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1Differences in college drop-out by family income have been found to be at least as important as
differences in college entrance by family income from the standpoint of creating differences in college degree
attainment by family income (Manski and Wise, 1983; Manski, 1992; NCES, 2007).

Describing the traditional difficulties of understanding the underlying reasons for drop-out, Bowen and
Bok (1998) write, “One large question is the extent to which low national graduation rates are due to the inability of
students and their families to meet college costs, rather than to academic difficulties or other factors.” Tinto (1975)
suggests that drop-out  is related to academic and social integration, but direct tests of this are scarce (Draper,
2005).
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Section I.  Introduction

The policy importance of understanding why many college students do not complete a degree has been

widely recognized, with children from low income families receiving particular attention due to their

high drop-out rates relative to other students (Bowen et al., 2009). Unfortunately, due in large part to the

difficulty of obtaining ideal data, much remains unknown about how students make the drop-out

decision.1 

The desire to understand the underlying reasons for college drop-out highlights a fundamental

tension present in empirical micro-economics; while structural models formed directly from economic

theory represent a potentially powerful tool for understanding the mechanisms that underlie individual

decision-making (and for providing pre-implementation evidence about the effects of  possible policy

changes), their practical usefulness will be undermined if concerns about the validity of central

assumptions lead to concerns about the identification of model parameters. From a conceptual

standpoint, the drop-out outcome is best viewed as the end result of a process in which a student learns

about a variety of utility-influencing factors after arriving at school (Manski, 1989; Altonji, 1993,

Stange, forthcoming). Then, empirical work that is closely tied to theory relies heavily on the

characterization of individual-specific beliefs about these factors throughout the time a student is in

school. Traditionally, researchers working with models which require beliefs have relied on assumptions

that allow them  to characterize beliefs indirectly. For example, a common assumption, often referred

to as Rational Expectations, is that an individual’s beliefs about a particular factor (e.g., grade

performance) coincide with the actual distribution from which that factor is drawn (Das and van Soest,



2In terms of modeling, most similar are the dynamic, discrete choice models of Arcidiacono (2004) and
Stange (forthcoming). These papers highlight the policy importance of incorporating learning into models of
decision-making in higher education, but also identify the types of unavoidable issues that arise when conventional
data sources must be used for the estimation of these types of models. For example, the findings in S&S
(forthcoming) suggest that certain relevant conclusions about the option value of schooling, of particular interest in
Stange (2009), may be ruled out by the types of assumptions that are often used to construct beliefs (about academic
factors in his case) when expectations data are not available. Further, while the choice of NELS-88 is natural for the
detail it provides about the college period, it does not allow for one to model how beliefs about post-college
earnings depend on grade performance even if one is willing to make standard assumptions  - because the data do
not contain information about  post-college period earnings.

See Attanasio and Kaufmann (2009) for an example of the use of (income) expectations data in models of
educational attainment
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2000).  However, recent research such as Manski (2004) has stressed that these types of assumptions

are arbitrary and untestable, in which case their use in the estimation of models of behavior may raise

concerns about identification.

A natural alternative to  indirect approaches for characterizing beliefs is to use carefully worded

survey questions in order to elicit beliefs directly (Dominitz, 1998; Dominitz and Manski, 1996, 1997).

Unfortunately, at present it is difficult to take full advantage of the potential benefits that this type of

“expectations” data may have for the estimation of structural models. Recently, longitudinal surveys

have begun to embrace the promise of eliciting beliefs directly (Manski, 2004). However, the reality that

these surveys are  designed to allow researchers from a variety of disciplines to study a broad range of

topics limits the extent to which data collection can be driven by any one specific type of model.  In

addition, surveys that are administered annually or biennially are not ideal for the study of issues such

as drop-out where it is important to characterize beliefs frequently and at rather specific times.

In this paper we estimate a simple structural learning model of the drop-out decision which takes

advantage of a unique, longitudinal data collection effort motivated directly by the tension described

above. The data come from the Berea Panel Study (BPS), a longitudinal survey of students at Berea

College. The BPS represents a unique opportunity to estimate the structural model because our design

of survey instruments was guided closely by theoretical models of learning. As such, in addition to its

contribution to the substantive area of education, this paper makes a contribution by illustrating the

benefits of collecting detailed longitudinal data with a very specific model of behavior in mind.2 More
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specifically, the data contain two unique features that are of central importance given our interest in

learning. First, the survey is unique among surveys of college students in its frequency of contact; each

student was surveyed approximately twelve times each year while in school, with the first survey taking

place immediately before the beginning of the student’s freshman year.  Second, taking advantage of

recent methodological advances in the elicitation of beliefs (Dominitz, 1998; Dominitz and Manski,

1996, 1997), the BPS was perhaps the first sustained longitudinal survey to have a strong focus on the

direct elicitation of beliefs.

Located in central Kentucky, Berea College operates with a mission of providing an education

to students of “great promise but limited economic resources,” and, as such, has a demographic focus

that is desirable given our interests.  This paper builds on previous background work which illustrated

the benefits of conducting a detailed case study at this particular school. Stinebrickner and Stinebrickner,

hereafter S&S, (2003a) documented that, similar to what is seen for students with comparable family

income and college entrance scores elsewhere, between forty and fifty percent of the entering students

at Berea fail to graduate (and few transfer) - even though the direct costs of schooling are zero (or

perhaps negative) due to a full tuition subsidy and room and board subsidies for all students. Taking

advantage of unique survey questions in the BPS,  S&S (2008a) found that, while credit constraints do

influence the decisions of a small number of students by making it difficult to smooth consumption

between the schooling and working portions of their lives, they do not play a substantial role in

determining the overall drop-out rate of students at Berea. Thus, our background work shows that factors

unrelated to financial resources per se play the prominent role in the drop-out of these low income

students. This motivates our current objective of examining the process through which these non-

financial-resource factors may influence the drop-out decision. 

We focus primarily on understanding the importance of the most widely recognized non-

financial-resource  explanation - that after entering college, students learn about how well they will

perform academically.  We find that approximately forty-five percent of the drop-out that occurs before
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the start of the third year can be attributed to this type of learning, with the importance of this type of

learning falling to eleven percent for the third year. As a result, this paper contributes some of the

strongest direct evidence to a recent literature which recognizes the importance of learning in

determining schooling outcomes (Manski, 1989; Altonji, 1993; Carneiro et al., 2005; Cunha et al., 2005,

S&S, forthcoming; Stange, forthcoming). 

In previous work (S&S, forthcoming) we examined drop-out between the end of the first year

and the beginning of the second year using a reduced form model. The benefit of estimating a structural

model is that, by conducting a series of simulations, we are able to distinguish between the possible

avenues through which learning about academic performance can matter. We start by simulating a

counter-factual scenario which results from removing the traditional institutional requirement that

students must surpass semester-specific grade performance cutoffs in order to progress.  We find that

students who perform poorly tend to learn that staying in school is not beneficial, not that they leave

simply because they have lost the option to stay in school or have learned that they are more likely

(than they previously believed) to lose the option in the future. As to why students find staying in

school is no longer beneficial, further simulations find that the most important avenue is that performing

poorly reduces how enjoyable it is to be in school. However, important for policy reasons described in

our conclusions, the reduction in the financial returns to graduating that accompanies poor performance

would also be sufficient to create substantial drop-out. 

Section II. The Berea Panel Study, the sample, and motivating descriptive statistics

Designed and administered by Todd Stinebrickner and Ralph Stinebrickner, the BPS is a

longitudinal survey that takes place at Berea College and elicits information of relevance for

understanding a wide variety of issues in higher education, including those related to drop-out, college

major, time-use, social networks, peer effects, and transitions to the labor market. The BPS consists of

two cohorts.  Baseline surveys were administered to the first cohort (the 2000 cohort) immediately

before it began its freshman year in the fall of 2000 and baseline surveys were administered to the
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second cohort (the 2001 cohort) immediately before it began its freshman year in the fall of 2001.  In

addition to collecting detailed background information, the baseline surveys were designed to take

advantage of recent advances in survey methodology (see, e.g., Barsky et al., 1997; Dominitz, 1998; and

Dominitz and Manski, 1996, 1997) in order to directly elicit individual-specific expectations towards

uncertain outcomes and the factors that might influence these outcomes. Substantial follow-up surveys

that were administered at the beginning and end of each subsequent semester document how

expectations change over time.

Because some survey questions of interest are not available for the 2000 cohort, we focus on the

2001 cohort.  Approximately 88% of all students who entered Berea in the Fall of 2001 participated in

the BPS survey. S&S (forthcoming) found that few students who leave Berea transfer to other four year

schools. We exclude students who transfer, but note that results change very little under a different

treatment of these students. Our sample contains 341 students.

In order to obtain standard observable characteristics, Xi, the BPS survey data are linked to

administrative data from Berea College.  We focus primarily on a student’s sex and his/her high school

grade point average.  The proportion of students that are male is 44.57% and the average (std. deviation)

high school grade point average is 3.37 (.46). The academic credentials of students at Berea, including

college entrance exam scores (average 23.35, std. deviation 3.60), are similar to those at the University

of Kentucky and the University of Tennessee (S&S, 2008a). Our sample can be generally thought of as

a group of students from low income families (average family income $26,000, std. deviation family

income $17,000), and for most of what we do here we do not differentiate by family income within the

sample.

This paper is motivated most generally by the reality that, consistent with what is seen for

students from low income families elsewhere (S&S, 2008a, Manski, 1992), the drop-out rate at Berea

is substantial. The outcome variable we examine here is whether a student leaves school for at least a

semester at any point during the first 3.5 years of school. Nine percent, 18%, 26%, 34%, 39%, and 46%,



3From a theoretical standpoint, the presence of substantial amounts of drop-out does not necessarily imply
that people have updated the mean of the distribution describing their beliefs about  average grade performance. For
example, when the labor market returns to good academic performance are non-linear, in theory, one might decide
to enter school knowing that he will leave school even if the mean of his belief distribution does not change (i.e., he
plans to leave if he does not find out he is better than expected).  However, if a person believes initially that there is
very little chance of dropping out, then an observed drop-out outcome likely implies that some type of learning
about the mean of the distribution has taken place.
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respectively, of the students in our sample have left school as of the start of the second, third, fourth,

fifth, sixth, and seventh semesters, respectively. The use of the term drop-out would be a misnomer to

the extent that students who leave Berea return and complete a degree in the future.  However, this is

quite rare. For example, only ten percent of the students who left school at any time before the start of

the seventh semester subsequently returned to school and were still enrolled at the start of the eighth

semester. We also find that leaving school is very rare for those who have not left as of the seventh

semester. For example, only two percent of the individuals who were in school for the seventh semester

were not in school for the eighth semester.

To further motivate the learning nature of our model, we examine responses to the following

question which was administered at the time of college entrance:

Question B   What is the percent chance that you will eventually graduate from Berea College?____

While more than 40% of students in our sample will fail to graduate, students, on average, believe that

there is only a 14% chance that they will fail to graduate from Berea. A similar finding comes from a

related question which asks “What is the percent chance that you will be enrolled at Berea in the fall

semester of the next academic year.”  While 18% of students will not be enrolled, students, on average,

believe that there is only a 9% chance that they will not be enrolled. The reality that the perceived drop-

out rate at entrance is very low while the actual drop-out rate is substantial suggests that substantial

learning may be taking place.3 

Section III. A model of drop-out

III.A. Choices We consider a simple dynamic model of sequential decision-making under uncertainty.

A student arrives at the beginning of his first semester with beliefs about a variety of factors that



4In our empirical work, a student is classified as leaving at t if he began semester t-1 and did not return for
semester t. The choice of how to group students is not overly important given that the large majority of departures
take place between semesters. 

5To illustrate, with our model we will be able to examine whether learning about academic performance is
important because performing poorly: 1) reduces how enjoyable it is to be in school or 2) reduces the financial
returns to graduating.  A model which included more endogenous choices might not be beneficial (and given
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influence the costs and benefits of remaining in school. We simplify the discussion by assuming that

students make decisions at the beginning of each semester t, starting with the second semester.4 At the

end of each semester for which a student is still in school, the student first checks to see if he is being

forced to leave college due to poor academic performance or because he has graduated. If he is not being

forced to leave college, he uses information received during the previous semester to update the beliefs

he held at the beginning of the semester and then decides whether to return to school (S) for semester

t  or whether to enter the labor force (N).  Given our earlier findings that relatively few people return to

school after leaving, we assume that N is a terminal state.

This paper’s contribution is in its use of unique data to reduce the reliance on assumptions that

otherwise would be necessary.  In the spirit of trying to keep identification as transparent as possible,

we have specified an extremely parsimonious choice set {S,N}, thereby avoiding a variety of

assumptions that would accompany additional endogenous choices. The parsimonious choice set does

imply that our model cannot be used to examine how students make other important decisions such as:

how much to study, what major to choose, and whether to attend graduate school after college. However,

as discussed in more detail in the next sections, our model is generally flexible enough to capture many

of the costs and benefits that go along with these additional decisions that people are making in the

background. Thus, taking into account the potential benefits of avoiding assumptions that would

accompany additional endogenous choices, the parsimonious choice set may be, on net, advantageous

for our primary objectives:  1) understanding the overall effect that learning about academic performance

has on drop-out and 2) differentiating between several broad reasons for why this type of learning may

matter.5



additional assumptions could be less beneficial) for understanding the importance of these two reasons, but would
potentially allow us to understand why learning about academic performance influences how enjoyable it is to be in
school or why learning about academic performance influences the  returns to schooling - e.g., does learning have
its influence by changing decisions about, for example, how much to study?
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We also do not model the decision of how many courses to take in a particular semester. As such,

we are assuming that students who do not fail out of school make steady progress towards graduation,

with this progress characterized by the number of semesters attended. This does not seem overly

restrictive given that Berea requires full-time attendance and given that grade cutoffs for failing out of

school are meant to identify those who are not progressing in a timely fashion. Given that roughly

seventy-five percent of students who graduate do so in four years, we assume that students who choose

to return for the eighth semester will graduate at the end of that year. Thus, referring to the start of

semester t as “time t,” with t=1 being the time of entrance and t=9 being the time of graduation, a student

makes a choice from the set {S, N} at any of the times t=2, t=3,..., t=8 for which he is still in school.

III.B. Value Functions Our emphasis on understanding the importance of learning suggests the

desirability of a dynamic, forward-looking model. The fundamental object needed for estimation is the

discounted expected utility, or value, associated with the two options {S,N} that a person considers at

each time t that he is still in school and has the option of continuing. In this subsection we describe the

value functions in general terms. In subsequent subsections we describe the components of the value

functions in more detail.

Let UN
t(Ωt) be the current period utility for a person who is in the workforce at time t with a state

of Ωt. Then, for a person who is still in school at the end of semester t-1, the value of entering the

workforce (N) at time t is: 

(1) ,V N
t(Ωt)'Ej

T(

τ't
βτ&tU N

τ(Ωτ)

where T* is the end of a person’s utility horizon, β is the discount factor, and, to be consistent with the

reality that there are two semesters in each year, each period in the workforce represents six months.

Let US
t(Ωt) be the current period utility for a person who is in school at t with a state of Ωt. For



6This equation represents the case where the student does not graduate at the end of semester t (i.e., t+1<9)
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a person who is still in school at the end of semester t-1 and is not forced to leave due to poor academic

performance or graduation, the value of returning to school (S) for semester t is given by the Bellman

equation:

(2) .V S
t(Ωt)'EU S

t(Ωt)% (PrFailt) βV N
t%1(Ωt%1)% (1&PrFailt) βEmax[V S

t%1(Ωt%1),V
N

t%1(Ωt%1)]

The first term is the expected current period reward of being in college at time t. The second term

indicates that with probability PrFailt the student will fail out of school at the end of semester t, in which

case he will be forced to enter the workforce permanently. The third term indicates that with probability

1-PrFailt the student will not fail out of school at the end of semester t, in which case he will have the

option of returning to school for semester t+1 or entering the workforce.6 The expected value in the third

term is over all elements of Ωt+1 whose values are not known at time t given Ωt and the choice of S at t.

We complete our description of the model by specifying the functions UN
t and US

t in III.C and

by describing the elements of Ωt and how these elements evolve between t and t+1 in III.D. 

III.C Current Period Utility We assume that UN
t(C) is linear in  Ct, a person’s consumption at time t.

Letting εN,t represent a period-specific, idiosyncratic shock to the utility derived from option N that is

known to the individual but not the econometrician,

(3) UN
t(C)=Ct+εN,t.

The assumption that the utility in Eq. (3) is linear in consumption facilitates an easy interpretation of

model parameters (Section III.F), is convenient for characterizing expected future utility (Section III.D),

and allows us to avoid estimating potentially hard-to-identify parameters associated with the curvature

in the utility function. As in other recent work in this area (Stange, forthcoming) this assumption is made

primarily for convenience. However, somewhat mitigating the effect of this assumption is that, as

discussed in the next subsection, we do not explicitly model consumption during school, the period when

consumption would be most likely to be at the low levels where differences between a linear and non-
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linear assumption for the utility function would be most important. Survey questions eliciting beliefs

about minimum future income reveal little concern that post-college earnings might turn out to be close

to zero in a particular year.

One could assume that the function US
t is identical in form to the function UN

t, in which case the

(average) utility difference between a schooling period (S) and a non-schooling period (N) is simply the

difference in a person’s consumption between the two periods. However, such an approach is worrisome

because: 1) even if the amount of his own money that a student spends on consumption while in school

is observed, it may be difficult to measure actual consumption while in school because there are types

of consumption that are provided free of charge on a college campus (e.g., computing resources,

television, etc.) and 2) the potential for certain types of leisure activities on a college campus that may

not be available outside of school suggests that the mapping from consumption to utility may be quite

different in (S) and (N).  Indeed, S&S (2008a) found some evidence that students believe that they are

smoothing marginal current period utility between the schooling and working portions of their lives even

when they have little of their own money to spend on consumption per se. 

The general difficulty of understanding how much utility a person receives while in school

motivated us at the beginning of each semester to use Survey Question A.1 (Appendix A) to directly

measure the object of interest - how much a student enjoys being in school relative to the alternative of

being in the workforce. Central to our construction of the current period utility function is the binary

variable ENt which has a value of one if a person reports at the beginning of time t that he believes that

being in school is more enjoyable than being out of school (i.e., a person circles 1 or 2 on A.1).

While, in theory, ENt might capture all academic aspects of relevance for characterizing current

period utility, in practice, there are reasons that this might not be the case. First, while, in theory, the

effect of academic measures on enjoyability might be taken into account in answers to Question A.1, in

practice, it is difficult to know exactly what students condition on when answering  the question. For

example, perhaps students think largely about the social part of schooling when answering A.1 or tend
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to consider the effect of grades in a best-case type scenario. Then, even after taking into account ENt,

US
t(C) may depend on a person’s cumulative grade point average Gt at the beginning of t and his grade

performance gt in semester t; gt potentially influences the utility of being in school in semester t because

school may be unenjoyable if a person has difficulty understanding course material and Gt may influence

utility in semester t conditional on gt because school may be particularly stressful if a person believes

that he is close to failing out.  Second, while our interest in understanding the full impact of learning

about ability imples that US
t(C) should capture all non-earnings avenues through which poor academic

performance may influence drop-out, it is not clear whether answers to A.1 would take into account, for

example, that families may provide less encouragement to stay in school when grade performance is bad.

Finally, a concern in certain policy circles is that students may have a knee-jerk reaction to bad

outcomes. In this case, if A.1 is collected somewhat after a student leaves school, ENt may not capture

the entire effect that grades had on the exit decision. Motivated by this discussion, we specify US
t(C) as

(4) US
t(C)=γ0+γ1ENt + γ2Gt + γ3gt + εS,t,

where εS,t is the analog to εN,t. We define εt={εN,t, εS,t}. Our particular interest in academic issues

motivated our inclusion of the grade variables in (4). However, some of arguments in the previous

paragraph  might also suggest that other factors, such as student health or whether a parent lost a job,

might also not be fully captured by ENt. Then, given the objective of quantifying the importance of

learning about academic performance, one might wish to also include these factors explicitly in (4) if

it is possible that they might be correlated with what a person learns about his grade performance. We

do this as a robustness check in Section VI.

An examination of Eqs. (3) and (4) reveals how, as discussed in Section III.A, our model is

flexible enough to capture many of the costs and benefits that accompany certain decisions that are not

modeled explicitly. Our model is one where students learn about how much they will enjoy school and

what their earnings will be in the future.  For illustration, consider a student who decides to increase his

study effort. Given our objectives, what is needed is for this change in effort to be reflected in our



7One can think of how the model would adjust for other “background decisions” as well.  For example, a
change to a new major may influence current period utility through both changes in grade performance (as captured
by Gt and gt) and changes in how much a person enjoys studying the new subject area (as captured by ENt).
Naturally, there are some limits to the ability of our model to adjust.  For example, one concern would be that a
change in major might influence a person’s perceptions about the relationship between grades and earnings which is
discussed later.
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characterization of how enjoyable it is to be in school and our characterization of what students believe

about earnings conditional on years of completion. With respect to the former, the term ENt  in Eq. (4)

would account for decreases in current period utility associated with the reduction in current period

leisure, while the terms Gt and gt in Eq. (4)  would allow for the possibility that studying may lead to

additional current period utility benefits not captured by ENt through improved academic performance.

With respect to the latter, an improvement in grades (that would accompany increased study effort)

would influence a student’s beliefs about consumption both by increasing the probability that the person

graduates and, as discussed in more detail below, by influencing the future consumption a person

receives conditional on graduation.7 Then,  while our model cannot provide direct information about

issues related to studying, it does take into account the implications of studying that are important for

our model of learning.

III.D State Variables  The set of state variables at time t, Ω(t), includes all variables whose time t values

provide information about  US
τ(C) and UN

τ(C),  τ=t, t+1, t+2,... 

State variables providing information about  US
τ(C),  τ=t, t+1, t+2,... 

We first consider the state variables whose time t values provide information about US for the

current period t. Examining Eq. (4),  Gt, ENt, and εS,t are known to person i at the beginning of time t.

A student’s beliefs about gt are constructed by censoring an underlying belief variable gt*.  Specifically,

assuming that gt* is normally distributed with an individual-specific mean µt and an individual-specific

variance σ2
t, a student’s beliefs are given by:

(5) gt=4.0 if gt*>4.0, gt=0 if gt*<0, gt=gt* else, with gt*-N(µt,σ2
t).

Then, Gt, ENt, εt, µt, and σt are elements of Ω(t).
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We next think about what time t information influences US in the future periods t+1, t+2,... . As

described in the previous paragraph, when a person arrives at t+1 the variables that will provide

information about US
t+1 are Gt+1, ENt+1, εt+1, µt+1, and σt+1. Then, given the recursive nature of the Bellman

Equation in (2), what is necessary is to specify the process by which G, EN, ε, µ, and σ evolve between

t and t+1. 

εt+1 is not known by person i at time t.  Largely for computational reasons described below, we

assume that εN,t+1 and εS,t+1 are each drawn at t+1 from an extreme value distribution, with εt+1

independent of εt. 

Gt+1 is determined by the technical relationship between a person’s cumulative grade point

average (GPA) at the start of a semester and his current GPA in that semester. For example, under our

implicit assumption in III.A that a person takes an equal number of courses each semester, 

(6) .Gt%1'
t

t%1
Gt%

1
t%1

gt

We assume that the binary variable ENt+1 depends on ENt, gt, and other unobserved factors vEN,t+1:

(7) ENt%1'1 iff ENt%1('αEN,0%αEN,1ENt%αEN,2gt%vEN,t%1>0,

so that ENt+1 is determined at t+1 after gt is observed and vEN,t+1-N(0,1) is drawn.

Finally, the process by which µt and σ2
t evolve represents learning about academic performance

in the model. As discussed in detail in Section IV, because we observe µt and µt+1 we are not forced to

assume that individuals update beliefs in any specific manner. Instead we estimate the parameters of a

parsimonious updating equation:

(8) µt%1'αµ,0%αµ,1µt%αµ,2gt%vµ,t%1,

with vµ,t+1 -N(0,σ2 
µ) drawn at t+1.

It is beliefs about person-specific grade performance at given times, rather than beliefs about

academic “ability” per se, that is relevant for our particular model. Nonetheless, considering the simplest

textbook learning setting in which students learn about a constant, person-specific academic “ability”



8While beliefs about grade performance and beliefs about ability are closely related, focusing on grade
performance makes things less complicated in certain important ways. For example, if one cares about learning
about ability per se then it is necessary to disentangle whether changes in beliefs about grade performance are due to
learning about ability or are due to other endogenous decisions or trends (e.g., how much to study in a semester or
time-series trends in grades across semesters etc.). Perhaps most importantly, it is much easier to construct survey
questions which allow students to describe their beliefs about the relationship between grade performance and
future earnings than it is to construct survey questions which allow students to describe their beliefs about the
relationship between ability and future earnings. Regardless, S&S (forthcoming) find that the distinction between
beliefs about grade performance and beliefs about ability are not particularly important.  Most of the learning that
takes place about grade performance is due to learning about ability (as defined to be grade performance at a
constant level of study effort and course difficulty). 
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illustrates issues related to Eq. (8).8 Suppose grades are determined by gt=µ+νt with µ being the constant

representing “ability” and νt representing transitory noise. Bayesian learning about µ would have the

“posterior mean” as a weighted average of the “prior mean” and the “noisy signal” with the weights

depending on both the amount of uncertainty at t about µ and the amount of variation in νt (i.e., the

signal-to-noise ratio). Using survey questions which ascertain individual-specific beliefs related to the

signal-to-noise ratio, S&S (forthcoming) finds evidence of individual-specific heterogeneity in weights,

but that the very large majority of explainable heterogeneity in µt+1 arises because of heterogeneity in

the observed values of µt and heterogeneity in the observed beliefs about gt.  Thus, we simplify matters

here by assuming that the coefficients in (8) are constant across people. It is also natural to believe that

the coefficients in Eq. (8) might change over time. For example, in the simple Bayesian model above,

the signal-to-noise ratio would be expected to change over time as individuals resolve uncertainty about

µ. Thus, in our empirical work we estimate different coefficients in Eq. (8) for different stages of college.

The update σt+1 is given by

(9) σt%1'ασ,0%ασ,1σt%vσ,t%1,

with vσ,t+1 -N(0,σ2 
σ) drawn at t+1 and the parameters again being allowed to vary across stages of

college.

Eqs. (6)-(9) show that, from the perspective of a person at time t, Gt+1, ENt+1, µt+1 and σt+1 are

random variables whose means depend on the previously identified state variables Gt, ENt, µt and σt that

are known by the person at time t. Randomness in Gt+1, ENt+1, µt+1, and σt+1 is present due to uncertainty
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about gt as characterized by  µt, and σt, as well as uncertainty about the unobservables vEN,t+1, vµ,t+1, and

vσ,t+1.

State variables influencing UN t(C)

 At time t, a person who is choosing between S and N must implicitly think about VN from

equation (1) for each possible time tN$t at which he might choose to leave school. Under the linear

assumption in equation (3), equation (1) becomes

(10) .V N
tN(ΩtN)'j

T(

τ'tN
βτ&tNE(Cτ)%β

τ&tNE(εN,τ)

Thus, for each possible exit time tN, a person must think about the average consumption that he would

receive in each period τ after leaving. We assume that a student’s beliefs about his average consumption

at time τ will vary with: 1) tN-1, the number of semesters he completes before leaving, 2) GtN, his

cumulative GPA at the time he leaves, and 3) his age at τ. We write beliefs about average consumption

at time τ for a student who leaves school at tNas the function (tN, GtN, AGE(τ)). As discussed in SectionC̄τ

IV, by directly eliciting information about the function  we are able to take into account that, for aC̄τ

variety of reasons, the function  may vary substantially across students. Given student i’s individual-C̄τ

specific function , with tN a choice variable and a person’s age at τ known, the state variables at t thatC̄τ

influence i’s beliefs about the average consumption associated with N at a future time τ are those that

are related to beliefs about GtN: µt, σ2
t, and Gt.

III.E. More detail about value functions

Given the discussion in III.C and III.D, we can rewrite the value functions in Eqs. (10) and (2).

(11)  V N
t(Gt)'j

T(

τ't
βτ&tC̄τ(t,Gt,AGE(τ))%βτ&tE(εN,τ)

(12) V S
t(Gt,ENt,µt,σt,εt)'EU S

t(Gt,ENt,gt,εt)%Pr(Gt%1<Ft%1) βV N
t%1(Gt%1)

,%Pr(Gt%1$Ft%1) βEmax[V S
t%1(Gt%1,ENt%1,µt%1,σt%1,εt%1),V

N
t%1(Gt%1)]

where we have rewritten PrFailt to make explicit that a person fails out of school if Gt+1 is less than an



9The stated cutoffs at Berea were F2 =0.0, F3 =1.5, F4 =1.67, F5 =1.85, F6 =2.0, F7 =2.0, F8 =2.0. However,
the cutoffs were, in practice, somewhat lower because students were often able to successfully appeal suspension
decisions. As a result, we choose to use empirical cutoffs constructed as the minimum value of Gt at which a person
was observed remaining in school in our sample: F2 =0.0, F3 =1.17, F4 =1.31, F5 =1.82, F6 =1.83, F7 =1.89, and F8
=2.0. Results depend little on which set is used.

10Also needed is the discount factor β. We assume a yearly discount factor of .95.
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institutional cumulative grade cut-off Ft+1 at t+1.9 With Gt, ENt, and εt known, the first expectation in Eq.

(12) involves a one-dimensional integral over a person’s beliefs at time t about gt as characterized by µt

and σt.  With εt+1 not observed as of time t and randomness in Gt+1, ENt+1, µt+1, and σt+1 present due to

uncertainty about gt, vEN,t+1, vµ,t+1, and vσ,t+1, the second expectation involves a multi-dimensional integral

over a person’s beliefs about gt (as characterized by µt and σt) and over the distribution of the random

variables εt+1 and vt+1={vEN,t+1,vµ,t+1, vσ,t+1}.

III.F. Identification

The current period utility parameters in Eq. (4) are identified by observed choices. Eq. (3) shows

that the deterministic portion of  utility from being out of the workforce is a person’s consumption.

Normalizing the coefficient on C in Eq. (3) to be one allows the coefficients in Eq. (4) to be interpreted

as effects on utility measured in consumption dollars.  This normalization also fixes the scale of the

discrete choice problem so that it is possible to estimate the variance of εt.  Assuming that ε has an

Extreme Value distribution, we estimate the parameter τ where Var(εN,t)=Var(εS,t)=τ2π2/6.  The

parameters of Eqs. (7-9) are identified because our unique data collection efforts imply that both

dependent and independent variables in these equations are observed in each semester. 

IV.  Data

Section III indicates that solving the necessary value functions for person i (up to the value of

εt) requires observing Gt, ENt, µt, and σ2
t for each semester that i is in school, and also requires

knowledge of the person-specific function .10 In addition, while it is beliefs about gt (as given by µt andC̄τ

σ2
t) that are used to compute value functions, it is actual values of gt that will be used to estimate the

parameters of the transition process in Eq. (8).   
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 Gt and gt are obtained for each t from administrative data. The first four rows of Table 1 show

the sample mean (standard error of the sample mean) of gt at t=1,2,...,7 for the full sample of students

who were still enrolled as of t (Row 1) and for three subsamples created by stratifying the full sample

on the basis of how long students remained in school (Rows 2-4). Looking across columns in Row 1

reveals that, for the full sample of students who were still enrolled as of t, there is a statistically

significant increase in the mean of gt across semesters. However, the sample mean in Row 2 for the

composition-constant subset of students who were in school for all of the seven semesters changes very

little across time, suggesting that the increase over time in the first row is due largely to the change in

composition that arises as worse students leave school over time. Row 3 provides some evidence of this

by showing that students who left school after completing four, five, or six semesters have sample

average values of gt that are somewhat lower than the sample average values in Row 2. Even stronger

evidence of changes in composition appear in Row 4 which shows that students who left school after

completing one, two, or three semesters have sample average values of gt that are much lower than the

sample average values in Row 2.  Thus, the results suggest that grades are indeed likely to be important

determinants of drop-out, especially among those that leave school early.

Moving away from administrative data, the unique feature of this project is that the BPS was

designed to minimize the assumptions needed to characterize the individual-specific values of ENt, µt,

and σ2
t for each t and the individual-specific function (C) for each τ. With respect to ENt, as discussedC̄τ

earlier we use Question A.1 to elicit a direct measure of how much a person enjoys school relative to

being out of school. Row (14) of Table 1 shows that students tend to enter school with a very positive

outlook about the non-pecuniary utility of being in college; 89% of students in the sample believe that

school will be somewhat more enjoyable or much more enjoyable than not being in college (i.e., EN1=1).

The next three rows show ENt for those who were in school for all seven of the semesters, those who

left school after completing between four and six semesters, and those who left school after completing

between one and three semesters. The three groups entered school similarly optimistic.  However, by
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the beginning of the third semester, the sample percentage of students with ENt=1 decreased by only six

percentage points for those who remained in school for all seven of the semesters (Row 15), by nine

percentage points for those who left school after completing between four and six semesters (Row 16),

but by twenty-five  percentage points for those who left school after completing between one and three

semesters (Row 17).

Motivating our approach of directly eliciting information about µt, σ2
t, and , Manski (2004)C̄τ

describes why it is not possible to identify both beliefs about a factor that might influence a decision and

preferences about that factor solely from observed data on choices. Our desire to move away from

traditional but untestable assumptions that allow one to characterize beliefs indirectly motivated the

emphasis of the BPS on directly eliciting information using carefully worded survey questions.

For example, we administered Question A.2 (Appendix A) at the beginning of each semester t

to elicit directly each student’s  subjective beliefs about the distribution of gt.  Paying close attention to

methodological suggestions in Dominitz (1998) and Dominitz and Manski (1996, 1997), the question

asks each student to report the “percent chance” that gt will fall in each of a set of mutually exclusive

and collectively exhaustive categories. Importantly, students who left school were sent exit surveys

immediately after leaving school. This allows us to observe beliefs about gt at the beginning of semester

t both for those who decided to stay in school for semester t and for those who were in school for t-1 but

did not return for semester t. Examining the first year of college, S&S (forthcoming) found strong

evidence of the usefulness of directly eliciting beliefs in this context; directly elicited beliefs were found

to be inconsistent with the standard Rational Expectations (RE) assumption described in the introduction

and were found to satisfy certain theoretical implications that were not satisfied by beliefs constructed

under RE. 

For descriptive purposes, we compute the approximate mean of the distribution describing beliefs

about gt from a person’s answers to Question A.2 (Appendix A) by assuming that a person’s beliefs are

uniformly distributed within each of the grade categories. Rows 6-9 of Table 1 show the sample averages
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of these approximate means at times t=1,2,...,7 for the full sample of those who were still enrolled in

school at the beginning of t (Row 6) and over subsamples generated by stratifying on the basis of how

long students remained in school (Rows 7-9). Comparing the t=1 entry of Row 6 to the t=1 entry of Row

1, we find that, in the sample as a whole, students are, on average, substantially overoptimistic about

their average grade performance at entrance. Comparing the t=2 entry of Row 6 to the t=1 entry of Row

6 we find that, in the full sample, students update their beliefs significantly between t=1 and t=2.

Comparing the first four entries of Rows 7 and 8 to the first four entries of Row 9 we find that the

learning is concentrated largely in the subsample of students who left school in the first three semesters,

a result that is consistent with the fact that Row 4 showed that this group had particularly low grades.

Rows 10-13 show approximate standard deviations of the distribution describing beliefs about gt

averaged over the full sample and averaged over subsamples generated by stratifying on the basis of how

long students remained in school. The results indicate that uncertainty decreases significantly over time,

even under the composition-constant sample of students who remain in school for all semesters (Row

11).

Eq. (5) described our assumption, needed for estimation, that  i’s beliefs about gt can be

represented by censoring an underlying latent random variable gt* -N(µt,σ2
t). At each time t, we obtain

our person-specific measures of µt and σt by fitting the censored random variable to the person’s self-

reported probabilities from Question A.2. Specifically, for each person we choose µt and σt to minimize

(13)  , j
6

j'1
|PRobserved(gt0CATj)&PRmodel(gt0CATj)|

where CAT1,...,CAT6 represent the grade categories [4.0,3.5), [3.5,3.0), [3.0,2.5), [2.5,2.0), [2.0,1.0), and

[1.0,0], respectively, the first term in the difference is the self-reported perceived probability of category

CATj from Question A.2 and the second term in the difference  is  the probability that the censored

random variable produces a realization in category CATj. We find that a censored normal is able to fit

the self-reported probabilities quite well. For example, for t=1 we find that the average value of

across all categories j and all sample members is .018.|PRobserved(gt0CATj)&PRmodel(gt0CATj)|



11The survey question (full question not shown) informed respondents that “when reporting incomes take
into account the possibility that you will work full-time, the possibility that you will work part-time, and (for the
hypothetical scenarios which involve graduation)  the possibility that you will attend graduate or professional
school.  When reporting income you should ignore the effects of price inflation.”  
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Similarly, at the time of college entrance, for some combinations of possible exit times tN,

possible exiting grade point averages GtN, and possible future years τ$tN, we also utilized survey

questions to directly elicit the beliefs about the expected future yearly earnings that determine the

individual-specific function (tN, GtN, AGE(τ)).11 With respect to tN, we collected information aboutC̄τ

leaving college immediately, after one full year of school, after three full years of school, and at the time

of graduation. With respect to GtN, we collected information about leaving school with a GPA of 3.75,

3.0, and 2.0. With respect to τ, we collected information about earnings in the first year out of school,

at the age of 28, and at the age of 38. We further reduced the number of possible combinations by

assuming that GtN does not influence future earnings if a person leaves school without graduating. Thus,

we collected beliefs about the expected earnings that would be received at three future points in time

(first year out of school, age 28, and age 38) for each of six schooling scenarios (leave school

immediately, leave school after one year, leave school after three years, graduate with a 2.0 GPA,

graduate with a 3.0 GPA, and graduate with a 3.75 GPA).  

Figure 1 shows the sample mean of  at each of the three points in time for each of sixC̄τ

schooling scenarios. With respect to the premium to completing a degree, the first set of bars shows that

students believe that, in the first year out of school, the premium of graduating with a 3.0 grade point

average would be $25,000 (130%) relative to the scenario of leaving immediately, would be $23,000

(103%) relative to the scenario of leaving after finishing one year, and would be $14,000 (46%) relative

to the scenario of leaving after finishing three years. The second and third sets of bars show that these

premiums remain quite similar at the age of 28 and at the age of 38.  With respect to the premium to

performing well academically conditional on graduating, the first set of bars shows that students believe

that, in the first year out of school, the premium of graduating with a 3.75 GPA would be $10,000 (25%)



12We use a straightforward interpolation approach under the following assumptions: 1) to deal with the fact
that values of  is only observed directly for the time a person leaves school, at age 28, and at age 38, we assumeC̄
that  is linear between the time a person leaves school and the age of 28, is linear between the age of 28 and 38,C̄
and is constant after the age of 38; 2) to deal with the fact that values of  are only observed at the drop-out timesC̄
tN=1, tN=3, and tN=7, we assume that  is linear between tN=1 and tN=3, is linear between tN=3 and tN=7, and is theC̄
same at tN=8 as it is at tN=7;  3) to deal with the fact that, for tN=9 (graduation), values of   are only observed forC̄
the values of G9=2.0, G9=3.0, and G9=3.75, we assume that VN

9 is linear between G9=2.0 and G9=3.0 and  is linear
between G9=3.0 and G9=4.0 (with the slope being identified by the values of VN

9 at G9=3.0 and G9=3.75 and this
slope being used to extrapolate values of VN

9 between G9=3.75 and G9=4.0).
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relative to the scenario of graduating with a 2.0 GPA and would be $5,000 (11%) relative to the scenario

of graduating with a 3.0 GPA.  The third set of bars shows that students believe that, at age 38, the

premium of graduating with a 3.75 GPA would be be $16,000 (28%) relative to the scenario of

graduating with a 2.0 GPA and would be $7,000 (11%) relative to the scenario of graduating with a 3.0

GPA.

V. Solving value functions and Estimation

V.A. Solving Value Functions 

Computing VN
tN  Given our assumption that a student’s GPA does not influence his future earnings if he

does not graduate, it is necessary  to compute VN
tN for 1) for every possible time tN that a person might

leave school under the scenario that he does not graduate (tN=2,3,...,8) and 2) for each possible value of

GtN that a person could have under the scenario in which he graduates (tN=9). Then, Eq. (11) implies: 1)

for each tN=2,3,...,8,   is needed for all τ$tN and 2) for  tN=9,  is needed for all τ$ tN for each possibleC̄τ C̄τ

value of G9.  Section IV discussed the combinations of tN, Gt and τ at which we elicited  directly.  OurC̄τ

approach is to use these directly elicited combinations to interpolate   for all other necessaryC̄τ

combinations.12  Figure 2 shows the sample mean value of VN
tN() for the six schooling scenarios from

Section IV.  As expected given Figure 1, there exist sizeable lifetime premiums both for completing

more years of schooling and for having a higher GPA at graduation.

Solving VS
tN  The expected value in the last term of  Eq. (12) is present because uncertainty exists at t

about εt+1, ENt+1, Gt+1, µt+1, and σt+1. The assumption that εN,t+1 and εS,t+1 have extreme value distributions

implies that the Emax has a well-known closed form solution conditional on the realizations of ENt+1,
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Gt+1, µt+1, and σt+1. Then, evaluating the last expected value involves summing the closed form solution

over the probability function of the binary random variable ENt+1 and integrating over the densities of

the continuous random variables Gt+1, µt+1, and σt+1. Appendix B describes the simulation approach that

we take to evaluate this integral. This simulation approach takes into account that uncertainty about Gt+1,

µt+1, σt+1, and ENt+1 is driven primarily by uncertainty about gt.

The recursive formulation of value functions in Eq. (12) motivates a backwards recursion

solution process of the general type that is standard in finite horizon, dynamic, discrete choice models.

The most basic property of the algorithm is that, in order to solve all necessary value functions at time

t, it is necessary to know value functions at time t+1 for each combination of the state variables in

Ω(t+1) that could arise at time t+1.  In Appendix B we discuss computational issues that arise when

implementing the backwards recursion solution process in our particular application, including the

modification that is needed to deal with the fact that we have multiple continuous, serially correlated

state variables, Gt+1, µt+1, and σt+1.

V.B Estimation We estimate the parameters of the model by Maximum Likelihood. The likelihood

contribution for person i is the joint probability of observing his schooling decisions and all values

of ENt, µt, and σt that are reported after t=1. The likelihood terms associated with the reported values

of µt and σt involve density evaluations with the densities determined by Eqs. (8) and (9). The likelihood

term associated with the reported values of ENt involve probability calculations as described by Eq. (7).

With respect to schooling choices, we examine decisions from whether to return for the second

semester (t=2) through whether to return for the fourth year (t=7).  For a person who chooses to

return to school in each semester through the seventh semester, the likelihood contribution

associated with his observed choices is the probability that he chooses S in t=2, t=3, ..., and t=7. For

a person who chooses to leave school at some time tN#7, the likelihood contribution associated with

his observed choices is the probability that he chooses S in t=2, t=3, ..., t=tN-1 and chooses N in t=tN.
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For a person who is forced out of school due to bad academic performance at time tN, the likelihood

contribution associated with his observed choices is the probability that he chooses S in t=2, t=3,

..., t=tN-1. At each time t, the probability of choosing S is given by PR(VS>VN). With value functions

solved up to εt and the components of εt having Extreme Value distributions, this probability has the

standard closed form logit solution. The Maximum Likelihood approach is also conducive to dealing

with missing data.  For example, if a person does not answer a survey at time t, then ENt,  µt, and σt

will be missing.  We construct the joint distribution of the missing data from Eqs. (7)-(9) and

compute the choice probability at t by using simulation methods to integrate the choice probability

conditional on ENt,  µt, and σt  over the constructed distributions.

VI.  Results

The parameters to be estimated are those that appear in Eq. (4) and Eqs. (7-9). Estimates are

shown in Table 2. 

VI.A. Estimates of parameters related to the evolution of ENt, µt, and σt

Estimates of the parameters of Eq. (7) are shown in the second panel of Column 1.  By far

the most important determinant of whether someone likes school in period t+1, ENt+1=1, is whether

the person liked school in t, ENt=1 (t-statistic 13.16).  ENt+1=1 is also influenced in a significant

manner by the student’s grades in t (t-statistic 3.82).

Estimates of the parameters of the updating Eqs. (8) and (9) are shown in the third and fourth

panels of Column 1.  The strength of our approach in estimating Eqs. (8) and (9) is that we directly

observe µt+1, µt, σt+1, σt, and gt. Given the discussion in Section III.D that the coefficients in Eqs. (8)

and (9) may vary over time, we estimate Eqs. (8) and (9) separately for updates that take place after

the first and second semesters, updates that take place after the third and fourth semesters, and

updates that take place during the remaining time in school.  Focusing on Eq. (8), Rows 11-22 show

that, for all updates, both µt and gt play an important role in determining the update µt+1.  The results
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show evidence that the relative influence of µt in determining µt+1 does increase over time, as would

be expected if uncertainty is resolved over time.  For example, Rows 11-22 show that the ratio of

the estimated effect of µt to the estimated effect of gt (i.e., αµ,1/αµ,2) is .320/.255=1.25 for the first two

updates (t=1,2), is 2.18 for the next two updates (t=3,4), and is .558/.172=3.24 for the remainder of

the updates (t>4). 

VI.B. Estimates of utility parameters

Like much previous work, we find a strong reduced-form correlation between grade

performance and drop-out.  Estimating the Logit model that results from setting β=0, τ=1, and

allowing only Gt to enter current period utility (Eq. 4), we find in Column 2 that the coefficient on

Gt has a t-statistic of approximately 8.5. The usefulness of estimating the model in this paper is that

it allows an opportunity to understand why grade performance is consistently found to be so strongly

correlated with drop-out in reduced form specifications.  Specifically, our model allows us to

differentiate between three broad avenues through which poor academic performance could lead to

drop-out: 1) poor performance causes students to fail out of school immediately or causes the value

of continuing in school to decrease because it increases the probability of failing out in the future,

2) poor performance reduces how enjoyable it is to be in school, and 3) poor performance reduces

the value of staying in school by reducing the earnings that a person will receive in the future if he

does graduate.

Estimates of the current period utility parameters associated with being in school (Eq. 4) for

the full model are shown in the first panel of Column 1.  The results indicate that the second avenue

above is very relevant. Both Gt and gt have a significant effect on the current period utility of being

in school with the estimated effects having t-statistics of 3.73 and 1.78, respectively.  In addition,

in Section VI.A we found that gt influences the measure EN, which is itself seen in Column 1 to

have a significant effect on utility (t-statistic=2.68).  With income/consumption measured in
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hundreds of thousands of dollars, the coefficients imply that a person with Gt =4.0, gt=4.0, and

ENt=1 would receive, on average, about the same amount of current period utility as a person who

is out of school with an annual income of roughly the average expected annual income of someone

who leaves school at the beginning of college ($20,000). Each .50 reduction in cumulative grade

point average reduces current period utility of school by the consumption equivalent of

.50*.292*$100,000=$14,600.

The current period utility specification for Eq. (4) used in Column 1 is very parsimonious.

It is worth examining whether it is useful to add to Eq. (4) student characteristics that have been

consistently found to be related to drop-out in other work. Repeating the exercise in Column 2 after

replacing Gt with an indicator of whether a student is male, we find in Column 3 that males are

significantly more likely to drop-out (t-statistic.-2.00).   Repeating the exercise in Column 2 after

replacing Gt with a student’s high school grade point average, we find in Column 4 that students

with higher high school grade point average are significantly less likely to drop-out (t-

statistic=3.31). However, when we add the male and HSGPA variables to the full, dynamic model

in Column 1, neither is statistically significant (t-statistics of .43 and .82, respectively, full results

not shown). Thus, the evidence suggests that the effect of these two variables in the reduced-form

arises primarily because the variables are related to grade performance or beliefs about future grade

performance. We also find that, as in S&S (forthcoming), results change very little when we add to

the current period utility Eq. (4) variables measuring a student’s health, family income, and whether

his parent lost a job in the last period.13

From the estimates in Column 1 alone, it is not possible to quantify the importance of the

second avenue in determining the drop-out decision or to get any sense of whether avenues (1) and

(3) above are also relevant. As a result, in the next section we use simulations to quantify the overall



14Recall that, for someone who leaves school at the beginning of semester t, we collect information about
beliefs at t using an exit survey.
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importance of learning and the relative importance of the three avenues described above.

VI.C. Simulations

For several counterfactual scenarios, which imply various changes to Gt, gt, ENt, µt, and σt,

we use the estimates from Column 1 of Table 2 to compute the proportion of students that would

drop out by the beginning of the second year (T=3), by the beginning of the third year (T=5), and

by the beginning of the fourth year (T=7). For each student, the probability of dropping out at or

before the start of the Tth semester is given by .  Section V described the1&Π
T

t'2
Pr(V S

t>V N
t)

techniques that we use during estimation to compute the probabilities that appear in this expression.

Here we require additional simulations to incorporate the changes to Gt, ENt, µt, and σt. However,

these simulations are straightforward extensions of our methods for dealing with missing data as

described in Section V.

We begin with a baseline scenario in which nothing is changed. For this scenario, we wish

to use actual values of Gt, ENt, µt, and σt, so that the additional use of simulation is only necessary

because, for someone who leaves school at the start of semester tN, actual values of Gt, gt, ENt, µt,

and σt are not observed in the data for t>tN.14 Our baseline calculation finds that .193 of students drop

out before the start of the second year (T=3, compared to .18 actual), that .355 of students drop out

before the start of the third year (T=5, compared to .34 actual), and that .483 of students drop out

before the start of the fourth year (T=7, compared to .46 actual).

To quantify the overall importance of learning, we next simulate the drop-out proportion

under a no-learning counterfactual scenario in which a person’s beliefs about grade performance do

not change after the time of entrance and actual grades gt are drawn from this perceived grade

distribution.  Specifically, for all t: 1) µt=µ1 and σt=σ1, 2) the distribution of actual grades gt is



15We do not observe beliefs about earnings for final GPA’s of less than 2.0. For this simulation, we assume
that a student’s beliefs about the earnings associated with GPA’s less than 2.0 is the same as his beliefs about the
earnings associated with a GPA of 2.0. Thus, if anything, the true effect of removing the possibility of failing out
would be even smaller.

27

determined by Eq. (5) given parameters µ1 and σ1 and 3) PR(ENt=1) is determined from Eq. (7)

based on  EN1 and by g1, g2,..., gt-1. Under this no-learning scenario, we find that .106 of students

would drop out by the start of the second year, .194 of students would drop out before the start of

the third year, and that .309 of students would drop out before the start of the fourth year.  Thus,

.45=(.193-.106)/.193 of the drop-out in the first year, .45=(.355-.194)/(.355) of the drop-out in the

first two years, and .36=(.483-.309)/(.483) of the drop-out in the first three years can be attributed

to what students learn about their academic performance. These cumulative numbers imply that .45

of drop-out in the first year, .45 of drop-out in the second year, but only .11 of drop-out in the third

year is caused by learning about academic performance. That learning about academic performance

plays a bigger role earlier in college is consistent with the descriptive statistics in Section IV.

Finally, we perform three additional simulations to provide evidence about the quantitative

importance of the three broad avenues in Section VI.B through which learning about grade

performance could cause drop-out. To examine the first avenue (that poor academic performance

causes students to fail out of school immediately or causes the value of continuing in school to

decrease because it increases the probability of failing out in the future), we repeat the baseline

simulation, but remove the institutional rule that students are forced to leave school due to poor

academic performance. We find that the percentage of students who would drop out would decrease

only trivially, from .483 to .463.  Thus, the results suggest that students who perform poorly tend

to learn that staying in school is not beneficial, not that they leave simply because they have lost the

option to stay or believe they are more likely to lose the option in the future.15

Differentiating between the remaining two avenues above is a matter of understanding why



16Specifically, we set a person’s beliefs about earnings upon graduation equal to what he would expect if
he were to graduate with  G9  equal to the mean of the distribution describing his beliefs about grades at the time of
entrance (i.e., the approximate mean from the t=1 response to Question A.2).

17When computing the current period utility in Eq. (4), we characterize Gt, gt, and ENt under the
assumption that a person’s grades in each period equal to the  mean of the  distribution describing his beliefs about
grades at the time of entrance (i.e., the approximate mean from the t=1 response to Question A.2).
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students find that it is not beneficial to be in school if they have performed poorly.  Maintaining the

assumption that students cannot fail out, we first examine the importance of avenue 3 (that poor

performance reduces the value of staying in school by reducing the earnings that a person will

receive in the future if he does graduate) by simulating the model under the counterfactual

assumption that a person’s beliefs about his earnings upon graduation are determined by his beliefs

about grade performance at the start of college rather than by what he learns about his actual grade

performance during college.16 We find that .386 of students would drop out under this counterfactual

scenario, so that approximately .50=(.463-.386)/(.463-.309) of the drop-out that can be attributed

to learning about academic performance (and is not due to the possibility of failing out) would

disappear under this scenario.  Finally, continuing to maintain the assumption that students cannot

fail out, we examine the importance of avenue 2 (that performing poorly makes it less enjoyable to

be in school) by simulating the model under the counterfactual assumption that a person’s non-

pecuniary utility during school corresponds to the utility that would have been received if the

student’s perceptions about grade performance were correct at the time of entrance.17  We find that

.344 of students would drop out under this scenario, so that approximately .77 =(.463-.344)/(.463-

.309) of the drop-out that can be attributed to learning about academic performance (and is not due

to grade requirements) would disappear under this counterfactual.

VII. Conclusion

We find that learning about academic performance plays a very important role in

determining college drop-out, with this type of learning being substantially more important for
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explaining attrition that occurs in the first two years of college than for explaining attrition that

occurs later in college. We find that students who perform poorly tend to learn that staying in school

is not worthwhile, not that they fail out or  learn that they are more likely (than they previously

believed) to fail out in the future. 

The most important avenue through which school becomes less worthwhile is that performing

poorly reduces how enjoyable it is to be in school relative to being out of school, with our simulations

showing that 77% of the attrition that is due to learning (and is not due to grade requirements) would

disappear under the hypothetical scenario that poor performance does not influence current period utility.

As discussed in Section III.C., it is difficult to know exactly why  poor academic performance is found

to have such a large effect on current period utility. Given the set of possibilities, it seems at least

possible that increasing social support for students who have performed poorly might be beneficial.

However, even if these types of interventions would make students feel happier in school at a given

level of grade performance, we find that the reduction in the financial returns to graduating that

accompanies poor performance is itself  sufficient to create substantial drop-out. 

Therefore, our results suggest that achieving substantial reductions in the drop-out that arises

because of poor academic performance is likely to require changing grade performance itself.  The

model in this paper cannot examine the potential benefits of college policies which would, for

example, encourage more study effort. However, S&S (forthcoming) find that learning about grade

performance should be attributed primarily to learning about academic ability (i.e., grade

performance at a given level of effort and course difficulty) rather than learning about effort. Then,

given that increasing effort may be difficult and would come at the expense of leisure, our results

here generally suggest the importance of  having students arrive at school better prepared for the

academic challenges of college. To this end, improvements in the quality of elementary and
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secondary schools would seemingly be helpful, but ensuring that pre-college students have correct

perceptions about what level of preparation is necessary to succeed in college may also be

important. 
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Table 1 sample mean (std. error of sample mean)

t=1 t=2 t=3 t=4 t=5 t=6 t=7

(1) gt all observations 2.81 (.04) 2.83 (.04) 2.85 (.04) 2.97 (.04) 2.96 (.04) 3.02 (.04) 3.07 (.04)
(2) gt completed $7 semesters 3.05 (.04) 3.05 (.04) 2.96 (.04) 3.04 (.04) 3.01 (.04) 3.06 (.04) 3.07 (.04)
(3) gt completed 4,5,6 semesters 2.95 (.08) 2.88 (.08) 2.76 (.10) 2.77 (.12) 2.72 (.16) 2.71 (.219)
(4) gt completed 1,2,3 semesters 2.11 (.118) 1.85 (.15) 1.95 (.29)
(5) Gt+1 all observations 2.81 (.04) 2.82 (.04) 2.90 (.03) 2.97 (.03) 3.00 (.03) 3.01 (.03) 3.03 (.03)

(6) belief E(gt) all observations 3.21 (.01) 3.10 (.02) 3.14 (.02) 3.13 (.02) 3.16 (.02) 3.21 (.02) 3.12 (.02)
(7) belief E(gt) completed >7
semesters

3.21 (.02) 3.14 (.02) 3.19 (.02) 3.16 (.02) 3.17 (.02) 3.19 (.02) 3.14 (.02)

(8) belief E(gt)completed 4,5,6
semesters

3.21 (.03) 3.14 (.04) 3.22 (.04) 3.19 (.05) 3.14 (.05) 3.21 (.05)

(9) belief E(gt) completed 1,2,3
semesters

3.20 (.03) 2.96 (.04) 2.84 (.04) 2.53(.15)

(10) belief std. dev. (gt) all
observations

.53 (.01) .48 (.01) .45 (.01) .43 (.01) .42 (.01) .38 (.01) .39 (.01)

(11) belief std. dev (gt)
completed >7 semesters

.52 (.01) .47 (.01) .47 (.01) .44 (.01) .44 (.01) .43 (.01) .40 (.01)

(12) belief std dev. (gt)
completed 4,5,6 semesters

.53 (.02) .48 (.02) .44 (.02) .41 (.02) .42 (.02) .34 (.02)

(13) belief std dev.(gt)
completed 1,2,3 semesters

.53 (.02) .51 (.02) .51 (.03) .51 (.09)

(14) ENt all observations .89 (.01) .77 (.02) .79 (.02) .78 (.02) .81 (.02) .81 (.02) .81 (.02)
(15)ENt completed >7 semesters .90 (.02) .83 (.02) .84 (.02) .82 (.03) .82 (.03) .81 (.03) .81 (.03)
(16) ENt completed 4,5,6
semesters

.82 (.04) .73 (.05) .73 (.05) .75 (.05) .79 (.05) .78 (.07)

(17) ENt completed 1,2,3
semesters

.89 (.03) .67 (.05) .64 (.07) .46 (.13)



Table 2 Estimates of structural model: Estimate (std. error) 

1 2 3 4
Utility Parameters (Eq. 4)
γ0    -Constant 1 -2.786 (.434)** -.819 (.375)** 2.403 (.119)** .225 (.609)
γ1  -Coefficient on EN 2 .479 (.179)**
γ2     -Coefficient on G 3 .292 (.078)** 1.14 (.135)**
γ3     -Coefficient on g 4 .304 (.171)*
        -Coefficient Male 5 -.297 (.150)**
      -Coefficient HSGPA 6 .607 (.183)**
τ - variance εN,t, εS,t is τ2π2/6 7 .986 (.049)** 1.0 (normalized) 1.0 (normalized) 1.0 (normalized)

Evolution of ENt (Eq. 7)
αEN,0  -Constant 8 -.288 (.207)**
αEN,1 -Coefficient on EN 9 1.130 (.085)**
αEN,2 -Coefficient on g 10 .212 (.055) **

Determinants of of µt+1 (Eq. 8)
t=1 and t=2
αµ,0  -Constant 11 1.423 (.125)**
αµ,1   -Coefficient on µ 12 .320 (.038)**
αµ,2   -Coefficient on g 13 .255 (.014)**
Var(vµ,t+1) 14 .095 (.005)**
t=3 and t=4
αµ,0  -Constant 15 1.055 (.119)**
αµ,1 -Coefficient on µ 16 .463 (.033)**
αµ,2   -Coefficient on g 17 .212 (.021)**
Var(vµ,t+1) 18 .069 (.004)**
t>4
αµ,0  -Constant 19 .902 (.005)**
αµ,1  -Coefficient on µ 20 .558 (.031)**
αµ,2   -Coefficient on g 21 .172 (.015)**
Var(vµ,t+1) 22 .071 (.004)**

Determinants of σt+1 (Eq. 9)
t=1 and t=2
ασ,0 -Constant 23 .245 (.027)**
ασ,1  -Coefficient on σ 24 .265 (.042)**
Var(vσ,t+1) 25 .056 (.003)**
t=2 and t=3
ασ,0 -Constant 26 .133 (.037)**
ασ,1 -Coefficient on σ 27 .494 (.067)**
Var(vσ,t+1) 28 .052 (.003)**
t>3
ασ,0 -Constant 29 .066 (.031)**
ασ,1  -Coefficient on σ 30 .614 (.050)**
Var(vσ,t+1) 31 .039 (.003)**
Log Likelihood -759.648
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Appendix A.
Question A.1 Circle the one answer that describes your beliefs at this time: (Beginning of first year) 
1.  I believe that being in college at Berea will be much more enjoyable than not being in college.
2.  I believe that being in college at Berea will be somewhat more enjoyable than not being in college.
3.  I believe that I will enjoy being in college at Berea about the same amount as I would enjoy not being in college.
4.  I believe that being in college at Berea will be somewhat less enjoyable than not being in college.
5.  I believe that being in college at Berea will be much less enjoyable than not being in college. 

Question A.1 Circle the one answer that describes your beliefs at this time: (Beginning of other semesters) 
1.  I believe that being in college at Berea is much more enjoyable than not being in college.
2.  I believe that being in college at Berea is somewhat more enjoyable than not being in college.
3.  I have enjoyed being in college at Berea about the same amount as I would have enjoyed not being in college.
4.  I believe that being in college at Berea is somewhat less enjoyable than not being in college.
5.  I believe that being in college at Berea is much less enjoyable than not being in college. 

Question A.2.  We realize that you do not know exactly how well you will do in classes.  However, we would like to
have you describe your beliefs about the grade point average that you expect to receive in the first semester.

Given the amount of study-time you indicated above, please tell us the percent chance that your grade point
average will be in each of the following intervals.  That is, for each interval, write the number of chances out of 100
that your final grade point average will be in that interval.  

Interval Percent Chance (number of chances out of 100).

[3.5, 4.00]                    ____________
[3.0, 3.49]                    ____________
[2.5, 2.99] ____________
[2.0, 2.49] ____________
[1.0, 1.99] ____________
[0.0,   .99] ____________

Note:  A=4.0, B=3.0, C=2.0, D=1.0, F



    
Appendix B

The primary burden of computing value functions involves the computation of the expected future utility (Emax)
of the option (S) in equation (2).

We assume that students believe that they will update µt+1 and σt+1 according to the predicted values from
equations (8) and (9):
(A.1) µt%1'αµ,0%αµ,1µt%αµ,2gt

(A.2)  σt%1'ασ,0%ασ,1σt.

Then, uncertainty about Gt+1 and µt+1 comes from uncertainty about gt and uncertainty about ENt+1 comes from
uncertainty about gt and vEN,,t+1. Letting EMAX*(ENt+1, Gt+1, µt+1, σt+1) represent the well-known closed form that
exists for the expected value of the maximum (conditional on ENt+1, Gt+1, µt+1, and σt+1) when εS,t+1 and εN,t+1 have
Extreme Value distributions,

(A.3) = Emax[V S
t%1(C),V

N
t%1(C)]

IIEMAX*(ENt+1(gt,vEN,t+1),Gt+1(gt) µt+1(gt), σt+1) f(gt) h(vEN,t+1) dgt dvEN,t+1

where f is the censored normal distribution in Eq. (5) which describes beliefs about g, and, as seen in Eq. (7), h is
a standard normal random variable. A.3 can be rewritten as:

(A.4)

 PR(gt=0)*
[Pr(ENt+1=1|gt=0)* EMAX*(ENt+1=1,Gt+1(0), µt+1(0), σt+1) 

              +Pr(ENt+1=0|gt=0)* EMAX*(ENt+1=0,Gt+1(0), µt+1(0), σt+1)]
+PR(gt=4.0)*
             [Pr(ENt+1=1|gt=4)* EMAX*(ENt+1=1,Gt+1(4), µt+1(4), σt+1) 

+Pr(ENt+1=0|gt=4)* EMAX*(ENt+1=0,Gt+1(4), µt+1(4), σt+1)]
+PR(0<gt+1<4.0)* 
            I [Pr(ENt+1=1|gt)* EMAX*(ENt+1=1,Gt+1(gt), µt+1(gt), σt+1) 
              +Pr(ENt+1=0|gt)* EMAX*(ENt+1=0,Gt+1(gt), µt+1(gt), σt+1)] f(gt|(0<gt<4.0)dgt.

The integral in the last term of A.4 is simulated as the average value of the integrand over N draws from the
conditional distribution f(gt|(0<gt<4.0).

The most basic property of the standard solution algorithm for value functions is that, in order to solve all
necessary value functions at time t, it is necessary to know value functions at time t+1 for each combination of the
state variables in  Ω(t+1) that could arise at time t+1. 

Observable characteristics X are not burdensome because they are assumed to be exogenous and
predetermined. This implies that value functions at time t+1 need to be solved only for the observed value of these
variables.  Similarly, εt+1 is not computationally burdensome because it is assumed to be serially independent. In
this case, εt+1 influences VS

t+1() and VN
t+1() only through its effect on current period (t+1) utility. In general

contexts, this would imply that, given VS
t+1() and VN

t+1() for some value εt+1, VS
t+1() and VN

t+1()  could be obtained
in a trivial manner for any other value εt+1 by simply recalculating US

t+1 and UN
t+1. In the specific case here, where

εS,t+1 and εN,t+1 have Extreme Value distributions, VS
t+1() and VN

t+1 do not have to be computed explicitly for
different values of εt+1 since the integration over VS

t+1() and VN
t+1 in the Emax leads to the well-known closed

form solution represented by Emax* above.
The burden of solving value functions comes primarily from the variables  ENt+1, Gt+1, µt+1, and σt+1.  For

each of these variables, the computational burden arises because: 1) there are multiple values for which value
functions are needed at time t+1 and 2) the current period value of the variable provides information about both
current and future utility. The latter characteristics implies that, in order to compute VS

t+1() for any particular



18The “surrounding” grid points are defined to be the eight possible combinations of {Gt+1
H, Gt+1

L}, { µt+1
H,

µt+1
L}, and {σt+1

H, σt+1
L},where Gt+1

H is smallest value greater than Gt+1N for which value functions were solved at
time t+1, Gt+1

L is largest value less than Gt+1N for which value functions were solved at time t+1, µt+1
H is smallest

value greater than µt+1N for which value functions were solved at time t+1, µt+1
L is largest value less than µt+1N for

which value functions were solved at time t+1,σt+1
H is smallest value greater than σt+1N for which value functions

were solved at time t+1, σt+1
L is largest value less than σt+1N for which value functions were solved at time t+1. Then,

the surrounding grid points form a cube around the point (Gt+1N, µt+1N, σt+1N).

combination of these variables, it is necessary to recompute the computationally demanding Emax in time t+2. 
ENt+1 is a discrete (binary) variable so it can take on only two particular values at time t+1. However, the

remaining variables are serially correlated continuous variables, and this causes well-known difficulties for the
backwards recursion solution methods. As discussed in detail in Bound et al. (2010), Keane and Wolpin (1994),
Rust (1997), and Stinebrickner (2000), quadrature or simulation methods are a useful tool for addressing the
difficulties of serially correlated, continuous variables because, in effect, they served to discretize the state space -
an obvious necessity given that the backwards recursion process requires that value functions be solved for all
combinations of state variables. Unfortunately, while finite, the number of possible combinations of Gt+1, µt+1, and
σt+1 is in practice very large so that it is infeasible to solve value functions using standard methods for all possible
combinations of ENt+1, Gt+1, µt+1, and σt+1 that  could arise.  

We address this issue by implementing a modified version of the backwards solution process.  The first
step is to determine the range of possible values that each of the variables Gt+1, µt+1, and σt+1 could have in each
time period for which the individual is making decisions. The modified backwards recursion process can then
take place.  At each time t in the backwards recursion process, rather than solving value functions for all possible
values of Gt, µt, and σt, value functions, VS is solved for the largest possible values of each of these variables, the
smallest possible values for each of these variables, and some subset of the possible values in between the largest
and smallest possible values for each of these variables. We refer to a combination of values of  Gt, µt, and σt for
which VS

t is solved as a grid point.  The simulation of A.4 implies that solving the value functions associated with
the grid points at time t requires knowledge of value functions VS

 at time t+1 for various combinations of Gt+1,
µt+1, and σt+1. The reality that these needed combinations will not correspond to the time t+1 grid point (for which
value functions were actually solved at t+1) necessitates a value function approximation. Specifically, we
interpolate the t+1 value function associated with a particular combination Gt+1N, µt+1N, and σt+1N as the weighted
average of the value functions associated with the eight “surrounding” grid points, where the weight associated
with a particular grid point is determined by the euclidian distance between the grid point and Gt+1N, µt+1N,and
σt+1N.18 This nonparametric interpolation approach using surrounding grid points has the virtue that the
interpolated value function for (Gt+1N, µt+1N, σt+1N) converges to the true value function as the number of grid
points increases (i.e., as the grid points used in the weighted average become close to  (Gt+1N, µt+1N, σt+1N) . 


