomial in z to the pricing functions pt+1,j−1, qt,j−1, and
st,j−1 to match the nonzero nodes in the computed functions in the zt+1

dimension. We use a quadratic polynomial approximation for values of
k2,t+1 that have only three nonzero nodes in the zt+1 dimension, and we
use a cubic polynomial to approximate all other price functions for a given
k2,t+1. The price functions are smooth enough that a cubic polynomial is
sufficient to closely approximate them.

(d) We then integrate over the closed form solution for the marginal utility
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Figure 17: Impulse response function for negative
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 80-
percent tax
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of consumption tomorrow and the polynomial approximation for the pric-
ing function

∫ zmax

zmin>0
Prob(zt+1|zt)u′(c2,t+1)pt+1.j−1dzt+1. We set the upper

bound of the support of zt+1 over which we integrate equal to the largest
node in the discretized support of z because the probability of higher real-
izations of z is very close to zero. We set the lower bound of the support of
zt+1 over which we integrate equal to the largest node in the price function
that is equal to zero. This is approximately equivalent to integrating over
all z for which prices are positive.

vii. We continue recursively computing prices pt,j+1, qt,j+1, and st,j+1, until they
get close to zero. In our case, we compute prices for j = 0, 1, 2, ...9. Tables 21
through 29 list the values for the prices pt,j for each maturity of asset for our 9
different calibrations described in Section 2.5.
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Table 21: Term structure of prices and interest
rates: H̄ = 0.05, k2,0 = 0.11

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.5556 0.6428 0.9854 -0.0146
2 0.3115 3.2105 1.0196 0.0196
3 0.0385 25.9903 1.0369 0.0369
4 0.0088 113.9341 1.0403 0.0403
5 0.0049 202.6663 1.0360 0.0360
6 0.0014 722.2930 1.0372 0.0372
7 2.8695 ×10−4 3.4849 ×103 1.0396 0.0396
8 1.3004 ×10−4 7.6900 ×103 1.0380 0.0380
9 3.0166 ×10−5 3.3150 ×104 1.0393 0.0393
10 7.6699 ×10−6 1.3038 ×105 1.0400 0.0400
11 2.2726 ×10−6 4.4003 ×105 1.0402 0.0402
12 8.3032 ×10−7 1.2044 ×106 1.0397 0.0397

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.

Table 22: Term structure of prices and interest
rates: H̄ = 0.05, k2,0 = 0.14

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.5897 0.6291 0.9847 -0.0153
2 0.3466 2.8853 1.0178 0.0178
3 0.0441 22.6875 1.0353 0.0353
4 0.0096 104.0359 1.0395 0.0395
5 0.0063 159.0087 1.0344 0.0344
6 0.0025 396.0301 1.0338 0.0338
7 6.8826 ×10−4 1.4529 ×103 1.0353 0.0353
8 1.7310 ×10−4 5.7770 ×103 1.0367 0.0367
9 5.1573 ×10−5 1.9390 ×104 1.0372 0.0372
10 1.1606 ×10−5 8.6162 ×104 1.0386 0.0386
11 3.4871 ×10−6 2.8677 ×105 1.0388 0.0388
12 1.0859 ×10−6 9.2093 ×105 1.0389 0.0389

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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Table 23: Term structure of prices and interest
rates: H̄ = 0.05, k2,0 = 0.17

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.6190 0.6177 0.9841 -0.0159
2 0.3782 2.6440 1.0163 0.0163
3 0.0493 20.2780 1.0340 0.0340
4 0.0099 100.0359 1.0392 0.0392
5 0.0063 159.6110 1.0344 0.0344
6 0.0024 423.1373 1.0342 0.0342
7 4.0991 ×10−4 2.4395 ×103 1.0378 0.0378
8 1.7858 ×10−4 5.5996 ×103 1.0366 0.0366
9 4.6981 ×10−5 2.1285 ×104 1.0376 0.0376
10 8.6992 ×10−6 1.1495 ×105 1.0396 0.0396
11 2.7552 ×10−6 3.6295 ×105 1.0396 0.0396
12 1.1390 ×10−6 8.7793 ×105 1.0387 0.0387

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.

Table 24: Term structure of prices and interest
rates: H̄ = 0.11, k2,0 = 0.11

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.6771 0.5963 0.9829 -0.0171
2 0.1543 6.4811 1.0316 0.0316
3 0.0074 134.2966 1.0560 0.0560
4 0.0072 138.6856 1.0420 0.0420
5 0.0029 344.5899 1.0397 0.0397
6 4.3310 ×10−4 2.3089 ×103 1.0440 0.0440
7 3.9482 ×10−5 2.5328 ×104 1.0495 0.0495
8 2.7294 ×10−5 3.6638 ×104 1.0448 0.0448
9 9.0193 ×10−6 1.1087 ×105 1.0440 0.0440
10 1.1851 ×10−6 8.4381 ×105 1.0465 0.0465
11 1.3306 ×10−7 7.5152 ×106 1.0491 0.0491
12 9.5400 ×10−8 1.0482 ×107 1.0459 0.0459

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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Table 25: Term structure of prices and interest
rates: H̄ = 0.11, k2,0 = 0.14

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.7186 0.5819 0.9821 -0.0179
2 0.1793 5.5768 1.0291 0.0291
3 0.0092 108.7856 1.0535 0.0535
4 0.0077 129.7630 1.0414 0.0414
5 0.0032 308.9255 1.0390 0.0390
6 5.0106 ×10−4 1.9958 ×103 1.0431 0.0431
7 4.1821 ×10−5 2.3911 ×104 1.0492 0.0492
8 2.8161 ×10−5 3.5510 ×104 1.0446 0.0446
9 1.0005 ×10−5 9.9946 ×104 1.0436 0.0436
10 1.3691 ×10−6 7.3040 ×105 1.0460 0.0460
11 1.2989 ×10−7 7.6990 ×106 1.0492 0.0492
12 1.0361 ×10−7 9.6515 ×106 1.0457 0.0457

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.

Table 26: Term structure of prices and interest
rates: H̄ = 0.11, k2,0 = 0.17

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.7673 0.5658 0.9812 -0.0188
2 0.2137 4.6801 1.0261 0.0261
3 0.0118 84.9122 1.0506 0.0506
4 0.0085 117.2211 1.0405 0.0405
5 0.0038 266.5164 1.0379 0.0379
6 5.9449 ×10−4 1.6821 ×103 1.0421 0.0421
7 4.4991 ×10−5 2.2227 ×104 1.0488 0.0488
8 3.3257 ×10−5 3.0069 ×104 1.0439 0.0439
9 1.2022 ×10−5 8.3183 ×104 1.0429 0.0429
10 1.6211 ×10−6 6.1686 ×105 1.0454 0.0454
11 1.4999 ×10−7 6.6671 ×106 1.0488 0.0488
12 1.1393 ×10−7 8.7771 ×106 1.0454 0.0454

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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Table 27: Term structure of prices and interest
rates: H̄ = 0.17, k2,0 = 0.11

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.5848 0.6310 0.9848 -0.0152
2 0.0092 108.2899 1.0812 0.0812
3 0.0010 970.3013 1.0794 0.0794
4 8.9671 ×10−5 1.1152 ×104 1.0808 0.0808
5 1.2850 ×10−5 7.7820 ×104 1.0780 0.0780
6 1.6796 ×10−5 5.9539 ×104 1.0630 0.0630
7 9.4392 ×10−7 1.0594 ×106 1.0683 0.0683
8 1.1858 ×10−7 8.4330 ×106 1.0687 0.0687
9 1.1900 ×10−7 8.4034 ×106 1.0608 0.0608
10 1.1339 ×10−8 8.8189 ×107 1.0629 0.0629
11 1.3094 ×10−9 7.6368 ×108 1.0639 0.0639
12 5.7012 ×10−10 1.7540 ×109 1.0609 0.0609

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure return bond
price. Rt,t+s APR is the annualized gross sure return, where Rt,t+s APR =

R
1/s30
t,t+s . The net annualized sure return is simply rt,t+s APR = Rt,t+s APR−

1.

Table 28: Term structure of prices and interest
rates: H̄ = 0.17, k2,0 = 0.14

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.6811 0.5948 0.9828 -0.0172
2 0.0156 64.0010 1.0718 0.0718
3 0.0031 322.3614 1.0663 0.0663
4 0.0046 217.5026 1.0459 0.0459
5 0.0010 981.4442 1.0470 0.0470
6 5.6471 ×10−5 1.7708 ×104 1.0558 0.0558
7 2.4281 ×10−5 4.1184 ×104 1.0519 0.0519
8 1.0641 ×10−5 9.3977 ×104 1.0489 0.0489
9 8.4137 ×10−7 1.1885 ×106 1.0532 0.0532
10 1.6832 ×10−7 5.9411 ×106 1.0534 0.0534
11 1.0340 ×10−7 9.6715 ×106 1.0499 0.0499
12 8.0409 ×10−9 1.2436 ×108 1.0531 0.0531

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.

55



Figure 18: Zero-shock time series of endogenous
variables for H̄ = 0.09 and k2,0 = 0.0875:
30-percent tax
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Figure 19: Impulse response function for positive
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 30-
percent tax
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Figure 20: Impulse response function for negative
standard deviation productivity shock
in period 2: H̄ = 0.09, k2,0 = 0.0875, 30-
percent tax
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Table 29: Term structure of prices and interest
rates: H̄ = 0.17, k2,0 = 0.17

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.7308 0.5778 0.9819 -0.0181
2 0.0359 27.8392 1.0570 0.0570
3 0.0038 263.0105 1.0639 0.0639
4 0.0049 203.9569 1.0453 0.0453
5 0.0011 890.2539 1.0463 0.0463
6 6.0795 ×10−5 1.6449 ×104 1.0554 0.0554
7 2.5424 ×10−5 3.9332 ×104 1.0517 0.0517
8 1.1716 ×10−5 8.5355 ×104 1.0484 0.0484
9 9.5619 ×10−7 1.0458 ×106 1.0527 0.0527
10 1.6125 ×10−7 6.2016 ×106 1.0535 0.0535
11 1.1130 ×10−7 8.9845 ×106 1.0497 0.0497
12 1.4073 ×10−8 7.1056 ×107 1.0515 0.0515

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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Tables 30 through 33 represent the term structure of prices and interest rates for
the four combinations of H̄ and k2,0 from Section ??.

Table 30: Term structure of prices and interest rates
with regime switching: H̄ = 0.110, k2,0 =
0.14

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.9094 0.5237 0.9787 -0.0213
2 0.2084 4.7994 1.0265 0.0265
3 0.1759 5.6849 1.0195 0.0195
4 0.0485 20.6398 1.0255 0.0255
5 0.0081 124.0635 1.0327 0.0327
6 0.0078 128.3248 1.0273 0.0273
7 0.0029 347.5132 1.0283 0.0283
8 2.1955 ×10−4 4.5548 ×103 1.0357 0.0357
9 1.3069 ×10−4 7.6517 ×103 1.0337 0.0337
10 1.0594 ×10−4 9.4391 ×103 1.0310 0.0310
11 9.4124 ×10−6 1.0624 ×105 1.0357 0.0357
12 5.6738 ×10−6 1.7625 ×105 1.0341 0.0341

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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Table 31: Term structure of prices and interest rates
with regime switching: H̄ = 0.110, k2,0 =
0.18

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.9606 0.5100 0.9778 -0.0222
2 0.2387 4.1888 1.0242 0.0242
3 0.2781 3.5956 1.0143 0.0143
4 0.0426 23.4731 1.0266 0.0266
5 0.0084 118.6004 1.0324 0.0324
6 0.0074 135.8980 1.0277 0.0277
7 0.0029 340.8212 1.0282 0.0282
8 2.8337 ×10−4 3.5290 ×103 1.0346 0.0346
9 2.6734 ×10−4 3.7405 ×103 1.0309 0.0309
10 1.0882 ×10−4 9.1897 ×103 1.0309 0.0309
11 9.4293 ×10−6 1.0605 ×105 1.0357 0.0357
12 8.8712 ×10−6 1.1272 ×105 1.0328 0.0328

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.

Table 32: Term structure of prices and interest rates
with regime switching: H̄ = 0.119, k2,0 =
0.14

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.8979 0.5269 0.9789 -0.0211
2 0.1901 5.2608 1.0281 0.0281
3 0.0670 14.9250 1.0305 0.0305
4 0.0458 21.8314 1.0260 0.0260
5 0.0135 74.2269 1.0291 0.0291
6 0.0062 161.2355 1.0286 0.0286
7 9.7773 ×10−4 1.0228 ×103 1.0336 0.0336
8 2.5035 ×10−4 3.9943 ×103 1.0352 0.0352
9 1.9703 ×10−4 5.0754 ×103 1.0321 0.0321
10 6.6588 ×10−5 1.5018 ×104 1.0326 0.0326
11 6.1179 ×10−6 1.6345 ×105 1.0370 0.0370
12 7.0348 ×10−6 1.4215 ×105 1.0335 0.0335

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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Table 33: Term structure of prices and interest rates
with regime switching: H̄ = 0.119, k2,0 =
0.18

s pt,t+s Rt,t+s Rt,t+s APR rt,t+s APR
0 1 1 1 0
1 1.9561 0.5112 0.9779 -0.0221
2 0.2195 4.5568 1.0256 0.0256
3 0.0850 11.7710 1.0278 0.0278
4 0.0463 21.6143 1.0259 0.0259
5 0.0109 91.8687 1.0306 0.0306
6 0.0073 136.5303 1.0277 0.0277
7 0.0012 856.1382 1.0327 0.0327
8 3.6734 ×10−4 2.7223 ×103 1.0335 0.0335
9 2.1539 ×10−4 4.6428 ×103 1.0318 0.0318
10 5.6401 ×10−5 1.7730 ×104 1.0331 0.0331
11 8.6027 ×10−6 1.1624 ×105 1.0360 0.0360
12 7.4281 ×10−6 1.3462 ×105 1.0334 0.0334

The gross sure return Rt,t+s = (pt,t+s)−1 is the inverse of the sure
return bond price. Rt,t+s APR is the annualized gross sure return,

where Rt,t+s APR = R
1/s30
t,t+s . The net annualized sure return is simply

rt,t+s APR = Rt,t+s APR− 1.
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T-4 Policy functions of equilibrium objects

Figure 21 shows the policy functions for the equilibrium objects c1,t, c2,t, k2,t+1, Yt,
wt, and rt in terms of the state (k2,t, zt) from Section 2.

Figure 21: Equilibrium policy functions
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Figure 22 shows the policy functions for the equilibrium objects c1,t, c2,t, k2,t+1,
Yt, wt, and rt in terms of the state (k2,t, zt) from Section 3.
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Figure 22: Equilibrium policy functions with
regime switching
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T-5 Equilibrium Euler equation for model with

regime change

In this section we report the equilibrium equations for the model with regime change
in which Ht is given by equation (18) from Section 3. If a period begins in the
constant transfer regime wt > H̄ and Ht = H̄, then the only difference from the
model in Section 2 is that the young household’s consumption and savings decision
reflects the new possibility in expectation that next period’s transfer could be 0.8wt+1

rather than H̄,

u′
(
c1,t

)
= βEzt+1|zt

[(
1 + αezt+1

[
(1− α)eztkα2,t − H̄ − c1,t

]α−1 − δ
)
× ...

u′
([

1 + αezt+1
(
[1− α]eztkα2,t − H̄ − c1,t

)α−1 − δ
](

[1− α]eztkα2,t − H̄ − c1,t

)
+Ht+1

)]
(T.5.1)

where Ht+1 is defined by (18). The only difference between equation (T.5.1) and
equation (12) is the definition of the last term representing Ht+1 and its implication
on expectations.
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