
Real Options and Risk Dynamics:
Implications for the Cross-Section and

Time-Series of Expected Returns∗

Dirk Hackbarth and Timothy Johnson

May 31, 2011

Abstract

We identify and test several new predictions about expected stock returns when real
option values differ both over time and across firms. The model implies an S-shape
relation between expected returns and profitability (or market-to-book) ratios. This
relation generates a novel time-series pattern: return autocorrelations should display
a U-shape conditional on lagged operating variables. In cross-sections of homogeneous
firms, the model does not generally imply a value premium. Instead the average relation
between book-to-market and expected stock returns depends crucially on the degree of
reversibility of the firm’s production technology. Firms with the ability to scale down
operations (liquidate capital) actually become safer as profitability decreases and book-
to-market rises. In cross-sections of heterogeneous firms, the value premium is driven
by differences in asset risk. Conditional on this, residual expected stock returns are
positively related to lagged returns. The model thus presents a coherent account of
the coexistence of value and momentum effects. Empirical tests provide evidence in
support of each of the model’s predictions.
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1 Introduction

What do investment-based models of stock returns imply about a world in which firms may

differ in their expansion and contraction options? While the real options literature has

long recognized that variation in investment and disinvestment costs can imply important

differences in investment behavior (see, e.g., Abel, Dixit, Eberly, and Pindyck (1996) and

Abel and Eberly (1996)), this topic has received little attention in the asset pricing literature.

Research to date has focused on models of ex ante homogeneous firms that differ only

in their history of idiosyncratic shocks. Homogeneity is a useful simplifying assumption in

otherwise complex models, and also enables the isolation of effects that come solely through

productivity differences. This line of research has produced numerous insights and delivered

several successes in explaining particular observed patterns in stock returns.1 Yet the models

derive their interesting results from variation in risk that stem from changes in the relative

value of firms’ real options. So it is natural to ask what testable implications arise from

differences in option values across firms (as well as over time). The empirical investment

literature has documented wide differences across firms in the purchase and resale costs of

physical capital.2 These differences are equivalent to differences in expansion and contraction

options.

This paper investigates the implications of such differences. Our study reverses the usual

approach in the literature in two ways. First, rather than solving a complex model with a

narrow parameter set, we employ a relatively simple model under broad assumptions about

heterogeneity. Second, rather than targeting a particular anomaly or set of anomalies as a

modeling goal, we identify new predictions and assess them.

With regard to these choices, it is worth emphasizing what we are not doing. We are

not attempting to build a full description of parameter variation that completely accounts

for the cross-section of stock returns and firm investment behavior. While that is clearly

1See Carlson, Fisher, and Giammarino (2004), Zhang (2005), Cooper (2006), and Li, Livdan, and Zhang
(2009) among others.

2See for example MacKay (2003), Balasubramanian and Sivadasan (2009), and Chirinko and Schaller
(2009).

1



the long-run agenda for this line of research, it is beyond the scope of the current work.3

Nor are we deriving predictions that require a particular degree of heterogeneity. While we

uncover some lessons about the likely variability in the data, the predictions we derive are,

for the most part, consistent with uninformative priors over the parameter space. Finally, in

seeking to identify original predictions, we are not requiring that these are, by themselves,

large anomalies. We view testing new implications, regardless of their magnitude, as a logical

next step in developing confidence in the neoclassical framework.

We employ a model that is both rich enough to encompass interesting variability in all

firm dimensions, and yet simple enough to reveal general implications. The model is set

in partial equilibrium with a constant riskless rate and market price of risk. The single

state-variable is the firm’s instantaneous operating profit scaled by its capital, which is

monotonically related to Tobin’s Q, or inversely related to the book-to-market ratio, B/M .

Our first finding is that, almost independent of parameter values, the graph of expected

excess returns as a function of B/M describes a characteristic S-shape. The slope of the

mid-section of this graph may have either sign, but the end sections always display an in-

creasingly negative slope. Contractions options decrease overall risk as Q declines, while

expansion options increase overall risk as Q rises. This risk profile implies a novel time-series

effect: stock returns should become increasingly positively autocorrelated for high and low

values of Q. Indeed, we find a U-shape is present in the data. When conditioning on within-

firm variation in lagged Q (or profitability), there is a significant increase in autocorrelation

at the high and low ends of the range.

Our second finding is that the average slope of the expected return profile is largely driven

by the value of the firm’s contraction options. Specifically, the variable adjustment cost, or

the liquidation value of capital, determines whether there is an average within-firm value

effect or an anti-value effect. While the literature has recognized the potential of the former

case to explain the role of book-to-market in the cross-section of returns, the logic breaks

down with even moderate degrees of reversibility of capital. Firms with significant down-

3Recently Belo, Xue, and Zhang (2010) concluded that a standard investment-based model cannot account
for the variation in valuation ratios observed in the data without invoking cross-industry parameter variation.
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side flexibility become safer as profitability deteriorates. More valuable contraction options

reduce the total risk premium as disinvestment becomes more likely (i.e., Q declines). Up-

side flexibility – the ability to increase scale at a low cost – reinforces this conclusion. More

valuable expansion options raise the total risk premium as investment becomes more likely

(i.e., Q rises).

The literature has broadly suggested that a firm’s flexibility is an unconditional deter-

minant of its risk premium. Our analysis does not support this view. The level of the risk

premium is not, in general, increasing in measures of inflexibility. Instead, the slope of the

risk premium is. This suggest another set of new tests: the effect of scaled operating costs

on expected returns should be more positive for more inflexible firms.

In these tests, we view adjustment frictions as largely industry-specific, enabling us to

construct a number of proxies for operating flexibility that are either directly derived from

or closely linked to the model. We then estimate firms’ period-specific quasi-fixed costs over

sales, which is the model’s equivalent of operating leverage. Sorting within industries by op-

erating leverage reveals the predicted difference in slopes of portfolio returns between more

and less flexible sectors. In a regression framework, this finding is robust to the inclusion of

standard controls and to alternative measurement of both the conditioning variables.

While, in principle, the model is not inconsistent with the assertion that the value effect

is primarily driven by intra-firm time-series variation in Q (if most firms have virtually irre-

versible investment), we find that neither unconditional flexibility nor operating leverage, nor

their interaction, lowers the explanatory power of the book-to-market ratio in cross-sectional

regressions. This suggests that, indeed, there is significant heterogeneity in reversibility

across firms. Moreover, it implies that the book-to-market effect is more likely driven by

differences in underlying asset risk across firms, not productivity differences within firms.

This observation leads to our third result. If there are strong unconditional differences

in firm asset risk in the cross-section, then controlling for this cross-firm effect, the intra-

firm risk profile as a function of B/M is likely to be everywhere downward sloping rather

than S-shaped. Recalling the mapping between this slope and return autocorrelation, the

3



implication is that controlling for B/M in cross-sectional tests, we should also find a positive

role for lagged returns. The model thus presents a coherent rational explanation for the

coexistence of value and momentum effects.4 Simulations in heterogenous panels show that

the induced momentum effect can be economically significant.

A testable implication of this mechanism is that value and momentum should reinforce

each other across samples. This prediction is verified when we estimate each effect in indus-

try subsamples. Both effects strengthen, relative to their univariate magnitude, when they

are estimated jointly.

Taken together, our results constitute significant progress for understanding how return

patterns in the data can be generated by firms’ optimal expansion and contraction decisions.

The evidence points to real options effects in returns stemming both from time-series variation

in individual firms’ productivity and from cross-firm differences in investment flexibility.

In verifying the model’s predictions, we lend robust support to the neoclassical agenda of

constructing a complete picture of investment patterns and stock returns.

The paper is organized as follows. The next section presents the model and describes

the interaction between real option values and expected returns. The following sections de-

rive and test three predictions. Section 3 focuses on time-series effects. Section 4 considers

cross-sectional patterns. Section 5 analyzes the interaction of value and momentum effects.

A final section summarizes the paper’s conclusions.

2 The Model

We study a continuous-time partial equilibrium economy with a fixed riskless rate, r, and a

pricing kernel, Λ, driven by a geometric Brownian motion with volatility σΛ that characterizes

the economy’s risk-reward trade-off. Each firm in the economy is a claim to a real production

function characterized by declining returns to scale and quasi-fixed operating costs.

4Both effects can also be generated in the model of Berk, Green, and Naik (1999).

4



The scale of the firm is denoted K. One might think of K as a bundle of productive factors

that the firm has in place, such as labor inputs or long-term contracts, because the crucial role

of K is in generating quasi-fixed operating costs, which are proportional to K but do not scale

with output. So the economic logic of the model applies to scale adjustments generally, not

just investment and disposal of physical capital. Without loss of generality, though, physical

capital may be taken to be the numeraire. So K can be viewed as the book value of assets.

At each point in time, the firm’s output – or revenues net of variable costs – are de-

termined by K together with the level of productivity θ. The productivity process evolves

according to a geometric Brownian motion with drift µ, volatility σ and correlation with the

pricing kernel denoted ρ. The firm’s profit flow (per unit time) is

Πt = θ1−γ
t Kγ

t −mKt, (1)

where γ ∈ (0, 1) captures returns to scale of the firm and m > 0 denotes the firm’s operating

cost per unit of K. Unless adjusted by the firm, K follows dK/K = − δ dt, with the depre-

ciation rate δ ≥ 0. The model is partial equilibrium both because the kernel is exogenous

and because we do not model interactions between firms.5 Note also that for tractability we

consider only permanent productivity shocks.

For present purposes we confine attention to an all equity-financed firm. Recently Ozdagli

(2010) has analyzed a version of the model studied here for a firm with debt. In a setting

in which it is costly for the firm to deviate from a constant book leverage, interests costs

act to magnify the quasi-fixed operating costs. In the appendix, we verify that the primary

features we describe here for firm expected returns are preserved for equity expected returns

under some reasonable formulations of debt determination.

We assume firms face both quasi-fixed and variable costs for either upward or downward

adjustments to the scale of their operations. When increasing K, the firm faces opportunity

5General equilibrium models of investement-based return effects appear in Gomes, Kogan, and Zhang
(2003), Gala (2006) and Sagi, Spiegel, and Watanabe (2009). Industry competition is considered in Zhang
(2005), Aguerrevere (2009), and Novy-Marx (2011).
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costs that are proportional to net revenue at the time of the adjustment, FL θ1−γ Kγ, where

FL ≥ 0 (the subscript will be explained below). In addition, the cost to investors of increasing

K by ∆K may exceed ∆K, e.g., due to installation frictions. These costs are assumed linear:

the amount required from investors is PL ∆K where PL ≥ 1. The deadweight loss from the

adjustment is thus (PL − 1) ∆K.

We assume that the frictions for disinvestment are the same as those for investment.

Specifically, for any contraction of scale there are fixed costs denoted FU θ1−γ Kγ. And the

cash returned to investors when K is lowered by ∆K is taken to be PU ∆K, with PU ≤ 1.

In principle, we could even have PU < 0 due, e.g., to penalties for breaking contracts with

suppliers. Note that our assumptions here do not actually nest the case of irreversibility.

The option to disinvest – even with little payoff – is still better than no option except

abandonment.6 To our knowledge, this is the first real-options model to incorporate the

ability to repeatedly expand and contract under this cost structure.7

Because of the frictions, the firm pursues a discrete adjustment policy. Specifically, with a

given level of K, it will increase to K ′ > K only when productivity attains some level θL(K).

But, since the profit function and adjustment costs are all homogeneous of degree one in

assets, once at K ′ the firm faces an identical environment scaled up by the ratio K ′/K. It

follows that both θL and K ′ are proportional to K. By a similar argument, disinvestment will

occur only when θ falls to some θU proportional to K and the disinvestment will lower assets

to some K ′′ also a fixed fraction of the prior K. The firm’s problem is to choose the four ratios

θL/K, K ′/K, θU/K, K ′′/K to maximize the expected discounted sum of future profits under

the risk-neutral measure. Equivalently, following Cooper (2006), if we define Zt ≡ Kt/θt,

then the four constants correspond to four points on the Z axis: investment happens at

the lower boundary Zt = L = K/θL and moves the firm to Zt = G = (K ′/K)L > L;

disinvestment happens at the upper point Zt = U = K/θU and moves the firm to Zt = H =

6We do allow for abandonment, however. For each firm, we solve the valuation problem with costly disin-
vestment and if it entails negative firm value we re-solve imposing the boundary conditions for abandonment
– which ensures nonnegativity – instead.

7Cooper (2006) studies the case of purely irreversible investment. Guthrie (2010) incorporates a one-time
disinvestment option in a similar setting.
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(K ′′/K)U < U . The firm thus lives on the interval [L,U ]. In terms of the original variables,

the firm’s path in the K − θ plane, depicted in Figure 1, describes oscillations along lines

of fixed K between two rays K = Uθ and K = Lθ with jumps up and down to the interior

rays K = Gθ and K = Hθ. (The figure sets the depreciation rate to zero for simplicity.)

Figure 1: Firm Evolution
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The figure shows a simulated path of a model firm in the K-θ plane. The firm parameters are
γ = 0.85,m = 0.4, δ = 0.0, PL = 1.0, FL = 0.01, PU = 0.25, FU = 0.01, µ = 0.05, σ = 0.3, ρ = −0.5. The
pricing kernel has r = 0.04 and σΛ = 0.50.

The effect of adjustment costs on the optimal policy is straightforward. A frictionless firm

with no adjustment costs will, given θ, set K to the value (m/γ)1/(γ−1) θ that maximizes the

profit function Π. Denote the K/θ ratio at this point Z?. Now as fixed or variable investment

costs are increased, the firm will choose a smaller value of L < Z?, waiting longer between

adjustments. Likewise, either type of cost for disinvestment raises U > Z?.8 In terms of

the model, a good summary statistic for adjustment inflexibility is the distance between the

boundaries, log(U/L), standardized by the volatility of the productivity process σ.

8Intuition might suggest that raising the variable costs of adjustment leads to smaller changes, meaning
G and H close to L and U respectively. However, this is not usually the case: the desire to avoid paying the
costs more frequently counteracts the incentive to minimize the adjustment.
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The value of the firm at any time can be written J(K, θ) = θ V (Z) where V is given in

closed-form in the appendix. Fully characterizing the dependence of this function the firm

parameters is not possible, because it depends on the solution of a six-equation algebraic

system that is not expressible analytically in terms of the production and adjustment cost

variables. Two intuitive properties of the solution are the following:

(A) The market-to-book ratio rises monotonically with θ, and hence V/Z falls with Z.

(B) If abandonment is never optimal, the ability to adjust operations buffers firm risk,

specifically (θ/J)(∂J/∂θ) < 1.

The expected excess return to the firm’s equity (or risk premium) is given by

EER(Z) = πθ (1− Z V/V ′) , (2)

i.e., the elasticity of J w.r.t. θ times πθ ≡ − ρ σ σΛ, the market price of θ-risk. Assuming πθ >

0, Property (B) implies that EER(Z) < πθ, and Property (A) is equivalent to EER(Z) > 0.

Given the lack of analytical characterizations of the effects of firm parameters on expected

returns, we illustrate the properties we identify throughout the paper by solving a large

number of cases. Specifically, the model is solved with each of the 29 combinations of

parameters shown in Table 1, which covers a large range of firm characteristics while staying

with in the bounds of plausible expected returns and volatility.9 In none of these 512 cases

is abandonment optimal. In all of the cases Properties (A) and (B) are satisfied.

9There are actually 10 firm-specific parameters in the model. However, given the returns-to-scale param-
eter γ, the cost parameter m acts mainly to scale the problem on the Z axis. (The units of Z are otherwise
arbitrary.) Hence we fix m = γ 100γ−1 which puts Z? = 100 for all cases.
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Table 1: Parameter Ranges

Production: Frictions: Stochastic:

Range: γ δ PL FL PU FU µ σ ρ

High value 0.75 0.00 1.50 0.05 0.60 0.05 0.04 0.55 -0.10

Low value 0.95 0.10 1.00 0.005 0.10 0.005 0.00 0.25 -0.90

The table shows the range of parameters considered in numerical verification of the assertions in the text.

Each of the 29 combinations of high and low values are computed. Each case sets the parameter m to

γ 100γ−1 which puts Z? = 100. All cases use r = 0.04 and σΛ = 0.50.

As we show in the appendix, the risk premium, EER(Z), can be decomposed into three

distinct components, namely, the exposures due to assets in place and the operating options

to expand or contract. Figure 2 charts these three components for a typical case. The

horizontal axis, instead of Z, is mZ1−γ, which is the ratio of quasi-fixed costs, mK to net

sales (or operating margin) θ1−γKγ. This quantity, which we denote QFC/S, is essentially

a measure of the degree of operating leverage at any point in time. It is convenient because

it is positive, monotonic in Z, and plausibly measurable in the data. The figure reveals

that, while the risk from assets in place monotonically increases with quasi-fixed costs (i.e.,

increases with operating leverage), the risk from both operating options declines with quasi-

fixed costs (i.e., rises with profitability). Note that the disinvestment option attenuates

exposure to priced risk and the investment option exacerbates exposure to priced risk. The

contrasting effects of these options is the key feature of the model.

We show in the appendix that the signs of the slopes of the three risk components are

general properties that are satisfied for all parameter values for which (A) and (B) hold. In

sum, the three components imply a distinctive sideways S-shaped plot of expected return

versus Z (or QFC/S). In all the solutions of all the cases of Table 1 the plots exhibit

negative slopes at L and U , with a switch to a more positive slope in the middle.10

10In 70 percent of the cases, the slope in the middle is positive, implying the distinctive S-shape with one
inflection point. For the other 30 percent, the slopes are everywhere negative, but still feature the three
well-defined regions. If abandonment did dominate contraction, then the S-shape would turn into a J-shape
because the disinvestment option component would vanish.
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Figure 2: Components of Risk Premium
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The figure shows the three components of expected excess returns as a function of the ratio of quasi-fixed
costs to net sales for a firm with assets in place (plotted as squares), contraction option (circles), and
expansion option (triangles). Firm parameters are γ = 0.85,m = 0.4, δ = 0.1, PL = 1.0, PU = 0.25, FL =
0.05, FU = 0.05, µ = 0.05, σ = 0.3, ρ = −0.5. The pricing kernel has r = 0.04 and σΛ = 0.50.

In contrast to the generality of the S-pattern, other implications of the model are more

complex. Unconditional expected returns for different parameter configurations are affected

both by the differing EER curves and by the differing regions of the curve in which the firm

operates. For example, a firm with low reversibility (i.e., negligible contraction option due

to low PU) but high productivity growth may have a strong average upward-sloping curve,

but only rarely exits from the lower region near investment, resulting in a low average stock

returns. For the most part, we focus on conditional relations implied by the variation in

expected returns with profitability, rather than on unconditional effects.

3 Time-Series Implications

A primary implication of the model is that expected returns trace a characteristic S-curve

versus Q or QFC/S as the firm moves through three regions corresponding to differing
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degrees of dominance of the firm’s expansion option, assets in place, and the contraction

option. A firm on a downward sloping segment of this curve will find its expected excess

returns lower after bad news (a shift to the right) and higher after good news (to the left).

This implies positive autocorrelation: realized returns predict changes in future expected

returns in the same direction. Likewise, a firm that finds itself on an upward sloping part

of the curve will display the opposite effect: predicted changes in returns responding nega-

tively to realized returns. This suggest a novel testable implication of a more positive return

autocorrelation at extremes of the profitability (or Q) distribution.

Sagi and Seasholes (2007) define a natural autocorrelation measure, namely, the change in

risk premium (or expected return) for a percentage change in firm value (or realized return).

In the notation of the previous section, this quantity is

ACF (Z) = πθ Z
V ′

V

[
1 +

ZV ′′/V ′

1− ZV ′/V

]
. (3)

In the model, this measure will be U-shaped in Z. Since Q is monotonically declining in Z,

the U-shape is preserved if Q is the conditioning variable. If Q is very low at time t, then

subsequently bad (good) shocks causing low (high) returns in period t + 1 further decrease

(increase) expected returns for period t+ 2 as implied by the negative slope at the right end

of the S-curve. The same logic applies to the negative slope at the left end of the S-curve.

While the model has no unambiguous prediction for the mid-section of the Q range because

the risk profile can be monotonically downward-sloping, it predicts, on average, less positive

autocorrelation for the mid-section and indeed negative autocorrelation for many parameter

values. Figure 3 quantifies the response of the instantaneous expected returns to realized

returns in (3) for three representative cases.

The figure shows that model implied autocorrelations can be economically meaningful.

The vertical axis is in units of annual percent expected return so that a value of 0.04 means a

change of 100 basis points for a 25 percent realized stock return, which is not uncommon over

the course of a a few months. At the same time, the effects are not so large that trend and
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Figure 3: Instantaneous Autocorrelation
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The figure shows the function ACF defined in equation (3) plotted against the market-to-book ratio Q for
firms with PU = 0.01, PL = 2 (squares), PU = 0.25, PL = 1.5 (circles), and PU = 0.6, PL = 1.0 (triangles).
Other firm parameters are γ = 0.85,m = 0.4, δ = 0.1, FL = 0.05, FU = 0.05, µ = 0.05, σ = 0.3, ρ = −0.5.
The pricing kernel has r = 0.04 and σΛ = 0.50.

reversal periods would be obvious features of stock paths. Isolating the regions of positive

and negative autocorrelation is not possible analytically. However, economically it is clear

that the more positive effects correspond to times when the firm is closer to exercising its

expansion and contraction options.

While the precise features of the autocorrelation function may vary with parameters, the

generality of the U-shape suggests that we apply a single empirical specification across firms.

Hence, to maximize statistical power we run a pooled test using the CRSP/COMPUSTAT

universe between 1960 and 2009. Because different firms operate in different profitability

ranges (in the model and in the data), we estimate an autocorrelation response that is

conditional on Q relative to each firm’s industry distribution. The primary specification is:

re
i,t+2 = a + (b1 1Qi,t∈Q̄1

+ b2 1Qi,t∈Q̄2
+ b3 1Qi,t∈Q̄3

+ b4 1Qi,t∈Q̄4
+ b5 1Qi,t∈Q̄5

)re
i,t+1 + εi,t+2 ,
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where re
i,t+j denotes firm i’s (excess) stock return from time t + j − 1 to time t + j, Qi,t

is firm i’s market-to-book ratio at time t, defined as market equity plus book assets minus

common equity minus deferred taxes scaled by book assets, and Q̄k stands for the kth quin-

tile range of all market-to-book observations for firm i’s industry. The use of excess returns

is akin to including time-fixed effects, and removes variation due to market-wide changes in

expected return. (Results using raw returns are also shown for comparison.) The reported

estimations use non-overlapping quarterly stock returns. To reduce the influence of outliers,

we trim variables at the 1st and the 99th percentile every quarter. To deal with cross-

firm heteroskedasticity, we employ weighted least squares with inverse market capitalization

weights.11 The key prediction of the theory is that the autoregression coefficients b1 and b5

should be more positive than b2, b3, and b4.
12

Results for the baseline tests are plotted in Figure 4 for raw (i.e., unadjusted) returns in

the left panels and for excess returns (in excess of the value-weighted market return) in the

right panels. The top panels depict the five first-order autoregression coefficients b1 through

b5, while the bottom panels use deciles instead of quintiles to refine the conditioning infor-

mation. All plots reveal a strikingly consistent pattern in that low profitability and high

profitability are associated with increasing return continuation in the data.

Low Q times, in particular, are associated with a significantly positive autoregression

coefficient which is economically large. For all cases depicted in the figure, t-tests on the

first and the second coefficients being different are statistically significant at the 1% level.

Moving from the left to the mid-section of the graphs shows declining coefficient estimates

that eventually become negative, implying return reversals in this range.

11We have verified that using ordinary least squares does not significantly change the estimation results.
12Following standard practice in the empirical asset pricing literature, we exclude banks (FF=44), in-

surance companies (FF=45), trading firms (FF=47) and utilities (FF=31), observations with a stock price
below $5, and observations with a negative book-to-market ratio throughout.
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Figure 4: Autocorrelation Tests
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The figure shows first-order autoregression coefficients for quarterly stock returns, conditional on the

market-to-book ratio, defined as market equity plus book assets minus common equity minus deferred taxes

scaled by book assets, at the start of the period of the lagged return. Market-to-book is partitioned into

either quintiles (top row) or deciles (bottom row) relative to each firm’s full sample industry distribution.

Returns are either raw (left-hand plots) or in excess of the value-weighted market return (right-hand). The

sample period is 1960 to 2009.

Further to the right, when Q is high, the results confirm the prediction that the negative

return autocorrelation attenuates. The coefficient estimates for b5 are reliably larger than

those of b4 in the top panels at the 10% level. While the theoretical prediction of returning

to positive autocorrelation is only borne out for excess returns, an overall U-shape pattern

is evident for raw and excess returns – a striking success for the model.
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Figure 5: Autocorrelation Tests
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The figure shows first-order autoregression coefficients for quarterly stock returns, conditional on profitabil-

ity, defined as income before extraordinary items plus depreciation scaled by book assets, at the start of

the period of the lagged return. Returns are either raw (left-hand plots) or in excess of the value-weighted

market return (right-hand). The sample period is 1960 to 2009.

We use lagged Q as the conditioning variable in the tests above because of the theoretical

link between changes in Q and optimal exercise of the firm’s option. In the model, Q and

operating profits are perfectly correlated, whereas in the data they are not. As an additional

test of the theoretical prediction, we run the same test conditioning on profitability, defined

as income before extraordinary items plus depreciation scaled by total book assets. We note

that this is a challenging test for the model in the sense that operating profits contain a sub-

stantial transient component, whereas changes in Q are more likely to correspond to the per-

manent productivity shocks. Still, the results – shown in Figure 5 – again reveal a remarkably

smooth U-shape. In contrast with the results for Q conditioning, this test suggests a stronger

effect in the positive (growth option) region than in the negative (contraction) region. In

case of raw and excess returns, the coefficient estimates for b10 are reliably larger than those

of b9 at the 1% level. The corresponding differences between b1 and b2 are 10%-significant.

In sum, the conditional autocorrelation tests provide novel and striking support for the

hypothesis that stocks’ autocorrelation functions are conditionally dependent – in a precise
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manner predicted by the theory – on lagged productivity variables. The results also relate

closely to two other important, recent contributions. Sagi and Seasholes (2007) and Gar-

lappi and Yan (2010) each provide evidence of enhanced momentum profits in restricted

samples of stocks motivated by the predictions of real option type models. In Sagi and

Seasholes (2007) momentum profits are predicted (and shown) to be stronger among firms

with more (or cheaper) growth options, while in Garlappi and Yan (2010) momentum effects

are predicted (and shown) to be stronger among indebted distressed firms in which equity

shareholders effectively hold a disposal option.13 In effect, the model pieces the two types

of options together and yields enhanced continuation at both ranges of profitability, while

also being consistent with return reversals in between. Finally, our results also complement

those contributions methodologically by introducing new time-series tests, as opposed to

traditional cross-sectional tests and portfolio strategies. We analyze the model’s predictions

for cross-sectional momentum tests in Section 5.

4 Cross-Sectional Implications

As noted earlier, investment-based models of stock returns have previously been employed to

explain cross-sectional anomalies assuming that the cross-section consists of identical firms

that differ in their idiosyncratic productivity. Our analysis sheds more light on the condi-

tions under which such cross-sections would exhibit an unconditional value effect while also

pointing to a new conditional prediction. We have seen in Section 2 that the model implies a

non-monotonic expected return function. However, the average change with book-to-market

should be more positive for firms with less valuable expansion and contraction options.

Consider Figure 6, which shows the effect of changing the degree of reversibility, PU , on ex-

13In unreported results (available upon request), we examine whether our autocorrelation effect for low
profitability levels is distinct from the conditional momentum findings of Garlappi and Yan (2010). Repeating
our tests dropping the top quintile of the market leverage distribution to eliminate financially distressed
firms yields results almost identical to those in Figure 4. While the mechanism in the model is completely
compatible with other conditional effects related to violations of absolute priority in default, we conclude
that bankruptcy risk effects are not driving our results.
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pected excess returns for three particular cases. The left panel uses QFC/S on the horizontal

axis; the right panel uses the book-to-market ratio. The panels reveal that making the firm’s

technology more irreversible by lowering PU has two effects. First, overall it makes the stock

riskier and raises the expected excess return. Second, it raises the average slope of the curve.

Figure 6: Effect of Resale Price of Capital
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The figure shows expected excess returns for firms with PU = 0.01 (plotted as squares), PU = 0.25 (circles),
and PU = 0.6 (triangles). In the left panel the horizontal axis is the ratio of quasi-fixed cost to net sales; in
the right panel it is the book-to-market ratio. Other firm parameters are γ = 0.85,m = 0.4, δ = 0.1, PL =
1.0, FL = 0.05, FU = 0.05, µ = 0.05, σ = 0.3, ρ = −0.5. The pricing kernel has r = 0.04 and σΛ = 0.50.

The expected return pattern for low PU firms is consistent with existing findings in the

literature on irreversible investment. What is novel, however, is that for firms with even a

mild degree of reversibility, the average slope of the EER plot may be negative: the stock

actually becomes safer as profits decline and operating leverage increases. For these firms,

the contribution of the disinvestment option actually overwhelms the effect of operating

leverage.14 The model implies that within-firm variation in profitability or operating leverage

14In a similar model, Guthrie (2010) analytically shows the negative dependence of expected returns
on operating leverage for the case of a firm with a one-time abandonment option, but otherwise fixed
scale. The intuition in his case is identical to that in our model. Moreover, the idea is related to the
effect in Garlappi, Shu, and Yan (2008) and Garlappi and Yan (2010) where firms approaching bankruptcy
experience decreasing risk premia if the absolute priority rule is violated and hence equity holders can
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should imply an anti-value effect for cross-sections of firms that have the ability to liquidate

assets at low cost (i.e., firms with valuable contraction options).

Figure 7: Effect of Purchase Price of Capital
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The figure shows expected excess returns for firms with PL = 1.0 (squares), PL = 1.5 (circles), and PL = 2.0
(triangles). In the left panel the horizontal axis is the ratio of quasi-fixed cost to net sales; in the right
panel it is the book-to-market ratio. Other firm parameters are γ = 0.85, m = 0.4, δ = 0.1, PU = 0.25, FL =
0.05, FU = 0.05, µ = 0.05, σ = 0.3, ρ = −0.5. The pricing kernel has r = 0.04 and σΛ = 0.50.

The key parameter determining the strength of the expansion option is PL, the effective

cost of a unit of capacity.15 Figure 7, shows some typical cases. The slope conclusion

continues to apply: it is still true that firm with greater adjustment costs exhibits a steeper

(more positive) average increase in risk premium with operating leverage. However, here it

is not the case that the plot for the higher PL firm is everywhere higher than for the lower

PL firm. Thus inflexibility is not unconditionally associated with risk. This is a perhaps

surprising finding that runs counter to some common intuition.

extract (less risky) recoveries instead of nothing.
15The fixed cost parameters, FU and FL play much less significant roles in determining risk profiles. Higher

values of FU and FL serve to raise U and lower L (respectively), as the firm delays incurring the fixed costs.
For plausible parameter ranges, (e.g. under 5 percent of net sales) this has little effect on the level of risk
premia. The shape of the EER graph is also little changed: in effect, the ends of the curves get continued
up (at L) and down (at U) over the extended range.
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As noted in Section 2, a plausible overall measure of a firm’s flexibility is the normalized

range of its no-adjustment region.16 Figure 8 shows a scatter plot of the average slope of

the expected return graph for each firm in Table 1 versus that firm’s own σ−1 log(U/L).

The plot affirms the positive association between the two. Note that the average slope is

computed over the stationary distribution for each firm. Thus the computation accounts for

any differences in the regions of profitability that flexible and inflexible firms may occupy.

Figure 8: Flexibility and the Slope of the Expected Return Function
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For each of the models described in Table 1, the slope of the graph of expected returns versus quasi-fixed
costs over net sales is plotted here against a summary measure of that model’s firm flexibility (the scaled
range of its no-adjustment region). Cases with σ = 0.55, ρ = −0.9 are plotted as triangles. Cases with
σ = 0.25, ρ = −0.9 are plotted as circles. Cases with σ = 0.55, ρ = −0.1 are plotted as squares. Cases with
σ = 0.25, ρ = −0.1 are plotted as asterisks.

Summarizing, to the extent that firms differ in their scale flexibility, the model predicts

a more positive slope of the expected return function, but not necessarily a higher average

return. Inflexibility decreases the negative contribution to the slope of both expansion and

16The frequency of investment adjustment is not a reliable gauge of adjustment costs since it is highly
influenced by the growth rate and volatility of the firm’s productivity shocks.
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contraction options. However the two options have opposite effects on the level.

Turning to the data, given measurements of firm inflexibility and quasi-fixed costs (or

operating leverage), we can test the implication that the average sensitivity of expected

returns to the latter depends on the former.

To gauge an industry’s inflexibility and a firm’s quasi-fixed costs, we employ alternative

classification schemes and data sources. See Appendix B for more details. Our primary prox-

ies of industry inflexibility are based on cost stickiness and variability given that, according

to the model, the observed range of profitability or quasi-fixed costs over sales increases with

inflexibility. Our baseline inflexibility index (INFLEX1) is the standardized median firm

range of operating costs (i.e., the sum of COMPUSTAT’s costs of good sold, COGSQ, and,

if available, selling, general, and administrative expenses, XSGAQ) over sales (i.e., SALEQ).

As a second proxy of inflexibility, we construct INFLEX2 as the standardized industry range.

That is, we compute industry aggregate cost, sales, and assets by summing over all quar-

terly firm observations in COMPUSTAT, with each calendar quarter using any available

firm quarter reported during that quarter. In addition, we supplement these two measures

of inflexibility by transforming a resalability index for used industry capital (INFLEX3) and

by estimating cost persistence obtained from industry panel regressions (INFLEX4). Finally,

we obtain annual, firm-level estimates of QFC/S by running five-year, rolling-window regres-

sions of operating costs on its first lag and contemporaneous sales. The measure of QFC/S

in the year following the 5-year estimation period equals the sum of regression intercept and

predicted operating costs, scaled by sales.

To start, to gauge the economic magnitude of the hypothesized effect, we consider the

returns to portfolios formed based upon sorts on the two variables. Each month, we assign

stocks into five quintiles based on two measures of industry inflexibility: median firm range

(INFLEX1) and industry range (INFLEX2). We intersect these quintiles with a second

independent sort of firms into quintiles according to their estimated quasi-fixed costs over

sales. After assignment to portfolios, stocks are held for one month. We calculate the

monthly portfolio return as the equal-weighted average of the returns of all the stocks in a
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portfolio. Figure 9 presents the average monthly return from 1980 to 2009.17 The figure

plots the variation in the quasi-fixed cost sort on the horizontal axis, with separate lines for

the portfolios of each industry quintile.

Figure 9: Portfolio Returns for Double-Sorts
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The figure shows the monthly profits from 25 portfolio strategies formed by independent sorts on firm-level
quasi-fixed costs over sales and two measures of industry level inflexibility. The left panel measures
inflexibility as the industry median of firm-level range of (INFLEX1); the right panel employs the industry
range of costs over sales (INFLEX2). The sample period is January 1980 to December 2009.

The right-hand panel reveals a very strong interaction affect. With this measure of

flexibility, there is a dramatic difference in slope between the more flexible industries (1

and 2) and the less flexible (4 and 5). Indeed, the resemblance to Figure 2 is remarkable.

Economically, the difference in expected returns between most and least flexible industries

for firms in the lowest quasi-fixed costs quintile is negligible, whereas in the highest quintile

it is about 50 basis points per month.

The left panel is less supportive. It remains the case that average returns increase most

steeply with operating leverage in the least flexible industries (5), and that there is little

17In this set of tests, quarterly COMPUSTAT data for QFC/S cause the sample period to begin in 1980.
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evidence of a positive slope in the most flexible (1). The picture is muddled for the middle

quintiles however. To some extent, this reflects limitations of the sorting methodology. The

results below will show that this flexibility metric becomes highly informative once other

determinants of expected return are controlled for.

To perform more formal tests, we test the model’s conditional return implications using

standard Fama and MacBeth (1973) regressions.18 In this context, the model says that the

slope coefficient of an interaction term between inflexibility and quasi-fixed costs over sales

should be positive and significant.

We carry out the tests using the intersection of the monthly stock returns from CRSP and

quarterly COMPUSTAT accounting data for every month from January 1980 to December

2009. The baseline results are shown in Table 2. The first regression in Panel A displays

the individual effect of the median firm range (INFLEX1) and quasi-fixed costs over sales

(QFC/S) on expected stock returns, where QFC/S is winsorized at the 1% level. Neither

variable is significant. The second specification includes the interaction term (INTER). As

predicted by the theory, the coefficient estimate is positive, but not significant. These speci-

fications, however, do not control for other cross-sectional determinants of expected returns.

The model’s predictions apply to the incremental effect of inflexibility and quasi-fixed costs

with other characteristics held constant. That is, heterogeneity in priced fundamental risk

(ρ σ) and heterogeneity in financial leverage may affect the cross-sectional relationship.

Specification (4) of Panel A includes standard control variables, namely, reversal (R01),

momentum (R12), book-to-market ratio (BM), market leverage (ML), and size (SZ).19 Ob-

serve that the interaction term, INTER, increases in magnitude and statistical significance.

Furthermore, examining the coefficients in terms of economic significance in Panel A re-

veals that the effect is strong. For a firm in an inflexible industry (one standard deviation

18As discussed in Section 2, the model’s exact expression for expected returns is not expressible in closed
form as a function of the parameters. This makes direct structural estimation infeasible, and may lean too
heavily on what is a fairly stylized model.

19The variable R01 is the stock return over the previous month; R12 is the stock return over the 11 months
preceding the previous month; BM denotes the log of the ratio of book value of equity to market value of
equity; ML is the log of the market leverage ratio defined as book value of long-term debt divided by the sum
of market value of equity and book value of long-term debt; and SZ is the log of the market value of equity.
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above the mean of INFLEX1), when quasi-fixed costs over sales go from one standard devi-

ation below its mean to one standard deviation above, expected returns decrease by 5 basis

point per month. For a firm in a flexible industry (one standard deviation below INFLEX1’s

mean), the decrease is 51 basis points per month. This is consistent with the model’s im-

plication that flexible firms exercise disinvestment options in bad states and thereby reduce

exposure to priced risk.

In Panel B of Table 2 all variables are transformed into percentile ranks to diminish the

possible influence of outliers. As in Panel A, the individual influence of QFC/S and now

also of INFLEX1 on returns is unreliable in the first row of Panel B, while their interaction

term, INTER, in the second row obtains a remarkable level of statistical significance for

a purely accounting-based variable. Again, including the other controls (specification (4))

further increases the statistical significance.

Consider now the marginal effects in Table 2. Other than regression (4) in Panel A,

there is not a consistently positive coefficient on inflexibility. This is not inconsistent with

the model. But it runs counter to the intuition that flexible firms are necessarily safer.

Flexibility increases the value of investment and disinvestment options, which in turn have

opposing effects on risk exposure.

By contrast, the marginal effect of quasi-fixed costs on returns appears significantly neg-

ative. In terms of the model, this suggests that the average firm in the economy is relatively

flexible, and, in particular, has some ability to reverse investment. This finding casts doubt

on the conjecture that irreversibility is the driving force behind the value premium. More-

over, in comparing specification (3) in each panel with the corresponding specification (4),

we observe that the coefficient estimates on BM are undiminished by the presence of our

variables. Neither the unconditional inflexibility effect nor the conditional (interaction) effect

with quasi-fixed costs over sales significantly lowers the explanatory power of the book-to-

market ratio, suggesting that the value effect is more likely driven by cross-firm differences

in risk than by within-firm variation caused by quasi-fixed costs.

Table 3 reports estimation results for alternative measures of inflexibility and quasi-fixed
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Table 2: Return Regressions for Median Firm Range (INFLEX1)

Panel A. Winsorizing QFC/S at the 1st and 99th Percentile

INFLEX1 QFC/S INTER R01 R12 BM ML SZ

(1) 0.0936 –0.0379

(1.87) (0.23)

(2) 0.8242 –0.8313 0.1139

(1.78) (1.00) (1.01)

(3) –4.5160 0.5384 0.4335 –0.0565 –0.1131

(10.51) (2.87) (7.49) (2.08) (2.40)

(4) 0.1900 –1.9790 0.2426 –4.6090 0.5169 0.4479 –0.0575 –0.1251

(4.23) (2.30) (2.04) (11.05) (2.82) (8.27) (2.29) (2.78)

Panel B. Transforming Variables into Percentile Ranks

INFLEX1 QFC/S INTER R01 R12 BM ML SZ

(1) 0.0007 0.0021

(0.53) (0.73)

(2) –0.0010 –0.0322 0.0344

(0.63) (2.37) (2.56)

(3) –0.0205 0.0124 0.0170 –0.0062 –0.0072

(7.98) (3.85) (7.74) (4.08) (2.02)

(4) –0.0001 –0.0560 0.0566 –0.0210 0.0119 0.0174 –0.0061 –0.0070

(0.06) (4.64) (4.79) (8.47) (3.88) (8.54) (4.42) (2.07)

The table shows estimation results from monthly Fama-MacBeth regressions of returns on measures of

inflexibility (INFLEX1), quasi-fixed costs over sales (QFC/S), and their product (INTER), as well as on

controls for expected returns. The variable R01 is the stock return over the previous month; R12 is the

stock return over the 11 months preceding the previous month; BM denotes the log of the ratio of book

value of equity to market value of equity; ML is the log of the market leverage ratio defined as book value

of long-term debt divided by the sum of market value of equity and book value of long-term debt; and SZ

is the log of the market value of equity. In Panel A, QFC/S is winsorized at the 1% level. In Panel B, all

variables are transformed into percentile rank form. The data are monthly observations from January 1980

through December 2009. The coefficients are multiplied by 100 and t-statistics are in parentheses.
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costs over sales. Specifications (1)–(4) respectively use median firm range (INFLEX1), in-

dustry range (INFLEX2), capital illiquidity (INFLEX3), panel-regression estimated industry

cost persistence (INFLEX4). In Panel A, QFC/S relies on the baseline definition (i.e., sum of

regression intercept and predicted costs from rolling window estimations divided by sales).

Notably, all coefficient estimates for the interaction term are reliably positive. It worth

noting that the average sample size is almost reduced by 2/3 in regression model (3) com-

pared to the other ones since the capital illiquidity index is only available for manufacturing

firms (SIC codes 2000–3999). Therefore, it is even more remarkable that INFLEX3 interacts

significantly with QFC/S.

Panel B of Table 3 studies the importance of the two parts of QFC/S by dropping the

predicted cost component, which might arguably be closer to variable than to fixed costs.

That is, QFC/S in this set of tests is the regression intercept from a 5-year rolling estimation

window ending in the year prior to the return observation, divided by sales. For all proxies of

inflexibility in Panel B, the estimated interaction effect of inflexibility and quasi-fixed costs

is smaller and statistically weaker than in Panel A, which underscores the importance of

using both components of quasi-fixed costs.

Our baseline results are also robust to several alternative measurements of our key proxies.

In unreported estimations, we find similarly interaction results when we (i) scale quasi-

fixed costs by assets instead of sales, (ii) estimate QFC/S in terms of ratios of costs over

sales instead of levels of costs on sales, or (iii) reduce the noisiness of QFC/S estimates by

increasing the number of required observations from 10 to 15 for every 5-year window.

5 Value and Momentum Effects

Based on both the theoretical and empirical results of the previous section, it seems unlikely

that the book-to-market effect in stock returns is explained primarily by productivity differ-

ences in a cross-section of homogeneous firms. This would require very low flexibility for all

firms and would predict that measures of operating leverage (or profitability) should at least
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Table 3: Return Regressions for Alternative Inflexibility Measures

Panel A. Baseline Definition of QFC/S

INFLEX QFC/S INTER R01 R12 BM ML SZ

(1) –0.0001 –0.0560 0.0566 –0.0210 0.0119 0.0174 –0.0061 –0.0070

(0.06) (4.64) (4.79) (8.47) (3.88) (8.54) (4.42) (2.07)

(2) –0.0006 –0.0114 0.0121 –0.0211 0.0118 0.0173 –0.0059 –0.0068

(0.42) (2.34) (2.48) (8.45) (3.82) (8.41) (4.26) (2.02)

(3) –0.0016 –0.0144 0.0152 –0.0207 0.0121 0.0171 –0.0058 –0.0070

(1.09) (3.10) (3.10) (8.26) (3.94) (8.37) (4.03) (2.06)

(4) 0.0033 –0.0044 0.0046 –0.0210 0.0120 0.0178 –0.0059 –0.0069

(2.52) (1.82) (1.89) (8.46) (3.91) (8.92) (4.33) (2.04)

Panel B. Alternative Definition of QFC/S

INFLEX QFC/S INTER R01 R12 BM ML SZ

(1) 0.0018 –0.0478 0.0493 –0.0208 0.0120 0.0173 –0.0061 –0.0069

(1.42) (3.14) (3.23) (8.19) (3.76) (8.05) (4.07) (1.97)

(2) 0.0008 –0.0058 0.0073 –0.0208 0.0119 0.0172 –0.0060 –0.0067

(0.64) (1.14) (1.41) (8.17) (3.71) (7.95) (3.96) (1.93)

(3) 0.0028 –0.0148 0.0156 –0.0189 0.0083 0.0095 –0.0017 –0.0041

(2.42) (0.43) (0.46) (8.64) (2.68) (5.00) (1.01) (1.18)

(4) 0.0041 –0.0017 0.0033 –0.0208 0.0122 0.0179 –0.0057 –0.0066

(3.17) (0.69) (1.38) (8.20) (3.82) (8.63) (3.95) (1.88)

The table shows estimation results from monthly Fama-MacBeth regressions of returns on measures of

inflexibility (INFLEX), quasi-fixed costs over sales (QFC/S), and their product (INTER), as well as on con-

trols for expected returns. In each panel, specification (1) uses the median range (INFLEX1); specification

(2) uses the industry range (INFLEX2); specification (3) uses the transformed capital resalability index

(INFLEX3); and specification (4) uses the panel-regression estimate of industry cost persistence (INFLEX4).

The variables R01, R12, BM, ML, and SZ are defined in the caption of Table 2. In Panel A, QFC/S is the

sum of regression intercept and predicted operation costs from a 5-year rolling estimation window ending

in the year prior to the return observation, divided by sales. In Panel B, QFC/S is the regression intercept

from a 5-year rolling estimation window ending in the year prior to the return observation, divided by sales.

All variables are transformed into percentile rank form. The data are monthly observations from January

1980 through December 2009. The coefficients are multiplied by 100 and t-statistics are in parentheses.
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attenuate book-to-market in cross-sectional regressions. At the same time, the evidence in

the previous two sections provides positive support for the presence of some expansion and

contraction option effects in stock returns, and for heterogeneity in the flexibility of firms.

Further, once cross-sectional heterogeneity is considered, the model can readily account

for a positive book-to-market effect in returns by invoking differences in firms’ productivity

risk premium, πθ, as hypothesized by Berk (1995). Such an effect would not be diminished

by measures of within-firm profitability or flexibility, consistent with our results.20

This hypothesis has an interesting implication when combined with the model’s S-shape

relation for expected stock returns: momentum effects in the cross-section. Recall that the

model only implies conditional time-series momentum effects (i.e., positive autocorrelation),

with the opposite effects (reversals) also possible. However, if unconditional differences

in firm risk induce a positive cross-firm book-to-market effect, then after its influence is

accounted for the remaining conditional function of EER versus within-firm B/M would

be everywhere negatively sloped. This means that winner stocks, on average, experience

increases in (residual) expected stock returns relative to losers.

The situation is summarized by the two panels of Figure 10. A cross-section of two

identical firms (or sectors), which differ only by their correlation with the pricing kernel,

is simulated and their expected excess returns are plotted on the left, along with a linear

approximation shown as a dashed line. After this linear term has been subtracted, the

remaining expected excess returns shown in the right panel exhibit momentum because a

relative outperformance by either firm increases its expected return differential.

To illustrate the quantitative magnitude of the two cross-sectional effects, we simulate

200 panels of 512 firms spanning the parameter sets described in Table 1.21 For each cross-

section, we simulate 50 years of returns cumulated to monthly intervals. In each simulated

panel, we run Fama-MacBeth regressions on lagged 12-month returns and book-to-market

20In a recent structural estimation exercise, Glover (2010) finds substantial cross-firm variation in system-
atic asset (or cash-flow) risk in the CRSP/Compustat set of firms.

21Examining this particular set of parameters is meant to be agnostic. We are not asserting that this is
representative of the true parameter heterogeneity in the data, a topic beyond the scope of this study. We
are also making no attempt to calibrate the cross-section to deliver particular return effects.
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Figure 10: Value-Induced Momentum
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The left hand panel shows expected excess returns versus book-to-market for two cases along simulated
sample paths. The higher curve has ρ = −0.75, the lower curve has ρ = −0.25. All other parameters are
the same for the two. The right hand panel shows the same curves after the linear projection (dashed line
in the left plot) has been subtracted.

(each in percentile rank). Figure 11 shows the histogram across replications of the Fama

and MacBeth (1973) t-statistics and coefficients on each of these variables. The results

indicate that it is not at all unlikely (p-value 33 percent) to observe t-statistics over 2.0

for both effects. While the average magnitudes are not as large as those in the data (the

median momentum effect is 20-25 percent of the value in our regressions in the previous

section and the median momentum effect is 30-35 percent as large), these are comparable

to the magnitudes reported in Hecht (2000) for firm returns, which may be the appropriate

benchmark for a model without leverage.22

The model thus suggests a new perspective on the coexistence of continuation and reversal

phenomena in cross-sections of returns. We invoke an unconditional value effect to induce

momentum. But it is important to realize that the key idea – that the two effects interact

positively – does not require that one or the other be present unconditionally.

22Additional momentum would be induced by uncertain productivity growth, µθ, as in Johnson (2002).
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Figure 11: Value and Momentum: Simulated Panels
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The figure shows histograms of Fama-MacBeth coefficients (left) and t-statistics (right) on lagged returns
(top) and book-to-market (bottom) in 200 replications of panels consisting of 50 years on monthly returns
for the 512 firms whose parameters are given in Table 1.

Consider a sample drawn from a homogenous cross-section of firms, for example, firms in

the same industry. Consistent with Moskowitz and Grinblatt (1999), our analysis would not

predict a momentum effect since, for most technologies, there would not be an unambiguous

value effect. On the other hand, if there were an unconditional (univariate) value effect within

some industry, e.g., a highly irreversible one, then there would also be an unconditional nega-

tive (univariate) momentum effect since the largely upward-sloping risk profile implies rever-

sals. But bivariate estimations would yield positive effects for both, due to the rotation of risk

profiles. The same would hold for highly flexible firms: an unconditional positive momentum

effect and an unconditional negative value effect, but both positive in bivariate specifications.
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This reasoning suggest another, novel test of the model. In homogeneous subsamples,

momentum and value effects should be positively reinforcing. The predicted association

of each with expected returns should be more positive when they are used together than

when they are estimated alone. More specifically, the value and momentum coefficients

and t-statistics should be more positively correlated with each other in a bivariate (joint)

estimation rather than in separate (univariate) estimations.23

Figure 12 charts estimation results of value and momentum effects for each of the Fama-

French industry subsamples from 1960 through 2009. The left panel plots the coefficient on

lagged returns against the coefficient on book-to-market, with circles corresponding to uni-

variate estimation and squares corresponding to bivariate estimation. The right hand panel

does the same for the Fama-MacBeth t-statistics. Consistent with the model’s prediction,

the relation between the bivariate effects in both panels is dramatically stronger than that

between univariate effects, as indicated by the least-squares lines fitted to each. Notably,

in 32 of 43 industries both coefficients become more positive (p-value 0.0006) and in 34 of

44 both t-statistics increase (p-value 0.0001) when switching from univariate to bivariate

estimations.24

Summarizing, we have presented new evidence consistent with the interpretation of value

and momentum as arising at least partially due to (a) cross-firm or cross-sector differences in

productivity risk; and (b) within-firm interaction of real option effects. Moreover, we have

shown that, with these mechanisms, the model can deliver quantitatively significant effects

in simulated cross-sections.

23Note that our single-state variable model does not address the interesting issue of the time-series corre-
lation in the strength of value and momentum returns.

24Further out-of-sample evidence of the reinforcing nature of value and momentum returns appears in
Asness (2011).
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Figure 12: Value and Momentum in Industry Subsamples
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For each of 44 industry subsamples, we perform monthly cross-sectional regressions of returns on lagged
book-to-market and returns from month t− 12 to t− 1. The squares plot the time-series average of the two
coefficients (left panel) or Fama-MacBeth t-statistics (right panel) when the two variables are used separately.
The circles plot the results when they are used together. The horizontal axis is the book-to-market effect and
the vertical axis is the momentum effect. The lines plotted simple least-squares fits to each set of estimates.
The sample period is 1960 through 2009.

6 Conclusion

In this paper, we identify and test several new predictions about expected stock returns in

a model with quasi-fixed operating costs and repeated options to expand or contract. The

model implies a non-monotonic relation between expected returns and book-to-market: an

S-shape obtains from the decrease in risk as contraction options become in-the-money in bad

states and a corresponding increase in risk as the “moneyness” of expansion options rises in

good states. As a result, firms undergo transitions from regions of more positive autocor-

relation at the extreme ranges of the state variable to possibly negative autocorrelation in

between. This novel time-series effect is strongly supported by the data.

In cross-sections of homogeneous firms, we establish that irreversibility (or very low

recovery value of assets) is necessary for a positive average association between book-to-
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market ratios and expected returns. Moderate reversibility implies the opposite. Whether or

not the model implies a non-trivial value premium then depends on the degree of reversibility

in actual firms. When we interact measures of industry flexibility with profitability (quasi-

fixed cost over sales) in cross-sectional return regressions, we do find a significant positive

association, as predicted by the model. However, we do not find that these variables at all

diminish the importance of book-to-market, suggesting that the value effect is more likely

driven by cross-firm differences in fundamental risk than by within-firm risk variation with

profitability (or quasi-fixed operating costs).

In cross-sections of heterogeneous firms, a value premium may be simply due to differ-

ences in asset risk (e.g., correlation with the pricing kernel). We establish conceptually and

empirically that conditioning on book-to-market in return regressions removes the cross-firm

value effect and induces a positive relation between residual returns and lagged returns. The

model thus provides a single, simple framework in which cross-firm difference in asset risk and

within firm variation in profitability can imply a coexistence of value and momentum effects.
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Appendix A Solving the Model

The text describes the form of the firm’s impulse control policy. When it is in the no-

adjustment region the firm value, J , satisfies the equilibrium condition

E[dJ/J ] + Π/J − r = −Cov[dJ/J, dΛ/Λ].

which implies the partial differential equation

[Jθ θ µ− JK δ K +
1

2
Jθθθ

2 σ2] + Π− rJ + [ρ Jθ θ σ σΛ] = 0. (A.1)

To verify homogeneity, we guess the solution form J = θ V (K/θ). The PDE then becomes

an ODE in V (Z) with Z = K/θ:

1

2
Z2 σ2 V ′′ − [µ + ρ σ σΛ + δ] Z V ′ + [µ + ρ σ σΛ − r] V + [Zγ −mZ] = 0. (A.2)

Note that the risk neutral drift of the productivity process is µRN ≡ µ+ρ σ σΛ. A regularity

condition of the problem is that µRN < r.

In terms of the re-scaled variable Z and the function V , the task is to choose points G,

L, U , H on the positive Z axis to maximize V . Absence of arbitrage imposes the two value

matching conditions (VMCs):

V (G) = V (L) + FLLγ + PL (G− L) (A.3)

and

V (H) = V (U) + FUUγ + PU (H − U) . (A.4)

The first equation requires that the post-investment value of the firm is the pre-investment

value plus the funds injected. The second imposes the same for pre- and post- disinvestment

(note H − U < 0). Given these, functionally differentiating with respect to the barrier

positions, yield the smooth-pasting conditions (SPCs) as necessary conditions of optimality.

These are:

V ′(L) = −γ FLLγ−1 + PL, (A.5)

V ′(G) = PL, (A.6)

V ′(U) = −γ FUUγ−1 + PU , (A.7)
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V ′(H) = PU . (A.8)

The solution to (A.2) is well known: it is the sum of the general form of solution to the

homogenous version (without the Π terms) and a particular solution having the same form

as the Π terms. This yields

V (Z) = A Zγ − S Z + DN ZλN + DP ZλP (A.9)

where

A =
1

r + γδ + (γ − 1)µRN − 1
2
γ(γ − 1)σ2

S =
m

(r + δ)

and

λP,N =
b±

√
b2 + 2(r − µRN)σ2

σ2

and b = (µRN + δ + 1
2
σ2). Here DN and DP are two additional free parameters. Note that

A > 0, S > 0 and the regularity condition r > µRN implies λN < 0, 1 < λP . The first

two terms in (A.9) are simply the discounted expected values of operating profits net of

quasi-fixed costs, i.e., they represent the value of assets in place. The third and fourth terms

represent, respectively, the value of expansion and contraction options. It follows that DP

and DN are positive.

When (A.9) is plugged into each of the SPCs and VMCs, the result is a system of six

equations in G, L, U , H, DN , and DP . The system is linear in the last two, given the first

four. But the nonlinearity in the first four renders numerical solution necessary. Solving the

VMCs yields

DN =
1

∆

[
(HλP − UλP )(A(Gγ − Lγ)− S(G− L)− FLLγ − PL(G− L))

− (GλP − LλP )(A(Hγ − Uγ)− S(H − U)− FUUγ − PU(H − U))
]

(A.10)

and

DP =
1

∆

[
(GλN − LλN )(A(Hγ − Uγ)− S(H − U)− FUUγ − PU(H − U))

− (HλN − UλN )(A(Gγ − Lγ)− S(G− L)− FLLγ − PL(G− L))
]

(A.11)
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where

∆ = (GλP − LλP )(HλN − UλN )− (GλN − LλN )(HλP − UλP ).

As discussed in the text, another facet of the problem is the abandonment option. If

the solution found by the above procedure does not yield an everywhere positive firm value

(which can happen, for example, if PU is very negative), then it is not consistent with limited

liability. In that case, the system is re-solved with the boundary conditions V (U) = 0 and

V ′(U) = 0 replacing (A.4) and (A.7).

Based on (A.9)–(A.11), the expected excess return can be written

EER(Z) = πθ
AZγ(1− γ) + DNZλN (1− λN) + DP ZλP (1− λP )

V (Z)

= πθ

̂V (Z)

V (Z)

AZγ(1− γ) + DNZλN (1− λN) + DP ZλP (1− λP )
̂V (Z)

where we define ̂V (Z) ≡ V (Z) + SZ = AZγ + DNZλN + DP ZλP , which is the value of the

firm excluding the liability due to fixed costs. Thus we have25

EER(Z) = πθ

̂V (Z)

V (Z)
[(1− γ)wA(Z) + (1− λN)wG(Z) + (1− λP )wC(Z)] .

where wA + wC + wG = 1. If the firm’s real options were worthless, the only variation in

the risk premium would come from the term V̂ (Z)
V (Z)

=
(
1 + SZ

V (Z)

)
, which represents the risk

amplification of operating leverage. (By contrast, the weights wA, wC , wG do not depend

on the value of the fixed-cost liability.) The risk contribution of assets in place is given by

(1 − γ)wA(Z) ( ̂V (Z)/V (Z)). Clearly wA is increasing in Z. The operating leverage term

is as well since the derivative of 1 + SZ/V has the same sign as that of Z/V , which is

(V − ZV ′)/V 2 > 0 (c.f., property (A) in Section 2). It follow that the total risk premium

contribution of assets in place is increasing in Z as claimed in the text.

By the same reasoning, the contraction option’s contribution to the risk premium,

(1−λP )wC(Z) ( ̂V (Z)/V (Z)), is increasingly negative (since λP > 1 and wC(Z) is increasing).

The remaining claim in the text is that the growth option term is decreasing in Z. This term

is equal to (1−λN)DNZλN /V and (1−λN) > 0 and DN > 0. The sign of the derivative is thus

the sign of λNV − ZV ′. Since V > 0 by limited liability, and λN < 0, a sufficient condition

for a negative derivative is simply V ′ > 0. But this is implied by condition (B) in Section 2.

25We thank Ali Ozdagli for suggesting this decomposition.
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Appendix B Construction of INFLEX and QFC/S

To take the model’s predictions to the data, we need a way to differentiate firms according to

their operational flexibility. We conjecture that the primary determinants of a firm’s ability

to adjust its scale derive from industry-wide features of physical and technological capital.

Economic intuition suggests that industries differ as to what production inputs are acquired

under long-term contracts, such as, some part of labor input, raw materials, and organization

capital, and as to how easily productive capital is transformable. Hence we regard adjustment

costs as a ‘fact of life’ for firms within an industry and propose time-invariant measures of in-

flexibility at the industry level. Within an industry, we can then assess each firm’s profitabil-

ity based on its expected, period-specific quasi-fixed production costs. Hence we attempt to

measure time-varying quasi-fixed costs at the firm level. This appendix presents and discuss

various measures of inflexibility and quasi-fixed costs, which we use in the tests of Section 4.

To gauge an industry’s inflexibility, we employ alternative classification schemes and

data sources. Our primary proxies of industry inflexibility are either directly derived from or

closely linked to the model. That is, our estimates of are based on cost stickiness and vari-

ability given that, according to the model, the observed range of profitability or quasi-fixed

costs over sales increases with inflexibility. To this end, we build a measure of the median

firm level range within an industry and a measure of the aggregate range of an industry. In

addition, we supplement these measures by examining a resalability index for used industry

capital and coefficient estimates of cost persistence obtained from industry panel regressions.

Our baseline inflexibility index (INFLEX1) is the standardized median firm range of op-

erating costs (i.e., the sum of COMPUSTAT’s costs of good sold, COGSQ, and, if available,

selling, general, and administrative expenses, XSGAQ) over sales (i.e., SALEQ). More specif-

ically, for each firm in an industry, the historical range of operating costs over sales is divided

by the residual standard deviation from a regression of operating costs over sales on four

of its own lags and a constant. The median firm range (i.e., INFLEX1) corresponds to the

median value of these ranges across all firms in each of the 48 Fama and French (1997) indus-

tries. Intuitively, an INFLEX1 value of six can be roughly interpreted as the lower and upper

boundaries (i.e., L and U) in the real options model being six standard deviations apart.

As seen in Table 4, INFLEX1 ranges from 5.30 to 10.36. Thus, there is heterogeneity

across industries, as also reflected by the standard deviation of about 0.88 relative to a median

INFLEX1 value of 6.95. While not all the rankings from this procedure have obvious causes in

terms of industry features, the least flexible firms do include capital-intensive manufacturing
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firms, while several of the most flexible industries are notable users of outsourcing. Note also

from the third and fourth columns that none of the unexpected entries (e.g., coal) is large

enough to have undue influence in the tests.

Table 4: Industries with High and Low Inflexibility

FF Code Industry Description Inflexibility Number of Obs. % Mkt. Cap.

Panel A. Six industries with lowest inflexibility

4 Beer & Liquor 5.30 13.84 2.61
29 Coal 5.52 6.38 0.15
16 Textiles 5.96 32.81 0.28
10 Apparel 6.03 57.86 0.51
15 Rubber & Plastics 6.05 41.86 0.27
35 Computer Mfg 6.22 157.30 3.95

Panel B. Six industries with highest inflexibility

32 Telecom/TV Networks 8.05 109.62 10.84
12 Medical Equipment 8.08 125.42 1.66
18 Construction 8.09 48.92 0.43
48 Unclassified 8.26 30.82 0.74
5 Tobacco Products 8.99 4.20 1.63
13 Pharmaceuticals 10.36 163.58 11.10

This table reports the six industries with the largest and smallest values of the median firm range, INFLEX1,

which is an industry’s median value of the firm level range of operating costs (COMPUSTAT’s COGSQ and

XSGAQ) over sales (i.e., SALEQ) and standardized by the residual volatility. The third and fourth columns

show, for each industry, the average number of firm observations (Number of Obs.) and the average fraction

of total market capitalization (% Mkt. Cap.) in each monthly cross-section of the 1980-2009 sample period.

As a second proxy of inflexibility based on the model’s notion of scaled range, we construct

INFLEX2 as the standardized industry range. That is, we compute industry aggregate cost,

sales, and assets by summing over all quarterly firm observations in COMPUSTAT. Industry

operating costs and industry sales are standardized by industry assets (i.e., the industry’s

aggregate value of COMPUSTAT’s ATQ). The industry range is then determined by the

historical range of aggregate, standardized operating costs over sales divided by the residual

standard deviation from a regression of operating costs on contemporaneous sales and four

lags of operating cost and sales and a constant. The correlation between INFLEX1 and

INFLEX2 equals 0.2714, with a p-value of 0.0620.

The third index of inflexibility builds directly on inter-industry variation in the reversibil-

ity, namely industry level capital resalability. Balasubramanian and Sivadasan (2009) define

a capital resalability index (RESAL) as the fraction of total capital expenditure in an indus-
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try accounted for by purchases of used (as opposed to new) capital, computed at 4-digit SIC

level. These authors construct their index using detailed data on both new and used capital

expenditures collected and published by the U.S. Census Bureau in 1992. Intuitively, ability

to re-sell physical assets is akin to a disinvestment option at the firm level. Indeed, in the

model, flexibility is most closely tied to PU , the real liquidity of physical capital. In industries

where capital is firm-specific, there will be a less active secondary market in used capital,

and the index will be low. Moreover Balasubramanian and Sivadasan (2009) show that the

index is a significant factor in explaining other industry traits associated with greater re-

versibility. Based on this insight from the industrial organization literature, we define our

third measure of inflexibility as INFLEX3 = 1 - RESAL. This measure is time-invariant and

is only available for a restricted sample of manufacturing firms (i.e., SIC codes 2000–3999).

As a fourth measure of cross-industry cost stickiness, we use ordinary-least-squares co-

efficient estimates from industry-by-industry panel regressions of firm-level operating costs

scaled by assets on moving averages of four of its own lags and contemporaneous sales scaled

by assets. Instead of scaling by assets, we have verified that weighted-least-squares estimates

of this specification provide similarly results when weighing by the reciprocal value of assets.

Finally, we need to measure the firm-specific state variable: capital scaled by productivity.

While increases in this variable generate increasing operating leverage, we do not attempt to

measure operating leverage (which goes through infinity for unprofitable firms). Instead, we

construct empirical counterparts of the ratio of quasi-fixed costs over sales, QFC/S, which,

in the model is a monotonic transformation of the state variable.

Using quarterly COMPUSTAT data for the 1975–2009 period, we obtain annual, firm-

level estimates of QFC/S by running five-year, rolling-window regressions of operating costs

on its first lag and contemporaneous sales. The measure of QFC/S in the year following the

5-year estimation period equals the sum of regression intercept and predicted operating costs,

scaled by sales. For inclusion in the sample, we require that quarterly growth rates in assets,

costs, or sales lie inside the [−75%, +75%] interval and that rolling-window regressions are

based at least 10 observations. In robustness tests in the next section, we analyze the impor-

tance of the two components of QFC/S by using only the regression intercept scaled by sales

as a measure of quasi-fixed costs. In another specification, we reduce the noisiness of QFC/S

estimates by increasing the number of observations from 10 to 15 for every 5-year window.
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Appendix C Including Debt

This appendix describes two tractable ways of embedding the firm’s problem in an economy

with debt while preserving the features of expected returns described in the text.

We assume that debt is in the form of a credit line whose instantaneous interest rate i

is set to make the debt worth its face value, B, as long as the firm is alive. Adjusting the

level of borrowing will be assumed costless (as is adjusting equity). So the firm will adjust

debt continually as a function of the state variable Z. We formulate the debt choice as a

simplified trade-off model where the firm gets tax benefits proportional to the amount of

debt and also incurs convex monitoring costs. We can view these costs as a reduced form

for the expense of setting up the bank relationship, overcoming contracting problems, and

achieving first-best. As a consequence of the monitoring, then, investment (and potential

abandonment decisions) are taken to maximize firm – not equity – value (i.e., J not J −B).

Formally, the firm now solves the Bellman equation

max
B,U,H,G,L

(DJ + Φ(B, J)) = 0 (C.1)

where DJ stands for the left-hand side of equation (A.1) and Φ(B, J) is the net benefit flow

term. Optimal debt can then be characterized by the first-order condition (FOC) for B

holding J fixed: ∂Φ/∂B = 0.

Our first formulation simply says that the tax benefit per unit time is τiB and the

monitoring costs are quadratic in B/J , e.g., 1
2
c (B/J)2 J = 1

2
c (B/J) B. Thus, Φ(B, J) =

τiB− 1
2
c (B/J) B, which implies monitoring costs increase both with absolute level of debt

and with market leverage. The FOC then yields the optimal policy

B∗ = (τi/c)J.

With this policy, the net benefit flow to the firm per unit time is 1
2

τ2 i2

c
Jt, which depends on

the interest rate on the debt. If debt is going to be risky, this interest rate will be a function

of firm value. So this net flow term then adds a nonlinear component to the ODE. A natural

way around this is to just make the tax shield a function of r instead of i. That is, one can

posit that the tax rules limit the deductibility of interest to rB, not iB. This shuts down

the rather complicated (and not relevant) mechanism whereby the firm has an incentive to
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increase the riskiness of debt just to increase tax shields. With this assumption, we obtain

B∗ =
τ r

c
J ≡ b∗J, (C.2)

with net benefit flow 1
2

τ2 r2

c
Jt. This formulation says that book leverage B/K is propor-

tional to J/K, the market-to-book ratio of the whole firm. Or, since the main determinant

of this ratio is profitability, it says that more profitable firms borrow more. Note that B

proportional to J is a statement about the quantity of debt; the unit value of debt is always

one (until default, to be discussed below). Also note that, if the coefficient b∗ is less than

one, the model keeps the equity value, J −B, positive.

This is an appealing formulation, which essentially achieves our objective. Since equity

value is just a multiple of firm value, the graph of the equity risk premium is identical to the

graph of the firm risk premium. As operating leverage increases (with Z = K/θ rising) the

decline in debt exactly offsets the financial leverage. So debt has no net effect on equity risk.

This does not mean that debt does not affect the solution, however. Before considering

more complex debt models, let us complete the picture by specifying the background model

of default risk. We then show how to compute equity value and expected returns.

To go beyond riskless debt, we introduce a jump-to-obsolescence of the firm’s technology

where θ goes to zero and capital is liquidated for unit price PU (or perhaps some lower price

P0). If ξRN is the risk-neutral jump intensity, then the interest rate required to make debt

worth its face value is

i = r + (1−R) ξRN , (C.3)

where R = min[1, PUK/B] is the recovery rate per dollar of debt face value.

Consider now how the default risk alters the problem. We derived the PDE above for

J(K, θ) from the requirement that the expected excess return E[dJ ] − rJ + Π must equal

−Cov[dJ, dΛ/Λ]. There are now three changes. The E[dJ ] term picks up the expected jump

in firm value per unit time; the firm profit term Π incorporates the net tax benefit flow;

and the covariance has to include the contribution of joint jumps in θ and marginal utility.

If the jumps are entirely idiosyncratic then the latter term is absent, which will mean the

risk-neutral jump intensity is the same as the true one. It may be important for calibration

to allow for systemic jumps, though.

Formally,our assumptions about the two processes are:

dΛ

Λ
= −r dt + σΛ dWΛ + ψ (dNΛ − ξΛ dt).
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and
dθ

θ
= µ dt + σ dW θ − dNΛ − dN (i).

Note that the percentage jump size for θ is -1, meaning if either type of jump occurs, the

process drops to zero and stops forever. A systematic jump raises marginal utility by ψ > 0.

We next invoke the jump version of Ito’s lemma to find the moments of dJ . Here we need

to use our assumptions about what happens to firm value when θ jumps to zero. Recall, we

assume the firm is liquidated for PUK when that happens.26 Then Ito’s lemma says that

J = J(θ, K) obeys:

dJ = [Jθ θ µ− JK δ K +
1

2
Jθθθ

2 σ2] dt + Jθ θ σ dW θ + [P0K − J ] dNΛ + [P0K − J ] dN (i)

Hence

Cov[dJ, dΛ/Λ] = ρ Jθ θ σ σΛ + [P0K − J ]ψξΛ.

And E[dJ ] is all the dt terms, plus

[PUK − J ] ξΛ + [PUK − J ] ξ(i)

Finally, let us write the profit term with tax benefits as

θ1−γKγ −mK + τ̂J

where τ̂ ≡ 1
2
τ r b∗. The whole PDE then is

[
1

2
Jθθθ

2 σ2 + Jθ θ µ− JK δ K] + [PUK − J ] (ξΛ + ξ(i))− rJ

+[θ1−γKγ −mK + τ̂J ] + [ρ Jθ θ σ σΛ] + [PUK − J ]ψξΛ = 0.

Again, we guess the solution form J = θ V (Z), Z = K/θ and plug that in to the PDE. The

PDE does indeed become an ODE in V (Z). Grouping terms and dividing by θ, it says

1

2
Z2 σ2 V ′′ − [µRN + δ] Z V ′ − [r̂ − µRN ] V + [Zγ − m̂Z] = 0.

where we have defined

r̂ = r + ξRN − τ̂

26One could assume different liquidation values depending on whether the jump was systematic or not.
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ξRN = ξ(i) + (1 + ψ)ξΛ

m̂ = m− PUξRN

µRN = µ + ρ σ σΛ

This is the same form of the ODE we had above, with two changes. The effective

riskless rate is increased by the risk neutral default intensity (reflecting the firm’s increased

impatience) and decreased by the flow of tax benefits. And the quasi fixed costs are reduced

due to the implicit flow of expected recovery value upon liquidation.

Both of these adjustments will be small in practice, and will not materially change the

investment behavior in most cases. The adjusted values of r̂ and m̂ must be inserted into

the solution coefficients A and S and into the characteristic exponents λP,N in place of the

unadjusted values. Also, a requirement for a finite solution is r̂ > µRN . The ODE is then

solved exactly as before. None of the boundary conditions is affected.

Once we obtain J , then, since debt is worth its face value, JD = B, equity is just JE =

J −B. To compute the equity risk premium, the full expression for −Cov[dJE/JE, dΛ/Λ] is

−ρ σ σΛ

[
θ

JE

∂JE

∂θ

]
− (ψξΛ)

(RE − JE)

JE

.

The first term pertains to diffusive θ risk. For our very simple model, JE = (1 − b∗)J . So

this is the same as the firm’s diffusive risk premium:

1− Z
V ′

V
.

The second term is the co-jump term. The recovery for equity is RE = max[PUK − B, 0].

So the additional term here can be written

−ψξΛ

[
max[PUZ − bZ, 0]

V − bZ
− 1

]
= −ψξΛ max

[
PUZ − V

V − bZ
,−1

]
= ψξΛ min

[
V − PUZ

V − bZ
, 1

]
.

This term falls with Z because, as the firm becomes less valuable, the jump down to RE is

a smaller percentage loss.

Now consider a second debt formulation in which market leverage will not be constant.

Instead it will vary with the firm’s liquidation value, PUK. This captures the role of tangible

assets in determining a firm’s “debt capacity.” Formally, we induce this dependence by
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specifying that the monitoring cost looks like

1

2
c

(
B

J
−

[
PUK

J
− 1

])2

J. (C.4)

The FOC then yields

B∗ =
(

τ r

c
− 1

)
J + PUK = (b∗ − 1)J + PUK. (C.5)

Assuming b∗ < 1, this model has book leverage declining in profitability, as measured by

Q = J/K. Loss making firms increase their borrowing, whereas investing firms may hold

net cash (B > 0). Equity value is

JE = (2− b∗)J − PUK or VE = (2− b∗)V − PUZ,

which remains positive for b∗ < 1 because J ≥ PUK.

This model is still easy to solve: the net benefit flow contributes one term that is linear

in J and one that is linear in K. These just lead to slightly different adjustments to the

ODE inputs r̂ and m̂. Specifically, we find

r̂ = r + ξRN − rτ
(

1

2
b∗ − 1

)

m̂ = m− ξRNPU − rτPU .

This formulation of debt tends to steepen the graph of equity risk premium as a function

of book-to-market or quasi-fixed costs-to-sales. Numerical results (available from the authors

upon request) indicate that the two principle features identified in the text are preserved: (1)

the risk premium maintains its characteristic S-shape; and (2) the average slope is increasing

in the degree of frictions especially as parameterized by PL and PU .
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